
Date: November 2022May 2024

IDL4 to C++ Language Mapping

Beta 1 – version 1.0

OMG Document Number ptc/22-11-1424-05-13

Normative Reference: https://www.omg.org/spec/IDL4-CPP

This OMG document replaces the submission document (mars/22-09-04). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome
and should be directed to issues@omg.org by March 31, 2023.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in October 2023. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/IDL4-CPP
https://www.omg.org/cgi-bin/doc?ptc/24-05-13
https://issues.omg.org/issues/lists

Copyright © 2022, Object Management Group, Inc.
Copyright © 2022, Real-Time Innovations, Inc.
Copyright © 2022, ZettaScale Technology
Copyright © 2022, Objective Interface Systems, Inc.
Copyright © 2022, Micro Focus International Plc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of
the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast
in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are
made to this specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession
or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED

ii IDL4 to C++ Language Mapping 1.0

ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above
and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

IDL4 to C++ Language Mapping 1.0 iii

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

iv IDL4 to C++ Language Mapping 1.0

http://www.omg.org/

Table of Contents

1 Scope... 1

2 Conformance Criteria..1

3 Normative References..1

4 Terms and Definitions..2

5 Symbols.. 2

6 Additional Information..3
6.1 Changes to Adopted OMG Specifications...3

6.2 Acknowledgments..3

6.3 Intellectual Property Rights..3

7 IDL to C++ Language Mapping...5
7.1 General...5

7.1.1 Names.. 5
7.1.2 Reserved Names..5
7.1.3 C++ Language Version Requirements...6
7.1.4 IDL Type Traits.. 6

7.2 Core Data Types...7
7.2.1 IDL Specification...7
7.2.2 Modules.. 7
7.2.3 Constants... 7
7.2.4 Data Types... 8

7.3 Any..19

7.4 Interfaces – Basic...19
7.4.1 Exceptions.. 20
7.4.2 Interface Forward Declaration..21

7.5 Interfaces – Full..21

7.6 Value Types..22

7.7 CORBA-Specific – Interfaces...23

7.8 CORBA-Specific – Value Types...23

7.9 Components – Basic..23

7.10Components – Homes..23

7.11 CCM-Specific..23

7.12Components – Ports and Connectors..23

7.13Template Modules..23

7.14Extended Data Types...24
7.14.1 Structures with Single Inheritance..24
7.14.2 Union Discriminators..24
7.14.3 Additional Template Types..24
7.14.4 8-bit Integer Types..27
7.14.5 Explicitly-Named Integer Types..28

7.15Anonymous Types..28

7.16User-Defined Annotations..28

7.17Standardized Annotations..28
7.17.1 Group of Annotations: General Purpose...28
7.17.2 Group of Annotations: Data Modeling...29

IDL4 to C++ Language Mapping 1.0 v

7.17.3 Group of Annotations: Units and Ranges...30
7.17.4 Group of Annotations: Data Implementation...30
7.17.5 Group of Annotations: Code Generation..31
7.17.6 Group of Annotations: Interfaces..31

8 IDL to C++ Language Mapping Annotations..33
8.1 @cpp_mapping Annotation..33

8.1.1 struct_mapping Parameter...33

Annex A: Platform-Specific Mappings...35
A.1 CORBA-Specific Mappings..35

A.1.1 Traits... 35
A.1.2 Exceptions.. 40
A.1.3 TypeCode... 43
A.1.4 ORB.. 44
A.1.5 Object... 45
A.1.6 LocalObject... 46
A.1.7 Any... 47
A.1.8 Value Types.. 49
A.1.9 Abstract Interfaces..58
A.1.10 Server Side Mapping..59
A.1.11 Mapping DSI to C++..67
A.1.12 PortableServer Functions...67
A.1.13 Mapping for PortableServer::ServantManager...68

A.2 DDS-Specific Mappings...68

Annex B: Building Block Traceability Matrix..69

Annex C: Compatibility Rules for C++98 and C++03..71
C.1 Overview...71

C.2 IDL to C++ Language Mapping..71
C.2.1 Core Data Types...71
C.2.2 Interfaces – Basic...73
C.2.3 Interfaces – Full..73
C.2.4 Extended Data Types...74

C.2.5 Standardized Annotations..76

C.3 IDL to C++ Language Mapping Annotations..77
C.3.1 @cpp_mapping Annotation..77

C.4 Platform-Specific Mappings...78
C.4.1 CORBA-Specific Mappings...78

Annex D: IDL4 Mapping Rules for Classic C++ Language Mapping Specifications. .81
D.1 Overview...81

D.2 IDL4 Mappings Rules for C++ Language Mapping Specification.................................81
D.2.1 Extended Data Types...81
D.2.2 User-Defined Annotations...84
D.2.3 Standardized Annotations...85

D.3 IDL4 Mappings Rules for C++11 Language Mapping Specification.............................88
D.3.1 Extended Data Types...88
D.3.2 User-Defined Annotations...90
D.3.3 Standardized Annotations...90

vi IDL4 to C++ Language Mapping 1.0

Table of Tables
Table 2.1: Conformance Points... 1
Table 5.1: Acronyms... 3
Table 7.1: Common Type Traits for Mapped IDL Types..6
Table 7.2: Mapping of Integer Types... 8
Table 7.3: Floating-Point Types Mapping..8
Table 7.4: Type Trait Specializations for Sequences..10
Table 7.5: Type Trait Specializations for Strings...11
Table 7.6: Type Trait Specializations for Wstrings...11
Table 7.7: Additional Type Traits for the Fixed Type...13
Table 7.8: Additional Type Traits for Enumerations...17
Table 7.9: Additional Type Traits for Arrays...18
Table 7.10: Type Trait Specialization for Maps...25
Table 7.11: Additional Type Trait Definitions for Maps..25
Table 7.12: Additional Type Traits for Bitmasks..26
Table 7.13: Mapping of 8-bit Integer Types...27
Table 7.14: Mapping of Explicitly-Named Integer Types...28
Table 7.15: General Purpose Annotation Impact..28
Table 7.16: Data Modeling Annotation Impact..29
Table 7.17: Units and Ranges Annotation Impact...30
Table 7.18: Data Implementation Annotation Impact..31
Table 7.19: Code Generation Annotation Impact..31
Table 7.20: Interface Annotation Impact...32
Table A.1: CORBA::traits<> common member types..35
Table A.2: CORBA::traits<> additional member types for Interfaces..35
Table A.3: CORBA::traits<> additional member types for Unbounded Strings...36
Table A.4: CORBA::traits<> additional member types for Bounded Strings...36
Table A.5: CORBA::traits<> additional member types for Unbounded Sequences..36
Table A.6: CORBA::traits<> additional member types for Bounded Sequences...36
Table A.7: CORBA::traits<> additional member types for Arrays..37
Table A.8: CORBA::traits<> additional member types for Valuetypes..37
Table A.9: CORBA::traits<> additional member types for Valueboxes...37
Table A.10: CORBA::traits<> additional member types for Unbounded Maps..38
Table A.11: CORBA::traits<> additional members for Bounded Maps..38
Table A.12: CORBA::traits<> additional member types for Bitmasks...38
Table A.13: Parameter passing modes for Interfaces, Valuetypes, CORBA::TypeCode, Enums, and Basic

Types.. 38
Table A.14: Parameter passing modes for Structured Types, Sequences, and Strings..................................39
Table A.15: CORBA::servant_traits<> member types...39
Table B.1: Building Block Traceability Matrix..69
Table C.1: Mapping of Integer Types..72
Table C.2: Mapping of 8-bit Integer Types..75
Table C.3: Mapping of Explicitly-Named Integer Types..75
Table C.4: General Purpose Annotation Impact..76
Table C.5: Data Implementation Annotation Impact..76
Table D.1: Mapping of 8-bit Integer Types..84
Table D.2: Mapping of Explicitly-Named Integer Types..84
Table D.3: General Purpose Annotation Impact..85
Table D.4: Units and Ranges Annotation Impact..86
Table D.5: Data Implementation Annotation Impact..86
Table D.6: Unbounded Map Traits Member Types...89
Table D.7: Bounded Map Traits Member Types..89

IDL4 to C++ Language Mapping 1.0 vii

Table D.8: Additional Traits Members for Bit Masks...90
Table D.9: General Purpose Annotation Impact..91

viii IDL4 to C++ Language Mapping 1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

IDL4 to C++ Language Mapping 1.0 ix

x IDL4 to C++ Language Mapping 1.0

1 Scope

This specification defines the mapping of OMG Interface Definition Language v4 to the C++ programming language.
The language mapping covers all of the IDL constructs in the current Interface Definition Language specification
[OMG-IDL4]. The language mapping makes use of C++ language features as appropriate and natural.

The specification also provides mapping rules for the building blocks introduced in IDL4 that are not addressed in the
classic C++ and C++11 Language Mappings (see [OMG-C++] and [OMG-C++11]). These set of rules allow
implementers of the classic mappings to extend existing IDL compilers and platforms to incorporate concepts from
IDL4, such as extended data types and annotations, using a standard set of mapping rules that are consistent with the
requirements and conventions of the original specifications.

2 Conformance Criteria

Conformance to this specification can be considered from two perspectives:

1. implementations (for example, a tool [compiler] that applies the mapping to generate C++ source code from
IDL); and

2. users (for example, application source code that interacts with the C++ source code generated by a compiler).

Table 2.1: Conformance Points

Implementation A conformant implementation shall transform IDL input into C++ source code output as
specified in Chapter 7.

User Application source code that conforms to this specification makes use of the C++ data types and
APIs as defined in Chapter 7. Conformant application source code shall make no assumptions
about the underlying implementation or utilize any unspecified API or behavior beyond what is
specified in the language mapping. Conformant application source code, as a result, will be
portable across implementations.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[ISO/IEC-14882:1998] ISO/IEC, ISO/IEC 14882:1998 Programming Languages – C++,
https://www.iso.org/standard/25845.html

[ISO/IEC-14882:2003] ISO/IEC, ISO/IEC 14882:2003 Programming Languages – C++,
https://www.iso.org/standard/38110.html

IDL4 to C++ Language Mapping 1.0 1

[ISO/IEC-14882:2011] ISO/IEC, ISO/IEC 14882:2011 Programming Languages – C++,
https://www.iso.org/standard/64029.html

[ISO/IEC-14882:2017] ISO/IEC, ISO/IEC 14882:2017 Programming Languages – C++,
https://www.iso.org/standard/68564.html

[OMG-C++] OMG, C++ Language Mapping, Version 1.3, https://www.omg.org/spec/CPP/1.3

[OMG-C++11] OMG, C++11 Language Mapping, Version 1.6, https://www.omg.org/spec/CPP11/1.6

[OMG-CORBA-COMP] OMG, Common Object Request Broker Architecture, Part 3: CORBA
Components, Version 3.4, https://www.omg.org/spec/CORBA/3.4

[OMG-CORBA-IFC] OMG, Common Object Request Broker Architecture, Part 1: CORBA
Interfaces, Version 3.4, https://www.omg.org/spec/CORBA/3.4

[OMG-IDL4] OMG, Interface Definition Language, Version 4.2, https://www.omg.org/spec/IDL/4.2

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Building Block

A Building Block is a consistent set of IDL rules that together form a piece of IDL functionality. Building blocks are
atomic, meaning that if selected, they shall be totally supported.

Building blocks are described in [OMG-IDL4] Chapter 7, IDL Syntax and Semantics.

C++

C++ is a general-purpose computer programming language.

Language Mapping

An association of elements in one language to elements in another language (from IDL to C++, in this case) that
facilitates a transformation from one language to another.

5 Symbols

The acronyms used in this specification are shown in Table 5.1.

2 IDL4 to C++ Language Mapping 1.0

Table 5.1: Acronyms

Acronym Meaning

CCM Corba Component Model

CORBA Common Object Request Broker Architecture

DDS Data Distribution Service

IDL Interface Definition Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not change any adopted OMG specification.

6.2 Acknowledgments

The following companies submitted this specification:

• Real-Time Innovations, Inc.

• ZettaScale Technology

• Objective Interface Systems, Inc.

• Micro Focus International Plc.

6.3 Intellectual Property Rights
This specification is available under the OMG’s Copyright and Non-Assertion Covenant (see https://www.omg.org/cgi-
bin/doc.cgi?ipr for details).

IDL4 to C++ Language Mapping 1.0 3

https://www.omg.org/cgi-bin/doc.cgi?ipr
https://www.omg.org/cgi-bin/doc.cgi?ipr

7 IDL to C++ Language Mapping

7.1 General

7.1.1 Names

IDL member names and type identifiers shall map to equivalent C++ names and type identifiers with no change.

7.1.2 Reserved Names

This specification reserves the use the following names for its own purposes:

• The keywords in existing and future versions of the C++ language, which includes but is not limited to the
following names1:
alignas delete reinterpret_cast

alignof do requires

and double return

and_eq dynamic_cast short

asm else signed

atomic_cancel enum sizeof

atomic_commit explicit static

atomic_noexcept export static_assert

auto extern static_cast

bitand false struct

bitor float switch

bool for synchronized

break friend template

case goto this

catch if thread_local

char inline throw

char8_t int true

char16_t long try

char32_t mutable typedef

class namespace typeid

compl new typename

concept noexcept union

const not unsigned

consteval not_eq using

constexpr nullptr virtual

constinit operator void

1 An updated list of reserved keywords in the C++ programming language, along with the C++ version that introduced them, is
available at https://en.cppreference.com/w/cpp/keyword.

IDL4 to C++ Language Mapping 1.0 5

https://en.cppreference.com/w/cpp/keyword

const_cast or volatile

continue or_eq wchar_t

co_await private while

co_return protected xorg

co_yield public xor_eq

decltype reflexpr

default register

The use of any of these names for a user-defined IDL type or interface (assuming it is also a legal IDL name) shall
result in the mapped name having an underscore ("_") prepended.

7.1.3 C++ Language Version Requirements

The language mappings defined in this specification require C++11 [ISO/IEC-14882:2011] as the minimum C++
standard version.

Implementers of this specification who may need to comply with C++98 [ISO/IEC-14882:1998] or C++03 [ISO/IEC-
14882:2003] shall follow the Compatibility Rules for C++98 and C++03 defined in Annex C. Such rules provide
alternative mappings for IDL constructs that map to C++ code incompatible with those versions of the C++ standard.

7.1.4 IDL Type Traits

The mapping rules for IDL types specified in this chapter shall provide the following type traits to facilitate template
metaprogramming. Type traits shall be available under the omg::types namespace.

IDL4CPP-55: is_bounded/bound for none string/sequence types

Table 7.1: Common Type Traits for Mapped IDL Types

Member Definition

template <typename T>
struct value_type;

Defines type - Type to be used as return C++ type.

template <typename T>
struct in_type;

Defines type - Type to be used as in C++ type.

template <typename T>
struct out_type;

Defines type - Type to be used as out C++ type.

template <typename T>
struct inout_type

Defines type - Type to be used as inout C++ type.

template <typename T>
struct is_bounded;

Indicates whether a type is bounded or not., The struct defining this trait is
empty. The mapping rules specified in this chapter indicate the types for
which implementers shall provide a specialization to indicate whether the
type is bounded inheriting from std::true_type or std::false_type.

template <typename T>
struct bound;

Indicates a type bound. The struct defining this trait is empty. The
mapping rules specified in this chapter indicate the types for which
implementers shall provide a specialization to indicate the type bound

6 IDL4 to C++ Language Mapping 1.0

inheriting from std::integral_constant<size_t, b>.

The trait is undefined when the type T is incorrect (for example bound<int>::value is not defined).

Each trait struct with a type or a value member shall have an alias ending in _t or _v, respectively. For example:

template <typename T>
using in_type_t = typename in_type<T>::type;

7.2 Core Data Types

7.2.1 IDL Specification

There is no direct mapping of the IDL Specification itself. The elements contained in the IDL specification are mapped
as described in the following sections.

7.2.2 Modules

IDL modules shall be mapped to C++ namespaces of the same name. All IDL type declarations within the IDL module
shall be mapped to corresponding C++ declarations within the generated namespace. IDL declarations not enclosed in
any module shall be mapped into the global scope.

For example, the following module declaration in IDL:
// ...
module my_math {
 // ...
};

Would map to the following C++ namespace declaration:
// ...
namespace my_math {
 // ...
}

7.2.3 Constants

IDL constants of numeric and boolean types shall be mapped to C++ constexpr declarations of equivalent type with
the same name and value within the equivalent scope and namespace where they are defined.

IDL constants of string type shall be mapped to a constexpr declaration of omg::types::string_view type that
provides the interface and semantics of std::string_view, as defined in C++17 [ISO/IEC-14882:2017].
Implementations supporting C++17 and above may map IDL constants of string type to constexpr
std::string_view directly.

IDL constants of wstring type shall be mapped to a constexpr of omg::types::wstring_view type that provides
the interface and semantics of std::wstring_view, as defined in C++17 [ISO/IEC-14882:2017]. Implementations
supporting C++17 and above may map IDL constants of wstring type to constexpr std::wstring_view directly.

For example, the IDL const declarations below:
module my_math {
 const string my_string = "My String Value";
 const double PI = 3.141592;
};

IDL4 to C++ Language Mapping 1.0 7

would map to the following C++:
namespace my_math {
 constexpr omg::types::string_view my_string = "My String Value";
 constexpr double PI = 3.141592;
}

The constant value of wide character and wide string constants shall be preceded by L in C++.

For example, IDL constant:
const wstring ws = "Hello World";

would map to the following C++:
constexpr omg::types::wstring_view ws{ L"Hello World" };

7.2.4 Data Types

7.2.4.1 Basic Types

7.2.4.1.1 Integer Types

Integer types shall be mapped as shown in Table 7.2. The default value of a mapped integer type is 0.

Table 7.2: Mapping of Integer Types

IDL Type C++ Type

short int16_t

unsigned short uint16_t

long int32_t

unsigned long uint32_t

long long int64_t

unsigned long
long

uint64_t

7.2.4.1.2 Floating-Point Types

IDL floating-point types shall be mapped as shown Table 7.3. The default value of a mapped floating point type is 0.

Table 7.3: Floating-Point Types Mapping

IDL Type C++ Type

float float

double double

long double long double

8 IDL4 to C++ Language Mapping 1.0

7.2.4.1.3 Char Types

The IDL char type shall be mapped to the C++ type char. The default value of a mapped char is 0.

7.2.4.1.4 Wide Char Types

The IDL wchar type shall be mapped to the C++ type wchar_t. The default value of a mapped wchar_t is 0.

7.2.4.1.5 Boolean Types

The IDL boolean type shall be mapped to the C++ bool, and the IDL constants TRUE and FALSE shall be mapped to
the corresponding C++ boolean literals true and false. The default value of a mapped bool is false.

7.2.4.1.6 Octet Type

The IDL type octet, which defines an 8-bit quantity, shall be mapped to the C++ uint8_t type. The default value of
a mapped uint8_t is 0.

7.2.4.2 Template Types

7.2.4.2.1 Sequences

IDL sequences shall be mapped to a C++ std::vector<T>, or to a type named omg::types::sequence<T> that
delivers std::vector<T> semantics. The template parameter T is the C++ mapped type. For interoperability
purposes, implementers shall always define omg::types::sequence<T>, which may be declared as an alias to
std::vector<T>. Other implementations of omg::types::sequence<T> shall support conversion to and from
std::vector<T>.

IDL4CPP-36: Issue with mapping of bounded string and traits

Bounded sequences shall be mapped to a C++ std::vector<T>, or to a type named
omg::types::bounded_sequence<T, N> (where T is the mapped type and N the bound size) that delivers
std::vector<T> semantics. For interoperability purposes (e.g., for potential use of trait specializations),
implementers shall always define omg::types::bounded_sequence<T,N>, which may be declared as an alias to
std::vector<T>. Other implementations of omg::types::bounded_sequence<T,N> shall support conversion to
and from std::vector<T>.

IDL4CPP-7: Specify bounds checking

NOTE—In any case, bound checking on bounded sequences may be performed at serialization time, raising an
exception or reporting an error if necessary.

NOTE—Implementers of this specification shall provide a bound checking mechanism for bounded sequences (e.g.,
at serialization time). Please refer to Annex A for platform-specific bound checking mechanisms.

IDL4CPP-49 Missing reference

Sequences shall provide the following specializations for the type traits defined in Clause Error: Reference source not
found7.1.4:

IDL4 to C++ Language Mapping 1.0 9

Table 7.4: Type Trait Specializations for Sequences

Member Definition

template<>
struct is_bounded;

Inherits std::true_type if the sequence is bounded and
std::false_type if the sequence is unbounded. When mapping to
std::vector<T>, is_bounded shall inherit std::false_type.

template <>
struct bound;

Inherits std::integral_constant<size_t, b> where b is the value of
the bound. For an unbounded sequence type, the value of b shall be
std::numeric_limits<std::size_t>::max().

The example below shows valid mappings for IDL bounded and unbounded sequences:
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 3> V2; // bounded sequence
typedef sequence<V1> V3; // unbounded sequence of sequence

mapping sequences using C++ std::vector:

namespace omg { namespace types {

template<typename T> using sequence = typename std::vector<T>;
template<typename T, size_t N> using bounded_sequence = typename std::vector<T>;

}} // namespace omg::types

using V1 = std::vector<T>;
using V2 = std::vector<T>;
using V3 = std::vector<V1>;

mapping sequences to omg::types::sequence<T> and omg::types::bounded_sequence<T,N>:

namespace omg { namespace types {

template<typename T> using sequence = typename std::vector<T>;
template<typename T, size_t N> using bounded_sequence = typename std::vector<T>;

}} // namespace omg::types

using V1 = omg::types::sequence<T>;
using V2 = omg::types::bounded_sequence<T, 3>;
using V3 = omg::types::sequence<V1>;

7.2.4.2.2 Strings

IDL strings shall be mapped to C++ std::string, or to a type named omg::types::string that delivers
std::string semantics. For interoperability purposes, implementers shall always define omg::types::string,
which may be declared as an alias to std::string. Other implementations of omg::types::string shall support
conversion to and from std::string.

