
CORBA-FTAM/FTPInterworking
Specification

dtc/2001-08-04
October22, 2001

stems
rnia,

lusive,
ment
ed that
yright
puter

MG
ble for
legal
MG

tecting

this
notices
of this

listed
nce or
ty. The
rough

d sellers
dicate
t. All

y form
g, or
Copyright 1999-2001, Ericsson, Siemens AG, Broadcom EireAnn Research, Distributed Sy
Technology Centre (DSTC), Floorboard Software, IONA, Lucent, PrismTech, University of Califo
Irvine.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexc
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this docu
and distribute copies of the modified version. Each of the copyright holders listed above has agre
no person shall be deemed to have infringed the copyright in the included material of any such cop
holder by reason of having used the specification set forth herein or having conformed any com
software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of O
specifications may require use of an invention covered by patent rights. OMG shall not be responsi
identifying patents for which a license may be required by any OMG specification, or for conducting
inquiries into the legal validity or scope of those patents that are brought to its attention. O
specifications are prospective and advisory only. Prospective users are responsible for pro
themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in
document details an Object Management Group specification in accordance with the license and
set forth on this page. This document does not represent a commitment to implement any portion
specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR
PURPOSE OR USE. In no event shall The Object Management Group or any of the companies
above be liable for errors contained herein or for indirect, incidental, special, consequential, relia
cover damages, including loss of profits, revenue, data or use, incurred by any user or any third par
copyright holders listed above acknowledge that the Object Management Group (acting itself or th
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers an
of computer software to use certification marks, trademarks or other special designations to in
compliance with these materials. This document contains information which is protected by copyrigh
Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in an
or by any means--graphic, electronic, or mechanical, including photocopying, recording, tapin
-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

t to
ware
ject

ies,
emark

s we
pleting
information storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subjec
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Soft
Clause at DFARS 252.227.7013 OMG®and Object Management are registered trademarks of the Ob
Management Group, Inc. Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilit
CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a trad
of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this proces
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by com
the issue reporting form athttp://www.omg.org/library/issuerpt.htm.
CORBA-FTAM/FTP Interworking Specification, FTF Final Report Draft -3

-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

Preface 1

About the Object Management Group 1
What is CORBA? 1

Associated OMG Documents 2

Acknowledgments 3

1. Service Description 1

1.1 File Transfer in Telecoms Systems 1
1.1.1 File Transfer Capable Network Elements 2

2. Service Architecture 1

2.1 Overview 1
2.1.1 File System Servers 1
2.1.2 Principal Components 2
2.1.3 Files and Directories 2
2.1.4 File Transfer 3

2.2 File Transfer Protocols 8
2.2.1 Protocol Syntax 8
2.2.2 Transfer Connection Establishment 9
2.2.3 CORBA Transfer Protocol 9
2.2.4 FTP Transfer Protocol 10
2.2.5 FTAM Transfer Protocol 10

3. Service Interfaces 1

3.1 CosFileTransfer Module 1
3.1.1 Exceptions 1
3.1.2 FileSystem Interface 3
3.1.3 FileSession Interface 5
3.1.4 FileSystemEntry Interface 5
3.1.5 Directory Interface 9
3.1.6 DirEntryIterator Interface 12
3.1.7 File Interface 15
3.1.8 TransferEndPoint Interface 18
3.1.9 OctetTransferIterator Interface 23

3.2 Object Lifecycle 26

3.3 Conformance Criteria 26
3.3.1 Interfaces 26
3.3.2 Transfer Protocols 27

Appendix A Complete OMG IDL 1
CORBA-FTAM/FTP Interworking Specification Version 1.0 -1

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Preface
rted
and
nted

ide a
,
ous
p a

d.

ted,
y
ject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
CORBA-FTAM/FTP Interworking Specification Version 1.0 -1

are
des
are

ces

nd

d

so

d,
dards
(The

at.
ns,
Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specificationcontains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specificationincludes OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfa
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF form
To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:
-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• Ericsson

• Siemens AG

• Broadcom Eireann Research

• Distributed Systems Technology Centre

• Floorboard

• IONA

• Lucent

• PrismTech

• University of California, Irvine
CORBA-FTAM/FTP Interworking Specification Version 1.0 -3

-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

ServiceDescription 1
e
ions

ither
ile

her

to
s of

ight

TP,
job.

is

g

ent
ce
1.1 File Transfer in Telecoms Systems

Retrieving data from a remote Network Element (NE) and maintaining the softwar
that runs on that node is relatively straightforward but performing the same operat
on potentially thousands of Network Elements presents the telecommunication
operator with a significant challenge. These tasks are currently performed using e
the ISO specified File Transfer, Access and Maintenance (FTAM) protocol or the F
Transfer Protocol (FTP). Currently Operations Support Systems (OSS) employ eit
FTAM or FTP to perform both data retrieval and software maintenance tasks.

This specification describes a single set of IDL interfaces that will allow any OSS
perform its file management operations on underlying Network Elements regardles
the type of file management mechanism the underlying node is using. There are a
number of reasons that identify the need for such interfaces:

• OSSs may be implemented in a large number of programming languages and
deployed in a platform-independent manner. In addition to using existing OSS
systems, telecommunication operators may also employ an alternative, lightwe
OSS client that has all of the features of the legacy systems but performs the
management of Network Elements through the IDL interfaces.

• The complexity of performing data retrieval and file maintenance operations is
hidden from the OSS user by a single set of IDL interfaces. No knowledge of F
FTAM, or other file access mechanisms is necessary for them to perform their

• The task of extending the set of data retrieval and file maintenance operations
made easier. New management or retrieval operations to meet changing
requirements may be exposed to the OSS through a new IDL interface. Existin
OSSs may continue to use the original IDL interfaces without interruption.

• The task of migrating a large installed base of OSSs to use a new file managem
mechanism will be less complex and take considerably less time to perform sin
the same set of IDL interfaces is being used.
CORBA-FTAM/FTP Interworking Specification Version 1.0 1-1

1

ent

of

e

ce
E

There are a number of system configurations that are possible through the deploym
of the proposed interfaces. One such configuration is illustrated in Figure 1-1.

Figure 1-1 High-level system overview

Traditionally different file transfer clients were required for each type of fileserver
within the telecoms OSS. By exposing basic file transfer functionality through a set
IDL interfaces it is possible to develop less complex file transfer clients that are
independent of the underlying file transfer protocols. The use of CORBA allows
remote management of systems over corporate intranets.

1.1.1 File Transfer Capable Network Elements

The primary focus of this specification is defining a file transfer IDL that provides
uniform access to FTAM and FTP NEs. However, the scope and utility of the file
transfer IDL is not limited to use with only FTAM and FTP. Any NE may support th
file transfer IDL for data transfer. Clients often transfer files to a local file system,
which itself can be represented by the IDL. Non-file based information can also be
transferred. For example, a NE may support access to operational and performan
data through “virtual” files and directories, accessible by the file transfer IDL. The N
itself may not actually store this data in physical files and directories.

Traditional OSS Access OSS Access Using Service

OSS Client

 FTP FTAM

OSS Client

 FTAM FTP

CosFileTransfer Service

FTAM NE

FTP NE

Local
FileSystem
1-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

ServiceArchitecture 2
ory.

lso
ons

al
on
2.1 Overview

This service defines a set of interfaces that model a simplified virtual file system.

A client obtains access to a file system by logging in and accessing an initial direct
A directory provides access to the file system entries that it contains. A file system
entry is a data file or a directory.

