
Enterprise Collaboration Architecture
(ECA) Specification

February 2004
Version 1.0

formal/04-02-01

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2000, 2001, CBOP
Copyright © 2000, 2001, Data Access Technologies
Copyright © 2000, 2001, DSTC
Copyright © 2000, 2001, EDS
Copyright © 2000, 2001, Fujitsu
Copyright © 2000, 2001, IBM
Copyright © 2000, 2001, Iona Technologies
Copyright © 2003, Object Management Group, Inc.
Copyright © 2000, 2001, Open_IT
Copyright © 2000, 2001, Sun Microsystems
Copyright © 2000, 2001, Unisys Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . vii

1. Introduction . 1-1
1.1 Guide to the Specification . 1-1

1.1.1 Overall Structure of the Specification 1-1
1.2 Conformance Issues . 1-2

1.2.1 Summary of optional versus mandatory
interfaces . 1-2

1.2.2 Compliance Points . 1-3
1.2.3 Optional Compliance Points 1-3

1.3 Proof of Concept . 1-3
1.3.1 Data Access Technologies 1-3
1.3.2 DSTC . 1-4
1.3.3 EDS . 1-4
1.3.4 Fujitsu. 1-4
1.3.5 IBM . 1-5
1.3.6 Iona. 1-5
1.3.7 Open-IT and SINTEF . 1-5
1.3.8 Sun Microsystems . 1-6
1.3.9 ebXML . 1-6

2. ECA: Rationale and Application . 2-1
2.1 Overview . 2-2
2.2 The Enterprise Collaboration Architecture. 2-3

2.2.1 Component Collaboration Architecture 2-4
2.2.2 Entities Model . 2-4
2.2.3 Events Model . 2-5
February 2004 UML Profile for Enterprise Distributed Object Computing i

Contents
2.2.4 Business Process Model 2-6
2.3 Separation of Concerns and Viewpoint Specifications 2-6
2.4 Enterprise Specification . 2-9

2.4.1 Concepts . 2-9
2.4.2 EDOC Enterprise Submodel 2-10

2.5 Computational Specification . 2-10
2.5.1 Concepts . 2-10
2.5.2 EDOC Computational Specifications 2-11
2.5.3 Levels of ProcessComponent in a

Computational Specification 2-11
2.6 Information Specification. 2-14

2.6.1 Concepts . 2-14
2.6.2 EDOC Information Specifications 2-14

2.7 Engineering Specification . 2-15
2.7.1 Concepts . 2-15
2.7.2 EDOC Engineering Specifications 2-15

2.8 Technology Specification . 2-15
2.9 Specification Integrity - Interviewpoint Correspondences . 2-15

2.9.1 Computational-Enterprise Interrelationships . . 2-16
2.9.2 Computational-Information Interrelationships . 2-16
2.9.3 Computational-Engineering Interrelationships . 2-16
2.9.4 Engineering-Technology Interrelationships . . . 2-16

3. The Enterprise Collaboration Architecture Model. 3-1
3.1 Key Design Features . 3-2

3.1.1 Recursive Component Composition 3-2
3.1.2 Process Specification . 3-4
3.1.3 Specification of Event Driven Systems 3-5
3.1.4 Integration of Process and Information Models 3-6
3.1.5 Rigorous Relationship Specification 3-7
3.1.6 Mappings to Technology - Platform

Independence . 3-7
3.2 ECA Elements . 3-7
3.3 Rationale . 3-8

3.3.1 Problems to be Solved 3-8
3.3.2 Concepts . 3-12
3.3.3 Conceptual Framework. 3-14

3.4 CCA Metamodel . 3-17
3.4.1 Structural Specification 3-18
3.4.2 Choreography . 3-30
ii UML Profile for Enterprise Distributed Object Computing February 2004

Contents
3.4.3 Composition . 3-38
3.4.4 Document Model . 3-47
3.4.5 Model Management . 3-54

3.5 CCA Notation . 3-57
3.5.1 CCA Specification Notation 3-58
3.5.2 Composite Component Notation 3-59
3.5.3 Community Process Notation 3-61

3.6 Diagramming CCA . 3-61
3.6.1 Types of Diagram . 3-61
3.6.2 The Buy/Sell Example 3-62
3.6.3 Collaboration Diagram Shows Community

Process . 3-62
3.6.4 Class Diagram for Protocol Structure 3-63
3.6.5 Activity Diagram (Choreography) for a Protocol 3-64
3.6.6 Class Diagram for Component Structure 3-65
3.6.7 Class Diagram for Interface 3-66
3.6.8 Class Diagram for Process Components

with Multiple Ports . 3-68
3.6.9 Activity Diagram showing the Choreography

of a Process Component 3-69
3.6.10 Collaboration Diagram for Process Component

Composition . 3-69
3.6.11 Model Management . 3-71
3.6.12 Using the CCA Notation for Component &

Protocol Structure. 3-72
3.7 Introduction . 3-74

3.7.1 Relationship to other parts of ECA. 3-74
3.7.2 Design Concepts . 3-75
3.7.3 Standard UML Facilities 3-81

3.8 Entity Viewpoints. 3-82
3.8.1 Information Viewpoint 3-82
3.8.2 Composition viewpoint. 3-83

3.9 Entity Metamodel. 3-83
3.9.1 Overview . 3-84
3.9.2 Entity Package . 3-84

3.10 Rationale . 3-94
3.10.1 Introduction . 3-94
3.10.2 Overall Design Rationale 3-95
3.10.3 Concepts . 3-96
3.10.4 Key Concepts of Event Driven Business

and System Models . 3-98
February 2004 UML Profile for Enterprise Distributed Object Computing iii

Contents
3.10.5 Event and Notification based Interaction
Models . 3-100

3.10.6 Leveraging Event Based Models 3-104
3.11 Metamodel . 3-106

3.11.1 Business Process View 3-106
3.11.2 Entity View. 3-108
3.11.3 Whole Event Model . 3-109
3.11.4 Publish and Subscribe Package 3-110
3.11.5 Event Package . 3-114

3.12 Relationship to other ECA Models. 3-121
3.12.1 Relationship to Business Process Model

and Entities Model . 3-121
3.12.2 Relationship to ECA CCA Model. 3-122

3.13 Relationship Other Paradigms . 3-123
3.13.1 ebXML . 3-124

3.14 Example . 3-124
3.15 Introduction . 3-126
3.16 Metamodel . 3-126

3.16.1 Business Process Metamodel 3-131
3.17 Notation for Activity and ProcessRole 3-150
3.18 Process Model Patterns . 3-152

3.18.1 Timeout . 3-153
3.18.2 Terminate . 3-154
3.18.3 Activity Preconditions and Activity

Postconditions . 3-155
3.18.4 Simple Loop . 3-157
3.18.5 While and Repeat-Until Loops 3-158
3.18.6 For Loop. 3-159
3.18.7 Multi-Task . 3-160

3.19 Full Model . 3-161

A. References . A-1

Glossary . 1
iv UML Profile for Enterprise Distributed Object Computing February 2004

Preface
About the Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Intended Audience and Use
The information described in this manual is aimed at managers and software designers
who want to produce applications that comply with the family of OMG standards. The
benefit of compliance is, in general, to be able to produce interoperable applications
that run in heterogeneous, distributed environments.

Context of OMG Modeling
The OMG is dedicated to producing a framework and specifications for commercially
available object-oriented environments. The Object Management Architecture (as
defined in the Object Management Architecture Guide) is the umbrella architecture for
OMG specifications. The defining model for the architecture is the Reference Model,
February 2004 Enterprise Collaboration Architecture vii

which classifies the components, interfaces, and protocols that compose an object
system. The Reference Model consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.

• Application Objects, which are objects specific to particular commercial
products or end user systems. Application Objects correspond to the traditional
notion of applications, so they are not standardized by the OMG. Instead,
Application Objects constitute the uppermost layer of the Reference Model.

• OMG Modeling, a collection of modeling specifications that advance the state of
the industry by enabling OO visual modeling tool interoperability. OMG
Modeling provides a set of CORBA interfaces that can be used to define and
manipulate a set of interoperable metamodels.

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc., at:

OMG Headquarters
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org
viii Enterprise Collaboration Architecture February 2004

 Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments
This specification was prepared by the following companies:

• CBOP

• Data Access Technologies

• DSTC

• EDS

• Fujitsu

• IBM

• Iona Technologies

• Open-IT

• Sun Microsystems

• Unisys

Supporting companies are:

• Adaptive

• Hitachi

• Netaccount

• SINTEF
February 2004 Enterprise Collaboration Architecture ix

x Enterprise Collaboration Architecture February 2004

Introduction 1
Contents

This chapter includes the following topics.

1.1 Guide to the Specification

1.1.1 Overall Structure of the Specification
Chapter 1 introduces the specification.

Chapter 2 explains the overall rationale for the approach, and provides a framework for
system specification using the EDOC Profile. It provides a detailed rationale for the
modeling choices made and describes how the various elements in the specification
may be used, within the viewpoint oriented framework of the Reference Model of
Open Distributed Processing (RM-ODP), to model all phases of a software system’s
lifecycle, including, but not limited to:

• The analysis phase when the roles played by the system’s components in the
business it supports are defined and related to the business requirements.

• The design and implementation phases, when detailed specifications for the
system’s components are developed.

Topic Page

“Guide to the Specification” 1-1

“Conformance Issues” 1-2

“Proof of Concept” 1-3
February 2004 Enterprise Collaboration Architecture 1-1

1

• The maintenance phase, when, after implementation, the system’s structure or
behavior is modified and tuned to meet the changing business environment in which
it will work.

Chapter 3 is the Enterprise Collaboration Architecture (ECA) and contains the detailed
profile specifications for platform/ technology independent modeling elements of the
profile, specifically:

• The Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to model, at
varying and mixed levels of granularity, the structure and behavior of the
components that comprise a system.

• The Entities profile, which describes a set of UML extensions that may be used to
model entity objects that are representations of concepts in the application problem
domain and define them as composable components.

• The Events profile, which describes a set of UML extensions that may be used on
their own, or in combination with the other EDOC elements, to model event driven
systems.

• The Business Processes profile, which specializes the CCA, and describes a set of
UML extensions that may be used on their own, or in combination with the other
EDOC elements, to model workflow-style business processes in the context of the
components and entities that model the business.

1.2 Conformance Issues

1.2.1 Summary of optional versus mandatory interfaces
For a modeling tool to claim compliance to the EDOC specification it must implement
at least one of the mandatory compliance points in Section 1.2.2.1, “Mandatory
Compliance Points,” on page 1-3, and state the name of the compliance point(s). The
mandatory compliance points are all variations on the ability to model or interchange
designs using the Enterprise Component Architecture (ECA), which forms the core of
EDOC.

There are a number of other normative profiles and metamodels contained within this
specification, and these are given named optional compliance points in Section 1.2.3,
“Optional Compliance Points,” on page 1-3.
1-2 Enterprise Collaboration Architecture February 2004

1

1.2.2 Compliance Points

1.2.2.1 Mandatory Compliance Points
At least one of the following compliance points must be implemented for a tool or
model to claim compliance with the EDOC specification.

The columns in Table 1-1 are defined as follows:

MOF Repository

Any implementation of a CORBA server defined by generating and implementing the
IDL and its semantics, as defined in MOF 1.3 (formal/00-04-03), from MOF models
defined in the package “ECA” and all of its sub-packages.

MOF XMI interchange

Any implementation of a service that produces XML documents that conform to the
XMI DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the
MOF package “ECA” and all of its sub-packages.

