

Date: December 2010

Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM)

Version 1.3
 convenience document with changebars

OMG Document Number: ptc/2010-12-11
Standard document URL: http://www.omg.org/spec/KDM/1.3
Associated Schema Files*: ptc/2009-05-22
 ptc/2009-05-23

 ptc/2009-05-24

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS
Copyright © 2006, Flashline
Copyright © 2006, IBM
Copyright © 2006, KDM Analytics
Copyright © 2006, Klocwork, Inc.
Copyright © 2009, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG Systems Modeling
Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is

and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 i

0.1 OMG’s Issue Reporting Procedure 1

1 Preface xv
2 Scope 1
3 Conformance 1

3.1 KDM Domains 1
3.2 Compliance Levels 2

3.2.1 Meaning and Types of Compliance 3

4 Normative References 6
5 Terms and Definitions 6
6 Symbols 8
7 Additional Information 9

7.1 Changes to Other OMG Specifications 9

7.2 How to Read this Specification 9
7.2.1 Diagram format 10

8 Specification Overview 13
9 KDM 17

9.1 Overview 17

9.2 Organization of the KDM Packages 18

Part I - Infrastructure Layer 21
10 Core Package 23

10.1 Overview 23

10.2 Organization of the Core Package 23
10.3 CoreEntities Class Diagram 23

10.3.1 Element Class (abstract) 24
10.3.2 ModelElement Class (abstract) 24
10.3.3 KDMEntity Class (abstract) 25

10.4 CoreRelations Class Diagram 26
10.4.1 KDMRelationship Class (abstract) 27

ii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10.4.2 KDMEntity (additional properties) 28

10.5 AggregatedRelations Class Diagram 28
10.5.1 AggregatedRelationship Class 29
10.5.2 KDMEntity (additional properties) 31

10.6 Datatypes Class Diagram 32
10.6.1 Boolean Type (datatype) 32
10.6.2 String Type (datatype) 32
10.6.3 Integer Type (datatype) 32

11 The Package named “kdm” 33
11.1 Overview 33

11.2 Organization of the KDM Framework 33
11.3 Framework Class Diagram 34

11.3.1 KDMFramework Class (abstract) 35
11.3.2 KDMModel Class (abstract) 36
11.3.3 KDMEntity (additional properties) 37
11.3.4 Segment Class 37

11.4 Audit Class Diagram 38
11.4.1 Audit Class 39
11.4.2 KDMFramework (additional properties) 40

11.5 Extensions Class Diagram 40
11.5.1 Stereotype Class 42
11.5.2 TagDefinition Class 44
11.5.3 ExtensionFamily Class 45
11.5.4 ModelElement (additional properties) 45

11.6 ExtendedValues Class Diagram 46
11.6.1 ExtendedValue Class (abstract) 46
11.6.2 TaggedValue Class 47
11.6.3 TaggedRef Class 48

11.7 Annotations Class Diagram 48
11.7.1 Attribute Class 49
11.7.2 Annotation Class 50
11.7.3 Element (additional properties) 50

12 Source Package 53
12.1 Overview 53
12.2 Organization of the Source Package 54

12.3 InventoryModel Class Diagram 55
12.3.1 InventoryModel Class 55
12.3.2 AbstractInventoryElement Class (abstract) 56
12.3.3 AbstractInventoryRelationship Class (abstract) 56

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 iii

12.3.4 InventoryItem Class (generic) 57
12.3.5 SourceFile Class 57
12.3.6 Image Class 58
12.3.7 Configuration Class 58
12.3.8 ResourceDescription Class 58
12.3.9 BinaryFile Class 59
12.3.10 ExecutableFile Class 59
12.3.11 InventoryContainer Class (generic) 59
12.3.12 Directory Class 59
12.3.13 Project Class 60

12.4 InventoryInheritances Class Diagram 61
12.5 InventoryRelations Class Diagram 61

12.5.1 DependsOn Class 61

12.6 SourceRef Class Diagram 62
12.6.1 SourceRef Class 63
12.6.2 SourceRegion Class 64

12.7 ExtendedInventoryElements Class Diagram 65
12.7.1 InventoryElement Class (generic) 65
12.7.2 InventoryRelationship Class (generic) 66

Part II - Program Elements Layer 67
13 Code Package 71

13.1 Overview 71
13.2 Organization of the Code Package 71

13.3 CodeModel Class Diagram 72
13.3.1 CodeModel Class 73
13.3.2 AbstractCodeElement Class (abstract) 73
13.3.3 AbstractCodeRelationship Class (abstract) 74
13.3.4 CodeItem Class (abstract) 74
13.3.5 ComputationalObject Class (generic) 74
13.3.6 Datatype Class (generic) 75

13.4 CodeInheritances Class Diagram 75
13.5 Modules Class Diagram 76

13.5.1 Module Class (generic) 76
13.5.2 CompilationUnit Class 77
13.5.3 SharedUnit Class 77
13.5.4 LanguageUnit Class 78
13.5.5 CodeAssembly Class 78
13.5.6 Package Class 78

13.6 ControlElements Class Diagram 79

iv Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.6.1 ControlElement Class (generic) 79
13.6.2 CallableUnit Class 80
13.6.3 CallableKind Data Type (enumerated) 80
13.6.4 MethodUnit Class 81
13.6.5 MethodKind data type (enumeration) 81

13.7 DataElements Class Diagram 82
13.7.1 DataElement Class (generic) 83
13.7.2 StorableUnit Class 84
13.7.3 StorableKind data type (enumeration) 84
13.7.4 ExportKind data type (enumeration) 85
13.7.5 ItemUnit Class 85
13.7.6 IndexUnit Class 85
13.7.7 MemberUnit Class 86
13.7.8 ParameterUnit Class 86

13.8 ValueElements Class Diagram 87
13.8.1 ValueElement Class (generic) 87
13.8.2 Value Class 88
13.8.3 ValueList Class 88

13.9 PrimitiveTypes Class Diagram 89
13.9.1 PrimitiveType Class (generic) 90
13.9.2 BooleanType Class 90
13.9.3 CharType Class 91
13.9.4 OrdinalType Class 91
13.9.5 DateType Class 91
13.9.6 TimeType Class 91
13.9.7 IntegerType Class 92
13.9.8 DecimalType Class 92
13.9.9 ScaledType Class 92
13.9.10 FloatType Class 92
13.9.11 VoidType Class 93
13.9.12 StringType Class 93
13.9.13 BitType Class 93
13.9.14 BitstringType Class 93
13.9.15 OctetType Class 94
13.9.16 OctetstringType Class 94

13.10 EnumeratedTypes Class Diagram 94
13.10.1 EnumeratedType Class 95

13.11 CompositeTypes Class Diagram 95
13.11.1 CompositeType Class (generic) 96
13.11.2 ChoiceType Class 96
13.11.3 RecordType Class 97

13.12 DerivedTypes Class Diagram 98
13.12.1 DerivedType Class (generic) 98
13.12.2 ArrayType Class 99
13.12.3 PointerType Class 100

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 v

13.12.4 RangeType Class 100
13.12.5 BagType Class 101
13.12.6 SetType Class 101
13.12.7 SequenceType Class 102

13.13 Signature Class Diagram 102
13.13.1 Signature Class 102
13.13.2 ParameterKind Enumeration Datatype 103

13.14 DefinedTypes Class Diagram 103
13.14.1 DefinedType Class (abstract) 104
13.14.2 TypeUnit Class 104
13.14.3 SynonymUnit Class 105

13.15 ClassTypes Class Diagram 105
13.15.1 ClassUnit Class 105
13.15.2 InterfaceUnit Class 106

13.16 Templates Class Diagram 106
13.16.1 TemplateUnit Class 107
13.16.2 TemplateParameter Class 107
13.16.3 TemplateType Class 108

13.17 TemplateRelations Class Diagram 108
13.17.1 InstanceOf Class 109
13.17.2 ParameterTo Class 109

13.18 InterfaceRelations Class Diagram 112
13.18.1 Implements Class 113
13.18.2 ImplementationOf Class 114

13.19 TypeRelations Class Diagram 117
13.19.1 HasType Class 117
13.19.2 HasValue Class 118

13.20 ClassRelations Class Diagram 121
13.20.1 Extends Class 122

13.21 Preprocessor Class Diagram 123
13.21.1 PreprocessorDirective Class (generic) 124
13.21.2 MacroUnit Class 125
13.21.3 MacroKind data type (enumeration) 126
13.21.4 MacroDirective Class 126
13.21.5 IncludeDirective Class 127
13.21.6 Conditional Directive Class 127

13.22 PreprocessorRelations Class Diagram 127
13.22.1 Expands Class 128
13.22.2 GeneratedFrom Class 129
13.22.3 Includes Class 130
13.22.4 VariantTo Class 132
13.22.5 Redefines Class 133

vi Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.23 Comments Class Diagram 134
13.23.1 CommentUnit Class 135
13.23.2 AbstractCodeElement Class (additional properties) 135

13.24 Visibility Class Diagram 136
13.24.1 Namespace Class 136

13.25 VisibilityRelations Class Diagram 137
13.25.1 VisibleIn Class 137
13.25.2 Imports Class 138

13.26 ExtendedCodeElements Class Diagram 139
13.26.1 CodeElement Class (generic) 139
13.26.2 CodeRelationship Class (generic) 139

14 Action Package 141
14.1 Overview 141

14.2 Organization of the Action Package 141

14.3 ActionElements Class Diagram 141
14.3.1 ActionElement Class 142
14.3.2 AbstractActionRelationship Class (abstract) 143
14.3.3 BlockUnit Class 143
14.3.4 AbstractCodeElement (additional properties) 144

14.4 ActionInheritances Class Diagram 144

14.5 ActionFlow Class Diagram 145
14.5.1 ControlFlow Class (generic) 145
14.5.2 EntryFlow Class 146
14.5.3 Flow Class 147
14.5.4 TrueFlow Class 147
14.5.5 FalseFlow Class 148
14.5.6 GuardedFlow Class 148

14.6 CallableRelations Class Diagram 149
14.6.1 Calls Class 150
14.6.2 Dispatches Class 151

14.7 DataRelations Class Diagram 152
14.7.1 Reads Class 153
14.7.2 Writes Class 153
14.7.3 Addresses Class 154
14.7.4 Creates Class 154

14.8 ExceptionBlocks Class Diagram 155
14.8.1 ExceptionUnit Class 156
14.8.2 TryUnit Class 156
14.8.3 CatchUnit Class 156
14.8.4 FinallyUnit Class 157

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 vii

14.9 ExceptionFlow Class Diagram 159
14.9.1 ExitFlow Class 160
14.9.2 ExceptionFlow Class 161

14.10 ExceptionRelations Class Diagram 161
14.10.1 Throws Class 161

14.11 InterfaceRelations Class Diagram 162
14.11.1 CompliesTo Class 162

14.12 UsesRelations Class Diagram 163
14.12.1 UsesType Class 163

14.13 ExtendedActionElements Class Diagram 164
14.13.1 ActionRelationship Class (generic) 164

15 Micro KDM 167

Part III - Runtime Resources Layer 173
16 Platform Package 177

16.1 Overview 177

16.2 Organization of the Platform Package 178

16.3 PlatformModel Class Diagram 179
16.3.1 PlatformModel Class 179
16.3.2 AbstractPlatformElement Class (abstract) 180
16.3.3 AbstractPlatformRelationship Class (abstract) 180

16.4 PlatformInheritances Class Diagram 181

16.5 PlatformResources Class Diagram 181
16.5.1 ResourceType Class 182
16.5.2 NamingResource Class 183
16.5.3 MarshalledResource Class 183
16.5.4 MessagingResource Class 183
16.5.5 FileResource Class 184
16.5.6 ExecutionResource Class 184
16.5.7 LockResource Class 184
16.5.8 StreamResource Class 184
16.5.9 DataManager Class 184
16.5.10 PlatformEvent Class 185
16.5.11 PlatformAction Class 185
16.5.12 ExternalActor Class 185

16.6 PlatformRelations Class Diagram 186
16.6.1 BindsTo Class 186

16.7 ProvisioningRelations Class Diagram 186

viii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.7.1 Requires Class 187

16.8 PlatformActions Class Diagram 187
16.8.1 ManagesResource Class 188
16.8.2 ReadsResource Class 189
16.8.3 WritesResource Class 189
16.8.4 DefinedBy Class 189

16.9 Deployment Class Diagram 190
16.9.1 DeployedComponent Class 191
16.9.2 DeployedSoftwareSystem Class 192
16.9.3 Machine Class 192
16.9.4 DeployedResource Class 193

16.10 RuntimeResources Class Diagram 193
16.10.1 RuntimeResource (generic) 194
16.10.2 Process Class 194
16.10.3 Thread Class 194

16.11 RuntimeActions Class Diagram 194
16.11.1 Loads Class 195
16.11.2 Spawns Class 196

16.12 ExtendedPlatformElements Class Diagram 196
16.12.1 PlatformElement Class (generic) 197
16.12.2 PlatformRelationship Class (generic) 197

17 UI Package 199
17.1 Overview 199

17.2 Organization of the UI Package 200
17.3 UIModel Class Diagram 200

17.3.1 UIModel Class 201
17.3.2 AbstractUIElement Class (abstract) 201
17.3.3 AbstractUIRelationship Class (abstract) 202

17.4 UIInheritances Class Diagram 202

17.5 UIResources Class Diagram 203
17.5.1 UIResource Class (generic) 204
17.5.2 UIDisplay Class (generic) 204
17.5.3 Screen Class 204
17.5.4 Report Class 204
17.5.5 UIField Class 205
17.5.6 UIEvent Class 205
17.5.7 UIAction Class 205

17.6 UIRelations Class Diagram 206
17.6.1 UIFlow Class 206
17.6.2 UILayout Class 206

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 ix

17.7 UIActions Class Diagram 207
17.7.1 Displays Class 208
17.7.2 DisplaysImage Class 208
17.7.3 ManagesUI Class 208
17.7.4 ReadsUI Class 209
17.7.5 WritesUI Class 209

17.8 ExtendedUIElements Class Diagram 210
17.8.1 UIElement Class (generic) 210
17.8.2 UIRelationship Class (generic) 210

18 Event Package 213
18.1 Overview 213

18.2 Organization of the Event Package 214
18.3 EventModel Class Diagram 214

18.3.1 EventModel Class 215
18.3.2 AbstractEventElement Class (abstract) 215
18.3.3 AbstractEventRelationship Class (abstract) 216

18.4 EventInheritances Class Diagram 216

18.5 EventResources Class Diagram 216
18.5.1 EventResource Class (generic) 217
18.5.2 Event Class 217
18.5.3 State Class 218
18.5.4 InitialState Class 218
18.5.5 Transition Class 218
18.5.6 OnEntry Class 218
18.5.7 OnExit Class 219
18.5.8 EventAction Class 219

18.6 EventRelations Class Diagram 219
18.6.1 NextState Class 220
18.6.2 ConsumesEvent Class 220

18.7 EventActions Class Diagram 220
18.7.1 ReadsState Class 221
18.7.2 ProducesEvent Class 221
18.7.3 HasState Class 222

18.8 ExtendedEventElements Class Diagram 222
18.8.1 EventElement Class (generic) 223
18.8.2 EventRelationship Class (generic) 223

19 Data Package 225
19.1 Overview 225

19.2 Organization of the Data Package 226

x Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

19.3 Data Model Class Diagram 226
19.3.1 DataModel Class 227
19.3.2 AbstractDataElement Class (abstract) 228
19.3.3 AbstractDataRelationship Class (abstract) 228

19.4 Data Inheritances Class Diagram 228

19.5 DataResources Class Diagram 229
19.5.1 DataResource Class (generic) 230
19.5.2 DataContainer Class (generic) 230
19.5.3 Catalog Class 231
19.5.4 RelationalSchema Class 231
19.5.5 DataEvent Class 232
19.5.6 DataAction Class 232

19.6 ColumnSet Class Diagram 233
19.6.1 ColumnSet (generic) 233
19.6.2 RelationalTable Class 234
19.6.3 RelationalView Class 236
19.6.4 DataSegment Class 237
19.6.5 RecordFile Class 239

19.7 KeyIndex Class Diagram 244
19.7.1 IndexElement Class (generic) 244
19.7.2 UniqueKey Class 245
19.7.3 ReferenceKey Class 245
19.7.4 Index Class 245

19.8 Key Relations Class Diagram 246
19.8.1 KeyRelationship Class 246

19.9 DataActions Class Diagram 247
19.9.1 ReadsColumnSet Class 247
19.9.2 WritesColumnSet Class 248
19.9.3 ManagesData Class 248
19.9.4 HasContent Class 249

19.10 StructuredData Class Diagram 254
19.10.1 XMLSchema 254
19.10.2 AbstractContentElement (abstract) 255

19.11 ContentElements Class Diagram 255
19.11.1 ContentItem (generic) 256
19.11.2 ComplexContentType 256
19.11.3 SimpleContentType 257
19.11.4 ContentRestriction 257
19.11.5 AllContent Class 260
19.11.6 SeqContent Class 260
19.11.7 ChoiceContent Class 260
19.11.8 GroupContent Class 260
19.11.9 MixedContent Class 261

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 xi

19.11.10 ContentAttribute Class 261
19.11.11 ContentElement Class 261
19.11.12 ContentReference Class 261

19.12 ContentRelations Class Diagram 266
19.12.1 TypedBy Class 267
19.12.2 DatatypeOf Class 268
19.12.3 ReferenceTo Class 268
19.12.4 ExtensionTo Class 268
19.12.5 RestrictionOf Class 269

19.13 ExtenededDataElements Class Diagram 269
19.13.1 ExtendedDataElement Class 270
19.13.2 DataRelationship Class 270

Part IV - Abstractions Layer 273
20 Structure Package 275

20.1 Overview 275

20.2 Organization of the Structure Package 276

20.3 StructureModel Class Diagram 276
20.3.1 StructureModel Class 277
20.3.2 AbstractStructureElement Class (abstract) 277
20.3.3 AbstractStructureRelationship Class (abstract) 278
20.3.4 Subsystem Class 278
20.3.5 Layer Class 278
20.3.6 Component Class 278
20.3.7 SoftwareSystem Class 279
20.3.8 ArchitectureView Class 279

20.4 StructureInheritances Class Diagram 279

20.5 ExtendedStructureElements Class Diagram 280
20.5.1 StructureElement Class (generic) 280
20.5.2 StructureRelationship Class (generic) 280

21 Conceptual Package 283
21.1 Overview 283
21.2 Organization of the Conceptual Package 285

21.3 ConceptualModel Class Diagram 285
21.3.1 ConceptualModel 286
21.3.2 AbstractConceptualElement (abstract) 287
21.3.3 AbstractConceptualRelationship Class (abstract) 288

21.4 ConceptualInheritances Class Diagram 288

xii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

21.5 ConceptualElements Class Diagram 288
21.5.1 ConceptualContainer Class 289
21.5.2 TermUnit 290
21.5.3 FactUnit 290
21.5.4 RuleUnit 290
21.5.5 ConceptualRole 290
21.5.6 BehaviorUnit Class 291
21.5.7 ScenarioUnit Class 291

21.6 ConceptualRelations Class Diagram 292
21.6.1 ConceptualFlow Class 292

21.7 ExtendedConceptualElements Class Diagram 300
21.7.1 ConceptualElement Class (generic) 300
21.7.2 ConceptualRelationship Class (generic) 301

22 Build Package 303
22.1 Overview 303
22.2 Organization of the Build Package 304

22.3 BuildModel Class Diagram 304
22.3.1 BuildModel Class 305
22.3.2 AbstractBuildElement Class (abstract) 305
22.3.3 AbstractBuildRelationship Class (abstract) 305
22.3.4 Supplier Class 305
22.3.5 Tool Class 306
22.3.6 SymbolicLink Class 306

22.4 BuildInheritances Class Diagram 306
22.5 BuildResources Class Diagram 306

22.5.1 BuildResource Class 307
22.5.2 BuildComponent Class 308
22.5.3 BuildDescription Class 308
22.5.4 BuildStep Class 308

22.6 BuildRelations Class Diagram 308
22.6.1 LinksTo Class 309
22.6.2 Consumes Class 310
22.6.3 Produces Class 310
22.6.4 SupportedBy Class 311
22.6.5 SuppliedBy Class 311
22.6.6 DescribedBy Class 312

22.7 ExtendedBuildElements Class Diagram 313
22.7.1 BuildElement Class (generic) 314
22.7.2 BuildRelationship Class (generic) 314

23 Annex A - Semantics of the Micro KDM Action Elements (normative) 315

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 xiii

23.1 Comparison Actions 315
23.2 Actions Related to the Primitive Numerical Datatypes 316

23.3 Actions Related to Bitwise Operations on Primitive Datatypes 316

23.4 Control Actions 318
23.5 Actions Related to Access to Datatypes 321

23.6 Actions Related to Type Conversions 323

23.7 Actions Related to StringType Operations 324
23.8 Actions Related to SetType Operations 324

23.9 Actions Related to SequenceType Operations 325

23.10 Actions Related to BagType Operations 326
23.11 Actions Related to Resources 326

xiv Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3 xv

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications
• Business Rules and Process Management Specifications

Language Mappings
• IDL/Language Mapping Specifications

• Other Language Mapping Specifications

Middleware Specifications
• CORBA/IIOP

• CORBA Component Model

• Data Distribution

• Specialized CORBA

xvi Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

Modeling and Metadata Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

Modernization Specifications
• KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and
may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as ISO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
http://www.omg.org/
Email: pubs@omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

Roadmap
This roadmap provides a list of documents including the original submission and all documents that were generated
during the finalization task force process.

The source documents for this specification include:

Alpha: admtf/2006-03-01 (submission)
Associated Schema files: admtf/2006-03-02

The FTF process generated the following documents:

Beta 1: ptc/2006-06-07 (a.k.a. final adopted specification)

Beta 2: ptc/2007-03-04: convenience document with change bars

ptc/2007-03-06: convenience document without change bars

ptc/2007-03-14: addendum to FTF report

ptc/2007-03-17: XML, MDL, CMOF

ptc/2007-03-18: XMI and examples

xviii Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 1

1 Scope

This specification defines a meta-model for representing existing software, its elements, associations, and operational
environments, referred to as the Knowledge Discovery Meta-model (KDM). This is the first in the series of specifications
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects
that involve existing software systems by insuring interoperability and exchange of data between tools provided by
different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software
artifacts (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Any
tool that operates on existing software produces a portion of the knowledge about existing software system. However,
such tool-specific knowledge may not be exported in any explicit format. For example, such knowledge may be used
internally by the tool: a compliler generates precise knowledge about a compilation unit only to discard it as soon as the
object file is generated. Tool-specific knowledge may be limited in scope, restricted to a particular source language, and/
or particular transformation, and/or operational environment. All the above may hinder interoperability between different
tools. The meta-model for Knowledge Discovery provides a common ontology and an interchange format that facilitates
the exchange of data contained within individual tool models that represent existing software. The meta-model represents
the physical and logical elements of software as well as their relations at various levels of abstraction. The primary
purpose of this meta-model is to enable a common interchange format that will allow interoperability between existing
modernization and software assurance tools, services, and their respective intermediate representations.

2 Conformance

KDM is defined via Meta-Object Facility (MOF). KDM determines the interchange format via the XML Metadata
Interchange (XMI) by applying the standard MOF to XMI mapping to the KDM MOF model. The interchange format
defined by KDM is called the KDM XMI schema. The KDM XMI schema is provided as the normative part of this
specification.

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers to integrate multiple facts about a complex enterprise application, as the complexity
of modern enterprise applications involves multiple platform technologies and programming languages. In order to
achieve interoperability and especially the integration of information about different facets of an enterprise application
from multiple analysis tools, this specification defines several compliance levels thereby increasing the likelihood that
two or more compliant tools will support the same or compatible meta-model subsets. This suggests that the meta-model
should be structured modularly, following the principle of separation of concerns, with the ability to select only those
parts of the meta-model that are of direct interest to a particular tool vendor. Separation of concerns in the design of KDM
is embodied in the concept of KDM domains.

2.1 KDM Domains
Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain defines an architectural viewpoint. The viewpoint language for the domain is defined by
the corresponding KDM package that defines meta-model elements to represent particular facts of the system under study
that are essential to the given domain. The meta-model elements defined by all KDM packages constitute the ontology for
describing existing software systems. For example, the Code and Action package define the viewpoint language for the

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Code domain that represent individual code elements of the system under study, such as variables, procedures and
statements. The Structure packages defines the viewpoint language for the Structure domain that represents architectural
elements of the same system, such as subsystems and components. The Conceptual package corresponds to the Business
Rules domain and defines the viewpoint language to represent behavioral elements of the same system such as features or
business rules. KDM formally defines traceability between facts, aggregation and derivation of facts across domains.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Inventory,
Code, Build, Structure, Data, Business Rules, UI, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy
would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels
In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are three KDM compliance levels:

• Level 0 (L0) - This compliance level addresses the Inventory and Code domains and is determined by the following
KDM packages: Core, kdm, Source, Code, and Action packages. It provides an entry-level of knowledge discovery
capability. More importantly, it represents a common denominator that can serve as a basis for interoperability between

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 3

different categories of KDM tools.

To be L0 compliant, a tool shall completely support all meta-model elements within all packages for L0 level.

NOTE:Issue 12875

• Level 1 (L1) - This level addresses the remaining KDM domains and extends the capabilities provided by Level 0.
Specifically, this level is determined by the following packages: Build, Structure, Data, Conceptual, UI, Event,
Platform, as well as the set of constraints for the micro KDM domain defined in sub clause 14 “Micro KDM,” and
Annex A “Semantics of the Micro KDM Action Elements.” These packages are grouped to form above-mentioned
domains. More importantly, this level represents a layer where tools could be complimentary since their focus would
be in different areas of concern.

To be L1 compliant for a given KDM domain, a tool shall completely support all meta-model elements defined by the
corresponding packages and satisfy all semantic constraints specified for the domain.

NOTE:Issue 12876

• Level 2 (L2) - This level is the union of L1 levels for all KDM domains. A tool compliant at the L2 level shall be
compliant to each domain at L1.

2.2.1 Meaning and Types of Compliance
Compliance to Level 1 (L1) for a certain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that
KDM domain at L1 and complete set of concepts defined at L0.

For a given compliance level, a KDM implementation can provide:

• The capability to analyze physical artifacts of existing applications and export their representations based on the XMI
schema corresponding to the given compliance level.

• The capability to import representations of existing software systems based on the XMI schema corresponding to the
given compliance level and perform operations suggested by the corresponding packages.

Table 2.1 - Compliance Statements

Compliance Statement

Compliance Level Import-Analysis Import API Export

4 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

L0 Compliant tool shall:
- Import KDM models based on
complete KDM XMI schema into
existing tool;
- Implement mapping between KDM
and existing internal representation of
the tool;
- Extend operations of existing tool to
support meta-model elements of KDM
framework;
- Extend operations of existing tool to
support meta-model elements of Code
and Action packages;
- Extend operations of existing tool to
support traceability to the physical
artifacts of the application from Source
package.

Compliant tool shall:
- Import KDM models based
on complete KDM XMI
schema;
- Support KDM API defined
by the KDM Core package;
- support KDM framework
as defined in the package
named “kdm”;
- Support KDM API defined
by the Code and Action
packages;
- Support traceability to the
physical artifacts of the
application as defined in the
Source package.

Compliant tool shall:
- Provide capability to analyze
existing artifacts for specified
programming language or
multiple languages;
- Generate XMI documents
corresponding to the KDM XMI
schema;
- Support KDM framework as
defined by the package named
“kdm”;
- Support Code and Action
packages;
- Provide traceability back to
the physical artifacts as
defined by the Source
package.

L1 STRUCTURE Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Structure package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Structure
package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
architecture components of
existing application and
generate KDM Structure model
according to Structure
package.

DATA Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Data package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Data
package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
persistent data components of
existing application for
specified database system and
generate KDM Data model
according to Data package.

PLATFORM Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Platform package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Platform and
Runtime packages.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
platform artifacts for specified
platform and generate KDM
Platform model according to
Platform package.

BUILD Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Build package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Build
package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
build artifacts for specified
build environment and
generate KDM Build model
according to Build package.

Table 2.1 - Compliance Statements

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 5

UI Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
UI package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the UI package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
user interface artifacts for
specified user interface system
and generate KDM UI model
according to UI package;

EVENT Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Event package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Event
package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
artifacts related to event-driven
runtime frameworks and state-
trasition behavior and
generate KDM Event model
according to Event package.

BUSINESS Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support meta-model elements of the
Conceptual package.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by the Conceptual
package.

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
conceptual and behavior
artifacts (e.g., domain
concepts, business rules,
scenarios) of existing
application and generate KDM
Conceptual model according to
Conceptual package;

MICRO KDM Compliant tool shall:
- Demonstrate L0 compliance for
analysis;
- Extend operations of existing tool to
support micro KDM actions as
specified in section 14 micro KDM and
Appendix 1

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support micro KDM
actions as specified in
section 14 micro KDM and
Appendix 1

Compliant tool shall:
- Demonstrate L0 compliance
for export;
- Provide capability to analyze
artifacts of existing application
to the level of detail specified in
section 14 and Appendix 1
provide the mapping of
semantics of the existing
application as it is determined
by the programming languages
and the runtime platform into
KDM micro actions and
generate KDM models that
represent the same meaning

L2 Compliant tool shall:
- Demonstrate L0 import compliance
for analysis;
- Demonstrate L1 import-analysis
compliance for all KDM domains.

Compliant tool shall:
- Demonstrate L0
compliance for import;
- Support KDM API as
defined by all KDM
packages.

Compliant tool shall:
- Demonstrate L0 export
compliance;
- Demonstrate L1 export
compliance for all KDM
domains.

Table 2.1 - Compliance Statements

6 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

3 Normative References

NOTE: Issue 15872

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply.

• OMG UML Infrastructure Specification, ver 2.3, formal/2010-05-03

• OMG Meta-Object Facility (MOF) Specification, ver. 2.0, formal/06-01-01

• OMG MOF XML Metadata Interchange (XMI) Specification, ver. 2.1, formal/05-09-01

• OMG Semantics of Business Vocabularies and Business Rules (SBVR) Specification, ver 1.0, formal/08-01-02

• ISO/IEC 11404:2007 Information technology -- General-Purpose Datatypes (GPD)

4 Terms and Definitions

NOTE: Issue 13294

This subclause contains only those terms which are used in a specialised way throughout the KDM specification. The
majority of terms in KDM are used either according to their accepted dictionary definitions or according to commonly
accepted definitions that may be found in ISO glossaries or other well-known collections of software engineering terms.
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in
the context where they are used.

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the
remainder of the information.

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM is the process of understanding and evolving existing software
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining and
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations
(where appropriate), but encourages user organizations to consider modernization from an analysis and design
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages
and platforms.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the
final product provides.

Build process: a process of transforming of project code base into usable applications. The end result of a software build
is a collection of files that consitute a product in a distributable package. In this case, package can mean a standalone
application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by
software running on a general purpose computer. A simple software build may involve compiling a single source code file

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 7

into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files
with millions of lines of source code such that a correct executable code results from the compilation. The implementation
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

Component: a functionally or logically distinct part of a system. A component may be hardware or software and may be
subdivided into other components. Often a component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or
command files.

Container: a model element that owns one or more distinct elements through the special "owns" ("contains")
relationships between the container element and owned elements. "Containment" relationships form a special group of
the corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

Element: one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: a number of model elements regarded as a unit formed by traceability relationships to a single distinct element.
An element may be part of multiple groups, including a single group formed by the "containment" relationships between
a container and its owned elements. An element is said to group together one or more elements, if these elements have
traceability relationships to the element.

Hierarchy: an arrangement of model elements according to traceability relationships, where an element that "owns" or
"group" other elements is considered at a higher level than the owned (grouped) elements.

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the
behavior of an entity

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: a meta-model element (as well as the corresponding model elements) that represents a thing of significance
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained
piece of data that can be referenced as a unit. As a model element each KDM entity is an instance of some specific meta-
model element and it usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.

KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM
relationship is an instance of some specific meta-model element.

Meta-model: A special kind of model that specifies the abstract syntax of a modeling language. The typical role of a
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains
model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel elements.

Meta-model element: an element of a meta-model from which model elements are instantiated.

8 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Model: A model represents a system of interest, from the perspective of a related set of concerns. The model is related to
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of
model elements and links between them.

Model element: instance of a meta-model element

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A
logically separable part of a program.

Resource: any physical or virtual component of limited availability within a computer system available for a given
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of
using the system.

Segment: A collection of data that corresponds to one or more coherent views of a system of interest that is stored or
transferred as a unit.

Software artifact: A software artifact is a tangible machine-readable document created during software development.
Examples are requirement specification documents, design documents, source code and executables.

Software asset: A software asset is a description of a partial solution (such as a component or design document) or
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business
process solutions from solution business modeling, analysis (assets used are models) and design to application
development (assets used are pieces of code).

Traceability: The degree to which a relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component match.

Unit : (1) a piece or complex of apparatus serving to perform one particular function (2) A software element that is not
subdivided into other elements.

User interface: An interface that enables information to be passed between a human user and hardware or software
components of a computer system.

View: A representation of a whole system from the perspective of a related set of concerns.

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and
analysis.

5 Symbols

There are no symbols defined in this specification.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 9

6 Additional Information

6.1 Changes to Other OMG Specifications
There are no changes to other OMG specifications.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification.

Chapter 7. Specification overview - Provides design rationale for the KDM specification

Chapter 8. KDM - Gives the overview of the packages of KDM

NOTE:Issue 12877

Part I - Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

NOTE:Issue 12872

Chapter 10. Package named “kdm” - Describes the key infrastructure elements that determine patterns for constructing
KDM models and integrating them. This package defines several static elements that are shared by all KDM instances.
This package determines the queries against KDM instances.

Chapter 11. Source package - Describes meta-model elements that provide traceability from KDM facts to the original
representation of the physical artifact (for example, source code).

Part II - Program Elements Layer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior is a KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.

Part III - Runtime Resources Layer

Chapter 15. Platform package - Describes the meta-model elements that represent operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

• Resources that Runtime platforms provide to components

10 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• Services that are provided by the platform to manage the life-cycle of each resource

• Control-flow between components as it is determined by the platform

• Error handling across application components

• Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 16. UI package - Describes the meta-model elements that represent knowledge related to user interfaces,
including their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of states, transitions between states, events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Part IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements that represent the logical organization of the software
system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements that represent facts related to the business domain
of the existing system and provide traceability to other KDM facts.

Chapter 21. Build package - Describes the meta-model elements that represent the facts related to the build process of the
software system (including but not limited to the engineering transformations of the “source code” to “executables”).

6.2.1 Diagram format
Meta-model diagrams in this specification are used to mechanically produce the Meta-Object Facility (MOF) definition of
KDM, and the corresponding KDM XMI schema. The following conventions are adopted for all metamodel diagrams
throughout this specification:

• An association with one end marked by a navigability arrow means that:

• the association is navigable in the direction of that end,

• the marked association end is owned by the classifier, and

• the opposite (unmarked) association end is owned by the association.

• An association with neither end marked by navigability arrows means that:

• the association is navigable in both directions,

• each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

• additionally, properties "owner", "group" and "model" are automatically renamed to ownerProperty, groupProperty
and modelProperty respectively.

• Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 11

• the constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

• a constraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

• Derived union is indicated by placing constraint {union} in the proximity of the association end to which it applies.
The corresponding association endpoint is marked as derived and read only.

• If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. In addition, if the name of the class to which the end is attached
starts has a meaningful prefix of uppercase letters, for example XMLxxxx, KDMxxx, UIxxxx, the entire uppercase
prefix is modified to become lowercase. For example, the above words become xmlxxxx, kdmxxx, uixxxx. (Note that,
by convention, non-navigable association ends are often left unlabeled since, in general, there is no need to refer to
them explicitly either in the text or in formal constraints - although there may be needed for other purposes, such as
MOF language bindings that use the metamodel.)

• unlabeled association ends attached to the class KDM Entity which correspond to KDM Relationships are
additionally prefixed with "in" or "out" according to the direction of the relationship. The corresponding properties
at the KDM Relationship class side are "to" and "from". For example, association ends for the ActionElement class
corresponding to the associations to ControlFlow class are named "inControlFlow" (the counterpart of the "to"
endpoint from the ControlFlow side) and "outControlFlow" (the counterpart of the "from" endpoint from the
ControlFlow side)

• Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

"A_" <class-name1> "_" <association-end-name2>

where <class-name1> is the name of the class that owns the first association end and <association-end-name2> is
 the name of the second association end

NOTE: Issue 13830 Removed Acknowledgements section

12 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 13

7 Specification Overview

This specification defines a meta-model for representing information related to existing software, its elements,
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an
interchange format that facilitates the exchange of data currently contained within individual tool models that represent
existing software. The meta-model represents the physical and logical elements of software as well as their relationships
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an ISO 42010 architectural
viewpoint. Each KDM domain is represented by one or more KDM packages which formalize the viewpoint language for
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are
organized into KDM models per each domain. KDM model corresponds to an ISO 42010 architectural view. KDM facts
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined
by ISO 42010, in which case additional requirements of ISO 42010 shall be satisfied by the overall document. KDM
instances are represented as XML documents conforming to the KDM XMI schema.

Figure 7.1 - Layers, packages, and separation of concerns in KDM

KDM specification is organized into the following 4 layers:

NOTE:Issue 12877

• Infrastructure Layer

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• Program Elements Layer

• Runtime Resource Layer

• Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which
is split between the Code and the Action packages.

NOTE:Issue 12872

The Infrastructure Layer consists of the following 3 packages: Core, “kdm”, and Source. Core package and the package
named “kdm” do not describe separate KDM models. Instead these packages define common meta-model elements that
constitute the infrastructure for other packages. The Source package defines the Inventory model, which enumerates the
artifacts of the existing software system and defines the mechanism of traceability links between the KDM elements and
their original representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, UI, Event, and Data.

The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:

• KDM is a Meta-Object Facility (MOF) model.

• KDM is an Entiry-Relationship model.

• KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 15

relationships.

• KDM models are composable (it is possible to group several entities into a typed container, that will further on
represent the entire collection of grouped entities via aggregated relationships). KDM defines multiple hierarchies of
entities via containers and groups.

NOTE:Issue 12880

• KDM provides model refactoring capabilities, for example, a KDM tool can support moving entities between
containers and map changes in the model to changes in the code through traceability links.

• KDM is aligned with ISO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and
Business Rules (SBVR).

• KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the
elements of existing software systems, the relationships between these elements, as well as the elements of the
operational environment of the software system. KDM ontology addresses both physical elements (for example, a
procedure, a variable, a table), which are originally represented by language-specific artifacts of the software (for
example source code), as well as logical elements (for example, user interface elements, concepts that are implemented
by the software, architectural components of the software, such as layers, etc.).

16 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 17

8 KDM

8.1 Overview
KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of
domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

Figure 8.1 - Structure of KDM Packages

The KDM specification contains 12 packages; each package is defined by one or more class diagrams.

The Core package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness
rules of KDM models.

NOTE:Issue 12872

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging
packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on
the package with name “kdm”. Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name
“kdm” provides the infrastructure for all KDM models. The nature of the dependency on the package with name “kdm”
is as follows. First, each package defines a subclass of the KDMModel class, defined in that package. Second, each
package provides several concrete classes that are instantiated in each KDM instance as part of the infrastructure. Third,
the package with name “kdm” defines several important mechanisms that are used by all KDM models: the annotation
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The corresponding
meta-model elements can be instantiated by any KDM model.

Core

Data

Code Action

Structure

UI

BuildConceptual

Platform

Source

meta-model

Primitives, explicit,
automatically extracted

Higher-level, implicit,
experts, analysts

Event

kdmframework
Infrastructure
Layer

Program
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer

Core

Data

Code Action

Structure

UI

BuildConceptual

Platform

Source

meta-model

Primitives, explicit,
automatically extracted

Higher-level, implicit,
experts, analysts

Event

kdmframework
Infrastructure
Layer

Program
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge
automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages
KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

• The Core package defines the basic abstractions of KDM.

• The package with name “kdm” provides shared context for all KDM models.

• The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their
original representation in the artifacts of the software system (for example, source code).

• The Code package defines meta-model elements that represent the low-level building blocks of software, such as
procedures, datatypes, classes, variables, etc. (as determined by a programming language).

• Action package defines meta-model elements that represent statements as the end points of relations, and the majority
of low-level KDM relations.

• Platform package defines meta-model elements that represent the run time resources used by the software system, as
well as relationships determined by the run-time platform.

• UI package defines the meta-model elements that represent the user-interface aspects of the software system.

• Event package defines meta-model elements that represent event-driven aspects of the software system, such as events,
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

• Data package defines meta-model elements that represent persistent data aspects of the software system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 19

• Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system

• Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

• Build package defines meta-model elements that represent the artifacts related to the build process of the software
system (including but not limited to the engineering transformations of the “source code” to “executables”).

20 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 21

Part I - Infrastructure Layer

NOTE:Issue 12877

KDM is a large specification, since it provides an intermediate representation for several facets of knowledge about
existing enterprise software systems. In order to manage the complexity of KDM, a small set of concepts was selected and
systematically used throughout the entire specification. These concepts are defined in the so-called Infrastructure Layer.
It consists of the following 3 packages:

• Core

• kdm

• Source

NOTE:Issue 12872

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. From the meta-model perspective KDM is
an entity-relationship representation. So, the two fundamental classes of the Core package are KDMEntity and
KDMRelationship. An entity is a thing of significance, about which information needs to be known or held. A KDM
entity is an abstraction of some element of an existing software system, that has a distinct, separate existence, a self-
contained piece of data that can be referenced as a unit. Each KDM package defines several meta-model elements that
represent specific entities for a particular KDM domain.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several meta-model elements
that represent specific relationships for a particular KDM domain. All KDM relationships are binary.

KDM defines two special relationships:

• containment

• grouping

Some KDM entities are containers for other entities. There is a special container ownership (containment) relationship
between a container and the entities that are directly owned by this container. Some KDM entities are groups of other
KDM entities. There is a special group association (grouping) relationship between the group and the entities that are
directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and regular relationships of the entity-relationship model.

Core package defines a reflective API to KDM representation. Other KDM packages extend this API by specific
operations, corresponding to specific facets of knowledge about existing software systems.

NOTE:Issue 12872

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The Core package is aligned with the OMG SBVR specification, as it provides an abstraction of existing software systems
in the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between
KDM entities). Indeed, most of the KDM specification is a definition of a language- and platform-independent ontology
of existing software systems. This alignment is important since KDM can be viewed as a standard vocabulary related to
descriptions of existing software systems. SBVR rules can be written using this vocabulary to formally describe further
properties of existing software systems.

NOTE:Issue 12872

The package with name “kdm” defines several elements that together constitute the framework of each KDM instance.
The framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM
representation consists of one or more Segments, where each Segment owns several KDM models. Each KDM package
defines some specific type of KDM model, which addresses a certain specific facet of knowledge about existing software
systems. Individual KDM implementations may support one or more selected KDM models, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM designs facilitate
incremental implementations, where certain pieces of knowledge about the existing software is collected by analyzing
more lower level KDM representations. According to this approach certain KDM tools may perform a “KDM
enrichment” process, a “KDM to KDM transformation,” where a tool analyzes the input KDM model and produces one or
more additional Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
views are created. This is an important part of the KDM Infrastructure, because other KDM packages use this mechanism
to refer to the source code and the physical artifacts of the existing software system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 23

9 Core Package

9.1 Overview
The Core package provides basic constructs for creating and describing meta-model classes in all specific KDM packages.
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the reflective API to KDM instances.

9.2 Organization of the Core Package

NOTE:Issue 12872

The KDM specification uses packages to control complexity and bring together logically interrelated classes. The Core
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints
implemented by all other KDM packages.

The Core package consists of the following four class diagrams:

• CoreEntities

• CoreRelations

• AggregatedRelations

• Datatypes

The Core package depends on no other packages.

9.3 CoreEntities Class Diagram
The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.1.

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (abstract)
An Element is an atomic constituent of a model. In the meta-model, an Element is the top meta-element in the KDM class
hierarchy. Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM. Most subclasses of Element can own annotations and
user-defined attributes through mechanisms defined in the kdm package.

9.3.2 ModelElement Class (abstract)
A ModelElement is an element that represents some aspect of the existing system.

In the meta-model, a ModelElement is the base for all meta-elements of KDM. All other meta-elements are either direct
or indirect subclasses of ModelElement. ModelElement is an abstract meta-model element.

A ModelElement can be extended through the lightweight extension mechanism.

Superclass

Element

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the ModelElement class are the auxiliary elements of the
Infrastructure Layer.

ModelElem ent

Element

KDMEntity
name : String

0..*

0..1

+/ownedElement

0..*

{union}

+/owner

0..1

{union}

0..*

0.. *

+/groupedElement

0..*

{union}

+/group

0.. *

{union}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 25

Each subclass of the ModelElement meta-model element can be extended through the light-weight extension mechanism
defined in the package named “kdm”.

9.3.3 KDMEntity Class (abstract)
A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMEntity is a subclass of ModelElement. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be either an atomic element, a container for some
KDMEntities, or a group of some KDMEntities. Container and group introduce implicit relationships between entities and
are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a KDMEntity
with which other entities are associated. A KDMEntity can be owned by at most one container, and can be associated with
zero or many groups.

Superclass

ModelElement

Attributes

Associations

Constraints

NOTE:Issue 11170

1. KDMEntity should not reference self as groupedElement

name: String An identifier for the KDM entity.

owner:KDMEntity[0..1] KDM entity that owns the current element. This property determines a meta-level interface
to KDM entities. This property is a derived union. Some KDM entities define a concrete set
of owned elements that are subtypes of KDMEntity. In KDM this is represented by the
CMOF “derived union” mechanism. Concrete properties subset the “union” properties of the
parent classes, defined in the Core package. The owner of a KDM entity is defined as the
container for which the given entity is an owned entity.

group:KDMEntity[0..*] Set of KDM entities with which the current element is associated. This property determines
a meta-level interface to KDM entities. This property is a derived union. Some KDM entities
define a concrete set of grouped elements that are the subtypes of KDMEntity. In KDM this
is represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The group of a KDM
entity is defined as the group for which the given entity is a grouped entity. Each KDM
entity can be associated with multiple groups.

26 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Operations

Semantics

An entity is a thing of significance, about which information needs to be known or held. A KDM entity is an abstraction
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that
can be referenced as a unit. Each KDM package defines several meta-model element that represent specific entities for a
particular KDM domain.

9.4 CoreRelations Class Diagram
The Core class diagram defines key meta-model associations of KDM models. The classes and associations of the
CoreRelations class diagram are shown in Figure 9.2.

Figure 9.2 - CoreRelations Class Diagram

getOwner(): KDMEntity[0..1] This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity is a KDM container. There can be at most one owner
for each given entity.

getOwnedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Entity. Only KDM containers can own other entities.

getGroup():KDMEntity[0..*] This operation returns the set of KDM Entities that have a group association
to the current KDM Entity. The group entity is a KDM group. Unlike KDM
containers, there may be many groups that have an association to a given
entity.

getGroupedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are “grouped” by the
current KDM entity. Only KDM groups can have group associations to other
entities.

