
Date: October 2014

Finite State Machine Component for
Robotic Technology Components
(FSM4RTC)

Version 1.0 - FTF Beta 1

__

OMG Document Number: dtc/2014-10-01

Standard Document URL: http://www.omg.org/spec/FSM4RTC/

Machine Consumable Files:

http://www.omg.org/spec/FSM4RTC/20140901/ComponentObserver.idl

http://www.omg.org/spec/FSM4RTC/20140901/DataPort.idl

http://www.omg.org/spec/FSM4RTC/2014-001/ExtendedFsmService.idl

http://www.omg.org/spec/FSM4RTC/20140901/fsm4rtc.xmi

__

This OMG document replaces the submission document (robotics/2014-08-01, Alpha). It is an OMG Adopted

Beta Specification and is currently in the finalization phase. Comments on the content of this document are

welcome, and should be directed to issues@omg.org by May 18, 2015.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on October 2, 2015. If you are

reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://www.omg.org/spec/FSM4RTC/20140901/ComponentObserver.idl
http://www.omg.org/spec/FSM4RTC/20140901/DataPort.idl
http://www.omg.org/spec/FSM4RTC/2014-001/ExtendedFsmService.idl
http://www.omg.org/spec/FSM4RTC/20140901/fsm4rtc.xmi

Copyright © 2014, Honda R&D Co., Ltd.

Copyright © 2014, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any

portion of this specification in any company's products. The information contained in this document is subject to

change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,

royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and

distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person

shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason

of having used the specification set forth herein or having conformed any computer software to the

specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant

you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to

sublicense), to use this specification to create and distribute software and special purpose specifications that are

based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright

Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any

copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied

or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for

commercial purposes; and (3) no modifications are made to this specification. This limited permission

automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you

will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications

may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents

for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal

validity or scope of those patents that are brought to its attention. OMG specifications are prospective and

advisory only. Prospective users are responsible for protecting themselves against liability for infringement of

patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights

Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any

means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage

and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO

THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A

PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR

ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,

INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY

THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS

MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)

(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in

subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.

52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as

specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The

specification copyright owners are as indicated above and may be contacted through the Object Management

Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and

XMI® are registered trademarks of the Object Management Group, Inc., and Object Management Group™,

OMG™ , Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture

Diagram™, CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™, OMG Interface

Definition Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other

products or company names mentioned are used for identification purposes only, and may be trademarks of their

respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of

computer software to use certification marks, trademarks or other special designations to indicate compliance

with these materials.

Software developed under the terms of this license may claim compliance or conformance with this

specification if and only if the software compliance is of a nature fully matching the applicable compliance

points as stated in the specification. Software developed only partially matching the applicable compliance

points may claim only that the software was based on this specification, but may not claim compliance or

conformance with this specification. In the event that testing suites are implemented or approved by Object

Management Group, Inc., software developed using this specification may claim compliance or conformance

with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the

Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/report_issue.htm)

Finite State Machine Component for Robotic Technology Components (FSM4RTC),

i

Table of Contents
1 Scope .. 1
2 Conformance.. 1
 2.1 Changes to RTC Specification .. 1
 2.2 Conformance points .. 1
3 Normative References .. 1
4 Terms and Definitions ... 2
5 Symbols .. 2
6 Additional Information .. 2

 6.1 Acknowledgements .. 2
7 Finite State Machine Component for Robotic Technology Components (FSM4RTC) 3

 7.1 General ... 3
 7.2 Platform Independent Model (PIM) ... 5

7.2.1 Overview ... 5
7.2.2 Format and Conventions ... 5
7.2.3 Basic Types ... 6

 7.2.3.1 String [UML] ... 6
 7.2.3.2 Octet [RTC] ... 6
 7.2.3.3 ReturnCode_t [RTC] ... 6
 7.2.3.4 NameValue [SDO] .. 7

7.2.4 ComponentObserver ... 8
 7.2.4.1 StatusKind ... 8
 7.2.4.2 ComponentObserver interface ... 9

7.2.5 ExtendedFsmService .. 11
 7.2.5.1 FsmEventProfile .. 12
 7.2.5.2 FsmStructure ... 12
 7.2.5.3 ExtendedFsmService interface .. 13

7.2.6 Data Port ... 15
 7.2.6.1 PortStatus .. 17
 7.2.6.2 PortProfile [RTC] .. 17
 7.2.6.3 ConnectorProfile [RTC] .. 20
 7.2.6.4 DataPushService interface ... 24
 7.2.6.5 DataPullService interface .. 25

 7.3 OMG IDL Platform Specific Model (PSM) ... 27
7.3.1 Overview ... 27
7.3.2 Basic Types ... 27

 7.3.2.1 String [UML] ... 27
 7.3.2.2 Octet [RTC] ... 27
 7.3.2.3 ReturnCode_t [RTC] ... 27
 7.3.2.4 NameValue [SDO] .. 28

7.3.3 RTC module ... 28
7.3.4 Data Types ... 28
7.3.5 ComponentObserver ... 29

 7.3.5.1 ComponentObserver interface ... 29
7.3.6 ExtendedFsmService .. 29

 7.3.6.1 ExtendedFsmService interface .. 29
7.3.7 Data Port ... 30

 7.3.7.1 DataPushService interface ... 30
 7.3.7.2 DataPullService interface .. 30

Annex A: OMG IDL .. 31
A.1 ComponentObserver.idl .. 31

 2

Finite State Machine Component for Robotic Technology Components (FSM4RTC)