1.2.3 Optional Compliance Points
The specification has the following optional compliance points:

CCA Notation

1.3 Proof of Concept
This specification is a practical approach to the need for specifying EDOC systems,
based on the following real world experience of the companies concerned:

1.3.1 Data Access Technologies
The CCA profile (see Chapter 3, “Section II - The Component Collaboration
Architecture”) is based on product development done by Data Access Technologies
under a cooperative agreement with the National Institute of Technologies - Advanced
Technology Program. The basis for CCA has been proven in two related works - one as
a distributed user interface toolkit for Enterprise Java Beans and more recently as the

Table 1-1 Mandatory Compliance Points
Mandatory Compliance Point
Name

MOF
Repository

MOF XMI
interchange

UML Profile UML Profile XMI
interchange

ECA MOF Repository yes no no no
ECA MOF XMI Interchange no yes no no
ECA MOF Repository and
Interchange

yes yes no no
February 2004 ECA: Proof of Concept 1-3

1

basis for “Component X Studio” that provides drag-and-drop assembly of server-side
application components. Component-X Studio is has been released as a product.
Portions of this same model have also been incorporated into ebXml for it's
specification schema, giving CCA an XML based technology mapping. Finally,
portions of CCA and the related entity model derive from standards, development and
consulting work done in relation to the "Business Object Component Architecture"
which, while never standardized has proven to be a solid foundation for modeling and
implementing a systems information viewpoint. In all cases of the above works, model
based development has been used throughout the lifecycle, from design to deployment
- proving the sufficiency of the base models to drive execution.

1.3.2 DSTC
DSTC has used its dMOF product to develop a MOF repository and Human Usable
Textual Notation I/O tools which support modeling of Business Processes conforming
to the metamodel in Chapter 3, “Section V - The Business Process Model”).
Significant Business Process models have been created using these generated tools,
and mapped using XSLT into XML workflow process definitions, which execute on
the DSTC's Breeze workflow engine. dMOF is a commercial product installed at many
customer sites world-wide, and Breeze is in development and is currently being beta-
tested by four DSTC partner organizations.

In addition the dMOF tool has been used to validate the MOF conformance of all the
meta-models in Chapter 3. XMI documents containing these meta-models will be
submitted as separate documents.

1.3.3 EDS
EDS developed the Enterprise Business Object Facility (EBOF) product in conjunction
with work on the Business Object Facility specification. This product serves as a proof
of concept for important aspects of this specification. It incorporated UML models as
the basis for generating executable, distributed, CORBA applications. This involved
consideration of transactions, persistence, management of relationships, operations on
extents, performance optimization and many other factors. This product was sold to a
major software vendor.

1.3.4 Fujitsu
This specification is based in part upon Fujitsu’s system analysis and design
methodology, “Application Architecture/Business Rule Modeling.” The methodology
is built into Fujitsu's product, “Application Architecture / Business Rule Modeler -
AA/BRMODELER,” which has been used for the development of many mission
critical business systems. Although applied mainly to the development of COBOL
applications, the methodology includes object-oriented characteristics. In this
specification, the elements of the methodology and its related product are represented
as UML elements and extensions. In the methodology, the specification of business
rules is of special concern. The business rules are separated in types and attributed to
objects corresponding to the types. These rules are represented in a formal grammar,
1-4 Enterprise Collaboration Architecture February 2004

1

and they are compiled into executable programs by using AA/BRMODELER.
AA/BRMODELER has sold approximately 5000 sets in Japan since it was developed
in 1994. It has been applied to approximately 300 projects, some of scale greater than
7,000 person-months.

1.3.5 IBM
IBM has extensive experience in enterprise architectures, Java, Enterprise Java Beans,
CORBA, UML, MOF, and metadata. The WebSphere, MQ, and VisualAge product
lines provide sophisticated analysis, design, deployment, and execution functionality
embodying all of the key representative technologies.

1.3.6 Iona
The Process Profile incorporates Iona experience modeling enterprise processes with
customers from use case descriptions, business models, and other IT system
requirements information. It is also based on experience developing process definition
and management products for environments ranging from concurrent engineering to
document processing.

1.3.7 Open-IT and SINTEF
The profile incorporates results and experience from the UML profile and associated
lexical language that was developed in the European Union funded OBOE project. As
part of this project supporting tools were developed and the technology was applied at
a user site . A full description of the project is available at [7]. (see Appendix A).

The ODP concepts have been applied for the development of the OMG Finance
domain General Ledgers specification in the COMPASS project, and a mapping
framework for Microsoft COM has been developed by Netaccount (formerly
Economica). More information on this is available at [6] (see Appendix A).

The ODP concepts have also been applied in the domain of geographic information
systems. The DISGIS project has demonstrated the usefulness of the separation of
concerns in terms of the 5 viewpoints defined by the RM-ODP, and developed an
interoperability framework based on this (See [5], Appendix A). The use of the ODP
viewpoints have also been found useful in the context of geographic information
system standardization in ISO/TC211 (See [8], Appendix A) and the Open Geodata
Consortium (See [9], Appendix A).

The enterprise specification concepts have been derived from work for the UK
Ministry of Defence and Eurocontrol together with participation in the development of
the ODP – Enterprise Language standard (See [4], Appendix A).
February 2004 ECA: Proof of Concept 1-5

1

1.3.8 Sun Microsystems
Sun Microsystems’ internal IT group has successfully implemented large scale
Enterprise Integration using a conceptual meta-model close to that defined in the
Events profile (Chapter 3, “Section IV - The Events Model”), covering business
process, entity, and event architecture. While this has not been using UML, the work
modeled the enterprise and the interaction between system components based on an
enterprise business object/event information model. Business objects and events have
been modeled in a Sun IT internal language, SDDL, a self describing data language,
the syntax of which is equivalent to the modeling framework proposed here.

This implementation is successful, and by a rough estimate 50% of Sun’s key
applications participate in event driven processes, and in total about a million event
notifications are sent among these applications every day.

1.3.9 ebXML
The ebXML Business Process Specification Schema (BPSS), which was adopted as a
specification on May 11th 2001, is aligned with and validates the Component
Collaboration Architecture (CCA). This alignment was demonstrated as part of the
ebXML “proof of concept” on the same day. This alignment validates the use of CCA
concepts to express Business-to-Business processes in a precise (executable) manner.
The United Nations and Oasis jointly sponsor EbXML.
1-6 Enterprise Collaboration Architecture February 2004

ECA: Rationale and Application 2
Contents

This chapter includes the following topics.

Topic Page

Section I - Vision

“Overview” 2-2

Section II - The ECA Elements

“The Enterprise Collaboration Architecture” 2-3

Section III - Application of the ECA Elements

“Separation of Concerns and Viewpoint Specifications” 2-6

“Enterprise Specification” 2-9

“Computational Specification” 2-10

“Information Specification” 2-14

“Engineering Specification” 2-15

“Technology Specification” 2-15

“Specification Integrity - Interviewpoint
Correspondences”

2-15
February 2004 Enterprise Collaboration Architecture 2-1

2

Section I - Vision

2.1 Overview
The vision of the Enterprise Collaboration Architecture is to simplify the development
of component based EDOC systems by means of a modeling framework and
conforming to the OMG Model Driven Architecture (see [30] in Appendix A), that
provides:

• A platform independent, recursive collaboration based modeling approach that can
be used at different levels of granularity and different degrees of coupling, for both
business and systems modeling and encompasses:
• A loosely coupled, re-usable business collaboration architecture that can be

leveraged by business-to-business (b2b) and business-to-customer (b2c)
applications, as well as for enterprise application integration.

• A business component architecture that provides interoperable business
components and services, re-use and composability of components and re-use of
designs and patterns, while being independent of choice of technology (e.g.,
component models), independent of choice of middleware (e.g., message
services) and independent of choice of paradigms (e.g., synchronous or
asynchronous interactions).

• Modeling concepts for describing clearly the business processes and associated
rules that the systems support, the application structure and use of infrastructure
services, and the breakdown of the system into configurable components.

• An architectural approach that allows the integration of “process models” and
“information models.”

• A development approach that allows two-way traceability between the
specification, implementation and operation of Enterprise computing systems and
the business functions that they are designed to support.

• Support for system evolution and the specification of collaboration between
systems.

• A notation that is accessible and coherent.

The vision addresses key business needs by enabling the development of tools that
support:

• Business collaborations as a central concern – covering alliances, outsourcing,
supply chains, and internet commerce, and dealing with relationships that are in
constant flux where what is inside the enterprise today is outside tomorrow, and
vice versa.

• Process engineering by assembling services – so that basic business functions can
remain relatively constant while who performs them and in what sequence changes,
and services themselves can become proactive.

• The ability for parts of the enterprise to react quickly and reliably to change
through:
2-2 Enterprise Collaboration Architecture February 2004

2

• Shorter development time and improved quality of applications meeting market
needs, improved interoperability between systems and support for distributed
computing.

• Reduced lead time and improved quality resulting from the ability to generate a
substantial portion of application code.

• More robust specification by removing ambiguity and enabling more rigorous
analysis of designs.

• A new marketplace for interoperable collaboration based infrastructures and
business components.

This remainder of this chapter:

• provides an overview of the ECA (Section II), and

• defines how the ECA and other specifications are applied in the specification of an
EDOC system (Section III).

Section II - The ECA Elements

2.2 The Enterprise Collaboration Architecture
The Enterprise Collaboration Architecture (ECA) comprises the following set of UML
models:

• The Component Collaboration Architecture (CCA) which details how to model, at
varying and mixed levels of granularity, the structure and behavior of the
components that comprise a system.

• The Entities model, which describes how to model entity objects that are
representations of concepts in the application problem domain and define them as
composable components.

• The Events model, which describes a set of model elements that may be used on
their own, or in combination with the other EDOC elements, to model event driven
systems.

• The Business Process model, which specializes the CCA, and describes a set of
model elements that may be used on their own, or in combination with the other
EDOC elements, to model system behavior in the context of the business it
supports.

The semantics of each model are expressed in a UML-independent MOF metamodel.

The ECA models are technology independent and are used together to define platform
independent models of EDOC systems in conformance with the MDA. In particular,
they enable the modeling of the concepts that until now have had to be specified
programmatically in terms of the use of services such as events/ notifications, support
for relationships and persistence.
February 2004 ECA: The Enterprise Collaboration Architecture 2-3

2

2.2.1 Component Collaboration Architecture
The Component Collaboration Architecture (CCA) details how to model, at varying
and mixed levels of granularity, the structure and behavior of the components that
comprise a system. It defines an architecture of recursive decomposition and assembly
of parts, which may be applied to many domains.

The term component is used here to designate a logical concept - a “part,” something
that can be incorporated in a logical composition. It is referred to in the CCA as a
Process Component. In many cases Process Components will correspond, and have a
mapping, to physical components and/or deployment units in a particular technology.

A Process Component is a processing component: it collaborates with other Process
Components within a CCA Composition, interacting with them through Ports, where
Ports are an abstraction of interfaces of various types (e.g., synchronous,
asynchronous). Process Components can be used to build other Process Components
or to implement roles in a process – such as a vendor in a buy-sell process.

Process Components collaborate at a given level of specification collaborate and are
themselves decomposed at the next lower level of specification. Thus the concepts of
Process Component and Composition are interdependent.

The recursive decomposition of Process Components utilizes two constructs in
parallel: Composition to show what Process Components must be assembled and how
they are put together to achieve the goal, and Choreography to show the flow of
activities to achieve a goal. The CCA integrates these concepts of “what” and “when”
at each level.

Since CCA, by its very nature, may be applied at many levels and the specification
requirements at these various levels are not exactly the same, the CCA can be further
specialized with models for each level using the same model mechanisms. Thus
Process Components exposed on the Internet will require features of security and
distribution, while more local Process Components will only require a way to
communicate, and there may be requirements for Process Components for specific
purposes such as business-2-business e-commerce, enterprise application integration,
distributed objects, real-time, etc.

It is specifically intended that different kinds and granularities of Process Components
at different levels will be joined by the recursive nature of the CCA. Thus Process
Components describing a worldwide B2B business process can decompose into
application level Process Components integrated across the enterprise and these can
decompose into program level Process Components within a single system. However,
this capability for recursive decomposition is not always required. Any Process
Component may be implemented directly in the technology of choice without requiring
decomposition into other Process Components.

2.2.2 Entities Model
The Entities model describes a set of model elements that may be used to model entity
objects that are representations of concepts in the application problem domain and
define them as composable components.
2-4 Enterprise Collaboration Architecture February 2004

2

The goal is to define the entities with their attributes, relationships, operations,
constraints, and dependencies at a technology-independent level as components within
a system modeled using the CCA. The component determines the unit of distribution
and interfaces that must be complemented by other components. The model includes
declarative elements for placing constraints on the model and for rules that will
propagate the effects of changes and events.