ModelElement

KDMRelationship

KDMEntity

0..*

1

+/outbound
0..*

{union}

+from
1

0..*

1

+/inbound0..*
{union}

+to
1

0..*

1

+/ownedRelation

0..*

{union}

1

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 27

9.4.1 KDMRelationship Class (abstract)
A KDMRelationship is a model element that represents semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

Superclass

ModelElement

Associations

NOTE:Issue 11172

Operations

Semantics

NOTE:Issue 12886

KDMRelationship meta-model element is an abstract element. The concrete KDM relationships between KDM entities in
KDM views are instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly
one target and exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its
endpoints.

to: KDMEntity[1] The target entity (also referred to as the to-endpoint of the relationship). This property determines
a meta-level interface to KDM relationships. Every specific KDM relationship redefines the to-
endpoint to a particular subtype of KDMEntity. In KDM this is represented by the CMOF
“subsets” mechanism. Concrete properties redefine the properties of the parent classes, defined in
the Core package.

from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines a meta-level interface to KDM relationships. Every specific KDM relationship
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM this is represented by
the CMOF “subsets” mechanism. Concrete properties redefine the properties of the parent
classes, defined in the Core package.

getTo(): KDMEntity[1] This operation returns the KDM entity that is the to-endpoint (the target) of the current
relationship

getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the
current relationship.

28 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

9.4.2 KDMEntity (additional properties)

Associations

Operations

Constraints

1. The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the
from property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

9.5 AggregatedRelations Class Diagram
The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the “meta-level” interface to KDM models, along with interfaces defined by KDMEntity and KDMRelationship.

Overall management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity
class.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.3.

ownedRelation: KDMRelationship[0..*] Primitive KDM relationships that originate from the current entity.

getInbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the to-endpoint of these relations.

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity owns these relationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 29

Figure 9.3 - AggregatedRelations Class Diagram

9.5.1 AggregatedRelationship Class
The set of AggregatedRelationship elements for a given entity represents all primitive relationships between the entities
that are transitively owned by the given entity as well as the entity itself. This is a concrete class, because an
AggregatedRelationship can be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and
exchanged too, if necessary). The lifecycle of the Aggregated Relationships can be explicitly managed by the operations
of the KDMEntity class.

Superclass

ModelElement

Attributes

Associations

density:Integer The number of primitive relationships in the aggregated set.

relation:KDMRelationship[0..*] The set of primitive KDM relationships represented by the aggregated relationship.

to: KDMEntity[1] The target container of the relationships in the aggregated set. All relationships in the
aggregated set should terminate at the target container or at some entity that is
contained directly or indirectly in the target container.

from:KDMEntity[1] The source container of the relationships in the aggregated set. All relationships in
the aggregated set should originate from the source container or from some entity
that is contained directly or indirectly in the source container.

KD M E ntity

AggregatedRelationship
density : Integer

0.. *

1

+/outAggregated
0.. *

+from1

Origin

0..*

1

+/inAggregated
0..*

+to 1

D estination

KD M R elationship
0..* 0..*

+agg reg ate

0..*

+relation

0..*

R elatio nSet

M odelE lem ent

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. To- and from-endpoints should be distinct.

2. The density should be greater than or equal to 1.

3. The density should be the same as the number of primitive relationships represented by the given aggregated
relationship.

Semantics

NOTE:Issue 12891

AggregatedRelationhips is determined by how atomic elements are owned by containers (or referenced by groups) in the
following way:

1. AggregatedRelationship between two entities (no owned elements) represents the set of regular KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container (or group) represents the set of all regular KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned by the
given container (directly or indirectly).

3. AggregatedRelationship between a container (or group) and an entity represents the set of all regular relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned by the given
container (directly or indirectly).

4. AggregatedRelationship between two containers represents the set of all regular KDM relations such that the from-
endpoint is an entity owned by the first container and the to-endpoint is an entity owned by the other container.

A regular KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an implied
density of 1. An AggregatedRelationship represents a set of regular KDM relationships. It has density of greater or equal
than 1 and no concrete type (as it may represent regular KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no regular KDM relationships between
them (according to the definition above).

The relationship “x in* C” means that x is in container C or in some sub-container of C, transitively.

For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P = {(x,y) : x in* C1 and y in* C2 and x R y}

That is, P is the set of pairs such that x is in* C1 and y is in* C2 and x R y.

Then

C1 R’ C2 iff |P| > 0

C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.

The density of C1 ‘' C2 is then simply |P|, the size of the set P.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 31

Figure 9.4 - AggregatedRelationships illustrated

Figure 9.4 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association
indicates the direction of the relationship, when there are no arrows at either end of the association (as in the Figure 9.4),
this indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2”, represent the
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity:
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more primitive relationships, which at the end are some basic code facts, for
example “procedure x calls procedure y.” Such basic fact has density 1. A primitive code relationship represents some
basic fact about the existing application. Now, when there are two or more such facts, for example “procedure x in
module A calls procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an
aggregated relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship
represents the collection of the two primitive relationships between modules A and B.

9.5.2 KDMEntity (additional properties)

Operations

createAggregation(otherEntity:KDMEntity) This operation creates an aggregated relationship such that the
current entity is the from-endpoint of the aggregated relation and the
“otherEntity” is the to-endpoint. The new aggregated relationship is
owned by the model to which owns the current entity (either directly
or indirectly through container ownership).

deleteAggregation
(aggregatedRelation:AggregatedRelationship)

This operation deletes the given aggregated relationship.

getInAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the target is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the origin is the current KDM Entity.

32 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

9.6 Datatypes Class Diagram
The Datatypes class diagram collects together utility data types for the Core package. Each class at the Datatypes class
diagram is a subclass of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.5.

Figure 9.5 - Datatypes Class Diagram

9.6.1 Boolean Type (datatype)
The meta-model uses the Boolean type to represent some KDM attributes, KDM operations, and their parameters.

9.6.2 String Type (datatype)
The meta-model uses the String type to represent some KDM attributes, KDM operations, and their parameters.

9.6.3 Integer Type (datatype)
The meta-model uses the Integer type to represent some KDM attributes, KDM operations, and their parameters.

String
<<datatype>>

Integer
<<datatype>>

Boolean
<<datatype>>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 33

10 The Package named “kdm”

10.1 Overview

NOTE:Issue 12872

The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are
instances of the meta-model elements defiend by the KDM specification, where each KDM element represents a certain
element of the existing system. Although in the technical sense, KDM instance is a model of the corresponding existing
software system, KDM instance is not a model that represents constraints, like the ones used during the design phase,
rather, this is an intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms,
and other artifacts of existing software systems into KDM elements, using semantic description and implementer's
guidelines of this specification. The package named “kdm” describes several infrastructure elements which are present in
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM
Framework. The remaining KDM packages provide meta-model elements that represent various elements of existing
systems.

NOTE:Issue 12877

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source
package.

10.2 Organization of the KDM Framework
The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a
KDM model is a typed container for meta-model element instances (collection of facts organzied into an architectural
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class.
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary.

KDM model is the key unit of a KDM instance. KDM segment can own one or more models. A segment is a minimal unit
of exchange in the KDM ecosystem. Segments can be nested.

NOTE:Issue 12873

34 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

NOTE:Issue 12872

The package with name “kdm” consists of the following 5 class diagrams:

• Framework – defines the basic elements of the KDM framework.

• Audit – defines audit information for KDM model elements.

• Annotations - provides user-defined attributes and annotations to the modeling elements.

• Extensions - a class diagram that defines the overall organization of the light-weight extension mechanism of KDM.

• ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram
The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances.

The classes and association of the Framework diagram are shown in Figure 10.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 35

Figure 10.1 - Framework Class Diagram

10.3.1 KDMFramework Class (abstract)

NOTE:Issue 12872

The KDMFramework meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. KDMFramework class is extended by Segment and KDMModel classes. These elements are
containes for KDM light-weight extensions (extension property). The KDM extension mechanism is described further in
this chapter.

Superclass

ModelElement

Attributes

name: String [0..*] The name of the framework element.

ExtensionFamily
KDMFramework

name : String

0..*
1+extensionFamily

0..*
1

Extensions

AggregatedRelationship

density : Integer
(from core)

KDMEntity

name : String
(from core)

KDM Model

0..1

0..*

+/model
0..1

+/aggregatedRelation
0..*

AggregatedRelations

0.. *

0..1

+/ownedElement

0.. *
{union}

+/model
0..1

{union}

Segment
0..*

0..1

+segment
0..*

Segments
+owner

0..1
0..*1

+model

0..*

+owner

1
M odels

ModelElement
(from core)

36 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The
implementer shall:

• arrange instances of the KDM model elements into models (constrained only by the definition of each model)

• arrange KDM models into one or more segments

• provide names to KDM models and KDM segments

10.3.2 KDMModel Class (abstract)
A KDMModel is an abstract class that defines common properties of KDM model instances which are collections of facts
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

• The meta-model elements for KDM model “foo” are described in a separate package, called “foo.”

• The package defines a concrete subclass of the KDMModel, called “FooModel.”

• The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“AbstractFooElement.” This class extends the KDMEntity class from the Core package.

• The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“AbstractFooRelationship.” This class extends KDMRelationship class from the Core package.

• Class “FooModel” owns class “AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

• Class “AbstractFooElement” owns zero or more AbstractFooRelationship elements.

• The package “foo” includes a “FooInheritances” class diagram, describing inheritances of “FooModel,”
“AbstractFooElement,” and “AbstractFooRelationship” classes, as well as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

• The package “foo” includes “ExtendedFooElements” diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass

KDMFramework

extension: ExtensionFamily [0..*] Extensions for the current model segment.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 37

Associations

Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

10.3.3 KDMEntity (additional properties)

Operations

10.3.4 Segment Class
The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the
top segment of the KDM model.

Superclass

KDMFramework

Associations

ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM
model defines specific subclasses of KDMEntity class.

aggregatedRelation:AggregatedRelationship[0..*] Instances of KDM aggregated relations owned by the model.

getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity

segment: Segment[0..*] Nested Segment elements owned by the current Segment

model[0..*]:KDMModel The set of KDM models owned by the current segment. Each KDM model defines an
architectural viewpoint. KDM model defines specific meta-model elements (entities and
relationships specific to the viewpoint) that collectively define the viewpoint language

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one
or more KDM models of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example
<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Framework Example">

 <audit xmi:id="id.0" description="Illustration of KDM Framework" author="KDM FTF" date="04-03-2007">

 <attribute xmi:id="id.1" tag="approved" value="yes"/>

 </audit>

 <segment xmi:id="id.2" name="foobar"/>

 <model xmi:id="id.3" xmi:type="code:CodeModel" name="foo">

 <annotation xmi:id="id.4" text="This is a sample instance of a Code model"/>

 </model>

 <model xmi:id="id.5" xmi:type="source:InventoryModel" name="bar">

 <annotation xmi:id="id.6" text="This is a sample of an Inventory model"/>

 </model>

</kdm:Segment>

10.4 Audit Class Diagram
The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 39

Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class
Audit class represents basic audit information associated with KDM models.

Superclass

Element

Attributes

Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

Each Framework element can have zero or more Audit instances associated with it. The collection of Audit elements is
not ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007” corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.

KDM does not constrain the “description” attribute.

description:String Contains the description of the Framework element.

author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.

date:String Contains the date when the model element was created

Element
(from core)

Audit
description : String
author : String
date : String

KDMFramework

0..*
1

+audit

0..*
1

Audits

40 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Example

See example in the KDMFramework section.

10.4.2 KDMFramework (additional properties)

NOTE:Issue 12894

Audit elements can be owned by any subclass of the KDMFramework element, including segment or model.

Associations

10.5 Extensions Class Diagram
The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “virtual” meta-model elements to KDM. A
“virtual” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of
KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:

1. Define a stereotype (introduce the partial kind of a meta-model element):

• A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element or an abstract meta-model element

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string).
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elements in KDM instances by using the base meta-model element instance with one or more
stereotypes:

audit:Audit[0..*] The list of Audit element instances for the given instance of KDMFramework (segment or model)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 41

• Concrete tag values can be added to the “virtual” element if the stereotype defines tags.

• Each tag value is associated with the corresponding tag definition.

• The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two “wildcard” generic elements: a generic entity and a generic relationship for the given KDM model. They too
can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

Figure 10.3 - Extensions Class Diagram

E lem ent
(from c ore)

E xtendedV a lue

M ode lE lem ent
(from c ore)

0..*

1+taggedV a lue

0..*

1

Extende dVa l ues

TagD efinition
tag : S tring
type : S tring

S tereo type
name : S tring
type : S tring

0..*

0..*

+ste reo type
0..*

0..*

E xtension

0..*
1

+tag

0..*
1

Tag s

E xtensionFam ily
name : S tring

0..*

1

+ste reo type

0..*

1

S tereo types

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10.5.1 Stereotype Class
The stereotype concept provides a way of branding (classifying) model elements so that they behave as if they were the
instances of new virtual meta-model constructs. These model elements have the same structure (attributes, associations,
operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional required
tagged values that apply to model elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

NOTE:Issue 14108

In the meta-model the Stereotype is a subclass of Element. Stereotype is a named model element. TaggedValues attached
to a Stereotype apply to all ModelElements branded by that Stereotype.

A Stereotype specifies the name of the base class to which it can be added.

Superclass

Element

Attributes

Associations

Constraints

1. Tags associated with model element should not clash with any meta attributes associated with this model element.

2. A model element should have at most one tagged value with a given tag name.

3. A stereotype should not extend itself.

4. A Stereotype can be added to ModelElement if its class is the same as the baseClass, or one of its subclasses.

5. The values of the Type attribute of the TagDefinition are restricted to the names of the KDM meta-elements.
Names of the core datatypes (“Boolean,” “String,” “Integer”) define attributes of the extended meta-model
element. The corresponding values are represented as instances of the TaggedValue class. Names of other KDM
meta-elements (for example, “KDMEntity,” or “Audit”) define associations of the extended meta-element and the
corresponding values are represented as instances of the TaggedRef class.

Semantics

Stereotypes should not change the semantics of the base meta-model element.

name:String Specifies the name of the stereotype.

type:String Specifies the name of the model element to which the stereotype applies.

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 43

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Example
<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Stereotype Example">

 <extensionFamily xmi:id="id.0" name="Example extensions">

 <stereotype xmi:id="id.1" name="Java method"/>

 <stereotype xmi:id="id.2" name="C++ method"/>

 <stereotype xmi:id="id.3" name="C++ procedure"/>

 <stereotype xmi:id="id.4" name="C++ friend">

 <tag xmi:id="id.5" tag="friend_of" type="ClassUnit"/>

 </stereotype>

 <stereotype xmi:id="id.6" name="IsFriendOf"/>

 <stereotype xmi:id="id.7" name="native call">

 <tag xmi:id="id.8" tag="implemented in" type="String"/>

 </stereotype>

 </extensionFamily>

 <model xmi:id="id.9" xmi:type="code:CodeModel" name="Example">

 <codeElement xmi:id="id.10" xmi:type="code:ClassUnit" name="myclass">

 <codeElement xmi:id="id.11" xmi:type="code:MethodUnit" stereotype="id.2"

name="foo" type="id.12">

 <codeElement xmi:id="id.12" xmi:type="code:Signature" name="foo"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.13" xmi:type="code:CallableUnit" stereotype="id.4 id.3"

name="bar" type="id.16" kind="regular">

 <taggedValue xmi:id="id.14" xmi:type="kdm:TaggedRef" tag="id.5" reference="id.10"/>

 <codeRelation xmi:id="id.15" xmi:type="code:CodeRelationship" stereotype="id.6"

 to="id.10" from="id.13"/>

 <codeElement xmi:id="id.16" xmi:type="code:Signature" name="bar"/>

 </codeElement>

 </model>

 <model xmi:id="id.17" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.18" xmi:type="code:ClassUnit" stereotype="id.1">

 <codeElement xmi:id="id.19" xmi:type="code:MethodUnit" stereotype="id.1"

name="foobar" type="id.23">

 <codeElement xmi:id="id.20" xmi:type="action:ActionElement" stereotype="id.7"

 name="a1">

 <actionRelation xmi:id="id.21" xmi:type="action:Calls" stereotype="id.7"

to="id.13" from="id.20">

 <taggedValue xmi:id="id.22" xmi:type="kdm:TaggedValue" tag="id.8" value="C"/>

 </actionRelation>

 </codeElement>

 <codeElement xmi:id="id.23" xmi:type="code:Signature" name="foobar"/>

 </codeElement>

 </codeElement>

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </model>

</kdm:Segment>

10.5.2 TagDefinition Class
Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

Element

Attributes

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “StringType,”
“IntegerType”), the corresponding value should be an instance of the TaggedValue class.

4. If the type of the TaggedDefinition is a name of some other KDM meta-element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.

tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.

type:String Specifies the type of the value attribute.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 45

Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Example

See example in the Stereotype class section.

10.5.3 ExtensionFamily Class
ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

Superclass

Element

Attributes

Associations

Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Example

See example in the Stereotype class section.

10.5.4 ModelElement (additional properties)

Associations

name:String Provides the name of the extension family.

stereotype:Stereotype[0..*] The set of stereotypes that are owned by the extension family.

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype[0..*] The stereotype

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. Each tagged value added to a ModelElement must conform to a certain tag definition owned by the stereotype of
that ModelElement (the tag association of the TaggedValue should refer to a TaggedDefinition that is owned by a
Stereotype of the ModelElement). A tagged value conforms to a tag definition when the value conforms to the type
of the TagDefinition. Conformance of lightweight extensions can only be validated dynamically by a suitable
KDM import tool, since lightweight extensions are not defined by the KDM standard.

2. Stereotype can be associated with a certain instance of a ModelElement if the type of the ModelElement is the
same as the type property in the stereotype definition, or one of its subclasses.

Example

See example in the Stereotype class section.

10.6 ExtendedValues Class Diagram
ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Figure 10.4 - ExtendedValue Class Diagram

10.6.1 ExtendedValue Class (abstract)
ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedValue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

TaggedValue
value : S tring

Elem ent
(from core)

M odelE lem ent
(from core)

Tagg edRe f

1

0..*

+reference 1

0..*
R eference

ExtendedValue
TagD efinition

tag : S tring
type : S tring0..* 10..*

+tag

1

TaggedValueD efinition

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 47

Superclass

Element

Associations

Semantics

ExtendedValue is a “virtual” attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype
element defines the “virtual” meta-model element that provides the context for the new attributes. “Virtual” attributes are
instantiated every time a new “virtual” meta-model element, defined by a Stereotype is instantiated. This is an important
difference between ExtendedValues and KDM attributes, which are not related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
allowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition.

10.6.2 TaggedValue Class
A tagged value allows information to be attached to any model element in the form of a “tagged value” pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition. In the meta-model, TaggedValue is a subclass of
Element.

Superclass

ExtendedValue

Attributes

Constraints

1. The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

Semantics

TaggedValue element represents simple atomic “virtual” attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive type (for example, “StringType,” “BooleanType,”
etc.).

tag [1]:TagDefinition the reference to the tag definition of the corresponding stereotype

Value:String Contains the current value of the TaggedValue.

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Example

See example in the Stereotype class section.

10.6.3 TaggedRef Class
A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of its
subtypes. In the meta-model, TaggedRef is a subclass of ExtendedValue.

Superclass

ExtendedValue

Associations

Constraints

1. The model element that is the target of the ref association must be of the type, specified by the type attribute of the
tag definition that is the target of the tag association of the tagged ref element.

Semantics

TagRef represents complex “virtual” attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “AbstractCodeElement,” “ControlElement,” or
“CallableUnit”).

Example

See example in the Stereotype class section.

10.7 Annotations Class Diagram
The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. This is complimentary to the light-weight extension mechanism, which provides
a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions as first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

ref:ModelElement[1] Designates the model element referred to by the extended value.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 49

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class
An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define virtual new
model element, and tagged values specify additional attributes of these virtual model elements). Tagged values are only
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

In the meta-model, TaggedValue is a subclass of Element.

Superclass

Element

Attributes

Constraints

1. Attribute cannot have further annotations or attributes

tag:Name Contains the name of the attribute. This name determines the semantics that are applicable to the
contents of the value attribute.

value:String Contains the current value of the attribute.

Element
(from core)

Annotation
text : StringAttribute

tag : String
value : String

Element
(from core)

0..*

1

+annotation
0..*

+owner
1

ElementAnnotation

0.. *

1

+attribute

0.. *

+owner
1

ElementAttribu te

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of
KDM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances.

Example

See example in the KDMFramework section.

10.7.2 Annotation Class
Annotations allow textual descriptions to be attached to any instance of a model element. The meta-model Annotation
class is a subclass of Element.

Superclass

Element

Attributes

Constraints

1. Annotation cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.

Example

See example in the KDMFramework section.

10.7.3 Element (additional properties)

Associations

text:String Contains the text of the annotation to the target model element.

attribute:Attribute[0..*] The set of attributes owned by the given element.

annotation:Annotation[0..*] The set of annotations owned by the given element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 51

Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance.

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 53

11 Source Package

11.1 Overview
The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of the
existing system, such as source files, images, configuration files, resource descriptions, etc. The Source package also
represents traceability links between instances of KDM meta-elements and the regions of source code, which is
represented by these meta-model elements. It represents the link between the KDM instance and the artifacts of the
existing system it represents.

The Source package offers two capabilities for linking instances of the KDM representation to the corresponding artifacts:

• Inlining the corresponding source code in the form of a “snippet” into KDM representation

• Linking a KDM element to a region of the source code within some physical artifact of the system being modeled

A given KDM representation can implement either of the approaches, both of them, or none.

NOTE:Issue 12895

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers an additional two options:

• The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

• The link can be made stand-alone and explicitly specify the path to the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, this is
indicated by the “language” attribute.

The Source package defines an architecural viewpoint for the Inventory domain. It is determined by the entire software
development environment of the existing software system.

• Concerns:

• What are the artifacts (software items) of the system?

• What is the general role of each artifact (for example, is it a source file, a binary file, an executable or a
configuration description)?

• What is the organization of the aritifacts (into directories and projects)?

• What are the dependencies between the artifacts?

• Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural
viewpoint is defined by the Source package. It includes an abstract entity AbstractInventoryElement, several
generic entities, such as InventoryItem and InventoryContainer, as well as several concrete entities, such as
SourceFile, BinaryFile, Image, Directory, etc. The viewpoint language for the Inventory architectural viewpoint
also includes DependsOn relationship, which are subclasses of AbstractInventoryRelationship.

• Analytic methods:

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The Inventory architectural viewpoint supports the following main kinds of checking:

• What artifacts depend on the given artifact?

The Inventory viewpoint also supports check in combinations with other KDM architectural viewpoint to determine
the original artifacts that correspond to a given KDM element.

• Construction methods:

• Inventory views that correspond to the KDM Inventory architectural viewpoint are usually constructed by
directory scanning tools, which identify files and their types.

• Construction of an Inventory view is determined by the particular development and deployment environments of
the existing software system

• Construction of an Inventory view is determined by the semantics of the environment as well as the semantics of
the corresponding artifacts, and it based on the mapping from the given environment to KDM

• The mapping from a particular environment to KDM may produce additional information (system-specific, or
environment-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

As a general rule, in a given KDM instance, each instance of the inventory model represents a file, or a set of files.
Exceptions to this rule are:

• InventoryModel element, which is a part of the KDM instance infrastructure. This meta-model element is a container
the instances of other inventory meta-model elements.

• SourceRef and SourceRegion meta-elements that represent traceability links between other instances of KDM meta-
model elements and source code of the existing software system.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between other KDM elements and the regions of the physical artifacts of the existing software system that
they represent.

11.2 Organization of the Source Package
The Source package consists of the following 5 class diagrams:

• InventoryModel

• InventoryInheritances

• InventoryRelations

• SourceRef

• ExtendedInventoryElements

The Source package depends on the following packages:

• Core

• kdm

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 55

11.3 InventoryModel Class Diagram
InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the
following meta-model elements determined by the KDM model pattern:

• InventoryModel class

• AbstractInventoryElement class

• AbstractInventoryRelationship class

In addition, the InventoryModel class diagram defines a concrete KDM entity for each artifact, such a SourceFile, an
Image, a ResourceDescription, a Configuration description, a BinaryFile, and an ExecutableFile. These meta-model
elements are subclasses of the common parent class InventoryItem. The Inventory model also provides a generic KDM
container called InventoryContainer and two specific containers: Directory and Project.

The classes and associations of the InventoryModel are shown at Figure 11.1.

Figure 11.1 - InventoryModel Class Diagram

11.3.1 InventoryModel Class
The InventoryModel is a specific KDM model which owns collections of facts related to the physical artifacts of the
existing software system. InventoryModel is a container for the instances of InventoryItems. InventoryModel corresponds
to the inventory of the physical artifacts of the existing software system.

SourceFile
language : St ring
encoding : St ring

Image

ResourceDescription
Configuration

Directory
path : Stri ng Project

InventoryItem
version : String
path : String

InventoryModel

InventoryContainer

Ab stractInven toryRelationship

AbstractInventoryElement

0..*

0..1

+inventoryElement
0..*

{subsets ownedElement}

+model

0..1
{subsets model}

0..*

0..1

+inventoryElement

0..*

{subsets ownedElement}

+owner
0..1

{subsets owner}

0..*

1

+inventoryRelation

0..*

{subsets ownedRelation}

1

BinaryFile ExecutableFile

56 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

KDMModel

Associations

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory
items into inventory models.

11.3.2 AbstractInventoryElement Class (abstract)
The AbstractInventoryElement is the abstract parent class for all inventory entities.

Superclass

KDMEntity

Associations

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new “virtual” inventory entities.

11.3.3 AbstractInventoryRelationship Class (abstract)
The AbstractInventoryRelationship is the abstract parent class for all inventory relationships.

Superclass

KDMRelationship

inventoryElement:AbstractInventoryElement[0..*] The set of inventory elements owned by the inventory model.

inventoryRelationship:AbstractInventoryRelationship[0..*] The set of inventory relations owned by the inventory element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 57

Constraints

Semantics

From the meta-model perspective, this element is a common parent for all inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics,
which can be used as an extension point for defining new “virtual” inventory relationships.

11.3.4 InventoryItem Class (generic)
InventoryItem is a generic meta-model element that represents any artifact of an existing software system. This class is
further subclasses by several concrete meta-model elements with more precise semantics. However, InventoryItem can be
used as an extended modeling element with a stereotype.

Superclass

AbstractInventoryElement

Attributes

Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of the
existing software system into concrete subclasses of the InventoryItem. The implementer shall map each artifact of the
existing software system to some instance of KDM InventoryItem.

11.3.5 SourceFile Class
The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the
SourceRegion mechanism from the Source package.

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

InventoryItem

Attributes

version:String Provides the ability to track version or revision numbers.

path:String Location of the build resource.

language:String Indicates the language of the source file.

58 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different encodings are used around the world, and it may be desired for
KDM processors to read code snippets from the files that use them.

NOTE:Issue 12896

Specification of encoding is aligned with the XML specification from W3C. Each artifact of an existing system may use
a different encoding for its characters. The default encoding for SourceFile is “UTF-8.” Encodings other that UTF-8
should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label. For
example, “UTF-16,” “ISO-10646-UCS-2,” “ISO-8859-2,” “ISO-2022-JP,” “Shift_JIS,” and “EUC-JP,” etc. Encoding of
the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion.KDM tools shall at a minimum support UTF-8.

11.3.6 Image Class

NOTE:Issue 12897

Image element is used to represent image files.

Superclass

InventoryItem

Semantics

11.3.7 Configuration Class
Configuration element is used to represent various configuration files.

Superclass

InventoryItem

Semantics

11.3.8 ResourceDescription Class
ResourceDescription element is used to represent resource description files.

Superclass

InventoryItem

encoding:String An optional attribute that represents the encoding of the characters in the file.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 59

Semantics

11.3.9 BinaryFile Class
BinaryFile element is used to represent binary files.

Superclass

InventoryItem

Semantics

11.3.10 ExecutableFile Class
ExecutableFile element is used to represent executable files for a particular platform.

Superclass

InventoryItem

Semantics

11.3.11 InventoryContainer Class (generic)
The InventoryContainer meta-model element provides a container for instances of InventoryItem elements.

Superclass

AbstractInventoryElement

Associations

Constraints

1. InventoryContainer should have at least one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like container structures in which the leaf
elements are individual InventoryItem instances. Each InventoryContainer represents the entity set of InventoryItems
owned by that container directly or indirectly.

11.3.12 Directory Class
The Directory class represents directories as containers that own inventory items.

Superclass

InventoryContainer

inventoryElement:AbstractInventoryElement[0..*] The set of inventory elements owned by the container.

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Attributes

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in
file systems.

In addition to the general semantics of the InventoryContainer, Directory ownership structure determines the full “path”
for each individual inventory item in the following way. For a given Directory item, the full “path” to an inventory item,
owned by this Directory directly or indirectly, is a sequence of strings, the first element of which is the “path” attribute of
the Directory, and subsequent elements are name attributes of the directory items such that each directory item is owned
by the previous directory item and that last directory item owns the inventory item. Any Project containers, involved in
this ownership structure are ignored.

11.3.13 Project Class
The Project meta-model element represents an arbitrary logical container for inventory items.

Superclass

InventoryContainer

Semantics

Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers.

Example
<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Inventory Example">

 <model xmi:id="id.0" xmi:type="source:InventoryModel">

 <inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c">

 <inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.1"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">

 <inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>

 <inventoryElement xmi:id="id.6" xmi:type="source:Directory">

 <inventoryElement xmi:id="id.7" xmi:type="source:Image"/>

 <inventoryElement xmi:id="id.8" xmi:type="source:Image"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>

 <inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>

 </model>

</kdm:Segment>

path:String Location of the directory

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 61

11.4 InventoryInheritances Class Diagram
InventoryInheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

Figure 11.2 - InventoryInheritances Class Diagram

11.5 InventoryRelations Class Diagram
InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes
and associations for this diagram are shown in Figure 11.3.

Figure 11.3 - InventoryRelations Class Diagram

11.5.1 DependsOn Class
DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which
one inventory element requires another inventory element during one or more steps of the engineering process.

A b s tra c tIn v e n to ry R e la tio n s h ipA b s tra c tIn v e n to ry E le m e n tInve nto ryM o d e l

K D M M o d el
(fr om k d m)

K D M R e la tio n s h ip
(f rom c o re)K D M E n ti ty

(f ro m c o re)

AbstractInventoryRelationship

AbstractInventoryE lement

D ependsOn

1

0..*

+from

1
{redefines from}

0..*

1

0..*

+to

1
{redefines to}

0..*

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package
that constitutes a separate L1.Build compliance point, defines additional meta-model elements that represent the the facts
involved in the build process of the software system (including but not limited to the engineering transformations of the
“source code” to “executables”).

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this
container (directly or indirectly) depend on the target of the relationship.

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.6 SourceRef Class Diagram
The SourceRef class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class
diagram shown in Figure 11.4 captures these classes and their relations.

from:AbstractInventoryElement[1] the base inventory item

to:AbstractInventoryElement[1] another inventory item on which the base item depends

SourceRef
language : String
snippet : String

SourceFile
language : String
encoding : String

SourceRegion
startLine : Integer
startPosition : Integer
endLine : Integer
endPosition : Integer
language : String
path : String

0..*

1
+region

0..* {ordered}

1

SourceRegions

0..1

0..*

+file

0..1

0..*

Artifact

Element
(from core)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 63

Figure 11.4 - SourceRef Class Diagram

11.6.1 SourceRef Class
The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

Superclass

Element

Attributes

Constraints

1. Language indicator has to be provided using at least one of the following methods:

• As the attribute of the SourceRef element.

• As the attribute of the SourceRegion element.

• As the attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute
should describe the nature of the code snippet, in which case the nature of the source code region accessible
through the SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not
present, then the language attribute of the SourceRef element overrides the language attribute of the SourceRegion
element, which in turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “source”
representation as part of a physical artifact of the existing software system. KDM element that defines a traceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:

• Inlining the corresponding source code in the form of a “snippet” into KDM representation.

• Linking a KDM element to a region of the source code within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

• The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

language: String Optional attribute. Indicates the source language of the snippet attribute.

snippet:String Optional attribute. The source snippet for the given KDM element. The snippet may have
some internal structure, for example XML tags corresponding to an abstract syntax tree
of the code fragment. The interpretation of code snippets is outside the scope of the
KDM.

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• The link can be made stand-alone and explicitly specify the path to the artifact.

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

The implementer shall provide adequate traceability links.

11.6.2 SourceRegion Class
The SourceRegion class provides a pointer to a single region of source. The SourceRegion element provides the capability
to precisely map model elements to a particular region of source that is not necessarily text. The nature of the source code
within the physical artifact is indicated by the language attribute of the SourceRegion element or the language attribute of
the SourceFile element. The language attribute of the SourceRegion element overrides that of the SourceFile element if
both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass

Element

Attributes

Associations

Constraints

1. The location of the source file should be provided using at least one of the following methods:

• Path attribute of the SourceRegion element.

• Path attribute of the SourceFile element of the Inventory model.

startLine: Integer The line number of the first character of the source region.

startPosition:Integer Provides the position of the first character.of the source region.

endLine:Integer The line number of the last character of the source region.

endPosition:Integer The position of the last character of the source region.

language:String Optional attribute. The language indicator of the source code for the given source region.

path:String Optional attribute. The location of the physical artifact that contains the given source
region.

file:SourceFile[0..1] This association allows zero or more SourceRegion elements to be associated with a
single SourceFile element of the Inventory Model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 65

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

The path attribute should uniquely identify the physical artifact. The nature of the path attribute is outside of the scope of
the KDM. For example, this can be a URI.

Individual SourceRef elements may own multiple SourceRegion elements that represent a situation where there are
multiple disjoint regions of source code that correspond to the given KDM element.

11.7 ExtendedInventoryElements Class Diagram
The ExtendedInventoryElements class diagram defines two “wildcard” generic elements for the inventory model as
determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedInventoryElements diagram are shown in Figure 11.5.

Figure 11.5 - ExtendedInventoryElements Class Diagram

11.7.1 InventoryElement Class (generic)
The InventoryElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryElement

Constraints

1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new

A bstractInventoryR elationsh ip

InventoryE lement

A bstractInventoryE lem ent

K D M E ntity
(from core)

InventoryRela tionship
1

0..*+from
1

{redefines from }
0..*

1

0..*

+to 1
{redefines to}

0..*

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

“virtual” meta-model entity type of the inventory model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.7.2 InventoryRelationship Class (generic)
The InventoryRelationship class is a generic meta-model element that can be used to define new “virtual” inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryRelationship

Associations

Constraints

1. InventoryRelationship should have at least one stereotype.

Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

from:AbstractInventoryElement[1] the inventory element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 67

Part II - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming languages.

Packages of the Program Elements Layes define an architecture viewpoint for the Code domain.

• Concerns:

• What are the computational elements of the system?

• What are the modules of the system?

• What is the low-level organization of the computational elements?

• What are the datatypes used by the computational elements?

• What are the units of behaviour of the system?

• What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships ?

• What are the important non-computational elements?

• How computational elements and modules are related to the physical artifacts of the system?

• Viewpoint language:

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is
defined by the Code and Action packages. It includes several abstract entities, such as AbstractCodeElement and
CodeItem, several generic entities, such as Datatype, ComputationalObject and Module, as well as several
concrete entities, such as StorableUnit, CallableUnit, CompilationUnit and ActionElement. The viewpoint
language for the Code architectural viewpoint also includes several relationships, which are subclasses of
AbstractCodeRelationship and AbstractActionRelationship.

• Analytic methods:

The Code architectural viewpoint supports the following main kinds of checking:

• Composition (for example, what code elements are owned by a CompilationUnit, SharedUnit or a CodeAssembly;
what action elements are owned by a CallableUnit)

• Data flow (for example, what action elements read from a given StorableUnit; what action elements write to a
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements
address a particular StorableUnit; what data element are being read as actual parameters in a call)

• Control flow (for example, what CallableUnit is used in a call; what action element is executed after the given
action element; what action elements are executed before the given action element; what data element is used to
dispatch control flow from a given action element; what action element is executed after the given element under
what conditions; what is the exceptional flow of control; what action elements are executed as entry points to a
given module or a CallableUnit)

• Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given
CallableUnit)

68 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Other kind of checking are related to the interfaces, templates and pre-processor. All relationships defined in the
Code model are non-transitive. Additional computations are required to derive, for example, all action elements
that can be executed after the given action element, or all CallableUnits that a given action element can dispatch
control to.

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own
or reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship
between individual Code elements

• Construction methods:

• Code views that correspond to the KDM Code architectural viewpoint are usually constructed by parser-like tools
which take artifacts of the system as the input and produce one or mode Code views as output

• Construction of the Code view is determined by the syntax and semantics of the programming language of the
corresponding artifact, and it based on the mapping from the given programming language to KDM; such
mapping is specific only to the programming language and not to a specific software system

• The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). This information can be attached to
KDM elements using stereotypes, attributes or annotations

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:

• Code

• Action

Code package defines CodeItems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. CodeItems are further categorized into ComputationalObject,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
detemine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:

• Code Elements representing Modules

• Code Elements representing Computational Objects

• Code Elements representing Datatypes

• Code Elements representing Preprocessor Directives

• Miscellaneous Code Elements

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type).
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 69

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):

• suffix “Element” - usually designates a generic meta-model element.

• suffix “Type” - designates a meta-model element representing some datatype.

• suffic “Unit” - designates a concrete meta-model element.

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 71

12 Code Package

12.1 Overview
The Code package defines a set of meta-model elements whose purpose is to represent implementation level program
elements and their associations. It is determined by one or more programming languages used in the design of the given
existing software system. Code package includes meta-model elements, which represent common program elements
supported by various programming languages, such as data types, data items, classes, procedures, macros, prototypes, and
templates.

As a general rule, in a given KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

• instances of the CodeModel meta-model element that are parts of the KDM infrastructure. This meta-model element is
a container for other code element instances.

• instances of code element that explicitly represent certain abstractions provided by a programming language, such as
primitive datatypes and predefined datatypes.

12.2 Organization of the Code Package
The Code package consists of the following 24 class diagrams:

• CodeModel
• CodeInheritances
• Modules
• ControlElements
• DataElements
• Values
• PrimitiveTypes
• EnumeratedTypes
• CompositeTypes
• DerivedTypes
• Signature
• DefinedTypes
• ClassTypes
• Templates
• TemplateRelations
• ClassRelations
• TypeRelations
• InterfaceRelations
• PreprocessorDirectives

72 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• PreprocessorRelations
• Comment
• Visibility
• VisibilityRelations
• ExtendedCodeElements

The Code package depends on the following packages:

• Source
• Core
• kdm

12.3 CodeModel Class Diagram
The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

• CodeModel – a class representing a model for CodeElement.
• AbstractCodeElement – a class representing an abstract parent class for all KDM entities that can be used to model

code.
• AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to

represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

• CodeItem
• ComputationalObject
• Datatype
• Module

The class diagram shown in Figure 12.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 73

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class
The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM.
CodeModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

Semantics

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models.
KDM import tools should not make any assumptions about the organization of code elements into code models.

12.3.2 AbstractCodeElement Class (abstract)
The AbstractCodeElement is an abstract class representing any generic determined by a programming language.

codeElement:AbstractCodeElement[0..*] {ordered} The set of the top-level elements that are defined in this code model.
The CodeModel element is the owner of such CodeElement. This
property subsets the ownedElement property of KDMModel
derived union.

CodeItem

D atatype ComputationalObject

AbstractCodeRelationship

AbstractCodeElement

0..*

1

+codeRelation0..*
{subsets ownedRelation}

1

CodeModel

0..*

0..1

+codeElement 0..*

{subsets ownedElement}

+model
0..1

{subsets model}

Module

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

KDMEntity

Associations

Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)
The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.

Superclass

 KDMRelationship

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code
model.

12.3.4 CodeItem Class (abstract)
CodeItem class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are AbstractCodeElements that are not CodeItems, for example ActionElements that are defined
in the Action package.

Superclass

AbstractCodeElement

Semantics

CodeItem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5 ComputationalObject Class (generic)
ComputationalObject class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass

CodeItem

codeRelation:CodeRelation[0..*] The set of code relations owned by this code model.

source: SourceRef[0..1] Link to the physical artifact for the given code element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 75

Constraints

1. Instance of the ComputationalObject element should have at least one stereotype.

Semantics

ComputationalObject is a generic element with under specified semantics that can be used as an extension point to define
new “virtual” meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of ComputationalObject.

12.3.6 Datatype Class (generic)
Datatype class represents the named elements determined by the programming language that describes datatypes.

Superclass

CodeItem

Constraints

1.Instance of the Datatype element should have at least one stereotype.

Semantics

Datatype is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 CodeInheritances Class Diagram
The CodeInheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

Figure 12.2 - CodeInheritances Class Diagram

AbstractCodeRelationshipC odeM odel

KDM Entity
(from core)

KDMRelationship
(from core)

KDM Mo del
(from k dm)

AbstractCodeElem ent

SourceRef
(from source)

0..1

0.. *

0..1

+source
0.. *

CodeSource

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Section I - Code Elements Representing Modules

12.5 Modules Class Diagram
The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

Figure 12.3 - Module Class Diagram

12.5.1 Module Class (generic)
The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing
the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

CodeItem

Sha re d U nit

C o m p i la tio nU nit

C o d e A sse m b ly

L a ngua g e Uni t

P a cka g e

C o d e Ite m

M o d ule

A b s tra c tC o d e E le m e n t

0 .. 1

0. . *
+o wne r

0 .. 1

{sub s e ts ow ner}

+co d e E le m e nt

0. . *

{subs ets ow nedE lem en t
o rde red}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 77

Associations

Constraints

1. Module class and its subclasses should not own SourceRef elements.

2. Code Model cannot directly own any code elements other than the subclasses of the Module class.

3. Every code element should be owned by some instance of the Module class or its subclasses.

4. Instance of the Module element should have at least one stereotype.

5. No other code element should own Module elements and its subclasses.

Semantics

Module is a logical container for program elements. Subclasses of Module element define semantically distinct flavors of
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.

12.5.2 CompilationUnit Class
The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is a logical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass

Module

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel.

12.5.3 SharedUnit Class
The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass

Module

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

codeElement:AbstractCodeElement[0..*] {ordered} The list of owned CodeElement

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.5.4 LanguageUnit Class
The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.

Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is a logical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files,
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

12.5.5 CodeAssembly Class

NOTE:Issue 12905

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass

Module

Semantics

CodeAssembly is a logical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

12.5.6 Package Class
The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

Superclass

Module

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 79

Semantics

A Package is a logical container for program elements as well as Modules. Packages can be nested.

Section II - Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram
The ControlElements class diagram defines basic meta-model elements to represent callable computational objects, such
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

Figure 12.4 - ControlElements Class Diagram

12.6.1 ControlElement Class (generic)
The ControlElement class is a common superclass that defines attributes for callable code elements. In the meta-model it
has the role of an endpoint for some KDM relations.

Superclass

ComputationalObject

Attributes and Associations

type:Datatype[0..1] Optional association to the datatype of this control element

codeElement:AbstractCodeElement[0..*] {ordered} Represents owned code elements, such as local definitions and
actions.

CallableUnit
kind : CallableKind MethodUnit

kind : MethodKind
export : ExportKind

MethodKind
method
constructor
destructor
operator
virtual
abstract
unknown

<<enumeration>>

CallableKind
external
regular
operator
stored
unknown

<<enumeration>>

ComputationalObject

AbstractCodeElement

Datatype

ControlElement

0..*
0..1

+codeElement
0..*

{subsets ownedElement
ordered}

+owner

0..1

{subsets owner}

0..1

0..*

+type
0..1

0..*

SignatureType

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. ControlElement should have at least one stereotype.

2. ControlElement should own a Signature.

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of ControlElement.

ControlElement represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested ControlElements.

12.6.2 CallableUnit Class
The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

ControlElement

Attributes

Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. This is a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.

12.6.3 CallableKind Data Type (enumerated)
CallableKind enumerated data type specifies some common properties of the CallableUnit.

Literal values

kind:CallableKind indicator of the kind of the callable unit

regular specifies a regular definition of a procedure or function

external specifies an external procedure (a prototype, definition is elsewhere)

operator specifies a definition of an operator

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 81

12.6.4 MethodUnit Class
The MethodUnit represents member functions owned by a ClassUnit.

Superclass

CallableElement

Attributes

Semantics

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and
destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly
(by reference).

12.6.5 MethodKind data type (enumeration)
MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model
element.

Literal Values

Example (C language)

int main(int argc, char* argv[]) {
printf(“Hello, World\n”);

stored specifies a stored procedure in DataModel

unknown properties are unknown

kind:MethodKind indicator of the kind of the method represented by this element

export: ExportKind Represents the visibility of the method (public, private,
protected).

method The MethodUnit represents a regular member function.

constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

virtual The MethodUnit represents a virtual method.

abstract The MethodUnit represents an abstract method or member of an Interface.

unknown The kind of the MethodUnit is none of the above.

82 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source"

name="HelloWorld Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel" name="HelloWorld">
 <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="hello.c">
 <codeElement xmi:id="id.2" xmi:type="code:CallableUnit"

name="main" type="id.5" kind="regular">
 <source xmi:id="id.3" language="C" snippet="int main(int argc, char* argv[]) {}"/>
 <entryFlow xmi:id="id.4" to="id.12" from="id.2"/>
 <codeElement xmi:id="id.5" xmi:type="code:Signature" name="main">
 <source xmi:id="id.6" snippet="int main(int argc, char * argv[]);"/>
 <parameterUnit xmi:id="id.7" name="argc" type="id.25" pos="1"/>
 <parameterUnit xmi:id="id.8" name="argv" type="id.9" pos="2">
 <codeElement xmi:id="id.9" xmi:type="code:ArrayType">
 <itemUnit xmi:id="id.10" type="id.19"/>
 </codeElement>
 </parameterUnit>
 <parameterUnit xmi:id="id.11" type="id.25" kind="return"/>
 </codeElement>
 <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="a1" kind="Call">
 <source xmi:id="id.13" language="C" snippet="printf("Hello, World!\n");"/>
 <codeElement xmi:id="id.14" xmi:type="code:Value"

name=""Hello, World!\n"" type="id.19"/>
 <actionRelation xmi:id="id.15" xmi:type="action:Reads" to="id.14" from="id.12"/>
 <actionRelation xmi:id="id.16" xmi:type="action:Calls" to="id.20" from="id.12"/>
 <actionRelation xmi:id="id.17" xmi:type="action:CompliesTo"

to="id.20" from="id.12"/>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.18" xmi:type="code:LanguageUnit">
 <codeElement xmi:id="id.19" xmi:type="code:StringType" name="char *"/>
 <codeElement xmi:id="id.20" xmi:type="code:CallableUnit" name="printf" type="id.21">
 <codeElement xmi:id="id.21" xmi:type="code:Signature" name="printf">
 <parameterUnit xmi:id="id.22" name="" type="id.25" kind="return" pos="0"/>
 <parameterUnit xmi:id="id.23" name="format" type="id.19" pos="1"/>
 <parameterUnit xmi:id="id.24" name="arguments" kind="variadic" pos="2"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.25" xmi:type="code:IntegerType" name="int"/>
 </codeElement>
 </model>
 <model xmi:id="id.26" xmi:type="source:InventoryModel" name="HelloWorld">
 <inventoryElement xmi:id="id.27" xmi:type="source:SourceFile"

name="hello.c" language="C"/>
 </model>
</kdm:Segment>

12.7 DataElements Class Diagram
The DataElements class diagram defines meta-model constructs to represent the named data items of existing software
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 83

Figure 12.5 - DataElement Class Diagram

12.7.1 DataElement Class (generic)
The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and local variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass

ComputationalObject

Attributes

ext:String Optional extension representing the original representation of the data element.

size: Integer Specifies the optional constraint on the number of elements any value of the storable element may
contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

StorableUnit
kind : StorableKind

MemberUnit
export : ExportKind

ParameterUnit
kind : ParameterKind
pos : IntegerItemUnit

IndexUnit StorableKind
global
local
static
external
register
unknown

<<enumeration>>
ExportKind
public
private
protected
final
unknown

<<enumeration>>

D ataE lement
ext : String
size : Integer

Datatype

0..*

1

0..*

+type
1

Type

0..1

0..*

+owner
0..1

{subsets owner}

+codeElement

0..*

{subsets ownedElement}
ComputationalObject

84 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints

1. DataElement class should have at least one Stereotype.

12.7.2 StorableUnit Class
StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass

DataElement

Attribute

Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3 StorableKind data type (enumeration)
StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

Literal values

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.

type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.

kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).

global specifies a global variable

local specifies a local variable

static specifies a global variable with restricted scope

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 85

12.7.4 ExportKind data type (enumeration)
ExportKind enumeration data type defines several common properties of a MemberUnit and MethodUnit related to their
visibility and other properties.