A.2 ExtendedFsmService.idl .. 32
A.3 DataPort.idl ... 33

Annex B: References ... 34

Finite State Machine Component for Robotic Technology Components (FSM4RTC),

iii

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable, and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications

are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

 iv

Finite State Machine Component for Robotic Technology Components (FSM4RTC)

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG

specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Helvetica/Arial - 10 pt. Bold:

Courier - 10 pt. Bold:

Helvetica/Arial - 10 pt

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to

http://www.omg.org/report_issue.htm.

http://www.omg.org/report_issue.htm

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

1

1 Scope

This specification defines the following items by extending the RTC specifications:

1. service interface which provides FSM component meta data including an FSM structure together with

appropriate data models;

2. service interface which provides the current state of the FSM component;

3. service interface which notifies internal actions of the FSM component including state transitions;

4. extended RTC::PortService which receives structured event data from outside; and

5. data model to describe structured event data including events with parameters.

2 Conformance

2.1 Changes to RTC Specification

This specification does not modify the adopted RTC specification. It reuses and/or adds functionality on top of the

current RTC specification.

2.2 Conformance points

This specification defines the following conformance points:

1. Component Observer (see 7.2.4)

2. Extended FSM Service (see 7.2.5)

3. Data Port Profiles (see 7.2.6)

Conformance with the “FSM4RTC” specification requires conformance with all the mandatory conformance points.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this

specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,

http://www.omg.org/spec/UML/2.5/Beta1/

[RTC] Robotic Technology Component specification, http://www.omg.org/spec/RTC/1.1/

[SDO] Super distributed Object Specification, http://www.omg.org/spec/SDO/1.1/

 2
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Robotic Technology Component (RTC)

A logical representation of a hardware and/or software entity that provides well-known functionality and services

Super Distributed Object (SDO)

A logical representation of a hardware device or a software component that provides well-known functionality and

services.

Extensible Markup Language (XML)

A markup language that defines a set of rules for encoding documents in a format that is both human-readable and

machine-readable.

XML Metadata Interchange (XMI)

An OMG standard for exchanging metadata information via XML.

State Chart XML (SCXML)

An XML-based markup language which provides a generic state-machine based execution environment based on UML

Statecharts.

5 Symbols

.

6 Additional Information

6.1 Acknowledgements

The following company submitted this specification:

 Honda R&D Co., Ltd.

Fundamental Technology Research Center

8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan

The following company supported this specification:

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

3

7 Finite State Machine Component for Robotic
 Technology Components (FSM4RTC)

7.1 General

According to the RTC specification, an FSM component can be defined as Figure 7.1. However, access methods and

interfaces to ensure interoperability of the FSM component are not defined in the specification.

Thus, tools and other RTCs are not able to get notifications, the current state and the structure from the FSM component

in an interoperable way. In addition to that, the definition of ports in the RTC specification is not sufficient to provide

RTCs with the standard data communication method.

Figure 7.2 shows a use case as a solution. ComponentObserver gets notifications from the FSM components.

ExtendedFsmService is an interface for setting/getting the current state and an FSM structure data model which

contains states and transition rules of the FSM. Using DataPort, other RTCs can send events with data to the FSM

components.

This specification uses SDOService and key/values properties of PortProfile and ConnectorProfile to extend the

RTC specification so that components conform to the RTC specification can communicate both existing RTCs and

extended RTCs.

The PIM for the above interface is specified in 7.2 and the PSM is specified in 7.3.

 pkg

<<interface>>

RTC::LightweightRTObject

<<interface>>

RTC::RTObject

<<interface>>

SDOPackage::SDOSystemElement

<<interface>>

SDOPackage::SDO

<<interface>>

RTC::Fsm

FsmComponent

Figure 7.1 – An example declaration of FSM component (non-normative)

 4
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

 uc

Tools

Other RTCs

ComponentObserver

FsmComponent

Notify Fsm Structure Changed

Notify State Changed

DataPort

Send Events

ExtendedFsmService

Get Fsm Structure

Get Current State

Set Fsm Structure

Figure 7.2 – Proposed use case of FSM component (non-normative)

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

5

7.2 Platform Independent Model (PIM)

7.2.1 Overview

This sub clause specifies the PIM for service interfaces and data models. At first, in 7.2.3, basic types are introduced. Sub

clause 7.2.4, “ComponentObserver” describes the PIM for the interface and data model, which are used to receive

notifications from RTCs. Sub clause 7.2.5, “ExtendedFsmService” defines the interfaces and data models to access

and manipulate the structure of the FSM. Sub clause 7.2.6, “Data Port” introduces DataPushService and

DataPullService interfaces realize push/pull types of data communication models and properties specify the detail

parameters for data communication. Figure 7.3 shows an overview UML notation of the PIM.

 pkg

<<interface>>

RTObject

<<interface>>

LightweightRTObject

1

1

SDO

<<interface>>

<<interface>>

Configuration
11

<<interface>>

SDOService

*

1

<<interface>>

ComponentObserver

<<interface>>

ExtendedFsmService

<<interface>>

PortService
* 1

- service : SDOService

- properties : NameValue[]

- interface_type : String

- id : String

ServiceProfile

- properties : NameValue[]

- owner : RTObject

- connector_profiles : ConnectorProfile[]

- port_ref : PortService

- interfaces : PortInterfaceProfile[]