A client may perform basic maintenance tasks on file system entries. A client may a
log on to multiple file systems to transfer files between them. The types of operati
a client may perform include:

• Copy, insert, or append the contents a file to another file

• List the entries in a directory.

• Create a new directory.

• Remove an existing directory or file.

• Query a file or directory for properties such as creation time or size.

An implementation may restrict a client’s access to any particular file, directory,
property, or operation based on the credentials the client used to login to the file
system.

2.1.1 File System Servers

The files and directories a client accesses through the service interfaces are virtu
proxies for entities internal to the service. The specification places no restrictions
the internal structure or form of these entities.

The service interface is capable of providing virtual file systems for:

• FTP servers
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-1

2

is

as

ess

ion.

e

• FTAM responders

• Local file systems

• NEs presenting arbitrary data as virtual files and directories through the service
interfaces.

No details specific to FTAM, FTP, or a specific NE are exposed in the IDL. A client
unaware of the underlying service implementation and may transfer files between
services through a CORBA interface or another negotiated transfer protocol such
FTP.

2.1.2 Principal Components

The CosFileTransfer module defines the following primary interfaces:

• FileSystem - The virtual file system the service represents.

• FileSession - The login session a client is granted to access the file system.

• FileSystemEntry - A base interface providing common operations for files and
directories.

• Directory - A virtual directory that a client can list the entries in.

• DirEntryIterator - An iterator to access a list of file system entry properties.

• File - A virtual file that can be copied, inserted, or appended to another file.

The following two interfaces provide more advanced transfer control and direct acc
to a file’s content:

• TransferEndPoint - An object that represents one end of a file’s transfer connect
It is used for a single transfer.

• OctetTransferIterator - An iterator to read and write file contents.

The above two interfaces are used internally by a service implementation to provid
the basic file transfer operations.

2.1.3 Files and Directories

Names

FileSystem entries have a simple single component name,EntryName , that is
unique to their immediate parentDirectory and a multi-componentEntryPath that is
relative to any ancestorDirectory .

Basic Maintenance Operations

The basic operations such asget_path , remove , exists , create_directory , are
described starting in Section 3.1 .
2-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

r is
Directory Lists

The following pseudo-code illustrates logging in to aFileSystem and listing the
names of the entries.:
...
session = fileSys.login(user, password, lprops, home_dir);

// relative dir path: “sub1/sub2/dir3”
String [] dirPath = {
 “sub1”, “sub2”, “dir3”
}

subDir = home_dir.get_directory(dirPath);

// desired properties: file name and size
String[] dirProps = {
 “name”, “size”
}

entryItor = subDir.list(dirProps);

// Iterate through entries, printing returned properties
offset = 0;
if (entryItor != null){
 do{
 entries = entryItor.next(0,0);
 for(e=0; e<entries.length(); ++e){
 printNameAndSize(entries[e]);
 }
 offset += entries.length();
 }
 while(entries.length()!=0);
}

session.destroy();

2.1.4 File Transfer

The service transfers files between file systems. The protocol used for the transfe
negotiated when the transfer is initiated. The supported protocols are:

• CORBA- “IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” - mandatory

• FTP - optional

• FTAM- optional

• Additional CORBA interfaces - optional
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-3

2

is

d
m.

are

ctly
Clients are coded identically regardless of the transfer protocol used.
OctetTransferIterator support is mandatory to guarantee that any two service
implementations will be able to transfer files if no other common transfer protocol
available. A service may offer additional CORBA transfer interfaces besides this.

Binary File Transfer

All file transfers are binary. This service has no concept of character code-sets an
does not make a distinction between text and binary files as defined by ftp and fta

High Level File Transfer Operations

Basic file transfer operations for transferring data from one file system to another
available on theFile interface. The pseudo-code below illustrates logging on to two
file systems and performing the high level transfer operations:copy , append , and
insert . The full IDL descriptions are in Section 3.1, “CosFileTransfer Module”.

fromSess = fsFrom.login(user1, password1, lprops1, dirFrom);
toSess = fsTo.login(user2, password2, lprops2, dirTo);

String[] fromName = {
 // filename is: “from_dir_name/from_file_name”
 “from_dir_name”, “from_file_name”
};

String [] toName = {
 // filename is: “to_dir_one/to_dir_two/to_file_name”
 “to_dir_one”, “to_dir_two”, “to_file_name”
};

fromFile = dirFrom.get_file(fromName, true); // must exist
toFile = dirTo.get_file(toName, false); // need not

fromFile.copy(toFile);
fromFile.append(toFile);
fromFile.insert(toFile, 1024);

fromSess.destroy();
toSess.destroy();

When the client is finished, the file sessions are destroyed to release all server
resources. Support for theappend and insert operations is optional.

File Transfer Implementation

Additional transfer primitives are required for services to implement the high level
transfer operations described above. Clients may also use these primitives to dire
control more advanced transfer operations.
2-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

ce

.

for
To implement a file transfer, theFile interface has a few additional methods. The
interfaceTransferEndPoint is defined to represent a file’s connection endpoint for
the duration of a single file transfer.

A transfer between twoFiles is carried out in the following steps.

1. Negotiate the protocol to be used for the file transfer:

• Determine a common transfer protocol:ftp , ftam , or acorba interface.

• Determine which end point of the transfer connection will wait for connection,
the passive end point, and which end will actively connect,the active endpoint.

2. Create the appropriateTransferEndPoint objects for eachFile .

3. The passive endpoint is put in a listening state, awaiting connection.

4. The active endpoint makes the connection.

5. The passive endpoint is notified the active connection has been made.

6. The transfer operation is called on the source endpoint.

These steps are described in more detail in the next sections.

Protocol Negotiation

The methodFile::get_transfer_protocols returns a preference ordered list of the
transfer protocols supported by theFile . Some example return lists are:

“ IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0 ”

“ ftp ”

This list says that theFile can be transferred using either the specified corba interfa
or a ftp data connection in eitheractive or passive mode. Support for the
CosFileTransfer::OctetTransferIterator interface is mandatory. In this case it is
listed to indicate that it is preferred overftp .

“ ftp;active ”

“ IDL:CompanyX.com/CryptoTransfer/CompressedIterator:1.0 ”

“ ftam;passive ”

This list says that theFile can be transferred usingftp if the File actively makes the
data connection. Ifftp cannot be used, the specified corba interface is the next
preferred transfer protocol. Finally, ftam may be used with this endpoint taking on
the passive role. Since support for theOctetTransferIterator interface is mandatory it
is not required to be listed.

To transfer fromFile A to File B, theFiles are queried for their supported protocols
This list is examined and a compatible set is chosen. An example being
“ ftp;active ” for File A and “ftp;passive ” for File B. If a transfer protocol
string does not specify active or passive, it supports both. This is always the case
the OctetTransferIterator protocol.

Transfer protocol syntax is specified in Section 2.2.1 .
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-5

2

hod
TransferEndPoint Creation

The methodFile::create_transfer_endpoint is used to create the necessary
TransferEndPoints . It takes arguments that specify whether this endpoint is the
source or a destination of the transfer, the read/write offset into theFile , and whether
the offset is relative to the beginning or end of theFile . These parameters can specify
endpoints usable as the source or sink ofcopy , append , andinsert operations. See
Section 3.1.7 for details.

Passive Endpoint Listen

The passiveTransferEndPoint is put into a wait for connection (listening) state by
calling go_to_listen . It is then ready to accept a connection from the active
TransferEndPoint . This method returns aTransferDetail describing the passive
endpoint.