Literal values

12.7.5 ItemUnit Class
ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass

DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.6 IndexUnit Class
 IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass

DataElement

Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element.

external specifies an external variable (a prototype)

register specifies a temporary variable

unknown properties are unknown

public specifies a public member or method

private specifies private member or method

protected specifies a protected member or method

final specifies final member or method

unknown properties are unknown

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.7.7 MemberUnit Class
MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain
existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass

DataElement

Attributes

Constraints

1. MemberUnit can be owned only by a ClassUnit.

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.8 ParameterUnit Class
ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass

DataElement

Attributes

Constraints

1. Return parameter of a signature does not have a pos attribute.

2. Return ParameterUnit is a signature should have a kind=”return.”

3. There can be at most one ParameterUnit within a certain Signature with a return kind.

export:ExportKind Represents the visibility of the member (public, private, protected).

kind:ParameterKind optional attribute defining the parameter passing convention for the attribute

pos:Integer position of the attribute in the signature

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 87

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in “Signature Class Diagram” on page 102.

12.8 ValueElements Class Diagram
ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

Figure 12.6 - ValueElements Class Diagram

12.8.1 ValueElement Class (generic)
ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass

DataElement

Value

ValueElement

ValueList

0..*

0..1

+valueElement

0..*

{subsets ownedElement
ordered}

+owner

0..1

{subsets owner}

DataElement
ext : String
size : Integer

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. ValueElement and its subclasses should not have owned code elements.

2. ValueElement and its subclasses cannot be used as the target of relations Writes, and Addresses.

3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class
Value class is a meta-model element that represents values used in the artifacts of existing software systems.

Superclass

ValueElement

Semantics

Value class corresponds to ISO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal,
pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.

12.8.3 ValueList Class
The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

Semantics

A ValueList is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to ISO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value,
sequence-value, bag-value, array-value, table-value.

valueElement:ValueElement[0..*] component values

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 89

Section III - Code Elements Representing Datatypes
Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes

• primitive datatypes (for example, Integer, Boolean),

• complex user-defined datatypes (for example, array, pointer, sequence), and

• named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

12.9 PrimitiveTypes Class Diagram
The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.7.

90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 12.7 - PrimitiveTypes Class Diagram

12.9.1 PrimitiveType Class (generic)
The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass

Datatype

Constraints

1. PrimitiveType should have at least one stereotype.

Semantics

PrimitiveType element has under specified semantics. It can be used as an extension point to define new “virtual” meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.9.2 BooleanType Class
The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass

PrimitiveType

StringType

IntegerType

C harType

B ooleanType

F loatType

S caledType

PrimitiveType

D ecimalType
D ateType

TimeType

V oidType

D atatype

OrdinalType

B itstringType

OctetType

OctetstringType

B itType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 91

Semantics

The KDM BooleanType class corresponds to ISO/IEC 11404 Boolean datatype.

12.9.3 CharType Class
The CharType is a meta-model element that represents character data types common to various programming languages.
Character is a family of datatypes whose value spaces are character-sets.

Superclass

PrimitiveType

Semantics

The KDM CharType class corresponds to ISO/IEC 11404 Character datatype.

12.9.4 OrdinalType Class
The OrdinalType class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer).
Ordinal is the infinite enumerated type.

Superclass

PrimitiveType

Semantics

The KDM OrdinalType class corresponds to ISO/IEC 11404 Ordinal datatype.

12.9.5 DateType Class
The DateType is a meta-model element that represents built-in data types related to dates.

Superclass

PrimitiveType

Semantics

12.9.6 TimeType Class
The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass

PrimitiveType

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

The KDM TimeType class corresponds to ISO/IEC 11404 Time datatype. The interpretation of the details of the Time
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.9.7 IntegerType Class
The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass

PrimitiveType

Semantics

The KDM IntegerType class corresponds to ISO/IEC 11404 Integer datatype.

12.9.8 DecimalType Class
The DecimalType is a meta-model element that represents decimal data types common to various programming
languages.

Superclass

PrimitiveType

Semantics

The KDM DecimalType class corresponds to ISO/IEC 11404 Integer datatype.

12.9.9 ScaledType Class
The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass

PrimitiveType

Semantics

The KDM ScaledType class corresponds to ISO/IEC 11404 Scaled datatype.

12.9.10 FloatType Class
The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 93

Superclass

PrimitiveType

Semantics

The KDM FloatType class corresponds to ISO/IEC 11404 Real datatype.

12.9.11 VoidType Class
The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass

PrimitiveType

Semantics

The KDM VoidType class corresponds to ISO/IEC 11404 Void datatype.

12.9.12 StringType Class
The StringType is a meta-model element that represents string data type common to various programming languages.
String is a datatype representing strings of characters from standard character-sets.

Superclass

PrimitiveType

Semantics

The KDM StringType class corresponds to ISO/IEC 11404 defined datatype Character string. The interpretation of the
details of the character encoding of the StringType is outside of the scope of KDM. Multibyte character strings can be
represented as StringType with a stereotype.

12.9.13 BitType Class
The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass

PrimitiveType

Semantics

The KDM BitType class corresponds to ISO/IEC 11404 defined datatype Bit.

12.9.14 BitstringType Class
The BitstringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

94 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

PrimitiveType

Semantics

The KDM BitstringType class corresponds to ISO/IEC 11404 defined datatype Bit string.

12.9.15 OctetType Class
The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass

PrimitiveType

Semantics

The KDM OctetType class corresponds to ISO/IEC 11404 defined datatype Octet.

12.9.16 OctetstringType Class

NOTE:Issue 12908

The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

Superclass

PrimitiveType

Semantics

The KDM OctetstringType class corresponds to ISO/IEC 11404 defined datatype Octet string.

12.10 EnumeratedTypes Class Diagram
The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.8.

E num erate dType V a lue1
0..*

+owner

1

{subs ets owner}
+va lue

0..*

{s ubsets ownedE lem ent
ordered}

D a ta type

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 95

Figure 12.8 - EnumeratedTypes Class Diagram

12.10.1 EnumeratedType Class
The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass

Datatype

Associations

Semantics

EnumeratedType corresponds to ISO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

12.11 CompositeTypes Class Diagram
The CompositeTypes class diagram defines meta-model elements that.represent common composite datatypes provided by
various programming languages; for example records, structures, and unions. Composite datatypes is a broad category of
user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the StructuredTypes diagram are shown in Figure 12.9.

Figure 12.9 - CompositeTypes Class Diagram

value:Value[0..*] {ordered} The list of enumerated literals defined for the given EnumeratedType.

Re cord Type C hoiceType

D ata type

ItemUnitC omp ositeType
0 .. *0..1

+i tem Unit

0 .. *

{subsets ownedE lem ent
ordered}

+owner

0..1

{subsets owner}

96 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.11.1 CompositeType Class (generic)
The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM
container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than CodeElement.

Superclass

Datatype

Associations

Constraints

1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to ISO/IEC 11404 generated datatypes each of whose values is made up of values of
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve a field list
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.

12.11.2 ChoiceType Class
The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType

Semantics

The ChoiceType corresponds to ISO/IEC 11404 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ItemUnit owned by the ChoiceType.

itemUnit:ItemUnit[0..*] {ordered} The list of named items that represent components of the composite datatype; for
example representing the individual fields of a record.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 97

12.11.3 RecordType Class
The RecordType class is a meta-model element that represents record datatypes: user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the ItemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, a record in Cobol.

Superclass

CompositeType

Semantics

The RecordType corresponds to ISO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the
ItemUnit owned by the ChoiceType.

Example (Cobol)
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 FirstName PIC X(10).
 03 MiddleInitial PIC X.
 03 Surname PIC X(15).
 02 DateOfBirth.
 03 DayOfBirth PIC 99.
 03 MonthOfBirth PIC 99.
 03 YearOfBirth PIC 9(4).
 02 CourseCode PIC X(4).

MOVE "Doyle" To Surname

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Record Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
 <codeElement xmi:id="id.2" xmi:type="code:StorableUnit"

name="StudentDetails" type="id.3">
 <codeElement xmi:id="id.3" xmi:type="code:RecordType" name="StudentDetails">
 <itemUnit xmi:id="id.4" name="StudentID" type="id.23" ext="PIC 9(7)"/>
 <itemUnit xmi:id="id.5" name="StudentName" type="id.6">
 <codeElement xmi:id="id.6" xmi:type="code:RecordType" name="StudentName">
 <itemUnit xmi:id="id.7" name="FirstName" type="id.24" ext="PIC X(10)" size="10"/>
 <itemUnit xmi:id="id.8" name="MiddleName" type="id.24" ext="PIC X" size="1"/>
 <itemUnit xmi:id="id.9" name="Surname" type="id.24" ext="PIC X(15)" size="15"/>
 </codeElement>
 </itemUnit>
 <itemUnit xmi:id="id.10" name="DateOfBirth">
 <codeElement xmi:id="id.11" xmi:type="code:RecordType" name="DateOfBirth">
 <itemUnit xmi:id="id.12" name="DayOfBirth" type="id.23" ext="PIC 99" size="2"/>
 <itemUnit xmi:id="id.13" name="MonthOfBirth" type="id.23" ext="PIC 99" size="2"/>
 <itemUnit xmi:id="id.14" name="YearOfBirth" type="id.23" ext="PIC 9(4)"

size="4"/>
 </codeElement>
 </itemUnit>
 <itemUnit xmi:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.16" xmi:type="action:BlockUnit">

98 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <codeElement xmi:id="id.17" xmi:type="action:ActionElement">
 <codeElement xmi:id="id.18" xmi:type="code:Value"

name=""Doyle"" type="id.24"/>
 <actionRelation xmi:id="id.19" xmi:type="action:Addresses" to="id.2" from="id.17"/>
 <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.18" from="id.17"/>
 <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.9" from="id.17"/>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.22" xmi:type="code:LanguageUnit" name="Cobol common definitions">
 <codeElement xmi:id="id.23" xmi:type="code:DecimalType"/>
 <codeElement xmi:id="id.24" xmi:type="code:StringType"/>
 </codeElement>
 </model>
</kdm:Segment>

12.12 DerivedTypes Class Diagram
The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.10.

Figure 12.10 - DerivedTypes Class Diagram

12.12.1 DerivedType Class (generic)
DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType class is a KDM container. KDM models of existing software systems usually use the concrete subclasses of
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with
a stereotype. DerivedType class is a more specific meta-model element than CodeElement.

RangeType
lower : Integer
upper : Integer

PointerType

ItemUnit

D erivedType

1

0..1

+itemUni t
1

{subsets ownedElement}

+owner 0..1
{subsets owner}

SequenceType
size : Integer

BagType
size : Integer

SetType
size : Integer

IndexUnit

ArrayType
size : Integer

1

0..1

+indexUnit
1{subsets ownedElement}

+owner 0..1
{subsets owner}

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 99

Superclass

Datatype

Associations

Constraints

1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several ISO/IEC 11404 aggregated datatypes, whose values are made up of values of a
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.12.2 ArrayType Class
The ArrayType is a meta-model element that represents array datatypes.

Superclass

DerivedType

Attributes

Associations

Semantics

ArrayType corresponds to ISO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted.

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

itemUnit:ItemUnit[1] The ItemUnit that represents the base class of the derived type.

size:Integer the size of the array (the maximum number of elements)

indexUnit:IndexUnit[1] the index of the array

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.12.3 PointerType Class
The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference
to values of another datatype, designated the element datatype.

Superclass

DerivedType

Semantics

PointerType corresponds to ISO/IEC 11404 pointer generated datatype. From ISO perspective the pointer datatype is not
an aggregated datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the
ItemUnit owned by the PointerType can be omitted. The datatype of the element-type is represented by the type attribute
of the ItemUnit owned by the PointerType.

Example (C)
struct tlist {
 struct tlist * next;
 int value;
} * phead, * pcurrent;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="LinkedList Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="action:BlockUnit">
 <codeElement xmi:id="id.2" xmi:type="code:StorableUnit"

name="phead" type="id.3" kind="unknown">
 <codeElement xmi:id="id.3" xmi:type="code:PointerType">
 <itemUnit xmi:id="id.4" type="id.5">
 <codeElement xmi:id="id.5" xmi:type="code:RecordType" name="tlist">
 <itemUnit xmi:id="id.6" name="next" type="id.3"/>
 <itemUnit xmi:id="id.7" name="value" type="id.8">
 <codeElement xmi:id="id.8" xmi:type="code:IntegerType" name="int"/>
 </itemUnit>
 </codeElement>
 </itemUnit>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.9" xmi:type="code:StorableUnit"

name="pcurrent" type="id.3" kind="unknown"/>
 </codeElement>
 </model>
</kdm:Segment>

12.12.4 RangeType Class
RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper
and/or lower bounds on the value space.

Superclass

DerivedType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 101

Attributes

Constraints

1. At least one boundary value attribute should be present.

Semantics

RangeType corresponds to ISO/IEC 11404 range subtype. From ISO perspective the range subtype is not an aggregated
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit
owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.12.5 BagType Class
BagType class is a meta-model element that represents bag types in existing software systems: the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass

DerivedType

Semantics

BagType corresponds to ISO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the BagType.

12.12.6 SetType Class
SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass

DerivedType

Semantics

SetType corresponds to ISO/IEC 11404 set aggregated datatype. The Name attribute of the ItemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

lower: Integer the optional lower boundary of the range

upper: Integer the optional upper boundary of the range

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.12.7 SequenceType Class
SequenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass

DerivedType

Semantics

SequenceType corresponds to ISO/IEC 11404 sequence aggregated datatype. The Name attribute of the ItemUnit owned
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit
owned by the SequenceType.

12.13 Signature Class Diagram
The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.11.

Figure 12.11 - Signature Class Diagram

12.13.1 Signature Class
The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass

Datatype

ParameterUnit
kind : ParameterKind
pos : Integer

Signature

0..*
0..1

+parameterUnit

0..*

{subsets ownedElement
ordered}

+owner

0..1

{subsets owner}

Datatype

ParameterKind
byValue
byName
byReference
variadic
return
throws
exception
catchall
unknown

<<enumeration>>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 103

Associations

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of ISO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.13.2 ParameterKind Enumeration Datatype
ParameterKind datatype defines the kind of parameter passing conventions.

Literals

NOTE:Issue 12910

Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.14 DefinedTypes Class Diagram
DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.12.

parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

byValue parameter is passed by value

byName parameter is passed by name

byReference parameter is passed by reference

variadic parameter is variadic

return parameter being returned

throws parameter represents an exception thrown by the procedure

exception parameter to a catch block

catchall special parameter to a catch block

unknown parameter passing convention is unknown

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 12.12 - DefinedTypes Class Diagram

12.14.1 DefinedType Class (abstract)
The DefinedType class is an abstract class that defines the common properties of several concrete classes that are used to
represent type declarations in existing software systems.

Superclass

Datatype

Associations

Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

12.14.2 TypeUnit Class
The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Superclass

DefinedType

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype.

type:Datatype[1] The datatype of the DefinedType that describes the values of the
corresponding datatype.

TypeUnit SynonymType

Datatype

DefinedType

1

0..*

+type
1

0..*

BaseType

0..1

0..1

+codeElement
0..1 {subsets ownedElement}

+owner

0..1

{subsets owner}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 105

Semantics

TypeUnit corresponds to ISO/IEC 11404 New datatype declaration and New generator declarations.

12.14.3 SynonymUnit Class
The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to ISO/IEC 11404 Renaming declarations.

12.15 ClassTypes Class Diagram
The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.13.

Figure 12.13 - ClassTypes Class Diagram

12.15.1 ClassUnit Class
The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype
is a named datatype that represents a class: an ordered collection of named elements, each of which can be another
CodeItem, such as a MemberUnit or a MethodUnit.

Superclass

Datatype

D ata typ e

C la ssUnit
isA b strac t : B o o le an

Inte rfa ce Unit

C o deIte m

0..1

0. .*

+o wne r

0..1
{s ubs ets owner}

+co deE le m e nt

0..*

{s ubs ets ownedE lem ent
ordered}

0. .1

0.. *

+owner0..1

{subs e ts owner}

+co de E lem e nt
0.. *

{s ubs ets ownedE lem ent
ordered}

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Attributes

Associations

Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another CodeItem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc. From the runtime perspective, ClassUnit represents a family of
computational objects, called class instances. MemberUnits and MethodUnits of a certain ClassUnit are identified both by
the name of the member or method, as well as by a direct or indirect identification of the corresponding class instance.

12.15.2 InterfaceUnit Class
The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass

Datatype

Associations

Semantics

InterfaceUnit is a logical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.16 Templates Class Diagram
The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.14 shows these classes and their associations.

isAbstract:Boolean the indicator of an abstract class

codeElement:CodeItem[0..*]{ordered} the list of class members

codeElement:CodeItem[0..*] {ordered} The list of TypeElements that corresponds with the target Interface.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 107

Figure 12.14 - Templates Class Diagram

12.16.1 TemplateUnit Class
The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass

Datatype

Associations

Constraints

1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to a type declaration with formal type parameters from the ISO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.16.2 TemplateParameter Class
TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TypeElement.

Superclass

Datatype

codeElement:CodeItem[1] template formal parameters and the base datatype or computational object

Tem p late P a ram e te r
C o d eItem

Te m p la te Unit

0. .*

0 ..1

+co d eE le m e nt

0. .*
{s ubs e ts ow nedE lem ent

ordered }

+o wne r

0 ..1

{s ubs ets owner}

D a ta type

Te m p la teTyp e

108 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

TemplateParameter represents a formal parameter of a type declaration with formal parameters (corresponding to ISO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional.

12.16.3 TemplateType Class
TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass

Datatype

Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and “ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the ISO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.

12.17 TemplateRelations Class Diagram
The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure
12.16 shows these classes and their associations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 109

Figure 12.15 - TemplateRelations Class Diagram

12.17.1 InstanceOf Class
The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model InstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.17.2 ParameterTo Class
The ParameterTo is a meta-model element that represents an actual type parameter in the context of a reference to a
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a CodeItem.

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of a template.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.

InstanceOf

AbstractCodeRelationship

AbstractCodeElement

1

0..*

+from

1
{redefines from}

0..*

ParameterTo

1

0..*0..*

1+from
{redefines from}

TemplateUnit

1

0..*

+to
1 {redefines to}

0..*

CodeItem
1

0.. *

1

+to
{redefines to}

0.. *

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractCodeRelationship

Associations

Constraints

1. ParameterTo relationship should be owned only by TemplateType or ActionElement.

2. The to- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)
class foo {
static <T> void fromArrayToCollection(T[] a, Collection<T> c) {
 for (T o : a) {

 c.add(o);
 }

 }
void demo() {

String[] sa = new String[100];
Collection<String> cs = new ArrayList<String>();
fromArrayToCollection(sa, cs);// T inferred to be String
}

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Template Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="foo">
 <codeElement xmi:id="id.2" xmi:type="code:TemplateUnit"

name="fromArrayToCollection<T>">
 <codeElement xmi:id="id.3" xmi:type="code:TemplateParameter" name="T"/>
 <codeElement xmi:id="id.4" xmi:type="code:MethodUnit"

name="fromArrayToCollection" type="id.6">
 <entryFlow xmi:id="id.5" to="id.14" from="id.4"/>
 <codeElement xmi:id="id.6" xmi:type="code:Signature">
 <parameterUnit xmi:id="id.7" name="a">
 <codeElement xmi:id="id.8" xmi:type="code:ArrayType">
 <itemUnit xmi:id="id.9" type="id.3"/>
 </codeElement>
 </parameterUnit>
 <parameterUnit xmi:id="id.10" name="c" type="id.11">
 <codeElement xmi:id="id.11" xmi:type="code:TemplateType"

name="Collection<T1>">
 <codeRelation xmi:id="id.12" xmi:type="code:ParameterTo"

to="id.3" from="id.11"/>
 <codeRelation xmi:id="id.13" xmi:type="code:InstanceOf"

to="id.75" from="id.11"/>
 </codeElement>
 </parameterUnit>

from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)

to:CodeItem[1] actual parameter to template instantiation

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 111

 </codeElement>
 <codeElement xmi:id="id.14" xmi:type="action:ActionElement"

name="a1" kind="Compound">
 <codeElement xmi:id="id.15" xmi:type="action:ActionElement"

name="a1.1" kind="Call">
 <actionRelation xmi:id="id.16" xmi:type="action:Addresses"

to="id.7" from="id.15"/>
 <actionRelation xmi:id="id.17" xmi:type="action:Calls" to="id.81" from="id.15"/>
 <actionRelation xmi:id="id.18" xmi:type="action:Flow" to="id.19" from="id.15"/>
 </codeElement>
 <codeElement xmi:id="id.19" xmi:type="action:ActionElement"

name="a1.2" kind="Call">
 <codeElement xmi:id="id.20" xmi:type="code:StorableUnit"

name="t1" type="id.88" kind="register"/>
 <actionRelation xmi:id="id.21" xmi:type="action:Addresses"

to="id.40" from="id.19"/>
 <actionRelation xmi:id="id.22" xmi:type="action:Calls" to="id.83" from="id.19"/>
 <actionRelation xmi:id="id.23" xmi:type="action:Writes" to="id.20" from="id.29"/>
 <actionRelation xmi:id="id.24" xmi:type="action:Flow" to="id.25" from="id.19"/>
 </codeElement>
 <codeElement xmi:id="id.25" xmi:type="action:ActionElement"

name="1.3" kind="Condition">
 <actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.20" from="id.25"/>
 <actionRelation xmi:id="id.27" xmi:type="action:TrueFlow"

to="id.29" from="id.25"/>
 <actionRelation xmi:id="id.28" xmi:type="action:FalseFlow"

to="id.39" from="id.25"/>
 </codeElement>
 <codeElement xmi:id="id.29" xmi:type="action:ActionElement"

name="a1.4" kind="Call">
 <actionRelation xmi:id="id.30" xmi:type="action:Addresses"

to="id.40" from="id.29"/>
 <actionRelation xmi:id="id.31" xmi:type="action:Calls" to="id.82" from="id.29"/>
 <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.44" from="id.29"/>
 <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.29"/>
 </codeElement>
 <codeElement xmi:id="id.34" xmi:type="action:ActionElement"

name="a1.5" kind="Call">
 <actionRelation xmi:id="id.35" xmi:type="action:Addresses"

to="id.10" from="id.34"/>
 <actionRelation xmi:id="id.36" xmi:type="action:Reads" to="id.44" from="id.34"/>
 <actionRelation xmi:id="id.37" xmi:type="action:Calls" to="id.84" from="id.34"/>
 <actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.19" from="id.34"/>
 </codeElement>
 <codeElement xmi:id="id.39" xmi:type="action:ActionElement" name="1.6" kind="Nop"/>
 <codeElement xmi:id="id.40" xmi:type="code:StorableUnit"

name="iter" type="id.41" kind="register">
 <codeElement xmi:id="id.41" xmi:type="code:TemplateType" name="Iterator<T1>">
 <codeRelation xmi:id="id.42" xmi:type="code:InstanceOf"

to="id.78" from="id.41"/>
 <codeRelation xmi:id="id.43" xmi:type="code:ParameterTo"

to="id.3" from="id.41"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.44" xmi:type="code:StorableUnit"

name="o" type="id.3" kind="local"/>
 <actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.15" from="id.14"/>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.46" xmi:type="code:MethodUnit" name="demo" type="id.47">
 <codeElement xmi:id="id.47" xmi:type="code:Signature"/>
 <codeElement xmi:id="id.48" xmi:type="code:StorableUnit"

name="sa" type="id.49" kind="local">
 <codeElement xmi:id="id.49" xmi:type="code:ArrayType" name="ar2">
 <itemUnit xmi:id="id.50" type="id.89"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.51" xmi:type="action:ActionElement" name="demo.1" kind="New">
 <codeElement xmi:id="id.52" xmi:type="code:Value" name="100" type="id.90"/>
 <actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.52" from="id.51"/>
 <actionRelation xmi:id="id.54" xmi:type="action:Creates" to="id.49" from="id.51"/>
 <actionRelation xmi:id="id.55" xmi:type="action:Writes" to="id.48" from="id.51"/>
 <actionRelation xmi:id="id.56" xmi:type="action:Flow"/>
 </codeElement>
 <codeElement xmi:id="id.57" xmi:type="code:StorableUnit"

112 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

name="cs" type="id.58" kind="local">
 <codeElement xmi:id="id.58" xmi:type="code:TemplateType"

name="Collection<String>">
 <codeRelation xmi:id="id.59" xmi:type="code:ParameterTo" to="id.89" from="id.58"/>
 <codeRelation xmi:id="id.60" xmi:type="code:InstanceOf" to="id.75" from="id.58"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="demo.2" kind="New">
 <codeElement xmi:id="id.62" xmi:type="code:TemplateType"

name="ArrayList<String>">
 <codeRelation xmi:id="id.63" xmi:type="code:ParameterTo" to="id.89" from="id.62"/>
 <codeRelation xmi:id="id.64" xmi:type="code:InstanceOf" to="id.85" from="id.62"/>
 </codeElement>
 <actionRelation xmi:id="id.65" xmi:type="action:Creates" to="id.62" from="id.51"/>
 <actionRelation xmi:id="id.66" xmi:type="action:Writes" to="id.57" from="id.61"/>
 <actionRelation xmi:id="id.67" xmi:type="action:Flow"/>
 </codeElement>
 <codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="demo.3" kind="Call">
 <codeRelation xmi:id="id.69" xmi:type="code:InstanceOf" to="id.2" from="id.68"/>
 <codeRelation xmi:id="id.70" xmi:type="code:ParameterTo" to="id.89" from="id.68"/>
 <actionRelation xmi:id="id.71" xmi:type="action:Reads" to="id.48" from="id.68"/>
 <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.57" from="id.68"/>
 <actionRelation xmi:id="id.73" xmi:type="action:Calls" to="id.4" from="id.68"/>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.74" xmi:type="code:LanguageUnit" name="Common Java datatypes">
 <codeElement xmi:id="id.75" xmi:type="code:TemplateUnit" name="Collection<T>">
 <codeElement xmi:id="id.76" xmi:type="code:TemplateParameter" name="T"/>
 <codeElement xmi:id="id.77" xmi:type="code:ClassUnit" name="Collection"/>
 </codeElement>
 <codeElement xmi:id="id.78" xmi:type="code:TemplateUnit" name="Iterator<T>">
 <codeElement xmi:id="id.79" xmi:type="code:TemplateParameter" name="T"/>
 <codeElement xmi:id="id.80" xmi:type="code:ClassUnit" name="Iterator">
 <codeElement xmi:id="id.81" xmi:type="code:MethodUnit"

name="iterator" kind="constructor"/>
 <codeElement xmi:id="id.82" xmi:type="code:MethodUnit" name="next"/>
 <codeElement xmi:id="id.83" xmi:type="code:MethodUnit" name="hasNext"/>
 <codeElement xmi:id="id.84" xmi:type="code:MethodUnit" name="add"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.85" xmi:type="code:TemplateUnit" name="ArrayList<T>">
 <codeElement xmi:id="id.86" xmi:type="code:TemplateParameter" name="T"/>
 <codeElement xmi:id="id.87" xmi:type="code:ClassUnit" name="ArrayList"/>
 </codeElement>
 <codeElement xmi:id="id.88" xmi:type="code:BooleanType" name="Boolean"/>
 <codeElement xmi:id="id.89" xmi:type="code:StringType" name="String"/>
 <codeElement xmi:id="id.90" xmi:type="code:IntegerType" name="Integer"/>
 </codeElement>
 </model>
</kdm:Segment>

12.18 InterfaceRelations Class Diagram
The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.16.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 113

Figure 12.16 - InterfaceRelations Class Diagram

12.18.1 Implements Class
The Implements is a meta-model element that represents “implementation” association between a CodeItem (for example,
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements”
construct can be represented by KDM “Implements” relationship.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

See next section

from:CodeItem[1] The CodeItem that implements a certain InterfaceUnit.

to:CodeItem[1] The InterfaceUnit that is being implemented by CodeItem.

AbstractCodeRelationship

Implements

CodeItem

1

0..*

+from
1{redefines from}

0..*

1

0..*

+to
1 {redefines to}

0..*

ImplementationOf

1

0..*

+from
1 {redefines from}

0..*

1

0..*

+to
1

{redefines to}

0..*

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.18.2 ImplementationOf Class
The ImplementationOf is a meta-model element that represents “implementation” association between a CodeItem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements” relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

• Particular MethodUnit of a ClassUnit that “Implements” an InterfaceUnit, is an “ImplementationOf” a particular
MethodUnit, owned by that InterfaceUnit.

• A CallableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

• A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the CodeItem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. The kind attribute of the CodeItem at the target of the ImplementationOf relationship should be equal to “external”
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a ComputationalObject (ControlElement or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a ControlElement,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:

• The definition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

• For a certain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of
“foo.”

• The action element that uses “foo” may be the origin of a “CompliesTo” action relationship (defined at the
InterfaceRelations class diagram of the Action package) to the declaration of “foo.”

from:CodeItem[1] CodeItem that implements a certain “declaration.”

to:CodeItem[1] “declaration” that is being implemented by the CodeItem.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 115

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about
the existing software system:

• For a certain action element that uses “bar,” the target of the KDM callable or data relations will be the declaration of
“bar.”

• The action element that uses “bar” may be the origin of a “CompliesTo” action relationship (defined at the
InterfaceRelations class diagram of the Action package) to the declaration of “bar.”

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation units in
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):
package flip;
public interface iFlip {

public int flip(int i);
}

package flip;
public class foo implements iFlip {

public foo(){}
public flip(int i) {

return i * -1;
}

}

package flip;
public class FlipClient {

public static void main(String[] args) {
foo f= new foo();
iFlip g=(iFlip) f;
f.flip(100);

}
}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Interface Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:Package" name="flip">
 <codeElement xmi:id="id.2" xmi:type="code:ClassUnit" name="foo">
 <codeRelation xmi:id="id.3" xmi:type="code:Implements" to="id.21" from="id.2"/>
 <codeElement xmi:id="id.4" xmi:type="code:MethodUnit" name="flip" type="id.23">
 <codeRelation xmi:id="id.5" xmi:type="code:ImplementationOf"

to="id.22" from="id.4"/>
 <entryFlow xmi:id="id.6" to="id.10" from="id.4"/>
 <codeElement xmi:id="id.7" xmi:type="code:Signature" name="flip">
 <parameterUnit xmi:id="id.8" name="i" type="id.53"/>
 <parameterUnit xmi:id="id.9" type="id.53" kind="return"/>
 </codeElement>
 <codeElement xmi:id="id.10" xmi:type="action:ActionElement"

name="d1" kind="Multiply">
 <codeElement xmi:id="id.11" xmi:type="code:Value" name="-1" type="id.53"/>
 <codeElement xmi:id="id.12" xmi:type="code:StorableUnit"

name="t5" type="id.53" kind="register"/>
 <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.8" from="id.10"/>

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.11" from="id.10"/>
 <actionRelation xmi:id="id.15" xmi:type="action:Writes" to="id.12" from="id.10"/>
 <actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.17" from="id.10"/>
 </codeElement>
 <codeElement xmi:id="id.17" xmi:type="action:ActionElement" name="d2" kind="Return">
 <actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.12" from="id.17"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.19" xmi:type="code:MethodUnit"

name="foo" type="id.20" kind="constructor">
 <codeElement xmi:id="id.20" xmi:type="code:Signature" name="foo"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.21" xmi:type="code:InterfaceUnit" name="IFlip">
 <codeElement xmi:id="id.22" xmi:type="code:MethodUnit"

name="flip" type="id.23" kind="abstract"/>
 <codeElement xmi:id="id.23" xmi:type="code:Signature" name="flip">
 <parameterUnit xmi:id="id.24" name="i" type="id.53" pos="1"/>
 <parameterUnit xmi:id="id.25" type="id.53" kind="return" pos="0"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.26" xmi:type="code:ClassUnit" name="Flipclient">
 <codeElement xmi:id="id.27" xmi:type="code:MethodUnit" name="main" type="id.29">
 <entryFlow xmi:id="id.28" to="id.35" from="id.27"/>
 <codeElement xmi:id="id.29" xmi:type="code:Signature" name="main">
 <parameterUnit xmi:id="id.30" name="args" type="id.31" pos="1">
 <codeElement xmi:id="id.31" xmi:type="code:ArrayType">
 <itemUnit xmi:id="id.32" name="args[]" type="id.54"/>
 </codeElement>
 </parameterUnit>
 </codeElement>
 <codeElement xmi:id="id.33" xmi:type="code:StorableUnit"

name="f" type="id.2" kind="local"/>
 <codeElement xmi:id="id.34" xmi:type="code:StorableUnit"

name="g" type="id.21" kind="local"/>
 <codeElement xmi:id="id.35" xmi:type="action:ActionElement" name="a1" kind="New">
 <actionRelation xmi:id="id.36" xmi:type="action:Creates" to="id.2" from="id.35"/>
 <actionRelation xmi:id="id.37" xmi:type="action:Writes" to="id.33" from="id.35"/>
 <actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.39" from="id.35"/>
 </codeElement>
 <codeElement xmi:id="id.39" xmi:type="action:ActionElement"

name="a2" kind="MethodCall">
 <actionRelation xmi:id="id.40" xmi:type="action:CompliesTo"

to="id.20" from="id.39"/>
 <actionRelation xmi:id="id.41" xmi:type="action:Addresses"

to="id.33" from="id.39"/>
 <actionRelation xmi:id="id.42" xmi:type="action:Calls" to="id.19" from="id.39"/>
 <actionRelation xmi:id="id.43" xmi:type="action:Flow" to="id.44" from="id.39"/>
 </codeElement>
 <codeElement xmi:id="id.44" xmi:type="action:ActionElement"

name="a3" kind="DynCast">
 <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.33" from="id.44"/>
 <actionRelation xmi:id="id.46" xmi:type="action:UsesType" to="id.21" from="id.44"/>
 <actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.34" from="id.44"/>
 <actionRelation xmi:id="id.48" xmi:type="action:Flow" to="id.49" from="id.44"/>
 </codeElement>
 <codeElement xmi:id="id.49" xmi:type="action:ActionElement"

name="a4" kind="InterfaceCall">
 <actionRelation xmi:id="id.50" xmi:type="action:CompliesTo"

to="id.23" from="id.49"/>
 <actionRelation xmi:id="id.51" xmi:type="action:Addresses"

to="id.34" from="id.49"/>
 <actionRelation xmi:id="id.52" xmi:type="action:Calls" to="id.22" from="id.49"/>
 </codeElement>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.53" xmi:type="code:IntegerType" name="int"/>
 <codeElement xmi:id="id.54" xmi:type="code:StringType" name="String"/>
 </model>
</kdm:Segment>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 117

12.19 TypeRelations Class Diagram
The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.17.

Figure 12.17 - TypeRelations Class Diagram

12.19.1 HasType Class
The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRelationships.

from:CodeItem[1] the source data element

to:Datatype[1] the target datatype element

Datatype

HasType

1

0..*

+to

1

{re defines to}

0..*

CodeItem

1

0..*

+from

1

{redefines from}

0..*

Ab stractCodeRela ti onship

AbstractCodeElem ent

HasValue

1

0..*
+from

1

{redefines from}

0..*

1

0..*

+to

1

{redefines to}

0..*

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.19.2 HasValue Class
The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action
elements in the initialization code.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the CodeItem that is the source of the HasValue relationship.

Semantics

HasValue relationship as an optional way to represent initialization. The target of the HasValue relationship can be a Value for
simple initializations that involve constants, or Data Element for simple initializations that involve another data element, or an
ActionElement that writes to the source element for complex initializations involving expressions.

In micro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represente
control flow. It provides a convenient way to associate a data element with its value.

Example (C++)
/*----d.h---*/
class D {
private: int num;
public:
D(int x) { this->num=x; printf(“Hello, this is %d\n”, x); }
work() { printf(“This is %d working\n”, this->num);
};
/*---a.cpp---*/
#include "d.h"
int g1=0;
D d1(1);

/*---b.cpp--*/
#include "d.h"
extern D d1;
D d2(2);
main() {
 int l2=0;
 D * d3=new D(3);
 d1.work();
 d2.work();
 d3->work();
}

from:CodeItem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 119

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="ClassD Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
 <entryFlow xmi:id="id.120" to="id.94" from="id.1"/>
 <codeElement xmi:id="id.2" xmi:type="code:CompilationUnit" name="a.cpp">

 <entryFlow xmi:id="id.121" to="id.10" from="id.2"/>
 <codeElement xmi:id="id.3" xmi:type="code:IncludeDirective" name="imp1">
 <codeRelation xmi:id="id.4" xmi:type="code:Includes" to="id.22" from="id.3"/>
 </codeElement>
 <codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="g1" type="id.105">
 <codeRelation xmi:id="id.6" xmi:type="code:HasValue" to="id.20" from="id.5"/>
 </codeElement>
 <codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="d1" type="id.23">
 <codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.23" from="id.7"/>
 <codeRelation xmi:id="id.9" xmi:type="code:ImplementationOf"

to="id.47" from="id.7"/>
 <codeRelation xmi:id="id.124" xmi:type="code:HasValue" to="id.16" from="id.7"/>

 </codeElement>
 <codeElement xmi:id="id.10" xmi:type="action:BlockUnit" name="bi1" kind=”Init”>
 <entryFlow xmi:id="id.11" to="id.12" from="id.10"/>
 <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="i1" kind="Assign">
 <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.20" from="id.12"/>
 <actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.5" from="id.12"/>
 <actionRelation xmi:id="id.15" xmi:type="action:Flow" to="id.16" from="id.12"/>
 </codeElement>
 <codeElement xmi:id="id.16" xmi:type="action:ActionElement" name="i2" kind="Calls">
 <actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.21" from="id.16"/>
 <actionRelation xmi:id="id.18" xmi:type="action:Calls" to="id.25" from="id.16"/>
 <actionRelation xmi:id="id.19" xmi:type="action:Writes" to="id.7" from="id.16"/>
 </codeElement>
 <codeElement xmi:id="id.20" xmi:type="code:Value" name="0"/>
 <codeElement xmi:id="id.21" xmi:type="code:Value" name="1"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.22" xmi:type="code:SharedUnit" name="d.h">
 <codeElement xmi:id="id.23" xmi:type="code:ClassUnit" name="D">
 <codeElement xmi:id="id.24" xmi:type="code:MemberUnit"

name="num" type="id.105" export="private"/>
 <codeElement xmi:id="id.25" xmi:type="code:MethodUnit" name="D">
 <entryFlow xmi:id="id.26" to="id.28" from="id.25"/>
 <codeElement xmi:id="id.27" xmi:type="code:Value"

name=""Hello, this is %d\n"" type="id.111"/>
 <codeElement xmi:id="id.28" xmi:type="action:ActionElement"

name="a4" kind="Assign">
 <actionRelation xmi:id="id.29" xmi:type="action:Reads" to="id.37" from="id.28"/>
 <actionRelation xmi:id="id.30" xmi:type="action:Writes" to="id.24" from="id.28"/>
 <actionRelation xmi:id="id.31" xmi:type="action:Flow" to="id.32" from="id.28"/>
 </codeElement>
 <codeElement xmi:id="id.32" xmi:type="action:ActionElement" name="a5" kind="Call">
 <actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.27" from="id.32"/>
 <actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.37" from="id.32"/>
 <actionRelation xmi:id="id.35" xmi:type="action:Calls" to="id.106" from="id.32"/>
 </codeElement>
 <codeElement xmi:id="id.36" xmi:type="code:Signature" name="D">
 <parameterUnit xmi:id="id.37" name="x" pos="1"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.38" xmi:type="code:MethodUnit" name="work">
 <codeElement xmi:id="id.39" xmi:type="code:Value"

name=""This is %d working\n""/>
 <codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6" kind="Call">
 <actionRelation xmi:id="id.41" xmi:type="action:Reads" to="id.39" from="id.40"/>
 <actionRelation xmi:id="id.42" xmi:type="action:Reads" to="id.24" from="id.40"/>
 <actionRelation xmi:id="id.43" xmi:type="action:Calls" to="id.106" from="id.40"/>
 </codeElement>
 </codeElement>
 </codeElement>

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </codeElement>
 <codeElement xmi:id="id.44" xmi:type="code:CompilationUnit" name="b.cpp">
 <entryFlow xmi:id="id.122" to="id.87" from="id.44"/>
 <codeElement xmi:id="id.45" xmi:type="code:IncludeDirective" name="imp2">
 <codeRelation xmi:id="id.46" xmi:type="code:Includes" to="id.22" from="id.45"/>
 </codeElement>
 <codeElement xmi:id="id.47" xmi:type="code:StorableUnit"

name="extern d1" kind="external"/>
 <codeElement xmi:id="id.48" xmi:type="code:CallableUnit" name="main">
 <entryFlow xmi:id="id.49" to="id.70" from="id.48"/>
 <codeElement xmi:id="id.50" xmi:type="code:StorableUnit" name="l2" type="id.105">
 <codeRelation xmi:id="id.51" xmi:type="code:HasValue" to="id.20" from="id.50"/>
 </codeElement>
 <codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="d2">
 <codeRelation xmi:id="id.53" xmi:type="code:HasType" to="id.23" from="id.52"/>

 <codeRelation xmi:id="id.125" xmi:type="code:HasValue" to="id.89" from="id.52"/>
 </codeElement>
 <codeElement xmi:id="id.54" xmi:type="code:StorableUnit" name="d3" type="id.55">

 <codeRelation xmi:id="id.126" xmi:type="code:HasValue" to="id.79" from="id.54"/>
 <codeElement xmi:id="id.55" xmi:type="code:PointerType">
 <itemUnit xmi:id="id.56" type="id.23">
 <codeRelation xmi:id="id.57" xmi:type="code:HasType" to="id.23" from="id.56"/>
 </itemUnit>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="a1" kind="Call">
 <actionRelation xmi:id="id.59" xmi:type="action:Calls" to="id.38" from="id.58"/>
 <actionRelation xmi:id="id.60" xmi:type="action:Addresses" to="id.7" from="id.58"/>
 <actionRelation xmi:id="id.61" xmi:type="action:CompliesTo"

to="id.47" from="id.58"/>
 <actionRelation xmi:id="id.62" xmi:type="action:Flow" to="id.63" from="id.58"/>
 </codeElement>
 <codeElement xmi:id="id.63" xmi:type="action:ActionElement" name="a2" kind="Call">
 <actionRelation xmi:id="id.64" xmi:type="action:Calls" to="id.38" from="id.63"/>
 <actionRelation xmi:id="id.65" xmi:type="action:Addresses"

to="id.52" from="id.63"/>
 <actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.63"/>
 </codeElement>
 <codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="a3" kind="Call">
 <actionRelation xmi:id="id.68" xmi:type="action:Calls" to="id.38" from="id.67"/>
 <actionRelation xmi:id="id.69" xmi:type="action:Addresses"

to="id.56" from="id.67"/>
 </codeElement>
 <codeElement xmi:id="id.70" xmi:type="action:BlockUnit" name="bi2" kind=”Init”>
 <codeElement xmi:id="id.71" xmi:type="action:ActionElement"

name="i3" kind="Assign">
 <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.20" from="id.71"/>
 <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.50" from="id.71"/>
 <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.79" from="id.71"/>
 </codeElement>
 <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="i4" kind="New">
 <actionRelation xmi:id="id.76" xmi:type="action:Creates"

to="id.23" from="id.75"/>
 <actionRelation xmi:id="id.77" xmi:type="action:Writes" to="id.54" from="id.75"/>
 <actionRelation xmi:id="id.78" xmi:type="action:Flow" to="id.79" from="id.75"/>
 </codeElement>
 <codeElement xmi:id="id.79" xmi:type="action:ActionElement"

name="i5" kind="MethodCall">
 <actionRelation xmi:id="id.80" xmi:type="action:Reads" to="id.85" from="id.79"/>
 <actionRelation xmi:id="id.81" xmi:type="action:Addresses"

to="id.54" from="id.79"/>
 <actionRelation xmi:id="id.82" xmi:type="action:Calls" to="id.25" from="id.79"/>
 <actionRelation xmi:id="id.83" xmi:type="action:Writes" to="id.56" from="id.79"/>
 <actionRelation xmi:id="id.84" xmi:type="action:Flow" to="id.58" from="id.79"/>
 </codeElement>
 <codeElement xmi:id="id.85" xmi:type="code:Value" name="3"/>

<entryFlow xmi:id="id.86" to="id.71" from="id.70"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.87" xmi:type="action:BlockUnit" name="bi3" kind=”Init”>
 <entryFlow xmi:id="id.88" to="id.89" from="id.87"/>
 <codeElement xmi:id="id.89" xmi:type="action:ActionElement" name="i6" kind="Call">
 <actionRelation xmi:id="id.90" xmi:type="action:Reads" to="id.93" from="id.89"/>
 <actionRelation xmi:id="id.91" xmi:type="action:Calls" to="id.25" from="id.89"/>
 <actionRelation xmi:id="id.92" xmi:type="action:Writes" to="id.52" from="id.89"/>
 </codeElement>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 121

 <codeElement xmi:id="id.93" xmi:type="code:Value" name="2" type="id.105"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.94" xmi:type="action:BlockUnit" name="bi4" kind="Init">

<entryFlow xmi:id="id.95" to="id.96" from="id.94"/>
<codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="i7" kind="Init">
 <entryFlow xmi:id="id.97" to="id.10" from="id.96"/>
 <actionRelation xmi:id="id.98" xmi:type="action:Flow" to="id.99" from="id.96"/>
</codeElement>
<codeElement xmi:id="id.99" xmi:type="action:ActionElement" name="i8" kind="Init">
 <entryFlow xmi:id="id.100" to="id.87" from="id.99"/>
 <actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.102" from="id.99"/>
</codeElement>
<codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="i9" kind="Call">
 <actionRelation xmi:id="id.103" xmi:type="action:Calls" to="id.48" from="id.102"/>
</codeElement>

 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.104" xmi:type="code:LanguageUnit">
 <codeElement xmi:id="id.105" xmi:type="code:IntegerType" name="int"/>
 <codeElement xmi:id="id.106" xmi:type="code:CallableUnit" name="printf" type="id.107">
 <codeElement xmi:id="id.107" xmi:type="code:Signature" name="printf">
 <parameterUnit xmi:id="id.108" type="id.105" kind="return" pos="0"/>
 <parameterUnit xmi:id="id.109" name="format" type="id.111" pos="1"/>
 <parameterUnit xmi:id="id.110" name="arguments" type="id.112"

kind="variadic" pos="2"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.111" xmi:type="code:StringType" name="char *"/>
 <codeElement xmi:id="id.112" xmi:type="code:VoidType"/>
 </codeElement>
 </model>
</kdm:Segment>

12.20 ClassRelations Class Diagram
The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.18.

Figure 12.18 - ClassRelations Class Diagram

Extends

Datatype

0..*

1

0..*

+to

1

{redefines to}

0..*

1

0..*

+from

1

{redefines from}

AbstractCodeRelationship

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.20.1 Extends Class
The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “child” class)
“subclasses” the second datatype (called the “parent” class) by inheriting the semantics and owned elements of the parent
class.