- name : String

PortProfile

1

1

- properties : NameValue[]

- ports : PortService[]

- connector_id : String

- name : String

ConnectorProfile

*

1

<<interface>>

DataPushService

<<interface>>

DataPullService

Figure 7.3 – Overview of FSM4RTC PIM

7.2.2 Format and Conventions

This specification uses UML diagrams [UML] to show classes and their relationships. All classes are part of the RTC

package extended by FSM4RTC (Finite State Machine Component for RTC) specification. If, in a UML diagram, a

 6
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

class's attribute and operation compartments are suppressed, then this class is elaborated elsewhere. In this case, the

diagram might also not show all of the class' associations. However, if a class is shown to have only an attribute or an

operation compartment, then this signifies that the not-shown compartment is empty (i.e., if a class is shown with an

attribute but no operation compartment, then the class does not have any operations).

7.2.3 Basic Types

This specification reuses the types from [UML], [SDO], [RTC]. These reused types are described in this sub clause.

7.2.3.1 String [UML]

Description

The String primitive type represents a character string that can be used for any character set.

String is an instance of PrimitiveType [UML].

7.2.3.2 Octet [RTC]

Description

The Octet primitive type, a specialization of Integer primitive type, is an unsigned integer within range [0, 255].

Octet is an instance of PrimitiveType [UML].

7.2.3.3 ReturnCode_t [RTC]

- PRECONDITION_NOT_MET

- OUT_OF_RESORCES

- UNSUPPORTED

- BAD_PARAMETER

- ERROR

- OK

<<enumeration>>

ReturnCode_t

Figure 7.4 – ReturnCode_t

Description

A number of operations in this specification will need to report potential error conditions to their clients. This task shall

be accomplished by means of operation “return codes” of type ReturnCode_t.

Operations in the PIM that do not return a value of type ReturnCode_t shall report errors in the following ways,

depending on their return type:

• If an operation normally returns a positive numerical value (such as get_rate, see 5.2.2.6.4 of [RTC]), it

shall indicate failure by returning a negative value.

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

7

• If an operation normally returns an object reference (such as RTObject::get_component_profile,

see 5.4.2.2.1 of [RTC]), it shall indicate failure by returning a nil reference.

Attributes

OK Enumeration to specify the operation completed successfully

ERROR
Enumeration to specify that the operation failed with a generic,

unspecified error

BAD_PARAMETER
Enumeration to specify that the operation failed because an illegal

argument was passed to it

UNSUPPORTED

Enumeration to specify that the operation is unsupported by the

implementation (e.g., it belongs to a compliance point that is not

implemented)

OUT_OF_RESORCES
Enumeration to specify that the target of the operation ran out of the

resources needed to complete the operation

PRECONDITION_NOT_MET
Enumeration to specify that a pre-condition for the operation was not

met

Associations

7.2.3.4 NameValue [SDO]

- value : any

- name : String

NameValue

Figure 7.5 – NameValue

Description

NameValue is a pair of a name and its value defined in the 7.3.2 of [SDO].

Attributes

name: String A name of a value

value: any The value of the name

Associations

 8
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

7.2.4 ComponentObserver

This sub clause specifies ComponentObserver. As Figure 7.6 shows, ComponentObserver is an SDO service

which notifies status update of a RTC to other tools or RTCs. Kinds of updated status are defined as RTC::StatusKind.

 pkg

+ update_status(status_kind : StatusKind, hint : String) : void

<<interface>>

RTC::ComponentObserver

<<interface>>

SDOPackage::SDOService

- STATUS_KIND_NUM

- USER_DEFINED

- FSM_STRUCTURE

- FSM_STATUS

- FSM_PROFILE

- EC_HEARTBEAT

- RTC_HEARTBEAT

- CONFIGURATION

- PORT_PROFILE

- EC_STATUS

- RTC_STATUS

- COMPONENT_PROFILE

<<enumeration>>

RTC::StatusKind

Figure 7.6 – Overview of ComponentObserver PIM

7.2.4.1 StatusKind

- STATUS_KIND_NUM

- USER_DEFINED

- FSM_STRUCTURE

- FSM_STATUS

- FSM_PROFILE

- EC_HEARTBEAT

- RTC_HEARTBEAT

- CONFIGURATION

- PORT_PROFILE

- EC_STATUS

- RTC_STATUS

- COMPONENT_PROFILE

<<enumeration>>

RTC::StatusKind

Figure 7.7 – StatusKind

Description

StatusKind is an enumeration type to classify updated status in target RTC.

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

9

Attributes

COMPONENT_PROFILE
Enumeration to specify that the target component's

RTC::ComponentProfile has been changed

RTC_STATUS
Enumeration to specify that the target component's status has been

changed

EC_STATUS
Enumeration to specify that the target component's status of execution

contexts has been changed

PORT_PROFILE
Enumeration to specify that the target component's status of ports has

been changed

CONFIGURATION
Enumeration to specify that the target component's configuration has

been changed

RTC_HEARTBEAT Enumeration to notify that the target component is alive

EC_HEARTBEAT Enumeration to notify that the target execution context is alive

FSM_PROFILE
Enumeration to specify that the target component's FSM profile has

been changed

FSM_STATUS
Enumeration to specify that the target component's FSM status has

been changed

FSM_STRUCTURE
Enumeration to specify that the target component's FSM structure has

been changed

USER_DEFINED Enumeration to specify a user defined notification

STATUS_KIND_NUM Enumeration to specify the number of attributes

Associations

7.2.4.2 ComponentObserver interface

+ update_status(status_kind : StatusKind, hint : String) : void

<<interface>>

RTC::ComponentObserver

Figure 7.8 – ComponentObserver

Description

ComponentObserver is an interface to notify various status changed in RTC to others. This is attached into a target

RTC/SDO as an SDO service, and if an RTC/SDO's status changes, a kind of changed status and its hints are notified to

observers. A non-normative assumed usage is shown as Figure 7.9.