Active Endpoint Connection

The activeTransferEndPoint completes the connection circuit when
connect_to_peer is called. The argument to this method is theTransferDetail
returned fromgo_to_listen . This method returns aTransferDetail string describing
the active endpoint protocol specific details. For some protocols, the returned
TransferDetail may be an empty string.

Passive Endpoint Connect Notify

The last step in the connection establishment is callingset_peer on the passive
endpoint to notify it that the connection has been made. The argument to this met
is theTransferDetail returned from theconnect_to_peer operation. For some
protocols,set_peer may accept an empty string.

Low Level Transfer Example

The following example illustrates the execution of an append operation, where the
negotiated protocol is “ftp ”. The sender ispassive and the receiver isactive .
2-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

To

es
...
fromFile = dirFrom.get_file(fromName);
toFile = dirTo.get_file(toName);

fromProtocols = fromFile.get_end_point_protocols();
toProtocols = toFile.get_end_point_protocols();

// From the protocol lists, find a matching
// protocol set. “ftp” is used for this example,
// the sender will be passive, listening
// for ftp data connection
...
fromProtocol = “ftp;passive”;
toProtocol = “ftp;active”;

// create endpoints to append the file

fromEP =
fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 fromProtocol);

toEP = fromFile.create_endpoint(TransferEndPointRole::SINK,
 FilePos::END,
 0,
 toProtocol);

// establish connection
passiveDetail = fromEP.go_to_listen();
activeDetail = toEP.connect_to_peer(passiveDetail);
fromEP.set_peer(activeDetail);

fromEP.transfer();

fromEP.destroy();
toEP.destroy();

This example would follow the same form if a different transfer protocol were used.
change the operation to acopy , theSINK endpoint would haveFilePos::BEGIN and
offset of zero. Inserts are performed by specifying aTransferEndPointRole of
SINK_INSERT for the destination endpoint. An implementation may restrict the typ
of TransferEndPoints supported.
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-7

2

ther

r

ntax
Direct File Access

To allow direct access to the contents of a file from a client that cannot provide ano
TransferEndPoint or File , theOctetTransferIterator interface can be used to read
and write file contents directly. An example of reading the contents of a “text” file fo
display is shown in the pseudo-code below:
...
protocol =
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”
fromEP =
fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 protocol);

// go_to_listen returns “IOR:....”
// as the TransferDetail for a corba protocol

corbaDetail = fromEP.go_to_listen();
octetItorObj = orb.string_to_object(corbaDetail);
octetItor = OctetTransferIterator.narrow(octetItorObj);

do{
 octetBuf = octetItor.get_octet_seq(offset, 0);
 printBuffer(octetBuf); // print file as text
 offset = offset + octetBuf.length();
}
while(octetBuf.length()!=0);

fromEP.destroy();

2.2 File Transfer Protocols

This section describes the details of the supported file transfer protocols.

2.2.1 Protocol Syntax

The protocol syntax defines protocol names and protocol specific attributes. The sy
is extensible to allow new protocols and attributes to be added. The syntax for the
currently supported protocols is:
2-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

g:

t

<ProtocolSpec> ::= <CORBA> | <FTP> | <FTAM> | <NewProtocol>

<CORBA> ::= <OctetTransfer> | <OtherCORBA>
<OctetTransfer> ::=
 “IDL:org.omg.CosFileTransfer/OctetTransferIterator:1.0”
<OtherCORBA> ::= <InterfaceID> [<Options>]
<InterfaceID> ::= Valid Repository ID

<FTP> ::= “ftp” [<ActivePassiveOption>]
<FTAM> ::= “ftam” [<ActivePassiveOption>]

<ActivePassiveOption> ::= “;” [“active” | “passive”]
<NewProtocol> ::= <AlphaNumericString> [<Options>]
<Options> ::= “;” <Tag>[“=” <Value>][<Options>]
<Tag> ::= <AlphaNumericString>
<Value> ::=<AlphaNumericString>

2.2.2 Transfer Connection Establishment

Service implementations and clients using transfer primitives are required to use
connection establishment semantics that are functionally equivalent to the followin

// protocol independent connection establishment
passiveDetail = passiveEP.go_to_listen();
activeDetail = activeEP.connect_to_peer(passiveDetail);
passiveEP.set_peer(activeDetail);

The one exception is if a client is directly accessing aFile using the
OctetTransferIterator interface as described previously in the “Direct File Access”
section. In this case only, it sufficient to callgo_to_listen and then use the returned
OctetTransferIterator immediately.

2.2.3 CORBA Transfer Protocol

The following is required for a service implementation to support acorba transfer
protocol.

File::create_end_point must return a corba awareTransferEndPoint when the
endpoint protocol argument begins with an interface repository ID.

TransferEndPoint::go_to_listen must return a stringified object reference that can
be passed toTransferEndPoint::go_to_listen or used directly by a client.

TransferEndPoint::connect_to_peer must return a stringified object reference tha
can be passed toTransferEndPoint::set_peer .
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-9

2

for

t

t
t

ort
The OctetTransferIterator corba protocol does not have a concept of active or
passive, so either endpoint can be used as passive or active. This may not be true
other corba transfer interfaces. An implementation supportingOctetTransferIterator
may implement the high level transfer operations in a manner similar to the one
outlined by the example in the “Direct File Access” section above.

There is no requirement for an implementation to make use of the stringified objec
reference that is passed toset_peer for a corba transfer protocol.

An implementation must allow theset_peer argument to be an empty string. This
represents the case where a client is using anOctetTransferIterator directly.

2.2.4 FTP Transfer Protocol

The ftp transfer protocol, refers specifically to a file transfer that takes place as if i
were the data connection of an ftp1 service transfer. A service implementation need no
use a true ftp server to implement this transfer protocol.

The following is required for a service implementation to support theftp transfer
protocol.

File::create_end_point must return an ftp awareTransferEndPoint when the
endpoint protocol argument an ftp type.

TransferEndPoint::go_to_listen must return a string of the form:

host:port

where host is either a DNS style host name or a dotted decimal IP address and p
identifies the port number that will accept theftp data connection.The returned
host:port string is passed toTransferEndPoint::go_to_listen .

TransferEndPoint::connect_to_peer must return a host:port string identifying the
local end of the ftp data connection that has been established. In some cases this
information may not be available, in which case an empty string is returned. The
returned string is passed toTransferEndPoint::set_peer .

There is no requirement for an implementation to make use of thehost:port that is
passed toset_peer for the ftp transfer protocol.

2.2.5 FTAM Transfer Protocol

The following is required for a service implementation to support theftam 2 transfer
protocol.

1. IETF RFC 959 “File Transfer Protocol (FTP)”, J. Postel, J.Reynolds. October 1985

2. ISO/IEC 8571-1,8571-2,8571-3,8571-4 Information Processing Systems - Open Systems
Interconnection - File Transfer, Access, and Management Parts 1 - 4. 1993
2-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

.

File::create_end_point must return an ftam awareTransferEndPoint when the
endpoint protocol argument an ftam type.

TransferEndPoint::go_to_listen must return a string identifying a ftam responder

The returnedresponder string is passed toTransferEndPoint::go_to_listen .

TransferEndPoint::connect_to_peer must return a string identifying the ftam
initiator. The returned string is passed toTransferEndPoint::set_peer .
CORBA-FTAM/FTP Interworking Specification Version 1.0 2-11

2

2-12 CORBA-FTAM/FTP Interworking Specification Version 1.0

Service Interfaces 3
3.1 CosFileTransfer Module

This chapter describes theCosFileTransfer module in detail.