Section IV - Code Elements representing Preprocessor Directives
A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will translate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native” code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabled
L0 KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer
shall either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.

from:Datatype[1] the child Class

to:Datatype[1] the parent Class

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 123

3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:

• originally coded in the primary language

• included from another file by a preprocessor

• generated by a preprocessor as an expansion of an embedded language directive

• selected by satisfying appropriate conditions by the preprocessor

KDM provides the following modeling elements for representing preprocessor directives:

• PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.

• MacroUnit -representation of macro definitions.

• MacroDirective - representation of an embedded language construct as distinguishable from the primary language
construct. This is also known as a Macro Call.

• IncludeDirective - representation of an include directive of a preprocessor.

• ConditionalDirective - representation of a pre-processor conditional branch.

12.21 Preprocessor Class Diagram
The Preprocessor class diagram defines the meta-model elements to represent embedded language constructs and to
support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Cobol).

The class diagram in Figure 12.19 shows these classes and their associations.

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 12.19 - Preprocessor Class Diagram

12.21.1 PreprocessorDirective Class (generic)
PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this section.

Superclass

AbstractCodeElement

Associations

Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded language statement) is a container for code
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded language directives. The implementer may provide additional information using
stereotypes. The macro declaration is just code written for example in the “Cpreprocessor” language and can be

codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor
directive.

M a c ro U nit
k ind : M a c ro K i nd

M a c ro D ire c tive

Inc lud e D ire c tive

C o nd i tio na lD ire c tive

M a c ro K ind
re g ula r
o p tio n
und e fine d
e xte rna l
unk no w n

< < e nu m e ra t ion > >

A b s tra c tC o d e E le m e n t

P r e pr o ce s s o rD ir e ct iv e

0 . . *

0 . .1

+c o d e E le m e nt
0 . . * { sub s e t s o w n ed E lem en t}

+ o w ne r0 . .1
{su bs e ts o w n er}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 125

represented using standard KDM constructs, such as CodeElements, Action, Flow etc., if needed or light-weight extension
elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave the
directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
section only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The
recommended approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

• Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

• Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides
a better choice, since it is the construct introduced by the developer).

• Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); there is a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

• Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated
code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

12.21.2 MacroUnit Class
MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

PreprocessorDirective

Attributes

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

The implementer shall select a particular strategy to represent macro units.

12.21.3 MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

12.21.4 MacroDirective Class
MacroDirective class represents the so-called “macro call,” the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands” by substituting the macro directive construct
with its “definition.” A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

Superclass

PreprocessorDirective

kind:MacroKind additional semantic properties of the macro definition

regular Macro definition has a body and may have parameters.

option Macro definition without a body and parameters, only a name.

undefined This value represents an undefined macro as the target for some relations in the
representation of default branches of conditional compilation and variants.

external external compilation option

unknown unknown class of a macro definition

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 127

Semantics

MacroDirective represents the so-called “macrocall,” or an occurrence of a macro name (possibly with the actual
parameters) which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.21.5 IncludeDirective Class
IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this section in more detail.

Superclass

PreprocessorDirective

Semantics

IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.21.6 Conditional Directive Class
ConditionalDirective class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if …
#endif and #ifdef … #endif directives of the preprocessor of the C language). ConditionalDirective represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the ConditionalDirective class is described later in this section in more detail.

Superclass

PreprocessorDirective

Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.22 PreprocessorRelations Class Diagram
The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.20.

128 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 12.20 - PreprocessorRelations Class Diagram

12.22.1 Expands Class
Expands class represents the relationship between a MacroUnit to another MacroUnit or from a MacroDirective to a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit
or MacroDirective.

Superclass

AbstractCodeRelationship

Associations

Semantics

The implementer shall identify and represent associations between MacroUnits, as well as a MacroDirective and the
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support
for the implementer guidelines.

to:MacroUnit[1] the target MacroUnit

from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.

Includes

Expands

Genera tedF rom

Redefi nes

PreprocessorD irecti ve

0..*

1

0..*

+from 1
{redefines from}

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+to

1

{redefines to}

0..*

1

0..*

+to
1

{redefines to}

0..*

1

0..*

+to

1
{redefines to}

0..*

1

0.. *

+from
1

{redefines from}

0.. *

VariantTo

1

+from

1{redefines from}
1

+to

1

{rede fines to}

Ab stractC odeR ela tionship

AbstractCodeElement
1

0..*
+from1

{redefines from}

0..*

1

0..*

+to 1
{redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 129

12.22.2 GeneratedFrom Class
GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,
the resulting code may represent one of the following:

• “generated” code that corresponds to a certain MacroDirective.

• “included” code that corresponds to a certain IncludeDirective.

• “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding
PreprocessorDirective.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’s guidelines.

Example (C preprocessor)

#define GT(A,B) ((A) > (B))
#define GMAX(A,B) g=(GT(A,B) ? (A) : (B))
GMAX(p+q, r+s);

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Macro Directive Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
 <codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="GMAX">
 <source language="Cpreprocessor"

snippet="#define GMAX(A,B) g=(GT(A,B) ? (A) : (B))"/>
 <codeRelation xmi:id="id.3" xmi:type="code:Expands" to="id.4" from="id.2"/>
 </codeElement>
 <codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="GT">
 <source language="Cpreprocessor" snippet="#define GT(A,B) ((A) > (B))"/>
 </codeElement>
 <codeElement xmi:id="id.5" xmi:type="action:BlockUnit">
 <codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="p" type="id.49"/>
 <codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="q" type="id.49"/>
 <codeElement xmi:id="id.8" xmi:type="code:StorableUnit" name="r" type="id.49"/>

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor
directive that was involved in producing the code.

from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="s" type="id.49"/>
 <codeElement xmi:id="id.10" xmi:type="code:StorableUnit" name="g" type="id.49"/>
 <codeElement xmi:id="id.11" xmi:type="code:MacroDirective" name="m1">
 <source xmi:id="id.12" language="Cpreprocessor" snippet="GMAX(p+q,r+s);"/>
 <codeRelation xmi:id="id.13" xmi:type="code:Expands" to="id.2" from="id.11"/>
 </codeElement>
 <codeElement xmi:id="id.14" xmi:type="action:BlockUnit" name="bm1">
 <codeRelation xmi:id="id.15" xmi:type="code:GeneratedFrom" to="id.11" from="id.14"/>
 <codeElement xmi:id="id.16" xmi:type="action:ActionElement">
 <source xmi:id="id.17" language="C"

snippet="g=(((p+q) > (r+s)) ? (p+q) : (r+s));"/>
 <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a1" kind="Add">
 <actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.6" from="id.18"/>
 <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.10" from="id.18"/>
 <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.47" from="id.18"/>
 <actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.23" from="id.18"/>
 </codeElement>
 <codeElement xmi:id="id.23" xmi:type="action:ActionElement" name="a2" kind="Add">
 <actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.8" from="id.23"/>
 <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.9" from="id.23"/>
 <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.48" from="id.23"/>
 <actionRelation xmi:id="id.27" xmi:type="action:Flow" from="id.23"/>
 </codeElement>
 <codeElement xmi:id="id.28" xmi:type="action:ActionElement"

name="a3" kind="GreaterThan">
 <codeElement xmi:id="id.29" xmi:type="code:StorableUnit"

name="c" type="id.50" kind="register"/>
 <actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.47" from="id.28"/>
 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.48" from="id.28"/>
 <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.29" from="id.28"/>
 <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
 </codeElement>
 <codeElement xmi:id="id.34" xmi:type="action:ActionElement"

name="a3.1" kind="Condition">
 <actionRelation xmi:id="id.35" xmi:type="action:Reads"

to="id.29" from="id.34"/>
 <actionRelation xmi:id="id.36" xmi:type="action:TrueFlow"

to="id.38" from="id.28"/>
 <actionRelation xmi:id="id.37" xmi:type="action:FalseFlow"

to="id.42" from="id.34"/>
 </codeElement>
 <codeElement xmi:id="id.38" xmi:type="action:ActionElement"

name="a4" kind="Assign">
 <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.47" from="id.38"/>
 <actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.10" from="id.38"/>
 <actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.46" from="id.38"/>
 </codeElement>
 <codeElement xmi:id="id.42" xmi:type="action:ActionElement"

name="a5" kind="Assign">
 <actionRelation xmi:id="id.43" xmi:type="action:Reads" to="id.48" from="id.42"/>
 <actionRelation xmi:id="id.44" xmi:type="action:Writes" to="id.7" from="id.42"/>
 <actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.46" from="id.42"/>
 </codeElement>
 <codeElement xmi:id="id.46" xmi:type="action:ActionElement" name="a6" kind="Nop"/>
 <codeElement xmi:id="id.47" xmi:type="code:StorableUnit"

name="t1" type="id.49" kind="register"/>
 <codeElement xmi:id="id.48" xmi:type="code:StorableUnit"

name="t2" type="id.49" kind="register"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.49" xmi:type="code:IntegerType" name="int"/>
 <codeElement xmi:id="id.50" xmi:type="code:BooleanType" name="boolean"/>
 </codeElement>
 </codeElement>
 </model>
</kdm:Segment>

12.22.3 Includes Class
Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being
included.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 131

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular
preprocessor.

Example (C preprocessor)

/*---a.h---*/
... c1 ...
...c2...
/*---a.c---*/
#include “a.h”
...c1...

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Include Directive Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <extensionFamily xmi:id="id.1" >
 <stereotype xmi:id="id.2" name="sample"/>
 </extensionFamily>
 <codeElement xmi:id="id.3" xmi:type="code:SharedUnit" name="a.h">
 <codeElement xmi:id="id.4" xmi:type="code:CodeElement" stereotype="id.2" name="c1">
 <source xmi:id="id.5" language="C"/>
 </codeElement>
 <codeElement xmi:id="id.6" xmi:type="code:CodeElement" stereotype="id.2" name="c2">
 <source xmi:id="id.7" language="C"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.8" xmi:type="code:CompilationUnit" name="a.c">
 <codeElement xmi:id="id.9" xmi:type="code:IncludeDirective">
 <source language="Cpreprocessor" snippet="#include "a.h""/>
 <codeRelation xmi:id="id.10" xmi:type="code:Includes" to="id.3" from="id.9"/>
 </codeElement>
 <codeElement xmi:id="id.11" xmi:type="action:BlockUnit" name="b1">
 <codeRelation xmi:id="id.12" xmi:type="code:GeneratedFrom" to="id.9" from="id.11"/>
 <codeElement xmi:id="id.13" xmi:type="code:CodeElement"

stereotype="id.2" name="c1_clone">
 <source xmi:id="id.14" language="C"/>
 </codeElement>
 <codeElement xmi:id="id.15" xmi:type="code:CodeElement"

stereotype="id.2" name="c2_clone">
 <source xmi:id="id.16" language="C"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.17" xmi:type="action:BlockUnit" name="b2">
 <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a1">
 <actionRelation xmi:id="id.19" xmi:type="action:ActionRelationship"

to="id.13" from="id.18"/>

from:AbstractCodeElement[1] the code elements being included (usually a SharedUnit)

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </codeElement>
 </codeElement>
 </codeElement>
 </model>
</kdm:Segment>

12.22.4 VariantTo Class
VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the ConditionalDirective to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify a single “default” variant, to which additional variants are alternatives. There is no
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding ConditionalDirective. The “default” variant is expected to have a
VariantTo relationship to every alternative branch.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the VariantTo relationship should be a ConditionalDirective.

2. The target of the VariantTo relationship should be a ConditionalDirective.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

#define UNIX 1
#if UNIX | DEBUG
g=1;
#endif

Ifdef UNIX
g=1
#else
g=2
#endif

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Variants Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">

to:PreprocessorDirective[1] ConditionalDirective class that represents an alternative variant of the
conditional.

from:PreprocessorDirective[1] A ConditionalDirective class that represents the default variant of the
conditional.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 133

 <codeElement xmi:id="id.1" xmi:type="code:MacroUnit" name="UNIX">
 <source language="Cproprocessor" snippet="#define UNIX 1"/>
 </codeElement>
 <codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="DEBUG" kind="external"/>
 <codeElement xmi:id="id.3" xmi:type="code:StorableUnit" name="g" type="id.4">
 <codeElement xmi:id="id.4" xmi:type="code:IntegerType"/>
 </codeElement>
 <codeElement xmi:id="id.5" xmi:type="code:ConditionalDirective" name="c1">
 <source language="Cpreprocessor" snippet="#if UNIX | DEBUG"/>
 <codeRelation xmi:id="id.6" xmi:type="code:Expands" to="id.1" from="id.5"/>
 <codeRelation xmi:id="id.7" xmi:type="code:Expands" to="id.2" from="id.5"/>
 </codeElement>
 <codeElement xmi:id="id.8" xmi:type="action:BlockUnit" name="b1">
 <codeRelation xmi:id="id.9" xmi:type="code:GeneratedFrom" to="id.5" from="id.8"/>
 <codeElement xmi:id="id.10" xmi:type="action:ActionElement" name="a1" kind="Assign">
 <source xmi:id="id.11" language="C" snippet="g=123"/>
 <codeElement xmi:id="id.12" xmi:type="code:Value" name="123" type="id.4"/>
 <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.12" from="id.10"/>
 <actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.3" from="id.10"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.15" xmi:type="code:ConditionalDirective" name="c2">
 <source language="Cpreprocessor" snippet="#ifdef UNIX"/>
 <codeRelation xmi:id="id.16" xmi:type="code:Expands" to="id.1" from="id.15"/>
 <codeRelation xmi:id="id.17" xmi:type="code:VariantTo" to="id.25" from="id.15"/>
 </codeElement>
 <codeElement xmi:id="id.18" xmi:type="action:BlockUnit" name="b2">
 <codeRelation xmi:id="id.19" xmi:type="code:GeneratedFrom" to="id.15" from="id.18"/>
 <codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a2" kind="Assign">
 <source xmi:id="id.21" language="C" snippet="g=123"/>
 <codeElement xmi:id="id.22" xmi:type="code:Value" name="1" type="id.4"/>
 <actionRelation xmi:id="id.23" xmi:type="action:Reads" to="id.22" from="id.20"/>
 <actionRelation xmi:id="id.24" xmi:type="action:Writes" to="id.3" from="id.20"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.25" xmi:type="code:ConditionalDirective" name="c3">
 <source language="Cpreprocessor" snippet="#else"/>
 <codeRelation xmi:id="id.26" xmi:type="code:Expands" to="id.1" from="id.25"/>
 </codeElement>
 <codeElement xmi:id="id.27" xmi:type="action:BlockUnit" name="b3">
 <codeRelation xmi:id="id.28" xmi:type="code:GeneratedFrom" to="id.25" from="id.27"/>
 <codeElement xmi:id="id.29" xmi:type="action:ActionElement" name="a3" kind="Assign">
 <source xmi:id="id.30" language="C" snippet="g=123"/>
 <codeElement xmi:id="id.31" xmi:type="code:Value" name="2" type="id.4"/>
 <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.31" from="id.29"/>
 <actionRelation xmi:id="id.33" xmi:type="action:Writes" to="id.3" from="id.29"/>
 </codeElement>
 </codeElement>
 </model>
</kdm:Segment>

12.22.5 Redefines Class
Redefines class represents the relationship between a MacroUnit and another MacroUnit (usually with the same name) where
the origin MacroUnit is a redefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass

AbstractCodeRelationship

Associations

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. The origin of the Redefines relationship should be a MacroUnit.

Semantics

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular
preprocessor.

Example (C preprocessor)

#define A 1
#define A 2
#undef A
#pragma once

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
 xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
name="Preprocessor Directives example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <extensionFamily xmi:id="id.1" >
 <stereotype xmi:id="id.2" name="directive">
 <tag xmi:id="id.3" tag="directive_type" type="String"/>
 </stereotype>
 </extensionFamily>
 <codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="A">
 <source language="Cpreprocessor" snippet="#define A 1"/>
 </codeElement>
 <codeElement xmi:id="id.5" xmi:type="code:MacroUnit" name="DEBUG" kind="option">
 <source language="Cpreprocessor" snippet="#define DEBUG"/>
 </codeElement>
 <codeElement xmi:id="id.6" xmi:type="code:MacroUnit" name="A">
 <source language="Cpreprocessor" snippet="#define A 2"/>
 <codeRelation xmi:id="id.7" xmi:type="code:Redefines" to="id.4" from="id.6"/>
 </codeElement>
 <codeElement xmi:id="id.8" xmi:type="code:MacroUnit" name="A" kind="undefined">
 <source language="Cpreprocessor" snippet="#undef A"/>
 <codeRelation xmi:id="id.9" xmi:type="code:Redefines" to="id.6" from="id.8"/>
 </codeElement>
 <codeElement xmi:id="id.10" xmi:type="code:PreprocessorDirective" stereotype="id.2"
name="d1">
 <taggedValue xmi:id="id.11" xmi:type="kdm:TaggedValue" tag="id.3" value="pragma once"/>
 <source language="Cpreprocessor" snippet="#pragma once"/>
 </codeElement>
 </model>
</kdm:Segment>

Section V - Miscellaneous Code Elements

12.23 Comments Class Diagram
The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.21.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 135

Figure 12.21 - Comments Class Diagram

12.23.1 CommentUnit Class
The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass

ModelElement

Attributes

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the
source code.

12.23.2 AbstractCodeElement Class (additional properties)

Associations

text:String the representation of the comment

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement

C ommentUnit
text : S tring

AbstractC odeElem ent

0..*

1

+comm ent 0..*
{subsets ownedE lem ent

ordered}

+owner

1

{subsets owner}

C om men ts

M odelE lem ent
(from core)

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

12.24 Visibility Class Diagram
The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.22.

Figure 12.22 - Visibility Class Diagram

12.24.1 Namespace Class
The Namespace is a specific meta-model element that represents the target of the VisibleIn or Imports visibility
relationships.

Superclass

CodeItem

Associations

Constraints

1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

groupedCode:CodeItem[0..*] A KDM group of code elements that belong to the namespace. The actual
owners of these elements are the corresponding modules, not the namespace,
since namespaces can, in general cross cut the module boundaries.

CodeItem

NamespaceUnit

0..*

0..*

+groupedCode

0..*

{subsets groupedElement}

+group

0..*

{subsets group}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 137

An anonymous namespace can represent a group of code elements that are the target of an Imports relationship.

12.25 VisibilityRelations Class Diagram
The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the Visibility diagram are shown in Figure 12.22.

Figure 12.23 - VisibilityRelations Class Diagram

12.25.1 VisibleIn Class
The VisibleIn is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass

AbstractCodeRelationship

Associations

Semantics

VisibleIn optional relationship represents an association between a code item and one of the containers that corresponds to the
visibility scope of the first item. This relationship is optional, since all other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

from:CodeItem[1] The CodeItem visibility of which is specified.

to:CodeItem[1] The CodeItem that provides the visibility context.

AbstractCodeRelationship

VisibleIn CodeItem
1

0..*

+from

1
{rede fines from}

0..*

1
0..*

+to 1
{redefines to}0..*

Imports
1

0..*

+from

1
{redefines from }

0..*

1 0..*
+to

1 {rede fines to} 0..*

138 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

name="Visibility and Comment Example">
 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
 <codeElement xmi:id="id.2" xmi:type="code:NamespaceUnit"

name="ab" groupedCode="id.4 id.9 id.13"/>
 <codeElement xmi:id="id.3" xmi:type="code:CompilationUnit" name="a">
 <codeElement xmi:id="id.4" xmi:type="code:CallableUnit"

name="foo" type="id.8" kind="regular">
 <comment text="Comment #1 to foo"/>
 <comment text="Comment #2 to foo"/>
 <codeRelation xmi:id="id.5" xmi:type="code:VisibleIn" to="id.2" from="id.4"/>
 <codeElement xmi:id="id.6" xmi:type="action:ActionElement" name="a1">
 <comment xmi:id="id.7" text="Comment to action element a1"/>
 </codeElement>
 <codeElement xmi:id="id.8" xmi:type="code:Signature" name="foo"/>
 </codeElement>
 <codeElement xmi:id="id.9" xmi:type="code:IntegerType" name="int">
 <comment xmi:id="id.10" text="Comment to integer type"/>
 <codeRelation xmi:id="id.11" xmi:type="code:VisibleIn" to="id.2"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.12" xmi:type="code:CompilationUnit" name="b">
 <codeElement xmi:id="id.13" xmi:type="code:RecordType" name="bar">
 <comment xmi:id="id.14" text="Comment to record type bar"/>
 <codeRelation xmi:id="id.15" xmi:type="code:VisibleIn" to="id.2" from="id.13"/>
 <itemUnit xmi:id="id.16" name="foobar" type="id.9">
 <comment xmi:id="id.17" text="Comment to item unit foobar"/>
 <codeRelation xmi:id="id.18" xmi:type="code:VisibleIn" to="id.13" from="id.16"/>
 </itemUnit>
 </codeElement>
 </codeElement>
 </codeElement>
 </model>
</kdm:Segment>

12.25.2 Imports Class
The Imports meta-model element represents an association between two CodeItems where one CodeItem “imports”
definitions from another. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin CodeItem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target CodeItem (usually, another CompilationUnit
or some other subclass of Module, but possibly a NamespaceUnit from another CodeItem, or even an individual code
element). The Imports class simply represents the “import” relationships between CodeItem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between CodeItem, or even between different models.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the Imports relationship should be a subclass of Module.

from:CodeItem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:CodeItem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 139

Semantics

The implementer shall identify and represent import directives and their targets according to the semantics of the
programming language of the existing software system.

12.26 ExtendedCodeElements Class Diagram
The ExtendedCodeElements class diagram defines two “wildcard” generic elements for the code model as determined by
the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.22.

Figure 12.24 - ExtendedCodeElements Class Diagram

12.26.1 CodeElement Class (generic)
The CodeElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

CodeItem

Constraints

1. CodeElement should have at least one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the code model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.26.2 CodeRelationship Class (generic)
The CodeRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

CodeE lement

AbstractCodeRelationship

KDMEntity
(from core)

C odeItem CodeRelationship

1

0..*
+to

1

{redefines to}

0..*

1

0..*+from

1

{redefines from}
0..*

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractCodeRelationship

Associations

Constraints

1. CodeRelationship should have at least one stereotype.

Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

from:CodeItem[1] the CodeItem

to:KDMEntity[1] the KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 141

13 Action Package

13.1 Overview
The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in a given KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:

• ActionElements

• ActionFlow

• ActionInheritances

• CallableRelations

• DataRelations

• ExceptionBlocks

• ExceptionFlow

• ExceptionRelations

• InterfaceRelations

• UsesRelations

• ExtendedActionElements

The Action package depends on the following packages:

• Core

• kdm

• Source

13.3 ActionElements Class Diagram
In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action and Code packages constitute the
Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:

• ActionElement – main class of the Action package.

• AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

Figure 13.1 - ActionElements Class Diagram

13.3.1 ActionElement Class
The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for primitive relations.
ActionElement can be linked to the original representation through the SourceRef element from the Source package.

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

Ab stractA cti onR elation ship

AbstractC odeElem ent
(from code)

ActionElement
ki nd : S tr ing

1

0..*

1

+actionRelation

0..*

{subsets ownedRe lation
ordered}

0.. *

0..1

+codeElement
0.. *{subs ets ownedE lemen t}

+owner

0..1

{subsets owner}

B lockUnit

EntryFlow

AbstractC odeElem ent
(from code)

0..*

0.. 1

+entryFlow

0..*

{subsets ownedRelation}

0.. 1

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 143

Associations

Constraints

1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a
minimum, each ControlElement should own at least one ActionElement so that it can be the endpoint of all
ActionRelationships originating from the corresponding ControlElement. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

13.3.2 AbstractActionRelationship Class (abstract)
The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass

KDMRelationship

Semantics

Usually, an action relationship corresponds to some usage of a name in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

13.3.3 BlockUnit Class
The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.

actionRelation:ActionRelationship[0..*] Action relationships originating from the given action element.

codeElement: AbstractCodeElement[0..*] Owned code elements (for example, nested action elements, or nested
BlockUnits, or nested definitions of datatypes and computational objects).

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

ActionElement

Associations

Semantics

A BlockUnit is a logical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents the entire set of leaf Actions, owned by the
BlockUnit directly or indirectly.

13.3.4 AbstractCodeElement (additional properties)

Associations

Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 ActionInheritances Class Diagram
The ActionInheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

Figure 13.2 - ActionInheritances Class Diagram

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits

entryFlow:EntryFlow[0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.

KDM Relationship
(from core)

AbstractActionRelationship
Actio nElement

kind : String

AbstractCodeElem ent
(from code)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 145

13.5 ActionFlow Class Diagram
The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)
The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations

Constraints

1. ControlFlow class should always be used with a stereotype.

from:ActionElement[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in
the trace determined by the control flow.

Flow

TrueFlow

FalseFlow
GuardedFlow

AbstractActionRelationship

C ontrolF low ActionE lement
kind : S tring

0.. * 10.. *
+to1 {redefines to}

0..*

1

0..*

+from

1

{redefines from }

AbstractCodeElem ent
(from code)

EntryF low1

0..*+to

1

{redefines to}

0..*

1

0..*

+from
1

{redefines from }

0..*

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new “virtual” meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into ControlFlow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements
and ControlFlow relationships between them.

13.5.2 EntryFlow Class
The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from Module to initialization block, from a callable unit to the inititialization block, from a class to the
initialization block or from a compound action to the first internal action.

Superclass

AbstractActionRelationship

Associations

Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a
corresponding EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The “to” attribute of an EntryFlow element should be an ActionElement that is owned by the
AbstractCodeElement that is the “from” attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."

2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 147

3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It
should be used for any type of special flows, e.g., entry to a CodeAssembly to init Block or action, from Module
to init block, from callable unit to init block, from class to init block, or from compound action to the first internal
action.

4. The CodeAssembly should have custom initialization block that consists of a sequence of action elements,
including action elements with action kind=”Init” and an EntryFlow relation to the initialization blocks of the
owned CompilationUnits (and other owned elements when appropriate), and an action element with action
kind=”Calls” and a Calls relation to the logical entry point (for example, the CallableUnit “main”). The
initialziation blocks of compilation units referred to by custom initialization block in a CodeAssembly do not need
to have the Flow relationship at their respective last action element. The control flow is resumed with the Flow
relationship of the initialization action in the custom initialization block. See example at “HasValue Class” on
page 118..

13.5.3 Flow Class
The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass

ControlFlow

Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.4 TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that

• the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

• the ActionElement that corresponds to the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass

ControlFlow

Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that
have the same ActionElement as the “from” attribute (but there can be FalseFlow).

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

13.5.5 FalseFlow Class
The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

• the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

• the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditions is not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass

ControlFlow

Constraints

1. If there exists a FalseFlow element, there should be either:

• a corresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

• one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and

• there are no other relationship elements that are subclasses of FlowRelationship that have the same ActionElement as
the “from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.6 GuardedFlow Class
The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

• the ActionElement that corresponds to the “from” attribute of the GuardedFlow represents the selection statement (for
example, a “switch” statement); and

• the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

• the branch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedFlow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 149

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

ControlFlow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that corresponds to the “to” attribute of the GuardedFlow has
kind=”Guard”. It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram
The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to ControlElement and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

• Calls - is a modeling element that represents a call-type relationship between an ActionElement and a CallableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

• Dispatches - is a modeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of a call, and the data item represents a pointer to a procedure
type.

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The class diagram shown in Figure 13.4 captures these classes and their relations.

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class
Calls is a modeling element that represents a call-type relationship between an ActionElement and a ControlElement or
one of its subclass elements. The ActionElement represents some form of a call statement, and the ControlElement
represents the element being called. In the meta-model the Calls element is a subclass of ActionRelationship.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the action element from which the call relation originates

to:ControlElement[1] the target ControlElement

AbstractActionRelationship

DataElement

ext : String
size : Integer

(from code)

Dispatches

1

0.. *

+to

1
{redefines to}

0.. *

ActionElement
kind : String

1

0..* +from

1
{redefines from}

0..*

ControlElement
(from code)

Calls

1
0.. *

+from
1

{redefines from}

0.. *

1

0.. *

+to
1 {redefines to}

0.. *

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 151

Semantics

Calls relationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent a call to a
procedure, a static method, a non-static method of a particular object instance, a virtual method, or an interface element.

Calls relation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

Precise semantics of a call can be represented by the “kind” element of the owner ActionElement, according to the guidelines
provided in the “micro KDM” compliance point.

13.6.2 Dispatches Class
Dispatches is a modeling element that represents a call-type of relationship between an ActionElement and a data item.
The ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractActionRelationship

Associations

Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

Example (C)

typedef int(*fp)(int i);
int foo(int i){}
int bar(int i) {}
void foobar() {

fp pf;
pf=foo;
pf=bar;
*pf(1);

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Dispatch Example">

 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="Dispatch.c">
 <codeElement xmi:id="id.2" xmi:type="code:CallableUnit"

name="foo" type="id.15" kind="regular">
 <codeRelation xmi:id="id.3" xmi:type="code:HasType" to="id.14" from="id.2"/>
 <codeElement xmi:id="id.4" xmi:type="code:Signature" name="foo">
 <parameterUnit xmi:id="id.5" name="a" type="id.13"/>
 <parameterUnit xmi:id="id.6" type="id.13" kind="return"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.7" xmi:type="code:CallableUnit"

name="bar" type="id.15" kind="regular">
 <codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.14" from="id.7"/>

from:ActionElement[1] The action element from which the call relation originates.

to:DataElement[1] The data element that represents the pointer to a procedure type.

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <codeElement xmi:id="id.9" xmi:type="code:Signature" name="bar">
 <parameterUnit xmi:id="id.10" name="a" type="id.13"/>
 <parameterUnit xmi:id="id.11" type="id.13" kind="return"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="pf" type="id.14"/>
 <codeElement xmi:id="id.13" xmi:type="code:IntegerType" name="int"/>
 <codeElement xmi:id="id.14" xmi:type="code:TypeUnit" name="fp" type="id.15">
 <codeElement xmi:id="id.15" xmi:type="code:Signature" name="f">
 <parameterUnit xmi:id="id.16" name="a" type="id.13"/>
 <parameterUnit xmi:id="id.17" type="id.13" kind="return"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.18" xmi:type="code:CallableUnit" name="foobar" type="id.33">
 <entryFlow xmi:id="id.19" to="id.20" from="id.18"/>
 <codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a1" kind="Assign">
 <actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.2" from="id.20"/>
 <actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.12" from="id.20"/>
 <actionRelation xmi:id="id.23" xmi:type="action:Flow" to="id.24" from="id.20"/>
 </codeElement>
 <codeElement xmi:id="id.24" xmi:type="action:ActionElement" name="a2" kind="Assign">
 <actionRelation xmi:id="id.25" xmi:type="action:Addresses" to="id.2" from="id.24"/>
 <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.12" from="id.24"/>
 <actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.24"/>
 </codeElement>
 <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="a3" kind="PtrCall">
 <codeElement xmi:id="id.29" xmi:type="code:Value" name="1" type="id.13"/>
 <actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.12" from="id.28"/>
 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.29" from="id.28"/>
 <actionRelation xmi:id="id.32" xmi:type="action:Dispatches"

to="id.12" from="id.28"/>
 </codeElement>
 <codeElement xmi:id="id.33" xmi:type="code:Signature" name="foobar"/>
 </codeElement>
 </codeElement>
 </model>
</kdm:Segment>

13.7 DataRelations Class Diagram
The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at
Figure 13.5.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 153

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class
The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass

AbstractActionRelationship

Associations

Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.2 Writes Class
The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

from:ActionElement[1] The action element that owns the Reads relationship.

to:DataElement[1] The DataElement that is the source of the flow of data.

AbstractActionRelationship

D atatype
(fro m c ode)

D ataE lement

ext : S tring
size : Integer

(from code)

C reates

1

0..*

+to
1

{redefines to}

0..*

Reads

1

0..*

+to

1

{redefines to}

0..*

Writes

1

0..*

+to
1

{redefines to}

0..*

ActionE lement
kind : S tring 1

0..*

+from

1
{redefines from }

0..*

1

0..*

+from

1

{redefines from }

0..*

1

0..*

+from

1

{redefines from }

0..*

C omp utatio nalObj ect
(from code)

Addresses

1

0..*

+from

1
{redefines from }

0..*

1

0..*

+to 1
{redefines to}

0..*

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractActionRelationship

Associations

Semantics

Writes relationship represents an association between an action element, which implements a flow of data to a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class
Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRelationship

Associations

Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class
The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Superclass

AbstractActionRelationship

from:ActionElement[1] The action element that owns the Writes relationship.

to:DataElement[1] The DataElement that is the sink of the flow of data.

from:ActionElement[1] The action element that owns the Addresses relationship.

to:ComputationalObject[1] The Computational object that is being accessed.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 155

Associations

Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data
element to the corresponding datatype according to the semantics of the programming language of the existing software
system.

13.8 ExceptionBlocks Class Diagram
The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special
ParameterKind value kind=”exception” to represent parameter passing via exception mechanism or kind=”catchall” to
represent the catch all construct in C++.

Figure 13.6 - ExceptionBlocks Class Diagram

from:ActionElement[1] The action element that owns the Creates relationship.

to:Datatype[1] The DataElement that is instantiated by the ActionElement.

CatchUnit

ExceptionUnit

TryUnit

FinallyUnit

BlockUnit

156 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.8.1 ExceptionUnit Class
ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as CodeItem (for example, parameters
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass

BlockUnit

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class
TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is
a container for action elements and associated definitions of CodeItems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass

ExceptionUnit

Semantics

TryUnit represents a try-block.

13.8.3 CatchUnit Class
CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass

ExceptionUnit

Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 157

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow
relationship.

13.8.4 FinallyUnit Class

NOTE:Issue 12872

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is
associated with the code responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow
relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example

.<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Exceptions Example">

 <model xmi:id="id.0" xmi:type="code:CodeModel">
 <codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="A">
 <codeElement xmi:id="id.2" xmi:type="code:MethodUnit" name="foo">
 <entryFlow xmi:id="id.3" to="id.4" from="id.2"/>
 <codeElement xmi:id="id.4" xmi:type="action:TryUnit" name="t1">
 <codeElement xmi:id="id.5" xmi:type="action:ActionElement" name="a1" kind="Call">
 <actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.23" from="id.5"/>
 </codeElement>
 <actionRelation xmi:id="id.7" xmi:type="action:Flow" to="id.5" from="id.4"/>
 <actionRelation xmi:id="id.8" xmi:type="action:ExceptionFlow"

to="id.10" from="id.4"/>
 <actionRelation xmi:id="id.9" xmi:type="action:ExitFlow" to="id.17" from="id.4"/>
 </codeElement>
 <codeElement xmi:id="id.10" xmi:type="action:CatchUnit" name="c1">
 <codeElement xmi:id="id.11" xmi:type="code:ParameterUnit" name="e" type="id.67"/>
 <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="a2" kind="Call">
 <codeElement xmi:id="id.13" xmi:type="code:Value"

name=""Something went wrong"" type="id.69"/>
 <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.13" from="id.12"/>
 <actionRelation xmi:id="id.15" xmi:type="action:Calls" to="id.66" from="id.12"/>
 </codeElement>
 <actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.12" from="id.10"/>
 </codeElement>
 <codeElement xmi:id="id.17" xmi:type="action:FinallyUnit" name="f1">
 <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a3" kind="Call">
 <codeElement xmi:id="id.19" xmi:type="code:Value"

name=""Good bye"" type="id.69"/>
 <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.19" from="id.18"/>

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.66" from="id.18"/>
 </codeElement>
 <actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.18" from="id.17"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.23" xmi:type="code:MethodUnit" name="bar">
 <entryFlow xmi:id="id.24" to="id.25" from="id.23"/>
 <codeElement xmi:id="id.25" xmi:type="action:TryUnit" name="t2">
 <codeElement xmi:id="id.26" xmi:type="action:ActionElement"

name="a4" kind="ArrayReplace">
 <source xmi:id="id.27" language="Java" snippet="arr[20]=20"/>
 <codeElement xmi:id="id.28" xmi:type="code:Value" name="20" type="id.70"/>
 <actionRelation xmi:id="id.29" xmi:type="action:Addresses"

to="id.59" from="id.26"/>
 <actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.28" from="id.26"/>
 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.28" from="id.26"/>
 <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.61" from="id.26"/>
 <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.26"/>
 </codeElement>
 <codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="a5" kind="Call">
 <actionRelation xmi:id="id.35" xmi:type="action:Reads" to="id.59" from="id.34"/>
 <actionRelation xmi:id="id.36" xmi:type="action:Calls" to="id.66" from="id.42"/>
 </codeElement>
 <actionRelation xmi:id="id.37" xmi:type="action:Flow" to="id.26" from="id.25"/>
 <actionRelation xmi:id="id.38" xmi:type="action:ExceptionFlow"

to="id.40" from="id.25"/>
 <actionRelation xmi:id="id.39" xmi:type="action:ExitFlow"/>
 </codeElement>
 <codeElement xmi:id="id.40" xmi:type="action:CatchUnit" name="c2">
 <codeElement xmi:id="id.41" xmi:type="code:ParameterUnit" name="e" type="id.68"/>
 <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a6" kind="Call">
 <codeElement xmi:id="id.43" xmi:type="code:Value"

name=""Oops"" type="id.69"/>
 <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.43" from="id.47"/>
 <actionRelation xmi:id="id.45" xmi:type="action:Calls" to="id.66" from="id.42"/>
 <actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.42"/>
 </codeElement>
 <codeElement xmi:id="id.47" xmi:type="action:ActionElement" name="a7" kind="Throw">
 <codeElement xmi:id="id.48" xmi:type="code:Value"

name=""Went too far"" type="id.69"/>
 <actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.48" from="id.47"/>
 <actionRelation xmi:id="id.50" xmi:type="action:Throws"/>
 </codeElement>
 <actionRelation xmi:id="id.51" xmi:type="action:Flow" to="id.42" from="id.40"/>
 </codeElement>
 <codeElement xmi:id="id.52" xmi:type="action:FinallyUnit" name="f2">
 <codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a8" kind="Call">
 <actionRelation xmi:id="id.54" xmi:type="action:Reads" to="id.59" from="id.53"/>
 <actionRelation xmi:id="id.55" xmi:type="action:Calls" to="id.66" from="id.42"/>
 </codeElement>
 <actionRelation xmi:id="id.56" xmi:type="action:Flow" to="id.53" from="id.52"/>
 </codeElement>
 <codeElement xmi:id="id.57" xmi:type="code:Signature">
 <parameterUnit xmi:id="id.58" type="id.63" kind="throws"/>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.59" xmi:type="code:MemberUnit"

name="arr" type="id.60" size="10">
 <codeElement xmi:id="id.60" xmi:type="code:ArrayType">
 <itemUnit xmi:id="id.61" type="id.70"/>
 <indexUnit xmi:id="id.62" type="id.70"/>
 </codeElement>
 </codeElement>
 </codeElement>
 <codeElement xmi:id="id.63" xmi:type="code:ClassUnit"

name="MoreDescriptiveException" isAbstract="true">
 <codeRelation xmi:id="id.64" xmi:type="code:Extends" to="id.67" from="id.63"/>
 </codeElement>
 </model>
 <model xmi:id="id.65" xmi:type="code:CodeModel" name="Java common definitions">
 <codeElement xmi:id="id.66" xmi:type="code:CallableUnit" name="println"/>
 <codeElement xmi:id="id.67" xmi:type="code:ClassUnit" name="Exception"/>
 <codeElement xmi:id="id.68" xmi:type="code:ClassUnit"

name="ArrayIndexOutOfBoundsException" isAbstract="false"/>
 <codeElement xmi:id="id.69" xmi:type="code:StringType"/>
 <codeElement xmi:id="id.70" xmi:type="code:IntegerType"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 159

 </model>
</kdm:Segment>

13.9 ExceptionFlow Class Diagram
ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to a CallableElement that represents the catcher of the exception. The ExceptionFlow target is either the local CatchUnit
that will handle the exception or point back to the TryUnit.

Exception flow elements are optional for L0 KDM models. KDM export tools at L0 compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go a long way
in supporting complex analysis.

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if there is a finally clause, a finally flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class
ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass

AbstractActionRelationship

Associations

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

from:ActionElement[1] ActionElement (for example, a try-block) for which the “on-exit” behavior
was specified.

to:ActionElement[1] ActionElement (usually, a finally-block) that represents the behavior that is
invoked upon successful exit of the origin block (“on exit”).

ExitFlow

ExceptionFlow

Ab stractActionRe lationsh ip

ActionElement
k ind : S tring

1

0..* +from

1

{redefines from }

0..*

1

0..*

+to 1

{rede fines to}

0..*
1

0..*

+from

1
{redefines from }

0..*

1

0..*

+to
1 {redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 161

13.9.2 ExceptionFlow Class
The ExceptionFlow relationship represents an exception flow relationship between a TryUnit and the corresponding
CatchUnit, or between a particular action element that can raise an exception to the corresponding CatchUnit.

Superclass

AbstractActionRelationship

Associations

Constraints

1. The target action element of the ExceptionFlow relationship should be a CatchUnit.

Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram
The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class
The Throws class is a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

from:ActionElement[1] the origin of the exception flow

to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.

A bstractActionR elationship

Throws

Actio nEle ment
kind : S tring

1

0..*

+from

1
{redefines from }

0..*

D ataE lement
(from code)

1

0..* +to

1

{redefines to}
0..*

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

See ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling mechanism.

Superclass

AbstractActionRelationship

Associations

Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. The implementer shall identify and represent these associations according
to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram
The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class
The CompliesTo is a meta-model element that represents an association between an action element that “uses” some
computational object, and the “declaration” of that computational object.

from:ActionElement[1] The ActionElement that throws the exception.

to:DataElement[1] the exception data element being thrown

AbstractActionRelationship

CompliesTo

ActionElement
kind : String

0.. *

1

0.. *
+from

1

{redefines from}

CodeItem
(from code)

1

0..*

+to 1

{redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 163

Superclass

AbstractActionRelationship

Associations

Constraints

1. The kind attribute of the CodeItem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the
declarations of that computational object.

Semantics

See InterfaceRelations section of the Code package chapter.

13.12 UsesRelations Class Diagram
The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

Figure 13.10 - UsesRelations Class Diagram

13.12.1 UsesType Class
The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

from:ActionElement[1] The origin of the relationship; action element that “uses” some computational
object.

to:CodeItem[1] the “declaration” of that computational object

AbstractActionRelationship

ActionElement
kind : String

Datatype
(from code)

UsesType

1

0..*

+from

1

{redefines from}

0..*

1

0..* +to

1
{redefines to}

0..*

164 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractActionRelationship

Associations

Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” chapter.

13.13 ExtendedActionElements Class Diagram
The ExtendedActionElements class diagram defines an additional “wildcard” generic element for the code model as
determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedActionElements diagram are shown in Figure 13.11.

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)
The ActionRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractActionRelationship

from:ActionElement[1] The action element that performs a type cast or a type conversion.

to:Datatype[1] The datatype involved in a type operation.

AbstractActionRelationship

ActionElement
kind : String KDMEntity

(from core)

ActionRelationship

1 0..*

+from

1

{redefines from}

0..*

1

0..*

+to 1
{redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 165

Associations

Constraints

1. ActionRelationship should have at least one stereotype.

Semantics

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

from:ActionElement[1] the origin action element

to:KDMEntity[1] the target KDM entity

166 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 167

14 Micro KDM

This chapter describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM”).

Let’s use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM L0 compliance point does not specify the semantics of a
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft .NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is a rather high-level IR. Micro KDM actions are aligned with the ISO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions” allows:

• The flexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to a source file or to an AST, providing a meaningful source ref (a macro action can still represent one or more
statements in the original existing system), and

• provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRelationships represent the parameters to the action element.

168 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

NOTE:Issue 12899

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):

• Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive strings in Annex A.

• Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

NOTE:Issue 12898

• Inputs - Ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

NOTE:Issue 12900

• Control - owned outgoing control flow relationships for the action.

• Extras - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For
example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be a micro KDM action, where the operation performed by the
action is designated by the value of the action kind, specified in the list of the micro actions in Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and
runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM
model is determined by the semantics of the micro actions.