Operations

update_status(in StatusKind status_kind, in String hint): void

This operation notifies a status update. The status_kind

indicates the kind of updated status, and the hint give some

hint about updated status.

Hints

The following hints are defined in this specification to realize interoperability of information from

ComponentObserver.

 10
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

COMPONENT_PROFILE The name of changed profile’s key

RTC_STATUS

INACTIVE:Execution Context ID (ex. INACTIVE:1002)

ACTIVE:Execution Context ID

ERROR:Execution Context ID

EC_STATUS

ATTACHED:Execution Context ID

DETACHED:Execution Context ID

RATE_CHANGED:Execution Context ID

STARTUP:Execution Context ID

SHUTDOWN:Execution Context ID

PORT_PROFILE

ADD:port name (ex. ADD:velocity)

REMOVE:port name

CONNECT:port name

DISCONNECT:port name

CONFIGURATION

UPDATE_CONFIGSET:configuration set's name

(ex. UPDATE_CONFIGSET:default)

UPDATE_PARAMETER:<config set's name>.<config param's key>
(ex. UPDATE_ PARAMETER:default.key)

SET_CONFIG_SET:config set's name

ADD_CONFIG_SET:config set's name

REMOVE_CONFIG_SET:config set's name

ACTIVATE_CONFIG_SET:config set's name

FSM_STATUS Name of the current state

FSM_STRUCTURE Name of the FSM

USER_DEFINED User defined text

Attributes

No additional attributes.

Associations

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

11

ComponentObserversd

ToolComponentObserverConfigurationRTObject

1: get_configuration()

2: add_service_profile(prof)

3: update_status(kind, hint)

4: update_status(kind, hint)

5: remove_service_profile(id)

Figure 7.9 – Sequence for adding ComponentObserver (non-normative)

7.2.5 ExtendedFsmService

This sub clause specifies ExtendedFsmService. As Figure 7.10 shows, ExtendedFsmService is an SDO service.

With ExtendedFsmService, a RTC can provide extended interfaces to get the current status of the FSM and set/get

the structure definition data model of the FSM for other tools and RTCs.

 pkg

+ get_fsm_structure(inout fsm_structure : FsmStructure) : ReturnCode_t

+ set_fsm_structure(in fsm_structure : FsmStructure) : ReturnCode_t

+ get_current_state() : String

<<interface>>

RTC::ExtendedFsmService

- properties : NameValue[]

- event_profiles : FsmEventProfile[]

- structure : String

- name : String

RTC::FsmStructure

<<interface>>

SDOPackage::SDOService

11

- data_type : String

- name : String

FsmEventProfile

*

1

Figure 7.10 – Overview of ExtendedFsmService PIM

 12
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

7.2.5.1 FsmEventProfile

- data_type : String

- name : String

FsmEventProfile

Figure 7.11 – FsmEventProfile

Description

FsmEventProfile is a data model to bind the name of event and its data type of the FSM component.

Attributes

name: String A name of the FSM.

data_type: String The type of the event data as
CORBA::RepositoryID.

Associations

7.2.5.2 FsmStructure

- properties : NameValue[]

- event_profiles : FsmEventProfile[]

- structure : String

- name : String

RTC::FsmStructure

Figure 7.12 – FsmStructure

Description

FsmStructure is a data model to describe a structure of an FSM of the FSM component. FsmStructure is used to

specify the name and description format of an FSM. Detail usage is explained in 7.2.5.3, “ExtendedFsmService

interface.”

Attributes

name: String A name of the FSM.

structure: String A string formatted description of the structure of the FSM.

event_profiles: FsmEventProfile[] An array of FsmEventProfile.

properties: NameValue Additional properties of the FsmStructure.

Properties

Names of properties of FsmStructure have the dot-separated prefix “fsm_structure.”

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

13

Description format property of the
structure of the FSM

The format of the structure attribute

name fsm_structure.format

value The specified format name of structure (ex. scxml, xmi).

Associations

7.2.5.3 ExtendedFsmService interface

+ get_fsm_structure(inout fsm_structure : FsmStructure) : ReturnCode_t

+ set_fsm_structure(in fsm_structure : FsmStructure) : ReturnCode_t

+ get_current_state() : String

<<interface>>

RTC::ExtendedFsmService

Figure 7.13 – ExtendedFsmService

ExtendedFsmServicesd

Tool

ExtendedFsmService

ConfigurationRTObject

3: add_service_profile(prof)

<<create>>
1: create()

2: get_configuration()

5: get_fsm_structure(fsm)

6: set_fsm_structure(fsm)

4: get_service_profiles()

Figure 7.14 – Sequence for creating and using ExtendedFsmService (non-normative)

 14
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

Description

ExtendedFsmService is an interface to set and get the structure of an FSM in the FSM component from others. This

is created by a target RTC as a SDO service and added to its own configuration. A non-normative usage is shown as

Figure 7.14. Tools get the reference of an ExtendedFsmService via configuration of the target RTC. After getting the

ExtendedFsmService, tools can get and set the FsmStructure of the target RTC.