3.1.1 Exceptions

The following IDL shows the exceptions defined for the service:
CORBA-FTAM/FTP Interworking Specification Version 1.0 3-1

3

ted

d

g

 typedef short ErrorCode;
 const ErrorCode UNSPECIFIED = 0;
 const ErrorCode UNAVAILABLE = 1;
 const ErrorCode UNSUPPORTED = 2;
 const ErrorCode NO_PERMISSION = 3;

 const ErrorCode ENTRY_EXISTS = 4;
 const ErrorCode ENTRY_PATH_ERROR = 5;
 const ErrorCode ENTRY_IO_ERROR = 6;
 const ErrorCode DIR_NOT_EMPTY = 7;

 const ErrorCode TRANSFER_IO_ERROR = 8;
 const ErrorCode TRANSFER_ABORT = 9;

 exception FileSystemError {
 ErrorCode error;
 wstring desc;
 };

 // Error transferring between two files

 exception TransferError {
 TransferEndPointRole error_endpoint;
 ErrorCode error;
 wstring desc;
 };

ErrorCode

The exceptions defined in theCosFileTransfer module contain anErrorCode field
which identifies the category of the error. The values are:

• UNSPECIFIED - The error category is none of the below.

• UNAVAILABLE- The FileSystem is temporarily unavailable. This is only raised
by theFileSystem::login method.

• UNSUPPORTED- The operation or the particular parameter values are unsuppor
by the implementation.

• NO_PERMISSION- The user credentials are insufficient or invalid for the requeste
operation.

• ENTRY_PATH_ERROR- A component of the name specified for aFile or
Directory is invalid or the entry does not exist.

• ENTRY_EXISTS- The operation expected the entry not to already exist.

• ENTRY_IO_ERROR- There has been an error opening, reading, writing, or closin
a File or Directory .
3-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

a

the

e

or

the
• DIR_NOT_EMPTY-The implementation does not allow removal of aDirectory
that is not empty.

• TRANSFER_IO_ERROR- There has been an opening, reading, writing, or closing
data transfer connection.

• TRANSFER_ABORT- A file transfer operation has been aborted.

Client ErrorCode Handling

In this chapter, each operation description lists the exceptions raised along with
specificErrorCode values. A service implementation may useErrorCode values
other than those specifically listed. A client must handle these values gracefully, at
very least handling them likeUNSPECIFIED.

FileSystemError

This exception is raised when an operation involving a singleCosFileTransfer object
fails. The fields are:

• error - A broad classification of the error.

• desc - Optional text detail about the error.

TransferError

TransferError is raised by operations that involve copying oneFile ’s contents to
another. Since there are twoFiles involved, the one that raised the exception must b
identified. The fields are:

• error_endpoint - Identifies whether the exception originated from the source
sink of the data transfer.

• error - A broad classification of the error.

• desc - Optional text detail about the error.

3.1.2 FileSystem Interface

TheFileSystem interface provides access to the virtual file system represented by
service. The IDL is:
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-3

3

de

at

nt,

r.

t

 interface FileSystem {

 FileSession login(in wstring user,
 in wstring password,
 in CosPropertyService::Properties login_properties,
 out Directory initial_dir)
 raises(FileSystemError);

 wstring get_system_id();
 };

login

Before transferring files or performing maintenance operations, a client must provi
credentials to login to theFileSystem to obtain an initialDirectory reference. The
FileSystem validates the user credentials in an implementation specific manner.

Parameters
• user - FileSystem specific text string identifying the user.

• password - FileSystem specific text string identifying the user password.

• login_details - sequence ofFileSystem specific properties providing login
details. AFileSystem implementation may use any property names and values th
are appropriate. The following properties withwstring values are defined:

• user - Same value as the user parameter. If this property is present, theuser
parameter is ignored.

• password - Same value as the password parameter. If this property is prese
the password parameter is ignored.

• account - Many systems have the concept of an account in addition to a use

• initial_dir - returns the initialDirectory for the supplied login details.

Return value

This method returns aFileSession (see section 3.1.3) for the supplied login
parameters.

Exceptions

FileSystemError. The following ErrorCode values are defined:

• UNAVAILABLE- TheFileSystem is unavailable for login. In this case, no attemp
has been made to validate the user credentials. A retry by the client may be
successful.

• NO_PERMISSION- The supplied user credentials were rejected.
3-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

s

.

m

call

he
get_system_id

Returns implementation specific text providing identification of the file system. This
text shall be suitable for display to an end user.

Return value

Returns awstring identifying the file system. This string is for informational purpose
only and cannot be used to determine object identity. An implementation is not
required to make this string globally unique. An empty string is a legal return value

3.1.3 FileSession Interface

TheFileSession interface controls the lifecycle of all object references obtained fro
the server. The IDL is:

 interface FileSession {
 void destroy();
 };

destroy

The destroy operation terminates the session with the service established by the
to FileSystem::login . All objects associated with theFileSession such as
Directories , Files , etc. are destroyed. After thedestroy method is invoked, further
operations on theFileSession or any of its associated objects will raise an
OBJECT_NOT_EXIST.

The status of any file transfers that are in progress at the time of a call todestroy are
undefined.

3.1.4 FileSystemEntry Interface

FileSystemEntry is a base interface that defines operations that are common to t
Directory (Section 3.1.5) andFile (Section 3.1.7) interfaces.

Properties

The interface derives fromCosProperty::PropertySet . The following properties are
defined:
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-5

3

ent

ny
are

urn
ted
A mandatory property is one that a service implementation must always allow a cli
to access. An optional property is one that a service implementation may restrict a
client’s access to, may not provide a value for a particularFile or Directory , or not
provide at all. For purposes of discussion, the properties from the above list and a
other implementation defined properties that a specific client is allowed access to
calledclient accessibleproperties.

The behavior of theCosProperties::PropertySet methods specific to
FileSystemEntry objects are:

define_property

For a read onlyclient accessibleproperty, aCosProperties::ReadOnlyProperty
exception will be raised. If the property is not client accessible, a
CosProperties::UnsupportedProperty is raised.

define_properties

An implementation will behave as fordefine_property , except that the exception
raised isCosProperties::MultipleExceptions containingPropertyException
structs having areason codes ofread_only_property or unsupported_property .

get_number_of_properties

An implementation must not include any non client accessible properties in the ret
count. The returned count may be less than the total number of properties associa
with the FileSystemEntry .

Table 3-1 FileSystemEntry Properties

Property Name Data Type Property Mode Description

name EntryName mandatory,
fixed_readonly

Simple name relative to
parentDirectory

path EntryPath optional,
fixed_readonly

Full pathname relative to
initial FileSession
Directory .

owner wstring optional,
fixed_readonly

If defined, the owner of
the Entry .

creation_time TimeBase::UtcT optional,
fixed_readonly

If defined, the entry
creation time.

modification_time TimeBase::UtcT optional,
fixed_readonly

If defined, the last time
the entry was modified.
3-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

r of

ed.
ith

fic
get_all_property_names

An implementation must not include any non client accessible properties in the
returned sequence. The returned sequence size may be less than the total numbe
properties associated with theFileSystemEntry .

get_property_value

For all client accessible properties that a value is defined for, the property value is
returned. Otherwise the exceptionPropertyNotFound is raised.

get_properties, get_all_properties

For all client accessible properties that a value is defined for, the property is return
All other properties will denote an exception by appearing in the return sequence w
a type oftk_void as described in the CosProperty Service specification.

delete_property, delete_properties, delete_all_properties

For all fixed client accessible properties, an exception denotingfixed_property shall
be raised. Fordelete_all_properties , client accessible fixed properties will not be
deleted and the operation shall return true.