The Entities model is used with the Events and Business Process models to allow
definition of the logic of automated business processes and of events that may be
exchanged to achieve more loosely coupled integration. These three models together
support the design of an EDOC system on the foundation provided by the CCA.

The Entities model is used to define a representation of the business and operations
that effect changes in state of the business model. Business processes modeled using
the Events model and the Business Process model operate on this model where the
process flow determines when operations should occur as a result of inputs from other
systems, the occurrence of business events, or the actions of human participants.

2.2.3 Events Model
The Events model describes a set of model elements that may be used on their own, or
in combination with the other EDOC elements, to model event driven systems.

An event driven system is a system in which actions result from business events.
Whenever a business event happens anywhere in the enterprise, some person or thing,
somewhere, may react to it by taking some action. Business rules determine what event
leads to what action. Usually the action is a business activity that changes the state of
one or more business entities. Any state change to a business entity may constitute a
new business event, to which, in turn, some other person or thing, somewhere else,
may react by taking some action. The purpose of the Event Model is to define the use
of the concepts in the CCA, Entity and Event models, and to extend them in order to
support the design of event-driven business systems.

The main concepts in event driven business models are the business entity, business
event, business process, business activity, and business rule. So the basic building
blocks are the business process and the business entity. The two are ‘wired together’
by a flow of actions from process to entity, and by a flow of events from entity to
process. In a component framework, therefore, business processes have event inflow
and action outflow, and entities have action inflow and event outflow.

This means that CCA business process components and CCA business entity
components can be created by modeling:

• A business process as a set of rules of the type notification/condition/activity (This
is the event-driven equivalent of the commonly known event/condition/action rule).

• A business entity as set of operation/state/event causalities.

The connection from business process to business entity is a configurable mapping of
activity to operation.

The connection from business entity to business process is a configurable set of
subscriptions.
February 2004 ECA: The Enterprise Collaboration Architecture 2-5

2

With these building blocks it is possible to model a number of event-based
interactions. Furthermore, by reconfiguring the activity to operation mapping and/or
the subscriptions, it is possible to re-engineer the business process and its execution in
the system.

However, neither the business world, nor the computing world applies only one
paradigm to their problem space. Businesses use a combination of loosely coupled and
tightly coupled processes and computing solutions deploy a combination of loosely
coupled and tightly coupled styles of communication and interaction between
distributed components. Consequently, while the Events model is defined to support
the event-driven flavor of loosely coupled business and systems models, it allows such
models to co-habit with more tightly coupled models.

2.2.4 Business Process Model
The Business Process model specializes the CCA, and describes a set of model
elements that may be used on their own, or in combination with the other ECA
elements, to model system behavior in the context of the business it supports.

The Business Process model provides modeling concepts that allow the description of
business processes in terms of a composition of business activities, selection criteria
for the entities that carry out these activities, and their communication and
coordination. In particular, the Business Process model provides the ability to express:

• Complex dependencies between individual business tasks (i.e., logical units of
work) constituting a business process, as well as rich concurrency semantics.

• Representation of several business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks.

• Representation of iteration in business tasks.

• Various time expressions, such as duration of a task and support for expression of
deadlines.

• Support for the detection of unexpected occurrences while performing business
tasks that need to be acted upon (i.e., exceptional situations).

• Associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution.

• Initiation of specific tasks in response to the occurrence of business events.

• The exposure of actions that take place during a business process as business
events.

Section III - Application of the ECA Elements

2.3 Separation of Concerns and Viewpoint Specifications
The RFP states that:
2-6 Enterprise Collaboration Architecture February 2004

2

 “Successful implementation of an enterprise computing system requires the operation
of the system to be directly related to the business processes it supports. A good
object-oriented model for an enterprise computing system must therefore provide a
clear connection back to the business processes and business domain that are the basis
for the requirements of the system. However, this model must also be carried forward
into an effective implementation architecture for the system. This is not trivial because
of the demanding nature of the target enterprise distributed computing environment.”1

This is reflected in the vision for this ECA to provide:

• A development approach that allows two-way traceability between the
specification, implementation and operation of Enterprise computing systems and
the business functions that they are designed to support.

• In order to clearly and coherently address these requirements, the specification of an
EDOC system must be structured to address a number of distinct sets of concerns:
• The behavior of the system, in the context of the business for which it is

implemented (i.e., its roles in some enterprise that is greater than it itself), has to
be specified in a way that can be traceably linked to its design.

• The structure of the application processing carried out by the system has to be
defined in terms of configurations of objects and the interactions between them.

• The semantics of the application processing carried out by the system have to be
expressed in a way that can be traceably linked from its roles through to the
functions the system provides.

• The infrastructure of the system has to be defined in terms of the use of object
services to support the application processing structure.

• The qualitative aspects of the system (e.g., performance and reliability objectives)
have to be defined together with the hardware and software products that realize
the system. These determine the physical configuration of application processing
and supporting services across available resources, and how the system is
managed.

This is the problem addressed by the Reference Model of Open Distributed Processing
(RM-ODP) (see [1], [2], [3] Appendix A) and this specification uses as the conceptual
framework for an EDOC system specification the concept of viewpoints defined in the
RM-ODP. It partitions a system specification into five viewpoint specifications,
namely the

• enterprise specification,
• computational specification,
• information specification,
• engineering specification, and
• technology specification.

1. RFP p19 under the heading of “Enterprise Computing Systems”
February 2004 ECA: Separation of Concerns and Viewpoint Specifications 2-7

2

The set of linked specifications, taken together, ensure that the system can be
implemented and operated in such a way that its behavior will meet the business needs
of its owners, and, furthermore, that its owners will understand the constraints on their
business that operation of the system will impose.

This section explains how the concepts defined by the ECA can be used to develop a
full set of viewpoint specifications for an EDOC system and how specification
integrity across the various viewpoint specifications can be ensured. In summary
(Figure 2-1):

• The CCA, the Events model, the Entities model the Processes model and the
Relationships model from the ECA are used, with relevant Patterns, to produce an
enterprise specification (Enterprise viewpoint).

• The CCA, the Entities model and the Events model from the ECA are used, with
relevant Patterns, to produce a computational specification (Computational
viewpoint).

• The Entities model and Relationships model from the ECA are used, with relevant
Patterns, to produce an information specification (Information viewpoint).

• A technology abstraction model such as the Flow Composition Model (FCM), with
relevant Patterns, is used to produce an engineering specification (Engineering
viewpoint).

• The mappings to various technologies, in particular, to J2EE with EJB, to CORBA
3 with CCM and to MS DNA/.NET with DCOM, are used to produce technology
specifications (Technology viewpoint).

Figure 2-1 ECA elements related to the ISO RM ODP viewpoints

Such a specification structure is valid for all phases of a software system’s lifecycle,
including, but not limited to the:

E n terp rise v iew p oin t
(C C A , P rocesses, E n tities, R e la tionsh ips, E vents)

E n terp rise v iew p oin t
(C C A , P rocesses, E n tities, R e la tionsh ips, E vents)

In form ation v iew p oin t
(E ntities, R e la tionsh ips) (C C A , E n tities, E vents)

C om p u tation a l v iew p oin tIn form ation v iew p oin t
(E ntities, R e la tionsh ips) (C C A , E n tities, E vents)

C om p u tation a l v iew p oin t

T ech n ology v iew p oint
(U M L fo r J2E E /E JB /JM S, C O R B A 3 /C C M , C O M , SO A P, ebX M L)

T ech n ology v iew p oint
(U M L fo r J2E E /E JB /JM S, C O R B A 3 /C C M , C O M , SO A P, ebX M L)

P a rt I:T echn o logy
S pec ific M ode ls
P a rt I:T echn o logy
S pec ific M ode ls

P a rt II:
E C A to
tech nolog y
m ap pings

P a rt II:
E C A to
tech nolog y
m ap pings

P a rt I: E C A

(T echnology abstrac tion : FC M)
E n gin eerin g v iew p oin t

(T echnology abstrac tion : FC M)
E n gin eerin g v iew p oin t

P art I: P a tterns - app lied to a ll v iew poin ts
2-8 Enterprise Collaboration Architecture February 2004

2

• Analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements.

• Design and implementation phases, when detailed specifications for the system’s
components are developed.

• Maintenance phase, when, after implementation, the system’s behavior is modified
and tuned to meet the changing business environment in which it will work.

The overall structure of the ECA in the context of the ISO RM-ODP viewpoints is
illustrated in Figure 2-1.

2.4 Enterprise Specification

2.4.1 Concepts
The enterprise specification of an EDOCsystem provides the essential traceability
between the system design and the business processes and the business domain that are
the basis for the requirement for the system.

The basis of the enterprise specification is provided by the concepts of the ODP
enterprise language (modeled using the ECA elements). These concepts are defined in
Appendix A - [4].

An enterprise specification models the structure and behavior of the system in the
context of the business organization of which it forms a part in the following terms:

• the business processes supported by the system,

• steps in those processes and relationships between steps,

• business rules (policies) that apply to the steps,

• artifacts acted on by each step,

• enterprise objects representing the business entities involved,

• the roles that they fulfil in supporting the business processes, and

• the relationships between roles (including interaction relationships) where roles
identify responsibility for steps in the business processes.

An EDOC system or each component of that system is modeled as an enterprise object
and is assigned a role or roles in the community: hence, it is associated with specific
parts of one or more processes. These roles identify the parts of the business processes
for which the system is responsible and the artifacts that are involved. Such artifacts
and resources represent the information held and acted upon by the system.

The central concept of any enterprise specification is that of a community that models
a collection of entities interacting to achieve some purpose, which is defined by the
objective of the community concerned. Each community is modeled as a configuration
of enterprise objects in roles. The EDOC system of concern (or the components of that
system) is modeled as one or more of the enterprise objects that are the members of the
community.
February 2004 ECA: Enterprise Specification 2-9

2

The behavior of the members of the community is identified by the roles they fulfill,
and is defined in terms of a set of actions, each of which may also be modeled as a
step of one or more processes. Each process is designed to achieve the objective of the
community.

Depending upon what it models, an enterprise object may be further refined as a
community in a process of recursive decomposition.

Policies (business rules) may be associated with any other enterprise language concept
and may be expressed in the form of constraints on any concept, or relationship
between two concepts.

2.4.2 EDOC Enterprise Submodel
The EDOC enterprise specification makes use of the CCA for the role-based definition
of the enterprise structure, where:

• Communities are modeled as Composed Components with associated Composition
and Choreography definitions.

• Enterprise objects are modeled as ProcessComponents.

• The interactions in which enterprise objects can participate are defined by Ports and
the associated Protocols.

It makes use of the Processes model for the process-based definition of the enterprise
structure.

It makes use of the Event model for the definition of event driven enterprise structures.

It makes use of the Entities model for the definition of entities and rules. Artifacts,
performers and responsible parties, which are the subject of the interactions, are
modeled as entities.

It makes use of the Relationships model for rigorous specification of relationships.

2.5 Computational Specification

2.5.1 Concepts
The computational specification describes the implementation of the EDOC system (or
components that comprise that system) in order to carry out the processing required by
the system roles in the enterprise specification. It does this in terms of functional
decomposition of the system into computational objects that interact at interfaces, and
thereby enables distribution. It defines:

• Computational objects that play some functional role in the system and which can
be described in terms of provided interfaces and used interfaces: a set of
computational objects will correspond to the implementation of roles of the system
in enterprise processes, and associated enterprise events and business rules.
2-10 Enterprise Collaboration Architecture February 2004

2

• The interfaces at which the computational objects interact: this includes different
types of interfaces and also describes data involved in computational interactions
corresponding to the information objects in the information specification.

• The collaboration structures among a set of computational objects.

The computational viewpoint is closely related to the enterprise viewpoint in that the
computational objects represent a functional mapping of enterprise concepts like
business processes, rules, events etc. where these relate to the roles of the system in the
enterprise specification. Ways of ensuring consistency (conformance/reference points)
between enterprise and computational specifications should be supported (consistency
statements for corresponding conformance/reference points in the two viewpoint
specifications).