Operations

get_current_state(): String
This operation returns the current state of an FSM in the

target FSM component.

get_fsm_structure(inout fsm_structure:FsmStructure):
ReturnCode_t

This operation returns the structure of an FSM in the target

FSM component. ExtendedFsmService returns the name,

structure with format specified by fsm_structure.format and

EventProfiles. RTCs may return UNSUPPORTED if this

operation is not implemented.

set_fsm_structure(in fsm_structure:FsmStructure):
ReturnCode_t

This operation sets an FsmStructure to the target

component. Then the target component reconfigures its FSM

structure such as transition rules according to the values of

the given fsm_structure. RTCs may return

UNSUPPORTED if this operation is not implemented.

Attributes

No additional attributes.

Associations

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

15

7.2.6 Data Port

RTC specification provides the definition of PortService for RTCs as an interface to communicate each other. As

Figure 7.15 shows, however, PortService doesn’t provide the method to send and receive a certain data type between

RTCs. Thus, this specification adds the following data and service models for that purpose.

 pkg

- UNKNOWN_ERROR

- BUFFER_TIMEOUT

- BUFFER_EMPTY

- BUFFER_FULL

- PORT_ERROR

- PORT_OK

<<enumration>>

RTC::PortStatus

+ push(data : Octet[]) : PortStatus

<<interface>>

RTC::DataPushService

+ pull(data : Octet[]) : PortStatus

<<interface>>

RTC::DataPullService

+ disconnect_all() : ReturnCode_t

+ notify_disconnect(connector_id : String) : ReturnCode_t

+ notify_connect(connector_profile : ConnectorProfile) : ReturnCode_t

+ disconnect(connector_id : String) : ReturnCode_t

+ connect(connector_profile : ConnectorProfile) : ReturnCode_t

+ get_connector_profile(connector_id : String) : ConnectorProfile

+ get_connector_profiles() : ConnectorProfile[]

+ get_port_profile() : PortProfile

<<interface>>

RTC::PortService

- properties : NameValue[]

- ports : PortService[]

- connector_id : String

- name : String

RTC::ConnectorProfile

*

1

- properties : NameValue[]

- owner : RTObject

- connector_profiles : ConnectorProfile[]

- port_ref : PortService

- interfaces : PortInterfaceProfile[]

- name : String

RTC::PortProfile

*

1

Figure 7.15 – Overview of DataPushService and DataPullService PIM

In the FSM4RTC PIM, two types of communication models are assumed. One is “Sender-push” model and the other is

“Receiver-pull” model (Figure 7.16). Figure 7.17 shows how interfaces and data models collaborate to realize these

communication models. As Figure 7.17, in the “Sender-push” model, an out port writes data to the buffer of a connector.

And then the data is pushed to the buffer of DataPushService. Finally an in port reads the data from

DataPushService. On the other hand, in the “Receiver-pull” model, when an in port calls “read”, the data

written by an out port to the buffer of DataPullService is pulled from a connector and returned to the in

port. “Receiver-pull” model is used to minimize the network communications between senders and

receivers by pulling the data when it’s required.

 16
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

OutPort InPort

OutPort InPort

Sender-push model

Receiver-pull model

Figure 7.16 – Communication model of data port (non-normative)

Out port In port

DataPushService

Out port In port

DataPullService

Write

Write Push

Pull Read

Read

Notify full/timeout Notify empty/timeout

Notify full/timeout Notify empty/timeout

Write buffer Read buffer

Write buffer Read buffer

Write buffer
properties

Read buffer
properties

Write buffer
properties

Read buffer
properties

Sender-push model

PortProfileConnectorProfilePortProfile

Receiver-pull model

Figure 7.17 – Concept model of data port (non-normative)

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

17

7.2.6.1 PortStatus

- UNKNOWN_ERROR

- BUFFER_TIMEOUT

- BUFFER_EMPTY

- BUFFER_FULL

- PORT_ERROR

- PORT_OK

<<enumration>>

RTC::PortStatus

Figure 7.18 – PortStatus

Description

PortStatus is an enumeration type to classify result of operations of DataPushService and DataPullService.

Attributes

PORT_OK
Enumeration to specify that the result of an action of the data port has

been success.

PORT_ERROR
Enumeration to specify that the result of an action of the data port has

been failed.

BUFFER_FULL Enumeration to notify that the buffer of the data port is full.

BUFFER_EMPTY Enumeration to notify that the buffer of the data port is empty.

BUFFER_TIMEOUT
Enumeration to notify that the write or read from buffer of the data port

is timeout.

UNKNOWN_ERROR
Enumeration to specify that the result of an action of the data port has

been failed with unknown error.

Associations

7.2.6.2 PortProfile [RTC]

- properties : NameValue[]

- owner : RTObject

- connector_profiles : ConnectorProfile[]

- port_ref : PortService

- interfaces : PortInterfaceProfile[]

- name : String

RTC::PortProfile

Figure 7.19 – PortProfile

Description

PortProfile is defined in [RTC] describe profiles of a port of an RTC. This specification extends PortProfile using the

properties attribute as follows. These properties are used to declare supported types of communications of the port.

 18
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

Properties

Properties of PortProfile are used to declare supported types of data ports provided by PortService. Names of

properties have the dot-separated prefix “dataport”. Each property may have comma-separated multiple values. This sub

clause defines the minimum set of values of each property to realize interoperability among RTCs. Implementations may

support additional values for each property. For example, dataport.interface_type property of an implementation which

supports DDS interface includes “dds”.