IDL4CPP-36: Issue with mapping of bounded string and traits

Bounded strings may be mapped to a type called omg::types::bounded_string<N> (where N is the bound size),
which delivers the semantics of an std::string, and supports conversion to and from it. For interoperability
purposes (e.g., for potential use of trait specializations), implementers shall always define
omg::types::bounded_string<N>, which may be declared as an alias to std::string. Other implementations of
omg::types::bounded_string<N> shall support conversion to and from std::string.

10 IDL4 to C++ Language Mapping 1.0

IDL4CPP-7: Specify bounds checking

NOTE—In any case, bound checking on bounded strings may be performed at serialization time, raising an
exception or reporting an error if necessary.

NOTE—Implementers of this specification shall provide a bound checking mechanism for bounded strings (e.g., at
serialization time). Please refer to Annex A for platform-specific bound checking mechanisms.

IDL4CPP-49 Missing reference

Strings shall provide the following specializations for the type traits defined in Clause Error: Reference source not
found7.1.4:

Table 7.5: Type Trait Specializations for Strings

Member Definition

template<>
struct is_bounded;

Inherits std::true_type if the string is bounded and
std::false_type if the string is unbounded. When mapping to
std::string, is_bounded shall inherit std::false_type.

template <>
struct bound;

Inherits std::integral_constant<size_t, b> where b is the value of
the bound. For an unbounded string type, the value of b shall be
std::numeric_limits<std::size_t>::max().

7.2.4.2.3 Wstrings

IDL wstrings shall be mapped to C++ std::wstrings, or to a type named omg::types::wstring that delivers
std::wstring semantics and supports conversion from and to std::wstring2.

Bounded wstrings may be mapped to a type called omg::types::bounded_wstring<N> (where N is the bound
size), which delivers the semantics of an std::wstring, and supports conversion to and from it.

IDL4CPP-7: Specify bounds checking

NOTE—In any case, bound checking on bounded wstrings may be performed at serialization time, raising an
exception or reporting an error if necessary.

NOTE—Implementers of this specification shall provide a bound checking mechanism for bounded wstrings (e.g., at
serialization time). Please refer to Annex A for platform-specific bound checking mechanisms.

IDL4CPP-49 Missing reference

Wstrings shall provide the following specializations for the type traits defined in Clause Error: Reference source not
found7.1.4:

Table 7.6: Type Trait Specializations for Wstrings

Member Definition

template<>
struct is_bounded;

Inherits std::true_type if the wstring is bounded and
std::false_type if the wstring is unbounded. When mapping to

2 Supporting the semantics of a std::wstring does not limit the mapping of omg::types::wstring to use wchar_t as
the underlying type.

IDL4 to C++ Language Mapping 1.0 11

std::wstring, is_bounded shall inherit std::false_type.

template <>
struct bound;

Inherits std::integral_constant<size_t, b> where b is the value of
the bound. For an unbounded wstring type, the value of b shall be
std::numeric_limits<std::size_t>::max().

7.2.4.2.4 Fixed Type

IDL4CPP-37: Map to fixed?

The IDL fixed type shall map to a C++ class named Ffixed. The Ffixed class shall comply with the following
interface and shall include the following methods under the omg::types namespace:

namespace omg { namespace types {

class Ffixed {
public:
 // Constructors
 explicit Ffixed(string_view);
 Ffixed(const Ffixed&);
 Ffixed(Ffixed&& val);
 ~Ffixed();

 // Conversions
 explicit operator int64_t() const;
 explicit operator long double() const;
 Ffixed round(uint16_t) const;
 Ffixed truncate(uint16_t) const;
 std::string to_string() const;

 // Operators
 Ffixed& operator=(const Ffixed&);
 Ffixed& operator=(Ffixed&&);
 Ffixed& operator+=(const Ffixed&);
 Ffixed& operator-=(const Ffixed&);
 Ffixed& operator*=(const Ffixed&);
 Ffixed& operator/=(const Ffixed&);
 Ffixed& operator++();
 Ffixed operator++(int);
 Ffixed& operator--();
 Ffixed operator--(int);
 Ffixed operator+() const;
 Ffixed operator-() const;
 explicit operator bool() const;

 // Other member functions
 uint16_t fixed_digits() const;
 uint16_t fixed_scale() const;
};

std::string to_string(const Ffixed&);
void swap(Ffixed& a, Ffixed& b);
std::istream& operator>>(std::istream& is, Ffixed& obj);
std::ostream& operator<<(std::ostream& os, const Ffixed& obj);
Ffixed operator+(const Ffixed& lhs, const Ffixed& rhs);
Ffixed operator-(const Ffixed& lhs, const Ffixed& rhs);
Ffixed operator*(const Ffixed& lhs, const Ffixed& rhs);
Ffixed operator/(const Ffixed& lhs, const Ffixed& rhs);
bool operator>(const Ffixed& lhs, const Ffixed& rhs);
bool operator<(const Ffixed& lhs, const Ffixed& rhs);

12 IDL4 to C++ Language Mapping 1.0

bool operator>=(const Ffixed& lhs, const Ffixed& rhs);
bool operator<=(const Ffixed& lhs, const Ffixed& rhs);
bool operator==(const Ffixed& lhs, const Ffixed& rhs);
bool operator!=(const Ffixed& lhs, const Ffixed& rhs);

}} // namespace omg::types

In addition to the constructors listed above, the Ffixed class is default constructible and has explicit constructors
that can be called with a single value of any of the C++ fundamental integer types, double, or long double. The
implementation may use the Ffixed type directly, or alternatively, may use a different type, with effectively constant
digits and scale, that provides the same C++ interface and can be implicitly converted from/to the Ffixed class. The
name of this alternative class, which may be a template instantiation, is not defined by this mapping.

Fixed types shall provide the following type traits to facilitate template metaprogramming:

Table 7.7: Additional Type Traits for the Fixed Type

Member Definition

template <typename T>
struct digits;

Inherits std::integral_constant<size_t, b> where b indicates the
number of digits of the fixed type.

template <typename T>
struct scale;

Inherits std::integral_constant<size_t, b> where b indicates the
scale of the fixed type.

For example, the following IDL:
typedef fixed<5,2> F;

interface AnInterface {
 void op(in F arg);
};

would map to:
using F = omg::types::Fixed_Or_Implementation_Defined_Type;

class AnInterface {
public:
 // ...
 virtual void op(const F& arg) = 0;
 // ...
};

7.2.4.3 Constructed Types

7.2.4.3.1 Structures

An IDL struct shall be mapped to a C++ struct with the same name. The mapped struct shall provide:

• A default constructor that initializes all built-in data types3 to their default value as specified in Clause 7.2.4.1,

enumerators to their first value, and the rest of members using their default constructor.

• A copy constructor that performs a deep copy from the existing constructed type to create a new constructed

type.
3 Also known as fundamental types, built-in types include the boolean type, integer types, character types, and floating point

types. For more information, see https://en.cppreference.com/w/cpp/language/types. Built-in types have a one-to-one
correspondence to the IDL Basic Types specified in Clause 7.2.4.1.

IDL4 to C++ Language Mapping 1.0 13

• A move constructor that moves all members to their corresponding members.

• A copy assignment operator that performs a deep copy to create the new constructed type with strong type

safety.

• A move assignment operator.

• A set of comparison operators, including at least "equal to" and "not equal to."

• A destructor that releases all members.

Implementers of this specification may delegate the creation of such methods on the compiler. Each member field of

the IDL struct shall be mapped to a public member of the C++ struct, with the same name and equivalent C++ type

according to the mapping rules specified in this document. C++ struct members shall appear in the same order as the

corresponding IDL struct members

Moreover, the mapping shall provide a swap function in the namespace of the C++ struct definition with the

following signature:

void swap(<StructName>& a, <StructName>& b);

For example, the IDL struct declaration below:

For example, the IDL struct declaration below:

struct MyStruct {
 long a_long;
 short a_short;
};

would map to the following C++:
struct MyStruct {
 int32_t a_long {};
 int16_t a_short {};
};

void swap(MyStruct& a, MyStruct& b) {...}

7.2.4.3.2 Unions

An IDL union shall be mapped to a C++ class with the same name. The class shall provide the same constructors,
destructors, and operators for mapped structures defined in Clause 7.2.4.3.1.

IDL4CPP-5: a_short in example code

Moreover, the mapped class shall provide:

• A public accessor constant method named _d() that returns the value of the discriminator, with the following
signature:
<DiscriminatorType> _d() const;

• A public modifier method named _d() that sets the value of the discriminator with the following signature:
void _d(<DiscriminatorType> value);

Setting the discriminator to an invalid value (e.g., to a value that changes the union member that is currently
selected) may result in an error.
NOTE—The purpose of this method is to reset the discriminator value without having to reset the value of a

14 IDL4 to C++ Language Mapping 1.0

union member that may already be selected. To set a union member that can be selected by more than one case
label, providing the appropriate discriminator value, the C++ class provides a public modifier method that is
defined below.

• For each union member:

◦ A public accessor method with the name of the union member that returns:

▪ If the equivalent type of the member after resolving any typedef results in a C++ built-in type or an
enum, the accessor shall return by value:
<MemberType> <MemberName>();

▪ Otherwise, the accessor shall return a reference to its value:
<MemberType>& <MemberName>();

◦ A public constant accessor method with the name of the union member:

▪ If the equivalent type of the member after resolving any typedef results in a C++ built-in type or an
enum, the method shall return by value:
<MemberType> <MemberName>() const;

▪ Otherwise, the method shall return a constant reference to its value:
const <MemberType>& <MemberName>() const;

Accessing an invalid union member may result in an undefined error.

◦ A modifier method that takes as a parameter the value to which the member field shall be set, and sets the
discriminator to the appropriate value.

▪ If the equivalent type of the member after resolving any typedef is a C++ built-in type, or an enum,
the argument shall be passed by value:
void <MemberName>(<MemberType> value);

▪ Otherwise, the argument shall be passed by reference to const, and a move-enabled modifier method
shall be provided:
void <MemberName>(const <MemberType>& value);
void <MemberName>(<MemberType>&& value);

• For each union member that can be selected by more than one case label, the C++ class shall include a
modifier method that allows selecting the corresponding discriminator value with an extra parameter passed by
value named discriminator of the discriminator type.

◦ If the equivalent type member after resolving any typedef is a C++ built-in type, or an enum, the
argument shall be passed by value:
void <MemberName>(<MemberType>& value, <DiscriminatorType> discriminator);

◦ Otherwise, the argument shall be passed by reference to const, and a move-enabled modifier method
shall be provided:
void <MemberName>(
 const <MemberType>& value,
 <DiscriminatorType> discriminator);
void <MemberName>(
 <MemberType>&& value,
 <DiscriminatorType> discriminator);

• If the union has a default case, the default constructor shall initialize the discriminator, and the selected
member field following the initialization rules described in Clause 7.2.4.3.1. If it does not, the default
constructor shall initialize the union to the first discriminant value specified in the IDL definition.

IDL4 to C++ Language Mapping 1.0 15

• If the IDL union definition has an implicit default member (i.e., if the union does not have a default case and
not all permissive discriminator values are listed), the class shall provide a method named _default() that
explicitly sets the discriminator value to a legal default value.
void _default();

Moreover, the mapping shall provide a swap method in the scope of the C++ class definition with the following
signature:
void swap(<UnionName>& a, <UnionName>& b);

For example, the IDL union declaration below:

union AUnion switch (octet) {
 case 1:
 long a_long;
 case 2:
 case 3:
 short a_short;
 case 4:
 AStruct a_struct;
 default:
 octet a_byte_default;
};

would map to the following C++:
class AUnion {
public:
 AUnion() {...}
 AUnion(const AUnion& other) {...}
 Aunion(AUnion&& other) {...}
 ~AUnion() {...}

 AUnion& operator=(const AUnion&) {...}
 AUnion& operator=(AUnion&& other) {...}

 uint8_t _d() const {...}
 void _d(uint8_t value) {...}

 void a_long(int32_t value) {...}
 int32_t& a_long() {...}
 const int32_t a_long() const {...}

 void a_short(int16_t value) {...}
 void a_short(int16_t value, uint8_t discriminator) {...}
 int16_t& a_short() {...}
 const int16_t& a_short() const {...}

 void a_struct(const AStruct& value) {...}
 AStruct& a_struct() {...}
 const AStruct& a_struct() const {...}

 void a_byte_default(uint8_t value) {...}
 uint8_t& a_byte_default() {...}
 const uint8_t& a_byte_default() const {...}
};

void swap(AUnion& a, AUnion& b) {...}

Likewise, the IDL declaration below:
union AUnion switch (octet) {
 case 1:

16 IDL4 to C++ Language Mapping 1.0

 long a_long;
 case 2:
 case 3:
 short a_short;
};

would map to the following C++:
class AUnion {
public:
 AUnion() {...}
 AUnion(const AUnion& other) {...}
 Aunion(AUnion&& other) {...}
 ~AUnion() {...}

 AUnion& operator=(const AUnion&) {...}
 AUnion& operator=(AUnion& other) {...}

 uint8_t _d() const {...}
 void _d(uint8_t value) {...}

 void a_long(int32_t value) {...}
 int32_t& a_long() {...}
 const int32_t a_long() const {...}

 void a_short(int16_t value) {...}
 void a_short(int16_t value, uint8_t discriminator) {...}
 int16_t& a_short() {...}
 const int16_t& a_short() const {...}

 void _default() {...}
};

void swap(AUnion& a, AUnion& b) {...}

7.2.4.3.3 Enumerations

An IDL enum shall be mapped to a C++ scoped enum class with the same name as the IDL enum type.

IDL4CPP-13: Add bit_bound/underlying_type for enum

Enumerations shall provide the following type traits to facilitate template metaprogramming if they are preceded by the
@bit_bound annotation (see Clause 7.17.4):

Table 7.8: Additional Type Traits for Enumerations

Member Definition

template<>
struct bit_bound;

Inherits std::integral_constant<uint32_t, b> where b indicates the
bit_bound of the enum

template<>
struct underlying_type;

Defines type - Type mapped as the underlying type of the enum.

For example, the IDL enum declaration below:

enum AnEnum {
 zero,
 one,
 two
};

IDL4 to C++ Language Mapping 1.0 17

would map to the following C++:
enum class AnEnum {
 zero,
 one,
 two
};

7.2.4.3.4 Constructed Recursive Types

Constructed recursive types are supported by mapping the involved types directly to C++ as described elsewhere in
Clause 7.

7.2.4.4 Arrays

IDL4CPP-87: No type from omg::types available for arrays

An IDL array shall be mapped to a C++ std::array of the mapped element type, or to a type named
omg::types::array that delivers std::array semantics. For interoperability purposes, implementers shall always
define omg::types::array, which may be declared as an alias to std::array. Other implementations of
omg::types::array shall support conversion to and from std::array. Multidimensional arrays shall be
constructed nesting std::array or omg::types::array definitions.

Arrays shall provide the following type traits to facilitate template metaprogramming:

Table 7.9: Additional Type Traits for Arrays

Member Definition

template <typename T>
struct dimensions;

Inherits std::integral_constant<size_t, b> where b indicates the
number of dimensions of the array.

For example, the IDL declaration below:
typedef long long_array[100];
typedef string string_array[1][2];

would map to the following C++:
using long_array = std::array<int32_t, 100>;
using string_array = std::array<std::array<std::string, 2>, 1>;

7.2.4.5 Native Types

IDL provides a declaration to define an opaque type whose representation is specified by the language mapping. This
language mapping specification does not define any native types, but compliant implementations may provide the
necessary mechanisms to map native types to equivalent type names in C++.

7.2.4.6 Naming Data Types

IDL typedefs shall be mapped to type alias declarations.

For example the IDL declaration below:
typedef long Length;

struct MyType {

18 IDL4 to C++ Language Mapping 1.0

 Length my_type_length;
};

IDL4CPP-33: long in C++ code

would map to the following C++:
using Length = longint32_t;

struct MyType {
 // ...
 Length my_type_length;
 //...
};

7.3 Any

The IDL any type shall be mapped to a C++ omg::types::Any type. The implementation of the omg::types::Any
is platform-specific, and shall include operations that allow programmers to insert and access the value contained in an
any instance as well as the actual type of that value.

7.4 Interfaces – Basic

Each IDL interface shall be mapped to a C++ class with the same name as the IDL interface. If the IDL
interface derives from other IDL interfaces, the equivalent C++ class shall be declared to extend the C++ classes
resulting from mapping the base interfaces.

Each attribute defined in the IDL interface shall map to a pair of pure virtual methods in the C++ class, an accessor
and a modifier, with the same name as the attribute. The accessor method shall return the C++ equivalent type of the
attribute according to the mapping rules defined in this chapter. The modifier method shall take as an argument the
value to be set. If the equivalent type of the attribute after resolving any typedef is a C++ built-in type, or an enum,
the argument shall be passed by value. Otherwise, the argument shall be passed as a reference to const. If the attribute
is read only, the mapping shall omit the modifier.

Each operation defined in the IDL interface shall map to a pure virtual method in the C++ class. The name of the
mapped method shall be the name of the IDL operation. The number and order of the parameters to the mapped method
shall be the same as in the IDL operation. The name of the method parameters shall be the name of the IDL method
argument. The type of the method parameter shall be mapped following the mapping rules defined in this chapter for
the specific type. IDL out and inout arguments shall be passed by reference. IDL in arguments shall be passed by
value if the resulting type after resolving any typedef C++ is a built-in type or an enum, and as a reference to const
otherwise. Parameters of interface type4 T shall be mapped to std::shared_ptr<T>, or to a type named
omg::types::ref_type<T> that delivers std::shared_ptr<T> semantics. Implementers shall also provide a type
named omg::types::weak_ref_type<T> that delivers std::weak_ptr<T> semantics.

For example, the IDL interface declaration below:

interface AnInterface {
 attribute long attr;
 readonly attribute long ro_attr;
 void op1(
 in long i_param,
 in MyStruct si_param,
 inout long io_param,
 inout MyStruct ios_param,

4 As described in Clause 7.4.3.4.3.1 of [OMG-IDL4], parameters of interface type are semantically a reference to an object
implementing that interface.

IDL4 to C++ Language Mapping 1.0 19

 out long o_param,
 out MyStruct so_param);
}

would map to the following C++:
class AnInterface {
public:
 virtual void attr(int32_t value) = 0;
 virtual int32_t attr() const = 0;

 virtual int32_t ro_attr() const = 0;

 virtual void op1(
 int32_t i_param,
 const MyStruct& si_param,
 int32_t& io_param,
 MyStruct& ios_param,
 int32_t& o_param,
 MyStruct& so_param) = 0;
};

7.4.1 Exceptions

An IDL exception shall be mapped to a C++ class with the same name as the IDL exception. The mapped class
shall extend the std::exception class.

IDL4CPP-38: what argument of exception constructor?

All exception members shall be initialized to their default value by the default constructor for the exception. All
exception members shall be initialized to their default value by the default constructor for the exception. The mapped
class shall also provide a copy constructor, move constructor, assignment operator, move operator, and destructor,
which shall automatically copy, move, or free the storage associated with the exception. Also, the mapped class shall
provide an implementation of the what() method. For convenience, the mapping shall also define an explicit
constructor with one parameter for each exception member, which shall initialize the exception members to the given
values, and. shall also include a parameter of type const char * to provide explanatory information. Implementers
may provide additional constructors to provide explanatory information as well.

IDL4CPP-6: Destructors should be override instead of virtual

For example, the IDL declarations below:
exception AnException {
 long error_code;
};
interface MyInterfaceException {
 void op1(in long in_param) raises(AnException);
};

would map to the following C++:
class AnException : public std::exception {
public:
 AnException() {...}
 AnException(const AnException&) {...}
 AnException(AnException&&) {...}
 AnException(int32_t error_code, const char* what) {...}
 virtual ~AnException() override {...}
 AnException& operator=(const AnException&) {...}
 AnException& operator=(AnException&&) {...}

 void error_code(int32_t value) {...}

20 IDL4 to C++ Language Mapping 1.0

 int32_t error_code() const {...}

};

class MyInterfaceException {
 void op1(int32_t in_param);
};

7.4.2 Interface Forward Declaration

An IDL interface forward declaration shall be mapped to a partial forward declaration in C++.

For example, the interface forward declaration below:
interface Foo;

would map to the following C++:
class Foo;

7.5 Interfaces – Full

This building block complements Interfaces – Basic adding the ability to embed declarations such as types, exceptions,
and constants in the interface body.

IDL4CPP-85: Mapping of constants within an interface not correct, not compilable C++ code

Interfaces – Full shall follow the mapping rules for Interfaces – Basic, adding to mapped class the declaration every
type, exception, or constant declaration in the IDL interface body. Types, exceptions, and constants shall be mapped
according to the mapping rules specified in this chapter. In the case of constants, constexpr declarations shall be
marked as static.

For example, the IDL interface declaration below:
interface FullInterface {
 struct S {
 long a_long;
 };
 const double PI = 3.14;
 void op1(in S s_in);
 attribute long an_attribute;
};

would map to the following C++:

IDL4CPP-39: an_attribute not in IDL

IDL4CPP-85: Mapping of constants within an interface not correct, not compilable C++ code
class FullInterface {
public:
 struct S {
 int32_t a_long;
 };
 static constexpr double PI = 3.14;
 virtual void op1(const S& s_in) = 0;
 virtual void attribute(int32_t value) = 0;
 virtual int32_t an_attribute() const = 0;

IDL4 to C++ Language Mapping 1.0 21

7.6 Value Types

An IDL valuetype shall be mapped to a C++ class with the same name as the IDL valuetype. Public state
members shall be mapped to public pure virtual accessor and modifier methods of the C++ class. Private state
members shall be mapped to protected pure virtual accessor and modifier methods. If the valuetype contains factory
operations, the mapping shall declare a class named <ValueTypeName>_factory in the same scope as the C++ class
that represents the valuetype. <ValueTypeName>_factory shall declare a pure virtual method for every factory
operation, returning either std::shared_ptr<T> or omg::types::ref_type<T>, where T is the mapped
valuetype class, and accepting the specified in parameters. The <ValueTypeName>_factory class shall also
provide a protected virtual destructor, and a protected constructor.