The EDOC computational specification concepts are based on the RM-ODP Part 3
Clause 7 (see Appendix A [3]).

2.5.2 EDOC Computational Specifications
An EDOC computational specification makes use of the CCA for the basic definition
of the computational structure, where:

• Computational objects are modeled as ProcessComponents.

• The interfaces at which computational objects interact are modeled by Ports.

• Collaboration structures among a set of computational objects are modeled by
Compositions with associated Choreographies.

It makes use of the Entities Model for the definition of entity components, where entity
components correspond to entities in the information specification.

It makes use of the Events Model for the definition of event driven computational
structures.

2.5.3 Levels of ProcessComponent in a Computational Specification
An EDOC computational specification can specify ProcessComponents at a number of
different levels. These levels correspond to four general categories of
ProcessComponent:

• E-Business Components

• Application Components

• Distributed Components

• Program Components
February 2004 ECA: Computational Specification 2-11

2

2.5.3.1 E-Business Components
E-Business Components are used as the integration point between enterprises,
enterprises and customers or somewhat independent parts of a large enterprise (such as
an acquired division). Interfaces to E-Business Components will frequently be directly
accessible on the Internet as part of a web portal.

The E-Business Component has the potential to spawn new forms of business and new
ways for business to work together.

E-Business Components integrate business entities that may share no common
computing management or infrastructure. Interactions between E-Business
components must be very loosely coupled and are always asynchronous. No
assumptions of shared resources may be made between the parties, and the internals of
the E-Business components will frequently be changed without informing other parties.

2.5.3.2 Application Components
Application Components represent new and legacy applications within an enterprise.
Application Components are used to integrate applications (EAI) and create new
applications, frequently to facilitate E-Business Components.

Application Components represent large-grain functional units. Each Application
Component may be implemented in different technologies for different parts of the
enterprise. Integrating Application Components facilitates enterprise-wide business
processes and efficiencies.

Individual Application Components may be individually managed, but the integration
falls under common management that may impose standards for interoperability and
security.

Application Components use a wide variety of integration techniques including
messaging, events, Internet exchanges and object or procedural RPC. Application
Components are frequently wrapped legacy systems.

2.5.3.3 Distributed Components
Distributed Components are functional parts of distributed applications. These
components are generally integrated within a common middleware infrastructure such
as EJB, CORBA Components or DCOM. Distributed components have well defined
interfaces and share common services and resources within an application.

Distributed Components provide for world-wide applications that can use a variety of
technologies. Most distributed component interactions are synchronous.

2.5.3.4 Program Components
Program Components act within a single process to facilitate a program or larger grain
component. Program Components may be technical in nature – such as a query
component, or business focused – such as a “customer” component. These
components will integrate under a common technology – such as J2EE.
2-12 Enterprise Collaboration Architecture February 2004

2

Program Components provide the capability for drag-and-drop assembly of
applications from fine-grain parts.

Note that some Program Components will provide access to the “outside world”, such
as CORBA or XML thus making a set of Program Components into a larger grain
component.

The destination between Program Components and all others is quite important as
these are the only components that do not use some kind of distributed technology –
they are only used and visible within the context of “a program.”

2.5.3.5 Relationships between ProcessComponent Levels

Relationships between ProcessComponent levels

Figure 2-3 shows how configurations of ProcessComponents at one level may use and
be composed of ProcessComponents at lower levels. It also shows that at any level
ProcessComponents may be primitive, that is – directly implemented without being a
Composition. ProcessComponents may re-use and compose ProcessComponents at
lower levels or the same level.

Figure 2-3 ProcessComponent Composition at multiple levels

There is no requirement or expectation that an EDOC computational specification must
use all of these levels. For example, an E-Business Component could be directly
composed of Program Components or it could use every levels.

E-business Components

Application Components

Distributed Components

Program Components
February 2004 ECA: Computational Specification 2-13

2

2.6 Information Specification

2.6.1 Concepts
The information specification defines the semantics of information and information
processing involved in the parts of the business processes carried out by the EDOC
system (or by components that comprise that system). The information specification
concepts are taken from the RM-ODP Part 3 Clause 6 (see Appendix A [3]).

The information specification is expressed in terms of

• a configuration of information objects (static schema),

• the behavior of those information objects (dynamic schema), and

• the constraints that apply to either of the above (invariant schema).

The information objects identified correspond to enterprise objects in the enterprise
specification for which information is held and processed by the system.

The structure of the information objects and the relationships between them are defined
in terms of static (structural) configurations of information objects. This includes the
structure of individual information objects and the structure comprising a set of related
information objects.

The behavior of the interrelated information objects is defined in terms of state
changes that can occur and relate to the effects of the process steps in the enterprise
specification.

The constraints relate to the business rules that apply to the process steps in the
enterprise specification and define predicates on the information objects that must
always be true.

2.6.2 EDOC Information Specifications
An EDOC information specification makes use of the Entities model and the
Relationships model for the basic definition of the information structure, where:

• information objects are modeled as Entities and Relationships;

• constraints are defined in terms of enumerated states, relationship properties, and
invariants from UML.

It makes use of the Choreography from the CCA for the definition of behavior of
Entities in terms of changes of EntityState.

It makes use of the Relationships model for rigorous specification of relationships.
2-14 Enterprise Collaboration Architecture February 2004

2

2.7 Engineering Specification

2.7.1 Concepts
The engineering specification defines the distribution transparency requirements and
the services required to provide these transparencies in support of the processing
specified by the computational specification. In addition, the engineering specification
describes the means by which distribution is provided. The engineering specification
concepts are taken from the RM-ODP Part 3 Clause 8 (see Appendix A [3]).

The engineering specification is derived from the computational specification by
applying a technology mapping. The technology mapping incorporates standard
interface and naming protocols to define consistent interface types and specifications.

The engineering specification will also incorporate additional design decisions. One of
the key aspects of the engineering specification is the strategy for distributed
computing, governing such issues as:

• which objects are network accessible and which are not: objects that are not
network accessible must be co-located with objects with which they have
relationships or from which they receive messages;

• the scope of transactions and the use of asynchronous messaging;

• which elements are persistent and how they are mapped to a persistent data store.

The engineering specification provides the basis for code generation. Currently, the
ECA elements along with current UML design facilities can provide specifications for
code to implement the objects, their interfaces, code to assure model integrity and
methods to support certain services and protocols. Humans will still be required to
program the business logic of methods and processes.

2.7.2 EDOC Engineering Specifications
These are defined by mapping from the computational specification to a technology
abstraction model such as FCM. Examples of such mappings are given in Section II.

2.8 Technology Specification
The technology specification is concerned with the choice and deployment of software
and hardware products for implementing the system and with the associated mappings
from technology abstraction models such as FCM to the corresponding technologies
(e.g. J2EE with EJB, Flow Composition Model (FCM), CORBA 3 with CCM and MS
DNA/.Net with DCOM).

2.9 Specification Integrity - Interviewpoint Correspondences
This section identifies relationships that are required to exist between viewpoint
specifications and are expressed through relationships between elements in different
viewpoint specifications.
February 2004 ECA: Engineering Specification 2-15

2

2.9.1 Computational-Enterprise Interrelationships
A Process in the computational specification is related one or more sets of Activities in
one or more Processes in the enterprise specification, where performance of those
Activities is the responsibility of the EDOC system. It may also be related to Business
Rules that apply to those Activities.

An Entity in the computational specification is related to a Entity referenced (as an
artifact) in at least one Activity in a Process in the enterprise specification, where the
Activity is the responsibility of the EDOC system.

A BusinessNotification in the computational specification is related to a
BusinessNotification associated with an Activity in a Process in the enterprise
specification, where the Activity is the responsibility of the EDOC system.

A Rule in the computational specification is related to a Rule that applies to Activities
in one or more Processes in the enterprise specification, where the Activities are the
responsibility of the EDOC system.

2.9.2 Computational-Information Interrelationships
A Entity in the computational specification is related to an entity or a configuration of
Entities in a static schema in the information specification.

A Process in the computational specification is related to a Choreography in the
information description and can be related also to an invariant schema.

A BusinessNotification in the computational specification is related to a Choreography
in the information description.

A Rule in the computational specification is related to an invariant schema in the
information specification.

2.9.3 Computational-Engineering Interrelationships
These depend upon the specific technology mappings that are applied.

2.9.4 Engineering-Technology Interrelationships
These depend upon the specific technology mappings that are applied.
2-16 Enterprise Collaboration Architecture February 2004

The Enterprise Collaboration
Architecture Model 3
Contents

This chapter includes the following topics.

Topic Page

Section I - ECA Design Rationale 3-1

“Key Design Features” 3-2

“ECA Elements” 3-7

Section II - The Component Collaboration
Architecture

3-9

“Rationale” 3-8

“CCA Metamodel” 3-17

“CCA Notation” 3-57

“Diagramming CCA” 3-61

Section III - The Entities Model 3-146

“Introduction” 3-74

“Entity Viewpoints” 3-82

“Entity Metamodel” 3-83

Section IV - The Events Model 3-177

“Rationale” 3-94

“Metamodel” 3-106

“Relationship to other ECA Models” 3-121
February 2004 Enterprise Collaboation Architecture 3-1

3

Section I - ECA Design Rationale
This chapter describes the Enterprise Collaboration Architecture (ECA) – a model-
driven architecture approach for specifying Enterprise Distributed Object Computing
systems.

3.1 Key Design Features
Five key design features of the ECA address the EDOC vision:

• Recursive component composition;

• Support for event-driven systems;

• Process specification;

• Integration of process and information models;

• Technology independence, allowing implementation of a design using different
technologies.

3.1.1 Recursive Component Composition
Business processes are by their very nature collaborations – a set of people,
departments, divisions or companies, working together to achieve some purpose or set
of purposes.

Such a collaboration can be viewed as a “composition” with the people, departments
etc. as “components” of that composition having “roles” that represent how each
component is to behave within the composition (note that the same component may
have different roles in the same or different compositions, just as a person, department
etc. may have many roles with respect to many processes).

“Relationship Other Paradigms” 3-123

“Example” 3-124

Section V - The Business Process Model 3-218

“Introduction” 3-126

“Metamodel” 3-126

“Notation for Activity and ProcessRole” 3-150

“Process Model Patterns” 3-152

“Full Model” 3-161

Topic Page
3-2 Enterprise Collaboation Architecture February 2004

3

This dynamic of component and composition is fundamental, the concept of
component only makes sense with respect to some specific kind of composition and
the concept of composition only makes sense when there can be components to
compose it.

When a high-level business process is considered, such as buying and selling, there are
roles within this buy-sell process for the buyer and seller. In some cases there may be
other roles, such as banks, freight forwarders and brokers. Each of these is defined as
a component within the high-level process (e.g., it is a component of the “buy-sell”
process) playing some role.

Besides identifying the roles it is necessary to identify how each of the components
must interact with the other components for the process to unfold. Thus, for each kind
of interaction that exists between roles there is a protocol for that interaction defined
by the information that flows and the timing of that flow, for example the interaction of
the seller with a freight forwarder is completely different from the interaction with the
buyer. This leads to the next important concept – that of interactions. Interactions are
well defined protocols between roles within some composition. Each interaction point
on a component is called a “port,” which is the point of interaction of roles.

Finally, reflecting what is seen in the world, it is necessary to allow “drill down” from
one level of granularity to another. When you place an order on the web you see a
single face (the web portal) playing a single role (the seller). This simplified view
represents the seller’s role in the buy-sell process (you represent the other role). Inside
of the seller, when it is opened up, you see order processing, credit, warehousing,
shipping – all of the roles it takes to get you your order. This more fine-grain process
represents the way a particular component has been configured to play the role of the
seller, another seller may involve other choices.

Adding this concept of drill-down takes us from “flat” component composition to
recursive component composition – the ability to define components as compositions
of finer grain components.

Thus, components are defined in terms of sub-components playing roles and
interacting through ports. At the highest level, processes are self-contained, the entire
community of roles is identified. When you “open up” one of the components you
may find a “primitive” component, one defined in terms of pre-established constructs
such as may be found in Java or the UML Action language. The other thing you may
find is another composition. What looks like an atomic component at one level may
reveal a complex lattice of sub-components when “opened up.”