Dataflow type property

Property to define supported data communication models

name value description

dataport.dataflow_type
push

If this value exists, sender-push model is supported.

pull
If this value exists, receiver-pull model is supported.

IO mode property

Property to define supported IO modes to write data

name value description

dataport.io_mode block If this value exists, block mode is supported. In block mode, write method of an out

port is blocked until the data has been pushed to DataPushService.

nonblock If this value exists, nonblock mode is supported. In nonblock mode, write method of

an out port returns immediately.

Data type property

Property to define the data type used in data ports. PortService sets the same data type for all provided data ports

name value description

dataport.data_type string A data type as CORBA::RepositoryID.

Interface type property

Property to define the interface type(s) of a data port

name value description

dataport.interface_type string corba. If this value exists, CORBA interface is supported.

Marshaling type property

Property to define the supported marshaling type(s) of data

name value description

dataport.marshaling_type string If this value exists, CDR is supported.

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

19

Timestamp policy property

Property to define the supported timestamp policies

name value description

dataport.timestamp_policy on_write If this value exists, a timestamp can be set when an out port writes a data.

on_send If this value exists, a timestamp can be set before a data is pushed to

DataPushService or pulled from DataPullService.

on_received If this value exists, a timestamp can be set after a data is pushed to

DataPushService or pulled from DataPullService.

on_read If this value exists, a timestamp can be set when an in port reads a data.

none If this value exists, RTCs don’t set any timestamp.

Write buffer length property

Property to define the default length of the write buffer

name value description

dataport.write.buffer.length string A positive integer to define the length of the write buffer.

Write buffer full policy property

Property to define the supported policies when the write buffer is full.

name value description

dataport.write.buffer.full_policy overwrite If this value exists, overwrite policy is supported. As overwrite

policy, a data is over written when the write buffer is full.

do_nothing If this value exists, do_nothing policy is supported. As do_nothing

policy, a data is not written when the write buffer is full.

block If this value exists, block policy is supported. As block policy,

writing to the write buffer is blocked until the write buffer is

available.

Write buffer timeout property

Property to define default timeout for block policy of the write buffer

name value description

dataport.write.buffer.timeout string Timeout of blocking [s]

Read buffer length property

Property to define the default length of the read buffer

name value description

dataport.read.buffer.length string A positive integer to define the length of the read buffer.

 20
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

Read buffer empty policy property

Property to define the supported policies when the read buffer is empty

name value description

dataport.read.buffer.empty_policy read_back If this value exists, read_back policy is supported. As

read_back policy, the read method of an in port returns the last

data when the read buffer is empty.

do_nothing If this value exists, do_nothing policy is supported. As

do_nothing policy, the read method of an in port returns nothing

when the read buffer is empty.

block If this value exists, block policy is supported. As block policy, the

read method of an in port blocks until the read buffer is available.

Read buffer timeout property

Property to define the default timeout for block policy of the read buffer

name value description

dataport.read.buffer.timeout string Timeout of blocking [s]

Read buffer queue policy property

Property to define the supported queue policies of the read buffer

name value description

dataport.read.buffer.queue_policy all If this value exists, all policy is supported. As all policy, all queued data

in the read buffer is read at once.

fifo If this value exists, fifo policy is supported. As fifo policy, queued data in

the read buffer is read with FIFO order.

new If this value exists, new policy is supported. As new policy, the latest

data in the read buffer is read.

7.2.6.3 ConnectorProfile [RTC]

- properties : NameValue[]

- ports : PortService[]

- connector_id : String

- name : String

RTC::ConnectorProfile

Figure 7.20 – ConnectorProfile

Description

ConnectorProfile is defined in [RTC] to contain information for connecting the ports of collaborating RTCs. This

specification extends ConnectorProfile using the properties attribute as follows. These properties are used to direct a

port to provide the interface with specified configuration. If the configuration is acceptable for the port, then an instance

of required interface is created and the PortService::connect operation shall return ReturnCode_t::OK. If the port

is unable to provide the interface the PortService::connect operation shall return

ReturnCode_t::BAD_PARAMETER (Figure 7.21). The acceptable configurations are defined as properties of

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

21

PortProfile (Sub clause 7.2.6.2).

Tool

connect portsact

profile : ConnectorProfile

check properties

DataPushServicePortService

make a connection

[invalid properties] / return ReturnCode_t::BAD_PARAMETER

create a data port

[valid properties]

[failed] / return ReturnCode_t::ERROR

[success] / return ReturnCode_t::OK

connect port_profile : PortProfile

Figure 7.21 – Workflow of connection operations (non-normative)

Properties

Properties of ConnectorProfile are used to request PortService to provide a specific type of data port between RTCs.

Names of properties have the dot-separated prefix “dataport”. Each property must have a single value.

Dataflow type property

Property to specify the requested data communication model

name value description

dataport.dataflow_type push

pull

IO mode property

Property to specify the requested IO mode to push or pull data

 22
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

name value description

dataport.io_mode block If this value exists, block mode is supported. In block mode, write method of an out

port is blocked until the data has been pushed to DataPushService.

nonblock If this value exists, nonblock mode is supported. In nonblock mode, write method of

an out port returns immediately.