Semantics

NOTE:Issue 12901

Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example
z=1+f(x,y);
*d[x+3]=1;
d[y+3]=&z;
y=*d[x+3];

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment

xmi:version="2.1"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 169

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Micro KDM Example">

 <model xmi:id="id.0" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">

 <codeElement xmi:id="id.2" xmi:type="code:CallableUnit" name="foo" kind="regular">

 <entryFlow xmi:id="id.3" to="id.4" from="id.2"/>

 <codeElement xmi:id="id.4" xmi:type="action:ActionElement" name="f1" kind="unknown">

 <source xmi:id="id.5" language="C" snippet="z=1+f(x,y)"/>

 <actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.107" from="id.4"/>

 <actionRelation xmi:id="id.7" xmi:type="action:Reads" to="id.97" from="id.4"/>

 <actionRelation xmi:id="id.8" xmi:type="action:Reads" to="id.98" from="id.4"/>

 <actionRelation xmi:id="id.9" xmi:type="action:Writes" to="id.99" from="id.4"/>

 <actionRelation xmi:id="id.10" xmi:type="action:Reads" to="id.105" from="id.4"/>

 <actionRelation xmi:id="id.11" xmi:type="action:Flow" from="id.4"/>

 </codeElement>

 <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="f2" kind="unknown">

 <source xmi:id="id.13" language="C" snippet="*d[x+3]=1;d[y+3]=&z;y=*d[x+3];"/>

 <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.97" from="id.12"/>

 <actionRelation xmi:id="id.15" xmi:type="action:Addresses" to="id.100" from="id.12"/>

 <actionRelation xmi:id="id.16" xmi:type="action:Reads" to="id.106" from="id.12"/>

 <actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.105" from="id.12"/>

 <actionRelation xmi:id="id.18" xmi:type="action:Addresses" to="id.100" from="id.12"/>

 <actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.98" from="id.12"/>

 <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.106" from="id.12"/>

 <actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.99" from="id.12"/>

 <actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.98" from="id.4"/>

 <actionRelation xmi:id="id.23" xmi:type="action:Addresses" to="id.100" from="id.12"/>

 <actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.97" from="id.12"/>

 <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.106" from="id.12"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.26" xmi:type="code:CallableUnit" name="bar" kind="regular">

 <entryFlow xmi:id="id.27" to="id.28" from="id.26"/>

 <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="b1" kind="compound">

 <source xmi:id="id.29" language="C" snippet="z=1+f(x,y)"/>

 <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t1"

type="id.112" kind="register"/>

 <codeElement xmi:id="id.31" xmi:type="action:ActionElement" name="b1.1" kind="Call">

 <actionRelation xmi:id="id.32" xmi:type="action:Calls" to="id.107" from="id.28"/>

 <actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.97" from="id.28"/>

 <actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.98" from="id.28"/>

 <actionRelation xmi:id="id.35" xmi:type="action:Writes" to="id.30" from="id.31"/>

 <actionRelation xmi:id="id.36" xmi:type="action:Flow" from="id.31"/>

 </codeElement>

 <codeElement xmi:id="id.37" xmi:type="action:ActionElement" name="b1.2" kind="Add">

 <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.105" from="id.37"/>

 <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.30" from="id.37"/>

 <actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.99" from="id.37"/>

 </codeElement>

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.31" from="id.28"/>

 </codeElement>

 <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="b2" kind="compound">

 <source xmi:id="id.43" language="C" snippet="*d[x+3]=1;d[y+3]=&z;y=*d[x+3];"/>

 <codeElement xmi:id="id.44" xmi:type="code:StorableUnit" name="t2"

type="id.103" kind="register"/>

 <codeElement xmi:id="id.45" xmi:type="code:StorableUnit" name="t3"

type="id.112" kind="register"/>

 <codeElement xmi:id="id.46" xmi:type="code:StorableUnit" name="t4"

type="id.112" kind="register"/>

 <codeElement xmi:id="id.47" xmi:type="code:StorableUnit" name="t5"

type="id.103" kind="register"/>

 <codeElement xmi:id="id.48" xmi:type="code:StorableUnit" name="t6"

type="id.112" kind="register"/>

 <codeElement xmi:id="id.49" xmi:type="code:StorableUnit" name="t7"

type="id.103" kind="register"/>

 <codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="b2.1" kind="Add">

 <actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.97" from="id.50"/>

 <actionRelation xmi:id="id.52" xmi:type="action:Reads" to="id.106" from="id.50"/>

 <actionRelation xmi:id="id.53" xmi:type="action:Writes" to="id.44" from="id.50"/>

 <actionRelation xmi:id="id.54" xmi:type="action:Flow" to="id.55" from="id.50"/>

 </codeElement>

 <codeElement xmi:id="id.55" xmi:type="action:ActionElement" name="b2.2" kind="ArraySelect">

 <actionRelation xmi:id="id.56" xmi:type="action:Addresses" to="id.100" from="id.55"/>

 <actionRelation xmi:id="id.57" xmi:type="action:Reads" to="id.102" from="id.55"/>

 <actionRelation xmi:id="id.58" xmi:type="action:Reads" to="id.44" from="id.55"/>

 <actionRelation xmi:id="id.59" xmi:type="action:Writes" to="id.45" from="id.55"/>

 <actionRelation xmi:id="id.60" xmi:type="action:Flow" from="id.55"/>

 </codeElement>

 <codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="b2.3" kind="PtrReplace">

 <actionRelation xmi:id="id.62" xmi:type="action:Reads" to="id.45" from="id.61"/>

 <actionRelation xmi:id="id.63" xmi:type="action:Reads" to="id.105" from="id.61"/>

 <actionRelation xmi:id="id.64" xmi:type="action:Writes" to="id.104" from="id.61"/>

 <actionRelation xmi:id="id.65" xmi:type="action:Flow" to="id.66" from="id.61"/>

 </codeElement>

 <codeElement xmi:id="id.66" xmi:type="action:ActionElement" name="b2.4" kind="Add">

 <actionRelation xmi:id="id.67" xmi:type="action:Reads" to="id.98" from="id.12"/>

 <actionRelation xmi:id="id.68" xmi:type="action:Reads" to="id.106" from="id.12"/>

 <actionRelation xmi:id="id.69" xmi:type="action:Writes" to="id.46" from="id.66"/>

 <actionRelation xmi:id="id.70" xmi:type="action:Flow" to="id.71" from="id.66"/>

 </codeElement>

 <codeElement xmi:id="id.71" xmi:type="action:ActionElement" name="b2.5" kind="Ptr">

 <actionRelation xmi:id="id.72" xmi:type="action:Addresses" to="id.99" from="id.12"/>

 <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.47" from="id.71"/>

 <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.71"/>

 </codeElement>

 <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="b2.6" kind="ArrayReplace">

 <actionRelation xmi:id="id.76" xmi:type="action:Addresses" to="id.100" from="id.12"/>

 <actionRelation xmi:id="id.77" xmi:type="action:Reads" to="id.46" from="id.75"/>

 <actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.47" from="id.75"/>

 <actionRelation xmi:id="id.79" xmi:type="action:Writes" to="id.102" from="id.75"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 171

 <actionRelation xmi:id="id.80" xmi:type="action:Flow" from="id.75"/>

 </codeElement>

 <codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="b2.7" kind="Add">

 <actionRelation xmi:id="id.82" xmi:type="action:Reads" to="id.97" from="id.12"/>

 <actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.106" from="id.12"/>

 <actionRelation xmi:id="id.84" xmi:type="action:Writes" to="id.48" from="id.81"/>

 <actionRelation xmi:id="id.85" xmi:type="action:Flow" from="id.81"/>

 </codeElement>

 <codeElement xmi:id="id.86" xmi:type="action:ActionElement" name="b2.8" kind="ArraySelect">

 <actionRelation xmi:id="id.87" xmi:type="action:Addresses" to="id.100" from="id.12"/>

 <actionRelation xmi:id="id.88" xmi:type="action:Reads" to="id.48" from="id.86"/>

 <actionRelation xmi:id="id.89" xmi:type="action:Reads" to="id.102" from="id.86"/>

 <actionRelation xmi:id="id.90" xmi:type="action:Writes" to="id.49" from="id.86"/>

 <actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>

 </codeElement>

 <codeElement xmi:id="id.92" xmi:type="action:ActionElement" name="b2.9" kind="PtrSelect">

 <actionRelation xmi:id="id.93" xmi:type="action:Reads" to="id.49" from="id.92"/>

 <actionRelation xmi:id="id.94" xmi:type="action:Reads" to="id.104" from="id.92"/>

 <actionRelation xmi:id="id.95" xmi:type="action:Writes" to="id.98" from="id.92"/>

 </codeElement>

 <actionRelation xmi:id="id.96" xmi:type="action:Flow" to="id.50" from="id.42"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.97" xmi:type="code:StorableUnit" name="x" type="id.112"/>

 <codeElement xmi:id="id.98" xmi:type="code:StorableUnit" name="y" type="id.112"/>

 <codeElement xmi:id="id.99" xmi:type="code:StorableUnit" name="z" type="id.112"/>

 <codeElement xmi:id="id.100" xmi:type="code:StorableUnit" name="d" type="id.101">

 <codeElement xmi:id="id.101" xmi:type="code:ArrayType" name="">

 <itemUnit xmi:id="id.102" name="d[]" type="id.103">

 <codeElement xmi:id="id.103" xmi:type="code:PointerType">

 <itemUnit xmi:id="id.104" name="*d[]" type="id.112"/>

 </codeElement>

 </itemUnit>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.105" xmi:type="code:Value" name="1" type="id.112"/>

 <codeElement xmi:id="id.106" xmi:type="code:Value" name="3" type="id.112"/>

 <codeElement xmi:id="id.107" xmi:type="code:CallableUnit" name="f" type="id.108">

 <codeElement xmi:id="id.108" xmi:type="code:Signature">

 <parameterUnit xmi:id="id.109" name="a" type="id.112" pos="1"/>

 <parameterUnit xmi:id="id.110" name="b" type="id.112" pos="2"/>

 <parameterUnit xmi:id="id.111" type="id.112" kind="return"/>

 </codeElement>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.112" xmi:type="code:IntegerType" name="int"/>

 </model>

</kdm:Segment>

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 173

Part III - Runtime Resources Layer

NOTE:Issue 15305

This section describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Runtime Resources Layer packages Data, UI, Platform, and Event:

• They provide modeling elements to represent “resources” (something managed by the runtime platform).
• They provide abstract “resource actions” to manage these resources.
• These actions are implemented by the program elements as one or more API calls to some external platform-specific

packages.
• There is a binding involved between the actions and the resources.
• Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be

programmed in event-driven style.
• The content of the information flow involving the resource is associated with some data organization.
• Resource often has a certain state, and tracking the changes of the state over time may be an important concern in

understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new
Runtime Resources Layer models can be built on top of existing Program Element layer models.

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:

• Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each
package may define additional elements to represent additional concerns. For example, the Data package involves less
resource definitions, and focuses on the representation of various data organization capabilities. The Event package
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and
events can be considered as runtime platform resources. The UI package provides the meta-model elements for
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package
deals with conventional runtime platform resources, such as inter-process communication, the use of registries,
management of data, etc.

• Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the
Platform package defines relationship BindsTo, which represents a logical association between two resources.

• Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base
abstract class for the corresponding package. This class is named AbstractXXXElement, where “XXX” is the name of
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action also has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls as they were represented in the Program Elements layer input model. The “abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

corresponding resource action, and are not part of any Code model.

• The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “abstraction” action
container. It is the owned “abstracted” action that is the direct owner of the resource action relationship.

• “abstraction” action container property is in fact systematically added to all elements of Runtime Resources Layer
packages. This way each resource can use the meta-model elements defined in the Program Elements layer to specify
behavior specific to that resource.

• The “abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to as the KDM Event pattern. Each Runtime Resources
Layer package defines its own meta-model element for representing events. For example, the UI package defines the
class UIEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements.
Calls relation originating from such an abstracted action element represents the “callback” mechanism, provided by
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package,
which allows associating an element of a data model with any resource.

• The “abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions” and between resources to provide abstractions of the flow between “resource actions.”

• The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior
related to resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved
by associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 175

Binding time

• Generation time binding

• Language & platform design binding

• Versioning time

• Compile time binding, including
• macro expansion
• Templates
• Product line variants defined by conditional compilation

• Link time binding

• Deployment time binding

• Initialization time binding

• Run time

Binding Time What is being bound Result

Generation time Syntax, variant, pattern, mapping, etc. Generated code

Language & platform design Syntax, entities and relations,
including platform resource types

Source code

Versioning Module source files Module version

Compile time Intra-module relations (def-use) Module

 -- Macro Syntax, macro to expanded code Expanded macro (source code)

 -- Template Template parameters Template instance

 -- Product line variant defined by
 conditional compilation and
 includes

Conditional compilation, macro,
includes, symbolic links.

Component Variant

(static) Link time Intra-component relations within
deployable component

Deployed Component

Deployment time Resource names to resources (using
platform-specific configuration files)

Deployed System

Initialization time Component implementation to
component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files).

System

176 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Run time User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 177

15 Platform Package

15.1 Overview
Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

• Runtime platform consists of many diverse elements (platform parts).

• Platform provides resources to deployment components.

• Platform provides services that are related to resources.

• Application code invokes services to manage the life-cycle of a resource.

• Control flow between application components is often determined by the platform.

• Platform provides error handling across application components.

• Platform provides integration of application components.

Examples of Platform Parts include UNIX OS File System, UNIX OS process management system, Windows 2000, OS/
390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, CORBA,
HTTP, TCP/IP, Eclipse, EJB, JMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

• Concerns:

• What are the resources used by the software system?

• What elements of the run-time platform are used by the software system?

• What behaviour is associated with the resources of the run-time platform?

• What control flows are initiated by the events in the resources?

• What control flows are initiated by the run-time environment?

• What are the bindings to the run-time environment?

• What are the deployment configurations of the software system?

• What are the dynamic/concurrent threads of activity within the software system?

• Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement, several generic
entities, such as ResourceType, RuntimeResource, as well as several concrete entities, such as PlatformAction,
PlatformEvent, ExternalActor, MarshalledResource, NamingResource, etc. The viewpoint language for the
Platform architectural viewpoint also includes several relationships, which are subclasses of
AbstractPlatformRelationship.

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• Analytic methods:

The Platform architectural viewpoint supports the following main kinds of checking:

• Data flow (for example, what action elements read from a given resource; what action elements write to a given
resource; what action elements manage a given resource; including indirect data flow using a
MarshalledResource or a MessagingResource where a particular resource is used to perform a data flow between
the "send" action element and the "receive" action element)

• Control flow (for example, what action elements are triggered by events in a given resource; what action elements
operate on a given resource)

• Identify of resource instances based on resource handles in various modules

Platform Views are used in combination with Code views and Inventory views.

• Construction methods:

• Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by analyzing
Code views for the given system as well as the platform-specific configuration artifacts. The platform extractor
tool uses the knowledge of the API and semantics for the given run-time platform to produce one or mode
Platform views as output

• As an alternative, for some languages like Cobol, in which the elements of the run-time platform are explicitly
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the
system as the input and produce one or mode Platform views as output (together with the corresponding Code
views)

• Construction of the Platform view is determined by the semantics of the run-time platform, and it based on the
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and
not to a specific software system

• The mapping from a particular run-time platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

15.2 Organization of the Platform Package
The Platform package consists of the following 10 class diagrams:

• PlatformModel
• PlatformInheritances
• PlatformResources
• PlatformRelations
• PlatformActions
• ProvisioningRelations
• Deployment
• RuntimeResources
• RuntimeActions
• ExtendedPlatformElements

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 179

The Platform package depends on the following packages:

• Core
• kdm
• Code
• Action

15.3 PlatformModel Class Diagram
The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

Figure 15.1 - PlatformModel Class Diagram

15.3.1 PlatformModel Class
PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these
facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass

KDMModel

PlatformModel
AbstractPlatformRelationship

AbstractPlatformElement

0.. *

0..1

+platformElement

0.. *
{subsets ownedElement}

+model 0..1
{subsets model}

0..*

1

+relation0..*

{subsets ownedRelation}
1

ActionElement
(from action)

0..1

0..*

+owner 0..1

{subsets owner}

+abstraction

0..*
{subsets ownedElement

ordered}

AbstractCodeElement
(from code)

0..*

0..*

+implementation

0..*
{subsets groupedElement}

+group

0..*

{subsets group}

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Semantics

PlatformModel is a logical container for platform elements. The implementer shall arrange platform elements into one or
more platform models.

15.3.2 AbstractPlatformElement Class (abstract)
The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems.

Superclass

KDMEntity

Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)
The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

platformElement:PlatformElement[0..*] owned platform elements

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.

abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeModel.

source:SourceRef[0..*] traceability links owned by the given platform element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 181

Superclass

KDMRelationship

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

15.4 PlatformInheritances Class Diagram
The PlatformInheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations of the PlatformInheritances diagram are shown in Figure 15.1.

Figure 15.1 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram
The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations of the PlatformResources diagram are shown in Figure 15.2.

P la tformModel

K D M M ode l
(from k dm)

A bstractP latform R elationship

K D M R ela tionship
(from c ore)

K D M E ntity
(from c ore)

S ourceRef
(from sourc e)

A bstractP latform E lem ent

0..*

0.. 1

+source
0..*

0.. 1

P l atform Sou rce

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 15.2 - PlatformResources Class Diagram

15.5.1 ResourceType Class
The ResourceType is a meta-model element that represents a platform resource. The purpose of a platform is to simplify
application development by closing the gap between the application domain and the facilities that are available to
application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX File,
UNIX IO Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, JDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass

AbstractPlatformElement

NamingResource

MarshalledResource

MessagingResource

FileResourceExecutionResource

D ataManage r

LockResource

AbstractPlatformElement

ResourceType

0..*

0..1

+platformElement

0..*
{subsets ownedElement}

+owner 0..1

{subs ets owner}

PlatformE vent
kind : String

PlatformA ction
kind : String

0..*

0..1

+platformElement

0..*

{subsets ownedElement}

+owner

0..1

{subsets owner}

StreamResource

ExternalActor

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 183

Associations

Semantics

ResourceType may represent an individual runtime resource instance or a container for several such instances.

The implementer shall identify runtime resources used by the existing software system according to the semantics of the
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of ResourceType define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of ResourceType meta-model element with a stereotype.

15.5.2 NamingResource Class
NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.3 MarshalledResource Class
MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource
is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.4 MessagingResource Class
MessagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Superclass

ResourceType

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given
ResourceType.

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

15.5.5 FileResource Class

NOTE:Issue 15304

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.6 ExecutionResource Class
ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

ResourceType

Semantics

15.5.7 LockResource Class
LockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

ResourceType

Semantics

15.5.8 StreamResource Class
StreamResource represents a simple input/output resource, for example UNIX-like stream.

Superclass

ResourceType

Semantics

15.5.9 DataManager Class
DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager.

Superclass

ResourceType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 185

Semantics

15.5.10 PlatformEvent Class
The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

ResourceType

Attributes

Semantics

15.5.11 PlatformAction Class
PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass

AbstractPlatformElement

Attributes

Associations

15.5.12 ExternalActor Class
ExternalActor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformAction

Semantics

kind:String Represents the nature of the action performed by this Event.

kind:String Represents the nature of the action performed by this element.

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15.6 PlatformRelations Class Diagram
The PlatformRelations class diagram defines associations between ResourceTypes. The classes and associations of the
PlatformRelations diagram are shown in Figure 15.3.

Figure 15.3 - PlatformRelations Class Diagram

15.6.1 BindsTo Class
BindsTo defines a semantic association between two ResourceTypes.

Superclass

PlatformRelationship

Associations

Semantics

15.7 ProvisioningRelations Class Diagram
The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.4.

from:ResourceType[1] The ResourceType that is the source of the relationship (the from-endpoint).

to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).

AbstractPlatformRelationship

ResourceType
KDMEntity
(from core)

BindsTo

1

0..*

+from
1

{redefines from}

0..*

1

0..*

+to
1

{redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 187

Figure 15.4 - ProvisioningRelations Class Diagram

15.7.1 Requires Class
Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass

PlatformRelationship

Associations

Semantics

15.8 PlatformActions Class Diagram
The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.5.

from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint).

to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).

AbstractP latform Relationship

DeployedComponent
Ab stractP latfo rm El em ent

Requires

1
0..*

+from

1

{redefines from}
0..*

1

0..*
+to

1{redefines to}

0..*

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 15.5 - PlatformActions Class Diagram

15.8.1 ManagesResource Class
ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints:

1. This relationship should not be used in Code models.

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

AbstractActionRelationship
(from action)

Re sourceType

CodeItem
(from code)

ManagesResource

1

0..*

+to
1

{redefines to}

0..*

WritesResource

1

0..*

+to

1

{redefines to}

0..*

ReadsResource

1

0..*

+to

1
{redefines to}

0..*

DefinedBy

0..*

1

0..*

+to

1 {redefines to}
ActionElement

kind : S tring
(from action)

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+from

1

{redefines form}

0..*

0..*

1

0..*

+from 1
{redefines from}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 189

15.8.2 ReadsResource Class
ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models

15.8.3 WritesResource Class
WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

15.8.4 DefinedBy Class
DefinedBy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The CodeItem at the to-endpoint of this KDM relationship is usually an interface
or a package.

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

190 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the
given resource, should have the CompliesTo relations to the individual API descriptions the definition represented by the
CodeItem at the to-endpoint of the DefinedBy relationship.

15.9 Deployment Class Diagram
The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.6.

from:ActionElement[1] “abstracted” action owned by some resource

to:CodeItem[1] the CodeItem describing the resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 191

Figure 15.6 - Deployment Class Diagram

15.9.1 DeployedComponent Class
The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform parts
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass

AbstractPlatformElement

Associations

groupedCode:Module[0..*] The code components that are deployed to the target DeployedComponent (KDM
grouping association).

AbstractPlatformElement

ResourceType

D eployedResource

0..*

0..1

+platformElement 0..*
{subs ets ownedElement }

+owner 0..1

{subs ets owner}

DeployedSoftwareSystem

Machine

0..*

0..1

+deployedResource

0..*

{subsets ownedElement}
+owner

0..1

{subsets owner}

Module
(from code)

D eployedComponent

0..*

0..*

+groupedComponent

0..*

{subsets groupedElem ent }

+group
0..*

{subsets group}

0..*

0 .. 1

+deployedComponent

0..*

{subsets ownedElement}

+owner

0.. 1

{subsets owner}

0..*

0..*

+groupedCode
0..*

{subsets groupedElement}

+group
0..*

{subsets group}

192 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

15.9.2 DeployedSoftwareSystem Class
The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each
Component involves one or more model Modules. Again, each Module can be involved in more than one Component.
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical
SoftwareSystem.

Superclass

AbstractPlatformElement

Associations

Semantics

15.9.3 Machine Class
The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass

AbstractPlatformElement

Associations

Semantics

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.

deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 193

15.9.4 DeployedResource Class
The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of ResourceType elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass

AbstractPlatformElement

Associations

Semantics

15.10 RuntimeResources Class Diagram
The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are loaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.7.

Figure 15.7 - RuntimeResources Class Diagram

platformElement:ResourceType[0..*] The set of ResourceTypes that are deployed into the target
DeployedResource.

Thread Process

RuntimeResource

ResourceType

194 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15.10.1 RuntimeResource (generic)
The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource
is used as the endpoint of certain relationships.

Superclass

ResourceType

Semantics

15.10.2 Process Class
The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics

15.10.3 Thread Class
The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass

RuntimeResource

Semantics

15.11 RuntimeActions Class Diagram
The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.8.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 195

Figure 15.8 - RuntimeActions Class Diagram

15.11.1 Loads Class
The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRelationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource

to:DeploymentComponent[1] The component that is being loaded.

AbstractPlatformRelationship

DeployedComponent
Loads

1
0..*

+to

1
{redefines to} 0..*

RuntimeResource

ActionElement

kind : String
(from act ion)

1

0..*

+from 1
{redefines from}

0..*

Spawns
1 0..*

+to

1
{redefines to}

0..*

1

0..*

+from
1

{redefines from}

0..*

196 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

15.11.2 Spawns Class
The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation”
relationship between a SpawningService action endpoint and the RunnableInterface (Process or Thread).

Superclass

AbstractPlatformRelationship

Associations

Semantics

15.12 ExtendedPlatformElements Class Diagram
The ExtendedPlatformElements class diagram defines two “wildcard” generic elements for the code model as determined
by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.9.

Figure 15.9 - ExtendedPlatformElements Class Diagram

from:ActionElement[1] “abstracted” action element owned by some resource

to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being
spawned.

AbstractPlatformRelationship

PlatformElement KDMEntity
(from core)

AbstractPlatformElement
PlatformRelationship

1

0..*

+to
1 {redefines to}

0..*

1 0..*

+from

1
{redefines from}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 197

15.12.1 PlatformElement Class (generic)
The PlatformElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformElement

Constraints

1. PlatformElement should have at least one stereotype

Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)
The PlatformRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRelationship

Associations

Constraints

1. PlatformRelationship should have at least one stereotype

Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

from:AbstractPlatformElement[1] the platform element endpoint

to:KDMEntity[1] the target of the relationship

198 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 199

16 UI Package

16.1 Overview
The UI package defines a set of meta-model elements whose purpose is to represent facets of information related to user
interfaces, including their composition, their sequence of operations, and their relationships to the existing software
systems.

The UI package defines an architectural viewpoint for the UI domain.

• Concerns:

• What are the distinct elements of the user interface of the systems?

• What is the organization of the user interface?

• How user interface uses artifacts of the system (for example, images) ?

• What data flows originate from the user interface ?

• What data flows output to the user interface?

• What control flows are initiated by the user interface?

• Viewpoint language:

UI views conform to KDM XMI schema. The viewpoint language for the UI architectural viewpoint is defined
by the UI package. It includes an abstract entity AbstractUIElement, several generic entities, such as UIResource,
UIDisplay, as well as several concrete entities, such as Screen, Report, UIField, UIAction, UIEvent, etc. The
viewpoint language for the UI architectural viewpoint also includes several relationships, which are subclasses of
AbstractUIRelationship.

• Analytic methods:

The UI architectural viewpoint supports the following main kinds of checking:

• Data flow (for example, what action elements read from a given UI element; what action elements write to a given
UI element; what action elements manage a given UI element)

• Control flow (for example, what action elements are triggered by events in a given UI element; what action
elements operate on a given UI element)

• Workflow (what UI elements will be displayed after the given one; what UI elements are displayed before the
given one)

UI Views are used in combination with Code views and Inventory views.

• Construction methods:

• UI views that correspond to the KDM UI architectural viewpoint are usually constructed by analyzing Code views
for the given system as well as the UI-specific configuration artifacts. The UI extractor tool uses the knowledge
of the API and semantics for the given run-time platform to produce one or mode UI views as output

• As an alternative, for some languages like Cobol, in which the elements of the UI are explicitly defined by the
language, the UI views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode UI views as output (together with the corresponding Code views)

200 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• Construction of the UI view is determined by the semantics of the UI platform, and it based on the mapping from
the given UI platform to KDM; such mapping is specific only to the UI platform and not to a specific software
system

• The mapping from a particular UI platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations.

16.2 Organization of the UI Package
The UI package consists of the following 6 class diagrams:

• UIModel
• UIInheritances
• UIResources
• UIRelations
• UIActions
• ExtendedUIElements

The UI package depends on the following packages:

• Action
• Code
• kdm
• Source
• Core

16.3 UIModel Class Diagram
The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram
shown in Figure 16.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 201

Figure 16.1 - UIModel Class Diagram

16.3.1 UIModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMModel

Associations

Semantics

UIModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements
into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)
The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface.

Superclass

KDMEntity

UIElement:UIElement[0..*] user interface elements owned by the given UIModel

UIModel

AbstractU IR elationship

AbstractU IE lem ent
0..*

0..1

+UIE lement

0..*

{subsets ownedE lement}

+model

0..1

{subsets m odel}
0..*

1

+UIRelation
0..*

{subsets ownedR elation}

1

Actio nElement
(from ac tion)

0..1

0..*

+owner
{sub sets owner}

0..1
+abstraction

{subsets ownedE lement
ordered}

0..*
Ab stractC odeE lem ent

(from code)

0.. *

0..*

+group
{subsets g roup}

0.. *

+implementation
{subsets groupedE lement} 0..*

202 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the
existing software system, into concrete subclasses of the AbstractUIElement. The implementer shall map each user
interface element into some instance of the AbstractUIElement. Implementation elements are one or more
ComputationalObjects or ActionElements from some CodeModel that are represented by the current UI element.
“Abstraction” actions may be used to represent precise semantics of the UI Element.

16.3.3 AbstractUIRelationship Class (abstract)
The AbstractUIRelationship is the abstract superclass for various user interface relationships.

Superclass

KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each
user interface association into some instance of the AbstactUIRelationship.

16.4 UIInheritances Class Diagram

NOTE:Issue 12872

The UIInheritances class diagram defines how classes of the UI package are related to the meta-model elements defined
in the Core package. The classes and associations that make up the UIInheritances class diagram are shown in Figure
16.2.

UIRelation:AbstractUIRelationship[0..*] UI relationships originating from the given UI element

abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current UI element.

source: SourceRef[0..1] link to the physical artifact for the given UI element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 203

Figure 16.2 - UIInheritances Class Diagram

16.5 UIResources Class Diagram
The UIResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

Figure 16.3 - UIResources Class Diagram

UIMo del AbstractU IRelationship

KDM M odel
(from k dm)

KDM Relationship
(from core)

KDM Entity
(from core)

Ab stractU IE lem ent

So urceRef
(from s ource)

0..1

0..*

0..1

+source
0..*

U ISo urce

Screen Report

UIField
UIDisplay

UIEvent
kind : String

UIAction
kind : String

0..*

0..1

+UIElement
0..*

{subsets ownedElement}

+owner

0..1

{subsets owner}

UIResource

AbstractUIElement
0..*

0..1

+UIElement

0..*

{subsets ownedE lement}

+owner

0..1

{subsets owner}

204 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.5.1 UIResource Class (generic)
The UIResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUIElement

Associations

Constraints

1. UIResource should have at least one stereotype.

Semantics

UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UIDisplay Class (generic)
The UIDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints

1. UIDisplay should have at least one stereotype.

Semantics

UIDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class
The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass

UIDisplay

Semantics

16.5.4 Report Class
The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUIElement and its subclasses.

UIElement:UIElement[0..*] UI elements owned by this UIResource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 205

Superclass
UIDisplay

Semantics

16.5.5 UIField Class
The UIField is a unit of display, such as a control on a form, a text field on a character-mode terminal, or a field printed
on a report.

Superclass
UIResource

Semantics

16.5.6 UIEvent Class
The UIEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UIResource

Attributes

16.5.7 UIAction Class
UIAction class follows the pattern of a “resource action” class, specific to the UI package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUIElement

Attributes

Associations

Semantics

kind:String represents the nature of the action performed by this Event

kind:String represents the nature of the action performed by this element

UIElement:UIEvent[0..*] UI events owned by this UIAction

206 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.6 UIRelations Class Diagram
The UIRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

Figure 16.4 - UIRelations Class Diagram

16.6.1 UIFlow Class
The UIFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

AbstractUIRelationship

Associations

Semantics

16.6.2 UILayout Class
The UILayout relationship class captures an association between two instances of Display – one that defines the content
for a portion of a user interface, and one that defines its layout.

from:AbstractUIElement[1]

to:AbstractUIElement[1]

AbstractUIRelationship

UILayout

UIResource

0..*

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+to

1

{redefines to}

AbstractUIElement

UIFlow

1

0..*

+from

1

{redefines from}

0..*

1

0.. *

+to

1

{redefines to}

0.. *

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 207

Superclass

AbstractUIRelationship

Associations

Semantics

16.7 UIActions Class Diagram
The UIActions class diagram defines several KDM relations for the UI package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may
generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

Figure 16.5 - UIActions Class Diagram

from:UIResource[1] the origin UI Resource

to:UIResource[1] the target UI Resource

Ab stractU IR elati onship

AbstractActionR elationship
(from ac tion)

Image
(from source)

D isplaysImage

0..*

1

0..*

+to

1
{redefines to}

D isplays

M anagesU I

ReadsUI

UIResource

0..*

1

0..*

+to

1

{redefines to}

1

0..*

+to

1

{redefines to}

0..* 1

0..*

+to1

{redefines to}

0..*

ActionE lement

kind : S tring
(from act ion)

0..*

1

0..*

+from 1

{redefines from }

0..*

1

0..*

+from
1{redefines from } 1

0..*

+from

1

{redefines from }

0..*

1

0..*

+from

1

{redefines from }

0..*
W ritesUI

1

0..*

+to
1

{redefines to}

0..*

1

0..*

+from

1
{red efines from}

0..*

208 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.7.1 Displays Class
The Displays relationship class represents the relationship between an instance of CallableInterface and the instance of
UIElement that is presented on the interface as a result of the execution of the CallableInterface.

Superclass

AbstractUIRelationship

Associations

Semantics

16.7.2 DisplaysImage Class
The DisplaysImage captures the relationship between an image file – an instance of Image – and its presentation on a user
interface – an instance of DisplayUnit.

Superclass

AbstractUIRelationship

Associations

Semantics

16.7.3 ManagesUI Class
ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UIAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] the ActionElement that displays a certain UI resource

to:UIResource[1] the target UI resource

from:ActionElement[1] The ActionElement that displays a certain Image.

to:Image[1] the target Image element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 209

Associations

Constraints

1. This relationship should not be used in Code models.

16.7.4 ReadsUI Class
ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UIAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

16.7.5 WritesUI Class
WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UIAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

210 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.8 ExtendedUIElements Class Diagram
The ExtendedUIElements class diagram defines two “wildcard” generic elements for the UI model as determined by the
KDM model pattern: a generic UI entity and a generic UI relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1 UIElement Class (generic)
The UIElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractUIElement

Constraints

1. UIElement should have at least one stereotype.

Semantics

A UI entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the UI model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

16.8.2 UIRelationship Class (generic)
The UIRelationship relationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractUIRelationship

AbstractUIRelationship

UIElement KDMEntity
(from core)

AbstractUIElement
UIRelationship

1

0..*
+to

1

{redefines to}

0..*
1 0..*

+from

1

{redefines from}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 211

Associations

Constraints

1. UIRelationship should have at least one stereotype.

Semantics

A UI relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the UI model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

from:AbstractUIElement[1] the origin UI element

to:KDMEntity[1] the target KDM entity

212 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 213

17 Event Package

17.1 Overview
The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event packages defines an architectural viewpoint for the Event domain.

• Concerns

• What are the distinct states involved in the behaviour of the software system?

• What are the events that cause transitions between states?

• What action elements are executed in a given state?

• Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is
defined by the Event package. It includes an abstract entity AbstractEventElement, generic entity EventResource,
UIDisplay, as well as several concrete entities, such as State, Transition, Event, EventAction, etc. The viewpoint
language for the UI architectural viewpoint also includes several relationships, which are subclasses of
AbstractEventRelationship.

• Analytic methods:

The Event architectural viewpoint supports the following main kinds of checking:

• Reachability (for example, what states are reachable from the given state)

• Control flow (for example, what action elements are triggered by a given state transition; what action elements will
be executed for a given traversal of the state transition graph)

• Data flow (what data sequences correspond to a given traversal of the state transition graph)

Event Views are used in combination with Code views, Data views, Platform views and Inventory views.

• Construction methods:

• Event views that correspond to the KDM Event architectural viewpoint are usually constructed by analyzing Code
views for the given system as well as the configuration artefacts specific to the event-driven framework. The
Event extractor tool uses the knowledge of the API and semantics of the event-driven framework to produce one
or mode Event views as output

• Construction of the Event view is determined by the semantics of the event-driven framework, and it based on the
mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven
framework and not to a specific software system

• The mapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

214 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

17.2 Organization of the Event Package
The Event package consists of the following 6 class diagrams:

• EventModel
• EventInheritances
• EventResources
• EventRelations
• EventActions
• ExtendedEventElements

The Event package depends on the following packages:

• Core
• kdm
• Source
• Code
• Action

17.3 EventModel Class Diagram
The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

Figure 17.1 - EventModel Class Diagram

EventModel AbstractEventRelationship

AbstractEventElement

0.. *

0..1

+eventElement 0.. *

{subsets ownedElement}

+model

0..1

{subsets model}

0..*

1

+eventRelation
0..*

{subsets ownedRelation}

1

ActionElement
(from action)

0..1

0..*

+owner
0..1

{subset s owner}
+abstraction

0..*

{subs ets ownedElement
ordered}

AbstractCodeElement
(from code)

0..*

0..*

+group

0..*

{subsets group}

+implementation
0..*{subsets groupedElem ent}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 215

17.3.1 EventModel Class
The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMModel

Associations

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or
more event models.

17.3.2 AbstractEventElement Class (abstract)
The AbstractEventElement is an abstract superclass for various event elements.

Superclass

KDMEntity

Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclass of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more ComputationalObjects or ActionElements that are represented by
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

eventElement:AbstractEventElement[0..*] event elements owned by the given event model

eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element

abstraction:ActionElement[0..*] owned “abstracted” action elements

implementation:AbstractCodeElement[0..*] group association to AbstractCodeElement elements from some
CodeModel that are represented by the current EventElement

source:SourceRef[0..*] traceability links to the “source code” of the artifact

216 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

17.3.3 AbstractEventRelationship Class (abstract)
The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Superclass

KDMRelationship

Semantics

17.4 EventInheritances Class Diagram

NOTE:Issue 12872

The EventInheritances class diagram defines how classes of the Event package are related to the the meta-model elements
defined in the Core package. The classes and associations that make up the EventInheritances diagram are shown in
Figure 17.2.

Figure 17.2 - EventInheritances Class Diagram

17.5 EventResources Class Diagram
The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

E ventM ode l A bstractE ven tR e la tionsh ip

K D M R ela tionsh ip
(from c ore)

K D M M ode l
(f rom k d m)

K D M E ntity
(from c ore)

S o urceRef
(from s ou rce)

A bstractE ven tE lem ent

0. .*

0..1

+source 0..*

0..1

E ven tS ource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 217

Figure 17.3 - EventResourcesClass Diagram

17.5.1 EventResource Class (generic)
The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement

Associations

Semantics

17.5.2 Event Class
The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource

Transition

OnEntry OnExit

State

Ini tialState

EventResource

AbstractEventElement

0..1

0..*

+owner

0..1
{subsets owner}

+eventElement

0..*

{subsets ownedElement}

Event
kind : String

EventAction
kind : String

0..*

0..1

+eventElement

0..*

{subsets ownedElement}

+owner
0..1

{subsets owner}

218 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Attributes

Semantics

17.5.3 State Class
The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4 InitialState Class
The InitialState class is a subclass of the State class. It represents a default initial state.

Superclass

State

17.5.5 Transition Class
The Transition class represents a transition that is performed when a certain event is consumed is a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
this is a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass

EventResource

17.5.6 OnEntry Class
The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

kind:String represents the nature of this Event

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 219

17.5.7 OnExit Class
The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been

Superclass

Transition

17.5.8 EventAction Class
EventAction class follows the pattern of a “resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement

Attributes

Associations

17.6 EventRelations Class Diagram
EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

Figure 17.4 - EventRelations Class Diagram

kind:String represents the nature of the action performed by this element

eventElement:Event[0..*] The set of Event elements that is owned by the current EventAction
element.

AbstractEventRelationship

Event

ConsumesEvent

1
+to

1

{redefines to}

State
Transition

1

0..*

+from
1

{redefines from}

0..*

NextState

1

0..*

+to1
{redefines to}

0..*

1

0..*

+from

1

{redefines from}

0..*

220 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

17.6.1 NextState Class
The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Superclass

AbstractEventRelationship

Associations

17.6.2 ConsumesEvent Class
The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Superclass

AbstractEventRelationship

Associations

17.7 EventActions Class Diagram
The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

to:Transition[1] the transition

from:State[1] the state

from:Transition[1] the transition

to:Event[1] the event

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 221

Figure 17.5 - EventActions Class Diagram

17.7.1 ReadsState Class
ReadsState class follows the pattern of a “resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints:

1. This relationship should not be used in Code models.

2. The to endpoint of the relationship should be State of one of its subclasses.

17.7.2 ProducesEvent Class
ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

AbstractActionR elationship
(from ac tion)

State

Event
kind : String

ReadsState

1

0..*

+to1

{redefines to}

0..*

P roducesEvent

1
0..*

+to

1

{redefines to}

0..*

Ab stractE ventElem ent

ActionE lement

kind : String
(from action)

1

0..*

+from 1

{redefines from}

0..*

1

0 .. *

+from

1

{redefines from }

0 .. *

HasState

1

0..*

+to
1 {redefines to}

0..*

1

0..*

+from

1
{redefine s from}

0..*

222 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3 HasState Class
HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

17.8 ExtendedEventElements Class Diagram
The ExtendedEventElements class diagram defines two “wildcard” generic elements for the event model as determined by
the KDM model pattern: a generic event entity and a generic event relationship.

The classes and associations of the ExtendedEventElements diagram are shown in Figure 17.6.

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being produced

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 223

Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1 EventElement Class (generic)
The EventElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints

1. EventElement should have at least one stereotype.

Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the event model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.8.2 EventRelationship Class (generic)
The EventRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractEventRelationship

Associations

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Ab stractE ventR el ationsh ip

A b stractE ventEl em ent

KD M Entity
(from core)

E ventRe lationship1 0..*
+from

1

{redefines from }

0..*

1
0..*

+to
1

{redefines to}

0..*

EventE lement

224 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. EventRelationship should have at least one stereotype.

Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 225

18 Data Package

18.1 Overview
The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example,
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories,
such as record files, relational databases, structured data stream, XML schemas and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.

• Concerns

• What is the organization of persistent data in the software systems?

• What are the information model supported by the software system?

• What action elements read persistent data?

• What action elements write persistent data?

• What control flows are determined by the events corresponding to persistent data?

• Viewpoint language

Data views conform to KDM XMI schema The viewpoint language for the Data architectural viewpoint is
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement, generic
entities DataResource, DataContainer, ContentItem, as well as several concrete entities, such as Catalog,
RelationalSchema, DataEvent, DataAction, ColumnSet, RecordFile,XMLSchema, etc. The viewpoint language
for the Data architectural viewpoint also includes several relationships, which are subclasses of
AbstractDataRelationship.

• Analytic methods:

The Data architectural viewpoint supports the following main kinds of checking:

• Data aggregation (the set of data items accessible from the given ColumnSet by adding data items through foreign
key relationships to other tables)

Data Views are used in combination with Code views and Inventory views.

• Construction methods:

• Data views that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data
Definition Language artifacts for the given data management platform. The Data extractor tool uses the
knowledge of the data management platform to produce one or mode Data views as output

• As an alternative, for some languages like Cobol, in which some elements of the Data are explicitly defined by the
language, the Data views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode Data views as output (together with the corresponding Code views)

• Construction of the Data view is determined by the semantics of the data management platform, and it based on
the mapping from the given data management platform to KDM; such mapping is specific only to the data
management platform and not to a specific software system

226 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

• The mapping from a particular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

18.2 Organization of the Data Package
The Data package consists of the following 11 class diagrams:

• Data Model
• Data Inheritance
• RelationalData
• ColumnSet
• StructuredData
• ContentElements
• ContentRelations
• KeyIndex
• KeyRelations
• DataActions
• ExtendedDataElements

The Data Package depends on the following packages:

• Core
• kdm
• Source
• Code
• Action

18.3 Data Model Class Diagram
The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the
DataModel class diagram.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 227

Figure 18.1 - Data Model

18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

Semantics

Data model is a logical container for the instances of data elements. The implementer shall arrange the instances of the
data elements into one or more DataModels.

dataElement :DataElement[0..*] data elements owned by the given DataModel

DataModel
AbstractDataRelationship

ActionElement

kind : String
(from action)

AbstractDataElement

0..*

0..1

+dataElement 0..*
{subsets ownedElement}

+model

0..1

{subsets model}

0..*

1

+dataRelation
0..*

{subsets ownedRelation}

1

0..*

0..1

+abstraction

0..*

{subsets ownedElement
ordered}

+owner
0..1

{subsets owner}

228 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.3.2 AbstractDataElement Class (abstract)
The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer_Number is one type of data element that might be found within a
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements.

Superclass

KDMEntity

Associations

Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
calls in the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRelationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass

KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data
model.

18.4 Data Inheritances Class Diagram

NOTE:Issue 12872

The DataInheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are
related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram
inherits certain properties from KDM classes defined within the Core Package.

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element

dataRelation:DataRelation[0..*] data relationships that originate from this data element

source: SourceRef[0..1] link to the physical artifact for the given data element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 229

Figure 18.2 - DataInheritances Diagram

18.5 DataResources Class Diagram
The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.
Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass
of DataResource. Subclasses of AbstractContentElement are owned by XMLSchema element.

K D M M o d e l
(f rom k dm)

K D M En t ity
(from c o re)

K D M R e la tio n sh ip
(f rom c ore)

A b s tra c tD a ta R e la tio n sh ipD a ta M o d e l
A b stra c tD a ta E le m e n t

S o urce Re f
(from s ou rc e)

0. .1

0 . .*

0 . .1

+so urce 0. .*

D a ta S o u rce

230 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 18.3 - RelationalData Class Diagram

18.5.1 DataResource Class (generic)
The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and IndexElement.

Superclass

AbstractDataElement

Constraints

1. DataResource should have at least one stereotype

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)
The DataContainer class is a generic meta-model element that represents various database containers.

CodeItem
(from code)

RelationalSchema

0..*

0..1

+codeE lement

0..*

{subsets ownedElement}

+owner
0..1{subsets owner}

Catalog

DataEvent
kind : String

DataAction
kind : String

0..*

0..1

+dataElement

0..*

{subsets ownedElement}

+owner

0..1

{subsets owner}

ActionElement
(from action)

0..*

0..*

+group

0..*

{subsets group}

+implementation0..*
{subsets groupedElement}

AbstractDataElement

DataContainer

DataResource 0..*

0..1

+dataElement

0..*
{subsets ownedElement}

+owner

0..1

{subsets owner}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 231

Superclass

DataResource

Associations

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
is a logical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class
The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass

DataContainer

Semantics

18.5.4 RelationalSchema Class
The RelationalSchema class is a relational database schema.

Superclass

DataContainer

Associations

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent a “virtual” data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows more tight integration of the corresponding CodeItem with the Data Model.

dataElement :DataResource[0..*] owned data resources

codeElement:CodeItem[0..*] Stored procedures owned by this schema.

232 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.5.5 DataEvent Class
The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens” of the KDM
representation.

Superclass

DataResource

Attributes

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain RelationalSchema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class
DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Attributes

Associations

kind :String semantic description of the data event

kind:String represents the nature of the action performed by this element

implementation:ActionElement[0..*] group association to ActionElement represented by the current DataAction

dataElement:DataEvent[0..*] event elements owned by the current DataAction

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 233

Semantics

DataAction represents a “virtual” action element that represents the logical action performed by the runtime platform of
the existing software system.

18.6 ColumnSet Class Diagram
The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4
captures these classes and their relations.

Figure 18.4 - ColumnSet Class Diagram

18.6.1 ColumnSet (generic)
The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).
Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations

Semantics

ColumnSet corresponds to an ISO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of the fields.
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations.

itemUnit :ItemUnit[0..*] Individual columns owned by this ColumnSet are represented as data elements

Re lationalVi ew RelationalTable

C olumnS et ItemUnit
(from c ode)

0..*

0..1
+itemUnit

0..*

{ subs ets owned Elem ent
ordered}

+owner

0..1

{sub s ets owner}

Re cordF ile

D ataS egm ent

D ataC onta iner

234 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such as relational
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2 RelationalTable Class
A RelationalTable is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, data is organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
a table that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in a relational database have the following main components:

• Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columns for ID, color, and weight.

• Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to RelationalTable is DataManager.