If the IDL valuetype inherits from a base valuetype, the mapped class shall inherit the class that resulted from
mapping the base valuetype as public virtual. If the IDL valuetype supports an interface type, all the operations
in the interface, and corresponding base interfaces if any, shall be mapped to pure virtual methods in the mapped class.

For example, the IDL valuetype declarations below:

valuetype VT1 {
 attribute long a_long_attr;
 void vt_op(in long p_long);
 public long a_public_long;
 private long a_private_long;
 factory vt_factory(in long a_long, in short a_short);
};

interface MyInterface {
 void op();
};

valuetype VT2 : VT1 supports MyInterface {
 public long third_long;
};

IDL4CPP-6: Destructors should be override instead of virtual

IDL4CPP-40: Example VT2 not correct

IDL4CPP-41: Example VT1 not correct

would map to the following C++:
class VT1 {
public:
 virtual void a_long_attr(int32_t value) = 0;
 virtual int32_t a_long_attr() const = 0;
 int32_t& a_long_attr() = 0;

 virtual void vt_op(int32_t p_long) = 0;

 virtual void a_public_long(int32_t value) = 0;
 virtual int32_t a_public_long() const = 0;
 virtual int32_t& a_public_long() = 0;

protected:
 virtual void a_private_long(int32_t value) = 0;
 virtual int32_t a_private_long() const = 0;
 virtual int32_t& a_private_long() = 0;
};

22 IDL4 to C++ Language Mapping 1.0

class VT1_factory {
public:
 virtual omg::types::ref_type<VT1> vt_factory(int32_t a_long, int16_t a_short) = 0;
protected:
 virtual ~VT1_factory() override;
 VT1_factory();
};

class VT2 : public virtual VT1 {
public:
 virtual void op() = 0;

 virtual int32_t third_long() const = 0;
 virtual int32_t& third_long() const = 0;
 virtual void third_long(int16_t32_t value) = 0;
};

7.7 CORBA-Specific – Interfaces

CORBA-specific mappings are defined in Clause A.1 of Annex A: Platform-Specific Mappings.

7.8 CORBA-Specific – Value Types

CORBA-specific mappings are defined in Clause A.1 of Annex A: Platform-Specific Mappings.

7.9 Components – Basic

Basic components have no direct language mapping; they shall be mapped to equivalent IDL, as specified in [OMG-
CORBA-COMP], and mapped to C++ accordingly.

7.10 Components – Homes

Homes have no direct language mapping; they shall be mapped to equivalent IDL, as specified in [OMG-CORBA-
COMP], and mapped to C++ accordingly.

7.11 CCM-Specific

CORBA-specific mappings are defined in Clause A.1 of Annex A: Platform-Specific Mappings.

7.12 Components – Ports and Connectors

Ports and Connectors have no direct language mapping; they shall be mapped to intermediate IDL, as specified in
[OMG-IDL4], and mapped to C++ accordingly.

7.13 Template Modules

Template module instances have no direct language mapping; they shall be mapped to intermediate IDL, as specified in
[OMG-IDL4], and mapped to C++ accordingly.

IDL4 to C++ Language Mapping 1.0 23

7.14 Extended Data Types

7.14.1 Structures with Single Inheritance

An IDL struct that inherits from a base IDL struct shall be mapped to a C++ struct with the same name, and
shall inherit from the mapped base struct using public inheritance.

The mapping shall follow the rules defined in Clause 7.2.4.3.1, including the definition of a swap method in the
namespace of the struct, which shall ensure that all inherited members are swapped.

For example, an IDL struct extending the MyStruct structure defined in Clause 7.2.4.3.1:

struct ChildStruct : MyStruct {
 float a_float;
};

would map to the following C++:
struct ChildStruct : MyStruct {
 float a_float {};
};

void swap(ChildStruct& a, ChildStruct& b) {...}

7.14.2 Union Discriminators

This building block adds the wchar, and octet IDL types to the set of valid types for a discriminator. The mapping of
union discriminators of such types shall be mapped as specified in Clause 7.2.4.3.2.

NOTE—Any addition to the list of supported integer, char, boolean, or enum types as a result of the implementation of
the Extended Data Types building block, makes such types valid union discriminators as well. For example, if 8-bit
integer values are supported (see Clause 7.14.4), int8 and uint8 are valid union discriminators and shall be mapped
as specified in Clause 7.14.4.

7.14.3 Additional Template Types

7.14.3.1 Maps

IDL maps shall be mapped to a C++ std::map<Key,T> instantiated with the mapped C++ key type Key and mapped
value type T, or to a type named omg::types::map<Key,T> that delivers std::map<Key,T> semantics. For
interoperability purposes, implementers shall always define omg::types::map<Key,T>, which may be declared as an
alias to std::map<Key,T>. Other implementations of omg::types::map<Key,T> shall support conversion to and
from std::map<Key,T>.

Bounded maps may be mapped to a type named omg::types::bounded_map<Key, T, N> (where Key is the key
type, T the mapped value type, and N the bound size), which delivers the semantics of a std::map<Key, T> and
supports transparent conversion to and from it.

IDL4CPP-7: Specify bounds checking

NOTE—In any case, bounds checking on bounded maps may be performed at serialization time, raising an exception
or reporting an error if necessary.

NOTE—Implementers of this specification shall provide a bound checking mechanism for bounded mapss (e.g., at
serialization time). Please refer to Annex A for platform-specific bound checking mechanisms.

24 IDL4 to C++ Language Mapping 1.0

IDL4CPP-49: Missing reference

Maps shall provide the following specializations for the type traits defined in Clause Error: Reference source not
found7.1.4:

Table 7.10: Type Trait Specialization for Maps

Member Definition

template<>
struct is_bounded;

Inherits std::true_type if the map is bounded and std::false_type if
the map is unbounded. When mapping to std::map<Key,T>, is_bounded
shall inherit std::false_type.

template<>
struct bound;

Inherits std::integral_constant<size_t, b> where b is the value of
the bound. For an unbounded map type, the value of b shall be
std::numeric_limits<std::size_t>::max().

Maps shall also provide the the following type traits to facilitate template metaprogramming:

Table 7.11: Additional Type Trait Definitions for Maps

Member Definition

template <typename T>
struct key;

Defines type - Type to be used as key type.

template <typename T>
struct elements;

Defines type - Type to be used as elements type.

For example, the IDL declarations below show the mapping from IDL bounded and unbounded maps assuming
std::map<Key,T> as the mapping for both:

typedef map<unsigned long, MyStruct> M1; // unbounded map
typedef map<string, MyStruct, 20> M2; // bounded map

would map to the following C++:
using M1 = std::map<uint32_t, MyStruct>;
using M2 = std::map<std::string, MyStruct>;

7.14.3.2 Bitsets

IDL4CPP-10: bitset mapping

IDL bitset types shall be mapped to C++ structs that meet the C++ requirements for aggregate initialization. The
only members of these structs are bit fields. In cases where the IDL bitset inherits from a base type, the mapped
struct shall derive (using public inheritance) from the struct resulting from mapping the base type.bitfields of
the base type (recursively) shall appear directly in the mapped derived type.

The mapped type’s bit field members directly correspond to the IDL bitfields, including the use of anonymous
(nameless) bit fields. The C++ data type for each bit field is the mapped type of the IDL bitfield destination type,
according to the mapping rules specified in this chapter.

For example, the IDL declarations below:
bitset BitSet1 {
 bitfield<1> bit0;
 bitfield<1>;
 bitfield<2, unsigned short> bits2_3;
};

IDL4 to C++ Language Mapping 1.0 25

bitset BitSet2 : BitSet1 {
 bitfield<3>;
 bitfield<1> bit7;
};

would map to the following C++:
struct BitSet1 {
 bool bit0 : 1;
 bool : 1;
 uint16_t bits2_3 : 2;
};

struct BitSet2 : BitSet1 {
 bool bit0 : 1;
 bool : 1;
 uint16_t bits2_3 : 2;
 uint8_t : 3;
 bool bit_7 : 1;
};

7.14.3.3 Bitmask Type

IDL bitmask declarations shall be mapped to two a C++ struct type containing the followingnames elements:

• An unscoped enum named <Bitmask>Bits_flags with an explicitly defined underlying type. That
underlying type is the smallest mapped unsigned integer type that has sufficient bits for the bit_bound of the
bitmask: uint8_t, for values between 1 and 8; uint16_t for bit_bound values between 9 and 16;
uint32_t, for values between 17 and 32; and uint64_t for values between 33 and 64. The
<Bitmask>Bits_flags enumerators are the values defined in the scope of the IDL bitmask, with each
enumerator explicitly initialized to its corresponding integer value.
NOTE—The exact form of this initialization expression (for example, use of non-decimal bases or bit shifts or
other operators) is implementation-defined.

• A type alias (using) defining the <Bitmask> name itself as an alias for the underlying type of the enum
described above (i.e., uint8_t, uint16_t, uint32_t, or uint64_t depending on the bit_bound). A
private member named _value of the underlying type of _flags (i.e., uint8_t, uint16_t, uint32_t, or
uint64_t depending on the bit_bound).

• A default constructor and a copy constructor.

• An implementation of the !=, &=, and ^= bitwise operators.

• An implementation of the function call operator that returns _value.

Bitmasks shall provide the following type traits to facilitate template metaprogramming. Because the bitmask is itself
an alias for a C++ built-in type, the traits template is specialized on the <Bitmask>Bits type.

Table 7.12: Additional Type Traits for Bitmasks

Member Definition

template<>
struct bit_bound;

Inherits std::integral_constant<uint32_t, b> where b indicates the
bit_bound of the bitmask.

template<>
struct underlying_type;

Defines type - Type mapped as the underlying type of the bit mask (i.e., of
the _flags enum).

26 IDL4 to C++ Language Mapping 1.0

For example, the IDL bitmask declaration below:
@bit_bound(832)
bitmask MyBitMask {
 @position(0) flag0,
 @position(1) flag1,
 @position(4) flag4,
 @position(6) flag6
};

would map to the following C++:
struct MyBitMask {
 enum MyBitMaskBits : std::uint832_t {
 flag0 = 0x01 << 10,
 flag1 = 0x01 << 2,
 flag4 = 16,
 flag6 = 64
 };

 MyBitMask() : _value(0U) {}
 MyBitMask(std::uint32_t v) : _value(v) {}

 operator uint32_t()
 {
 return _value;
 }

 MyBitMask& operator|=(std::uint32_t other)
 {
 _value != other;
 return *this;
 }

 MyBitMask& operator&=(std::uint32_t from)
 {
 _value &= other;
 return *this;
 }

 MyBitMask& operator^=(std::uint32_t other)
 {
 _value ^= other;
 return *this;
 }

private:
 uint32_t _value;
};
using MyBitMask = std::uint8_t;

7.14.4 8-bit Integer Types

8-bit integer types shall be mapped as shown in Table 7.13. The default value of 8-bit integer types is 0.

Table 7.13: Mapping of 8-bit Integer Types

IDL Type C++ Type

int8 int8_t

uint8 uint8_t

IDL4 to C++ Language Mapping 1.0 27

7.14.5 Explicitly-Named Integer Types

Explicitly-named integer types shall be mapped as shown in Table 7.14. The default value of explicitly-named integer
types is 0.

Table 7.14: Mapping of Explicitly-Named Integer Types

IDL Type C++ Type

int16 int16_t

uint16 uint16_t

int32 int32_t

uint32 uint32_t

int64 int64_t

uint64 uint64_t

7.15 Anonymous Types

No impact to the C++language mapping.

IDL4CPP-2: Availability of IDL Type Traits for anonymous types

NOTE—For anonymously typed members in a struct, it is possible to use the C++ decltype to acquire the declared
type of each member and use it in a traits declaration. For example:
struct S {
 std::vector<int32_t> v;
 std::vector<int32_t> w;
};

traits<decltype(S::v)>::value_type x;
x.push_back(1234);

7.16 User-Defined Annotations

 User-defined annotations are not propagated to the generated C++ code.

7.17 Standardized Annotations

[OMG-IDL4] defines some annotations and assigns them to logical groups. These annotations may be applied to
various constructs throughout an IDL document, and their impact on the language mapping is dependent on the context
in which they are applied. The following sections describe the impact these defined annotations have on the language
mapping, and provide cross references to earlier document sections where the details are given.

7.17.1 Group of Annotations: General Purpose

Table 7.15 identifies the mapping impact of the IDL defined General Purpose Annotations.

Table 7.15: General Purpose Annotation Impact

General Purpose Annotation Impact on C++ Language Mapping

@id No impact on language mapping

28 IDL4 to C++ Language Mapping 1.0

@autoid No impact on language mapping

@optional IDL elements annotated with @optional of type T shall map to:

• std::optional<T> in implementations of this specification supporting
C++17 [ISO/IEC-14882:2017] and above.

• omg::types::optional<T> in implementations that need to remain
compliant with earlier versions of the C++ standard. The implementation
of omg::types::optional<T> shall deliver std::optional<T>’s
semantics and support transparent conversion to and from
std::optional<T>.

@position Impacts the mapping of bitmask types as defined in Clause 7.14.3.3.

@value Impacts the mapping of enum types, providing the value of the annotated
enumerator.

For example:
enum Color {
 @value(1) red,
 @value(2) green,
 @value(3) blue
};

would map to the following C++:
enum class Color {
 red = 1,
 green = 2,
 blue = 3
};

@extensibility No impact on language mapping

@final No impact on language mapping

@mutable No impact on language mapping

@appendable No impact on language mapping

7.17.2 Group of Annotations: Data Modeling

Table 7.16 identifies the mapping impact of the IDL defined Data Modeling Annotations.

Table 7.16: Data Modeling Annotation Impact

Data Modeling Annotation Impact on C++ Language Mapping

@key No impact on language mapping.

@must_understand No impact on language mapping.

@default_literal The C++ element declared as result of the mappings defined in this specification
shall be initialized to the element indicated by the annotation.

IDL4 to C++ Language Mapping 1.0 29

7.17.3 Group of Annotations: Units and Ranges

Table 7.17 identifies the mapping impact of the IDL defined Units and Ranges Annotations.

IDL4CPP-8: Use of @range is inconsistent with IDL4 grammar

Table 7.17: Units and Ranges Annotation Impact

Units and Ranges Annotation Impact on C++ Language Mapping

@default C++ elements declared as result of the mappings defined in this specification
containing a @default annotation shall be initialized to the value of the
annotation.

@range IDL elements annotated with @range(min, max) shall map to C++
omg::types::ranged<T, min, max> elements, where T is C++ type
equivalent to that of the IDL element.

The implementation of omg::types::ranged<T, min, max> shall perform the
corresponding checks and throw std::out_of_range if fail the value assigned
to a ranged element is out of the predefined range.

For example:
struct StructureOfRangedValues {
 @range(min=-10, max=10) long x;
};

would map to:
struct StructureOfRangedValues {
 omg::types::ranged<int32_t, -10, 10> x;
};

@min C++ elements declared as a result of the mappings defined in this
specification containing a @min annotation shall throw a
std::out_of_range if they are set to a value smaller than the value of the
@min annotation.

Therefore, the setter for a member created as a result of an IDL element
annotated with @min shall implement the corresponding checks and throw
std::out_of_range if the check fails.

@max C++ elements declared as a result of the mappings defined in this
specification containing a @max annotation shall throw a
std::out_of_range if they are set to a value bigger than the value of the
@max annotation.

Therefore, the setter for a member created as a result of an IDL element
annotated with @max shall implement the corresponding checks and throw
std::out_of_range if the check fails.

@unit No impact on language mapping.

7.17.4 Group of Annotations: Data Implementation

Table 7.18 identifies the mapping impact of the IDL defined Data Implementation Annotations.

30 IDL4 to C++ Language Mapping 1.0

Table 7.18: Data Implementation Annotation Impact

Data Implementation Annotation Impact on C++ Language Mapping

@bit_bound If an IDL enum declaration is preceded by the @bit_bound annotation, the
equivalent C++ scoped enum class shall have the following underlying type:
int8_t, for bit bound values between 1 and 8; int16_t, for bit bound
values between 9 and 16; int32_t, for bit bound values between 17 and 32;
and int64_t for bit bound values between 33 and 64.

For example, the IDL enum declaration below:

@bit_bound(6)
enum ABoundEnum {
 @value(1) one,
 @value(2) two
};

would map to the following C++:
enum class AboundEnum : int8_t {
 one = 1,
 two = 2
};

The mapping for an IDL bitmask declaration preceded by the @bit_bound
annotation is described in Clause 7.14.3.3.

@external IDL4CPP-48: External mapping

IDL member declarations preceded by the @external annotation shall be
mapped to std::shared_ptr<T> or to the equivalent
omg::types::ref_type<T>, where T is the type of the IDL external
member. Structures containing members annotated with the @external
annotation shall make a deep copy of the external member in their copy
constructor.

@nested No impact on the language mapping

7.17.5 Group of Annotations: Code Generation

Table 7.19 identifies the mapping impact of the IDL defined Code Generation Annotations.

Table 7.19: Code Generation Annotation Impact

Code Generation Annotation Impact on C++ Language Mapping

@verbatim Copies verbatim text to the indicated output position when the indicated
language is "*", "c++", "cpp", "cc", or "cxx".

7.17.6 Group of Annotations: Interfaces

Table 7.20 identifies the mapping impact of the IDL defined Interface Annotations.

IDL4 to C++ Language Mapping 1.0 31

Table 7.20: Interface Annotation Impact

Interface Annotation Impact on C++ Language Mapping

@service Options are "CORBA", "DDS", "*". Impact is platform-specific.

@oneway Impact is platform-specific.

@ami Impact is platform-specific.

32 IDL4 to C++ Language Mapping 1.0

8 IDL to C++ Language Mapping Annotations

This chapter defines specialized annotations that extend the standard set defined in [OMG-IDL4] to control the C++
code generation.

8.1 @cpp_mapping Annotation

This annotation provides the means to customize the way a number of IDL constructs are mapped to the C++
programming language. This annotation can therefore be used to modify the default mapping behavior of the mappings
specified in Chapter 7.

The IDL definition of the @cpp_mapping annotation is:

@annotation cpp_mapping {
 enum StructMapping {
 STRUCT_WITH_PUBLIC_MEMBERS,
 CLASS_WITH_PUBLIC_ACCESSORS_AND_MODIFIERS
 };
 StructMapping struct_mapping default STRUCT_WITH_PUBLIC_MEMBERS;
};

The behavior associated with each parameter is defined below.

8.1.1 struct_mapping Parameter

struct_mapping defines the mapping strategy for IDL structs. By default, as specified in Clause 7.2.4.3.1, IDL
structs are mapped to C++ structs with public members; in other words struct_mapping defaults to
STRUCT_WITH_PUBLIC_MEMBERS.

CLASS_WITH_PUBLIC_ACCESSORS_AND_MODIFIERS changes the default behavior, mapping the annotated IDL struct
to C++ class where all members are only accessible via public accessor methods, and may only be modified through
public modifier methods.

IDL4CPP-12: Alternative struct mapping not complete

• Accessor methods shall have the same name as the IDL element, shall return the C++ equivalent type,
according to the mapping rules specified in Chapter 7, and shall be declared as const. Additionally, the
implementation shall provide non-const accessors of the same name that return a reference to the member.

• Modifier methods shall also have the same name as the IDL element, and shall take the value to be set as an
argument:

◦ If the equivalent type of the member after resolving any typedef results in a C++ built-in type or an
enum, the argument shall be passed by value:
void <MemberName>(<MemberType> value);

◦ Otherwise, the argument shall be passed by reference to const, and a move-enabled modifier method
shall be provided:
void <MemberName>(const <MemberType>& value);
void <MemberName>(<MemberType>&& value);

Implementers of this specification may add additional constructors and operator overloads in mappings resulting from
setting struct_mapping to CLASS_WITH_PUBLIC_ACCESSORS_AND_MODIFIERS parameter. However, at a
minimum, they shall provide a constructor that allows the initialization of every element of the struct. The argument

IDL4 to C++ Language Mapping 1.0 33

provided to the constructor shall be passed by value or by reference to const according to the rules applied to modifier
methods above.

For example, the IDL struct declaration below:

struct MyStruct {
 long a_long;
 short a_short;
 string a_string;
};

would map to the following C++:
class MyStruct {
public:
 MyStruct(int32_t a_long, int16_t a_short, const std::string& a_string);

 void a_long(int32_t value);
 int32_t a_long() const;
 int32_t& a_long();

 void a_short(int16_t value);
 int16_t a_short() const;
 int16_t& a_short();

 void a_string(const std::string& value);
 std::string a_string() const;
 std::string& a_string();

private:
 int32_t a_long_;
 int16_t a_short_;
 std::string a_string_;
};

34 IDL4 to C++ Language Mapping 1.0

Annex A: Platform-Specific Mappings

(normative)

A.1 CORBA-Specific Mappings

This clause describes platform-specific mapping rules that shall be followed when mapping IDL constructs to the C++
programming language for CORBA. These mappings rules are built upon the platform-independent rules defined in
Chapters 7 and 8 for the building blocks that compose the CORBA profiles defined in Clause 9.2 of [OMG-IDL4].

A.1.1 Traits

For any IDL defined type a CORBA type trait shall be provided to facilitate template meta programming. The generic
type trait for IDL type T shall be available as CORBA::traits<T>. Depending on the IDL type T, a set of members
shall be declared as part of the type trait. For any IDL type the following member types shall be defined.

Table A.1: CORBA::traits<> common member types

Member Definition

value_type The template parameter T.

in_type The type to be used for an in parameter.

out_type The type to be used for an out parameter.

inout_type The type to be used for an inout parameter.

For example, given an IDL type A the trait CORBA::traits<A>::in_type shall deliver the C++ type that shall be
used for an in argument for type A.

A.1.1.1 Interfaces

For an interface the following additional member types shall be available as part of its type trait.

Table A.2: CORBA::traits<> additional member types for Interfaces

Member Definition

is_local std::false_type or std::true_type type indicating whether this
interface is declared as local.

is_abstract std::false_type or std::true_type type indicating whether this
interface is declared as abstract.

ref_type Strong reference type (e.g., omg::types::ref_type<T>).

weak_ref_type Weak reference type (e.g., omg::types::weak_ref_type<T>).