Interface type property

Property to specify the requested interface type of a data port

name value description

dataport.interface_type string corba

Marshaling type property

Property to specify the requested marshaling type of a data

name value description

dataport.marshaling_type string cdr

Timestamp policy property

Property to specify the requested timestamp policy

name value description

dataport.timestamp_policy on_write

on_send

on_received

on_read

none

Write buffer length property

Property to specify the requested length of the write buffer

name value description

dataport.write.buffer.length string A positive integer to define the default length of the write buffer.

Write buffer full policy property

Property to specify the requested policy when the write buffer is full.

name value description

dataport.write.buffer.full_policy overwrite

do_nothing

block

on_read

none

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

23

Write buffer timeout property

Property to specify default timeout for block policy of the write buffer

name value description

dataport.write.buffer.timeout string Timeout of blocking [s]

Read buffer length property

Property to specify the default length of the read buffer

name value description

dataport.read.buffer.length string A positive integer to define the default length of the read buffer.

Read buffer empty policy property

Property to specify the supported policies when the read buffer is empty

name value description

dataport.read.buffer.empty_policy read_back

do_nothing

block

Read buffer timeout property

Property to specify the default timeout for block policy of the read buffer

name value description

dataport.read.buffer.timeout string Timeout of blocking [s]

Read buffer queue policy property

Property to specify the supported queue policies of the read buffer

name value description

dataport.read.buffer.queue_policy all

fifo

new

FSM event name property

Property to bind an event name and a data port

name value description

dataport.fsm_event_name string The name of the event bound with the data port as text format.

 24
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

7.2.6.4 DataPushService interface

+ push(data : Octet[]) : PortStatus

<<interface>>

RTC::DataPushService

Figure 7.22 – DataPushService

Description

DataPushService is an interface to push an array of Octet to the target port with a specified binary format such as

Common Data Representation (CDR) format. Figure 7.18 shows a non-normative example of a sequence diagram to

create and use DataPushService.

DataPushServicesd

DataPushService

OutPort:

PortService

OutComp:

RTObject

Tool

1: get_ports()

InPort:

PortService

InComp:

RTObject

3: get_ports()

2: get_port_profile()

4: get_port_profile()

<<create>>
6: create()

5: connect(prof)5.1: notify_connect(prof)

5.1.1: notify_connect(prof)

7: write()
7.1: push(data)

8: read()

Figure 7.23 – Sequence for creating and using DataPushService (non-normative)

Operations

push(in Octet[] data): PortStatus
This operation pushes an array of Octet to the he target port with a

specified binary format.

Attributes

No additional attributes.

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

25

Associations

7.2.6.5 DataPullService interface

+ pull(data : Octet[]) : PortStatus

<<interface>>

RTC::DataPullService

Figure 7.24 – DataPullService

Description

DataPullService is an interface to pull array of Octet from the target port with a specified binary format such as

Common Data Representation (CDR) format. Figure 7.20 shows a non-normative example of a sequence diagram to

create and use DataPullService.

DataPullServicesd

DataPullService

InPort:

PortService

InComp:

RTObject

Tool

1: get_ports()

OutPort:

PortService

OutComp:

RTObject

3: get_ports()

2: get_port_profile()

4: get_port_profile()

<<create>>
6: create()

5: connect(prof)5.1: notify_connect(prof)

5.1.1: notify_connect(prof)

8: read()

7: write()

8.1: pull(data)

Figure 7.25 – Sequence for creating and using DataPullService (non-normative)

 26
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

Operations

pull(in Octet[] data): PortStatus
This operation pulls an array of Octet from the he target port with a

specified binary format.

Attributes

No additional attributes.

Associations

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

27

7.3 OMG IDL Platform Specific Model (PSM)

The OMG IDL PSM is provided by means of the IDL that defines the interface an application can use to interact with the

Service.

7.3.1 Overview

This sub clause introduces a CORBA specific model for the Finite State Machine Component for RTC (FSM4RTC)

Platform Independent Model (PIM) defined in 7.2.

The FSM4RTC PIM defines the interfaces and necessary data structures. In the Platform Specific Model (PSM) these

interfaces and the data structures used in the individual methods are mapped according to a CORBA IDL specification.

The complete IDL specification is presented in Annex A.

An interface defined in the FSM4RTC PIM is mapped to a CORBA interface. An operation in a PIM interface is mapped

to a CORBA operation. The other data types in the FSM4RTC PIM are mapped to the non-interface types in CORBA

IDL. The CORBA IDL PSM is compliant with the IDL style guide [1].

In the CORBA IDL PSM, all interfaces as defined in the FSM4RTC PIM are directly mapped to CORBA interfaces. The

IDL specification includes corresponding interface declarations. Additionally, all data structures used in the methods of

these interfaces are also defined in the IDL specification.

The FSM4RTC IDL specification includes the following interface declarations:

• interface ComponentObserver

• interface ExtendedFsmService

• interface DataPushService

• interface DataPullService

Addition to the interfaces, data structures that are used as parameters in interface methods have to be defined in the PSM.

7.3.2 Basic Types

Basic types (see 7.2.3) shall map to the corresponding IDL types as follows.

7.3.2.1 String [UML]

String is mapped to string.

7.3.2.2 Octet [RTC]

Octet is mapped to octet

7.3.2.3 ReturnCode_t [RTC]

ReturnCode_t is mapped to RTC::ReturnCode_t from RTC.idl [RTC]

 28
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

7.3.2.4 NameValue [SDO]

NameValue is mapped to SDOPackage::NameValue from SDOPackage.idl [SDO].