FileSystemEntry Methods

The next sections describe the methods available on theFileSystemEntry interface.

get_name

Returns the simple name for thisFileSystemEntry . This is the same value returned
by thename property.

Return Value

EntryName for the FileSystemEntry.

get_path

Returns thepath name for thisFileSystemEntry relative to the initialDirectory
returned fromFileSystem::login . This is the same value returned by thepath
property.

Return Value

EntryPath for the FileSystemEntry.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No speci
ErrorCode values are defined.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-7

3

fic
exists

Report the existence of aFileSystemEntry on theFileSystem .

Return Value
• true - The FileSystemEntry exists on theFileSystem .

• false - The FileSystemEntry does not exist on theFileSystem .

Exceptions

A FileSystemError may be raised for an implementation defined reason. No speci
ErrorCode values are defined.

get_parent

Returns theparent Directory for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION- If the client is not allowed to access the parentDirectory .
Many implementations will raise this exception ifget_parent is called on the
initial Directory returned fromFileSystem::login .

get_session

Returns theassociated FileSession for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION- If the client is not allowed to access theFileSession from
this FileEntry .

remove

This operation removes the entry from the service. ADirectory may only be removed
if it is empty. Once removed anEntry will not appear in a listing of its parent
directory.

Exceptions

A FileSystemError is raised on error. The followingErrorCode values are defined:

• NO_PERMISSION- If the client is not allowed toremove this Entry .

• DIR_NOT_EMPTY- If this is a Directory and contains child entries.

• ENTRY_PATH_ERROR- If the Entry does not exist.
3-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

is:
destroy

This operation releases theFileSystemEntry object. It does notremove the entry’s
representation from theFileSystem . A client should calldestroy on anEntry when
it has finished with it.

3.1.5 Directory Interface

The Directory interface represents a collection ofFile andDirectory entries. The
interface defines operations to list and obtain references to these entries. The IDL

 interface Directory: FileSystemEntry {

 DirEntryIterator list(in CosPropertyService::PropertyNames listProps)
 raises (FileSystemError);

 Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean must_exist)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };

Directory Properties

In addition to the properties forFileSystemEntry , Directory objects have one
additional property listed in the table below.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-9

3

. A

y has
, an
list

The list operation allows a client to iterate through a set ofDirectory entries and
their properties.

Parameters
• list-props - A sequence containing the names of the desired entry properties

service implementation is not required to return all the properties requested.

Return value

A DirEntryIterator (see Section 3.1.6). If theDirEntryIterator value isnil , there
were no entries to return. If the value isnon-nil there may or may not be entries to
be retrieved.

An implementation is not required to return sequence members that represent the
current or parentDirectory entries.

The properties returned are dependent on client permissions and whether an entr
a value for the property. If a client does not have permission to retrieve a property
implementation must not raise an exception with anErrorCode of
NO_PERMISSION. The denied property shall be silently omitted.

Exceptions

FileSystemError. The following ErrorCode value is defined:

• NO_PERMISSION - The client is not permitted to obtain theDirectory list.

create_directory

This operation creates a childDirectory . It is similar to the familiarmkdir command.

Table 3-2 Directory Properties

Property Name Data Type Property Mode Description

num_children DirEntryCount optional,
fixed_readonly

The number of entries in
the Directory. In some
cases it is not practical to
provide this value directly.
In this case the directory
must be iterated through
to count the entries.
3-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

nt

e

Parameters
• dir_path - ThePath of the Directory to create. ThisEntryPath is relative to the

Directory . If dir_path contains more than one component, the intermediate
directories will be created as well.

Return value

The newly createdDirectory .

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If any component of the path is invalid or one of the
intermediate components is aFile .

• NO_PERMISSION- If the client is not allowed to create or access any compone
of the dir_path.

• ENTRY_EXISTS - If thisDirectory already exists.

get_file

This operation returns aFile for the specifiedPath .

Parameters
• file_path - TheFile’s Path relative to theDirectory .

• must_exist -iftrue, the operation will only succeed if the file already exists on th
FileSystem .

Return value

A File reference for the file.

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR- If any component of the path is invalid or one of the
intermediate components is aFile . If the must_exist parameter istrue and the
file does not exist.

• NO_PERMISSION- If the client is not allowed to access any component of the
file_path.

get_directory

This operation returns aDirectory corresponding to an existing directory.

Parameters
• dir_path - The relativeEntryPath for the Directory .
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-11

3

Return value

The requestedDirectory .

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If any component of the path is invalid or one of the
intermediate components is aFile , or theDirectory does not exist.

• NO_PERMISSION- If the client is not allowed to access any component of the
dir_path.

remove_entry

This operation removes aFile or Directory entry. If the entry is aDirectory , it must
be empty before it can be removed.

Parameters
• entry_path - The relativeEntryPath .

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR- If any component of the path is invalid or one of the
intermediate components is aFile .

• NO_PERMISSION- If the client is not allowed to access any component of the
path.

3.1.6 DirEntryIterator Interface

The DirEntryIterator interface is used to iterate through the results of a
Directory::list operation. The IDL is:
3-12 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

 // Directory listing size and list offset

 typedef unsigned long long DirEntryCount;
 typedef unsigned long long DirEntryOffset;

 // Directory listing Types

 typedef short DirEntryType;
 const DirEntryType FILE_ENTRY = 0;
 const DirEntryType DIR_ENTRY = 1;

 struct DirEntry {
 EntryName name;
 DirEntryType type;
 CosPropertyService::Properties props;
 };

 typedef sequence<DirEntry> DirEntrySeq;

 interface DirEntryIterator {
 DirEntrySeq next(in DirEntryOffset from_dir_entry,
 in DirEntryCount max_dir_entries)
 raises (FileSystemError);
 void destroy();
 };

Related Types

DirEntryType

This type defines the type of an entry, eitherDIR_ENTRY, or DIR_FILE.

DirEntry

Directory::list returns FileSystemEntry information in DirEntry structures. The
fields of this struct are:

• name - The simple (single component) name of the entry in thisDirectory .

• type - The DirEntryType of the entry.

• props - A sequence containing the requested entry properties.

DirEntrySeq represents a sequence ofDirEntry .

DirEntryCount, DirEntryOffset

These types are used to control the iteration through aDirectory .

• DirEntryCount - The maximum number of entries to return to the client.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-13

3

f

n

• DirEntryOffset - The offset into theDirectory’s entry list from which the
DirEntryCount applies.

See the section “next” below for details on the use of these types.

next

This operation returns a sequence ofDirEntry . TheDirEntryIterator is a recoverable
iterator and allows a client to repeat a failed call tonext , requesting a smaller
sequence in the event of an exception.

Parameters
• from_entry_number - return entries starting from the specified entry number.

• max_dir_entries - The maximum number of entries to return to the client. I
the value is zero value, there is no upper bound.

In normal operationnext is called repeatedly until all the directory entries are
returned. The first timenext is called,from_entry_number must be zero. For
subsequent calls, the value offrom_entry_number is set to its previous value plus
the length of the returned entry sequence.

In the event that a call tonext results in an exception indicative of resource exhaustio
on either the client or the server, such asNO_MEMORY, the client can retry thenext
operation by invokingnext with the previousfrom_entry_number and a smaller
max_dir_entries value.

If the next operation fails with amax_dir_entries value of one, the iteration cannot
be completed and the client must handle the error.