Example (T-SQL)
CREATE TABLE products (ID int primary key, name varchar, type varchar)

CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,

 PRIMARY KEY(contract, recognizedOn))

CREATE PROCEDURE INSERT_RECOGNITION

(IN contractID int, IN amount decimal, IN recognizedOn date, OUT result int)

LANGUAGE SQL

BEGIN

INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn);

SET result = 1;

END

CREATE TRIGGER reminder1

ON Contracts.revenueRecognitions

AFTER INSERT, UPDATE

AS RAISERROR ('Notify Sales', 16, 10)

GO

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 235

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="Schema Example">

 <model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">

 <dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">

 <dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">

 <dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>

 <itemUnit xmi:id="id.4" name="ID" type="id.57"/>

 <itemUnit xmi:id="id.5" name="name" type="id.58"/>

 <itemUnit xmi:id="id.6" name="type" type="id.58"/>

 </dataElement>

 <dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">

 <dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>

 <dataElement xmi:id="id.9" xmi:type="data:ReferenceKey" implementation="id.12">

 <dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>

 </dataElement>

 <itemUnit xmi:id="id.11" name="ID" type="id.57"/>

 <itemUnit xmi:id="id.12" name="product" type="id.57"/>

 <itemUnit xmi:id="id.13" name="revenue" type="id.59"/>

 <itemUnit xmi:id="id.14" name="dateSigned" type="id.60"/>

 </dataElement>

 <dataElement xmi:id="id.15" xmi:type="data:RelationalTable" name="revenueRecognitions">

 <dataElement xmi:id="id.16" xmi:type="data:UniqueKey" implementation="id.25 id.27"/>

 <dataElement xmi:id="id.17" xmi:type="data:ReferenceKey" implementation="id.25">

 <dataRelation xmi:id="id.18" xmi:type="data:KeyRelation" to="id.8" from="id.17"/>

 </dataElement>

 <dataElement xmi:id="id.19" xmi:type="data:DataEvent" name="e1" kind="Insert">

 <abstraction xmi:id="id.20" name="e1.1" kind="Call">

 <actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.47" from="id.20"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.22" xmi:type="data:DataEvent" name="e2" kind="Update">

 <abstraction xmi:id="id.23" name="e2.1" kind="Call">

 <actionRelation xmi:id="id.24" xmi:type="action:Calls" to="id.47" from="id.23"/>

 </abstraction>

 </dataElement>

 <itemUnit xmi:id="id.25" name="contract" type="id.57"/>

 <itemUnit xmi:id="id.26" name="amount" type="id.59"/>

 <itemUnit xmi:id="id.27" name="recognizedOn" type="id.60"/>

 </dataElement>

 <codeElement xmi:id="id.28" xmi:type="code:CallableUnit" name="INSERT_RECOGNITIONS" kind="regular">

 <entryFlow xmi:id="id.29" to="id.35" from="id.28"/>

 <codeElement xmi:id="id.30" xmi:type="code:Signature">

 <parameterUnit xmi:id="id.31" name="contractID" type="id.57" pos="1"/>

 <parameterUnit xmi:id="id.32" name="amount" type="id.59" pos="2"/>

 <parameterUnit xmi:id="id.33" name="recognizedOn" type="id.60" pos="3"/>

 <parameterUnit xmi:id="id.34" name="result" type="id.57" kind="byReference" pos="4"/>

 </codeElement>

 <codeElement xmi:id="id.35" xmi:type="action:ActionElement" name="a1" kind="Insert">

 <source xmi:id="id.36" language="SQL"

snippet="INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn);"/>

 <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.31" from="id.35"/>

 <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.32" from="id.35"/>

 <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.33" from="id.35"/>

236 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <actionRelation xmi:id="id.40" xmi:type="data:WritesColumnSet" to="id.15" from="id.35"/>

 <actionRelation xmi:id="id.41" xmi:type="data:ProducesDataEvent" to="id.19" from="id.35"/>

 </codeElement>

 <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a2" kind="Assign">

 <source xmi:id="id.43" language="SQL" snippet="SET result = 1;"/>

 <codeElement xmi:id="id.44" xmi:type="code:Value" name="1"/>

 <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.44" from="id.42"/>

 <actionRelation xmi:id="id.46" xmi:type="action:Writes" to="id.34" from="id.42"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.47" xmi:type="code:CallableUnit" name="reminder1">

 <entryFlow xmi:id="id.48" to="id.49" from="id.47"/>

 <codeElement xmi:id="id.49" xmi:type="action:ActionElement" name="a3" kind="Throw">

 <codeElement xmi:id="id.50" xmi:type="code:ValueList" name="error">

 <valueElement xmi:id="id.51" xmi:type="code:Value"

name=""Notify sales!"" type="id.58"/>

 <valueElement xmi:id="id.52" xmi:type="code:Value" name="16" type="id.57"/>

 <valueElement xmi:id="id.53" xmi:type="code:Value" name="10" type="id.57"/>

 </codeElement>

 <actionRelation xmi:id="id.54" xmi:type="action:Throws" to="id.50" from="id.49"/>

 </codeElement>

 </codeElement>

 </dataElement>

 </model>

 <model xmi:id="id.55" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.56" xmi:type="code:LanguageUnit" name="SQL datatypes">

 <codeElement xmi:id="id.57" xmi:type="code:IntegerType" name="sql int"/>

 <codeElement xmi:id="id.58" xmi:type="code:StringType" name="sql varchar"/>

 <codeElement xmi:id="id.59" xmi:type="code:DecimalType" name="sql decimal"/>

 <codeElement xmi:id="id.60" xmi:type="code:DateType" name="sql date"/>

 <codeElement xmi:id="id.61" xmi:type="code:BooleanType"/>

 </codeElement>

 </model>

 <model xmi:id="id.62" xmi:type="platform:PlatformModel">

 <platformElement xmi:id="id.63" xmi:type="platform:ExternalActor">

 <abstraction xmi:id="id.64" >

 <actionRelation xmi:id="id.65" xmi:type="data:ProducesDataEvent" to="id.19" from="id.64"/>

 </abstraction>

 </platformElement>

 </model>

</kdm:Segment>

18.6.3 RelationalView Class
A RelationalView class is a specific subclass of the ColumnSet class that represents Views of relational databases. A view
is a virtual table whose contents are defined by a query. Like a real table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 237

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a RelationalView owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class
A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass

ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

A database segment defines the fields for a set of segment instances similar to the way a relational table defines columns
for a set of rows in a table. In this way, segments relate to relational tables, and fields in a segment relate to columns in a
relational table.

Example (IMS):
DLR_PCB1 PCB TYPE=DB,DBDNAME=DEALERDB,PROCOPT=GO,KEYLEN=42

SENSEG NAME=DEALER,PARENT=0

SENSEG NAME=MODEL,PARENT=DEALER

SENSEG NAME=ORDER,PARENT=MODEL

SENSEG NAME=SALES,PARENT=MODEL

SENSEG NAME=STOCK,PARENT=MODEL

PSBGEN PSBNAME=DLR_PSB,MAXQ=200,LANG=JAVA

END

DBD NAME=DEALERDB,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC40.1.10)

238 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

SEGM NAME=DEALER,PARENT=0,BYTES=94,

FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

FIELD NAME=DLRNAME,BYTES=30,START=5,TYPE=C

SEGM NAME=MODEL,PARENT=DEALER,BYTES=43

FIELD NAME=(MODTYPE,SEQ,U),BYTES=2,START=1,TYPE=C

FIELD NAME=MAKE,BYTES=10,START=3,TYPE=C

FIELD NAME=MODEL,BYTES=10,START=13,TYPE=C

FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P

SEGM NAME=ORDER,PARENT=MODEL,BYTES=127

FIELD NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C

FIELD NAME=LASTNME,BYTES=25,START=50,TYPE=C

FIELD NAME=FIRSTNME,BYTES=25,START=75,TYPE=C

SEGM NAME=SALES,PARENT=MODEL,BYTES=113

FIELD NAME=(SALDATE,SEQ,U),BYTES=8,START=1,TYPE=C

FIELD NAME=LASTNME,BYTES=25,START=9,TYPE=C

FIELD NAME=FIRSTNME,BYTES=25,START=34,TYPE=C

FIELD NAME=STKVIN,BYTES=20,START=94,TYPE=C

SEGM NAME=STOCK,PARENT=MODEL,BYTES=62

FIELD NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C

FIELD NAME=COLOR,BYTES=10,START=37,TYPE=C

FIELD NAME=PRICE,BYTES=5,START=47,TYPE=C

FIELD NAME=LOT,BYTES=10,START=52,TYPE=C

DBDGEN

FINISH

END

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="IMS Example">

 <model xmi:id="id.0" xmi:type="data:DataModel">

 <dataElement xmi:id="id.1" xmi:type="data:Catalog" name="DEALERDB">

 <dataElement xmi:id="id.2" xmi:type="data:DataSegment" name="Dealer">

 <dataElement xmi:id="id.3" xmi:type="data:DataSegment" name="Model">

 <dataElement xmi:id="id.4" xmi:type="data:DataSegment" name="Order">

 <dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.6"/>

 <itemUnit xmi:id="id.6" name="ORDNBR" type="id.30" size="2"/>

 <itemUnit xmi:id="id.7" name="LASTNME" type="id.30" size="25"/>

 <itemUnit xmi:id="id.8" name="FIRSTNME" type="id.30" size="25"/>

 </dataElement>

 <dataElement xmi:id="id.9" xmi:type="data:DataSegment" name="Sales">

 <dataElement xmi:id="id.10" xmi:type="data:UniqueKey" implementation="id.11"/>

 <itemUnit xmi:id="id.11" name="SALDATE" type="id.30" size="8"/>

 <itemUnit xmi:id="id.12" name="LASTNME" type="id.30" size="25"/>

 <itemUnit xmi:id="id.13" name="FIRSTNME" type="id.30" size="25"/>

 <itemUnit xmi:id="id.14" name="STKVIN" type="id.30" size="20"/>

 </dataElement>

 <dataElement xmi:id="id.15" xmi:type="data:DataSegment" name="Stock">

 <dataElement xmi:id="id.16" xmi:type="data:UniqueKey" implementation="id.17"/>

 <itemUnit xmi:id="id.17" name="STKVIN" type="id.30" size="20"/>

 <itemUnit xmi:id="id.18" name="COLOR" type="id.30" size="10"/>

 <itemUnit xmi:id="id.19" name="PRICE" type="id.30" size="5"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 239

 <itemUnit xmi:id="id.20" name="LOT" type="id.30" size="10"/>

 </dataElement>

 <dataElement xmi:id="id.21" xmi:type="data:UniqueKey" implementation="id.22"/>

 <itemUnit xmi:id="id.22" name="MODTYPE" type="id.30" size="2"/>

 <itemUnit xmi:id="id.23" name="MAKE" size="10"/>

 <itemUnit xmi:id="id.24" name="YEAR" size="4"/>

 <itemUnit xmi:id="id.25" name="MSRP" type="id.31" size="5"/>

 </dataElement>

 <dataElement xmi:id="id.26" xmi:type="data:UniqueKey" implementation="id.27"/>

 <itemUnit xmi:id="id.27" name="DRLNO" type="id.30" size="4"/>

 <itemUnit xmi:id="id.28" name="DLRNAME" size="30"/>

 </dataElement>

 </dataElement>

 </model>

 <model xmi:id="id.29" xmi:type="code:CodeModel" name="Common IMS datatypes">

 <codeElement xmi:id="id.30" xmi:type="code:StringType" name="IMS type c"/>

 <codeElement xmi:id="id.31" xmi:type="code:DecimalType" name="IMS type packeddecimal"/>

 </model>

</kdm:Segment>

18.6.5 RecordFile Class
The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or
sequential.

Superclass

ColumnSet

Semantics

In a non-relational database system, a record is an entry in a file, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A file is a set of records, where
each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (cobol)

The following example illustrates the representation of RecordFile. The CodeModel of this example is incomplete as it focuses
on the DataModel, and well as combined representation involving the CodeModel, DataModel, PlatformModel, and
EventModel.

NOTE:Issue 14172

FILE-CONTROL.

 SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\SEQ.DAT'

 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT INDEXED-FILE

240 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 ASSIGN TO 'A:\INDMAST.DAT'

 ORGANIZATION IS INDEXED

 ASSESS IS SEQUENTIAL

 RECORD KEY IS IND-SOC-SEC-NUM

 FILE STATUS IS INDEXED-STATUS-BYTES.

FILE SECTION.

FD SEQUENTIAL FILE

 RECORD COTNAINS 39 CHARACTERS

 DATA RECORD IS SEQUENTIAL-RECORD.

01 SEQUENTIAL-RECORD.

05 SEQ-SOC-SEC-NUM PIC X(9).

05 SEQ-REST-OF-RECORDPIC X(30).

FD INDEXED-FILE

RECORD CONTAINS 39 CHARACTERS

DATA RECORD IS INDEXED-RECORD.

01 INDEXED-RECORD.

05 IND-SOC-SEC-NUM PIC X(9).

05 IND-REST-OF-RECORDPIC X(30).

PROCEDURE DIVISION.

0010-UPDATE-MASTER-FILE.

OPEN INPUT SEQUENTIAL-FILE

OUTPUT INDEXED-FILE.

PERFORM UNTIL END-OF-FILE-SWITCH = 'YES'

READ SEQUENTIAL-FILE

AT END

MOVE 'YES' TO END-OF-FILE-SWITCH

NOT AT END

MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM

MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD

WRITE INDEXED-RECORD

INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR

END-WRITE

END-READ

END-PERFORM.

CLOSE SEQUENTIAL-FILE

INDEXED-FILE.

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:event="http://schema.omg.org/spec/KDM/1.2/event"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="RecordFile example">

 <model xmi:id="id.0" xmi:type="data:DataModel">

 <dataElement xmi:id="id.1" xmi:type="data:RecordFile" name="SEQUENTIAL-FILE">

 <itemUnit xmi:id="id.2" name="SEQ-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>

 <itemUnit xmi:id="id.3" name="SEQ-REST-OF-RECORD" type="id.115" ext="PIC X(30)" size="30"/>

 </dataElement>

 <dataElement xmi:id="id.4" xmi:type="data:RecordFile" name="INDEXED-FILE">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 241

 <dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.7"/>

 <dataElement xmi:id="id.6" xmi:type="data:Index" implementation="id.7"/>

 <itemUnit xmi:id="id.7" name="IND-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>

 <itemUnit xmi:id="id.8" name="IND-REST-OF-RECORD" type="id.115" ext="PIC X(30)" size="30"/>

 </dataElement>

 <dataElement xmi:id="id.9" xmi:type="data:DataAction" name="da1" kind="open" implementation="id.44">

 <abstraction xmi:id="id.10" name="da1" kind="open">

 <actionRelation xmi:id="id.11" xmi:type="data:ManagesData" to="id.1" from="id.10"/>

 <actionRelation xmi:id="id.12" xmi:type="platform:ManagesResource" to="id.75" from="id.10"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.13" xmi:type="data:DataAction" name="da2" kind="open" implementation="id.44">

 <abstraction xmi:id="id.14" name="da2" kind="open">

 <actionRelation xmi:id="id.15" xmi:type="platform:ManagesResource" to="id.79" from="id.14"/>

 <actionRelation xmi:id="id.16" xmi:type="data:ManagesData" to="id.4" from="id.14"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.17" xmi:type="data:DataAction" name="da3" kind="read" implementation="id.47">

 <abstraction xmi:id="id.18" name="da3" kind="read">

 <actionRelation xmi:id="id.19" xmi:type="data:ReadsColumnSet" to="id.1" from="id.18"/>

 <actionRelation xmi:id="id.20" xmi:type="action:Writes" to="id.2" from="id.18"/>

 <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.3" from="id.18"/>

 <actionRelation xmi:id="id.22" xmi:type="platform:ReadsResource" to="id.75" from="id.18"/>

 </abstraction>

 <dataElement xmi:id="id.23" name="at end" kind="EOF">

 <abstraction xmi:id="id.24" name="ae1">

 <actionRelation xmi:id="id.25" xmi:type="action:ExceptionFlow" to="id.50" from="id.24"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.26" name="not at end" kind="NOT EOF">

 <abstraction xmi:id="id.27" name="nae1">

 <actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.53" from="id.27"/>

 </abstraction>

 </dataElement>

 </dataElement>

 <dataElement xmi:id="id.29" xmi:type="data:DataAction" name="da4" kind="write"

 implementation="id.59">

 <abstraction xmi:id="id.30" name="da4" kind="write">

 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.7" from="id.30"/>

 <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.8" from="id.30"/>

 <actionRelation xmi:id="id.33" xmi:type="data:WritesColumnSet" to="id.4" from="id.30"/>

 <actionRelation xmi:id="id.34" xmi:type="platform:WritesResource" to="id.79" from="id.30"/>

 </abstraction>

 <dataElement xmi:id="id.35" name="invalid key" kind="INVALID KEY">

 <abstraction xmi:id="id.36" name="ik1">

 <actionRelation xmi:id="id.37" xmi:type="action:ExceptionFlow" to="id.62" from="id.36"/>

 </abstraction>

 </dataElement>

 </dataElement>

 <dataElement xmi:id="id.38" xmi:type="data:DataAction" name="da5" kind="close">

 <abstraction xmi:id="id.39" name="da5" kind="close"/>

 </dataElement>

 <dataElement xmi:id="id.40" xmi:type="data:DataAction" name="da6" kind="close">

 <abstraction xmi:id="id.41" name="da5" kind="close"/>

 </dataElement>

242 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </model>

 <model xmi:id="id.42" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.43" xmi:type="code:CodeAssembly">

 <codeElement xmi:id="id.44" xmi:type="action:ActionElement" name="a0" kind="open">

 <source xmi:id="id.45" language="Cobol"

snippet="OPEN INPUT SEQUENTIAL-FILE OUTPUT INDEXED-FILE."/>

 <actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.44"/>

 </codeElement>

 <codeElement xmi:id="id.47" xmi:type="action:ActionElement" name="a1" kind="read">

 <source xmi:id="id.48" language="Cobol" snippet="READ SEQUENTIAL-FILE"/>

 <actionRelation xmi:id="id.49" xmi:type="action:Flow" to="id.53" from="id.47"/>

 </codeElement>

 <codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="a2">

 <source xmi:id="id.51" language="Cobol" snippet="MOVE 'YES' TO END-OF-FILE-SWITCH"/>

 <actionRelation xmi:id="id.52" xmi:type="action:Flow" to="id.64" from="id.50"/>

 </codeElement>

 <codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a3">

 <source xmi:id="id.54" language="Cobol" snippet="MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEQ-NUM"/>

 <actionRelation xmi:id="id.55" xmi:type="action:Flow" to="id.56" from="id.53"/>

 </codeElement>

 <codeElement xmi:id="id.56" xmi:type="action:ActionElement" name="a4">

 <source xmi:id="id.57" language="Cobol" snippet="MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD"/>

 <actionRelation xmi:id="id.58" xmi:type="action:Flow" to="id.59" from="id.56"/>

 </codeElement>

 <codeElement xmi:id="id.59" xmi:type="action:ActionElement" name="a5" kind="call">

 <source xmi:id="id.60" language="Cobol" snippet="WRITE INDEXED-RECORD"/>

 <actionRelation xmi:id="id.61" xmi:type="action:Flow" to="id.64" from="id.59"/>

 </codeElement>

 <codeElement xmi:id="id.62" xmi:type="action:ActionElement" name="a6" kind="write">

 <source xmi:id="id.63" language="Cobol" snippet="PERFORM 0020-EXPLAIN-WRITE-ERROR"/>

 </codeElement>

 <codeElement xmi:id="id.64" xmi:type="action:ActionElement" name="a7" kind="write">

 <source xmi:id="id.65" language="Cobol" snippet="UNTIL END-OF-FILE-SWITCH = 'YES'"/>

 <actionRelation xmi:id="id.66" xmi:type="action:FalseFlow" to="id.47" from="id.64"/>

 <actionRelation xmi:id="id.67" xmi:type="action:TrueFlow" to="id.68" from="id.64"/>

 </codeElement>

 <codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="a8" kind="close">

 <source xmi:id="id.69" language="Cobol" snippet="Close SEQUENTIAL-FILE INDEXED-FILE."/>

 </codeElement>

 </codeElement>

 </model>

 <model xmi:id="id.70" xmi:type="platform:PlatformModel">

 <platformElement xmi:id="id.71" xmi:type="platform:DeployedSoftwareSystem" groupedComponent="id.73"/>

 <platformElement xmi:id="id.72" xmi:type="platform:Machine">

 <deployedComponent xmi:id="id.73" groupedCode="id.43"/>

 <deployedResource xmi:id="id.74" >

 <platformElement xmi:id="id.75" xmi:type="platform:StreamResource">

 <abstraction xmi:id="id.76" name="ra1" kind="">

 <actionRelation xmi:id="id.77" xmi:type="data:HasContent" to="id.1" from="id.76"/>

 <actionRelation xmi:id="id.78" xmi:type="event:HasState" to="id.89" from="id.76"/>

 </abstraction>

 </platformElement>

 <platformElement xmi:id="id.79" xmi:type="platform:FileResource">

 <abstraction xmi:id="id.80" name="ra2" kind="">

 <actionRelation xmi:id="id.81" xmi:type="data:HasContent" to="id.4" from="id.80"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 243

 </abstraction>

 </platformElement>

 </deployedResource>

 </platformElement>

 <platformElement xmi:id="id.82" xmi:type="platform:PlatformAction" name="pa1" kind="open">

 <abstraction xmi:id="id.83" name="pa1">

 <actionRelation xmi:id="id.84" xmi:type="platform:ManagesResource" to="id.75" from="id.83"/>

 </abstraction>

 </platformElement>

 <platformElement xmi:id="id.85" xmi:type="platform:PlatformAction" name="pa2" kind="open">

 <abstraction xmi:id="id.86" name="pa2">

 <actionRelation xmi:id="id.87" xmi:type="platform:ManagesResource" to="id.79" from="id.86"/>

 </abstraction>

 </platformElement>

 </model>

 <model xmi:id="id.88" xmi:type="event:EventModel">

 <eventElement xmi:id="id.89" xmi:type="event:EventResource" name="sequential-file">

 <eventElement xmi:id="id.90" xmi:type="event:State" name="closed">

 <eventElement xmi:id="id.91" xmi:type="event:Transition" name="tr1">

 <eventRelation xmi:id="id.92" xmi:type="event:ConsumesEvent" to="id.110" from="id.91"/>

 <eventRelation xmi:id="id.93" xmi:type="event:NextState" to="id.103" from="id.91"/>

 <eventRelation xmi:id="id.94" xmi:type="event:NextState" to="id.95" from="id.91"/>

 </eventElement>

 </eventElement>

 <eventElement xmi:id="id.95" xmi:type="event:State" name="opened.not at end">

 <eventElement xmi:id="id.96" xmi:type="event:Transition" name="tr2">

 <eventRelation xmi:id="id.97" xmi:type="event:ConsumesEvent" to="id.111" from="id.96"/>

 <eventRelation xmi:id="id.98" xmi:type="event:NextState" to="id.103" from="id.96"/>

 <eventRelation xmi:id="id.99" xmi:type="event:NextState" to="id.95" from="id.96"/>

 </eventElement>

 <eventElement xmi:id="id.100" xmi:type="event:Transition" name="tr3">

 <eventRelation xmi:id="id.101" xmi:type="event:ConsumesEvent" to="id.112" from="id.100"/>

 <eventRelation xmi:id="id.102" xmi:type="event:NextState" to="id.90" from="id.100"/>

 </eventElement>

 </eventElement>

 <eventElement xmi:id="id.103" xmi:type="event:State" name="opened.at end">

 <eventElement xmi:id="id.104" xmi:type="event:Transition" name="tr4">

 <eventRelation xmi:id="id.105" xmi:type="event:ConsumesEvent" to="id.112" from="id.104"/>

 <eventRelation xmi:id="id.106" xmi:type="event:NextState" to="id.90" from="id.104"/>

 </eventElement>

 <eventElement xmi:id="id.107" xmi:type="event:Transition" name="tr5">

 <eventRelation xmi:id="id.108" xmi:type="event:ConsumesEvent" to="id.111" from="id.107"/>

 <eventRelation xmi:id="id.109" xmi:type="event:NextState" to="id.103" from="id.107"/>

 </eventElement>

 </eventElement>

 <eventElement xmi:id="id.110" xmi:type="event:Event" name="open" kind="open"/>

 <eventElement xmi:id="id.111" xmi:type="event:Event" name="read"/>

 <eventElement xmi:id="id.112" xmi:type="event:Event" name="close"/>

 </eventElement>

 </model>

 <model xmi:id="id.113" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.114" xmi:type="code:LanguageUnit">

 <codeElement xmi:id="id.115" xmi:type="code:StringType" name="X"/>

 </codeElement>

 </model>

244 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</kdm:Segment>

18.7 KeyIndex Class Diagram
The KeyIndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

Figure 18.5 - KeyIndex Class Diagram

18.7.1 IndexElement Class (generic)
IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the
IndexElement.

Superclass

DataResource

Associations

 Constraints:

1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

implementation : ItemUnit[1] the set of ItemUnits that constitute the index

Index

UniqueK ey
Re fe renceK ey

Item Unit
(fro m c ode)

Ind exE lem ent
0..*0. .*

+im plem enta tion

0..*

{s ubs ets groupedE lem ent}

+g roup

0..*

{s ubs ets group}

D a taResource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 245

18.7.2 UniqueKey Class
A UniqueKey is a meta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Superclass

IndexElement

Constraints

1. UniqueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fields in an indexed file. A primary
key is one or more columns whose values uniquely identify every row in a table or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class
A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass

IndexElement

Constraints

1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key is the primary key of one data structure that is placed into a related data structure to represent a relationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey is a
group of one or more columns in a relational database table or segment of a hierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index class is a meta-model element that represents an index to a relational or hierarchical database or an indexed file.

Superclass

IndexElement

Constraints

1. Index owned by a data element should group ItemUnit elements that are owned by that data element.

246 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a
means of enforcing uniqueness on their values.

18.8 Key Relations Class Diagram
Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an
entire data structure sequentially.

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class
A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the
corresponding UniqueKey.

Superclass

AbstractDataRelationship

Associations

Semantics

ReferenceKey is a group of one or more columns in a relational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

from : ReferenceKey[1] Foreign key is a certain table, segment, or file.

to: UniqueKey[1] Primary key is a certain table, segment, or key.

UniqueKey ReferenceKey

KeyRelation

1

0..*

+to
1

{redefines to}

0..*

1

0..*

+from

1

{redefines from}

0..*

AbstractD ataRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 247

18.9 DataActions Class Diagram
DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “abstracted”
actions, which are used to model detailed resource related semantics.

Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class
ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

AbstractActionRelationship
(from act ion)

ColumnSet

DataEvent
kind : String

ReadsColumnSet

1

0..*
+to

1

{redefines to}

0..*

WritesColumnSet

1

0..*

+to 1

{redefines to}

0..*

ProducesDataEvent

1

0..*

+to

1

{redefines to}
0..*

HasContent

ActionElement

kind : String
(from action)

1

0..*

+from

1
{redefines from}

0..*

10..* +from
1

{redefines from}

0..*

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+from

1

{redefines from}

0..*

AbstractDataElement
1

0..*

+to

1
{redefines to}

0..*

ManagesData

1

0..*

+from

1

{redefines from}

0..*

1

0..*

+to

1
{redefines to}

0..*

248 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. This relationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2 WritesColumnSet Class
WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
user interface resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3 ManagesData Class
Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is no flow of data to or from the resource. ManagesData relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 249

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

18.9.4 HasContent Class
HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

Example (Java, embedded SQL, JDBC)

CREATE TABLE products (ID int primary key, name varchar, type varchar)

CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

final String findContractStatement=

 "SELECT * FROM contracts c, products p" +

 "WHERE ID = ? AND c.product = p.ID ";

public void calculateRecognitions(long contractID) {

Connection db=DriverManager.getConnection("jdbc:odbc:foobar","sunny","");

PreparedStatement stmt=db.prepareStatement(findContractStatement);

stmt.setLong(1,contractID);

ResultSet contracts=stmt.executeQuery();

contracts.next();

Money totalRevenue=Money.dollars(contracts.getBigDecimal("revenue"));

MfDate recognitionDate=new MfDate(contracts.getDate("dateSigned"));

}

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

250 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="Data Example">

 <model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">

 <dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">

 <dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">

 <dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>

 <itemUnit xmi:id="id.4" name="ID" type="id.172"/>

 <itemUnit xmi:id="id.5" name="name" type="id.173"/>

 <itemUnit xmi:id="id.6" name="type" type="id.173"/>

 </dataElement>

 <dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">

 <dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>

 <dataElement xmi:id="id.9" xmi:type="data:ReferenceKey" implementation="id.12">

 <dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>

 </dataElement>

 <itemUnit xmi:id="id.11" name="ID" type="id.172"/>

 <itemUnit xmi:id="id.12" name="product" type="id.172"/>

 <itemUnit xmi:id="id.13" name="revenue" type="id.174"/>

 <itemUnit xmi:id="id.14" name="dateSigned" type="id.175"/>

 </dataElement>

 </dataElement>

 <dataElement xmi:id="id.15" xmi:type="data:DataAction" name="d1" kind="Connect"

 implementation="id.79">

 <abstraction xmi:id="id.16" name="da1" kind="Connect">

 <actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.80" from="id.16"/>

 <actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.81" from="id.16"/>

 <actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.82" from="id.16"/>

 <actionRelation xmi:id="id.20" xmi:type="platform:ManagesResource" to="id.67"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.21" xmi:type="data:DataAction" name="d2" kind="Select"

implementation="id.90 id.96 id.104">

 <source xmi:id="id.22" language="sql"

snippet=""select * from contracts c, products p where ID = ? and c.product=p.ID ""/>

 <abstraction xmi:id="id.23" name="w1" kind="Equal">

 <codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="t1" type="id.176" kind="register"/>

 <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.11" from="id.23"/>

 <actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.77" from="id.23"/>

 <actionRelation xmi:id="id.27" xmi:type="action:Writes" to="id.24" from="id.23"/>

 <actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.29"/>

 </abstraction>

 <abstraction xmi:id="id.29" name="w2" kind="Equal">

 <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t2" type="id.176" kind="register"/>

 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.12" from="id.29"/>

 <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.4" from="id.29"/>

 <actionRelation xmi:id="id.33" xmi:type="action:Writes" from="id.29"/>

 <actionRelation xmi:id="id.34" xmi:type="action:Flow" to="id.35" from="id.29"/>

 </abstraction>

 <abstraction xmi:id="id.35" name="w3" kind="And">

 <codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="t3" type="id.176" kind="register"/>

 <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.24" from="id.35"/>

 <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.30"/>

 <actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.35"/>

 </abstraction>

 <abstraction xmi:id="id.40" name="w4" kind="Condition">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 251

 <actionRelation xmi:id="id.41" xmi:type="action:TrueFlow" to="id.42" from="id.40"/>

 </abstraction>

 <abstraction xmi:id="id.42" name="s1" kind="Select">

 <actionRelation xmi:id="id.43" xmi:type="data:ReadsColumnSet" to="id.7" from="id.42"/>

 <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.11" from="id.42"/>

 <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.12" from="id.42"/>

 <actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.13" from="id.42"/>

 <actionRelation xmi:id="id.47" xmi:type="action:Reads" to="id.14" from="id.42"/>

 <actionRelation xmi:id="id.48" xmi:type="data:ReadsColumnSet" to="id.2"/>

 <actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.4" from="id.42"/>

 <actionRelation xmi:id="id.50" xmi:type="action:Reads" to="id.5" from="id.42"/>

 <actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.6" from="id.42"/>

 <actionRelation xmi:id="id.52" xmi:type="action:Writes" to="id.103" from="id.42"/>

 <actionRelation xmi:id="id.53" xmi:type="platform:ReadsResource" to="id.67" from="id.42"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.54" xmi:type="data:DataAction" name="d3" kind="Retrieve"

 implementation="id.115">

 <abstraction xmi:id="id.55" name="da2" kind="Assign">

 <actionRelation xmi:id="id.56" xmi:type="action:Reads" to="id.13" from="id.55"/>

 <actionRelation xmi:id="id.57" xmi:type="action:Addresses" to="id.103" from="id.55"/>

 <actionRelation xmi:id="id.58" xmi:type="action:Writes" to="id.117" from="id.55"/>

 </abstraction>

 </dataElement>

 <dataElement xmi:id="id.59" xmi:type="data:DataAction" name="d4" kind="Retrieve"

 implementation="id.130">

 <abstraction xmi:id="id.60" name="da3" kind="Assign">

 <actionRelation xmi:id="id.61" xmi:type="action:Reads" to="id.14" from="id.60"/>

 <actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.103" from="id.60"/>

 <actionRelation xmi:id="id.63" xmi:type="action:Writes" to="id.132" from="id.60"/>

 </abstraction>

 </dataElement>

 </model>

 <model xmi:id="id.64" xmi:type="platform:PlatformModel">

 <platformElement xmi:id="id.65" xmi:type="platform:Machine">

 <resource xmi:id="id.66" >

 <resource xmi:id="id.67" xmi:type="platform:DataManager" name="foobar">

 <abstraction xmi:id="id.68" name="dm1">

 <actionRelation xmi:id="id.69" xmi:type="data:HasContent" to="id.1"/>

 </abstraction>

 </resource>

 </resource>

 </platformElement>

 </model>

 <model xmi:id="id.70" xmi:type="code:CodeModel" name="Application">

 <codeElement xmi:id="id.71" xmi:type="code:ClassUnit" name="DataExample">

 <codeElement xmi:id="id.72" xmi:type="code:MemberUnit" name="findContractStatement">

 <codeRelation xmi:id="id.73" xmi:type="code:HasValue" to="id.145" from="id.72"/>

 </codeElement>

 <codeElement xmi:id="id.74" xmi:type="code:MethodUnit" name="calculateRecognitions">

 <entryFlow xmi:id="id.75" to="id.79" from="id.74"/>

 <codeElement xmi:id="id.76" xmi:type="code:Signature">

 <parameterUnit xmi:id="id.77" name="contractNumber" type="id.179"/>

 </codeElement>

 <codeElement xmi:id="id.78" xmi:type="code:StorableUnit" name="db" type="id.155" kind="local"/>

252 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <codeElement xmi:id="id.79" xmi:type="action:ActionElement" name="c1" kind="Call">

 <codeElement xmi:id="id.80" xmi:type="code:Value" name=""jdbc:odbc:foobar""/>

 <codeElement xmi:id="id.81" xmi:type="code:Value" name=""sunny"" type="id.178"/>

 <codeElement xmi:id="id.82" xmi:type="code:Value" name="""" type="id.178"/>

 <actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.80" from="id.79"/>

 <actionRelation xmi:id="id.84" xmi:type="action:Reads" to="id.81" from="id.79"/>

 <actionRelation xmi:id="id.85" xmi:type="action:Reads" to="id.82" from="id.79"/>

 <actionRelation xmi:id="id.86" xmi:type="action:Calls" to="id.154" from="id.79"/>

 <actionRelation xmi:id="id.87" xmi:type="action:Writes" to="id.78" from="id.79"/>

 <actionRelation xmi:id="id.88" xmi:type="action:Flow" to="id.90" from="id.79"/>

 </codeElement>

 <codeElement xmi:id="id.89" xmi:type="code:StorableUnit" name="stmt" type="id.161" kind="local"/>

 <codeElement xmi:id="id.90" xmi:type="action:ActionElement" name="c2" kind="MethodCall">

 <actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.78" from="id.90"/>

 <actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.72" from="id.90"/>

 <actionRelation xmi:id="id.93" xmi:type="action:Calls" to="id.156" from="id.90"/>

 <actionRelation xmi:id="id.94" xmi:type="action:Writes" to="id.89" from="id.90"/>

 <actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.90"/>

 </codeElement>

 <codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="c3" kind="MethodCall">

 <codeElement xmi:id="id.97" xmi:type="code:Value" name="1"/>

 <actionRelation xmi:id="id.98" xmi:type="action:Addresses" to="id.89" from="id.96"/>

 <actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.97" from="id.96"/>

 <actionRelation xmi:id="id.100" xmi:type="action:Reads" to="id.77" from="id.96"/>

 <actionRelation xmi:id="id.101" xmi:type="action:Calls" to="id.162" from="id.96"/>

 <actionRelation xmi:id="id.102" xmi:type="action:Flow" to="id.104" from="id.96"/>

 </codeElement>

 <codeElement xmi:id="id.103" xmi:type="code:StorableUnit" name="contracts" type="id.157"

 kind="local"/>

 <codeElement xmi:id="id.104" xmi:type="action:ActionElement" name="c4" kind="MethodCall">

 <actionRelation xmi:id="id.105" xmi:type="action:Addresses" to="id.89" from="id.104"/>

 <actionRelation xmi:id="id.106" xmi:type="action:Calls" to="id.163" from="id.104"/>

 <actionRelation xmi:id="id.107" xmi:type="action:Writes" to="id.103" from="id.104"/>

 <actionRelation xmi:id="id.108" xmi:type="action:Flow" to="id.109" from="id.104"/>

 </codeElement>

 <codeElement xmi:id="id.109" xmi:type="action:ActionElement" name="c5" kind="MethodCall">

 <actionRelation xmi:id="id.110" xmi:type="action:Addresses" to="id.103" from="id.109"/>

 <actionRelation xmi:id="id.111" xmi:type="action:Calls" to="id.158" from="id.109"/>

 <actionRelation xmi:id="id.112" xmi:type="action:Flow" to="id.114" from="id.109"/>

 </codeElement>

 <codeElement xmi:id="id.113" xmi:type="code:StorableUnit" name="totalRevenue" type="id.165"

 kind="local"/>

 <codeElement xmi:id="id.114" xmi:type="action:ActionElement" name="c6" kind="Compound">

 <codeElement xmi:id="id.115" xmi:type="action:ActionElement" name="c6.1" kind="Call">

 <codeElement xmi:id="id.116" xmi:type="code:Value" name=""revenue""/>

 <codeElement xmi:id="id.117" xmi:type="code:StorableUnit" name="t4" kind="register"/>

 <actionRelation xmi:id="id.118" xmi:type="action:Addresses" to="id.103" from="id.115"/>

 <actionRelation xmi:id="id.119" xmi:type="action:Calls" to="id.159" from="id.115"/>

 <actionRelation xmi:id="id.120" xmi:type="action:Writes" to="id.117" from="id.115"/>

 <actionRelation xmi:id="id.121" xmi:type="action:Flow" to="id.122" from="id.115"/>

 </codeElement>

 <codeElement xmi:id="id.122" xmi:type="action:ActionElement" name="c6.2" kind="Call">

 <actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.117" from="id.122"/>

 <actionRelation xmi:id="id.124" xmi:type="action:Calls" to="id.166" from="id.122"/>

 <actionRelation xmi:id="id.125" xmi:type="action:Writes" to="id.113" from="id.122"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 253

 <actionRelation xmi:id="id.126" xmi:type="action:Flow"/>

 </codeElement>

 <actionRelation xmi:id="id.127" xmi:type="action:Flow" to="id.115" from="id.114"/>

 </codeElement>

 <codeElement xmi:id="id.128" xmi:type="code:StorableUnit" name="recognizedDate" type="id.168"

 kind="local"/>

 <codeElement xmi:id="id.129" xmi:type="action:ActionElement" name="c7" kind="MethodCall">

 <codeElement xmi:id="id.130" xmi:type="action:ActionElement" name="c7.1" kind="Call">

 <codeElement xmi:id="id.131" xmi:type="code:Value" name=""dateSigned""/>

 <codeElement xmi:id="id.132" xmi:type="code:StorableUnit" name="t5" kind="register"/>

 <actionRelation xmi:id="id.133" xmi:type="action:Addresses" to="id.103" from="id.130"/>

 <actionRelation xmi:id="id.134" xmi:type="action:Calls" to="id.160" from="id.130"/>

 <actionRelation xmi:id="id.135" xmi:type="action:Writes" to="id.132" from="id.130"/>

 <actionRelation xmi:id="id.136" xmi:type="action:Flow" to="id.137" from="id.130"/>

 </codeElement>

 <codeElement xmi:id="id.137" xmi:type="action:ActionElement" name="c7.2" kind="New">

 <actionRelation xmi:id="id.138" xmi:type="action:Creates" to="id.168" from="id.137"/>

 <actionRelation xmi:id="id.139" xmi:type="action:Writes" to="id.128" from="id.137"/>

 <actionRelation xmi:id="id.140" xmi:type="action:Flow"/>

 </codeElement>

 <codeElement xmi:id="id.141" xmi:type="action:ActionElement" name="c7.3" kind="MethodCall">

 <actionRelation xmi:id="id.142" xmi:type="action:Reads" to="id.132" from="id.137"/>

 <actionRelation xmi:id="id.143" xmi:type="action:Calls" to="id.169" from="id.141"/>

 <actionRelation xmi:id="id.144" xmi:type="action:Writes" to="id.128" from="id.141"/>

 </codeElement>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.145" xmi:type="code:Value"

 name=""SELECT * FROM contracts c, products p WHERE ID=? AND c.product=p.ID""

 type="id.178"/>

 <codeElement xmi:id="id.146" xmi:type="code:MethodUnit" name="init" kind="constructor">

 <entryFlow xmi:id="id.147" to="id.148" from="id.146"/>

 <codeElement xmi:id="id.148" xmi:type="action:ActionElement" name="i1" kind="Assign">

 <actionRelation xmi:id="id.149" xmi:type="action:Reads" to="id.145" from="id.148"/>

 <actionRelation xmi:id="id.150" xmi:type="action:Writes" to="id.72" from="id.148"/>

 </codeElement>

 </codeElement>

 </codeElement>

 </model>

 <model xmi:id="id.151" xmi:type="code:CodeModel" name="Java packages">

 <codeElement xmi:id="id.152" xmi:type="code:Package" name="java.sql">

 <codeElement xmi:id="id.153" xmi:type="code:ClassUnit" name="DriverManager">

 <codeElement xmi:id="id.154" xmi:type="code:MethodUnit" name="getConnection" kind="abstract"/>

 </codeElement>

 <codeElement xmi:id="id.155" xmi:type="code:ClassUnit" name="Connection">

 <codeElement xmi:id="id.156" xmi:type="code:MethodUnit" name="prepareStatement" kind="abstract"/>

 </codeElement>

 <codeElement xmi:id="id.157" xmi:type="code:ClassUnit" name="ResultSet">

 <codeElement xmi:id="id.158" xmi:type="code:MethodUnit" name="next" kind="abstract"/>

 <codeElement xmi:id="id.159" xmi:type="code:MethodUnit" name="getBigDecimal" kind="abstract"/>

 <codeElement xmi:id="id.160" xmi:type="code:MethodUnit" name="getDate" kind="abstract"/>

 </codeElement>

 <codeElement xmi:id="id.161" xmi:type="code:ClassUnit" name="Statement">

 <codeElement xmi:id="id.162" xmi:type="code:MethodUnit" name="setLong" kind="abstract"/>

 <codeElement xmi:id="id.163" xmi:type="code:MethodUnit" name="executeQuery" kind="abstract"/>

254 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.164" xmi:type="code:Package" name="Money">

 <codeElement xmi:id="id.165" xmi:type="code:ClassUnit" name="Money">

 <codeElement xmi:id="id.166" xmi:type="code:MethodUnit" name="dollars" kind="abstract"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.167" xmi:type="code:Package" name="MfDate">

 <codeElement xmi:id="id.168" xmi:type="code:ClassUnit" name="MfDate">

 <codeElement xmi:id="id.169" xmi:type="code:MethodUnit" name="MfDate" kind="abstract"/>

 </codeElement>

 </codeElement>

 </model>

 <model xmi:id="id.170" xmi:type="code:CodeModel" name="Common Datatypes">

 <codeElement xmi:id="id.171" xmi:type="code:LanguageUnit" name="SQL datatypes">

 <codeElement xmi:id="id.172" xmi:type="code:IntegerType" name="sql int"/>

 <codeElement xmi:id="id.173" xmi:type="code:StringType" name="sql varchar"/>

 <codeElement xmi:id="id.174" xmi:type="code:DecimalType" name="sql decimal"/>

 <codeElement xmi:id="id.175" xmi:type="code:DateType" name="sql date"/>

 <codeElement xmi:id="id.176" xmi:type="code:BooleanType"/>

 </codeElement>

 <codeElement xmi:id="id.177" xmi:type="code:LanguageUnit" name="Java datatypes">

 <codeElement xmi:id="id.178" xmi:type="code:StringType"/>

 <codeElement xmi:id="id.179" xmi:type="code:IntegerType" name="java long"/>

 <codeElement xmi:id="id.180" xmi:type="code:IntegerType" name="java byte"/>

 </codeElement>

 </model>

</kdm:Segment>

18.10 StructuredData Class Diagram
The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram
shown in Figure 18.8 captures these classes and their relations.

Figure 18.8 - StructuredData Class Diagram

18.10.1 XMLSchema
The XMLSchema class represents the top level container for a KDM metamodel of an XML document.

Ab stractC on tentElem entXMLSchema
0.. *0..1

+contentE lement

0.. *

{subsets ownedElem ent}
+owner

0..1

{subsets owner}

AbstractD ataE lem ent

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 255

Superclass

AbstractDataElement

Associations

Semantics

XMLSchema is a logical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)
The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM
elements.

Superclass

AbstractDataElement

Semantics

AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram
The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

contentElement :AbstractContentElement[0..*] Individual content elements owned by this schema.