A.1.1.2 Strings

For an unbounded string the following additional member types shall be available as part of its type trait.

IDL4 to C++ Language Mapping 1.0 35

Table A.3: CORBA::traits<> additional member types for Unbounded Strings

Member Definition

element_traits The element type (e.g., CORBA::traits<char> or
CORBA::traits<wchar_t>) of the string.

is_bounded std::false_type type indicating that the string is not bounded.

For a bounded string the following additional member types shall be available as part of its type trait.

Table A.4: CORBA::traits<> additional member types for Bounded Strings

Member Definition

element_traits The element type (e.g., CORBA::traits<char> or
CORBA::traits<wchar_t>) of the string.

is_bounded std::true_type type indicating that the string is bounded.

bound std::integral_constant type of value type uint32_t indicating the
bound of the string.

A.1.1.3 Sequences

For an unbounded sequence the following additional member types shall be available as part of its type trait.

Table A.5: CORBA::traits<> additional member types for Unbounded Sequences

Member Definition

element_traits The element type (e.g., CORBA::traits<T>) of the sequence.

is_bounded std::false_type type indicating that the sequence is unbounded.

For a bounded sequence the following additional member types shall be available as part of its type trait.

Table A.6: CORBA::traits<> additional member types for Bounded Sequences

Member Definition

element_traits The element type (e.g., CORBA::traits<T>) of the sequence.

is_bounded std::true_type type indicating that the sequence is bounded.

bound std::integral_constant type of value type uint32_t indicating the
bound of the sequence.

A.1.1.4 Arrays

For an array the following additional member types shall be available as part of its type trait.

36 IDL4 to C++ Language Mapping 1.0

Table A.7: CORBA::traits<> additional member types for Arrays

Member Definition

element_traits The element type (e.g., CORBA::traits<T>) of the array.

dimensions std::integral_constant type of value type uint32_t indicating the
number of dimensions of the array.

The element_traits for a multidimensional array shall be the type trait for the core type. For example,
// IDL
typedef long MyArray[2][3];
// C++
using MyArray = std::array<std::array<std::int32_t, 2>, 3>;

The element_traits for MyArray is the same as CORBA::traits<std::int32_t>.

A.1.1.5 Valuetypes

For a valuetype the following additional member types shall be available as part of its type trait.

Table A.8: CORBA::traits<> additional member types for Valuetypes

Member Definition

is_abstract std::false_type or std::true_type type indicating whether the
valuetype is defined as abstract.

is_truncatable std::false_type or std::true_type type indicating whether the
valuetype is defined as truncatable.

factory_type The CORBA::traits<T>::ref_type of the valuetype.

obv_type The C++ CORBA::traits<>::obv_type trait is provided for referring to
the OBV class that provides default implementations for the accessors and
modifiers of the abstract base class.

A.1.1.6 Valueboxes

For a valuebox the following additional member types shall be available as part of its type trait.

Table A.9: CORBA::traits<> additional member types for Valueboxes

Member Definition

boxed_traits The CORBA::traits<> for the boxed type of the valuebox.

A.1.1.7 Maps

For an unbounded map the following additional member types shall be available as part of its type trait.

IDL4 to C++ Language Mapping 1.0 37

Table A.10: CORBA::traits<> additional member types for Unbounded Maps

Member Definition

key_traits The CORBA::traits<> for the key type.

value_traits The CORBA::traits<> for the value type

is_bounded std::false_type type indicating that the map is unbounded.

For a bounded map the following additional member types shall be available as part of its type trait.

Table A.11: CORBA::traits<> additional members for Bounded Maps

Member Definition

key_traits The CORBA::traits<> for the key type.

value_traits The CORBA::traits<> for the value type

is_bounded std::true_type type indicating that the map is bounded.

bound std::integral_constant type of value type uint32_t indicating the
bound of the map.

IDL4CPP-52: Typo fixes

A.1.1.8 Bitmasks

For a bitmask type, the following additional members shall be available as part of its type trait. Because the bitmask
type itself is just an alias for a built-in type, the traits template is specialized on the <Bitmask>Bits type.

Table A.12: CORBA::traits<> additional member types for Bitmasks

Member Definition

bit_bound std::integral_constant type of value type uint32_t indicating the bit
bound of the bitmask.

underlying_type The type mapped as the underlying type of the bitmask.

A.1.1.9[A.1.1.8] Parameters

The mapping of parameter passing modes is focused at simplicity and ease of use.

For IDL interfaces, valuetypes, CORBA::TypeCode, enums, and basic types, the arguments are:

Table A.13: Parameter passing modes for Interfaces, Valuetypes, CORBA::TypeCode, Enums, and Basic Types

Mode Parameter Type

in CORBA::traits<T>::ref_type
omg::types::ref_type<T>

out CORBA::traits<T>::ref_type&

38 IDL4 to C++ Language Mapping 1.0

omg::types::ref_type<T>&

inout CORBA::traits<T>::ref_type&
omg::types::ref_type<T>&

return CORBA::traits<T>::ref_type
omg::types::ref_type<T>

For structured types (e.g. struct, union), sequences, and strings, the arguments are:

Table A.14: Parameter passing modes for Structured Types, Sequences, and Strings

Mode Parameter Type

in const T&

out T&

inout T&

return T

A.1.1.10[A.1.1.9] Helper Methods

There are two static helper methods provided in the CORBA::traits<T> struct. These methods are:

• CORBA::traits<T>::narrow(CORBA::traits<CORBA::Object>::ref_type p)

• CORBA::make_reference<T>(Args&&... args)

The object traits for type T define the method CORBA::traits<T>::narrow to narrow an object reference. These
methods return a new object reference given an existing reference. The narrow methods return a nil object reference if
the given reference is nil. The parameter to the narrow methods accepts a reference to an object of any interface type
(CORBA::traits<Object>::ref_type). If the actual (runtime) type of the parameter object can be narrowed to the
requested interface’s type, then the operation shall return a valid object reference; otherwise, the operation shall return a
nil object reference.

A reference can only be created from a nullptr, another reference, or using the CORBA::make_reference<>(...)
template which shall deliver std::make_shared semantics. Any other creation of a reference type is not allowed and
shall be considered an ill-formed application. Declaring a reference and initializing it with its default constructor shall
result in a nil reference.

A.1.1.11[A.1.1.10] Servant References

The following traits are provided for servants in the CORBA::servant_traits<> template struct.

Table A.15: CORBA::servant_traits<> member types

Member Definition

base_type PortableServer::Servant

ref_type CORBA::traits<PortableServer::Servant>::ref_type

weak_ref_type CORBA::traits<PortableServer::Servant>::weak_ref_type

For instance, given the following IDL:
interface foo {...};

The generated C++ code would provide:

IDL4 to C++ Language Mapping 1.0 39

namespace CORBA {

template<>
struct servant_traits<foo> {
 using base_types = POA_foo;
 using ref_type = CORBA::traits< POA_foo>::ref_type;
 using weak_ref_type = CORBA::traits< POA_foo>::weak_ref_type;
};

} // namespace CORBA

A.1.2 Exceptions

An IDL exception shall be mapped to a C++ class that derives from the standard CORBA::UserException. All
exception members shall be initialized to their default value by the default constructor for the exception. The copy
constructor, move constructor, assignment operator, move operator, and destructor automatically copy, move, or free
the storage associated with the exception. For convenience, the mapping also defines an explicit constructor with one
parameter for each exception member—this constructor initializes the exception members to the given values. The
default constructor shall initialize all members to their default values as described in 7.2.4.3.1.

IDL4CPP-6: Destructors should be override instead of virtual
namespace CORBA {

class Exception : public std::exception {
public:
 virtual ~Exception() override;
 virtual void raise() const = 0;
 virtual const char* _name() const;
 virtual const char* _rep_id() const;
 const char* what() const noexcept override;
protected:
 Exception();
 Exception(const Exception &);
 Exception(Exception &&);
 Exception& operator=(const Exception&);
 Exception& operator=(Exception&&);
};

} // namespace CORBA

The Exception base class is abstract and may not be instantiated except as part of an instance of a derived class. It
supplies one pure virtual function to the exception hierarchy: the raise() function. This function can be used to tell an
exception instance to throw itself so that a catch clause can catch it by a more derived type. Each class derived from
Exception implements raise() as follows:

void SomeDerivedException::raise() const
{
 throw *this;
}

The _name() function returns the unqualified (unscoped) name of the exception. The _rep_id() function returns the
repository ID of the exception. Both return a pointer to a c-string with content related to the exception. This is
guaranteed to be valid at least until the exception object from which it is obtained is destroyed or until a non-const
member function of the exception object is called.

Each Exception class has to override what(), which shall return a null terminated character sequence containing a
generic description of the exception. Both the wording of such description and the character width are implementation
defined.

40 IDL4 to C++ Language Mapping 1.0

The UserException class is derived from the base Exception class.

For example, the following IDL:
exception AnException {
 long error_code;
};

would map to the following C++ for CORBA:
class AnException : public CORBA::UserException {
public:
 AnException() {...}
 AnException(const AnException&) {...}
 AnException(AnException&&) {...}
 AnException(int32_t error_code, const char* what) {...}
 virtual ~AnException() override {...}
 AnException& operator=(const AnException&) {...}
 AnException& operator=(AnException&&) {...}

 void error_code(int32_t value) {...}
 int32_t error_code() const {…}
};

All standard exceptions are derived from a SystemException class. Like UserException, SystemException is
derived from the base Exception class. The SystemException class interface is shown below.

namespace CORBA {

enum class CompletionStatus : uint32_t {
 COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE
};

class SystemException : public Exception {
public:
 virtual ~SystemException() override;
 uint32_t minor() const;
 void minor(uint32_t);
 virtual void raise() const = 0;
 const char* what() const noexcept override;
 CompletionStatus completed() const;
 void completed(CompletionStatus);
protected:
 SystemException();
 SystemException(const SystemException&);
 SystemException(SystemException&&);
 SystemException(uint32_t minor, CompletionStatus status);
 SystemException& operator=(const SystemException&);
 SystemException& operator=(SystemException&&);
};

} // namespace CORBA

The default constructor for SystemException causes minor() to return 0 and completed() to return
COMPLETED_NO.

Each specific system exception is derived from SystemException:
namespace CORBA {

 class UNKNOWN final : public SystemException { ... };
 class BAD_PARAM final : public SystemException { ... };
 // etc.

IDL4 to C++ Language Mapping 1.0 41

} // namespace CORBA

This exception hierarchy allows any exception to be caught by simply catching the Exception type:

try {
 // ...
} catch (const CORBA::Exception& e) {
 // ...
}

Alternatively, all user exceptions can be caught by catching the UserException type, and all system exceptions can be
caught by catching the SystemException type:

try {
 // ...
} catch (const CORBA::UserException& ue) {
 // ..
} catch (const CORBA::SystemException& se) {
 ...
}

Naturally, more specific types can also appear in catch clauses. Also the exceptions can be caught as
std::exception.

A.1.2.1 UnknownUserException

Request invocations made through the Dynamic Invocation Interface (DII) may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception type was not known at compile-time.
The mapping provides the UnknownUserException so that such exceptions can be represented in the calling process:

namespace CORBA {

class UnknownUserException final : public UserException {
public:
 const Any& exception() const;
};

} // namespace CORBA

As shown here, UnknownUserException is derived from UserException. It provides the exception() accessor
that returns an Any holding the actual exception. Ownership of the returned Any is maintained by the
UnknownUserException—the Any merely allows access to the exception data. Conforming applications shall never
explicitly throw exceptions of type UnknownUserException—it is intended for use with the DII.

A.1.2.2 Any Insertion and Extraction for Exceptions

Conforming implementations shall generate Any insertion and extraction operators (operator<<= and operator>>=,
respectively) that allow all system and user exceptions to be correctly inserted into and extracted from Any. Both
copying and moving forms of the Any insertion operator shall be provided for all system and user exceptions.

In addition, conforming mapping implementations shall support Any insertion (but not extraction) for Exception. This
is required to allow Dynamic Skeleton Interface (DSI)-based applications to catch exceptions as Exception& and store
them into a ServerRequest:

try {
 // ...

42 IDL4 to C++ Language Mapping 1.0

} catch (const CORBA::Exception& exc) {
 CORBA::Any any;
 any <<= exc;
 server_request->set_exception(any);
}

Note that this shall result in both the TypeCode and the value for the actual derived exception type being stored into the
Any.

The following Any insertion for Exception shall be provided:

void operator<<=(Any&, const Exception&);

For applications using the DII or portable interceptors, it is useful to be able to extract system exceptions generically.
The mapping provides the following operator to do this:
bool operator>>=(const Any&, SystemException& se);

The operator returns true if the Any on which it is invoked contains a system exception and the implementation has
static type information for the actual system exception contained in the Any. In that case, the operator assigns the actual
exception to se. If the implementation does not have static type information for the system exception, the operator
returns true and assigns an instance of UNKNOWN to se. Otherwise, the operator returns false and the value of se is
unchanged.

A.1.2.3 Union Field Method Exceptions

Clause 7.2.4.3.2 states that “Accessing an invalid union member may result in an undefined error.” The CORBA
mapping for an IDL union, shall throw a CORBA::BAD_PARAM system exception when an invalid field is accessed
whose discriminant does not match that already set in the union object.

IDL4CPP-31: Section A.1.2.4 needs to include maps as a potential bounded type.

A.1.2.4 Bounded String, Wstring, and Sequence, and Map Exceptions

If an IDL string , wstring, or sequence , or map is defined with a bound, the mapped C++ entity shall throw a
CORBA::BAD_PARAM system exception when the application detects that specified bounds have been exceeded.

A.1.3 TypeCode

A TypeCode is a pseudo object and represents a local IDL interface but is not strictly mapped as an IDL local interface.
A CORBA TypeCode represents type information. TypeCode objects are implemented as a reference type as described
in Clause 7.4. For the strong reference, the type omg::types::ref_type<Y> shall be used.

No public constructors for TypeCodes are defined. However, in addition to the mapped interface, for each basic and
defined IDL type, an implementation provides access to a TypeCode reference
(omg::types::ref_type<CORBA::TypeCode>) of the form _tc_<type> that may be used to set types in Any, as
arguments for equal, and so on. In the names of these TypeCode reference constants, <type> refers to the local name
of the type within its defining scope. Each C++ _tc_<type> constant shall be defined at the same scoping level as its
matching type.

For example, for the following IDL structure:
struct S {...};

The C++ TypeCode reference would be:
omg::types::ref_type<CORBA::TypeCode> _tc_S;

IDL4 to C++ Language Mapping 1.0 43

The IDL TypeCode type shall map to a C++ class named CORBA::TypeCode according to the following definition:

namespace CORBA {

class TypeCode {
public:
 class Bounds final : public CORBA::UserException { ... };
 class BadKind final : public CORBA::UserException { ... };

 bool equal(omg::types::ref_type<CORBA::TypeCode>) const;
 bool equivalent(omg::types::ref_type<CORBA::TypeCode>) const;
 TCKind kind() const;

 omg::types::ref_type<CORBA::TypeCode> get_compact_typecode() const;
 const std::string& id() const;
 const std::string& name() const;

 uint32_t member_count() const;
 const std::string& member_name(uint32_t index) const;

 omg::types::ref_type<CORBA::TypeCode> member_type(uint32_t index) const;

 const Any& member_label(uint32_t index) const;
 omg::types::ref_type<CORBA::TypeCode> discriminator_type() const;
 int32_t default_index() const;

 uint32_t length() const;

 omg::types::ref_type<CORBA::TypeCode> content_type() const;

 uint16_t fixed_digits() const;
 int16_t fixed_scale() const;

 Visibility member_visibility(uint32_t index) const;
 ValueModifier type_modifier() const;
 omg::types::ref_type<CORBA::TypeCode> concrete_base_type() const;
};

} // namespace CORBA

Except Any (which is defined Clause A.1.7) and TypeCode, all types used in the declaration of TypeCode shall be
derived from their IDL definition in [OMG-CORBA-IFC] following the mapping rules defined in Chapter 7. The
resulting C++ definitions shall be placed in the CORBA namespace.

A.1.4 ORB

An ORB is the programmer interface to the Object Request Broker. This pseudo interface has to be implemented as a
regular local interface.

The following PIDL specifies initialization operations for an ORB; this PIDL is part of the CORBA module (not the
ORB interface) and is described in [OMG-CORBA-IFC] (see ORB Interface clause, ORB Initialization sub clause).
module CORBA
{
 typedef string ORBid;
 typedef sequence <string> arg_list;
 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
};

The mapping of the preceding PIDL operations to C++ is as follows:

44 IDL4 to C++ Language Mapping 1.0

IDL4CPP-52: Typo fixes
namespace CORBA {

using ORBid = omg::types::::string;
omg::types::ref_type<ORB> ORB_init(
 int& argc,
 char** argv,
 const omg::types::string& orb_identifier = omg::types::string ());

} // namespace CORBA

The C++ mapping for ORB_init deviates from the regular C++ mapping in its handling of the arg_list parameter.
This is intended to provide a meaningful definition of the initialization interface, which has a natural C++ binding
matching the main of an application. The arg_list sequence is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the number of strings in the array is
passed in the argc (int &) parameter.

If an empty ORBid string is used then argv arguments can be used to determine which ORB shall be returned. This is
achieved by searching the argv parameters for one tagged ORBid, e.g., -ORBid "ORBid_example". If an empty
ORBid string is used and no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init, the argv arguments are examined
to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all -ORBid
parameters in the argv are ignored. All other -ORB<suffix> parameters may be of significance during the ORB
initialization process.

A.1.5 Object

The CORBA Object interface as defined in Clause 8.3, Object Reference Operations. of [OMG-CORBA-IFC] shall be
mapped to C++ according to the mapping rules for Interfaces – Full defined in Clause 7.5. The resulting Object class
shall be placed in the CORBA namespace. In addition to these rules, all operation names in interface Object have leading
underscores in the corresponding C++ class.

A.1.5.1 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes are related, though that is certainly
one possible implementation. However, if interface B inherits from interface A, the following implicit widening
operations for B shall be supported by a compliant implementation:

• B to A.

• B to Object.

For example:
omg::types::ref_type bp = ...;
omg::types::ref_type<A> ap = bp; // implicit widening
omg::types::ref_type<Object> objp = bp; // implicit widening
objp = ap; // implicit widening

A.1.5.2 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for all objects; therefore, any object
reference can be widened to the type omg::types::ref_type<Object>.

IDL4 to C++ Language Mapping 1.0 45

A.1.5.3 Nil Object Reference

The mapping defines that a nil object reference is defined by nullptr. For any nil object reference A, the following
C++ call is guaranteed to return true:

bool true_result = (A == nullptr);

Any attempt to invoke an operation through a nil object reference shall result in an INV_OBJREF exception.

A.1.5.4 Narrowing Object Reference

The object traits for type T define the method CORBA::traits<T>::narrow to narrow an object reference. These
methods return a new object reference given an existing reference. The narrow methods return a nil object reference if
the given reference is nil. The parameter to the narrow methods accepts a reference to an object of any interface type
(omg::types::ref_type<Object>). If the actual (runtime) type of the parameter object can be narrowed to the
requested interface’s type, then the operation shall return a valid object reference; otherwise, the operation shall return a
nil object reference.

For example, suppose A, B, C, and D are interface types, and D inherits from C, which inherits from B, which in turn
inherits from A. If an object reference to a C object is widened to an A variable called ap, then:

• CORBA::traits<A>::narrow(ap) returns a valid object reference

• CORBA::traits::narrow(ap) returns a valid object reference

• CORBA::traits<C>::narrow(ap) returns a valid object reference

• CORBA::traits<D>::narrow(ap) returns a nil object reference

Narrowing to A, B, and C all succeed because the object supports all those interfaces. The
CORBA::traits<D>::narrow returns a nil object reference because the object does not support the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from B, and both B and D inherit from A.
Now suppose that an object of type C is passed to a function as an A. If the function calls
CORBA::traits::narrow or CORBA::traits<C>::narrow, a new object reference shall be returned. A call to
CORBA::traits<D>::narrow shall return a nil reference.

If successful, the narrow method creates a new object reference and does not change the given object reference.

NOTE—The narrow operations can throw system exceptions.

A.1.6 LocalObject

The C++ mapping of LocalObject is a class derived from Object that is used as a base class for locality constrained
object implementations. The class mapping the interface shall be (indirectly) derived from LocalObject and shall be
available as CORBA::traits<>::base_type. An object reference referring to a local object shall be created using the
CORBA::make_reference<T> factory method.

Here is an example of how to implement the following local interface:
local interface LocalIF {
 void an_op(in long an_arg);
};

In C++:

46 IDL4 to C++ Language Mapping 1.0

IDL4CPP-6: Destructors should be override instead of virtual
class LocalIF : public virtual CORBA::Object {
public:
 MyLocalIF ();
 virtual ~MyLocalIF() override;
 void an_op(int32_t an_arg) override {...}
};

omg::types::ref_type<LocalIF> myref = CORBA::make_reference<LocalIF>();

A.1.7 Any

The IDL type any maps to a C++ class named CORBA::Any. A C++ mapping for the any type shall fulfill to different
requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at compile time.

The first item covers most normal usage of the any type—the conversion of typed values into and out of an any. The
second item covers situations such as those involving the reception of a request or response containing an any that
holds data of a type unknown to the receiver when it was created with a C++ compiler.

A.1.7.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value, the C++ function overloading
facility is utilized. Specifically, for each distinct type in an IDL specification, overloaded functions to insert and extract
values of that type have to be provided. Overloaded operators are used for these functions so as to completely avoid any
namespace pollution. The nature of these functions, which are described in detail below, is that the appropriate
TypeCode (see Clause A.1.3) is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function overloading, it requires C++ types
generated from IDL specifications to be distinct.

A.1.7.2 Insertion into an Any

To allow a value to be set in an any in a type-safe fashion, an implementation shall provide the following overloaded
operator function for each separate IDL type T:

void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• short, long, long long, unsigned short, unsigned long, unsigned long long, float, double,
long double, char, wchar, boolean, octet.