Return value

A DirEntrySeq with a length of up tomax_dir_entries for non-zero values of
max_dir_entries . If max_dir_entries is zero, the returned sequence length is
implementation defined. In either case, an implementation may not return a
DirEntrySeq of length zero unless there are no further entries to retrieve.

Exceptions

A FileSystemError may be raised with followingErrorCode value:

• UNSUPPORTED. If the from_entry_number parameter is illegal for the current
iterator state.

destroy

After a client is finished with aDirEntryIterator , destroy should be called to release
the internal resources held by the service implementation.
3-14 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

3.1.7 File Interface

The IDL is:

 interface File: FileSystemEntry {

 void copy(in File dest)
 raises(TransferError);

 void append(in File dest)
 raises(TransferError);

 void insert(in File dest, in FileOffset offset)
 raises(TransferError);

 TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
 in FilePos seek,
 in FileOffset offset,
 in TransferProtocol ep_protocol)
 raises (FileSystemError);

 TransferProtocolSeq get_end_point_protocols();
 };

File Properties

In addition to the properties forFileSystemEntry , File objects have one additional
property listed in the table below.

copy

The copy operation copies the contents of thisFile to the destinationFile . If the
destinationFile currently exists it is overwritten.

Table 3-3 File Properties

Property Name Data Type Property Mode Description

size FileSize Optional,
fixed_readonly

The size of the file in
octets. In some
implementations it may
not be practical to
determine the size of an
entity being represented
by a File. In this case the
property is not provided.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-15

3

a

a

Parameters
• dest - The destination (sink)File .

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If any component of a File is invalid or one of the
intermediate components is aFile .

• NO_PERMISSION- If the client cannot access any component of a file path

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
file.

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT- The transfer was aborted.

append

The append operation appends the contents of thisFile to the destinationFile .

Parameters
• dest - The destinationFile .

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If the sinkFile does not exist. If any component of aFile
is invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If the sink File does not allow an append.

• NO_PERMISSION- If the client cannot access any component of a file path

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
file.

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT- The transfer was aborted.

insert

The insert operation inserts the contents of theFile at the specified offset in the
destinationFile .

Parameters
• dest - The destinationFile .
3-16 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

a

or
• file_offset - TheFileOffset into the destinationFile .

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If the sinkFile does not exist. If any component of aFile
path is invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If the sink File does not allow an insert.

• NO_PERMISSION- If the client cannot access any component of a file path

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
file or the file_offset parameter is larger than the sinkFile size.

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

create_end_point

The create_end_point method is used to create aTransferEndPoint (see section
3.1.8), which is used by a service to implement the high levelcopy , append , and
insert operations. Clients performing more complex transfer operations may also
make use of this method.

Parameters
• ep_role - Specifies whether the role of theTransferEndPoint is to read or write

the File ’s contents. Values areTransferEndPointRole::SOURCE ,
TransferEndPointRole::SINK, and TransferEndPointRole::SINK_INSERT .
TransferEndPointRole::SINK will overwrite and truncate to the last written
octet.

• file_pos - Specifies whether the data transfer will be relative to the beginning
end of theFile . Values areFilePos::BEGIN andFilePos::END.

• offset - The offset from thefile_pos to begin reading or writing.

• ep_protocol - Specifies the type ofTransferEndPoint to be created. The
specification currently defines transfer protocols usingcorba interfaces,ftp , and
ftam . See section 3.1.8 for details.

Return value

TransferEndPoint for use in a single transfer of theFile . TheTransferEndPoint
should be destroyed after use.

Exceptions

A TransferError may be raised with followingErrorCode values:
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-17

3

a

er
• ENTRY_PATH_ERROR- If the SOURCE file does not exist. If any component of a
File path is invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If an unsupportedep_protocol is specified.

• NO_PERMISSION- If the client cannot create theTransferEndPoint .

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
file.

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing a data connection.

get_end_point_protocols

Obtains a sequence of supported transfer protocols for thisFile . An implementation is
not required to provide the same transfer protocols for allFiles . An implementation
may also change the set of available transfer protocols for aFile if there are no
TransferEndPoints for that File in existence at the time of the change.

Return value

TransferProtocolSeq listing supported protocols. The sequence is in preferred
protocol order.

An implementation is not required to return the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” since it is mandatory. An
implementation may choose to return it in the list to indicate a preference over oth
protocols.

3.1.8 TransferEndPoint Interface

TransferEndPoint objects represent aFile during a transfer operation. The IDL is:
3-18 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

 interface TransferEndPoint;
 typedef wstring TransferProtocol;
 typedef sequence<TransferProtocol> TransferProtocolSeq;

 typedef short TransferEndPointRole;

 const TransferEndPointRole SOURCE = 0;
 const TransferEndPointRole SINK = 1;
 const TransferEndPointRole SINK_INSERT = 2;

 // transfer protocol specific information

 typedef wstring TransferDetail;

 typedef short TransferState;
 const TransferState CREATE = 0;
 const TransferState LISTEN = 1;
 const TransferState CONNECT = 2;
 const TransferState ACTIVE = 3;
 const TransferState COMPLETE = 4;
 const TransferState ABORT = 5;

 struct TransferStatus {
 TransferState state; // current transfer state
 FileCount current_count; // current transfer count
 FileCount max_count; // expected transfer size bytes/chars
 };

 interface TransferEndPoint
 {
 TransferDetail go_to_listen()
 raises(FileSystemError);

 TransferDetail connect_to_peer(in TransferDetail passive_detail)
 raises(FileSystemError);

 void set_peer(in TransferDetail active_detail)
 raises(FileSystemError);

 TransferStatus get_transfer_status()
 raises (FileSystemError);

 void transfer()
 raises (FileSystemError);

 void abort()
 raises (FileSystemError);

 void destroy();
 };
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-19

3

ing

the

his
nsfer
Related Types

TransferProtocol

A string type that identifies a transfer protocol such as “ftp ”. TransferProtocolSeq
is the sequence typedef forTransferProtocol .

TransferDetail

This is a string type with a format that is specific to the transfer protocol used. Dur
connection negotiation,TransferEndPoints exchange protocol information in
TransferDetails .

TransferState

An enumeration that provides state information about aTransferEndPoint . The
defined states are:

• CREATE- Initial state after creation.

• LISTEN - waiting for an active connection,go_to_listen has been called.

• CONNECT- connected to its peer, eitherconnect_to_peer , or set_peer has been
called.

• ACTIVE - data transfer has started.

• COMPLETE- data transfer completed successfully.

• ABORT- data transfer error

TransferStatus

This struct provides information about the progress of a transfer that a
TransferEndPoint is involved in. The fields are:

• state - the TransferState for the endpoint.

• current_count - expected transfer size. If this is unknown or not provided by
the service implementation, it is set to zero. This value is usually available from
source endpoint but not the sink.

• max_count - For a source endpoint this is the octets sent. For a sink endpoint t
is the octets received. In the case of a transfer error this value represents the tra
count before the abort. If the value is unknown or not provided by the service
implementation it is set to zero.

go_to_listen

This method is called on the passiveTransferEndPoint to establish the listening side
of a data connection. On return theTransferEndPoint is ready to accept an active
connection. This is the first step in negotiating a transfer connection.
3-20 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

e

e

Return value

TransferDetail describing the passiveTransferEndPoint details. For example in the
case of acorba protocol transfer, the returnedTransferDetail would be anIOR
string, and for anftp transfer, “host:port ”.

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR- If a file does not exist, any component of aFile path is
invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an activeTransferEndPoint .

• NO_PERMISSION- If the client does not have the proper credentials to perform th
operation.