A recursive component architecture can be used “top down”, by defining new
processes in terms of higher level compositions. It can also be used “bottom up” by
assembling existing components into new compositions – making new components.
As new basic capabilities are required they can either by defined from existing
components or new primitive components can be supplied, so there is no “brick wall”
when some fundamental capability you need was not anticipated.

In such a recursive component architecture there is a clear separation between the
“inside” of a component and its “outside.” The outside of a component exposes a set of
named ports, each with a defined interaction that connects it with a compatible port in
another component. These ports specify what information flows between the
February 2004 ECA: Key Design Features 3-3

3

compatible components and under what conditions the information flows. The outside
of a component is not concerned with the internal composition or process of the
component.

One other aspect of component technology is that of configurability. Components may
be very general in nature, which promotes reuse. These very general components must
be configured when used in a specific role. This may be seen in the property panels of
bean-boxes or COM components. The ability to configure a component is essential to
making it general and reusable. Configuration points for process components are
“properties” and “Contextual Bindings”.

To summarize the points:

• The concepts of component and composition are fundamentally tied.

• Components may be primitive or compositions of sub-components.

• Each component can play roles within other compositions.

• Components interact with each other, within composite processes, through ports.

• Component composition is recursive, allowing decomposition and assembly.

The advantages of this approach are:

• A single simple paradigm describes large grain and fine grain process components.

• Components are reusable across many compositions.

• New components may be defined as collaborations of existing components.

• New fundamental capabilities may defined as primitive components.

• The collaborative and recursive nature of processes may be directly represented.

3.1.2 Process Specification
The Business Process model specializes the CCA, and describes a set of model
elements that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports.

The model provides modeling concepts that allow the description of business processes
in terms of a composition of business activities, selection criteria for the entities that
carry out these activities, and their communication and coordination. In particular, the
Business Process model provides the ability to express:

• Complex dependencies between individual business tasks (i.e., logical units of
work) constituting a business process, as well as rich concurrency semantics.

• Representation of several business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks.

• Representation of iteration in business tasks.

• Various time expressions, such as duration of a task and support for expression of
deadlines.
3-4 Enterprise Collaboation Architecture February 2004

3

• Support for the detection of unexpected occurrences while performing business
tasks that need to be acted upon, (i.e., exceptional situations).

• Associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution.

• Initiation of specific tasks in response to the occurrence of business events.

• The exposure of actions that take place during a business process as business
events.

The modeling of processes in the ECA model addresses an RFP requirement, but, more
importantly, processes are important elements in the representation of interactions
between components, systems and enterprises. Processes are the mechanisms of
collaborations. Processes define the roles of the participants and artifacts involved in
collaborations. Processes also define the manner in which events can drive the
operation of the enterprise. Consequently, it is essential that the ECA model include a
representation of processes that enables a modeler to define a framework for the
operation of an enterprise.

The modeling of processes in the ECA model reflects the OMG Workflow
Management Facility model. A process contains activities, which perform the actions
of the process. The activities may invoke other processes, and they may employ
resources. The Workflow Management Facility resource interface represents the
participation of that resource, i.e., a role in the ECA context. The resource/role
captures the state and supports the interaction between the activity and a potentially
wide variety of resources.

The ECA model goes slightly beyond the Workflow Management Facility
specification. First, it extends the resource concept by defining performers and artifacts
(active and passive participants). Second, it adds the ability to attach pre and post
conditions to activities. These are concepts that are consistent with workflow
management concepts and provide basic flow control mechanisms. These were not
addressed in the Workflow Management Facility specification because it focused
primarily on interoperability between workflow management systems.

The ECA model does not attempt to define a representation of the action semantics of
processes, nor does it define the relationship of processes to organizations or
applications. These are left to other RFPs to be addressed by specialists in these areas.

3.1.3 Specification of Event Driven Systems
Event driven computing is becoming the preferred distributed computing paradigm in
many enterprises and in many collaborations between enterprises. Event driven
computing combines two kinds of loosely coupled architectures.

The first one is loosely coupled, distributed components that communicate with each
other through asynchronous messaging.

The other one is loosely coupled business process execution. Here enterprises
collaborate under an overall long term contract, but do not execute their day to day
interaction in traditional workflow, or request/response style interaction.
February 2004 ECA: Key Design Features 3-5

3

In event driven computing the most important aspect of a process is the events that
happen during its execution, and the most important part of the component-to-
component communication is the notification of such events from the party that made
them happen to all the parties that need to react to them.

In ECA we support both the definition of loosely coupled business processes, as well
as the loosely coupled communication between distributed components.

Neither the world, nor the computing world, however, apply only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes, and computing solutions deploy a combination of loosely coupled and
tightly coupled styles of communication and interaction between distributed
components.

An ECA process can be defined as event driven for some of its steps and workflow or
request/response driven for others. ECA distributed components can be configured to
communicate with each other in a mixture of event-driven publish-and-subscribe,
asynchronous peer-to-peer, and client-server remote invocation styles.

The essential elements of the purely event driven approach are:

• Business Process objects are configured with a set of Business Rule parameters that
determine what Business Events trigger actions, and what the action should be.

• Business Process objects operate on Business Entity objects that represent people,
products, and other business resources and artifacts.

• When actions are performed on Business Entity objects, Business Events happen.

• All Business Entity objects are capable of notifying the world of events that happen
to them.

• All Business Process objects are capable of subscribing to such events and
interpreting them throughout their set of business rules.

3.1.4 Integration of Process and Information Models
IT systems are specified with entity and process models, where entity models describe
the things (entities, attributes, relationships, invariants) in the IT system and process
models specify the processes, sub-processes, activities, resources, roles, and rules of IT
system behavior.

Information modeling tools, such as those based on the UML metamodel, are used to
specify entity models. Process definition tools, such as those provided by BPR and
workflow vendors, are used to specify process models. As these entity model and
process model tools are based on different metamodels, the integration of their models
into the IT system specification is a problem.

IT system designers and developers typically work round the problem by looking at
one model, then the other, and then do their own composition for that moment (perhaps
influenced by memories of other compositions). One result of this is that the normative
entity and process models when composed, by each individual at multiple moments in
time, become non-normative individual interpretations of the IT system specification.
3-6 Enterprise Collaboation Architecture February 2004

3

Also of concern is the impact of model changes to the composition – evolution of
process and entity models is reasonably certain, especially during IT system
development projects.

With this metamodel UML, workflow, and BPR vendors can provide new tools that
combine entity-orientated and process-orientated modeling techniques to produce
integrated IT system models.

3.1.5 Rigorous Relationship Specification

3.1.6 Mappings to Technology - Platform Independence
Viewpoint abstractions in the context of model-based development provide
mechanisms for specifying platform independent models of business applications.

Such platform independence is an important element in systems that can adapt to
change and, hence, is a fundamental element of the EDOC vision (). The rate of
change of today’s enterprises and their requirements generates demands for flexible
and dynamic systems that are capable of coping with the ever changing business
requirements and with changes in software and hardware technologies.

Figure 3-1 EDOC framework vision

3.2 ECA Elements
The Enterprise Collaboration Architecture (ECA) comprises a set of five models. Each
model consists of a set of model elements that represent concepts needed to model
specific aspects of EDOC systems and address specific aspects of the key design
features. The concepts are described in terms of Models. Each model is also expressed
as a UML Profile in a separate document - “UML Profile for ECA.”

Platform specific

CORBA
(CORBA
Services)

Enterprise
JavaBeans
(Java RM I

servlets)
DCOM ActiveX

etc

DCOM ActiveX
etc

CORBA
Components

Flow
Composition

M odel

CORBA
(CORBA
Services)

Enterprise
JavaBeans
(Java RM I

servlets)
DCOM ActiveX

etc

DCOM ActiveX
etcDCOM ActiveX

etc

DCOM ActiveX
etc

CORBA
Components

Flow
Composition

M odel

ECA Framework
(UML with extensions)

Platform
indepentent

ECA Framework
(UML with extensions)

Platform
indepentent
February 2004 ECA: ECA Elements 3-7

3

These models are defined in the remainder of this chapter:

• Component Collaboration Architecture (CCA) - details how to model at varying and
mixed levels of granularity, the structure and behavior of the components that
comprise a system – See Section II.

• Entities model - describes a metamodel that may be used to model entity objects
that are representations of concepts in the application problem domain and define
them as composable components – See Section III.

• Events model - describes a set of model elements that may be used on their own, or
in combination with the other EDOC elements, to model event driven systems – See
Section IV.

• Business Process model - specializes the CCA and describes a set of model
elements that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports – See
Section V.

The ECA models are technology independent and are used together to define platform
independent models of EDOC systems in conformance with the MDA. In particular,
they enable the modeling of the concepts that until now have had to be specified
programmatically in terms of the use of services such as events/ notification, support
for relationships and persistence.

Section II - The Component Collaboration Architecture
The Component Collaboration Architecture (CCA) details how to model, at varying
and mixed levels of granularity, the structure and behavior of the components that
comprise a system.

3.3 Rationale

3.3.1 Problems to be Solved
The information system has become the backbone of the modern enterprise. Within
the enterprise, business processes are instrumented with applications, workflow
systems, web portals, and productivity tools that are necessary for the business to
function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system
keeps pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such a way that they are not well understood,
do not integrate and are fragile. The result is that the business may become dependent
on an information infrastructure that cannot evolve at the pace required to support
business goals.
3-8 Enterprise Collaboation Architecture February 2004

3

The way in which to design, build, integrate, and maintain information systems that are
flexible, reusable, resilient, and scalable is now becoming well understood but not well
supported. The CCA is one of a number of the elements required to address these
needs by supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

3.3.1.1 Recursive decomposition and assembly
Information systems are, by their very nature, complex. The only viable way to
manage and isolate this complexity is to decompose these systems into simpler parts
that work together in well-defined ways and may evolve independently over time.
These parts can than be separately managed and understood. We must also avoid re-
inventing parts that have already been produced, by reusing knowledge and
functionality whenever practical.

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down,” revealing the underlying parts.
However, systems will also be assembled from existing or bought-in parts – building
up from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and
“bottom up” assembly of existing parts. Bringing together top-down specification and
bottom-up assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of parts in
implementation is repeated at many levels. The composition of parts at one level is the
part at the next level up. In today’s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure – such as operating systems,
communications, DBMS systems, and desktop tools.

Having a rigorous and consistent way to understand and deal with this hierarchy of
parts and compositions, how they work and interact at each level and how one level
relates to the next, is absolutely necessary for achieve the business goals of a flexible
and scalable information systems.

3.3.1.2 Traceability
The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the
development process at the beginning of a project may be general and “fuzzy”
requirements that, as the project progresses, become precisely defined either in terms
of formal requirements or the parts of the resulting system. Requirements at various
stages of the project result in designs, implementations, and running systems (at least
when everything goes well!). Since parts evolve over time at multiple levels and at
differing rates it can become almost impossible to keep track of what happened and
why.

Old approaches to this problem required locking-down each level of the process in a
“waterfall.” Such approaches would work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
February 2004 ECA: Rationale 3-9

3

reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the
parts of the system and the artifacts of the development process be traceable both in
terms of cause-effect and of changes over time. Moreover, this traceability must take
into account the fact that changes happen at different rates with different parts of the
system, further complicating the relationships among them. The tools and techniques
of the development process must maintain and support this traceability.

3.3.1.3 Automating the development process
In the early days of any complex and specialized new technology, there are “gurus”
able to cope with it. However, as a technology progresses the ways to use it for
common needs becomes better understood and better supported. Eventually those
things that required the gurus can be done by “normal people” or at least as part of
repeatable “factory” processes. As the technology progresses, the gurus are needed to
solve new and harder problems – but not those already solved.

Software technology is undergoing this evolution. The initial advances in automated
software production came from compilers and languages, leading to DBMS systems,
spreadsheets, word processors, workflow systems and a host of other tools. The end-
user today is able to accomplish some things that would have challenged the gurus of
30 years ago.