256 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 18.9 - ContentElements Class Diagram

18.11.1 ContentItem (generic)
The ContentItem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

Semantics

18.11.2 ComplexContentType
The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of ComplexContentType.

contentElement :AbstractContentElement[0..*] owned content elements

type:ComplexContentType[0..1] content type of the current ContentItem

AllContent

SeqContent

ChoiceContent

GroupContent

ContentRestriction
kind : String
value : String

MixedContent

ContentReference
ContentAttribute

ContentElement

AbstractContentElement

ContentItem

0.. *

0..1

+contentElement
0.. *

{subsets ownedElement}

+owner

0..1

{subsets owner}
ComplexContentType

0.. *

0..1

+contentElement
0.. *

{subsets ownedElement
ordered}

+owner
0..1{subsets owner}

0..1 +type0..1

ContentType

SimpleContentType
kind : S tring

+type

MemberTypes

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 257

Superclass

AbstractContentElement

Associations

Semantics

18.11.3 SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

Associations

Semantics

Simple types, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The kind of
SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4 ContentRestriction
The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes

Semantics

kind is an XSD restriction, such as minExclusive, minInclusive, maxExclusive, maxInclusive, totalDigits, fractionDigits,
length, minLength, maxLength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxOccurs, required, fixed; or an XSD enumeration.

contentElement :AbstractContentElement[0..*] Owned content elements

kind:String content kind of the current SimpleContentType

type:ComplexContentType[0..*] content type of the current ContentItem

kind :String type of the content restriction (XML)

value:String value of the constraint

258 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Example
<xsd:simpleType name="myInteger">

 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="10000"/>

 <xsd:maxInclusive value="99999"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USState">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AK"/>

 <xsd:enumeration value="AL"/>

 <xsd:enumeration value="AR"/>

 <!-- and so on ... -->

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="listOfMyIntType">

 <xsd:list itemType="myInteger"/>

</xsd:simpleType>

<xsd:simpleType name="USStateList">

 <xsd:list itemType="USState"/>

</xsd:simpleType>

<xsd:simpleType name="SixUSStates">

 <xsd:restriction base="USStateList">

 <xsd:length value="6"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="zipUnion">

 <xsd:union memberTypes="USState listOfMyIntType"/>

</xsd:simpleType>

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="XML Simple Content Example">

 <model xmi:id="id.0" xmi:type="data:DataModel">

 <dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="SimpleType examples">

 <contentElement xmi:id="id.2" xmi:type="data:SimpleContentType" name="MyInteger">

 <dataRelation xmi:id="id.3" xmi:type="data:RestrictionOf" to="id.27" from="id.2"/>

 <contentElement xmi:id="id.4" xmi:type="data:ContentRestriction"

kind="minInclusive" value="10000"/>

 <contentElement xmi:id="id.5" xmi:type="data:ContentRestriction"

kind="maxInclusive" value="99999"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 259

 </contentElement>

 <contentElement xmi:id="id.6" xmi:type="data:SimpleContentType" name="SKU">

 <dataRelation xmi:id="id.7" xmi:type="data:RestrictionOf" to="id.29" from="id.2"/>

 <contentElement xmi:id="id.8" xmi:type="data:ContentRestriction"

kind="pattern" value=""\d{3}-[A-Z]{2}""/>

 </contentElement>

 <contentElement xmi:id="id.9" xmi:type="data:SimpleContentType" name="USState">

 <contentElement xmi:id="id.10" xmi:type="data:ContentRestriction"

kind="enumeration" value=""AK""/>

 <contentElement xmi:id="id.11" xmi:type="data:ContentRestriction"

kind="enumeration" value=""AL""/>

 <contentElement xmi:id="id.12" xmi:type="data:ContentRestriction"

kind="enumeration" value=""AR""/>

 </contentElement>

 <contentElement xmi:id="id.13" xmi:type="data:SimpleContentType" name="listOfMyIntType">

 <contentElement xmi:id="id.14" xmi:type="data:ListContent">

 <dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.2" from="id.14"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.16" xmi:type="data:SimpleContentType" name="USStateList">

 <contentElement xmi:id="id.17" xmi:type="data:ListContent" name="">

 <dataRelation xmi:id="id.18" xmi:type="data:TypedBy" to="id.9" from="id.17"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.19" xmi:type="data:SimpleContentType" name="SixUSStates">

 <dataRelation xmi:id="id.20" xmi:type="data:RestrictionOf" to="id.16" from="id.19"/>

 <contentElement xmi:id="id.21" xmi:type="data:ContentRestriction" kind="length" value="6"/>

 </contentElement>

 <contentElement xmi:id="id.22" xmi:type="data:SimpleContentType" name="zipUnion">

 <contentElement xmi:id="id.23" xmi:type="data:UnionContent">

 <dataRelation xmi:id="id.24" xmi:type="data:TypedBy" to="id.9" from="id.23"/>

 <dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.13" from="id.23"/>

 </contentElement>

 </contentElement>

 </dataElement>

 <dataElement xmi:id="id.26" xmi:type="data:XMLSchema" name="xsd">

 <contentElement xmi:id="id.27" xmi:type="data:SimpleContentType" name="xsd:Integer">

 <dataRelation xmi:id="id.28" xmi:type="data:DatatypeOf" to="id.41" from="id.27"/>

 </contentElement>

 <contentElement xmi:id="id.29" xmi:type="data:SimpleContentType" name="xsd:String">

 <dataRelation xmi:id="id.30" xmi:type="data:DatatypeOf" to="id.42" from="id.29"/>

 </contentElement>

 <contentElement xmi:id="id.31" xmi:type="data:SimpleContentType" name="xsd:Decimal">

 <dataRelation xmi:id="id.32" xmi:type="data:DatatypeOf" to="id.43" from="id.31"/>

 </contentElement>

 <contentElement xmi:id="id.33" xmi:type="data:SimpleContentType" name="xsd:positiveInteger">

 <dataRelation xmi:id="id.34" xmi:type="data:DatatypeOf" to="id.41" from="id.33"/>

 </contentElement>

 <contentElement xmi:id="id.35" xmi:type="data:SimpleContentType" name="xsd:date">

 <dataRelation xmi:id="id.36" xmi:type="data:DatatypeOf" to="id.44" from="id.35"/>

 </contentElement>

 <contentElement xmi:id="id.37" xmi:type="data:SimpleContentType" name="xsd:any"/>

 <contentElement xmi:id="id.38" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>

 </dataElement>

 </model>

260 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <model xmi:id="id.39" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.40" xmi:type="code:LanguageUnit">

 <codeElement xmi:id="id.41" xmi:type="code:IntegerType" name="xsd integer"/>

 <codeElement xmi:id="id.42" xmi:type="code:StringType" name="xsd string"/>

 <codeElement xmi:id="id.43" xmi:type="code:DecimalType" name="xsd decimal"/>

 <codeElement xmi:id="id.44" xmi:type="code:DateType" name="xsd date"/>

 </codeElement>

 </model>

</kdm:Segment>

18.11.5 AllContent Class
An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics

18.11.6 SeqContent Class
The SeqContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass

ComplexContentType

Semantics

18.11.7 ChoiceContent Class
A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

Semantics

18.11.8 GroupContent Class
A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 261

Semantics

18.11.9 MixedContent Class
A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass

ComplexContentType

Semantics

18.11.10 ContentAttribute Class
A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML
Schemas.

Superclass

ContentItem

Semantics

18.11.11 ContentElement Class
A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML
Schemas.

Superclass

ContentItem

Semantics

18.11.12 ContentReference Class
A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML
Schemas.

Superclass

ContentItem

262 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

Example
<xsd:element name="letterBody">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="salutation">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="quantity" type="xsd:positiveInteger"/>

 <xsd:element name="productName" type="xsd:string"/>

 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

 <!-- etc. -->

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:complexType name="USAddress" >

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:decimal"/>

 </xsd:sequence>

 <xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

<xsd:complexType name="Items">

 <xsd:sequence>

 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="productName" type="xsd:string"/>

 <xsd:element name="quantity">

 <xsd:simpleType>

 <xsd:restriction base="xsd:positiveInteger">

 <xsd:maxExclusive value="100"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="USPrice" type="xsd:decimal"/>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="partNum" type="SKU" use="required"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 263

</xsd:complexType>

<xsd:element name="internationalPrice">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:restriction base="xsd:anyType">

 <xsd:attribute name="currency" type="xsd:string"/>

 <xsd:attribute name="value" type="xsd:decimal"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

</xsd:element>

<xsd:complexType name="PurchaseOrderType">

 <xsd:sequence>

 <xsd:choice>

 <xsd:group ref="shipAndBill"/>

 <xsd:element name="singleUSAddress" type="USAddress"/>

 </xsd:choice>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="items" type="Items"/>

 </xsd:sequence>

 <xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:group id="shipAndBill">

 <xsd:sequence>

 <xsd:element name="shipTo" type="USAddress"/>

 <xsd:element name="billTo" type="USAddress"/>

 </xsd:sequence>

</xsd:group>

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="XML Complex Content Example">

 <model xmi:id="id.0" xmi:type="data:DataModel">

 <dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="Complex Content">

 <contentElement xmi:id="id.2" xmi:type="data:ContentElement" name="letterBody">

 <dataRelation xmi:id="id.3" xmi:type="data:TypedBy" to="id.4" from="id.2"/>

 <contentElement xmi:id="id.4" xmi:type="data:MixedContent" name="m1">

 <contentElement xmi:id="id.5" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.6" xmi:type="data:ContentElement" name="salutation">

 <dataRelation xmi:id="id.7" xmi:type="data:TypedBy" to="id.8" from="id.6"/>

 <contentElement xmi:id="id.8" xmi:type="data:MixedContent">

 <contentElement xmi:id="id.9" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.10" xmi:type="data:ContentElement" name="name">

 <dataRelation xmi:id="id.11" xmi:type="data:TypedBy" to="id.88" from="id.10"/>

 </contentElement>

 </contentElement>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.12" xmi:type="data:ContentElement" name="quantity">

264 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <dataRelation xmi:id="id.13" xmi:type="data:TypedBy" to="id.92" from="id.12"/>

 </contentElement>

 <contentElement xmi:id="id.14" xmi:type="data:ContentElement" name="productName">

 <dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.88" from="id.14"/>

 </contentElement>

 <contentElement xmi:id="id.16" xmi:type="data:ContentElement" name="shipDate">

 <dataRelation xmi:id="id.17" xmi:type="data:TypedBy" to="id.94" from="id.16"/>

 </contentElement>

 </contentElement>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.18" xmi:type="data:ComplexContentType" name="USAddress">

 <contentElement xmi:id="id.19" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.20" xmi:type="data:ContentElement" name="name">

 <dataRelation xmi:id="id.21" xmi:type="data:TypedBy" to="id.88" from="id.20"/>

 </contentElement>

 <contentElement xmi:id="id.22" xmi:type="data:ContentElement" name="street">

 <dataRelation xmi:id="id.23" xmi:type="data:TypedBy" to="id.88" from="id.22"/>

 </contentElement>

 <contentElement xmi:id="id.24" xmi:type="data:ContentElement" name="city">

 <dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.88" from="id.24"/>

 </contentElement>

 <contentElement xmi:id="id.26" xmi:type="data:ContentElement" name="state">

 <dataRelation xmi:id="id.27" xmi:type="data:TypedBy" to="id.88" from="id.26"/>

 </contentElement>

 <contentElement xmi:id="id.28" xmi:type="data:ContentElement" name="zip">

 <dataRelation xmi:id="id.29" xmi:type="data:TypedBy" to="id.88" from="id.28"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.30" xmi:type="data:ContentAttribute" name="country">

 <dataRelation xmi:id="id.31" xmi:type="data:TypedBy" to="id.97" from="id.30"/>

 <contentElement xmi:id="id.32" xmi:type="data:ContentRestriction"

kind="fixed" value=""US""/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.33" xmi:type="data:ComplexContentType" name="items">

 <contentElement xmi:id="id.34" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.35" xmi:type="data:ContentElement" name="item">

 <dataRelation xmi:id="id.36" xmi:type="data:TypedBy" to="id.39" from="id.35"/>

 <contentElement xmi:id="id.37" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

 <contentElement xmi:id="id.38" xmi:type="data:ContentRestriction"

kind="maxOccurs" value="unbounded"/>

 <contentElement xmi:id="id.39" xmi:type="data:ComplexContentType" name="i">

 <contentElement xmi:id="id.40" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.41" xmi:type="data:ContentElement" name="productName1">

 <dataRelation xmi:id="id.42" xmi:type="data:TypedBy" to="id.88" from="id.41"/>

 </contentElement>

 <contentElement xmi:id="id.43" xmi:type="data:ContentElement" name="quantity1">

 <dataRelation xmi:id="id.44" xmi:type="data:TypedBy" to="id.45" from="id.43"/>

 <contentElement xmi:id="id.45" xmi:type="data:SimpleContentType" name="st1">

 <dataRelation xmi:id="id.46" xmi:type="data:RestrictionOf" to="id.92" from="id.45"/>

 <contentElement xmi:id="id.47" xmi:type="data:ContentRestriction"

kind="maxExclusive" value="100"/>

 </contentElement>

 </contentElement>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 265

 <contentElement xmi:id="id.48" xmi:type="data:ContentElement" name="USPrice">

 <dataRelation xmi:id="id.49" xmi:type="data:TypedBy" to="id.90" from="id.48"/>

 </contentElement>

 <contentElement xmi:id="id.50" xmi:type="data:ContentReference">

 <dataRelation xmi:id="id.51" xmi:type="data:ReferenceTo" to="id.83" from="id.50"/>

 <contentElement xmi:id="id.52" xmi:type="data:ContentRestriction"

kind="minOccurs" value="0"/>

 </contentElement>

 <contentElement xmi:id="id.53" xmi:type="data:ContentElement" name="shipDate1">

 <dataRelation xmi:id="id.54" xmi:type="data:TypedBy" to="id.94" from="id.53"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.55" xmi:type="data:ContentAttribute" name="partNum">

 <dataRelation xmi:id="id.56" xmi:type="data:TypedBy" from="id.55"/>

 <contentElement xmi:id="id.57" xmi:type="data:ContentRestriction"

kind="use" value="required"/>

 </contentElement>

 </contentElement>

 </contentElement>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.58" xmi:type="data:ContentElement" name="international price">

 <contentElement xmi:id="id.59" xmi:type="data:ComplexContentType" name="">

 <dataRelation xmi:id="id.60" xmi:type="data:RestrictionOf" to="id.96" from="id.59"/>

 <contentElement xmi:id="id.61" xmi:type="data:ContentAttribute" name="currency1">

 <dataRelation xmi:id="id.62" xmi:type="data:TypedBy" to="id.88" from="id.61"/>

 </contentElement>

 <contentElement xmi:id="id.63" xmi:type="data:ContentAttribute" name="value">

 <dataRelation xmi:id="id.64" xmi:type="data:TypedBy" to="id.90" from="id.61"/>

 </contentElement>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.65" xmi:type="data:ComplexContentType" name="PurchaseOrderType">

 <contentElement xmi:id="id.66" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.67" xmi:type="data:ChoiceContent">

 <contentElement xmi:id="id.68" xmi:type="data:ContentReference">

 <dataRelation xmi:id="id.69" xmi:type="data:ReferenceTo" to="id.79" from="id.68"/>

 </contentElement>

 <contentElement xmi:id="id.70" xmi:type="data:ContentElement" name="singleUSAddress">

 <dataRelation xmi:id="id.71" xmi:type="data:TypedBy" to="id.18" from="id.70"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.72" xmi:type="data:ContentReference">

 <dataRelation xmi:id="id.73" xmi:type="data:ReferenceTo" to="id.83" from="id.72"/>

 <contentElement xmi:id="id.74" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

 </contentElement>

 <contentElement xmi:id="id.75" xmi:type="data:ContentElement" name="items">

 <dataRelation xmi:id="id.76" xmi:type="data:TypedBy" to="id.33" from="id.75"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.77" xmi:type="data:ContentAttribute" name="orderDate">

 <dataRelation xmi:id="id.78" xmi:type="data:TypedBy" to="id.94" from="id.77"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.79" xmi:type="data:GroupContent" name="shipAndBill">

266 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <contentElement xmi:id="id.80" xmi:type="data:SeqContent">

 <contentElement xmi:id="id.81" xmi:type="data:ContentElement"/>

 <contentElement xmi:id="id.82" xmi:type="data:ContentElement"/>

 </contentElement>

 </contentElement>

 <contentElement xmi:id="id.83" xmi:type="data:ContentElement" name="comment">

 <dataRelation xmi:id="id.84" xmi:type="data:TypedBy" to="id.88" from="id.83"/>

 </contentElement>

 </dataElement>

 <dataElement xmi:id="id.85" xmi:type="data:XMLSchema" name="xsd">

 <contentElement xmi:id="id.86" xmi:type="data:SimpleContentType" name="xsd:Integer">

 <dataRelation xmi:id="id.87" xmi:type="data:DatatypeOf" to="id.100" from="id.86"/>

 </contentElement>

 <contentElement xmi:id="id.88" xmi:type="data:SimpleContentType" name="xsd:String">

 <dataRelation xmi:id="id.89" xmi:type="data:DatatypeOf" to="id.101" from="id.88"/>

 </contentElement>

 <contentElement xmi:id="id.90" xmi:type="data:SimpleContentType" name="xsd:Decimal">

 <dataRelation xmi:id="id.91" xmi:type="data:DatatypeOf" to="id.102" from="id.90"/>

 </contentElement>

 <contentElement xmi:id="id.92" xmi:type="data:SimpleContentType" name="xsd:positiveInteger">

 <dataRelation xmi:id="id.93" xmi:type="data:DatatypeOf" to="id.100" from="id.92"/>

 </contentElement>

 <contentElement xmi:id="id.94" xmi:type="data:SimpleContentType" name="xsd:date">

 <dataRelation xmi:id="id.95" xmi:type="data:DatatypeOf" to="id.103" from="id.94"/>

 </contentElement>

 <contentElement xmi:id="id.96" xmi:type="data:SimpleContentType" name="xsd:any"/>

 <contentElement xmi:id="id.97" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>

 </dataElement>

 </model>

 <model xmi:id="id.98" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.99" xmi:type="code:LanguageUnit">

 <codeElement xmi:id="id.100" xmi:type="code:IntegerType" name="xsd integer"/>

 <codeElement xmi:id="id.101" xmi:type="code:StringType" name="xsd string"/>

 <codeElement xmi:id="id.102" xmi:type="code:DecimalType" name="xsd decimal"/>

 <codeElement xmi:id="id.103" xmi:type="code:DateType" name="xsd date"/>

 </codeElement>

 </model>

</kdm:Segment>

18.12 ContentRelations Class Diagram
The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 267

Figure 18.10 - ContentRelations Class Diagram

18.12.1 TypedBy Class
The TypedBy class represents the relationship between a ContentItem and a content type, that can be represented by a
ComplexContentType class or one of its subclasses.

Superclass

AbstractDataRelationship

Associations

Constraints

1. The “from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBy relationship represents an association between a content element and its type when this type is user-defined.
This relationship is similar to HasType from CodeModel.

from:ContentItem[1] the content element or attribute

to:ComplexContentType[1] the content type element

A bstractD ataR ela ti onshi p

Re ferenceTo

C ontentItem
1

0..*

+from

1

{redefines from }

0..*

1

+to

1

{redefines to}

TypedB y

1

0.. *

+from 1

{redefines from }

0.. *

RestrictionOfE xtensionTo

D atatype
(from code)

C omplexCo ntentType

1

0..*

+to
1

{redefines to}

0..*

1

0..*

+to1
{redefin es to}

0..*

1

0..*

+from

1

{redefines from } 0..*

1

0..*

+from
1

{redefines from }
0..*

1

0..*
+to

1

{redefines to}0..*

D atatypeOf

1

0..*

+to
1{ red efines to}

0..*

1

0..*

+from

1

{redefines from }

0..*

268 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.12.2 DatatypeOf Class
The DatatypeOf class represents the relationship between a CompelxContentType and a Datatype defined in some Code
model.

Superclass

AbstractDataRelationship

Associations

Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.

18.12.3 ReferenceTo Class
The ReferenceTo class represents the relationship between a ContentReference and a ContentElement, ContentAttribute, or
ContentGroup definition.

Superclass

AbstractDataRelationship

Associations

Constraints

1. The “from” endpoint should be a ContentReference.

2. The “to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics

ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4 ExtensionTo Class
The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The
semantics of deriving new types by extension is that as the result a new complex type or simple type is defined that contains all
the elements of the original type plus additional elements that are provided as the extension.

Superclass

AbstractDataRelationship

from:ComplexContentType[1] the content type

to:Datatype[1] the datatype element

from:ContentItem[1] the content reference

to:ContentItem[1] the content element or attribute or group

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 269

Associations

Constraints

Semantics

ExtensionTo relationship represents an association between a content type and its base type.

18.12.5 RestrictionOf Class
The RestrictionOf class represents the relationship between two content types, where one type is a restriction to another. The
semantics of deriving new types by restriction is that as the result a new complex type or simple type is defined that contains
all the elements and constraints of the original type plus additional constraints that are provided as the restriction.

Superclass

AbstractDataRelationship

Associations

Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13 ExtenededDataElements Class Diagram
The ExtendedDataElements class diagram defines two “wildcard” generic elements for the data model as determined by
the KDM model pattern: a generic data entity and a generic data relationship..

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11.

from:ComplexContentType[1] the new (extended) content type

to:ComplexContentType[1] the base content type

from:ComplexContentType[1] the new (restricted) content type

to:ComplexContentType[1] the base content type

270 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 18.11 - ExtendedDataElements Class Diagram

18.13.1 ExtendedDataElement Class
The ExtendedDataElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataElement

Constraints

1. ExtendedDataElement should have at least one stereotype.

Semantics

A data entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual” meta-
model entity type of the data model. This is one of the KDM extension points that can integrate additional language-specific,
application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2 DataRelationship Class
The DataRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataRelationship

Associations

from:AbstractDataElement[1] the data element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Ab stractD ataRe lation ship

ExtendedD ataE lement
K D M E ntity

(from c ore)

Ab stractD ataE lem ent

D ataRelationship

1

0..*

+to1

{redefine s to}

0..*

1
0..*

+from

1

{redefines from }

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 271

Constraints

1. DataRelationship should have at least one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the data model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

272 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 273

Part IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:

• Structure

• Conceptual

• Build

274 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 275

19 Structure Package

19.1 Overview
Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the
viewpoint defined by the Structure model represent how the structural elements of the software system are related to the
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The
architectural viewpoint is defined as follows.

• Concerns:

• What are the structural elements of the system, and what is the organization of these elements?

• What software elements compose the system?

• How the structural elements of the system are related to the computational elements?

• What are the connections of these elements based on the relationships between the corresponding computational
elements?

• What are the interfaces of the structural elements of the system?

• Viewpoint language:

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint
is defined by the Structure package. It includes abstract entitity AbstractStructureElement, and several concrete
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRelationship.

• Analytic methods:

The Structure architectural viewpoint supports the following main kinds of checking:

• Attachment (are components properly connected?)

• Coupling and cohesion (the number of internal relationship within a component compared to the number of
relationships to other components)

• Efferent and afferent relationship (uses of a component by other components and usages of other component by the
given component)

• Interfaces (what is the required and provided interface of the given component)

Structure Views are used in combination with Code views, Data views, Platform views, UI views and Inventory
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural
elements of the software system are related to the modules defined in the Code views that correspond to the Code
architectural viewpoint, defined by the Code package.

• Construction methods:

• Structure views that correspond to the KDM Structure architectural viewpoint are usually constructed by analyzing

276 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

architecture models of the given system. The Structure extractor tool uses the knowledge of the architecture
models to produce one or mode Structure views as output

• As an alternative, structure views can be produced manually using the input from the architect of the system and
architecture documentation

• Construction of the Structure view is determined by the architectural description of the system

• Construction of the Structure views corresponding to a particular architectural description may involve additional
information (system-specific or architecture-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to
entire family of module-sharing subsystems.

The Structure model owns a collection of StructuralElement instances.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

StructuralGroup recursively gathers StructuralElements to represent various architectural divisions. The Software System
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements.
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views.

19.2 Organization of the Structure Package
The Structure package defines a collection of meta-model elements whose purpose is to represent architectural
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:

• StructureModel

• StructureInheritances

• ExtendedStructureElements

The Structure package depends on the following packages:

• Core

• kdm

19.3 StructureModel Class Diagram
The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in
Figure 19.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 277

Figure 19.1 - StructureModel Class Diagram

19.3.1 StructureModel Class
The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all
of the system’s StructuralElements.

Superclass

KDMModel

Associations

Semantics

19.3.2 AbstractStructureElement Class (abstract)
The AbstractStructureElement represents an architectural part, related to the organization of the existing software system
into modules.

Superclass

KDMEntity

structureElement:AbstractStructureElement[0..*] structure elements owned by the model

S ubsystem Laye rC omp onent S o ftwa reS ystem A rchi tec ture Vi ew

S truc tureM ode l
Ab s trac tS truc tu reR e la tionsh ip

K D M E n ti ty
(from c ore)

KD M A ggrega tedR e lat io nship
(from c ore)

A b strac tS truc tureEl em ent

0..1

0. .*

+m ode l
0..1

{su bs ets m odel}

+s truc tureE leme nt

0. .*

{sub s ets ownedE lem ent }

0 .. *

1

+s truc tureRe la tionship
0..*

{s ubs ets ownedRelat ion}

1
0 .. *

0. .1

+s truc tureE lem ent
0 .. *

{s ubs ets ownedE lem ent}

+ow ne r

0. .1
{s ubs ets owner}

0.. *0.. *

+ im p lem enta tion

0..*

{s ubs ets g roupedE lem ent}

+g roup

0..*

{subs e ts group }

0. .*
0.. 1 +agg reg ated

0. .*
0.. 1
A gg regated

278 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

Semantics

19.3.3 AbstractStructureRelationship Class (abstract)
The AbstractStructureRelationship class.

Superclass

KDMRelationship

Semantics

19.3.4 Subsystem Class
The Subsystem collects the architectural parts of a software subsystem. The parts may be any other StructuralElement.

Superclass

StructureGroup

Semantics

19.3.5 Layer Class
The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other StructuralElement.

Superclass

StructureGroup

Semantics

19.3.6 Component Class
The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

structureElement:AbstractStructureElement[0..*] structure elements owned by the model

structureRelationship:AbstractStructureRelationship[0..*]

aggregated:KDMAggregatedRelationship[0..*]

implementation:KDMEntity[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 279

Superclass

StructureGroup

Semantics

19.3.7 SoftwareSystem Class
The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

StructureGroup

Semantics

19.3.8 ArchitectureView Class

NOTE:Issue 14109

The ArchitectureView class represents an arbitrary architectural view, as defined by ISO 42010. Within a KDM instance
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements
defined by the Structure package. The KDM ArchitectureView own a collection of KDM entities that corresponds to a
particular architectural view of the software system. To conform to the ISO 42010 requiremens for architectural
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using
a stereotype to the ArchitectureView element, attributes or annotations).

Superclass

StructureGroup

Semantics

19.4 StructureInheritances Class Diagram
The StructureInheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package
classes within this diagram inherits certain properties from KDM classes defined within the Core Package.

Figure 19.2 - StructureInheritances Class Diagram

StructureModel

KDM M odel
(from k dm)

KDM Relationship
(from core)KD M Entity

(from core)

AbstractS tructureRelationship

AbstractS tructureE lem ent

280 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

19.5 ExtendedStructureElements Class Diagram
The ExtendedStructureElements class diagram defines two “wildcard” generic elements for the structure model as
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3.

Figure 19.3 - ExtendedStructureElements Class Diagram

19.5.1 StructureElement Class (generic)
The StructureElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement

Constraints

1. StructureElement should have at least one stereotype.

Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the structure model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

19.5.2 StructureRelationship Class (generic)
The StructureRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureRelationship

A b stra c tS tru c tu re R e la tio n sh ip

A b stra c tS tru c tu re E le m e n t

K D M E n ti ty
(from c ore)

S truc tur e Re la ti o nship

1

0.. *

+ from 1

{redefines from }

0.. *

10. . *

+ to
1

{redefines to}

0 . . *
S truc ture E le m e nt

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 281

Associations

Constraints

1. StructureRelationship should have at least one stereotype.

Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the structure model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

282 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 283

20 Conceptual Package

20.1 Overview
The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual package defines an architectural viewpoint for the Business Rules domain.

• Concerns:

• What are the domain terms implemented by the system?

• What are the behaviour elements of the system?

• What are the business rules implemented by the system?

• What are the scenarios supported by the system?

• Viewpoint language:

Conceptual views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural
viewpoint is defined by the Conceptual package. It includes abstract entitity AbstractConceptualElement, and
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language
for the Conceptual architectural viewpoint also includes ConceptualFlow relationship, which is a subclass of an
abstract relationship AbstractConceptualRelationship.

• Analytic methods

The Conceptual architectural viewpoint supports the following main kinds of checking:

• Conceptual relationships (what are the relationships between conceptual entities, based on their implementation by
the Code and Data entities?)

• Scenario flow (what are the control flow relationship between the two scenarios based on the flow between action
elements referenced by each scenario)

• BehaviorUnit coupling (what are the control flow and data flow relationships between two behaviour units based
on the action elements referenced by each behaviour unit)

• Business Rule analysis (what is the logic of the business rule based on the action elements referenced by the
business rule)

Conceptual Views are used in combination with Code views, Data views, Platform views, UI views and
Inventory views.

• Construction methods:

• Conceptual views can be produced manually using the input from the information analysis and the architect of the
system and architecture documentation

• Construction of the Conceptual view is determined by the domain model and the architectural description of the
system

• Construction of the Conceptual views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). This information can be attached to KDM

284 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

elements using stereotypes, attributes or annotations

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes - TermUnit and FactUnit facilitating mapping to SBVR.

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model.
KDM Conceptual model is aligned with SBVR specification in the following way. The KDM Conceptual Model allows
representing three “concepts” that are key to SBVR: Term, Fact, and Rule. The following is a mapping of these KDM
“concepts” to the SBVR terminology:

• Term corresponds to SBVR Noun (collectively referring to SBVR Terms and SBVR Names)

• Fact corresponds to SBVR Fact

• Rule represents a condition, group of conditions, or constraint

The SBVR “concepts” (i.e., Term, Fact, and Rule) are not defined in KDM. Instead, the KDM Conceptual Model defines
the implementations of these “concepts” - TermUnit, FactUnit, and RuleUnit. The mapping between KDM and SBVR is
facilitated with the help of (0..*) to (0..*) relationships between pairs (i.e., <Term, TermUnit> and <Fact, FactUnit> and
<Rule, RuleUnit>) as shown in Figure 20.1.

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The
following explains the difference between these “behavior” types:

• BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions.
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the
Program Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction”
of ActionElements since it provides a modeling element for representing a collection of ActionElements that is
meaningful from the application domain perspective, and further manipulate with this representation as a first class
citizen of the ConceptualModel of KDM.

• ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit
corresponds to a trace through the systems, or a “use case.” ScenarioUnit can own an entire collection of
BehaviorUnits, connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph
in the implementation of the software system. The conditions responsible for navigation between alternative paths
within the graph can be represented as RuleUnits.

• RuleUnit represents a condition, a group of conditions, or a constraint. RuleUnit is a representation for some
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 285

Figure 20.1 - Mapping between KDM and SBVR

20.2 Organization of the Conceptual Package
The Conceptual package defines meta-model elements that represent high-level, high-value application-specific
“conceptual” elements of existing software systems and their traceability to other KDM facts.

The Conceptual Package consists of the following 5 class diagrams:

• ConceptualModel
• ConceptualInheritances
• ConceptualElements
• ConceptualRelations
• ExtendedConceptualElements

The Conceptual package depends on the following packages:

Core
kdm

20.3 ConceptualModel Class Diagram
The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a “concept” is a “customer,” or a “savings account.”

286 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

An example of a “fact” is a “customer opens a new savings account.” An example of a “rule” is “if the initial amount of
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in a well-designed system
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is
implemented by multiple programming language constructs, often spanning multiple source files, programming
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the
AbstractConceptualElement class. ConceptualModel provides another abstract superclass for all relationships, specific to
this model - AbstractConceptualRelationship class. All meta-model elements of the ConceptualModel extend the
AbstractConceptualElement class and implement the “model” and “ownedRelation” properties. Each entity of the
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible
modeling element ConceptualElement, and a generic ConceptualRelationship class.

The class diagram shown in Figure 20.2 captures these classes and their relations.

Figure 20.2 - ConceptualModel Class Diagram

20.3.1 ConceptualModel
The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements
implemented by a given existing software system.

ConceptualModel

KDMEntity
(from core)

AbstractConceptualRelationship

ActionElement
(from action)

AbstractConceptualElement
0..*

0..1

+conceptualElement

0..*
{subsets ownedElement}

+model

0..1

{subsets model}

0..*

0..*

+implementation

0..*

{subsets groupedElement}

+group
0..* {subsets group}

0..*

1

+conceptualRelation
0..*

{subsets ownedRelation}

1

0..*

0..1

+abstraction

0..*
{subsets ownedElement}

+owner 0..1
{subsets owner}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 287

Superclass

KDMModel

Associations

Semantics

20.3.2 AbstractConceptualElement (abstract)
AbstractConceptualElement class is the top superclass for the ConceptualModel. It defines several common properties for
all further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation”
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the
AbstractConceptualElement. The set of KDM entities available through the “implementation” property becomes the
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept.

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts.
KDM framework provides the intermediate representation for capturing the knowledge generated by this process.

Superclass

KDMEntity

Associations

conceptualElement:AbstractConceptualElement[0..*] Identifies the root “concept” elements of the hierarchy of the
conceptual elements contained in the model. The
ConceptualModel can contain zero or more such trees.

conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of conceptual relationships that
originate from this element.

implementation:KDMEntity[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of KDM entities that realize the
high-level concept in the low-level artifacts of the existing
system.

abstraction:ActionElement[0..*] This element represents action elements that are owned by the
conceptual element and that represent semantic associations for
the conceptual element.

source:SourceRef[0..*] Traceability links to the physical artifacts represented by this
element.

288 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

1. For each conceptual element, the value of the from property of each conceptual relationship, owned by this
element, should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3 AbstractConceptualRelationship Class (abstract)
The AbstractConceptualRelationship class is determined by the KDM model pattern. It provides a common superclass for
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 ConceptualInheritances Class Diagram
The ConceptualInheritance class diagram defines how the conceptual meta-model elements fit into the KDM
Infrastructure. The ConceptualInheritances class diagram is shown in Figure 20.3.

Figure 20.3 - ConceptualInheritances Class Diagram

20.5 ConceptualElements Class Diagram
ConceptualElements class diagram defines specific KDM modeling elements for representing domain-specific concepts as
they are implemented by existing software systems. These elements are concrete subclasses of the AbstractConceptualElement
class.

The classes and association of the ConceptualElements class diagram are shown at Figure 20.4.

ConceptualModel

KDM Model
(from k dm)

KDM Relationship
(from core)

KDMEntity
(from core)

AbstractConceptualRelationship

SourceRef
(from sou rce)

AbstractC onceptualElement

0..*

0..1

+source 0..*

0..1

C onceptualS ource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 289

Figure 20.4 - ConceptualElements Class Diagram

20.5.1 ConceptualContainer Class
The ConceptualContainer class is a generic meta-model element that represents a container for conceptual entities. Several
other concrete conceptual elements are subclasses of ConceptualContainer, so that they can also own other conceptual
elements. The purpose of the ConceptualContainer meta-model element is to facilitate hierarchical organization and grouping
of “concepts” within Conceptual Model. ConceptualContainer also can be used as an extended modeling element with a
stereotype.

Superclass

AbstractConceptualElement

Associations

Constraints

1. ConceptualUnit should not own ConceptualRole elements.

conceptualElement:AbstractConceptualElement[0..*] elements that are owned by this container

FactUnit

RuleUnit

ScenarioUnit

TermUnit

BehaviorUnit

C onceptua lContainer

ConceptualRole

AbstractConceptualElement

0..1

0.. *

+owner

0..1
{subsets owner}

+conceptualElement

0.. *

{subsets ownedE lement} 1

1

+conceptualElement Role

1

1

290 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

20.5.2 TermUnit
The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of
such concept inside the KDM model, which can be used for further analysis and later exported into a business rule
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass

AbstractConceptualElement

Semantics

20.5.3 FactUnit
The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
behavior of the software system (for example, a formula for calculating an allowance can be considered as a fact) or some
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which
can be used for further analysis and later exported into a business rule modeling tool in the process known as application
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

ConceptualContainer

Semantics

20.5.4 RuleUnit
The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a
representation of such condition or constraint inside the KDM model that can be used for further analysis and later
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass

ConceptualContainer

Semantics

20.5.5 ConceptualRole
The ConceptualRole class represents a role played by a participant in a conceptual association, such as a FactUnit or a

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 291

RuleUnit. ConceptualRole elements are owned by some container, a subclass of ConceptualUnit. The ConceptualRole element
provides a placeholder for capturing the name of this role as the “name” attribute of the class. Additional annotations of
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass

AbstractConceptualUnit

Associations

Semantics

20.5.6 BehaviorUnit Class
The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system).
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements
linked by ConceptualFlow relationships.

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful
from the application domain perspective, and further manipulate with this representation as a first class citizen of the
ConceptualModel of KDM.

Superclass

ConceptualContainer

20.5.7 ScenarioUnit Class
ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For
example, ScenarioUnit corresponds to a trace through the systems, or a “use case.” The “implementation” of this graph is
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while
ScenarioUnit is an abstraction of a trace. For example, an interesting formula, or an algorithm can be represented as a
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits,
connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph in the
implementation of the software system. The conditions responsible for navigation between alternative paths within the
graph can be represented as RuleUnits.

Superclass

ConceptualContainer

conceptualElement:AbstractConceptualElement[1] represents the participant in the association for the given role

292 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

20.6 ConceptualRelations Class Diagram
ConceptualRelations class diagram defines specific conceptual relationship called ConceptualFlow. The classes and
associations involved in the ConceptualRelations class diagram are shown in Figure 20.5.

Figure 20.5 - ConceptualRelations Class Diagram

20.6.1 ConceptualFlow Class
The ConceptualFlow class is a KDM relationship defined for the conceptual model. It represents the fact that one
behavior may be continued into some other behavior. When multiple ConceptualFlow relations exist for a given
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically.
The follow-up behavior is designated by the conceptual element represented by the “to” property of the ConceptualFlow
relationship. When the “to” endpoint of the ConceptualFlow relationship designates a container, this means that any
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the
ConceptualFlow relationship is a container, this means that any behavior element owned by that container can be used as
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer.
ConceptualFlow relation provides a modeling element for representing behavior slices of the application logic that are
meaningful from the application domain perspective, and further manipulate with this representation as a first class citizen
of the ConceptualModel of KDM.

Superclass

AbstractConceptualRelationship

Associations

from: AbstractConceptualElement[1] represents the initial behavior

to:AbstractConceptualElement[1] represents a potential follow-up behavior

AbstractConceptualRelationship

ConceptualContainer

ConceptualFlow

1

0..*

+from

1
{redefines from}

0..*

1

0..*

+to

1
{redefines to}

0..*

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 293

Example
Form Definition

Program TransactionsApproval File Name: MM0319.Hfm

…

010 Field1 – Customer ID

011 Field2 – Customer First Name

012 Field3 – Customer Last Name

013 Field4 (list) – Account Number

014 Field5 (list) – Account Type

015 Field6 (list) – Account Balance

…

Program

Program TransactionsApproval File Name: MM0245.HLa

Program begin

…..

100 // Definitions of variables mapable to the form fields

101 Define Cust_ID(Char 20)

102 Define Cust_FName (Char 25)

103 Define Cust_LName (Char 35)

104 Define Acc_Numb(Char 12)[10]

105 Define Acc_Type(Char 2)[10]

106 Define Acc_Balance(Currency)[10]

107

108 // Definition of other variables

109 Define Bal(Currency)

110 Define Ind(Integer)

111 Define AdjustedBal(Currency)

112 Define ApproveTrans(Boolean)

113 Define Allowance(Currency)

…..

150 // Populating variables entered in the form

151 Field1 -> Cust_ID

152 Field2 -> Cust_FName

153 Field3 -> Cust_LName

154 Field4[1] -> Acc_Numb[0]

155 Field5[1] -> Acc_Type[0]

156 Field6[1] -> Acc_Balance[0]

…

200 // Processing

201 Allowance = $100.00 // The allowance shall be calculated for each customer

202 Ind =1

203 Bal = Acc_Balance[Ind – 1]

204 AdjustedBal = Bal + Allowance

…

240 If(AdjustedBal > $1000.00)

241 Then ApproveTrans = True

242 Else ApproveTrans = False

294 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

…

Program end

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"

xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:conceptual="http://schema.omg.org/spec/KDM/1.2/conceptual"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:source="http://schema.omg.org/spec/KDM/1.2/source"

xmlns:ui="http://schema.omg.org/spec/KDM/1.2/ui" name="Conceptual Example">

 <model xmi:id="id.0" xmi:type="code:CodeModel">

 <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">

 <codeElement xmi:id="id.2" xmi:type="code:StorableUnit" name="Cust_ID"

type="id.127" ext="Char 20" size="20">

 <comment xmi:id="id.3" text="// Definitions of variables mapable to the form fields"/>

 </codeElement>

 <codeElement xmi:id="id.4" xmi:type="code:StorableUnit" name="Cust_FName"

type="id.127" ext="Char 25" size="25"/>

 <codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="Cust_LName"

type="id.127" ext="Char 35" size="35"/>

 <codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="Acc_Numb"

type="id.7" ext="" size="1">

 <codeElement xmi:id="id.7" xmi:type="code:ArrayType" size="10">

 <itemUnit xmi:id="id.8" name="Acc_Numb[]" type="id.127" ext="Char 12" size="12"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="Acc_Type"

type="id.10" ext="" size="1">

 <codeElement xmi:id="id.10" xmi:type="code:ArrayType" size="10">

 <itemUnit xmi:id="id.11" name="Acc_Type[]" type="id.127" ext="Char 2" size="2"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="Acc_Balance"

type="id.13" ext="" size="1">

 <codeElement xmi:id="id.13" xmi:type="code:ArrayType" size="10">

 <itemUnit xmi:id="id.14" name="Acc_Balance[]" type="id.128" ext="Currency" size="2"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.15" xmi:type="code:StorableUnit" name="Bal"

type="id.128" ext="" size="1" kind="local">

 <comment xmi:id="id.16" text="// Definition of other variables"/>

 </codeElement>

 <codeElement xmi:id="id.17" xmi:type="code:StorableUnit" name="Ind"

type="id.129" ext="" size="1" kind="local"/>

 <codeElement xmi:id="id.18" xmi:type="code:StorableUnit" name="AdjustedBal"

type="id.128" ext="" size="1" kind="local"/>

 <codeElement xmi:id="id.19" xmi:type="code:StorableUnit" name="ApprovedTrans"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 295

type="id.130" ext="" size="1" kind="local"/>

 <codeElement xmi:id="id.20" xmi:type="code:StorableUnit" name="Allowance"

type="id.128" ext="" size="1" kind="local"/>

 <codeElement xmi:id="id.21" xmi:type="action:ActionElement" name="i1" kind="Assign">

 <source xmi:id="id.22" language="Hla" snippet="Field1 -> Cust_ID"/>

 <comment xmi:id="id.23" text="// Populating variables entered in the form"/>

 <codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="Field1"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.24" from="id.21"/>

 <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.2" from="id.21"/>

 <actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.21"/>

 </codeElement>

 <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="i2" kind="Assign">

 <source xmi:id="id.29" language="Hla" snippet="Field2 -> Cust_FName"/>

 <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="Field2"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.30" from="id.28"/>

 <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.4" from="id.28"/>

 <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>

 </codeElement>

 <codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="i3" kind="Assign">

 <source xmi:id="id.35" language="Hla" snippet="Field3 -> Cust_LName"/>

 <codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="Field3"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.36" from="id.34"/>

 <actionRelation xmi:id="id.38" xmi:type="action:Writes" to="id.5" from="id.34"/>

 <actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.34"/>

 </codeElement>

 <codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="i4" kind="ArrayReplace">

 <source xmi:id="id.41" language="Hla" snippet="Field5[1] -> Acc_Type[0]"/>

 <codeElement xmi:id="id.42" xmi:type="code:Value" name="0" type="id.129"/>

 <codeElement xmi:id="id.43" xmi:type="code:StorableUnit" name="Field4"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.42" from="id.40"/>

 <actionRelation xmi:id="id.45" xmi:type="action:Addresses" to="id.9" from="id.40"/>

 <actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.43" from="id.40"/>

 <actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.8" from="id.40"/>

 <actionRelation xmi:id="id.48" xmi:type="action:Flow" to="id.49" from="id.40"/>

 </codeElement>

 <codeElement xmi:id="id.49" xmi:type="action:ActionElement" name="i5" kind="ArrayReplace">

 <source xmi:id="id.50" language="Hla" snippet="Field4[1] -> Acc_Numb[0]"/>

 <codeElement xmi:id="id.51" xmi:type="code:Value" name="0" type="id.129"/>

 <codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="Field5"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.51" from="id.49"/>

 <actionRelation xmi:id="id.54" xmi:type="action:Addresses" to="id.6" from="id.49"/>

 <actionRelation xmi:id="id.55" xmi:type="action:Reads" to="id.52" from="id.49"/>

 <actionRelation xmi:id="id.56" xmi:type="action:Writes" to="id.11" from="id.49"/>

 <actionRelation xmi:id="id.57" xmi:type="action:Flow" to="id.58" from="id.49"/>

 </codeElement>

 <codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="i6" kind="ArrayReplace">

296 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 <source xmi:id="id.59" language="Hla" snippet="Field6[1] -> Acc_Balance[0]"/>

 <codeElement xmi:id="id.60" xmi:type="code:Value" name="0" type="id.129"/>

 <codeElement xmi:id="id.61" xmi:type="code:StorableUnit" name="Field6"

type="id.127" kind="register"/>

 <actionRelation xmi:id="id.62" xmi:type="action:Reads" to="id.60" from="id.58"/>

 <actionRelation xmi:id="id.63" xmi:type="action:Addresses" to="id.12" from="id.58"/>

 <actionRelation xmi:id="id.64" xmi:type="action:Reads" to="id.61" from="id.58"/>

 <actionRelation xmi:id="id.65" xmi:type="action:Writes" to="id.14" from="id.58"/>

 <actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.21"/>

 </codeElement>

 <codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="p1" kind="Assign">

 <source xmi:id="id.68" language="Hla" snippet="Allowance = $100.00 "/>

 <comment xmi:id="id.69" text="// Processing"/>

 <comment xmi:id="id.70" text="// The allowance shall be calculated for each customer"/>

 <codeElement xmi:id="id.71" xmi:type="code:Value" name="100.00" type="id.128"/>

 <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.71" from="id.67"/>

 <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.20" from="id.67"/>

 <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.67"/>

 </codeElement>

 <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="p2" kind="Assign">

 <source xmi:id="id.76" language="Hla" snippet="Ind =1"/>

 <codeElement xmi:id="id.77" xmi:type="code:Value" name="1" type="id.129"/>

 <actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.77" from="id.75"/>

 <actionRelation xmi:id="id.79" xmi:type="action:Writes" to="id.17" from="id.75"/>

 <actionRelation xmi:id="id.80" xmi:type="action:Flow" to="id.49" from="id.75"/>

 </codeElement>

 <codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="p3" kind="Compound">

 <source xmi:id="id.82" language="Hla" snippet="Bal = Acc_Balance[Ind – 1]"/>

 <codeElement xmi:id="id.83" xmi:type="code:Value" name="1" type="id.129"/>

 <codeElement xmi:id="id.84" xmi:type="code:StorableUnit" name="t1"

type="id.129" ext="" kind="register"/>

 <codeElement xmi:id="id.85" xmi:type="action:ActionElement" name="p3.1" kind="Subtract">

 <actionRelation xmi:id="id.86" xmi:type="action:Reads" to="id.17" from="id.81"/>

 <actionRelation xmi:id="id.87" xmi:type="action:Reads" to="id.83" from="id.81"/>

 <actionRelation xmi:id="id.88" xmi:type="action:Writes" to="id.84" from="id.81"/>

 <actionRelation xmi:id="id.89" xmi:type="action:Flow" to="id.90" from="id.85"/>

 </codeElement>

 <codeElement xmi:id="id.90" xmi:type="action:ActionElement" name="p3.2" kind="ArraySelect">

 <actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.14" from="id.90"/>

 <actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.84" from="id.81"/>

 <actionRelation xmi:id="id.93" xmi:type="action:Writes" to="id.15" from="id.81"/>

 </codeElement>

 <actionRelation xmi:id="id.94" xmi:type="action:Flow" to="id.85" from="id.81"/>

 <actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.81"/>

 </codeElement>

 <codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="p4" kind="Assign">

 <source xmi:id="id.97" language="Hla" snippet="AdjustedBal = Bal + Allowance"/>

 <actionRelation xmi:id="id.98" xmi:type="action:Reads" to="id.15" from="id.96"/>

 <actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.20" from="id.96"/>

 <actionRelation xmi:id="id.100" xmi:type="action:Writes" to="id.18" from="id.96"/>

 <actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.49" from="id.96"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 297

 </codeElement>

 <codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="p5" kind="Assign">

 <source xmi:id="id.103" language="Hla" snippet="If(AdjustedBal > $1000.00)"/>

 <codeElement xmi:id="id.104" xmi:type="code:StorableUnit" name="t2"

type="id.130" kind="register"/>

 <codeElement xmi:id="id.105" xmi:type="action:ActionElement" name="p5.1" kind="GreaterThan">

 <codeElement xmi:id="id.106" xmi:type="code:Value" name="1000.00" type="id.128"/>

 <actionRelation xmi:id="id.107" xmi:type="action:Reads" to="id.18" from="id.105"/>

 <actionRelation xmi:id="id.108" xmi:type="action:Reads" to="id.106" from="id.105"/>

 <actionRelation xmi:id="id.109" xmi:type="action:Writes" to="id.104" from="id.105"/>

 <actionRelation xmi:id="id.110" xmi:type="action:Flow" to="id.111" from="id.105"/>

 </codeElement>

 <codeElement xmi:id="id.111" xmi:type="action:ActionElement" name="p5.2" kind="GreaterThan">

 <actionRelation xmi:id="id.112" xmi:type="action:Reads" to="id.104" from="id.111"/>

 <actionRelation xmi:id="id.113" xmi:type="action:TrueFlow" to="id.115" from="id.111"/>

 <actionRelation xmi:id="id.114" xmi:type="action:FalseFlow" to="id.120" from="id.111"/>

 </codeElement>

 <codeElement xmi:id="id.115" xmi:type="action:ActionElement" name="p6" kind="Assign">

 <source xmi:id="id.116" language="Hla" snippet="Then ApproveTrans = True"/>

 <codeElement xmi:id="id.117" xmi:type="code:Value" name="true" type="id.130"/>

 <actionRelation xmi:id="id.118" xmi:type="action:Reads" to="id.117" from="id.115"/>

 <actionRelation xmi:id="id.119" xmi:type="action:Writes" to="id.19" from="id.115"/>

 </codeElement>

 <codeElement xmi:id="id.120" xmi:type="action:ActionElement" name="p7" kind="Assign">

 <source xmi:id="id.121" language="Hla" snippet="Else ApproveTrans = False"/>

 <codeElement xmi:id="id.122" xmi:type="code:Value" name="false" type="id.130"/>

 <actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.122" from="id.120"/>

 <actionRelation xmi:id="id.124" xmi:type="action:Writes" to="id.19" from="id.120"/>

 </codeElement>

 <actionRelation xmi:id="id.125" xmi:type="action:Flow" to="id.105" from="id.102"/>