• Enumeration.

• Object reference (omg::types::ref_type<T>).

• Valuetype reference (omg::types::ref_type<T>).

• Typecode reference (omg::types::ref_type<CORBA::TypeCode>).

• Abstract base reference (omg::types::ref_type<T>).

For values of type T that are too large to be passed efficiently, such as an array, strings wstring, struct, union,
sequence, any, and exception, the following functions are provided:

IDL4 to C++ Language Mapping 1.0 47

void operator<<=(CORBA::Any&, const T&); // copying insert
void operator<<=(CORBA::Any&, T&&); // move insert

These “left-shift-assign” operators are used to insert a typed value into an Any as follows.

int32_t value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type int32_t shall be able to set both the value and the
TypeCode properly for the CORBA::Any variable.

A.1.7.3 Extraction from an Any

To allow type-safe retrieval of a value from an any, the mapping provides the following operators for each IDL type T:

bool operator>>=(const CORBA::Any&, T&);

This “right-shift-assign” operator is used to extract a typed value from an any as follows:
int32_t value;
CORBA::Any a;

a <<= int32_t(42);
if (a >>= value) {
 // ... use the value …
}

In this case, the version of operator>>= for type int32_t shall be able to determine whether the Any truly contains a
value of type int32_t and, if so, copy its value into the reference variable provided by the caller and return true. If
the Any does not contain a value of type int32_t, the value of the caller’s reference variable is not changed, and
operator>>= returns false.

For example, consider the following IDL struct:

struct MyStruct {
 long lmem;
 short smem;
};

Such a struct could be extracted from an Any as follows:

CORBA::Any a;

// ... a is somehow given a value of type MyStruct
MyStruct struct;
if (a >>= struct) {
 // ... use the value...
}

If the extraction is successful, the caller variable shall contain the value that was stored by the Any, and operator>>=
shall return true. If the extraction is not successful, the operator>>= returns false.

For strings, wstrings, and sequences, applications are responsible for checking the TypeCode of the Any to be
sure that they do not overstep the bounds of the string, wstring, and sequence object when using the extracted
value.

Any object reference shall be extractable from an Any as a base object reference. Any abstract reference shall be
extractable from an Any as a base object reference or as a base valuetype reference. Any valuetype reference shall
be extractable from an Any as a base valuetype reference.

48 IDL4 to C++ Language Mapping 1.0

A.1.7.4 TypeCode Replacement

IDL4CPP-52: Typo fixes

The type accessor function returns a TypeCode reference to the TypeCode associated with the Any.

Oomg::types::ref_type<CORBA::TypeCode> type() const;

Because C++ aliases do not define distinct types, inserting a type with a tk_alias TypeCode into an Any while
preserving that TypeCode is not possible. For example:

// IDL
typedef long LongType;

// C++
Any any;
LongType val = 1234;
any <<= val;
omg::types::ref_type<CORBA::TypeCode> tc = any.type();
assert(tc->kind() == tk_alias); // assertion failure!
assert(tc->kind() == tk_long); // assertion OK

In this code, the LongType is an alias for int32_t. Therefore, when the value is inserted, standard C++ overloading
mechanisms cause the insertion operator for int32_t to be invoked. In fact, because LongType is an alias for
int32_t, an overloaded operator<<= for LongType cannot be generated anyway.

In cases where the TypeCode in the Any shall be preserved as a tk_alias TypeCode, applications can use the type
modifier function on the Any to replace its TypeCode with an equivalent one.

void type(omg::types::ref_type<CORBA::TypeCode>);

Revising the previous example:
// C++
Any any;
LongType val = 1234;
any <<= val;
any.type(_tc_LongType); // replace TypeCode
omg::types::ref_type<CORBA::TypeCode> tc = any.type();
assert(tc->kind() == tk_alias); // assertion OK

The type modifier function invokes the TypeCode::equivalent operation on the TypeCode in the target Any,
passing the TypeCode it received as an argument. If TypeCode::equivalent returns true, the type modifier
function replaces the original TypeCode in the Any with its argument TypeCode. If the two TypeCode are not
equivalent, the type modifier function raises the BAD_TYPECODE exception.

A.1.8 Value Types

An IDL valuetype shall be mapped to the C++ trait CORBA::traits<>::base_type. This trait relates to an
abstract base class (ABC), with pure virtual accessor and modifier functions corresponding to the state members of the
valuetype, and pure virtual functions corresponding to the operations of the valuetype.

The C++ CORBA::traits<>::obv_type trait is provided for referring to the OBV class that provides default
implementations for the accessors and modifiers of the ABC base class. The application developer then overrides the
pure virtual functions corresponding to valuetype operations in a concrete class derived directly or indirectly from the
CORBA::traits<>::obv_type trait.

IDL4 to C++ Language Mapping 1.0 49

In C++, valuetypes map to valuetype references that behave as reference type as described in Clause 7.4. The
reference type omg::types::ref_type<T> is available for each valuetype. The strong reference is delivered as
omg::types::ref_type<T> and the weak reference as omg::types::weak_ref_type<T>.

All init initializers declared for a valuetype are mapped to pure virtual functions on a separate abstract C++ factory
class. This class is available through the CORBA::traits<>::factory_type trait.

A.1.8.1 Valuetype Data Members

The C++ mapping for valuetype data members follows the same rules as the C++ mapping for structured types using
public accessors and modifiers described in Clause 8.1.1, except that the accessors and modifiers are pure virtual.
Public state members are mapped to public pure virtual accessor and modifier functions of the C++ valuetype base
class, and private state members are mapped to protected pure virtual accessor and modifier functions (so that
derived concrete classes may access them). The actual data members of the OBV classes shall be declared private.

For example, the following IDL:
typedef octet Bytes[64];
struct S { ... };
interface A { ... };
valuetype Val {
 public Val t;
 private long v;
 public Bytes w;
 public string x;
 private S y;
 private A z;
};

Would map to C++ as follows:
using Bytes = std::array<uint8_t, 64>;
struct S { ... };

class Val : public virtual CORBA::ValueBase {
public:
// ...
 virtual omg::types::ref_type <Val> t() const = 0;
 virtual omg::types::ref_type <Val>& t() = 0;
 virtual void t(omg::types::ref_type <Val>) = 0;
 virtual const Bytes& w() const = 0;
 virtual Bytes& w() = 0;
 virtual void w(const Bytes&) = 0;
 virtual void w(Bytes&&) = 0;

 virtual const omg::types::string& x() const = 0;
 virtual omg::types::string& x() = 0;
 virtual void x(const omg::types::string&) = 0;
 virtual void x(omg::types::string&&) = 0;

protected:
 virtual int32_t v() const = 0;
 virtual int32_t& v() = 0;
 virtual void v(int32_t) = 0;

 virtual const S& y() const = 0;
 virtual S& y() = 0;
 virtual void y(S&&) = 0;
 virtual void y(const S&) = 0;

50 IDL4 to C++ Language Mapping 1.0

 virtual omg::types::ref_type<A> z() const = 0;
 virtual omg::types::ref_type<A>& z() = 0;
 virtual void z(omg::types::ref_type<A>) = 0;
 // ...
};

These rules for the accessors correspond directly to the parameter passing rules for structured types as explained in
Clause A.1.1.9.

A.1.8.2 Constructors, Assignment Operators, and Destructors

A C + + valuetype class defines a protected default constructor, protected copy constructor, protected move
constructor, and a protected virtual destructor. The default constructor is protected to allow only derived class instances
to invoke it, while the destructor is protected to prevent applications from deleting value instances directly instead of
using the reference type. The destructor is virtual to provide for proper destruction of derived value class instances.

For the same reasons, the generated OBV classes define a protected default constructor, protected copy constructor,
protected move constructor, a protected explicit constructor that takes an initializer for each valuetype data member,
and a protected destructor. The protected default constructor initializes object reference members to appropriately-typed
nil object references, basic data types to their default value as defined in Clause 7.2.4.1, and enums to their first value.
All other members are initialized using their default constructors. The parameters of the explicit constructor that takes
an initializer for each member appear in the same order as the data members appear, top to bottom, in the IDL
valuetype definition, regardless of whether they are public or private. If the valuetype inherits from a concrete
valuetype, then parameters for the data members of the inherited valuetype appear first.

A.1.8.3 Valuetype Operations

Operations declared on a valuetype are mapped to public pure virtual member functions in the corresponding
valuetype C++ class. (Note that state valuetype accessor and modifier functions are not considered to be operations
—they are always referred to as accessor and modifier functions.) None of the pure virtual member functions
corresponding to operations shall be declared const because unlike C++, IDL provides no way to distinguish between
operations that change the state of an object and those that merely access that state.

The C++ signatures and memory management rules for valuetype operations are identical to those described in
Clause A.1.9.2 for client side interface operations.

As part of the valuetype traits CORBA::traits<>::narrow is provided. This method provides a portable way for
applications to cast down the C++ inheritance hierarchy. If a nil reference is passed to one of these operations, it returns
a nil reference. Otherwise, if the valuetype instance referenced to by the argument is an instance of the valuetype
class being narrowed to, a reference to the narrowed-to class type is returned. If the valuetype instance pointed to by
the argument is not an instance of the valuetype class being narrowed to, a nil reference is returned.

A.1.8.4 Valuetype Example

IDL4CPP-6: Destructors should be override instead of virtual

For example, consider the following IDL valuetype:
valuetype Example {
 short op1();
 long op2(in Example x);
 private short val1;
 public long val2;

IDL4 to C++ Language Mapping 1.0 51

 private string val3;
 private Example val5;
};

The C++ mapping for this valuetype is:
class Example : public virtual ValueBase {
public:
 virtual int16_t op1() = 0;
 virtual int32_t op2(omg::types::ref_type<Example>) = 0;

 virtual int32_t val2() const = 0;
 virtual int32_t& val2() = 0;
 virtual void val2(int32_t) = 0;

protected:
 Example();
 Example (const Example&);
 Example (Example&&);
 virtual ~Example() override;

 virtual int16_t val1() const = 0;
 virtual int16_t& val1() = 0;
 virtual void val1(int16_t) = 0;

 virtual const omg::types::string& val3() const = 0;
 virtual omg::types::string& val3() = 0;
 virtual void val3(const omg::types::string&) = 0;
 virtual void val3(omg::types::string&&) = 0;

 virtual omg::types::ref_type<Example> val5() const = 0;
 virtual omg::types::ref_type<Example>& val5() = 0;
 virtual void val5(omg::types::ref_type<Example>) = 0;
private:
 Example& operator=(const Example&) = delete;
 Example& operator=(Example&&) = delete;
};

class OBV_Example : public virtual Example {
public:
 void val2 (int32_t) override;
 int32_t val2 () const override;
 int32_t& val2 () override;
protected:
 OBV_Example();
 OBV_Example (const OBV_Example&);
 OBV_Example (OBV_Example&&);
 OBV_Example(
 int16_t,
 int32_t,
 omg::types::string,
 omg::types::ref_type<Example>);
 virtual ~OBV_Example() override;

 int16_t val1() const override;
 int16_t& val1() override;
 void val1(int16_t) override;

 const omg::types::string& val3() const override;
 omg::types::string& val3() override;
 void val3(const omg::types::string&) override;
 void val3(omg::types::string&&) override;

52 IDL4 to C++ Language Mapping 1.0

 omg::types::ref_type<Example> val5() const override;
 omg::types::ref_type<Example>& val5() override;
 void val5(omg::types::ref_type<Example>) override;
 // ...
};

A.1.8.5 ValueBase Default Methods

IDL4CPP-6: Destructors should be override instead of virtual

The C++ mapping for the ValueBase IDL type serves as an abstract base class for all C++ valuetype classes.
ValueBase provides several virtual functions inherited by all valuetype classes:

class ValueBase {
public:
 virtual omg::types::ref_type<ValueBase> _copy_value();
protected:
 ValueBase();
 ValueBase (ValueBase&&);
 ValueBase(const ValueBase&);
 virtual ~ValueBase() override;
private:
 ValueBase operator=(ValueBase&&) = delete;
 ValueBase operator=(const ValueBase&) = delete;
};

The names of these operations begin with underscore to keep them from clashing with user-defined operations in
derived valuetype classes. The copy_value operation returns by default a nil valuetype reference. The user can
override this method to allow the copy of a valuetype reference using its base reference.

ValueBase also provides a protected default constructor, a protected copy constructor, a protected move constructor,
and a protected virtual destructor. The copy and move constructors are protected to disallow construction of derived
valuetype instances except from within derived class functions, and the destructor is protected to prevent direct
deletion of instances of classes derived from ValueBase.

A.1.8.6 Value boxes

A value box class essentially provides a shared version of its underlying type. Unlike normal valuetype classes, C++
classes for value boxes can be concrete since value boxes do not support methods, inheritance, or interfaces. Value box
classes differ depending upon their underlying types. To fulfill the ValueBase interface, all value box classes are
derived from ValueBase. Unlike valuetypes, no factory has to be provided by the user.

All value box classes provide _value member functions that allow the underlying boxed value to be passed to
functions taking parameters of the underlying boxed type. For example, invoking _value on a boxed string allows the
actual string owned by the value box to be replaced:
// IDL
valuetype StringValue string;
interface X {
 void op(out string s);
};

// C++
omg::types::ref_type<StringValue> sval =
 CORBA::make_reference<StringValue>("string val");
X x (...);
x->op(sval->_value()); // boxed string is replaced
 // by op() invocation

IDL4 to C++ Language Mapping 1.0 53

Assume the implementation of op is as follows:

void op(std::string& s)
{
 s = "new string val";
}

The return value of the _value function shall be such that the string value boxed in the instance pointed to by sval is
set to "new string val" after op returns.

Value box classes follow the rules of structured types using public accessors and modifiers described in Clause 8.1.1,.
Additionally to these rules value boxes are final and have:

• Accessors are always named _value.

• A protected destructor and protected constructors.

• Private, deleted copy and move assignment operators.

An example value box class for an enumerated type is shown below:
// IDL
enum Color { red, green, blue };
valuetype ColorValue Color;

// C++
class ColorValue final : public ValueBase {
public:
 Color _value() const;
 Color& _value();
 void _value(Color);
protected:
 ColorValue();
 explicit ColorValue(Color);
 ColorValue(ColorValue&&);
 ColorValue(const ColorValue&);
 ColorValue& operator=(const ColorValue&) = delete;
 ColorValue& operator=(ColorValue&&) = delete;
 ~ColorValue() override;
};

A.1.8.7 Abstract Valuetypes

Abstract IDL valuetypes follow the same C++ mapping rules as concrete IDL valuetypes, except that because they have
no data members, the IDL compiler does not generate the OBV traits for them.

A.1.8.8 Valuetype Inheritance

For an IDL valuetype derived from other valuetypes or that supports interface types, several C++ inheritance
scenarios are possible:

• Concrete value base classes are inherited as public virtual bases to allow for “ladder style” implementation
inheritance.

• Abstract value base classes are inherited as public virtual base classes, since they may be multiply inherited in
IDL.

• Interface classes supported by the IDL valuetype are not inherited (except for abstract interfaces because here
the valuetype class has to support implicit widening (see Clause A.1.5.1).

54 IDL4 to C++ Language Mapping 1.0

• Instead, the operations on the interface (and base interfaces, if any) are mapped to pure virtual functions in the
generated C++ base value class. In addition to this abstract base value class and the OBV_ class, the IDL
compiler generates a skeleton for this value type; this skeleton is available through the
CORBA::servant_traits<>::base_type trait with the fully-scoped name of the valuetype. The base
value class and the POA skeleton of the interface type are public virtual base classes of this skeleton.

An example of the mapping for a valuetype that supports an interface is shown below.
// IDL
interface A {
 void op();
};

valuetype B supports A {
 public short data;
};

// C++
class B : public virtual ValueBase {
public:
 virtual void op() = 0;
 virtual int16_t data() const = 0;
 virtual int16_t& data() = 0;
 virtual void data(int16_t) = 0;
 // ...
};

class B_impl :
 public virtual CORBA::servant_traits<A>::base_type,
 public virtual CORBA::traits::base_type {
public:
 void op() override;
 // ...
};

A.1.8.9 Valuetype Factories

Because concrete valuetype classes are provided by the application developer, the creation of values is problematic
under certain circumstances. These circumstances include:

• Unmarshaling. The implementation cannot know a priori about all potential concrete value classes supplied by
the application, and so the implementation unmarshaling mechanisms do not possess the capability to directly
create instances of those classes.

• Component Libraries. Portions of an application, such as parts of a framework, may be limited to only
manipulating valuetype instances while leaving creation of those instances to other parts of the application.

A.1.8.9.1 ValueFactoryBase Class

IDL4CPP-6: Destructors should be override instead of virtual

Just as they provide concrete C++ valuetype classes, applications shall also provide factories for those concrete
classes. The base of all value factory classes is the C++ ValueFactoryBase class which has a protected constructor
and destructor and deleted copy and move constructors and assignment operators:
class ValueFactoryBase {
protected:
 virtual ~ValueFactoryBase() override;
 ValueFactoryBase();

IDL4 to C++ Language Mapping 1.0 55

private:
 virtual omg::types::ref_type<ValueBase> create_for_unmarshal() = 0;
 ValueFactoryBase(const ValueFactoryBase&) = delete;
 ValueFactoryBase(ValueFactoryBase&&) = delete;
 ValueFactoryBase& operator=(const ValueFactoryBase&) = delete;
 ValueFactoryBase& operator=(ValueFactoryBase&&) = delete;
};

The C++ mapping for the IDL CORBA::ValueFactory native type is an object reference to the ValueFactoryBase
class, as shown above. Applications derive concrete factory classes and register instances of those factory classes with
the ORB via the ORB::register_value_factory function. If a factory is registered for a given value type and no
previous factory was registered for that type, the register_value_factory function returns a nil reference.

When unmarshalling value instances, the implementation needs to be able to call up to the application to ask it to create
those instances. Value instances are normally created via their type-specific value factories (see Clause A.1.8.9.2) so as
to preserve any invariants they might have for their state. However, creation for unmarshaling is different because the
implementation has no knowledge of application-specific factories, and in fact in most cases may not even have the
necessary arguments to provide to the type-specific factories.

To allow the implementation to create value instances required during unmarshalling, the ValueFactoryBase class
provides the create_for_unmarshal pure virtual function. The function is private so that only the implementation,
through implementation-specific means (e.g., via a friend class), can invoke it. Applications are not expected to
invoke the create_for_unmarshal function. Derived classes shall override the create_for_unmarshal function
and shall implement it such that it creates a new value instance and returns a reference to it. Since the
create_for_unmarshal function returns a reference to ValueBase, the caller may use the narrow function supplied
by the value type IDL trait to narrow the reference back to a reference to a derived value type.

Once the implementation has created a value instance via the create_for_unmarshal function, it can use the value
data member modifier functions to set the state of the new value instance from the unmarshalled data. How the
implementation accesses the protected value data member modifiers of the value is implementation-specific and does
not affect application portability.

The function allows the return type of the ORB::lookup_value_factory function to be narrowed to a reference to a
type-specific factory (see Clause A.1.8.9.2).

A.1.8.9.2 Type-Specific Value Factories

All valuetypes that have initializer operations declared for them also have type-specific C++ value factory classes
generated for them. For a valuetype A, the factory class can be retrieved using the
CORBA::traits<A>::factory_type trait. Each initializer operation maps to a pure virtual function in the factory
class, and each of these initializers defined in IDL is mapped to an initializer function of the same name. Base
valuetype initializers are not inherited, and so do not appear in the factory class. The initializer parameters are
mapped using normal C++ parameter passing rules for in parameters. The return type of each initializer function is a
reference to the created valuetype.

For example, consider the following valuetype:

valuetype V {
 factory create_bool(in_boolean b);
 factory create_char(in_char c);
 factory create_octet(in octet o);
 factory create_other(in short s, in string p);
 …
};

56 IDL4 to C++ Language Mapping 1.0

The factory class for the example given above shall be generated as follows:
class V_factory : public ... {
public:
 virtual omg::types::ref_type<V> create_bool(bool val) = 0;
 virtual omg::types::ref_type<V> create_char(char val) = 0;
 virtual omg::types::ref_type<V> create_octet(uint8_t val) = 0;
 virtual omg::types::ref_type<V> create_other(uint16_t s, const std::string& p) = 0;
protected:
 ~V_factory() override;
 V_factory();
private:
 V_factory(const V_factory&) = delete;
 V_factory(V_factory&&) = delete;
 V_factory& operator=(const V_factory&) = delete;
 V_factory& operator=(V_factory&&) = delete;
};

Each generated factory class has a protected virtual destructor, a protected default constructor, deleted copy/move
constructors, and deleted copy/move assignment operators. Each also supplies a public pure virtual function
corresponding to each initializer. Applications derive concrete factory classes from the
CORBA::traits<>::factory_type trait and register them with the implementation. Note that since each generated
value factory derives from the base ValueFactoryBase, all derived concrete factory classes shall also override the
private pure virtual create_for_unmarshal function inherited from ValueFactoryBase.

For valuetypes that have no operations or initializers, a concrete type-specific factory class is generated whose
implementation of the create_for_unmarshal function simply constructs an instance of the
CORBA::traits<>::obv_type trait class for the valuetype using CORBA::traits<>::make_reference.

For valuetypes that have operations, but no initializers, there are no type-specific abstract factory classes, but
applications shall still supply concrete factory classes. These classes, which are derived directly from
CORBA::traits<>::factory_type only need to override the create_for_unmarshal function.

A.1.8.9.3 Unmarshaling Issues

When the implementation unmarshals a valuetype for a request handled via C++ static stubs or skeletons, it tries to
find a factory for the valuetype via the ORB::lookup_value_factory operation. If the factory lookup fails, the
client application receives a MARSHAL exception. Thus, applications utilizing static stubs or skeletons shall ensure that a
valuetype factory is registered for every valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the Dynamic Invocation Interface (DII) or Dynamic Skeleton
Interface (DSI) are not expected to have compile-time information for all the valuetypes they might receive. For
these applications, valuetype instances are represented as Any, and so value factories are not required to be registered
with the implementation to allow such valuetypes to be unmarshaled. However, value factories shall be registered
with the implementation and available for lookup if the application attempts extraction of the valuetypes via the
statically-typed Any extraction functions. See Clause A.1.7.3 for more details.