This evolution in automation has not gone far enough. It is still common to re-invent
infrastructures, techniques, and capabilities every time a new application is produced.
This is not only expensive, it makes the resulting solutions very specialized, and hard
to integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns, and technology bindings so that application developers can focus on
application problems. In this way the ability to automate is coupled with the ability to
define abstract viewpoints of a system – some of which may be constant across the
entire system.

The challenge today is to take the advances in high-level modeling, design, and
specification and use them to produce factory-like automation of enterprise systems.
We can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise
scale systems. Automating the development process at this level will embrace two
central concepts; reusable parts, and model-based development. It will allow tools to
apply pre-established implementation patterns to known modeling patterns. CCA
defines one such modeling pattern.

3.3.1.4 Loose coupling
Systems that are constructed from parts and must survive over time, and survive reuse
in multiple environments, present some special requirements. The way in which the
parts interact must be precisely understood so that they can work together, yet they
3-10 Enterprise Collaboation Architecture February 2004

3

must also be loosely coupled so that each may evolve independently. These seemingly
contradictory goals depend on being able to describe what is important about how parts
interact while specifically not coupling that description to things that will change or
how the parts carry out their responsibility.

Software parts interact within the context of some agreement or contract – there must
be some common basis for communication. The richer the basis of communication the
richer the potential for interaction and collaboration. The technology of interaction is
generally taken care of by communications and middleware while the semantics of
interaction are better described by UML and the CCA.

So while the contract for interaction is required, factors such as implementation,
location and technology should be separately specified. This allows the contract of
interaction to survive the inevitable changes in requirements, technologies, and
systems.

Loose coupling is necessarily achieved by the capability of the systems to provide “late
binding” of interactions to implementation.

3.3.1.5 Technology Independence
A factor in loose coupling is technology independence (i.e., the ability to separate the
high-level design of a part or a composition of parts from the technology choices that
realize it). Since technology is so transient and variations so prevalent it is common for
the same “logical” part to use different technologies over time and interact with
different technologies at the same time. Thus a key ingredient is the separation high-
level design from the technology that implements it. This separation is also key to the
goal of automated development.

3.3.1.6 Enabling a business component Marketplace
The demand to rapidly deploy and evolve large scale applications on the internet has
made brute force methods of producing applications a threat to the enterprise. Only by
being able to provision solutions quickly and integrate those solutions with existing
legacy applications can the enterprise hope to achieve new business initiatives in the
timeframe required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These
include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB & .net. What has not emerged is the way to bring these technologies together into
a coherent enterprise solution and component marketplace.

Our vision is one of a simple drag and drop environment for the assembly of
enterprise components that is integrated with and leverages a component
marketplace. This will make buying and using a software component as natural as
buying a battery for a flashlight.
February 2004 ECA: Rationale 3-11

3

3.3.1.7 Simplicity
A solution that encompasses all the other requirements but is too complex will not be
used. Thus our final requirement is one of simplicity. A CCA model must make sense
without too much theory or special knowledge, and must be tractable for those who
understand the domain, rather than the technology. It must support the construction of
simple tools and techniques that assist the developer by providing a simple yet
powerful paradigm. Simplicity needs to be defined in terms of the problem – how
simply can the paradigm solve my business problems. Simplistic infrastructure and
tools that make it hard to solve real problems are not viable.

3.3.2 Concepts
At the outset it should be made clear that we are dealing with a logical concept of
component - “part,” something that can be incorporated in a logical composition. It is
referred to in the CCA as a ProcessComponent. In some cases ProcessComponents will
correspond and have a mapping to physical components and/or deployment units in a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA
be further specialized, using the same mechanisms, for specific purposes such as
Business-2-Business, e-commerce, enterprise application integration (EAI), distributed
objects, real-time, etc.

It is specifically intended that different kinds and granularities of ProcessComponents
at different levels will be joined by the recursive nature of the CCA. Thus
ProcessComponents describing a worldwide B2B business process can decompose into
application level ProcessComponents integrated across the enterprise that can
decompose into program level ProcessComponents within a single system. However,
this capability for recursive decomposition is not always required. Any
ProcessComponent’s part may be implemented directly in the technology of choice
without requiring decomposition into other ProcessComponents.

The CCA describes how ProcessComponents at a given level of specification
collaborate and how they are decomposed at the next lower level of specification.
Since the specification requirements at these various levels are not exactly the same,
the CCA is further specialized with models for each level. For example,
ProcessComponents exposed on the Internet will require features of security and
distribution, while more local ProcessComponents will only require a way to
communicate.

The recursive decomposition of ProcessComponents utilizes two constructs in parallel:
composition to show what ProcessComponents must be assembled and how they are
put together to achieve the goal, and choreography to show the coordination of
activities to achieve a goal. The CCA integrates these concepts of “what” and “when”
at each level.

Concepts from the Object Oriented Role Analysis Method (OORAM) and Real-time
Object Oriented Modeling (ROOM) have been adapted and incorporated into CCA.
3-12 Enterprise Collaboation Architecture February 2004

3

3.3.2.1 What is a Component Anyway?
There are many kinds of components – software and otherwise. A component is
simply something capable of composing into a composition – or part of an assembly.
There are very different kinds of compositions and very different kinds of components.
For every kind of component there must be a corresponding kind of composition for it
to assemble into. Therefore any kind of component should be qualified as to the type
of composition. CCA does not claim to be “the” component model, it is “a” component
model with a corresponding composition model.

CCA ProcessComponents are processing components, ones that collaborate with other
CCA ProcessComponents within a CCA composition. CCA ProcessComponents can
be used to build other CCA ProcessComponents or to implement roles in a process –
such as a vendor in a buy-sell process. The CCA concepts of component and
composition are interdependent.

There are other forms of software and design components, including UML
components, EJBs, COM components, CORBA components, etc. CCA
ProcessComponents and composition are orthogonal to these concepts. A technology
component, such as an EJB may be the implementation platform for a CCA
ProcessComponent.

Some forms of components and compositions allow components to be built from other
components, this is a recursive component architecture. CCA is such a recursive
component architecture.

3.3.2.2 ProcessComponent Libraries
While the CCA describes the mechanisms of composition it does not provide a
complete ProcessComponent library. ProcessComponent libraries may be defined and
extended for various domains. A ProcessComponent library is essential for CCA to
become useful without having to re-invent basic concepts.

3.3.2.3 Execution & Technology profiles
The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with
a specific infrastructure, executable primitive ProcessComponents, and a technology
profile, it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be
realized by a given technology set. For example, a technology profile for Java may
enable Java components to be composed and execute using dynamic execution and/or
code generation. A technology profile for CORBA may describe how CORBA
components can be composed to create new CORBA components and systems. In
RM-ODP terms, the technology profile represents the engineering and technology
specifications.

Some technology profiles may require additional information in the specification to
execute as desired; this is generally done using tagged values in the specification and
options in the mapping. The way in which technology specific choices are combined
February 2004 ECA: Rationale 3-13

3

with a CCA specification is outside of the scope of the CCA, but within the scope of
the technology profile. For example, a Java mapping may provide a way to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated
development of executable systems from high-level specifications.

3.3.2.4 Specification Vs. Methodology
The CCA provides a way to specify a system in terms of a hierarchical structure of
Communities of ProcessComponents and Entities that, when combined with
specifications prepared using technology profiles, is sufficiently complete to execute.
Thus the CCA specification is the end-result of the analysis and design process. The
CCA does not specify the method by which this specification is achieved. Different
situations may require different methods. For example; a project involving the
integration of existing legacy systems will require a different method than one
involving the creation of a new real-time system – but both may share certain kinds of
specification.

3.3.2.5 Notation
The CCA defines some new notations to simplify the presentation of designs for the
user. These new notations are optional in that standard UML notation may be used
(the UML Profile for ECA) when such is preferred or CCA specific tooling is not
available. The CCA notation can be used to achieve greater simplicity and economy of
expression.

3.3.3 Conceptual Framework

Figure 3-2 Structure and dependencies of the CCA Metamodel

Document Model
(from CcaProfile)

Component Specification
(from CcaProfile)

Composition
(from CcaProfile)

Model
Management

(from CcaProfile)

Choreography
(from CcaProfile)
3-14 Enterprise Collaboation Architecture February 2004

3

3.3.3.1 ProcessComponent Specification
In keeping with the concept of encapsulation, the external “contract” of a CCA
component is separate from how that component is realized. The contract specifies the
“outside” of the component. Inside of a component is its realization – how it satisfies
its contract. The outside of the component is the component specification. A
component with only a specification is abstract, it is just the “outside” with no
“inside.”

3.3.3.2 Protocols and Choreography
Part of a component’s specification is the set of protocols it implements. A protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages – when they can be sent
and received. Each protocol the component supports is provided via a “port,” the
connection point between components.

Protocols, ports, and choreography comprise the contract on the outside of the
component. Protocols are also used for large-grain interactions, such as for B2B
components.

The protocol specifies the conversation between two components (via their ports).
Each component that is using that protocol must use it from the perspective of the
“initiating role” or the “responding role.” Each of these components will use every port
in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow
port “B” that responds to a message. Component “Y” which responds to protocol “X”
will also receive “A” and initiate “B.” But, Component “Z” which initiates protocol
“X” will also initiate message “A” and respond to message “B” – thus initiating a
protocol will “invert” the directions of all ports in the protocol.

3.3.3.3 Primitive and Composed Components
Components may be abstract (having only an outside) or concrete (having an inside
and outside). Frequently a concrete component inherits its external contract from an
abstract component – implementing that component.

There may be any number of implementations for a ProcessComponent and various
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• primitive components – those that are built with programming languages or by
wrapping legacy systems.

• Composed Components – Components that are built from other components; these
use other components to implement the new components functionality. Composed
components are defined using a composition.
February 2004 ECA: Rationale 3-15

3

3.3.3.4 Composition
Compositions define how components are used. Inside of a composition components
are used, configured, and connected. This connected set of component usages
implements the behavior of the composition in terms of these other components –
which may be primitive, composed, or abstract components.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together
for some purpose. Components used in a community process represent the roles of
that process.

Central to compositions are the connections between components, values for
configuration properties, and the ability to bind concrete components to a component
usage.

3.3.3.5 Document & Information Model
The information that flows between components is described in a Document Model,
the structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted
on by CCA ProcessComponents (see the Entities model, Section III, below).

3.3.3.6 Model Management
To help organize the elements of a CCA model a “package” structure is used exactly
as it is used in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol, or component may also be nested within these, since they also act as
packages.
3-16 Enterprise Collaboation Architecture February 2004

3

3.4 CCA Metamodel

Figure 3-3 CCA Major Elements

Figure 3-3 is a combined model of the major elements of the CCA component
specification defined below.
February 2004 ECA: CCA Metamodel 3-17

3

3.4.1 Structural Specification
The structural specification represents the physical structure of the component contract
defining the component and its ports.

Figure 3-4 Structural Specification Metamodel

A ProcessComponent represents the contract for a component that performs actions –
it “does something.” A ProcessComponent may define a set of Ports for interaction
with other ProcessComponents. The ProcessComponent defines the external contract
of the component in terms of ports and a Choreography of port activities (sending or
receiving messages or initiating sub-protocols). At a high level of abstraction a
ProcessComponent can represent a business partner, other ProcessComponents
represent business activities or finer-grain capabilities.

The contract of the ProcessComponent is realized via ports. A port defines a point of
interaction between ProcessComponents. The simpler form of port is the FlowPort,
which may produce or consume a single data type. More complex interactions
between components use a ProtocolPort, which refers to a Protocol, a complete
3-18 Enterprise Collaboation Architecture February 2004

3

“conversation” between components. Protocols may also use other protocols as sub-
protocols. Protocols, like ProcessComponents, are defined in terms of the set of ports
they realize and the choreography of interactions across those ports.

ProcessComponents may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is
used.

The behavior of a ProcessComponent may be further specified by its composition, the
composition shows how other components are used to define and implement the
composite component. The specification of the ProcessComponent and protocol may
include Choreography to sequence the actions of multiple ports and their associated
actions. The actions of each port may be Choreographed. Composition and
Choreography are defined in their own sections.

A ProcessComponent may have a supertype (derived from Choreography). One
common use of supertype is to place abstract ProcessComponents within compositions
and then produce separate realizations of those components as subtype composite or
primitive components, which can then be substituted for the abstract components when
the composition is used, or even at runtime.