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file associated with theTransferEndPoint .

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing the data connection.

connect_to_peer

This method is called on an activeTransferEndPoint to make the connection to the
passiveTransferEndPoint . This is the second step in negotiating a transfer
connection.

Parameters
• passive_detail - ThisTransferDetail provides the required details to allow the

activeTransferEndPoint to connect to the passiveTransferEndPoint . This
parameter is set to the return value from thego_to_listen call on the passive
TransferEndPoint .

Return value

TransferDetail describing the activeTransferEndPoint details.

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of aFile path is
invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If an invalid passive_detail is specified for those protocols that
use this parameter or this method is called on an activeTransferEndPoint .

• NO_PERMISSION- If the client does not have the proper credentials to perform th
operation.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-21

3

ws

e

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file associated with theTransferEndPoint .

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing the data connection.

set_peer

This method is called on the passiveTransferEndPoint to complete the transfer
connection negotiation. It is the final step in negotiating a transfer connection. It allo
the passiveTransferEndPoint to obtain any remainingTransferDetail about the
active end of the connection. The use of this information is protocol dependent.

Parameters
• active_detail - This TransferDetail provides information about the active end of

the data connection to the passiveTransferEndPoint . The value of this parameter
is set to the result of theconnect_to_peer operation.

Exceptions

A TransferError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of aFile path is
invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an activeTransferEndPoint .

• NO_PERMISSION- If the client does not have the proper credentials to perform th
operation.

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file associated with theTransferEndPoint .

• TRANSFER_IO_ERROR- There was an error in opening, closing, reading, or
writing the data connection.

get_transfer_status

This method returns the status of theTransferEndPoint .

Exceptions

A FileSystemError may be raised. The following specificErrorCode value is
defined.

• UNSUPPORTED- If a service implementation does not provide this information.

transfer

Transfer theFile contents between the source and sinkTransferEndPoints . This
method is called on the source TransferEndPoint.
3-22 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

uest

to
Exceptions

A FileSystemError may be raised. The following specificErrorCode value is
defined.

• UNSUPPORTED- If this operation is called on a sinkTransferEndPoint .

abort

This method causes theTransferEndPoint to terminate the currenttransfer
operation the transfer at its end of the connection. The otherTransferEndPoint will
see the abort an unexpected termination of the transfer operation or connection.

An implementation may not be able to abort a transfer or even respond to the req
until the current transfer is complete.

Exceptions

A FileSystemError may be raised. The following specificErrorCode values is
defined.

• UNSUPPORTED- If it is not possible to abort the transfer operation.

The system exceptionBAD_INV_ORDER will be raised ifabort is called on a
transfer that has not yet started, is already completed, or has aborted.

destroy

This method closes a transfer, releasing any internal resources theTransferEndPoint
has obtained. Further invocations on this object will receive an
OBJECT_NOT_EXIST exception.

3.1.9 OctetTransferIterator Interface

The OctetTransferIterator interface allows for transfer of aFile’s contents using
only CORBA calls and without requiring anotherFile object to transfer to or from.
OctetTransferIterator is a recoverable iterator. It does not provide random access
a File’s contents.

The IDL is:
 typedef unsigned long long FileLength;
 typedef unsigned long long FileOffset;
 typedef unsigned long long FileCount;
 typedef sequence<octet> FileOctetSeq;
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-23

3

re

f

 interface OctetTransferIterator {

 FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount
max_octets)
 raises (FileSystemError);

 void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)
 raises(FileSystemError);

 void destroy()
 raises(FileSystemError);

 };

Related Types

FileOffset

This type represents an offset into aFile’s contents. Normally an
OctetTransferIterator is created by aTransferEndPoint , in which case an
OctetTransferIterator’s FileOffset values are relative to theFileOffset specified
when theTransferEndPoint was created (File::create_end_point).

FileCount

This type represents aFile octet count. It is used to representFile size and the number
of octets transferred.

FileOctetSeq

An octet sequence representing the binary contents of aFile .

get_octet_seq

This operation returns the next unread sequence ofFile octets.

Parameters
• from_octet - return octets starting from the specified offset.

• max_octets - The maximum number of octets to return. If the value is zero, the
is no upper bound.

In normal operationget_octet_seq is called repeatedly until allFile octets are
returned. The first timeget_octet_seq is called,from_octet is set to zero. For
subsequent calls, the value offrom_octet is set to its previous value plus the length o
the returned sequence ofFile octets.
3-24 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

on

e

he
If get_octet_seq raises an exception that may be indicative of resource exhaustion
either the client or server such asNO_MEMORY, the client can retry the failed read by
invoking get_octet_seq with the previousfrom_octet and a smallermax_octets .

If get_octet_seq fails with a max_octets value of one, the get iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of aFile path is
invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If this TransferOctetIterator does not allow reads.

• NO_PERMISSION- If the client does not have the proper credentials to perform th
operation.

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associatedTransferEndPoint has been aborted.

put_octet_seq

This operation writes an octet sequence to aFile .

Parameters
• octet_offset - write octets starting at the specified offset.

• octet_seq - The octet sequence to write.

In normal operationput_octet_seq is called repeatedly until allthe File octets are
transferred. The first timeget_octet_seq is called,from_octet is set to zero. For
subsequent calls, the value ofoctet_offset is set to its previous value plus the length
of the previousoctet_seq .

If put_octet_seq raises an exception indicative of resource exhaustion on either t
client or server such asNO_MEMORY, the client can retry the operation by invoking
put_octet_seq with the previousoctet_offset and a smalleroctet_seq .

If put_octet_seq fails with a octet_seq length of one, the put iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of aFile path is
invalid or one of the intermediate components is aFile .

• UNSUPPORTED- If the TransferOctetIterator does not allow writes.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-25

3

e

an

any

t

on
• NO_PERMISSION- If the client does not have the proper credentials to perform th
operation.

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associatedTransferEndPoint has been aborted.

destroy

After a client is finished with anOctetTransferIterator , destroy must be called to
complete the transfer and gracefully release any associated resources held by the
service implementation. Further calls to the iterator will raise an
OBJECT_NOT_EXIST.

Exceptions

A FileSystemError may be raised with followingErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of aFile path is
invalid or one of the intermediate components is aFile .

• ENTRY_IO_ERROR- There was an error in opening, closing, reading, or writing
the file.

If destroy raises aFileSystemError , theOctetTransferIterator is still destroyed.

3.2 Object Lifecycle

All of the interfaces except forFileSystem have adestroy operation. After the
destroy method is invoked, any further operations on the object reference will raise
OBJECT_NOT_EXIST.

A client should invokedestroy on an object after use is complete to allow a service
implementation to reclaim resources. An implementation is free to reap objects at
time in order to reclaim resources.

Clients should expect that any operation on aCosFileTransfer object may raise an
OBJECT_NOT_EXIST as a server may reclaim an object, particularly if inactive, a
anytime.

3.3 Conformance Criteria

3.3.1 Interfaces

A service implementation must provide all of the interfaces defined in this
specification. An implementation is not required to support the following operations
all Files or TransferEndPoints :

• File::append
3-26 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

aise
• File::insert

• TransferEndPoint::abort

• TransferEndPoint::get_transfer_status

If an implementation does not support these operations on a given object it must r
a FileSystemError exception with anErrorCode value ofUNSUPPORTED.