NameValue[] is mapped to SDOPackage::NVList from SDOPackage.idl [SDO].

7.3.3 RTC module

The interfaces and data structures defined in the CORBA PSM belong to module RTC.

7.3.4 Data Types

This section defines data structures that are used as parameters in FSM4RTC interface methods.

typedef SDOPackage::NVList NVList;

 typedef sequence<octet> OctetSeq;

 enum StatusKind {

 COMPONENT_PROFILE,

 RTC_STATUS,

 EC_STATUS,

 PORT_PROFILE,

 CONFIGURATION,

 RTC_HEARTBEAT,

 EC_HEARTBEAT,

 FSM_PROFILE,

 FSM_STATUS,

 FSM_STRUCTURE,

 USER_DEFINED,

 STATUS_KIND_NUM

 };

 struct FsmEventProfile {

 string name;

 string data_type;

 };

 typedef sequence<FsmEventProfile> FsmEventProfileList;

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

29

 struct FsmStructure {

 string name;

 string structure;

 FsmEventProfileList event_profiles;

 NVList properties;

 }

 enum PortStatus {

 PORT_OK,

 PORT_ERROR,

 BUFFER_FULL,

 BUFFER_EMPTY,

 BUFFER_TIMEOUT,

 UNKNOWN_ERROR

 }

7.3.5 ComponentObserver

7.3.5.1 ComponentObserver interface

The ComponentObserver interface is mapped to a CORBA interface. The ComponentObserver interface supports an

operation, update_status, which allows getting the list of organizations associated with the object implementing this

interface.

 interface ComponentObserver : SDOPackage::SDOService {

 oneway void update_status(in StatusKind status_kind, in string hint);

 }

7.3.6 ExtendedFsmService

7.3.6.1 ExtendedFsmService interface

 interface ExtendedFsmService : SDOPackage::SDOService {

 string get_current_state();

 ReturnCode_t set_fsm_structure(in FsmStructure fsm_structure);

 30
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

 ReturnCode_t get_fsm_structure(inout FsmStructure fsm_structure);

 }

7.3.7 Data Port

7.3.7.1 DataPushService interface

 interface DataPushService {

 PortStatus push(in OctetSeq data);

 }

7.3.7.2 DataPullService interface

 interface DataPullService {

 PortStatus pull(out OctetSeq data);

 }

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

31

Annex A: OMG IDL

(normative)

A.1 ComponentObserver.idl

#ifndef _COMPONENT_OBSERVER_IDL_
#define _COMPONENT_OBSERVER_IDL_

#include <SDOPackage.idl>

#pragma prefix "omg.org"

module RTC
{
 enum StatusKind
 {
 COMPONENT_PROFILE,
 RTC_STATUS,
 EC_STATUS,
 PORT_PROFILE,
 CONFIGURATION,
 RTC_HEARTBEAT,
 EC_HEARTBEAT,
 FSM_PROFILE,
 FSM_STATUS,
 FSM_STRUCTURE,
 USER_DEFINED,
 STATUS_KIND_NUM
 };
 #pragma version StatusKind 1.0

 interface ComponentObserver : SDOPackage::SDOService
 {
 oneway void update_status(in StatusKind status_kind,
 in string hint);
 };
 #pragma version ComponentObserver 1.0
};

#endif // _COMPONENT_OBSERVER_IDL_

 32
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

A.2 ExtendedFsmService.idl

#ifndef _EXTENDED_FSM_SERVICE_IDL_
#define _EXTENDED_FSM_SERVICE_IDL_

#include <RTC.idl>

#pragma prefix "omg.org"

module RTC
{
 struct FsmEventProfile
 {
 string name;
 string data_type;
 };
 #pragma version FsmEventProfile 1.0
 typedef sequence<FsmEventProfile> FsmEventProfileList;

 struct FsmStructure
 {
 string name;
 string structure;
 FsmEventProfileList event_profiles;
 NVList properties;
 };
 #pragma version FsmStructure 1.0

 interface ExtendedFsmService : SDOPackage::SDOService
 {
 string get_current_state();
 ReturnCode_t set_fsm_structure(in FsmStructure fsm_structure);
 FsmStructure get_fsm_structure(intout FsmStructure fsm_structure);
 };
 #pragma version ExtendedFsmService 1.0
};

#endif // _EXTENDED_FSM_SERVICE_IDL_

Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

33

A.3 DataPort.idl

#ifndef _DATA_PORT_IDL_
#define _DATA_PORT_IDL_

#pragma prefix "omg.org"

module RTC
{
 enum PortStatus
 {
 PORT_OK,
 PORT_ERROR,
 BUFFER_FULL,
 BUFFER_EMPTY,
 BUFFER_TIMEOUT,
 UNKNOWN_ERROR
 };
 #pragma version PortStatus 1.0

 typedef sequence<octet> OctetSeq;

 interface DataPushService
 {
 PortStatus push(in OctetSeq data);
 };
 #pragma version DataPushService 1.0

 interface DataPullService
 {
 PortStatus pull(out OctetSeq data);
 };
 #pragma version DataPullService 1.0
};

#endif // _DATA_PORT_IDL_

 34
Finite State Machine Component for Robotic Technology Components (FSM4RTC), 1

Annex B: References

(non-normative)

[1] OMG IDL Style Guide, ab/98-06-03

[2] XML Metadata Interchange, http://www.omg.org/spec/XMI

[3] SCXML State Chart XML, http://www.w3.org/TR/scxml/