 </codeElement>

 </codeElement>

 <codeElement xmi:id="id.126" xmi:type="code:LanguageUnit">

 <codeElement xmi:id="id.127" xmi:type="code:StringType"/>

 <codeElement xmi:id="id.128" xmi:type="code:DecimalType" name="Currency"/>

 <codeElement xmi:id="id.129" xmi:type="code:IntegerType"/>

 <codeElement xmi:id="id.130" xmi:type="code:BooleanType"/>

 </codeElement>

 </model>

 <model xmi:id="id.131" xmi:type="source:InventoryModel">

 <inventoryElement xmi:id="id.132" xmi:type="source:Directory" path="SOURCES\HLanguage">

 <inventoryElement xmi:id="id.133" xmi:type="source:SourceFile" name="mm0245.Hla"/>

 <inventoryElement xmi:id="id.134" xmi:type="source:SourceFile" name="mm0319.Hfm"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.135" xmi:type="source:Directory" path="SOURCES\Hlib"/>

 </model>

 <model xmi:id="id.136" xmi:type="ui:UIModel">

 <UIElement xmi:id="id.137" xmi:type="ui:Screen" name="Customer Information">

 <UIElement xmi:id="id.138" xmi:type="ui:UIField" name="Customer ID">

 <abstraction xmi:id="id.139" name="f1">

 <actionRelation xmi:id="id.140" xmi:type="action:Writes" to="id.24" from="id.139"/>

298 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

 </abstraction>

 </UIElement>

 <UIElement xmi:id="id.141" xmi:type="ui:UIField" name="Customer First Name">

 <abstraction xmi:id="id.142" name="f2">

 <actionRelation xmi:id="id.143" xmi:type="action:Writes" to="id.30" from="id.142"/>

 </abstraction>

 </UIElement>

 <UIElement xmi:id="id.144" xmi:type="ui:UIField" name="Customer Last Name">

 <abstraction xmi:id="id.145" name="f3">

 <actionRelation xmi:id="id.146" xmi:type="action:Writes" to="id.36" from="id.145"/>

 </abstraction>

 </UIElement>

 <UIElement xmi:id="id.147" xmi:type="ui:UIField" name="Account Number">

 <abstraction xmi:id="id.148" name="f4">

 <actionRelation xmi:id="id.149" xmi:type="action:Writes" to="id.43" from="id.148"/>

 </abstraction>

 </UIElement>

 <UIElement xmi:id="id.150" xmi:type="ui:UIField" name="Account Type">

 <abstraction xmi:id="id.151" name="f5">

 <actionRelation xmi:id="id.152" xmi:type="action:Writes" to="id.52" from="id.151"/>

 </abstraction>

 </UIElement>

 <UIElement xmi:id="id.153" xmi:type="ui:UIField" name="Account Balance">

 <abstraction xmi:id="id.154" name="f6">

 <actionRelation xmi:id="id.155" xmi:type="action:Writes" to="id.61" from="id.154"/>

 </abstraction>

 </UIElement>

 </UIElement>

 </model>

 <model xmi:id="id.156" xmi:type="conceptual:ConceptualModel" name="Customer Information">

 <conceptualElement xmi:id="id.157" xmi:type="conceptual:TermUnit" name="AccountBalance"

 implementation="id.15 id.12 id.17 id.153"/>

 <conceptualElement xmi:id="id.158" xmi:type="conceptual:TermUnit" name="MaxAdjustedBalance"

 implementation="id.106"/>

 <conceptualElement xmi:id="id.159" xmi:type="conceptual:TermUnit" name="AllowanceAmount"

 implementation="id.71"/>

 <conceptualElement xmi:id="id.160" xmi:type="conceptual:TermUnit" name="Allowance"

 implementation="id.20"/>

 <conceptualElement xmi:id="id.161" xmi:type="conceptual:TermUnit" name="AdjustedBalance"

 implementation="id.18"/>

 <conceptualElement xmi:id="id.162" xmi:type="conceptual:TermUnit" name="AccountBalanceField"

 implementation="id.153"/>

 <conceptualElement xmi:id="id.163" xmi:type="conceptual:FactUnit"

 name="AdjustedBalanceUnderThreshold" implementation="id.105">

 <conceptualRelation xmi:id="id.164" xmi:type="conceptual:ConceptualFlow"

to="id.178" from="id.163"/>

 <conceptualRelation xmi:id="id.165" xmi:type="conceptual:ConceptualFlow"

to="id.183" from="id.163"/>

 <conceptualElement xmi:id="id.166" xmi:type="conceptual:ConceptualRole" name="Adjusted Balance"

 conceptualElement="id.161"/>

 <conceptualElement xmi:id="id.167" xmi:type="conceptual:ConceptualRole" name="Threshold"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 299

 conceptualElement="id.158"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.168" xmi:type="conceptual:FactUnit" name="AccountBalanceCalculation"

 implementation="id.58 id.75 id.81">

 <conceptualRelation xmi:id="id.169" xmi:type="conceptual:ConceptualFlow"

to="id.172" from="id.168"/>

 <conceptualElement xmi:id="id.170" xmi:type="conceptual:ConceptualRole" name="Boundary element"

 conceptualElement="id.162"/>

 <conceptualElement xmi:id="id.171" xmi:type="conceptual:ConceptualRole" name="Account"

 conceptualElement="id.157"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.172" xmi:type="conceptual:FactUnit"

 name="AdjustedBalanceCalculation" implementation="id.67 id.96">

 <conceptualRelation xmi:id="id.173" xmi:type="conceptual:ConceptualFlow"

to="id.163" from="id.172"/>

 <conceptualElement xmi:id="id.174" xmi:type="conceptual:ConceptualRole" name="Account Balance"

 conceptualElement="id.168"/>

 <conceptualElement xmi:id="id.175" xmi:type="conceptual:ConceptualRole" name="Allowance Amount"

 conceptualElement="id.159"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.176" xmi:type="conceptual:FactUnit" name="TransactionApproved"

 implementation="id.19"/>

 <conceptualElement xmi:id="id.177" xmi:type="conceptual:FactUnit" name="TransactionNotApproved"

 implementation="id.19"/>

 <conceptualElement xmi:id="id.178" xmi:type="conceptual:RuleUnit" name="ApproveTransaction"

 implementation="id.105 id.111 id.115">

 <source xmi:id="id.179" language="SBVR"

snippet="Transaction is approved if adjusted balance is under the threshold"/>

 <conceptualRelation xmi:id="id.180" xmi:type="conceptual:ConceptualFlow"

to="id.176" from="id.178"/>

 <conceptualElement xmi:id="id.181" xmi:type="conceptual:ConceptualRole" name="Condition"

 conceptualElement="id.163"/>

 <conceptualElement xmi:id="id.182" xmi:type="conceptual:ConceptualRole" name="Consequence"

 conceptualElement="id.176"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.183" xmi:type="conceptual:RuleUnit" name="TransactionFailedApproval"

 implementation="id.105 id.111 id.120">

 <conceptualRelation xmi:id="id.184" xmi:type="conceptual:ConceptualFlow"

to="id.177" from="id.183"/>

 <conceptualElement xmi:id="id.185" xmi:type="conceptual:ConceptualRole" name="NOT condition"

 conceptualElement="id.163"/>

 <conceptualElement xmi:id="id.186" xmi:type="conceptual:ConceptualRole" name="consequence"

 conceptualElement="id.177"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.187" xmi:type="conceptual:ScenarioUnit">

 <conceptualElement xmi:id="id.188" xmi:type="conceptual:BehaviorUnit" name="Calculate Balance"

 implementation="id.58 id.75 id.81">

 <conceptualRelation xmi:id="id.189" xmi:type="conceptual:ConceptualFlow"

to="id.190" from="id.188"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.190" xmi:type="conceptual:BehaviorUnit"

300 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

name="Calculate Adjusted Balance" implementation="id.67 id.96">

 <conceptualRelation xmi:id="id.191" xmi:type="conceptual:ConceptualFlow"

to="id.192" from="id.190"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.192" xmi:type="conceptual:BehaviorUnit" name="Approve Transaction"

 implementation="id.102 id.115 id.120"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.193" xmi:type="conceptual:BehaviorUnit" name="Input"

 implementation="id.21 id.28 id.34 id.40 id.49 id.58">

 <conceptualRelation xmi:id="id.194" xmi:type="conceptual:ConceptualFlow"

to="id.195" from="id.193"/>

 </conceptualElement>

 <conceptualElement xmi:id="id.195" xmi:type="conceptual:BehaviorUnit" name="Processing"

implementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>

 </model>

</kdm:Segment>

20.7 ExtendedConceptualElements Class Diagram
The ExtendedConceptualElements class diagram defines two “wildcard” generic elements for the conceptual model as
determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

The classes and associations of the ExtendedConceptualElements diagram are shown in Figure 20.6.

Figure 20.6 - ExtendedConceptualElements Class Diagram

20.7.1 ConceptualElement Class (generic)
The ConceptualElement is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualElement

AbstractC oncep tualR elationship

AbstractC onceptualE lem ent

KD M Entity
(from core)

C onceptualRelationship

1
0..*+from 1

{redefines from}

0..*

1

0.. *

+to 1
{redefines to}

0.. *

C onceptualE lement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 301

Constraints

1. ConceptualElement should have at least one stereotype

Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

20.7.2 ConceptualRelationship Class (generic)
The ConceptualRelationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualRelationship

Associations

Constraints

1. ConceptualRelationship should have at least one stereotype.

Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the conceptual model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

from:AbstractConceptualElement[1] the conceptual element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

302 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 303

21 Build Package

21.1 Overview
The Build package defines meta-model elements that represent the facts involved in the build process of the given
software system (including but not limited to the engineering transformations of the “source code” to “executables”). The
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.

• Concerns:

• What are the inputs to the build process?

• What artifacts are generated during the build process?

• What tools are used to perform build steps?

• What is the workflow of the build process?

• Who are the suppliers of the source artifacts?

• Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription, Library.
The viewpoint language for the Build architectural viewpoint also includes several build relationships, which is a
subclass of an abstract relationship AbstractBuildRelationship.

• Analytic methods

• Supply chain analysis (what are the artifacts that depend on a given supplier)

Build Views are used in combination with Inventory views.

• Construction methods:

• Build views that correspond to the KDM Build architectural viewpoint are usually constructed by analyzing build
scripts and build configuration files for the given system. This inputs are specific to the build automation
framework. The Build extractor tool uses the knowledge of the semantics of the build automation framework to
produce one or mode Build views as output

• Construction of the Build view is determined by the semantics of the build automation framework, and it based on
the mapping from the given build automation framework to KDM; such mapping is specific only to the build
automation framework and not to a specific software system

• The mapping from a particular build automation framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

304 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

21.2 Organization of the Build Package
The Build package defines meta-model elements that represent entities and relationships related to the build process of
an existing software system.

The Build package consists of the following class diagrams:

• BuildModel
• BuildInheritances
• BuildResources
• BuildRelations
• ExtendedBuildRelations

The Build package depends on the following packages:

• Core
• kdm
• Source

21.3 BuildModel Class Diagram
The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their
relations.

Supplier
Tool

SymbolicLink

BuildModel

AbstractBuildRelationship

AbstractBuildElement

0..*

0..1

+bui ldE lement
0..*{subsets ownedElement}

+model

0..1

{subsets model}
0..*

1

+buildRelation0..*
{subsets ownedRelation}

1

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 305

Figure 21.1 - BuildModel Class Diagram

21.3.1 BuildModel Class
The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMModel

Associations

Semantics

21.3.2 AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended.

Superclass

KDMEntity

Associations

Semantics

21.3.3 AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class.

Superclass

KDMRelationship

Semantics

21.3.4 Supplier Class
The Supplier class models producers of the 3rd party software components as they contribute to the build process.

Superclass

AbstractBuildElement

buildElement:AbstractBuildElement[0..*] The set of build elements owned by the model.

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations

306 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

21.3.5 Tool Class
The Tool class represents software tools as they are used in the build process.

Superclass

AbstractBuildElement

Semantics

21.3.6 SymbolicLink Class
The SymbolicLink is used to represent symbolic links.

Superclass

AbstractBuildElement

Semantics

21.4 BuildInheritances Class Diagram

NOTE:Issue 12872

The BuildInheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes.
Each of the classes shown in this diagram inherits properties from classes found in the Core package.

Figure 21.2 - BuildInheritances Class Diagram

21.5 BuildResources Class Diagram
The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.

BuildModel AbstractBuildRelationsh ip

KDM Relationship
(from core)

KDMModel
(from k dm)

KD MEntity
(from core)

AbstractBuildElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 307

Figure 21.3 - BuildResources Class Diagram

21.5.1 BuildResource Class
BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common
superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM
entities. Usually, a Build resource such as a Library, a BuildProduct, or a BuildComponent will group together some
Inventory elements. Certain BuildResource can also group other build elements.

Superclass

AbstractBuildElement

Associations

Constraints

1. BuildResource should either own elements or group elements, but not both.

buildElement:AbstractBuildElement[0..*] owned build element

groupedBuild:AbstractBuildElement[0..*] grouped build elements (KDM group mechanism)

implementation:KDMEntity[0..*]

source:SourceRef[0..*] Link to the physical artifact which is represented by the
BuildResource element

BuildComponent

Library

BuildStep

Bui ldProduct

BuildDescription
text : String

KDMEntity
(from core)

AbstractBuildElement

BuildResource
0..*0..*

+implementation

0..*

{subsets groupedElement}

+group

0..*

{subsets group}

0..*

0..*

+group

0..*
{subsets group}

+groupedBuild0..*
{subsets groupedElement}

0..1

0..*

+owner

0..1

{subsets owner}

+buildElement
0..*

{subsets ownedElement}

SourceRef

language : String
snippet : String

(from source)

0..1

0..*

0..1

+source

0..*

BuildSource

308 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.

Semantics

21.5.2 BuildComponent Class
The BuildComponent class represents binary files that correspond to deployable components, for example executable
files.

Superclass

BuildResource

Semantics

21.5.3 BuildDescription Class
The BuildDescription class is used to model objects such as make files or ant scripts, which describe the build process
itself.

Superclass

BuildResource

Semantics

21.5.4 BuildStep Class
BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the
build process, during which certain input resources are processed and certain output resources are produced. BuildStep
element is the origin of several build relationships. For example, a Build step “consumes” certain input resources,
“produces” certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.6 BuildRelations Class Diagram
The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4
captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 309

Figure 21.4 - BuildRelations Class Diagram

21.6.1 LinksTo Class
The LinksTo class models the relationship between two linked build resources.

Superclass

AbstractBuildRelationship

Associations

Semantics

Associations

from:SymbolicLink[1]

to:AbstractBuildElement[1]

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]

AbstractB uil dRelationship

SymbolicLink
Supplier

LinksTo

0..*

1

0..*

+from
1{redefines from}

SuppliedBy

1

0..*

+to
1

{redefines to}

0..*

AbstractBuildElement
1

0..*

+to
1

{redefines to}

0..*

1

0..*

+from1
{redefines from}

0..*

Tool

Consumes

1

0..*

+to
1

{redefines to}

0..*

Produces

1

0..*

+to

1

{redefines to}

0..*

SupportedBy
10..*

+to

1

{redefines to}

0..*

BuildStep

1
0..*

+from
1{redefines from}

0..*
1

0..*

+from
1 {redefines from}

0..*

1

0..*

+from
1 {redefines from}

0..*

BuildDescription
text : String

D escribedBy

1

+from

1

{redefines from}

1
+to

1

{redefines to}

310 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

21.6.2 Consumes Class
Consumes class defines association between a certain BuildStep element and certain build elements, called the input build
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of
source files is an input to the compilation step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation.

When the target of the “Consumes” relationship owns other build elements, this means that the build step (the origin of
the relationship) depends on all elements owned by the container (directly or indirectly).

When the origin of the “Consumes” relationship is a container that owns one or more build steps (directly or indirectly),
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.6.3 Produces Class
Produces class defines association between a certain BuildStep element and certain build elements, called the output build
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the
set of object files can be produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces” relation.

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the
relationship) produces all elements owned by the container (directly or indirectly).

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the input build elements for the given step

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the output build elements for the given step

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 311

When the origin of the “Produces” relationship is a container that owns one or more build steps (directly or indirectly),
this means that the elements designated as the target of the “Produces” relationship are produced in collaboration of all
build steps, and no particular build step is the sole producer.

21.6.4 SupportedBy Class
SupportedBy class defines association between a certain BuildStep element and certain Tool element. The Tool element is
required to perform the build step. For example, a particular version of a complier is required to perform the compilation
step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “SupportedBy” relation.

21.6.5 SuppliedBy Class
SuppliedBy class defines association between certain build elements and their points of origin, represented by Supplier
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can
originate from open source.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation.

When the origin of the “SuppliedBy” relationship is a container that owns one or more build elements (directly or
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a
particular Supplier element.

from:BuildStep[1] the build step

to:Tool[1] The Tool element that represents the tool performing the transformations represented
by the given step.

from:AbstractBuildElement[1] the build element

to:Supplier[1] The Supplier element that represents the origin of the build element.

312 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

21.6.6 DescribedBy Class
DescribedBy class defines association between certain build step and a certain BuildDescription element. These elements
are produced as the result of the transformation, performed by the build step. For example, the set of object files can be
produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some
BuildDescription element.

Example

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:build="http://schema.omg.org/spec/KDM/1.2/build"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"

xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Build Example">

 <model xmi:id="id.0" xmi:type="source:InventoryModel">

 <inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c">

 <inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.1"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">

 <inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>

 <inventoryElement xmi:id="id.6" xmi:type="source:Directory">

 <inventoryElement xmi:id="id.7" xmi:type="source:Image"/>

 <inventoryElement xmi:id="id.8" xmi:type="source:Image"/>

 </inventoryElement>

 <inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>

 <inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>

 </model>

 <model xmi:id="id.11" xmi:type="build:BuildModel">

 <buildElement xmi:id="id.12" xmi:type="build:BuildComponent"

name="sources" implementation="id.1 id.5 id.3"/>

 <buildElement xmi:id="id.13" xmi:type="build:BuildProduct"

name="ab product" implementation="id.10"/>

 <buildElement xmi:id="id.14" xmi:type="build:BuildStep">

 <buildRelation xmi:id="id.15" xmi:type="build:DescribedBy" to="id.28" from="id.14"/>

from:BuildStep[1] the build step

to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the
build step.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 313

 <buildRelation xmi:id="id.16" xmi:type="build:SupportedBy" to="id.30" from="id.14"/>

 <buildElement xmi:id="id.17" xmi:type="build:BuildStep" name="compile">

 <buildRelation xmi:id="id.18" xmi:type="build:Consumes" to="id.12" from="id.17"/>

 <buildRelation xmi:id="id.19" xmi:type="build:Produces" to="id.25" from="id.17"/>

 <buildRelation xmi:id="id.20" xmi:type="build:SupportedBy" to="id.26" from="id.17"/>

 </buildElement>

 <buildElement xmi:id="id.21" xmi:type="build:BuildStep" name="link">

 <buildRelation xmi:id="id.22" xmi:type="build:Consumes" to="id.25" from="id.21"/>

 <buildRelation xmi:id="id.23" xmi:type="build:Produces" to="id.13" from="id.21"/>

 <buildRelation xmi:id="id.24" xmi:type="build:SupportedBy" to="id.26" from="id.21"/>

 </buildElement>

 <buildElement xmi:id="id.25" xmi:type="build:BuildComponent" name="object files"/>

 <buildElement xmi:id="id.26" xmi:type="build:Tool" name="C compiler">

 <buildRelation xmi:id="id.27" xmi:type="build:SuppliedBy" to="id.32" from="id.26"/>

 </buildElement>

 </buildElement>

 <buildElement xmi:id="id.28" xmi:type="build:BuildDescription" implementation="id.9">

 <source xmi:id="id.29" language="shell" snippet="cc $(SOURCE) -o ab.exe"/>

 </buildElement>

 <buildElement xmi:id="id.30" xmi:type="build:Tool" name="make">

 <buildRelation xmi:id="id.31" xmi:type="build:SuppliedBy" to="id.32" from="id.30"/>

 </buildElement>

 <buildElement xmi:id="id.32" xmi:type="build:Supplier" name="Tools'R'Us corp"/>

 </model>

</kdm:Segment>

21.7 ExtendedBuildElements Class Diagram
The ExtendedBuildElements class diagram defines two “wildcard” generic elements for the build model as determined by
the KDM model pattern: a generic build entity and a generic build relationship.

The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

Figure 21.5 - ExtendedBuildElements Class Diagram

AbstractBuildRelationship

BuildElement KDM Entity
(from core)

Ab stractB uildElem ent

BuildRelationship

1

0..*
+to

1

{redefines to}0..*

1
0..*+from

1

{rede fines from}

0..*

314 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

21.7.1 BuildElement Class (generic)
The BuildElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

AbstractBuildElement

Constraints

1. BuildElement should have at least one stereotype.

Semantics

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the build model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

21.7.2 BuildRelationship Class (generic)
The BuildRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractBuildRelationship

Associations

Constraints

1. BuildRelationship should have at least one stereotype.

Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the build model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

from:AbstractBuildElement[1] the build element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 315

Annex A - Semantics of the Micro KDM Action Elements
(normative)

This normative annex defines the semantics of micro KDM action elements. This section assumes understanding of the
KDM Datatypes.

Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

• Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the
“call” micro action designated the Calls outgoing relationship as part of Control.

• Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

• Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

• Control part - owned outgoing control flow relationships for the action.

• Extras part - owned relationships other than Reads, Writes and not designated as part of Control by the action Kind.
For example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

A.1 Comparison Actions
Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for Boolean

NOT, which has a single Reads relationship).

Outputs: Optional writes to a DataElement of a Boolean type (no Writes corresponds to an expression statement,
 where the result of the operation is ignored; otherwise the result should be stored into a DataElement, which
 can be permanent, for example a StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit
 or a ParameterUnit; or temporary, a StorableUnit with a "register" kind).

Control: Optional single flow - unconditional transfer of control to the next micro action (for example, as part of
complex expressions; no Flow corresponds to a terminal action).

Table A.1 - Comparison Actions

Micro action Semantics

Equals Polymorphic equals for two values of the same datatype, see ISO Equals operation for the
corresponding datatype.

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype; see ISO
InOrder operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or
A==B.

316 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A.2 Actions Related to the Primitive Numerical Datatypes
Inputs: Two ordered Reads relationships to DataElements representing values of the same datatype (except for neg,

succ, incr, decr unary operations, which have a single Reads relationship).

Outputs: Optional single Writes to a DataElement of a type corresponding to the definition of the operation (can be
 temporary register or a variable; no Writes corresponds to an expression statement, where the result of the
 operation is ignored).

Control: Optional single flow - unconditional transfer of control to the next micro action.

A.3 Actions Related to Bitwise Operations on Primitive Datatypes
Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for neg, succ,

incr, decr unary operations, which have a single Reads relationship).

Outputs: Optional single Writes to a DataElement of the same type as the first StorableElement (can be a temporary
 register or a variable).

Control: Optional single Flow - unconditional transfer of control.

Not Boolean NOT, see ISO Boolean NOT operation.

And Boolean AND, see ISO Boolean AND operation

Or Boolean OR, see ISO Boolean OR operation

Xor Boolean XOR: (A and not B) or (not A and B)

Table A.2 - Numerical actions

Micro action Semantics

Add Polymorphic add operation for two values of the same numeric datatype, see ISO Add
operation for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see ISO Add
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for two values of the same numeric datatype; see ISO
Negate operation for the corresponding datatype.

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.

Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same IntegerType datatype.

Successor Single Reads; Successor for ordinal or enumerated types, see ISO Successor operation.

Table A.1 - Comparison Actions

Micro action Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 317

Table A.3 - Bitwise actions

Micro action Semantics Inputs

BitAnd Bitwise AND on two integers or
bitstrings or octetstrings

Two Reads relationships to DataElements
representing values of the same datatype

BitOr Bitwise OR on two integers or bitstrings
or octetstrings

Two Reads relationships to DataElements
representing values of the same datatype

BitNot Bitwise NOT on integer or bitstring or
octetstring

Two Reads relationships to DataElements
representing values of the same datatype

BitXor Bitwise XOR on two integers or bitstrings
or octetstrings

Two Reads relationships to DataElements
representing values of the same datatype

LeftShift Arithmetic bitwise shift left on integer or
bitstring or octetsting

First Reads relationship to a DataElement
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

RightShift Arithmetic bitwise shift right on integer
or bitstring or octetstring

First Reads relationship to a DataElement
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

BitRightShift Logical bitwise shift right on integer or
bitstring or octetstring

First Reads relationship to a DataElement
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

318 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A.4 Control Actions
Table A.4 - Control actions

Micro action Description Inputs Outputs Control

Assign Assignment
(copy)

Single Reads relationship to a
DataElement representing the
value

Writes relationship
represents the
DataElement (except
for a ValueElement)
to which the value of
the input
DataElement is
assigned

Optional single flow to the
next micro action

Condition Condition Single Reads relationship to a
DataElement representing the
Boolean value

none TrueFlow & FalseFlow -
conditional transfer of
control

Call Static call Zero or more Reads
relationships to DataElements,
that represent input actual
parameters; ordered;
Value of each actual parameter
is assigned to the
corresponding formal
parameter of the
ControlElement.
Correspondence is established
according to the Pos attribute
of the formal parameter in the
signature of the
ControlElement. A sequence
of values is assigned to the
variable argument.

Optional Writes to
the DataElement that
represents the return
value

Calls relationship to the
ControlElement represents
the flow of control to the
ControlElement and the
return back; Subsequently
an optional single flow to
the next micro action is
performed.

MethodCall Method call Invokes relationship to the
DataElement that represents
the instance;
Zero or more Reads
relationships to DataElements,
that represent input actual
parameters; ordered;

Same as Call Calls relationship to the
MethodUnit represents the
flow of control to the
Method and the return
back; Subsequently an
optional single flow to the
next micro action is
performed.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 319

PtrCall Call via pointer Addresses relationship to the
DataElement that represents
the pointer;
 Zero or more Reads
relationships to DataElements,
that represent input actual
parameters; ordered;

Same as Call This represents a dynamic
call to one of the possible
targets of the pointer
(corresponding to the
current value of the
pointer). The Signature of
the possible targets is
represented as the type
attribute of the
DataElement; subsequently
an optional single flow to
the next micro action is
performed

VirtualCall Virtual method
call

Invokes relationship to the
DataElement that represents
the instance;
Zero or more Reads
relationships to DataElements,
that represent input actual
parameters; ordered;

Same as Call Calls relationship to the
MethodUnit represents the
superclass of the method
that will be determined
dynamically. This
represents the flow of
control to the Method and
the return back;
Subsequently an optional
single flow to the next
micro action is performed.

Return return Single Reads represents the
DataElement that contains the
return value

none Control is returned back to
one of the ControlElements
that has performed the call.

This pointer to the
current instance
of the object

none Writes to a
DataElement

Single flow to the next
micro action

Nop dummy none none Optional single flow to the
next micro action

Goto Unconditional
transfer of
control

none none Single flow to the next
micro action

Label represents a
label; the name of
the action is the
label

none none Single flow to the next
micro action

Table A.4 - Control actions

Micro action Description Inputs Outputs Control

320 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Throw Raising
exception

none none Throws relationship to the
DataElement that
represents the "exception
object". Optional
ExceptionFlow relationship
to a CatchUnit that
processes the exception

Incr Variable post
increment
operation;

Single Addresses relationship
represents the DataElement
whose value is incremented;

Optional Writes
relationship to
another DataElement
to which the previous
value of the
incremented variable
is assigned

Optional single flow to the
next micro action

Decr Variable post
decrement
operation;

Single Addresses relationship
represents the DataElement
whose value is decremented

Optional Writes
relationship to
another DataElement
to which the previous
value of the
incremented variable
is assigned

Optional single flow to the
next micro action

Switch Branching based
on the value of a
StorableElement

Single Reads to the
DataElement that represents
the selector value

none One or more GuardedFlow
relations to a second micro
action with a single Reads
relationship that represents
the guard value. A single
FalseFlow represents the
default branch. This
construct represents
selection of a single branch
for which the value of the
selector is equal to the
value of the guard or the
default branch

Table A.4 - Control actions

Micro action Description Inputs Outputs Control

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 321

A.5 Actions Related to Access to Datatypes
Inputs: see table

Outputs: see table.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Guard Represents start
of the branch of a
complex
condition

Single Reads relation to a
DataElement representing the
guard value

none Single flow unconditional
control flow to the first
action of the branch

Compound Compound action none none Single Flow - the entry flow
to the first internal action
element

Init BlockUnit that
contains
initialization
action elements

none none EntryFlow unconditional
control flow to the first
internal action

Table A.5 - Access actions

Micro action Description Inputs Outputs

FieldSelect Access to a particular
ItemUnit of a RecordType

Single Addresses relationship to a
DataElement (of a RecordType); Single
Reads relationship to an ItemUnit
representing the field being accessed

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
field is assigned

FieldReplace Modification of a
particular field of a
RecordType

Single Addresses relationship to a
DataElement (of a RecordType); Single
Reads to a DataElement representing the
new value

Writes relationship to an
ItemUnit representing the
field being modified;

ChoiceSelect Access to a particular
ItemUnit of a ChoiceType

Single Addresses relationship to a
DataElement (of a ChoiceType); Single
Reads relationship to an ItemUnit
representing the field type being accessed

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
field is assigned

ChoiceReplace Modification of a
particular field of a
ChoiceType

Single Addresses relationship to a
DataElement (of a ChoiceType); Single
Reads to a DataElement representing the
new value

Writes relationship to an
ItemUnit representing the
field being modified;

Table A.4 - Control actions

Micro action Description Inputs Outputs Control

322 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Ptr Access to a pointer to a
StorableElement

Single Addresses relationship to a
DataElement

Optinal Writes relationship
to the StorableElement
which will hold the new
value

PtrSelect Access to a value via
pointer

Single Addresses relationship to a
DataElement (of an PointerType); Single
Reads relationship to an ItemUnit of that
PointerType representing the ItemUnit
being accessed;

Optional Writes relationship
to the ItemUnit of that
PointerType

PtrReplace Modification of an
ItemUnit of a PointerType

Single Addresses relationship to a
DataElement (of an PointerType); Last
Reads to a DataElement representing the
new value

Writes relationship to the
ItemUnit of that PointerType

ArraySelect Access to a particular
ItemUnit of an ArrayType

Single Addresses relationship to a
DataElement (of an ArrayType); Reads
relationship to an ItemUnit representing
the ItemUnit being accessed; Last Reads
represents the Index

Optinal Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
ItemUnit is assigned

ArrayReplace Modification of a
particular ItemUnit of an
ArrayType

Single Addresses relationship to a
DataElement (of an ArrayType); Reads
that represents the Index; Last Reads to a
DataElement representing the new value

Writes relationship to an
ItemUnit representing the
ItemUnit being modified;

MemberSelect Access to a particular
MemberUnit of a
ClassType

Invokes relationship to the DataElement
that represents the instance.Single Reads
relationship to an MemberUnit
representing the member being accessed

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
field is assigned

Table A.5 - Access actions

Micro action Description Inputs Outputs

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 323

A.6 Actions Related to Type Conversions
Inputs: see table

Outputs: see table.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

MemberReplace Modification of a
particular member of a
ClassType

Single Invokes relationship to a
DataElement (of a ClassType) that
represents the instance of the object being
accessed.Single Reads to a DataElement
representing the new value

Writes relationship to an
MemberUnit representing
the member being modified;

New Creation of a new
dynamic instance of a
datatype; this has to be
done separately if
required; this micro action
does not invoke the
constructor of the new
object; this has to be done
separately

Creates relationship to the Datatype being
created

Writes relationship
represents the DataElement
(except for a ValueElement)
to which the reference to the
new dynamic element is
assigned

NewArray Creation of a new
dynamic instance of an
ArrayType datatype

Creates relationship to the Datatype being
created; Reads relation to the
DataElement that represents the length of
the new array

Writes relationship
represents the DataElement
(except for a ValueElement)
to which the reference to the
new dynamic element is
assigned

Table A.6 - Type conversion actions

Micro action Description Inputs Outputs

Sizeof Determines the length of a
DataElement (based on the
datatype) or the length of a
Datatype

Reads represents the DataElement;
or
UsesType to the Datatype

Optional writes to a
DataElement

Table A.5 - Access actions

Micro action Description Inputs Outputs

324 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A.7 Actions Related to StringType Operations
Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for example a
StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit; or temporary, a
StorableUnit with a "register" kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Note:"==" operation on ISO strings is defined as full comparison, this does not work in Java, which has shallow
comparison of object references.

A.8 Actions Related to SetType Operations
Inputs: see table

Instanceof Performs dynamic type check
if the data element is of a
certain datatype

Reads represents the DataElement;
UsesType relation represents the datatype

Optional Writes to a
DataElement of a Boolean
type;

DynCast Performs a dynamic cast of a
DataElement to a certain
Datatype

Reads represents the DataElement;
UsesType relation represents the datatype

Optional Writes to a
DataElement

TypeCast Performs a static type
conversion of a DataElement
to a certain Datatype

Reads represents the DataElement;
UsesType relation represents the datatype

Optional writes to a
DataElement

Table A.7 - StringType actions

Micro action Description Inputs

IsEmpty True is the string x is empty First Reads represents x;

Head Produces the value of the first element in the string x First Reads represents x;

Tail Produces sequence that results from deleting the first element in the
string x

First Reads represents x;

Empty Produces and empty string UsesType to the required type

Append Produces the sequence that is formed by adding a single value y to
the end of the string x

First Reads represents x;
Second represents y

Table A.6 - Type conversion actions

Micro action Description Inputs Outputs

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 325

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
 operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for
 example a StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit;
 or temporary, a StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

A.9 Actions Related to SequenceType Operations
Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for example a
StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit; or temporary, a
StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.8 - SetType actions

Micro action Description Inputs

IsIn True is the value x is a member of the set y, else
false

First Reads represents x; Second represents y

Subset True if every member of x is a member of y First Reads represents x; Second represents y

Difference Produces the set that consists of the values that are
in x and not in y

First Reads represents x; Second represents y

Union Produces the set that consists of the values that are
either in x or in y

First Reads represents x; Second represents y

Intersection Produces the set that consists of the values that are
both in x and in y

First Reads represents x; Second represents y

Select Produces a value of the base type that is in the set x First Reads represents x;

IsEmpty True is the set x is empty First Reads represents x;

Empty Produces and empty set UsesType to the required type

Table A.9 - SequenceType actions

Micro action Description Inputs

IsEmpty True is the sequence x is empty First Reads represents x;

Head Produces the value of the first element in the sequence x First Reads represents x;

326 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A.10 Actions Related to BagType Operations
Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
 operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for
 example a StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit;
 or temporary, a StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

A.11 Actions Related to Resources
Resource micro-actions represent specific statements that are determined by some programming languages and which
manipulate resources provided by the operating environment. Such statements are alternative to using system calls. Kinds in
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource
relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements
can be added in various models of the Resource Layer (Platform, Data, Event or UI).

Tail Produces sequence that results from deleting the first element
in the sequence x

First Reads represents x;

Empty Produces and empty sequence UsesType to the required type

Append Produces the sequence that is formed by adding a single value y
to the end of the sequence x

First Reads represents x; Second
represents y

Table A.10 - BagType actions

Micro action Description Inputs

IsEmpty True is the bag x is empty First Reads represents x;

Select Produces a value of the base type that is in the bag x First Reads represents x;

Delete Produces the bag that is formed by deleting one instance
of value y from the bag x if any

First Reads represents x; Second
represents y

Empty Produces and empty bag UsesType to the required type

Insert Produces the bag that is formed by adding one instance of
value y from the bag x

First Reads represents x; Second
represents y

Serialize Produces the sequence in which each element is repeated
as many time as it occurs in the bag x

First Reads represents x;

Table A.9 - SequenceType actions

Micro action Description Inputs

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 327

Inputs: Zero or more Reads relationships to DataElements; represent input data which is sent to the resource;
ordered

Outputs: Zero or more Writes relationships to DataElements; represents output data which is received from the
resource;

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Extras: optional resource-specific relationships.

Table A.11 - Resource actions

Micro action Description

Platform ActionElement represents a statement that manipulates a
Platform Resource

Data ActionElement represents a statement that manipulates a
Data Resource

Event ActionElement represents a statement that manipulates an
Event Resource

UI ActionElement represents a statement that manipulates a
UI Resource

328 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3 303

A
AbstractActionRelationship class 143
AbstractBuildElement class 305
AbstractCodeElement class 73
AbstractCodeRelationship class 74
AbstractConceptualElement class 287
AbstractConceptualRelationship class 288
AbstractContentElement class 255
AbstractDataElement class 228
AbstractDataRelationship class 228
AbstractEventElement class 215
AbstractEventRelationship class 216
AbstractInventoryElement Class 56
AbstractInventoryElement class 56
AbstractInventoryRelationship class 56
Abstractions Layer 14
AbstractPlatformElement class 180
AbstractPlatformRelationship class 180
AbstractStructureElement class 277
AbstractUIElement class 201
AbstractUIRelationship class 202
Acknowledgements 9
Action package 141
ActionElement class 142
ActionElements class diagram 142
ActionFlow class diagram 145
ActionInheritances class diagram 144
ActionRelationship class 164
Addresses class 154
AggregatedRelations 30
AggregatedRelations class diagram 28
AllContent class 260
Annotation class 50
Annotation class diagram 48
architectural view 13
architectural viewpoint 13
Architecture-Driven Modernization (ADM) 1
ArchitectureView class 279
ArrayType class 99
atomic element 25
Attribute class 49
Audit class diagram 38

B
BagType class 101
BehaviorUnit class 291
BinaryFile class 59
BindsTo class 186
BitStringType class 93
BitType class 93
BlockUnit class 143
BooleanType class 90
Build package 303
BuildComponent class 308
BuildDescription class 308
BuildElement class 314
BuildInheritances class diagram 306
BuildModel class 305
BuildModel class diagram 304
BuildRelations class diagram 308
BuildRelationship class 314

BuildResource class 307
BuildResources class diagram 306
BuildStep class 308

C
CallableRelations class diagram 149
CallableUnit class 80
Calls class 150
Catalog class 231
CatchUnit class 156
CharType class 91
ChoiceContent class 260
ChoiceType class 96
ClassRelations class diagram 121
ClassTypes class diagram 105
ClassUnit class 105
Code package 71
CodeAssembly class 78
CodeElement class 139
CodeInheritances class diagram 75
CodeItem class 74
CodeModel class 73
CodeModel class diagram 72
CodeRelationship class 139
ColumnSet class 233
ColumnSet class diagram 233
Comments class diagram 134
CommentUnit class 135
compilation unit 77
CompilationUnit class 77
ComplexContentType class 256
compliance levels 2
Compliance to Level 1 3
CompliesTo class 162
Component class 278
CompositeType class 96
CompositeTypes class diagram 95
ComputationalObject class 74
Conceptual package 283
ConceptualContainer class 289
ConceptualElement class 300
ConceptualElements class diagram 288
ConceptualFlow class 292
ConceptualInheritance class diagram 288
ConceptualModel class 286
ConceptualModel class diagram 285
ConceptualRelations class diagram 292
ConceptualRelationship class 301
ConceptualRole class 290
ConditionalDirective class 127
Configuration class 58
Conformance 1
Consumes class 310
ConsumesEvent class 220
container 25
container ownership 21
containers 21
ContentAttribute class 261
ContentElement class 261
ContentElements class diagram 255
ContentItem class 256

304 Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

ContentReference class 261
ContentRelations class diagram 266
ContentRestriction class 257
context 76
ControlElement class 79
ControlElements class diagram 79
ControlFlow class 145
Core package 23
CoreEntity class diagram 23
Creates class 154

D
Data Package 225
DataAction class 232
DataAction class diagram 247
DataContainer class 230
DataElement class 83
DataElements class diagram 82
DataEvent class 232
DataInheritances class diagram 228
DataManager class 184
DataModel Class 227
DataModel class diagram 226
DataRelations class diagram 152
DataRelationship class 270
DataResource class 230
DataResources class diagram 229
DataSegment class 237
Datatype class 75
DatatypeOf class 268
DateType class 91
DecimalType class 92
DefinedBy class 189
DefinedType class 104
DefinedTypes class diagram 103
Definitions 6
DependsOn class 61
DeployedComponent class 191
DeployedResource class 193
DeployedSoftwareSystem class 192
Deployment class diagram 190
DerivedType class 98
DerivedTypes class diagram 98
DescribedBy class 312
design characteristics 14
Directory class 59
Dispatches class 151
Displays class 208
DisplaysImage class 208

E
Element 24
enterprise application 1
EntryFlow class 146
EnumeratedType class 95
EnumeratedTypes class diagram 94
Event class 217
Event package 213
EventAction class 219
EventActions class diagram 220
EventElement class 223

EventInheritances class diagram 216
EventModel class 215
EventModel class diagram 214
EventRelations class diagram 219
EventRelationship class 223
EventResource class 217
EventResources class diagram 216
ExceptionBlocks class diagram 155
ExceptionFlow class 161
ExceptionFlow class diagram 159
ExceptionRelations class diagram 161
ExceptionUnit class 156
ExecutableFile class 59
ExecutionResource class 184
existing software assets 1
existing software systems 1
ExitFlow class 160
Expands class 128
ExtendedActionElements class diagram 164
ExtendedBuildElements class diagram 313
ExtendedCodeElements class diagram 139
ExtendedConceptualElements class diagram 300
ExtendedDataElement class 270
ExtendedDataElements class diagram 269
ExtendedEventElements class diagram 222
ExtendedInventoryElements class diagram 65
ExtendedPlatformElements class diagram 196
ExtendedStructureElements class diagram 280
ExtendedUIElements class diagram 210
ExtendedValue 46
ExtendedValue class 46
ExtendedValues 46
Extends class 122
extension point 90
extension points 41, 139
ExtensionFamily class 45
Extensions class diagram 40
ExtensionTo class 268
ExternalActor class 185

F
facts 22
FactUnit class 290
FalseFlow class 148
FileResource class 184
FinallyUnit class 157
FloatType class 92
Flow class 147
framework 22
Framework class diagram 34

G
GeneratedFrom class 129
group 25
group association 21
GroupContent class 260
GuardedFlow class 148

H
HasContent class 249
HasState class 222

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3 305

HasType class 117
HasValue class 118

I
Image class 58
ImplementationOf class 114
Implements class 113
Imports class 138
IncludeDirective class 127
Includes class 130
Index class 245
IndexElement class 244
IndexUnit class 85
InitialState class 218
InstanceOf class 109
IntegerType class 92
InterfaceRelations class diagram 112, 162
InterfaceUnit class 106
intermediate representation 33
interoperability 1
InventoryContainer class 59
InventoryElement class 65
InventoryInheritances class diagram 61
InventoryItem Class 57
InventoryItem class 57
InventoryModel 55
InventoryModel Class 55
InventoryModel class 55
InventoryModel class diagram 55
InventoryRelations class diagram 61
InventoryRelationship class 66
issues/problems xvii
ItemUnit class 85

K
KDM domains 1
KDM entity 26
KDM Framework 33
KDM implementation 3
KDM Infrastructure Layer 14
KDM layers 13
KDM model 14, 33
KDM relationship 27
KDM structure 17
KDM TimeType class 92
KDMFramework class 35
KDMModel class 36
KeyIndex class diagram 244
KeyRelations class diagram 246
KeyRelationship class 246
Knowledge Discovery Meta-model (KDM) 1

L
LanguageUnit class 78
Layer 13
Layer class 278
Level 0 (L0) 2
Level 1 (L1) 3
Level 2 (L2) 3
lightweight extension mechanism 24
LinksTo class 309

Loads class 195
LockResource class 184

M
Machine class 192
MacroDirective class 126
MacroUnit class 125
ManagesData class 248
ManagesResource class 188
ManagesUI class 208
mapping 18
MarshalledResource class 183
MemberUnit class 86
MessagingResource class 183
MethodUnit class 81
micro KDM 167
MixedContent class 261
ModelElement 24
models 33
module 76
Module class 76
Modules class diagram 76

N
Namespace class 136
NamingResource class 183
NextState class 220
Normative References 6

O
Object Management Group, Inc. (OMG) xv
OctetStringType class 94
OMG specifications xv
OnEntry class 218
OnExit class 219
operational environment 1
OrdinalType class 91
origin entity 27

P
Package class 78
package named “kdm” 33
ParameterTo class 109
ParameterUnit class 86
Platform model class 179
Platform package 177
PlatformAction class 185
PlatformActions class diagram 187
PlatformElement class 197
PlatformEvent class 185
PlatformInheritances class diagram 181
PlatformModel class diagram 179
PlatformRelations class diagram 186
PlatformRelationship class 197
PlatformResources class diagram 181
PointerType class 100
Preprocessor class diagram 123, 127
PreprocessorDirective class 124
PrimitiveType class 90
PrimitiveTypes class diagram 89
Process class 194
Produces class 310

306 Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

ProducesEvent class 221
Program Elements Layer 14
Project class 60
ProvisioningRelations class diagram 186

R
RangeType class 100
Reads class 153
ReadsColumnSet class 247
ReadsResource class 189
ReadsState class 221
ReadsUI class 209
RecordFile class 239
RecordType class 97
Redefines class 133
ReferenceKey class 245
References 6
ReferenceTo class 268
RelationalSchema class 231
RelationalTable class 234
RelationalView class 236
Report class 204
Requires class 187
ResourceDescription class 58
ResourceType class 182
RestrictionOf class 269
RuleUnit class 290
Runtime Resource Layer 14
RuntimeActions class diagram 194
RuntimeResources class diagram 193

S
ScaledType class 92
ScenarioUnit class 291
Scope 1
Screen class 204
Segment class 37
segments 33
SeqContent class 260
SequenceType class 102
SetType class 101
SharedUnit class 77
Signature class diagram 102
SimpleContentType class 257
Software Assurance (SwA 1
SoftwareSystem class 279
source code 53
Source package 53, 54
SourceFile class 57
SourceRef class 63
SourceRef class diagram 62
SourceRegion class 64
Spawns class 196
State class 218
Stereotype class 42
StorableUnit class 84
StreamResource class 184
StringType class 93
Structure package 275
StructuredData class diagram 254
StructureElement class 280

StructureInheritances class diagram 279
StructureModel class 277
StructureModel class diagram 276
StructureRelationship class 280
Subsystem class 278
SuppliedBy class 311
SupportedBy class 311
SymbolicLink class 306
Symbols 8
SynonymUnit class 105

T
TagDefinition class 44
TaggedRef class 48
TaggedValue class 47
target entity 27
TemplateParameter class 107
TemplateRelations class diagram 108
Templates class diagram 106
TemplateType class 108
TemplateUnit class 107
terms 22
Terms and definitions 6
TermUnit class 290
Thread class 194
Throws class 161
TimeType class 91
Tool class 306
traceability links 22
Transition class 218
TrueFlow class 147
TryUnit class 156
TypedBy class 267
TypeRelations class diagram 117
TypeUnit class 104
typographical conventions xvi

U
UI package 199
UIAction class 205
UIActions class diagram 207
UIDisplay class 204
UIElement class 210
UIEvent class 205
UIField class 205
UIFlow class 206
UIInheritances class diagram 202
UILayout class 206
UIModel class diagram 200
UIRelations class diagram 206
UIRelationship class 210
UIResource class 204
UIResource class diagram 203
UniqueKey class 245
UsesRelations class diagram 163
UsesType class 163

V
Value class 88
ValueElement class 87
ValueElements class diagram 87

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3 307

ValueList class 88
VariantTo class 132
viewpoint language 13
Visibility class diagram 136
VisibilityRelations class diagram 137
VisibleIn class 137
VoidType class 93

W
Writes class 153
WritesColumnSet class 248
WritesResource class 189
WritesUI class 209

X
XMLSchema class 254

308 Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