A.1.8.10 Custom Marshaling

The C++ mappings for the IDL CORBA::CustomerMarshal, CORBA::DataOutputStream, and
CORBA::DataInputStream types follow normal C++ valuetype mapping rules.

IDL4 to C++ Language Mapping 1.0 57

A.1.9 Abstract Interfaces

The C++ mapping for abstract interfaces is almost identical to the mapping for Interfaces – Full. Rather than defining a
complete C++ mapping for abstract interfaces, which would only duplicate much of the specification of the mapping
for Interfaces – Full defined in Clause 7.5, only the ways in which the abstract interface mapping differs from the
regular interface mapping are described here.

A.1.9.1 Abstract Interface Base

For abstract interfaces the CORBA::traits<> trait shall be provided. This trait delivers a strong reference type as
omg::types::ref_type<> and a weak reference type as omg::types::ref_type<>::weak_ref_type.

C++ classes for abstract interfaces are not derived from the CORBA::Object C++ class. In IDL, abstract interfaces
have no common base. However, to facilitate narrowing from an abstract interface base class down to derived abstract
interfaces, derived interfaces, and derived valuetype types, all abstract interface base classes that have no other base
abstract interfaces derive directly from CORBA::AbstractBase. This base class provides the following:

• a protected default constructor

• a protected copy and move constructor

• a protected copy and move assignment operators

• a protected virtual destructor

• a _to_object and a _to_value operation

The C++ AbstractBase class is shown below:

IDL4CPP-6: Destructors should be override instead of virtual
class AbstractBase {
public:
 virtual omg::types::ref_type<Object> _to_object();
 virtual omg::types::ref_type<ValueBase> _to_value();
protected:
 AbstractBase();
 AbstractBase(const AbstractBase&);
 AbstractBase(AbstractBase&&);
 AbstractBase& operator=(const AbstractBase&);
 AbstractBase& operator=(AbstractBase&&);
 virtual ~AbstractBase() override;
};

If the concrete type of an abstract interface instance is a normal object reference, the _to_object function returns a
reference to that object, otherwise it returns a nil reference. If the concrete type is a valuetype, _to_value returns a
reference to that valuetype, otherwise it returns a nil reference.

A.1.9.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping for object references, except:

• C++ classes for abstract interfaces derive from CORBA::AbstractBase, not CORBA::Object.

• Because abstract interface classes can serve as base classes for application-supplied concrete valuetype
classes, they shall provide a protected default constructor, a protected copy constructor, and a protected
destructor (which is virtual by virtue of inheritance from AbstractBase).

58 IDL4 to C++ Language Mapping 1.0

• The mapping for object reference classes does not specify the type of inheritance used for base object reference
classes. However, because abstract interfaces can serve as base classes for application-supplied concrete
valuetype classes, which themselves can be derived from regular valuetype classes, abstract interface
classes shall always be inherited as public virtual base classes.

• Normal Any insertion and extraction operators are generated for abstract interfaces.

Both interfaces that are derived from one or more abstract interfaces, and valuetypes that support one or more
abstract interfaces support implicit widening to the reference for each abstract interface base class.

A.1.10 Server Side Mapping

Server-side mapping refers to the portability constraints for an object implementation written in C++. The term server
is not meant to restrict implementations to situations in which method invocations cross address space or machine
boundaries. This mapping addresses any implementation of an IDL interface.

A.1.10.1 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++ name. For each operation in the
interface, the class defines a non-static member function with the mapped name of the operation (the mapped name is
the same as the IDL identifier except when the identifier is a C++ keyword, in which case the string "_cxx_" is
prepended to the identifier). Note that the implementation may allow one implementation class to derive from another,
so the statement “the class defines a member function” does not mean the class shall explicitly define the member
function—it could inherit the function.

The mapping specifies an inheritance-based mapping for the application-supplied implementation class and the
generated class or classes for the interface.

A.1.10.2 PortableServer::Servant

IDL4CPP-6: Destructors should be override instead of virtual

IDL4CPP-42: Visibility destructor and constructors

The PortableServer module for the Portable Object Adapter (POA) defines the native Servant type. The C++
mapping for Servant is as follows:
namespace PortableServer {
class Servant {
public:
 virtual omg::types::ref_type<PortableServer::POA> _default_POA();
 virtual omg::types::ref_type<CORBA::InterfaceDef> _get_interface();
 virtual bool _is_a(const stdomg::types::string& logical_type_id);
 virtual bool _non_existent();
 protected:
 virtual ~Servant() override;
 Servant();
 Servant(const Servant &);
 Servant(Servant &&);
 Servant& operator=(const Servant &);
 Servant& operator=(Servant &&);
};

} // namespace PortableServer

IDL4 to C++ Language Mapping 1.0 59

The Servant destructor is protected and virtual to ensure that skeleton classes derived from it can be properly
destroyed but never be deleted directly. The default constructor, along with other implementation-specific constructors,
shall be protected so that instances of Servant cannot be created except as sub-objects of instances of derived classes. A
default constructor (a constructor that either takes no arguments or takes only arguments with default values) shall be
provided so that derived servants can be constructed portably. Both a copy constructor and a protected default
assignment operator shall be supported so that application-specific servants can be copied if necessary. Note that
copying a servant that is already registered with the object adapter, either by assignment or by construction, does not
mean that the target of the assignment or copy is also registered with the object adapter. Similarly, assigning to a
Servant or a class derived from it that is already registered with the object adapter does not in any way change its
registration.

The default implementation of the _default_POA function provided by Servant returns an object reference to the
root POA of the default ORB in this process—the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB. Classes derived from Servant can
override this definition to return the POA of their choice, if desired.

Servant provides default implementations of the _get_interface, _is_a, and _non_existent object reference
operations that can be overridden by derived servants if the default behavior is not adequate. The POA invokes these
operations just like normal skeleton operations, thus allowing overriding definitions in derived servant classes to use
_this and the PortableServer::Current interface within their function bodies.

The default implementation of _non_existent simply returns false.

A.1.10.3 Servant References

Given an interface Foo the mapping shall provide a CORBA::servant_traits<Foo> trait. The strong reference type
is provided as CORBA::servant_traits<Foo>::ref_type trait (also available as
CORBA::servant_reference<>) that can be used to store or pass a reference to the servant of type Foo. Also a weak
reference CORBA::servant_traits<Foo>::weak_ref_type trait (i.e., CORBA::weak_servant_reference<>)
shall be provided. These servant reference types behave as reference types.

This trait together with the CORBA::make_reference<> factory method shall be used to write exception-safe and
type-safe code for heap-allocated servants (a C++ program is not allowed to use new/delete to allocate servants). For
example if we have an interface Test::Hello that is implemented by Foo_impl:

omg::types::ref_type<Test::Hello> Foo::some_function()
{
 omg::types::ref_type<Test::Hello> foo_servant = CORBA::make_reference<Foo_impl>();
 foo_servant->do_something(); // might throw...
 some_poa->activate_object_with_id(...);
 return foo_servant->_this();
}

A.1.10.4 Servant Argument Passing

The POA shall maintain servants as servant references with the semantics as described in Clause 7.4. For each POA the
ServantActivator and ServantLocator provide operations that either pass a Servant as a parameter or returns a
Servant a omg::types::ref_type<PortableServer::Servant> shall be passed.

A.1.10.5 Skeleton Operations

All skeleton classes provide a _this() member function. This member function has three purposes:

60 IDL4 to C++ Language Mapping 1.0

1. Within the context of a request invocation on the target object represented by the servant, it allows the servant
to obtain the object reference for the target CORBA object it is incarnating for that request. This is true even if
the servant incarnates multiple CORBA objects. In this context _this() can be called regardless of the
policies used to create the dispatching POA.

2. Outside the context of a request invocation on the target object represented by the servant, it allows a servant
to be implicitly activated if its POA allows implicit activation. This requires the activating POA to have been
created with the IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer::WrongPolicy exception is thrown. The POA used
for implicit activation is acquired by invoking _default_POA() on the servant.

3. Outside the context of a request invocation on the target object represented by the servant, it shall return the
object reference for a servant that has already been activated, as long as the servant is not incarnating multiple
CORBA objects. This requires the POA with which the servant was activated to have been created with the
UNIQUE_ID and RETAIN policies. If the POA was created with the MULTIPLE_ID or NON_RETAIN policies,
the PortableServer::WrongPolicy exception is thrown. The POA is acquired by invoking
_default_POA() on the servant.

For example, for interface A defined as follows:

interface A {
 short op1();
 void op2(in long val);
};

The return value of _this() is a typed object reference for the interface type corresponding to the skeleton class. For
example, the _this() function for the skeleton for interface A would be defined as follows:

class A_skel : public virtual ... {
public:
 omg::types::ref_type<A> _this();
 // ...
};

Assuming A_impl is a class derived from CORBA::servant_traits<A>::base_type that implements the A
interface, and assuming that the servant’s POA was created with the appropriate policies, a servant of type A_impl can
be created and implicitly activated as follows:
omg::types::ref_type<A_impl> my_a = CORBA::make_reference<A_impl>();
omg::types::ref_type<A> a = my_a->_this();

A.1.10.6 Inheritance-Based Interface Implementation

Implementation shall be derived from a generated base class based on the IDL interface definition. The generated base
classes are known as skeleton classes, and the derived classes are known as implementation classes. Each operation of
the interface has a corresponding virtual member function declared in the skeleton class. The signature of the member
function is identical to that of the generated client stub class. The implementation class provides implementations for
these member functions. The object adapter typically invokes the methods via calls to the virtual functions of the
skeleton class.

Assume that IDL interface A is defined as follows:
interface A {
 short op1();
 void op2(in long val);
};

IDL4 to C++ Language Mapping 1.0 61

For IDL interface A as shown above, the IDL compiler generates an interface class A. This class contains the C++
definitions for the typedefs, constants, exceptions, attributes, and operations in the IDL interface. It has a form similar
to the following:
class A : public virtual … {
public:
 virtual int16_t op1();
 virtual void op2(const int32_t& val);
 ...
};

On the server side, a skeleton class is generated. This class is opaque to the programmer, though it shall contain a
member function corresponding to each operation in the interface. The type of the skeleton class is defined by the
CORBA::servant_traits<T>::base_type trait related to the corresponding interface T. The type the traits refers to
has to be either directly or indirectly derived from the servant base class PortableServer::Servant. The
PortableServer::Servant class shall be a virtual base class of the type related to the trait to allow portable
implementations to inherit from both skeleton classes and implementation classes for other base interfaces without error
or ambiguity.

The PortableServer::Servant shall have a protected destructor preventing the user to directly delete a servant
instead of using the reference semantics.

IDL4CPP-6: Destructors should be override instead of virtual

The skeleton class for interface A shown above would appear as follows:
class A_skel : public virtual ... {
public:
 // ...server-side implementation-specific detail
 // goes here…
 virtual int16_t op1() = 0;
 virtual void op2(const int32_t& val) = 0;
 ...
protected:
 A_skel ();
 virtual ~A_skel () override;
};

If interface A were defined within a module rather than at global scope, e.g., Mod::A, the trait for this skeleton class
would be CORBA::servant_traits<Mod::A>::base_type.

To implement this interface using inheritance, a programmer shall derive from this trait and implement each of the
operations in the IDL interface. An implementation class declaration for interface A would take the form:

class A_impl : public virtual CORBA::servant_traits<A>::base_type {
public:
 int16_t op1() override;
 void op2(const int32_t val) override;
 ...
protected:
 virtual ~A_impl () override;
};

Note that the presence of the _this() function implies that C++ servants shall only be derived directly from a single
skeleton class. Direct derivation from multiple skeleton classes could result in ambiguity errors due to multiple
definitions of _this(). This shall not be a limitation, since CORBA objects have only a single most-derived interface.
Servants that are intended to support multiple interface types can be registered as DSI-based servants, as described in
Clause A.1.11.

For interfaces that inherit from one or more base interfaces, the generated POA skeleton class uses virtual inheritance:

62 IDL4 to C++ Language Mapping 1.0

// IDL
interface A { ... };
interface B : A { ... };
interface C : A { ... };
interface D : B, C { ... };

// C++
class A_skel : public virtual ... { ... };
class B_skel : public virtual A_skel { ... };
class D_skel : public virtual B_skel, public virtual C_skel { ... };

This guarantees that the POA skeleton class inherits only one version of each operation, and also allows optional
inheritance of implementations. In this example, the implementation of interface B reuses the implementation of
interface A:
class A_impl: public virtual CORBA::servant_traits<A>::base_type { ... };
class B_impl: public virtual CORBA::servant_traits::base_type, public virtual A_impl
{};

For interfaces that inherit from an abstract interface, the POA skeleton class is also virtually derived directly from the
abstract interface class, but with protected access:
// IDL
abstract interface A { ... };
interface B : A { ... };
// C++
class A { ... };
class B_skel : public virtual ..., protected virtual A { ... };

The abstract interface is inherited with protected access to prevent accidental conversion of the skeleton reference to an
abstract interface reference. This also allows implementation classes and valuetypes to share an implementation of the
abstract interface:
// IDL
valuetype V supports A { ... };

// C++
class MyA : public virtual CORBA::servant_traits<A>::base_type { ... };
class MyB : public virtual CORBA::servant_traits::base_type,
 protected virtual MyA { ... };
class MyV : public virtual V, public virtual MyA { ... };

A.1.10.7 Implementing Operations

The signature of an implementation member function is the mapped signature of the IDL operation. For example:
// IDL
interface A {
 exception B {};
 void f() raises(B);
};

// C++
class MyA : public virtual CORBA::servant_traits<A>::base_type {
public:
 void f() override;
 // ...
};

Within a member function, the this pointer refers to the implementation object’s data as defined by the class. In
addition to accessing the data, a member function may implicitly call another member function defined by the same
class. For example:

IDL4 to C++ Language Mapping 1.0 63

// IDL
interface A {
 void f();
 void g();
};

// C++
class MyA : public virtual CORBA::servant_traits<A>::base_type {
public:
 void f() override;
 void g() override;
private:
 int32_t x_;
};

void MyA::f()
{
 this->x_ = 3;
 this->g();
}

However, when a servant member function is invoked in this manner, it is being called simply as a C++ member
function, not as the implementation of an operation on a CORBA object. In such a context, any information available
via the POA Current object refers to the CORBA request invocation that performed the C++ member function
invocation, not to the member function invocation itself.

When the application code needs a CORBA::servant_reference<> within a member function it can retrieve a
servant reference to this using this->_lock() which returns a reference to this. This reference then can be passed to
other operations that require a CORBA::servant_reference<>.

A.1.10.8 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using inheritance from the IDL-generated traits
forces a C++ inheritance hierarchy into the application. Sometimes, the overhead of such inheritance is too high, or it
may be impossible to compile correctly. For example, implementing objects using existing legacy code might be
impossible if inheritance from some predefined class were required, due to the invasive nature of the inheritance.

In some cases, delegation can be used to solve this problem. Rather than inheriting from a trait, the implementation can
be coded as required for the application, and a wrapper object shall delegate upcalls to that implementation. This sub
clause describes how this can be achieved in a type-safe manner using C++ templates. The examples in this sub clause
use the following IDL:
interface A {
 short op1();
 void op2(in long val);
};

In addition to generating skeleton traits, the IDL compiler generates a delegating template called a tie. This template is
opaque to the application programmer, though like the skeleton, it provides a method corresponding to each IDL
operation. The type of the tie template is defined by the CORBA::servant_traits<T>::tie_type trait related to
the corresponding interface T.

template <class T>
class TIE : public ... {
public:
 ...

64 IDL4 to C++ Language Mapping 1.0

};

An instantiation of this template performs the task of delegation. When the template is instantiated with a class T that
provides the operations of interface A, then the TIE template shall delegate all operations to an instance of that
implementation class. A shared pointer to the actual implementation object is passed to the tie constructor when an
instance of the TIE template is created. When a request is invoked on it, the tie servant shall delegate the request by
calling the corresponding method in the implementation object.

IDL4CPP-6: Destructors should be override instead of virtual
// C++
template <class T>
class TIE : public ... {
private:
 std::shared_ptr<T> tied_object_{};
public:
 explicit TIE(
 std::shared_ptr<T> t,
 omg::types::ref_type<PortableServer::POA> poa = {}) :
 tied_object_(std::move(t)), poa_(std::move(poa))
 {
 }

 virtual ~TIE() override = default;

 // tie-specific functions
 std::shared_ptr<T> _tied_object()
 {
 return tied_object_;
 }

 void _tied_object(std::shared_ptr<T> t)
 {
 tied_object_ = t;
 }

 // IDL operations

 int16_t op1()
 {
 return tied_object_->op1();
 }

 void op2(int32_t val)
 {
 tied_object_->op2(val);
 }

 // override Servant operations
 omg::types::ref_type<PortableServer::POA> _default_POA() override
 {
 if (poa_) {
 return poa_;
 }
 else {
 // return root POA
 }
 }
private:
 omg::types::ref_type<PortableServer::POA> poa_;
 // copy and assignment not allowed

IDL4 to C++ Language Mapping 1.0 65

 TIE() = delete;
 TIE(const TIE&) = delete;
 TIE(TIE&&) = delete;
 TIE& operator=(const TIE&) = delete;
 TIE& operator=(TIE&&) = delete;
};

It is important to note that the tie example shown above contains sample implementations for all of the required
functions. A conforming implementation is free to implement these operations as it sees fit, as long as they conform to
the semantics in the paragraphs described below. A conforming implementation is also allowed to include additional
implementation specific functions.

The constructors cause the tie servant to delegate all calls to the C++ object bound to shared pointer T. The
_tied_object() accessor function allows callers to access the C++ object being delegated to.

For delegation-based implementations it is important to note that the servant is the tie object, not the C++ object being
delegated to by the tie object. This means that the tie servant is used as the argument to those POA operations that
require a Servant argument. This also means that any operations that the POA calls on the servant, such as
Servant::_default_POA(), are provided by the tie servant, as shown by the example above. The value returned by
_default_POA() is supplied to the TIE constructor.

It is also important to note that by default, a delegation-based implementation (the “tied” C++ instance) has no access to
the _this() function, which is available only to the TIE. One way for this access to be provided is by informing the
delegation object of its associated TIE object. This way, the tie holds a reference to the delegation object, and vice-
versa. However, this approach only works if the tie and the delegation object have a one-to-one relationship. For a
delegation object tied into multiple TIE objects, the object reference by which it was invoked can be obtained within
the context of a request invocation by calling PortableServer::Current::get_object_id(), passing its return
value to PortableServer::POA::id_to_reference(), and then narrowing the returned object reference
appropriately.

The use of templates for tie classes allows the application developer to provide specializations for some or all of the
template’s member functions for a given instantiation of the template. This allows the application to control how the
tied object is invoked. For example, the TIE<T>::op2() operation is normally defined as follows:

template <class T>
void TIE<T>::op2(int32_t val)
{
 tied_object_->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with the same signature. However, if the
application wants to use legacy classes for tied object types, it is unlikely they shall support these capabilities. In that
case, the application can provide its own specialization. For example, if the application already has a class named Foo
that supports a log_value() function, the tie op2() function can be made to call it if the following specialization is
provided:
template <>
void CORBA::servant_traits<A>::tie_type<Foo>::op2(int32_t val)
{
 _tied_object()->log_value(val);
}

Portable specializations like the one shown above shall not access the TIE class type and data members directly, since
the names of those data members are not standardized.

66 IDL4 to C++ Language Mapping 1.0

A.1.11 Mapping DSI to C++

Clause 12.3 of [OMG-CORBA-IFC] contains general information about mapping the Dynamic Skeleton Interface
(DSI) to programming languages, including:

• Dynamic Skeleton Interface’s ServerRequest Operations

• Portable Object Adapter’s Dynamic Implementation Routine

A.1.11.1 Mapping of ServerRequest

The ServerRequest pseudo object maps to a C++ class that follows the local interface mapping.

A.1.11.2 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the standard DynamicImplementation class. This class inherits from the Servant
class and is also defined in the PortableServer namespace. The DSI is implemented through servants that are
members of classes that inherit from dynamic skeleton classes.
namespace PortableServer {

class DynamicImplementation : public virtual Servant {
public:
 omg::types::ref_type<Object> _this();
 virtual void invoke(omg::types::ref_type<ServerRequest> request) = 0;
 virtual RepositoryId _primary_interface(
 const ObjectId& oid,
 omg::types::ref_type<POA> poa) = 0;
 };

} // namespace PortableServer

The _this() function returns an omg::types::ref_type<Object> for the target object. Unlike _this() for static
skeletons, its return type is not interface-specific because a DSI servant may very well incarnate multiple CORBA
objects of different types. If DynamicImplementation::_this() is invoked outside of the context of a request
invocation on a target object being served by the DSI servant, it raises the PortableServer::WrongPolicy
exception.

The invoke() method receives requests issued to any CORBA object incarnated by the DSI servant and performs the
processing necessary to execute the request. Requests for the standard object operations (_get_interface, _is_a,
and _non_existent) do not call invoke(), but call the corresponding functions defined in Servant instead.

The _primary_interface() method receives an ObjectId value and a POA as input parameters and returns a valid
RepositoryId representing the most-derived interface for that oid.

It is expected that the invoke() and _primary_interface() methods shall be invoked only by the POA in the
context of serving a CORBA request. Invoking this method in other circumstances may lead to unpredictable results.

A.1.12 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the PortableServer::POA::ObjectId type, as
object identifiers. However, because C++ programmers shall often want to use strings as object identifiers, the C++
mapping provides several conversion functions that convert strings to ObjectId and vice-versa:

namespace PortableServer {

IDL4 to C++ Language Mapping 1.0 67

omg::types::string ObjectId_to_string(const ObjectId&);
omg::types::wstring ObjectId_to_wstring(const ObjectId&);
ObjectId string_to_ObjectId(const omg::types::string&);
ObjectId wstring_to_ObjectId(const omg::types::wstring&);

} // namespace PortableServer

If conversion of an ObjectId to a string would result in illegal characters in the string, the first two functions throw
the BAD_PARAM exception.