An Interface represents a standard object interface. It may contain OperationPorts,
representing call-return semantics, and FlowPorts – representing one-way operations.

A MultiPort is a grouping of ports whose actions are tied together. Information must
be available on all sub-ports of the MultiPort for any action to occur within an attached
component.

An OperationPort defines a port that realizes a typical request/response operation and
allows ProcessComponents to represent both document oriented (FlowPort) and
method oriented (OperationPort) subsystems.

3.4.1.1 ProcessComponent

Semantics

A ProcessComponent represents an active processing unit – it does something. A
ProcessComponent may realize a set of Ports for interaction with other
ProcessComponents and it may be configured with properties.

Each ProcessComponent defines a set of ports for interaction with other
ProcessComponents and has a set of properties that are used to configure the
ProcessComponent when it is used.

The order in which actions of the Process Component’s ports do something may be
specified using Choreography. The choreography of a ProcessComponent specifies the
external temporal contact of the ProcessComponent (when it will do what) based on
the actions of its ports and the ports in protocols of its ports.

Fully Scoped name

ECA::CCA::ProcessComponent
February 2004 ECA: CCA Metamodel 3-19

3

Owned by

Package

Extends

Composition (indicating that the ProcessComponent may be composed of other
ProcessComponents and that its ports may be choreographed).

Package (Indicating that a ProcessComponent may own the specification of other
elements).

UsageContext (Indicating that the ProcessComponent may be the context for
PortUsages representing the activities of its ports).

Properties

Granularity
A GranularityKind that defines the scope in which the component operates. The values
may be:

• Program – the component is local to a program instance (default).

• Owned – the component is visible outside of the scope of a particular program but
dedicated to a particular task or session that controls its life cycle.

• Shared – the component is generally visible to external entities via some kind of
distributed infrastructure.

Specializations of CCA may define additional granularity values.

isPersistent
Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

primitiveKind
Components implementation includes additional implementation semantics defined
elsewhere, perhaps in an action language or programming language. f the component
has an implementation specification primitiveKind specifies the implementation
specific type, normally the name of a programming language. If primitive kind is
blank, the composition is the full specification of the components implantation – the
component is not primitive.

primitiveSpec
If primitiveKind has a value, primitiveSpec identifies the location of the
implementation. The syntax of primitiveKind is implementation specific.
3-20 Enterprise Collaboation Architecture February 2004

3

Related elements

Ports (via “PortOwner”)
“Ports” is the set of Ports on the ProcessComponent. Each port provides a connection
point for interaction with other components or services and realizes a specific protocol.
The protocol may be simple and use a “FlowPort” or the protocol may be complex and
use a “ProtocolPort” or an “OperationPort.” If allowed by its protocol, a port may send
and receive information.

Supertype (zero or one) , Subtypes (any number)
A ProcessComponent may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a
ProcessComponent. A subtype component is bound by the contract of its supertypes
but it may add elements, override property values, and restrict referenced types.

A component may be substituted by a subtype of that component.

Properties (Any number)
To make a component capable of being reused in a variety of conditions it is necessary
to be able to define and set properties of that component. Properties represents the list
of properties defined for this component.

Constraints

A process component may only inherit from another process component.

3.4.1.2 Port

Semantics

A port realizes a simple or complex conversation for a ProcessComponent or protocol.
All interactions with a ProcessComponent are done via one of its ports.

When a component is instantiated, each of its ports is instantiated as well, providing a
well-defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

Fully Scoped name

ECA::CCA::Port

Owned by

ProcessComponent or Protocol via PortOwner
February 2004 ECA: CCA Metamodel 3-21

3

Extends

None

Properties

isTransactional
Indicates that interactions with the component are transactional & atomic (in most
implementations this will require that a transaction be started on receipt of a message).
Non-transactional components either maintain no state or must execute within a
transactional component. The mechanisms for management of transactions are defined
outside of the scope of CCA.

isSynchronous
A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

name
The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realizes.

Direction
Indicates that the port will either initiate or respond to the related type. An initiating
port will send the first message. Note that by using ProtocolPorts a port may be the
initiator of some protocols and the responder to others. The values of DirectionKind
may be:

• Initiates – this port will initiate the conversation by sending the first message..
• Responds – this port will respond to the initial message and (potentially)

continue the conversation.

PostCondition
The status of the conversation indicated by the use of this port. This status may be
queried in the postCondition of a transition.

Related elements

“Owner” ProcessComponent or Protocol (Exactly One via PortOwner)
A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

Constraints

None
3-22 Enterprise Collaboation Architecture February 2004

3

3.4.1.3 FlowPort

Semantics

A Flow Port is a port that defines a data flow in or out of the port on behalf of the
owning component or protocol.

Fully Scoped name

ECA::CCA::FlowPort

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

type
The type of data element that may flow into or out of the port.

TypeProperty
The type of information sent or received by this port as determined by a configurable
property. The expression must return a valid type name. This is used to build generic
components that may have the type of their ports configured. If type and typeProperty
are both set, then the property expression must return the name of a subtype of type.

Constraints

None

3.4.1.4 ProtocolPort

Semantics

A protocol port is a port that defines the use of a protocol A protocol port is used for
potentially complex two-way interactions between components, such as is common in
B2B protocols. Since a protocol has two “roles” (the initiator and responder), the
direction is used to determine which role the protocol port is taking on.
February 2004 ECA: CCA Metamodel 3-23

3

Fully Scoped name

ECA::CCA::ProtocolPort

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

uses
The protocol to use, which becomes the specification of this port’s behavior.

Constraints

None

3.4.1.5 OperationPort

Semantics

An operation port represents the typical call/return pattern of an operation. The
OperationPort is a PortOwner that is constrained to contain only flow ports, exactly
one of which must have its direction set to “initiates.” The other “responds” ports will
be the return values of the operation.

Note1: The type of the “initiates” flow port will be the signature of the operation.
Each attribute of the type will be one parameter of the operation.

Note2: Owned flow ports of postCondition==Success and direction==”responds” will
be a return value for the operation. All other flow ports where direction==”responds”
will correspond to an exception.

Fully Scoped name

ECA::CCA::OperationPort

Owned by

PortOwner (Protocol or ProcessComponent)
3-24 Enterprise Collaboation Architecture February 2004

3

Extends

Port and PortOwner

Properties

None

Related elements

Ports (Via PortOwner)
The flow ports representing the call and returns.

Constraints

As a PortOwner, the OperationPort:

• May only contain FlowPorts.

• Must contain exactly one flow port with direction set to “responds.”

• Must contain exactly one flow port with direction set to “initiates” (the call).

3.4.1.6 MultiPort

Semantics

A MultiPort combines a set of ports which are behaviorally related. Each port owned
by the MultiPort will “buffer” information sent to that port until all the ports within the
MultiPort have received data, at this time all the ports will send their data.

Fully Scoped name

ECA::CCA::MultiPort

Owned by

PortOwner

Extends

Port & PortOwner

Properties

None

Related elements

Ports (Via PortOwner)
The flow ports owned by the MultiPort.
February 2004 ECA: CCA Metamodel 3-25

3

Constraints

Owned ports will not forward data until all sub-ports have received data.

3.4.1.7 Protocol

Semantics

A protocol defines a type of conversation between two parties, the initiator and
responder. One protocol role is the initiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual messages and
sub-protocols may by initiated by either party. The ports of a protocol are specified
with respect to the responder.

Within the protocol are sub-ports. Each port contained by a protocol defines a sub-
action of that protocol until, ultimately, everything is defined in terms of FlowPorts.

A Protocol is also a choreography, indicating that activities of its ports (and,
potentially their sub-ports) may be sequenced using an activity graph.

A protocol must be used by two ProtocolPorts to become active.

The protocol specifies the conversation between two ProcessComponents (via their
ports). Each component that is using that protocol must use it from the perspective of
the “initiating role” or the “responding role.” Each of these components will use every
port in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow
port “B” that responds to a message. Component “Y,” which responds to protocol “X”
will also receive “A” and initiate “B.” But, Component “Z,” which initiates protocol
“X” will initiate message “A” and respond to message “B” – thus initiating a protocol
will “invert” the directions of all ports in the protocol.

Fully Scoped name

ECA::CCA::Protocol

Owned by

Package

Extends

Choreography – Indicating that the contract of the protocol includes a sequencing of
the port activities.

Package – Indicating that the protocol may contain the specification of other model
elements (Most probably other protocols or documents).

Properties

None
3-26 Enterprise Collaboation Architecture February 2004

3

Related elements

Ports (Via PortOwner)
The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” FlowPort and a “return” FlowPort.

Constraints

None

3.4.1.8 Interface

Semantics

An interface is a protocol constrained to match the capabilities of the typical object
interface. It is constrained to only contain OperationPorts and FlowPorts and all of its
ports must respond to the interaction (making interfaces one-way).

Each OperationPort or FlowPort in the Interface will map to a method. A ProtocolPort
that initiates the Interface will call the interface. A ProtocolPort that Responds will
implement the interface.

Fully Scoped name

ECA::CCA::Interface

Owned by

Package

Extends

Protocol

Properties

None

Related elements

Ports (Via Protocol & PortOwner)
The ports that define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” flowport and a “return” port.

Initiator (Via Protocol)
The role that calls the interface. Note that this is optional, in which case the initiating
role name will be “Initiator” roles.
February 2004 ECA: CCA Metamodel 3-27

3

Responder (Via Protocol)
The role that implements the interface. Note that this is optional, in which case the
responding role name will be “Responder.”

Constraints

The Ports related by the “Ports” association must

• be of type OperationPort or FlowPort

• have direction == ”responds.”

3.4.1.9 PropertyDefinition

Semantics

To allow for greater flexibility and reuse, ProcessComponents may have properties that
may be set when the ProcessComponent is used. A PropertyDefinition defines that
such a property exists, its name, and type.

Fully Scoped name

ECA::CCA::PropertyDefinition

Owned by

ProcessComponent

Extends

None

Properties

name
Name of the property being modeled.

initial
An expression indicating the initial & default value.

isLocked
The property may not be changed.

Related elements

component
The owning component.
3-28 Enterprise Collaboation Architecture February 2004

3

type
The type of the property.

Constraints

If the “constrains” relation contains any links, the PropertyValue must contain the fully
qualified name of a DataElement.

3.4.1.10 PortOwner

Semantics

An abstract meta-class used to group the meta-classes that may own ports: Process
component, Protocol, OperationPort, and MultiPort.

Fully Scoped name

ECA::CCA::PortOwner

Owned by

None

Extends

None

Related elements

ports
The owned ports

Constraints

None
February 2004 ECA: CCA Metamodel 3-29

3

3.4.2 Choreography

Figure 3-5 Choreography Metamodel
3-30 Enterprise Collaboation Architecture February 2004

3

A Choreography specifies how messages will flow between PortUsages. The
choreography may be externally oriented, specifying the contract a component will
have with other components or, it may be internally oriented, specifying the flow of
messages within a composition. External chirographies are shown as an activity graph
while internal choreography is shown as part of a collaboration. An external
choreography may be defined for a protocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Initial, interim, and terminating states are known as a “PseudoState” as defined in
UML. CCA adds the pseudo states for success and failure end-states.

Ordering is controlled by connections between nodes (state and port usage being a
kind of node). Transitions specify flow of control that will occur if the conditions
(Precondition) are met. Transitions between port activities specify what should happen
(contractually), while Connections between PortConnections specify what will happen
at runtime.

3.4.2.1 Choreography

Semantics

An abstract class inherited by protocol and ProcessComponent that owns nodes and
AbstractTransitions. A choreography specifies the ordering of port activities.

Fully Scoped name

ECA::CCA::Choreography

Owned by

None

Extends

None

Properties

None

Related elements

Nodes
The states and port usages to be choreographed.

PortActivity ::SubmachineState
February 2004 ECA: CCA Metamodel 3-31

3

AbstractTransitions
The connections and transitions between nodes.

Supertype (zero or one), Subtypes (any number)
A ProcessComponent, protocol, or CommunityProcess may inherit specification
elements (ports, properties & states (from Choreography) from a supertype. That
supertype must also be a ProcessComponent. A subtype component is bound by the
contract of its supertypes but it may add elements, override property values, and
restrict referenced types.