3.3.2 Transfer Protocols

A service implementation must support transfers using the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”. All other protocols are
optional.
CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-27

3

3-28 CORBA-FTAM/FTP Interworking Specification Version 1.0

Complete OMG IDL 4
//File: CosFileTransferFTF.idl

#ifndef _COS_FILE_TRANSFER_IDL_
#define _COS_FILE_TRANSFER_IDL_
#include <CosProperty.idl>

#pragma prefix “omg.org”

module CosFileTransfer {

 // FileEntry types

 interface Directory;
 interface File;

 // FileSystem login session

 interface FileSession;

 // Filesystem entries, Files and Directories,
 // have multi-component path names

 typedef wstring EntryName;
 typedef sequence<EntryName> EntryPath;

 // File size, offset, octet count, and contents

 typedef unsigned long long FileLength;
 typedef unsigned long long FileOffset;
 typedef unsigned long long FileCount;
 typedef sequence<octet> FileOctetSeq;
CORBA-FTAM/FTP Interworking Specification Version 1.0 4-1

4

 typedef short FilePos;
 const FilePos BEGIN = 0; // FileOffset is relative to beginning of File
 const FilePos END = 1; // FileOffset is relative to end of File

 // Directory listing size and list offset

 typedef unsigned long long DirEntryCount;
 typedef unsigned long long DirEntryOffset;

 // Directory listing Types

 typedef short DirEntryType;
 const DirEntryType FILE_ENTRY = 0;
 const DirEntryType DIR_ENTRY = 1;

 struct DirEntry {
 EntryName name;
 DirEntryType type;
 CosPropertyService::Properties props;
 };

 typedef sequence<DirEntry> DirEntrySeq;

 interface DirEntryIterator;

 // TransferEndPoint Types

 interface TransferEndPoint;
 typedef wstring TransferProtocol;
 typedef sequence<TransferProtocol> TransferProtocolSeq;

 typedef short TransferEndPointRole;

 const TransferEndPointRole SOURCE = 0;
 const TransferEndPointRole SINK = 1;
 const TransferEndPointRole SINK_INSERT = 2;

 // transfer protocol specific information

 typedef wstring TransferDetail;

 typedef short TransferState;
const TransferState CREATE = 0; // the end point has been created (initial

state)
 const TransferState LISTEN = 1; // the end point is awaiting active
connection
 const TransferState CONNECT = 2; // the end point is connected to its
peer
4-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

 const TransferState ACTIVE = 3; // the transfer is in progress
const TransferState COMPLETE = 4; // transfer has completed succesfully

 const TransferState ABORT = 5; // transfer has been aborted

 struct TransferStatus {
 TransferState state; // current transfer state
 FileCount current_count; // current transfer count
 FileCount max_count; // expected transfer size bytes/chars
 };

 // Exceptions

 typedef short ErrorCode;
 const ErrorCode UNSPECIFIED = 0; // Error category not defined
 const ErrorCode UNAVAILABLE = 1; // The service is not available at
this time
 const ErrorCode UNSUPPORTED = 2; // operation not supported,
illegal parameter value

const ErrorCode NO_PERMISSION = 3; // No permission to perform the
operation

 const ErrorCode ENTRY_EXISTS = 4; // Entry should not already exist
for operation
 const ErrorCode ENTRY_PATH_ERROR = 5; // Entry path component
missing or invalid
 const ErrorCode ENTRY_IO_ERROR = 6; // error opening, reading,
writing, closing file
 const ErrorCode DIR_NOT_EMPTY = 7; // (rmdir required empty
directory)

 const ErrorCode TRANSFER_IO_ERROR = 8; // error opening,
transferring, or closing connections
 const ErrorCode TRANSFER_ABORT = 9;

 exception FileSystemError {
 ErrorCode error;
 wstring desc;
 };

 // Error transferring between two files

 exception TransferError {
 TransferEndPointRole error_endpoint;
 ErrorCode error;
 wstring desc;
 };

 // FileSystem provided by service

 interface FileSystem {
Naming Service: v1.1 Service Description Month Year 4-3

4

 FileSession login(in wstring user,
 in wstring password,
 in CosPropertyService::Properties login_properties,
 out Directory initial_dir)
 raises(FileSystemError);

 wstring get_system_id();
 };

 // FileSession client obtains by logging in to FileSystem

 interface FileSession {
 void destroy();
 };

 // Common File system entry methods

 interface FileSystemEntry: CosPropertyService::PropertySet {

 EntryName get_name()
 raises (FileSystemError);

 EntryPath get_path()
 raises (FileSystemError);

 boolean exists()
 raises (FileSystemError);

 void remove()
 raises (FileSystemError);

 Directory get_parent()
 raises (FileSystemError);

 FileSession get_session()
 raises (FileSystemError);

 void destroy();
 };

 interface File;

 // Directory manipulation and listing

 interface Directory: FileSystemEntry {

 DirEntryIterator list(in CosPropertyService::PropertyNames listProps)
 raises (FileSystemError);
4-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

 Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean create)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };

 // Iterator to retrieve results of Directory list

 interface DirEntryIterator {
 DirEntrySeq next(in DirEntryOffset from_dir_entry,
 in DirEntryCount max_dir_entries)
 raises (FileSystemError);
 void destroy();
 };

 // File manipulation and basic transfer

 interface File: FileSystemEntry {

 void copy(in File dest)
 raises(TransferError);

 void append(in File dest)
 raises(TransferError);

 void insert(in File dest, in FileOffset offset)
 raises(TransferError);

 TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
 in FilePos seek,
 in FileOffset offset,
 in TransferProtocol ep_protocol)
 raises (FileSystemError);

 TransferProtocolSeq get_end_point_protocols();
 };

 // File transfer

 interface TransferEndPoint
 {
 TransferDetail go_to_listen()
Naming Service: v1.1 Service Description Month Year 4-5

4

 raises(FileSystemError);

 TransferDetail connect_to_peer(in TransferDetail passive_detail)
 raises(FileSystemError);

 void set_peer(in TransferDetail active_detail)
 raises(FileSystemError);

 TransferStatus get_transfer_status()
 raises (FileSystemError);

 void transfer()
 raises (FileSystemError);

 void abort()
 raises (FileSystemError);

 void destroy();
 };

 // File transfer using an iterator

 interface OctetTransferIterator {

 FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount
max_octets)
 raises (FileSystemError);

 void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)
 raises(FileSystemError);

 void destroy()
 raises(FileSystemError);

 };
};
#endif //_COS_FILE_TRANSFER_IDL_
4-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

	Preface
	Service Description
	1.1 File Transfer in Telecoms Systems
	1.1.1 File Transfer Capable Network Elements

	Service Architecture
	2.1 Overview
	2.1.1 File System Servers
	2.1.2 Principal Components
	2.1.3 Files and Directories
	2.1.4 File Transfer

	2.2 File Transfer Protocols
	2.2.1 Protocol Syntax
	2.2.2 Transfer Connection Establishment
	2.2.3 CORBA Transfer Protocol
	2.2.4 FTP Transfer Protocol
	2.2.5 FTAM Transfer Protocol

	Service Interfaces
	3.1 CosFileTransfer Module
	3.1.1 Exceptions
	3.1.2 FileSystem Interface
	3.1.3 FileSession Interface
	3.1.4 FileSystemEntry Interface
	3.1.5 Directory Interface
	3.1.6 DirEntryIterator Interface
	3.1.7 File Interface
	3.1.8 TransferEndPoint Interface
	3.1.9 OctetTransferIterator Interface

	3.2 Object Lifecycle
	3.3 Conformance Criteria
	3.3.1 Interfaces
	3.3.2 Transfer Protocols

	Complete OMG IDL