A.1.13 Mapping for PortableServer::ServantManager

A.1.13.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type shall be specified by each
language mapping. In C++, Cookie maps to void*:

namespace PortableServer {

class ServantLocator {
 // ...
 using Cookie = void*;
};

} // namespace PortableServer

For the C++ mapping of the PortableServer::ServantLocator::preinvoke() operation, the Cookie
parameter maps to a Cookie&, while for the postinvoke() operation, it is passed as a Cookie.

A.1.13.2 ServantManagers and AdapterActivators

Portable servants that implement the PortableServer::AdapterActivator, the
PortableServer::ServantActivator, or PortableServer::ServantLocator interfaces are implemented just
like any other servant using the inheritance-based approach.

A.1.13.3 Server Side Mapping for Abstract Interfaces

The only circumstances under which an IDL compiler shall generate C++ code for abstract interfaces for the server side
are when either an interface is derived from an abstract interface, or when a valuetype supports an abstract interface
indirectly through one or more intermediate regular interface types. Abstract interfaces by themselves cannot be directly
implemented or instantiated by portable applications. Because of this, standard C++ skeleton classes for abstract
interfaces are not necessary.

A.2 DDS-Specific Mappings

DDS requires no additional platform-specific language mappings. Implementations of this specification targeting DDS
shall therefore be based solely on the IDL to C++ mappings defined in Chapters 7 and 8 for the building blocks that
compose the DDS profiles defined in Clause 9.3 of [OMG-IDL4].

68 IDL4 to C++ Language Mapping 1.0

Annex B: Building Block Traceability Matrix

(non-normative)
The building block traceability matrix in Table B.1 provides an indication of which clause within this specification
addresses each IDL building block.

Table B.1: Building Block Traceability Matrix

Building Block Section(s)

Core DataTypes 7.2 Core Data Types

Any 7.3 Any

Interfaces – Basic 7.4 Interfaces – Basic

Interfaces – Full 7.5 Interfaces – Full

Value Types 7.6 Value Types

CORBA-Specific – Interfaces 7.7 CORBA-Specific – Interfaces

CORBA-Specific – Value Types 7.8 CORBA-Specific – Value Types

Components – Basic 7.9 Components – Basic

Components – Homes 7.10 Components – Homes

CCM-Specific 7.11 CCM-Specific

Components – Ports and Connectors 7.12 Components – Ports and Connectors

Template Modules 7.13 Template Modules

Extended Data Types 7.14 Extended Data Types

Anonymous Types 7.15 Anonymous Types

Annotations 7.16 User-Defined Annotations

IDL4 to C++ Language Mapping 1.0 69

Annex C: Compatibility Rules for C++98 and C++03

(normative)

C.1 Overview

The language mappings defined in this specification assume the target compiler supports C++11 [ISO/IEC-14882:2011]
or above. Thus, some mapping rules generate code that is incompatible with older versions of the C++ standard, such
as C++98 [ISO/IEC-14882:1998] or C++03 [ISO/IEC-14882:2003].

Implementers of this specification that require support for older C++ standard versions shall follow the rules specified
in this specification, except for the specific constructs listed below, which provide mapping rules compliant with C++98
and C++03.

C.2 IDL to C++ Language Mapping

C.2.1 Core Data Types

Core data types shall be mapped according to the rules specified in Clause 7.2. The following clauses define the
mapping rules that need to be altered to support C++98 and C++03.

C.2.1.1 Constants

IDL constants of shall be mapped to C++ constant declarations of equivalent type with the same name and value within
the equivalent scope and namespace where they are defined.

For example, the IDL const declarations below:
module my_math {
 const string my_string = "My String Value";
 const double PI = 3.141592;
};

would map to the following C++:
namespace my_math {
 const std::string my_string = "My String Value";
 const double PI = 3.141592;
}

The constant value of wide character and wide string constants shall be preceded by L in C++.

For example, IDL constant:
const wstring ws = "Hello World";

would map to the following C++:
const std::wstring ws = L"Hello World";

IDL4 to C++ Language Mapping 1.0 71

C.2.1.2 Data Types

C.2.1.2.1 Basic Types

C.2.1.2.1.1 Integer Types

Integer types shall be mapped to the types shown in Table C.1. These types shall be made available to users ensuring
that the underlying C++ data type has the appropriate size in the target platform.

Table C.1: Mapping of Integer Types

IDL Type C++ Type Default Value

short omg::types::int16_t 0

unsigned short omg::types::uint16_t 0

long omg::types::int32_t 0

unsigned long omg::types::uint32_t 0

long long omg::types::int64_t 0

unsigned long
long

omg::types::uint64_t 0

C.2.1.2.2 Constructed Types

In general, an IDL constructed type shall be mapped to a C++ class with the same name following the mapping rules
specified in Clause 7.2.4.3. However, the mapped classes shall not provide a move constructor or an assignment move
operator as these are unsupported in C++98 and C++03.

The other difference is the mapping rules for Enumerations, which are specified below.

C.2.1.2.2.1 Enumerations

An IDL enum shall be mapped to a C++ enum with the same name as the IDL enum type.

For example, the IDL enum declaration below:

enum AnEnum {
 zero,
 one,
 two
};

would map to the following C++:
enum AnEnum {
 zero,
 one,
 two
};

72 IDL4 to C++ Language Mapping 1.0

C.2.1.2.3 Arrays

IDL arrays shall map to C-style arrays of the mapped element type. Likewise, multidimensional arrays shall be mapped
to C-style multidimensional arrays of the mapped element type.

For example the IDL declaration below:
typedef long long_array[100];
typedef string string_array[1][2];

would map to the following C++:
typedef omg::types::int32_t long_array[100];
typedef std::string string_array[1][2];

C.2.1.2.4 Naming Data Types

IDL typedefs shall be mapped to C++ typedef declarations.

For example the IDL declaration below:
typedef long Length;

struct MyType {
 Length my_type_length;
};

would map to the following C++:

IDL4CPP-43 Map IDL struct to class?
typedef omg::types::int32_t Length;

class MyType {
public:
 // ...
 void my_type_length(Length value);
 Length& my_type_length();
 const Length& my_type_length() const;
 //...
};
struct MyType {
 Length my_type_length;
};

C.2.2 Interfaces – Basic

Each IDL interface shall be mapped to a C++ class following the mapping rules specified in Clause 7.4, taking into
account that parameters of interface type T shall be mapped to T*, instead of std::shared_ptr<T>.

C.2.3 Interfaces – Full

Interfaces – Full shall follow the mapping rules specified in Clause 7.4, taking into account the rules for mapping
parameters of interface type defined in Clause C.2.2.

IDL4 to C++ Language Mapping 1.0 73

C.2.4 Extended Data Types

C.2.4.1 Additional Template Types

Additional template types shall be mapped as defined in Clause 7.14.3 with the exception of the bitmask type, which
shall be defined as specified below.

C.2.4.1.1 Bitmask Type

IDL bitmask declarations shall be mapped to a two C++ struct type namescontaining the following elements:

• An enum named <Bitmask>Bits_flags that includes an enumerator for each of the the values defined in the
scope of the IDL bitmask, with each enumerator explicitly initialized to its corresponding integer value.

• A type alias that defines the <Bitmask> name itself as an alias to an unsigned integer type that can be safely
cast to any value of <Bitmask>Bits.A private member named _value of an unsigned integer type that can be
safely cast to any value of _flags; that is, omg::types::uint8_t for values of bit_bound between 1 and
8; omg::types::uint16_t for values of bit_bound between 9 and 16, omg::types::uint32_t for
bit_bound values between 17 and 32, and omg::types::uint64_t for bit_bound values between 33 and
64.

• A default constructor and a copy constructor.

• An implementation of the !=, &=, and ^= bitwise operators.

• A n implementation of the function call operator that returns _value.

For example, the IDL bitmask declaration below:
@bit_bound(832)
bitmask MyBitMask {
 @position(0) flag0,
 @position(1) flag1,
 @position(4) flag4,
 @position(6) flag6
};

would map to the following C++:
struct MyBitMask {
 enum MyBitMaskBits {
 flag0 = 0x01 << 0,
 flag1 = 0x01 << 1 2,
 flag4 = 16,
 flag6 = 64
 };

 MyBitMask() : _value(0U) {}
 MyBitMask(omg::types::uint32_t v): _value(v) {}

 operator omg::types::uint32_t()
 {
 return _value;
 }

 MyBitMask& operator|=(omg::types::uint32_t other)
 {
 _value != other;
 return *this;
 }

74 IDL4 to C++ Language Mapping 1.0

 MyBitMask& operator&=(omg::types::uint32_t other)
 {
 _value &= other;
 return *this;
 }

 MyBitMask& operator^=(omg::types::uint32_t other)
 {
 _value ^= other;
 return *this;
 }

private:
 omg::types::uint32_t _value;
};

typedef omg::types::uint8_t MyBitMask;

NOTE—In C++98 and C++03, the underlying type of an enumeration cannot be fixed. Therefore in the mapping
defined above, the underlying type of <Bitmask>Bits_flags will be “an integral type that can represent all
enumeration values defined in the enumeration.” The standard also states that “it is implementation-defined which
integral type is used as the underlying type except that the underlying type shall not be larger than int unless the value
of an enumerator cannot fit in an int or unsigned int.”

C.2.4.2 8-bit Integer Types

8-bit integer types shall be mapped as shown in Table C.2. These types shall be made available to users ensuring that
the underlying C++ data type has the appropriate size in the target platform.

Table C.2: Mapping of 8-bit Integer Types

IDL Type C++ Type Default Value

int8 omg::types::int8_t 0

uint8 omg::types::uint8_t 0

C.2.4.3 Explicitly-Named Integer Types

Explicitly-named integer types shall be mapped as shown in Table C.3. These types shall be made available to users
ensuring that the underlying C++ data type has the appropriate size in the target platform.

Table C.3: Mapping of Explicitly-Named Integer Types

IDL Type C++ Type Default Value

int16 omg::types::int16_t 0

uint16 omg::types::uint16_t 0

int32 omg::types::int32_t 0

uint32 omg::types::uint32_t 0

int64 omg::types::int64_t 0

uint64 omg::types::uint64_t 0

IDL4 to C++ Language Mapping 1.0 75

C.2.5 Standardized Annotations

Except for the group of annotations listed below, standardized annotations shall be mapped as defined in Clause 7.17 of
this specification.

C.2.5.1 Group of Annotations: General Purpose

Table C.4 identifies the mapping impact of the IDL defined General Purpose Annotations.

Table C.4: General Purpose Annotation Impact

General Purpose Annotation Impact on C++ Language Mapping

@id No impact on language mapping

@autoid No impact on language mapping

@optional IDL member declarations preceded by the @optional annotation shall be mapped
to T*, where T is the type of the IDL optional member. In such cases, a NULL
pointer indicates an omitted value.

@position Impacts the mapping of bitmask types as defined in Clause 7.14.3.3.

@value Impacts the mapping of enum types, providing the value of the annotated
enumerator.

For example:
enum Color {
 @value(1) red,
 @value(2) green,
 @value(3) blue
};

would map to the following C++:
enum Color {
 red = 1,
 green = 2,
 blue = 3
};

@extensibility No impact on language mapping

@final No impact on language mapping

@mutable No impact on language mapping

@appendable No impact on language mapping

C.2.5.2 Group of Annotations: Data Implementation

Table C.5 identifies the mapping impact of the IDL defined Data Implementation annotations.

Table C.5: Data Implementation Annotation Impact

Data Implementation Annotation Impact on C++ Language Mapping

76 IDL4 to C++ Language Mapping 1.0

@bit_bound A @bit_bound annotation preceding an IDL enum declaration has no
impact on the language mapping.

The mapping for a IDL bitmask declaration preceded by the @bit_bound
annotation is described in Clause C.2.4.1.1.

@external IDL member declarations preceded by the @external annotation shall be
mapped to T*, where T is the type of the IDL external member.

@nested No impact on the language mapping

C.3 IDL to C++ Language Mapping Annotations

C.3.1 @cpp_mapping Annotation

The compatibility rules for C++98 and C++03 add the following parameters to the list of parameters for the
@cpp_mapping annotation defined in Clause 8.1.

Therefore, the annotation declaration defined in Clause 8.1 shall be augmented with the following members:
@annotation cpp_mapping {
 // …
 string enum_prefix default "";
 string enum_suffix default "";
};

C.3.1.1 enum_prefix

enum_prefix provides a way to scope enumerator identifiers as they are mapped to C++. When this parameter is
present, the mapping shall prepend the identifier of each enumerator with the value of enum_prefix.

For example, the IDL enum declaration below:
@cpp_mapping(enum_prefix="color_")
enum Colors { red, green, blue };

would map to the following C++:
enum Colors { color_red, color_green, color_blue };

C.3.1.2 enum_suffix

enum_suffix provides a way to scope enumerator identifiers as they are mapped to C++. When this parameter is
present, the mapping shall append the value of enum_suffix to the identifier of each enumerator.

For example, the IDL enum declaration below:

@cpp_mapping(enum_suffix="_color")
enum Colors { red, green, blue };

would map to the following C++:
enum Colors { red_color, green_color, blue _color };

IDL4 to C++ Language Mapping 1.0 77

C.4 Platform-Specific Mappings

C.4.1 CORBA-Specific Mappings

CORBA-specific mappings shall apply the rules defined in Clause A.1 of this specification, with the exceptions listed
below.

C.4.1.1 Exceptions

The Exception abstract shall not provide a move constructor or an assignment move operator, as these are
unsupported in C++98 and C++03.

C.4.1.2 TypeCode

The IDL TypeCode type shall mapped to a C++ class named CORBA::TypeCode according to the following definition:

namespace CORBA {

class TypeCode {
public:
 class Bounds final : public CORBA::UserException { ... };
 class BadKind final : public CORBA::UserException { ... };

 bool equal(CORBA::TypeCode*) const;
 bool equivalent(CORBA::TypeCode*) const;
 TCKind kind() const;

 CORBA::TypeCode* get_compact_typecode() const;
 const std::string& id() const;
 const std::string& name() const;

 omg::types::uint32_t member_count() const;
 const std::string& member_name(omg::types::uint32_t index) const;

 CORBA::TypeCode* member_type(omg::types::uint32_t index) const;

 const Any& member_label(omg::types::uint32_t index) const;
 CORBA::TypeCode* discriminator_type() const;
 omg::types::int32_t default_index() const;

 omg::types::uint32_t length() const;

 CORBA::TypeCode* content_type() const;

 omg::types::uint16_t fixed_digits() const;
 omg::types::int16_t fixed_scale() const;

 Visibility member_visibility(omg::types::uint32_t index) const;
 ValueModifier type_modifier() const;
 CORBA::TypeCode* concrete_base_type() const;
};

} // namespace CORBA

Except Any (which shall be mapped as defined in Clause C.4.1.3) and TypeCode, all types used in the declaration of
TypeCode shall be derived from their IDL definition in [OMG-CORBA-IFC] following the mapping rules defined in

78 IDL4 to C++ Language Mapping 1.0

Chapter 7 with the exceptions for C++98 and C++03 defined in Annex C. The resulting C++ definitions shall be placed
in the CORBA namespace.

C.4.1.3 Any

The IDL type shall be mapped according to the rules defined in Clause A.1.7 of this specification, taking into account
the following considerations for C++98 and C++03:

• In Clause A.1.7.2, the implementation shall not include a move insert, as it is unsupported in C++98 and C+
+03.

• In Clause A.1.7.4, the type accessor function shall return a pointer to the TypeCode associated with the any, as
opposed to a reference to it:
CORBA::TypeCode* type() const;

Likewise the type modifier function on the any shall take a pointer to the TypeCode as an argument, as
opposed to a reference to it:
void type(CORBA::TypeCode*);

IDL4 to C++ Language Mapping 1.0 79

Annex D: IDL4 Mapping Rules for Classic C++
Language Mapping Specifications

(normative)

D.1 Overview

This Annex provides mapping rules for the building blocks introduced in IDL4 that are not addressed in the classic C++
and C++11 Language Mappings (see [OMG-C++] and [OMG-C++11], respectively). These set of rules allow
implementers of the classic mappings to extend existing IDL compilers and platforms to incorporate concepts from
IDL4, such as extended data types and annotations, using a standard set of mapping rules that are consistent with the
requirements and conventions of the original specifications.

D.2 IDL4 Mappings Rules for C++ Language Mapping Specification

The following clauses provide mapping rules for the portions of IDL4 that are not covered by the classic C++ Language
Mapping [OMG-C++]. Such mapping rules are consistent with the requirements and mapping style of the original
specification.

D.2.1 Extended Data Types

D.2.1.1 Structures with Single Inheritance

An IDL struct that inherits from a base IDL struct shall be mapped to a C++ struct, with each struct member
mapped to a corresponding member of the C++ struct in the same order. The mapped struct shall inherit from the
mapped base struct using public inheritance. The resulting C++ struct shall comply with the requirements set forth
for structured types and struct types in Clauses 5.11 and 5.12 of [OMG-C++].

For example, an IDL struct extending the MyStruct structure define in Clause 7.2.4.3.1 of this specification:

struct ChildStruct : MyStruct {
 float a_float;
};

would map to the following C++:
struct ChildStruct : public MyStruct {
 Float a_float;
};

D.2.1.2 Union Discriminators

This building block defined in [OMG-IDL4] adds the wchar and octet IDL types to the set of valid types for a union
discriminator. The mapping of union discriminators of such types shall be mapped as specified in Clause 5.14 of
[OMG-C++].

Any addition to the list of supported integer, char, boolean, or enum types as a result of the implementation of the
Extended Data Types building block makes such types valid union discriminators as well. Therefore, if 8-bit integer
values are supported (see Clause D.2.1.4), int8 and uint8 shall be treated as valid union discriminators and shall be
mapped as specified in Clause D.2.1.4.

IDL4 to C++ Language Mapping 1.0 81

D.2.1.3 Additional Template Types

D.2.1.3.1 Maps

IDL map declarations shall be mapped to a C++ class. Classes representing bounded and unbounded maps shall
implement at a minimum the following constructors and methods:

• A default constructor that sets the map size to zero and initializes the internal representation of the map.

• An operator[] overload that returns a reference to the value associated with the given key.

• ULong maximum() const, which returns the maximum size of the map. In other words, the maximum
number of entries the map can hold at any given time.

• ULong length() const, which returns the current size of the map. In other words, the current number of
entries the map holds at this time.

• void clear(), which clears all the entries from the map. The size of the map is set to 0 and the maximum
number of entries does not change.

• Boolean insert(const K& key, const T& element, Boolean replace = TRUE), which inserts a
new entry into the map with the given key and element values.

◦ If replace is set to FALSE, and an element with the given key already exists in the map, the method shall
fail and return FALSE.

◦ If the process of adding a new element exceeds the maximum value of allowed elements (i.e., if length
+ 1 is greater than maximum), the method shall fail and return FALSE.

◦ Otherwise, the method shall add the new element, increase the length in length + 1, and return TRUE.

• Boolean insert_or_assign(const K& key, const T& element), which behaves as the insert()
method if the replace parameter is set to TRUE.

• Boolean erase(const K& key), which removes the given key from the map. If successful, it decreases the
length in length – 1 and returns TRUE. Otherwise, it returns FALSE.

Unbounded maps shall also implement the following methods:

• A copy constructor that creates a new map with the same maximum and length as the given map, and copies
every element from the given map.

• An operator= overload that replaces the contents of the map with a copy of the content of a given map.

• A “maximum constructor” that takes the maximum size of the unbounded map as a parameter, allowing
internal preallocations if necessary.

• void maximum(ULong), which sets the maximum size of the unbounded map. Reallocation is conceptually
equivalent to creating a new map of the desired new length, copying the old map elements zero through
length - 1 into the new map, and then assigning the old map to be the same as the new map.

Implementers may add methods to classes representing bounded and unbounded maps to provide additional
functionality.

For example, the following :
typedef map<unsigned long, T> M1; // unbounded map
typedef map<string, T, 20> M2; // bounded map

would map to C++ as follows:

82 IDL4 to C++ Language Mapping 1.0

class M1 {
public:
 M1();
 M1(ULong);
 M1(const M1&);
 ~M1();
 M1 &operator=(const M1&);

 T &operator[](ULong key);
 const T &operator[](ULong key) const;

 ULong maximum() const;
 void maximum(ULong max_size);

 ULong length() const;

 void clear();

 Boolean insert(
 ULong key,
 const T& element,
 Boolean replace = true);

 Boolean insert_or_assign(ULong key, const T& element);

 Boolean erase(ULong key);
};

class M2 {
public:
 M2();
 ~M2();

 T &operator[](const std::string& key);
 const T &operator[](const std::string& key) const;

 ULong maximum() const;

 ULong length() const;

 T &operator[](ULong index);
 const T &operator[](ULong index) const;

 void clear();

 Boolean insert(
 const std::string& key,
 const T& element,
 Boolean replace = true);

 Boolean erase(ULong key);
};

D.2.1.3.2 Bitsets

IDL4CPP-52: Typo fixes

IDL bitmaskbitset declarations shall be mapped as defined in Clause 7.14.3.2 of this specification.

IDL4 to C++ Language Mapping 1.0 83

D.2.1.3.3 Bitmask Type

IDL bitmask declarations shall be mapped as defined in Clause C.2.4.1.1 of this specification.

D.2.1.4 8-bit Integer Types

8-bit integer types shall be mapped as shown in Table D.1

Table D.1: Mapping of 8-bit Integer Types

IDL Type C++ Type C++ Out Type

int8 CORBA::Int8 CORBA::Int8_out

uint8 CORBA::UInt8 CORBA::UInt8_out

Each 8-bit integer type is mapped to a typedef in the CORBA module. The typedef shall guarantee that the
underlying C++ type guarantees the size and sign requirements in the target platform (i.e., an 8-bit signed integer for
int8, and an 8-bit unsigned integer for uint8). The rest of considerations that apply to the mapping of basic types
defined in Clause 5.7 of [OMG-C++] apply to int8 and uint8.

Implementers of this specification that target a technology different than CORBA may map Int8 and UInt8 to
typedefs in a different module. For example, a typedef for int8 for DDS could be mapped to DDS::Int8.

D.2.1.5 Explicitly-Named Integer Types

Explicitly-named integer types shall be mapped as shown in Table D.2.

Table D.2: Mapping of Explicitly-Named Integer Types

IDL Type C++ Type C++ Out Type

int16 CORBA::Short CORBA::Short_out

uint16 CORBA::UShort CORBA::UShort_out

int32 CORBA::Long CORBA::Long_out

uint32 CORBA::ULong CORBA::ULong_out

int64 CORBA::LongLong CORBA::LongLong_out

uint64 CORBA::ULongLong CORBA::ULongLong_out

Implementers of this specification that target a technology different than CORBA may map explicitly-named integer
types to typedefs in a different module. For example, a typedef for int16 for DDS could be mapped to
DDS:Short.

D.2.2 User-Defined Annotations

User-defined annotations are not propagated to the generated C++ code.

84 IDL4 to C++ Language Mapping 1.0

D.2.3 Standardized Annotations

D.2.3.1 Group of Annotations: General Purpose

Table D.3 identifies the mapping impact of the IDL defined General Purpose Annotations.

Table D.3: General Purpose Annotation Impact

General Purpose Annotation Impact on C++ Language Mapping

@id No impact on language mapping

@autoid No impact on language mapping

@optional Each IDL struct member annotated with @optional shall be represented using
plain pointers.

• In cases where the mapping of non-optional members already uses a plain
pointer, it shall remain unchanged.

• In cases where the mapping of non-optional members uses a _var smart
pointer, the _var type shall be replaced by the corresponding plain
pointer type. For example, MyType_var is replaced by MyType*.

• In cases where the mapping of non-optional members uses an automatic
member of type T, T shall be replaced by pointer-to-T. For example,
Short shall be replaced by Short*.

A NULL pointer indicates an omitted value.

For example:
struct S {
 string name;
 @optional float age;
};

would map to the following C++:
struct S {
 char* name;
 Float* age;
};

@position Impacts the mapping of bitmask types as defined in Clause D.3.1.3.3 of this
specification.

@value Impacts the mapping of enum types, providing the value of the annotated
enumerator.

For example:
enum Color {
 @value(1) red,
 @value(2) green,
 @value(3) blue
};

would map to the following C++:
enum Color {

IDL4 to C++ Language Mapping 1.0 85

 red = 1,
 green = 2,
 blue = 3
};

@extensibility No impact on language mapping

@final No impact on language mapping

@mutable No impact on language mapping

@appendable No impact on language mapping

D.2.3.2 Group of Annotations: Data Modeling

IDL defined Data Modeling annotations shall be mapped as defined in Clause 7.17.2 of this specification.

D.2.3.3 Group of Annotations: Units and Ranges

Table D.4 identifies the mapping impact of the IDL defined Units and Ranges annotations.

Table D.4: Units and Ranges Annotation Impact

Units and Ranges Annotation Impact on C++ Language Mapping

@default C++ elements declared as result of the mappings defined in this specification
containing a @default annotation shall be initialized to the value of the
annotation.

@range No impact on language mapping.

@min No impact on language mapping.

@max No impact on language mapping.

@unit No impact on language mapping.

D.2.3.4 Group of Annotations: Data Implementation

Table D.5 identifies the mapping impact of the IDL defined Data Implementation annotations.

Table D.5: Data Implementation Annotation Impact

Data Implementation Annotation Impact on C++ Language Mapping

@bit_bound A @bit_bound annotation preceding an IDL enum declaration has no
impact on the language mapping.

The mapping for an IDL bitmask declaration preceded by the @bit_bound
annotation is described in Clause D.2.1.3.2.

@external IDL member declarations preceded by the @external annotation shall be
mapped to any type that behaves similarly to a pointer (e.g., a plain pointer
or a _var type). The chosen type shall support the concept of being “unset.”

86 IDL4 to C++ Language Mapping 1.0

For example, a plain pointer is considered unset if its value is NULL.

• In cases where the non-external mapping already uses a type similar
to a pointer, it shall remain unchanged.

• In cases where the non-external mapping uses a member of type T, T
shall be replaced by pointer-to- T. For example, if plain pointers are
used, Short shall be replaced by Short*.

The behavior of the construct, destructor, and copy functions of the
enclosing object shall be the following:

• The constructor shall set external member pointers to NULL.

• The destructor shall delete the objects referenced by non- NULL
external member pointers. It is the responsibility of the application
to set the external member pointers to NULL before destroying the
enclosing object if they do not want to delete specific referenced
objects.

• The copy function shall do a deep copy of the external members. If
the destination of the external member is NULL, it shall be allocated.
If the destination external member is not NULL, it shall be filled with
a copy of the source member. If the copy operation of the external
member fails, then the copy function of the containing object shall
fail as well. This may happen when the destination member is not
large enough to hold a copy of the source.

• There may be an additional copy function that takes in arguments to
allow the user to control the behavior of the copy operation. Such
operation may allow the user to choose whether a shallow or deep
copy is made, as well as whether any existing memory pointed by
the member is reused, released, or replaced during the copy. In the
case that a shallow copy is made, and the destination member is
NULL, then the destination member pointer shall be set to the source
member pointer. In the case that a deep copy is made, and the
destination member pointer is NULL, memory for the destination
member shall be allocated and then copied into.

A member that is both external and optional shall be mapped as if it were
external.

@nested No impact on the language mapping

D.2.3.5 Group of Annotations: Code Generation

IDL defined Code Generation annotations shall be mapped as defined in Clause 7.17.5 of this specification.

D.2.3.6 Group of Annotations: Interfaces

IDL defined Interface annotations shall be mapped as defined in Clause 7.17.6 of this specification.

IDL4 to C++ Language Mapping 1.0 87

D.3 IDL4 Mappings Rules for C++11 Language Mapping
Specification

The following clauses provide mapping rules for the portions of IDL4 that are not covered by the classic C++11
Language Mapping [OMG-C++11]. Such mapping rules are consistent with the requirements and mapping style of the
original specification.

D.3.1 Extended Data Types

D.3.1.1 Structures with Single Inheritance

In addition to the requirements in Clause 6.14.1 of [OMG-C++11], mapped classes for IDL structures that make use of
inheritance have the following features:

• Public inheritance from the mapped C++ class corresponding to the IDL struct’s base type

• Any member function defined by 6.14 or 6.14.1 of [OMG-C++11] that acts on a per-data-member basis
includes the base subobject as the implicit first data member. This also applies to the swap() function.

• The constructor which “accepts values for each struct member in the order they are specified in IDL” also
accepts, as its first parameter, an object of the mapped base type.

• The using declaration Base::Base which enables C++’s inheriting constructors.

For example:
struct VariableExt : Variable { // from Clause 6.14.1 of [OMG-C++11]
 boolean b;
};

would map to C++ as follows:
class VariableExt : public Variable {
public:
 VariableExt(const Variable&, bool);
 using Variable::Variable;
 // other members as specified in 6.14 and 6.14.1 of [OMG-C++11]
};

D.3.1.2 Union Discriminators

This building block defined in [OMG-IDL4] adds the wchar and octet IDL types to the set of valid types for a union
discriminator. The mapping of union discriminators of such types shall be mapped as specified in Clause 6.14.2 of
[OMG-C++11].

Any addition to the list of supported integer, char, boolean, or enum types as a result of the implementation of the
Extended Data Types building block makes such types valid union discriminators as well. Therefore, if 8 bit integer
values are supported (see Clause D.3.1.4), int8 and uint8 shall be treated as valid union discriminators and shall be
mapped as specified in Clause D.3.1.4.

88 IDL4 to C++ Language Mapping 1.0

D.3.1.3 Additional Template Types

D.3.1.3.1 Maps

An IDL unbounded map type maps to a C++ std::map or to a type that delivers std::map's semantics and supports
transparent conversion to and from std::map. The std::map<K, T, Compare, Allocator> template shall be
instantiated with the K class parameter being the C++ type corresponding to the key type and the T parameter is the C++
type corresponding to the element type.

The arguments for the Compare and Allocator parameters are unspecified and may or may not take their default
values. A bounded map is mapped to a distinct type to differentiate from an unbounded map. This distinct type shall
deliver std::map semantics and support transparent conversion from bounded to unbounded and vice versa including
support for move semantics. As a result, the programmer is responsible for enforcing the bound of bounded maps at
runtime.

Implementations of the mapping are under no obligation to prevent assignment of a map to a bounded map type if the
map size exceeds the bound.

Implementations shall at run time detect attempts to pass a map that exceeds the bound as a parameter across an
interface. When an implementation detects this error, it shall raise a BAD_PARAM system exception to signal the error.

Additionally, the C++ std::map can have a size that is larger than the maximum size of an IDL map that is limited in
length to the maximum of ULong. When this happens the implementation shall raise a BAD_PARAM system exception to
signal the error.

For example, the following full declarations for both a bounded and an unbounded map:
typedef map<unsigned long, T> M1; // unbounded map
typedef map<string, T, 20> M2; // bounded map

would map to C++ as follows:
using M1 = std::map<uint32_t, T>;
using M2 = IDL::bounded_map<std::string, T, 20>;

For an unbounded map the following additional member types shall be available as part of its type trait.

Table D.6: Unbounded Map Traits Member Types

Member Definition

key_traits IDL::traits<> for the key type

value_traits IDL::traits<> for the value type

is_bounded std::false_type type indicating that this type is not bounded

For a bounded map the following additional member types shall be available as part of its type trait.

Table D.7: Bounded Map Traits Member Types

Member Definition

key_traits IDL::traits<> for the key type

IDL4 to C++ Language Mapping 1.0 89

Member Definition

value_traits IDL::traits<> for the value type

is_bounded std::true_type type indicating that this type is bounded

bound std::integral_constant type of value type uint32_t indicating the
bound of the map

D.3.1.3.2 Bitsets

IDL biset types shall be mapped as defined in Clause 7.14.3.2 of this specification.

D.3.1.3.3 Bitmask Types

IDL bitmask types shall be mapped as defined in Clause 7.14.3.3 of this specification.

For a bitmask type, the following additional members shall be available as part of its type trait. Because the bit mask
type itself is just an alias for a built-in type, the traits template is specialized on the <Bitmask>Bits type.

Table D.8: Additional Traits Members for Bit Masks

Member Definition

bit_bound std::integral_constant type of value type uint32_t indicating the
bit_bound of the Bit Mask.

underlying_type The type mapped as the underlying type of the bit mask

D.3.1.4 8-bit Integer Types

IDL int8 and uint8 data types shall be mapped as defined in Clause 7.14.4 of this specification.

D.3.1.5 Explicitly-Named Integer Types

IDL explicitly-named integer types shall be mapped as defined in Clause 7.14.5 of this specification.

D.3.2 User-Defined Annotations

User-defined annotations are not propagated to the generated C++ code.

D.3.3 Standardized Annotations

D.3.3.1 Group of Annotations: General Purpose

Table D.9 identifies the mapping impact of the IDL defined General Purpose Annotations.

90 IDL4 to C++ Language Mapping 1.0

Table D.9: General Purpose Annotation Impact

General Purpose Annotation Impact on C++ Language Mapping

@id No impact on language mapping

@autoid No impact on language mapping

@optional Given the mapping rules defined in Clause 6.14 of [OMG-C++11], each IDL
struct member has a corresponding C++ type (T) that is used as the type of that
member in constructor and accessor parameter lists. Each IDL struct member
annotated with @optional uses the template instantiation IDL::optional<T>
in place of T itself. Implementations that support @optional shall provide the
class template named optional in namespace IDL either as an alias of the ISO C++
standard library’s std::optional or as an independent implementation with the
same API and semantics.

For example:
struct S {
 string name;
 @optional float age;
};

would map to the following C++:
class S {
public:
 // other members not shown
 void age(IDL::optional<float>);
 IDL::optional<float> age() const;
 IDL::optional<float>& age();
};

@position Impacts the mapping of bitmask types as defined in Clause D.3.1.3.3 of this
specification.

@value Impacts the mapping of enum types, providing the value of the annotated
enumerator.

For example:
enum Color {
 @value(1) red,
 @value(2) green,
 @value(3) blue
};

would map to the following C++:
enum class Color : uint32_t {
 red = 1,
 green = 2,
 blue =3
};

@extensibility No impact on language mapping

@final No impact on language mapping

@mutable No impact on language mapping

@appendable No impact on language mapping

IDL4 to C++ Language Mapping 1.0 91

D.3.3.2 Group of Annotations: Data Modeling

IDL defined Data Modeling annotations shall be mapped as defined in Clause 7.17.2 of this specification.

D.3.3.3 Group of Annotations: Units and Ranges

IDL defined Units and Ranges annotations shall be mapped as defined in Clause 7.17.3 of this specification.

D.3.3.4 Group of Annotations: Data Implementation

IDL defined Data Implementation annotations shall be mapped as defined in Clause 7.17.4 of this specification.

D.3.3.5 Group of Annotations: Code Generation

IDL defined Code Generation annotations shall be mapped as defined in Clause 7.17.5 of this specification.

D.3.3.6 Group of Annotations: Interfaces

IDL defined Interface annotations shall be mapped as defined in Clause 7.17.6 of this specification.

92 IDL4 to C++ Language Mapping 1.0

94 IDL4 to C++ Language Mapping 1.0

	1 Scope
	2 Conformance Criteria
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments
	6.3 Intellectual Property Rights

	7 IDL to C++ Language Mapping
	7.1 General
	7.1.1 Names
	7.1.2 Reserved Names
	7.1.3 C++ Language Version Requirements
	7.1.4 IDL Type Traits

	7.2 Core Data Types
	7.2.1 IDL Specification
	7.2.2 Modules
	7.2.3 Constants
	7.2.4 Data Types
	7.2.4.1 Basic Types
	7.2.4.1.1 Integer Types
	7.2.4.1.2 Floating-Point Types
	7.2.4.1.3 Char Types
	7.2.4.1.4 Wide Char Types
	7.2.4.1.5 Boolean Types
	7.2.4.1.6 Octet Type

	7.2.4.2 Template Types
	7.2.4.2.1 Sequences
	7.2.4.2.2 Strings
	7.2.4.2.3 Wstrings
	7.2.4.2.4 Fixed Type

	7.2.4.3 Constructed Types
	7.2.4.3.1 Structures
	7.2.4.3.2 Unions
	7.2.4.3.3 Enumerations
	7.2.4.3.4 Constructed Recursive Types

	7.2.4.4 Arrays
	7.2.4.5 Native Types
	7.2.4.6 Naming Data Types

	7.3 Any
	7.4 Interfaces – Basic
	7.4.1 Exceptions
	7.4.2 Interface Forward Declaration

	7.5 Interfaces – Full
	7.6 Value Types
	7.7 CORBA-Specific – Interfaces
	7.8 CORBA-Specific – Value Types
	7.9 Components – Basic
	7.10 Components – Homes
	7.11 CCM-Specific
	7.12 Components – Ports and Connectors
	7.13 Template Modules
	7.14 Extended Data Types
	7.14.1 Structures with Single Inheritance
	7.14.2 Union Discriminators
	7.14.3 Additional Template Types
	7.14.3.1 Maps
	7.14.3.2 Bitsets
	7.14.3.3 Bitmask Type

	7.14.4 8-bit Integer Types
	7.14.5 Explicitly-Named Integer Types

	7.15 Anonymous Types
	7.16 User-Defined Annotations
	7.17 Standardized Annotations
	7.17.1 Group of Annotations: General Purpose
	7.17.2 Group of Annotations: Data Modeling
	7.17.3 Group of Annotations: Units and Ranges
	7.17.4 Group of Annotations: Data Implementation
	7.17.5 Group of Annotations: Code Generation
	7.17.6 Group of Annotations: Interfaces

	8 IDL to C++ Language Mapping Annotations
	8.1 @cpp_mapping Annotation
	8.1.1 struct_mapping Parameter

	Annex A: Platform-Specific Mappings
	A.1 CORBA-Specific Mappings
	A.1.1 Traits
	A.1.1.1 Interfaces
	A.1.1.2 Strings
	A.1.1.3 Sequences
	A.1.1.4 Arrays
	A.1.1.5 Valuetypes
	A.1.1.6 Valueboxes
	A.1.1.7 Maps
	A.1.1.8 Bitmasks
	A.1.1.9 Parameters
	A.1.1.10 Helper Methods
	A.1.1.11 Servant References

	A.1.2 Exceptions
	A.1.2.1 UnknownUserException
	A.1.2.2 Any Insertion and Extraction for Exceptions
	A.1.2.3 Union Field Method Exceptions
	A.1.2.4 Bounded String, Wstring, and Sequence, and Map Exceptions

	A.1.3 TypeCode
	A.1.4 ORB
	A.1.5 Object
	A.1.5.1 Widening Object References
	A.1.5.2 Object Reference Operations
	A.1.5.3 Nil Object Reference
	A.1.5.4 Narrowing Object Reference

	A.1.6 LocalObject
	A.1.7 Any
	A.1.7.1 Handling Typed Values
	A.1.7.2 Insertion into an Any
	A.1.7.3 Extraction from an Any
	A.1.7.4 TypeCode Replacement

	A.1.8 Value Types
	A.1.8.1 Valuetype Data Members
	A.1.8.2 Constructors, Assignment Operators, and Destructors
	A.1.8.3 Valuetype Operations
	A.1.8.4 Valuetype Example
	A.1.8.5 ValueBase Default Methods
	A.1.8.6 Value boxes
	A.1.8.7 Abstract Valuetypes
	A.1.8.8 Valuetype Inheritance
	A.1.8.9 Valuetype Factories
	A.1.8.9.1 ValueFactoryBase Class
	A.1.8.9.2 Type-Specific Value Factories
	A.1.8.9.3 Unmarshaling Issues

	A.1.8.10 Custom Marshaling

	A.1.9 Abstract Interfaces
	A.1.9.1 Abstract Interface Base
	A.1.9.2 Client Side Mapping

	A.1.10 Server Side Mapping
	A.1.10.1 Implementing Interfaces
	A.1.10.2 PortableServer::Servant
	A.1.10.3 Servant References
	A.1.10.4 Servant Argument Passing
	A.1.10.5 Skeleton Operations
	A.1.10.6 Inheritance-Based Interface Implementation
	A.1.10.7 Implementing Operations
	A.1.10.8 Delegation-Based Interface Implementation

	A.1.11 Mapping DSI to C++
	A.1.11.1 Mapping of ServerRequest
	A.1.11.2 Mapping of PortableServer Dynamic Implementation Routine

	A.1.12 PortableServer Functions
	A.1.13 Mapping for PortableServer::ServantManager
	A.1.13.1 Mapping for Cookie
	A.1.13.2 ServantManagers and AdapterActivators
	A.1.13.3 Server Side Mapping for Abstract Interfaces

	A.2 DDS-Specific Mappings

	Annex B: Building Block Traceability Matrix
	Annex C: Compatibility Rules for C++98 and C++03
	C.1 Overview
	C.2 IDL to C++ Language Mapping
	C.2.1 Core Data Types
	C.2.1.1 Constants
	C.2.1.2 Data Types
	C.2.1.2.1 Basic Types
	C.2.1.2.1.1 Integer Types

	C.2.1.2.2 Constructed Types
	C.2.1.2.2.1 Enumerations

	C.2.1.2.3 Arrays
	C.2.1.2.4 Naming Data Types

	C.2.2 Interfaces – Basic
	C.2.3 Interfaces – Full
	C.2.4 Extended Data Types
	C.2.4.1 Additional Template Types
	C.2.4.1.1 Bitmask Type

	C.2.4.2 8-bit Integer Types
	C.2.4.3 Explicitly-Named Integer Types

	C.2.5 Standardized Annotations
	C.2.5.1 Group of Annotations: General Purpose
	C.2.5.2 Group of Annotations: Data Implementation

	C.3 IDL to C++ Language Mapping Annotations
	C.3.1 @cpp_mapping Annotation
	C.3.1.1 enum_prefix
	C.3.1.2 enum_suffix

	C.4 Platform-Specific Mappings
	C.4.1 CORBA-Specific Mappings
	C.4.1.1 Exceptions
	C.4.1.2 TypeCode
	C.4.1.3 Any

	Annex D: IDL4 Mapping Rules for Classic C++ Language Mapping Specifications
	D.1 Overview
	D.2 IDL4 Mappings Rules for C++ Language Mapping Specification
	D.2.1 Extended Data Types
	D.2.1.1 Structures with Single Inheritance
	D.2.1.2 Union Discriminators
	D.2.1.3 Additional Template Types
	D.2.1.3.1 Maps
	D.2.1.3.2 Bitsets
	D.2.1.3.3 Bitmask Type

	D.2.1.4 8-bit Integer Types
	D.2.1.5 Explicitly-Named Integer Types

	D.2.2 User-Defined Annotations
	D.2.3 Standardized Annotations
	D.2.3.1 Group of Annotations: General Purpose
	D.2.3.2 Group of Annotations: Data Modeling
	D.2.3.3 Group of Annotations: Units and Ranges
	D.2.3.4 Group of Annotations: Data Implementation
	D.2.3.5 Group of Annotations: Code Generation
	D.2.3.6 Group of Annotations: Interfaces

	D.3 IDL4 Mappings Rules for C++11 Language Mapping Specification
	D.3.1 Extended Data Types
	D.3.1.1 Structures with Single Inheritance
	D.3.1.2 Union Discriminators
	D.3.1.3 Additional Template Types
	D.3.1.3.1 Maps
	D.3.1.3.2 Bitsets
	D.3.1.3.3 Bitmask Types

	D.3.1.4 8-bit Integer Types
	D.3.1.5 Explicitly-Named Integer Types

	D.3.2 User-Defined Annotations
	D.3.3 Standardized Annotations
	D.3.3.1 Group of Annotations: General Purpose
	D.3.3.2 Group of Annotations: Data Modeling
	D.3.3.3 Group of Annotations: Units and Ranges
	D.3.3.4 Group of Annotations: Data Implementation
	D.3.3.5 Group of Annotations: Code Generation
	D.3.3.6 Group of Annotations: Interfaces