A component may be substituted by a subtype.

Constraints: The subtype-supertype relation may only exist between elements of the
same meta-type. A ProcessComponent may only inherit from another
ProcessComponent. A Protocol may only inherit from another Protocol and a
CommunityProcess may only inherit from another CommunityProcess.

3.4.2.2 Node

Semantics

Node is an abstract element that specifies something that can be the source and/or
target of a connection or transition and thus ordered within the choreographed process.
The nodes that do “real work” are PortUsages.

Fully Scoped name

ECA::CCA::Node

Owned by

Choreography

Extends

None

Properties

name

Related elements

Choreography
The owning protocol or ProcessComponent.

Incoming
Transitions that cause this node to become active.
3-32 Enterprise Collaboation Architecture February 2004

3

outgoing
Nodes that may become active after this node completes.

Constraints

None

3.4.2.3 AbstractTransition

Semantics

The flow of data and/or control between two nodes.

Fully Scoped name

ECA::CCA::AbstractTransition

Owned by

Choreography

Extends

None

Properties

None

Related elements

Choreography
The owning choreography.

Source
The node which is transferring control and/or data.

Target
The node to which data and/or control will be transferred.

Constraints

The source and target nodes associated with the AbstractTransition must be owned by
the same choreography as the AbstractTransition.
February 2004 ECA: CCA Metamodel 3-33

3

3.4.2.4 Transition

Semantics

The contractual specification that the related nodes will activate based on the ordering
imposed by the set of transitions between nodes. Transitions, which declare a contract
may be differentiated from Connections that realize a contract.

Fully Scoped name

ECA::CCA::Transition

Owned by

Choreography

Extends

AbstractTransition

Properties

preCondition
A constraint on the transition such that it may only fire if the prior PortUsage
terminated with the referenced condition.

Related elements

Choreography (Via AbstractTransition)
The owning choreography.

Source
The node that is transferring control and/or data.

Target
The node to which data and/or control will be transferred.

Constraints

A transition may not connect PortConnectors.

3.4.2.5 PortUsage

Semantics

The usage of a port as part of a choreography.
3-34 Enterprise Collaboation Architecture February 2004

3

Fully Scoped name

ECA::CCA::PortUsage

Owned by

Choreography

Extends

Node & Usage Context

Properties

None

Related elements

extent
The component, component usage, or PortUsage to which the PortUsage is attached.

If the extent is a ComponentUsage, the PortUsage must be a PortConnector for a port
of the underlying ProcessComponent. This allows Connections between components
being used within a composition.

If the extent is a PortUsage the PortUsage must represent a ProtocolPort that owns the
represented usage. This allows the choreography of nested ports.

If the extent is a ProcessComponent the usage represents a port on the
ProcessComponent and that ProcessComponent must be the composition owning both
the port and the port usage. This allows Connections and transitions to be connected to
the external ports of a component.

Represents
The port that the PortUsage uses.

Constraints

None

3.4.2.6 UsageContext

Semantics

When a port is used within a choreography it must be used within some context.
UsageContext represents an abstract supertype of all elements that may be the context
of a port. These are:

• ProcessComponent – as the owner of port activities and port connectors.

• ComponentUsage – as the owner of port connectors, representing the use of each of the
component’s ports.
February 2004 ECA: CCA Metamodel 3-35

3

• PortUsages – representing ports nested via protocols.

Fully Scoped name

ECA::CCA::UsageContext

Owned by

None

Extends

None

Properties

None

Related elements

PortsUsed
Provides context for port usage

Constraints

None

3.4.2.7 PortActivity

Semantics

Port activity is state, part of the “contract” of a ProcessComponent or protocol,
specifying the activation of a port such the ordering of port activities can be
choreographed with transitions. A PortActivity (used with transitions) defines the
contract of the component while a PortConnector (used with Connections) specifies the
realization of a component’s actions in terms of other components.

Fully Scoped name

ECA::CCA::PortActivity

Owned by

Protocol or ProcessComponent via Choreography

Extends

PortUsage
3-36 Enterprise Collaboation Architecture February 2004

3

Properties

None

Related elements

None

Constraints

Port Activities may only be connected using transitions.

3.4.2.8 PseudoState

Semantics

PseudoState specifies starting, ending, or intermediate states in the choreography of the
contract of a protocol or ProcessComponent.

Fully Scoped name

ECA::CCA::PseudoState

Owned by

Choreography

Extends

Node

Properties

Kind ; PseudostateKind
choice - Splits an incoming transition into several disjoint outgoing transitions. Each
outgoing transition has a guard condition that is evaluated after prior actions on the
incoming path have been completed. At least one outgoing transition must be enabled
or the model is ill-formed.

fork - Splits an incoming transition into several concurrent outgoing transitions. All
the transitions fire together.

initial - The default target of a transition to the enclosing composite state.

join - Merges transitions from concurrent regions into a single outgoing transition.
Join PseudoState will proceed after all its incoming Transitions have triggered.

success - The end-state indicating that the choreography ended in success.

failure - The end-state indicating that the choreography ended in failure.
February 2004 ECA: CCA Metamodel 3-37

3

Related elements

None

Constraints

PseudoStates may only be connected using transitions.

3.4.3 Composition
Composition is an abstract capability that is used for ProcessComponents and for
community processes. Compositions shows how a set of components can be used to
define and perhaps to implement a process.
3-38 Enterprise Collaboation Architecture February 2004

3

Figure 3-6 Composition metamodel

A composition contains ComponentUsages to show how other ProcessComponents
may be used to define the composite. Note that the same ProcessComponent may be
used multiple times for different purposes. Each time a ProcessComponent is used,
February 2004 ECA: CCA Metamodel 3-39

3

each of its ports will also be used with a “PortConnector.” A port connector shows
the connection point for each use of that component within the composition, including
the ports on the component being defined.

Attached to a ProcessComponent usage are PropertyValues, configuring the
ProcessComponent with properties that have been defined in property definitions.

A composition also contains a set of “Connections.” A connection joins compatible
ports on ProcessComponents together to define a flow of data. The other side will
receive anything sent out of one side. So a Connection is a form of logical event
registration (one-way registration for a flow port or Operation port, two-way
registration for a ProtocolPort).

A Contextual Binding allows realized ProcessComponents to be substituted for
abstract ProcessComponents when a composition is used.

Compositions may be ProcessComponents or CommunityProcesses.
CommunityProcess defines a top-level process in terms of the roles played by process
components representing actors in the process.

3.4.3.1 Composition

Semantics

Composition is an abstract class for CommunityProcesses or ProcessComponents.
Compositions describe how instances of ProcessComponents (called
ComponentUsages) are configured (with PropertyValues and ContextualBindings) and
connected (with Connections) to implement the composed ProcessComponent or
CommunityProcess.

Fully Scoped name

ECA::CCA::Composition

Owned by

None

Extends

Choreography

Properties

None

Related elements

bindings
ContextualBindings defined within the context of the composition.
3-40 Enterprise Collaboation Architecture February 2004

3

uses
ComponentUsages defined within the context of the composition.

Connection (via choreography and AbstractTransition)
The flow of data and control between port connectors.

PortConnector (via Choreography and nodes)
The port instances to be connected by Connections.

Constraints

None

3.4.3.2 ComponentUsage

Semantics

A composition uses other ProcessComponents to define the process of the composition
(a community process or ProcessComponent), “ComponentUsage” represents such a
use of a component. The “uses” relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as a template of ProcessComponent instances.
Each component instance will have a “ComponentUsage” to say what kind of
ProcessComponent it is, what its property values are, and how it is connected to other
ProcessComponents. A ComponentUsage will cause a ProcessComponent instance to
be created at runtime (this instantiation may be real or virtual).

Each use of a ProcessComponent will carry with it a set of “portConnectors,” which
will be the connection points to other ProcessComponents.

Fully Scoped name

ECA::CCA::ComponentUsage

Owned by

Composition

Extends

UsageContext

Properties

Name
The name of the activity for which the component is being used.
February 2004 ECA: CCA Metamodel 3-41

3

Related elements

owner
The owning composition

Uses
The type of ProcessComponent to use.

PortsUsed (Via UsageContext)
PortConnectors for each port on the used component.

Constraints

None

3.4.3.3 PortConnector

Semantics

The PortConnector provides a “connection point” for ComponentUsages within a
composition and exposes the defined ports within the composition. The connections
between PortConnectors are made with Connections.

PortConnections are “implied” by other model elements and will normally be created
by design tools. PortConnections should be created as follows:

• For each ComponentUsage there will be exactly one PortUsage for each port
defined for the ProcessComponent being used.

• For each port on the ProcessComponent being defined there will be exactly one
PortUsage to support Connections to and from “outside” ports.

• For each port within a protocol, OperationPort or MultiPort created for one of the
above two reasons, a PortConnector may be created for each contained port. This
allows Connections to be connected to finer grain elements, such as Connections
within a protocol.

In summary, the “ProcessComponent” / “Port” pattern that defines the components
external interface is essentially replicated in the “ComponentUsage” / “portConnector”
part of the composition. Each time a component is used, each of its ports is used as
well. Sub-ports of protocols also become PortConnectors.

Fully Scoped name

ECA::CCA::PortConnector

Owned by

Composition
3-42 Enterprise Collaboation Architecture February 2004

3

Extends

PortUsage

Properties

None

Related elements

Represents (via PortUsage)
The port of which this is a port.

Contexts (via PortUsage)
The associated owner of the port.

Incoming and Outgoing Connections (Via PortUsage and Node)
The Connections.

Constraints

PortConnectors are intended to be connected with Connections, Transitions may not be
connected to a PortConnector

3.4.3.4 Connection

Semantics

A Connection connects two PortConnectors within a composition. Each port can
produce and/or consume message events. The connection logically registers each port
connector as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages,
it doesn’t not know “who” will be on the other side. The composition shows how a
ProcessComponent will be used within a context and thus how it will be connected to
other components within that context. A Connection connects exactly two
PortConnectors.

Connections may be distinguished from transitions in that Connections specify what
events will flow between ProcessComponents while transitions specify the contract of
port ordering.

Fully Scoped name

ECA::CCA::Connection

Owned by

Composition
February 2004 ECA: CCA Metamodel 3-43

3

Extends

AbstractTransition

Properties

None

Related elements

Source and Target PortConnectors (Via PortUsage, Node & AbstractTransition)
The PortConnectors between which the Connection is being defined.

Constraints

• The source and target nodes of a Connection must be PortConnectors.

• The source and target nodes must be port connectors owned by the same
composition as the Connection.

3.4.3.5 PropertyValue

Semantics

To be useful in a variety of conditions, a ProcessComponent may have configuration
properties, which are defined by a PropertyDefinition. When the component is used in
a ComponentUsage those properties values may be set using a PropertyValue. These
values will be used to construct or configure a component instance.

A PropertyValue should be included whenever the default property value is not correct
in the given context.

Fully Scoped name

ECA::CCA::PropertyValue

Owned by

ComponentUsage

Extends

None

Properties

value
An expression for the value of the property.
3-44 Enterprise Collaboation Architecture February 2004

3

Related elements

Owner
The component usage being configured with a value.

Fills
The property being modified.

Constraints

“fills” must relate to a property definition of the ProcessComponent that the owner
uses.

The type returned by the PropertyValue expression must be compatible with the type
defined by the PropertyDefinition.

3.4.3.6 ContextualBinding

Semantics

A composition is able to use abstract ProcessComponents in compositions – we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “Pricing” component may use an abstract component
“PriceFormula.” In our “InternationalSales” composition we may want to say that
“PriceFormula” uses “InternationalPricing.”

Contextual Binding allows the substitution of a more concrete ProcessComponent for a
compatible abstract ProcessComponent when an abstract composed ProcessComponent
is used. So within the composition that uses the abstract component (International
Sales) we say the use of a particular Component (use of PriceFormula) will be bound
to a concrete component (InternationalPricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these are
out of scope for CCA. Some specializations of CCA may subtype ContextualBinding
and apply selection formula to the binding, as is common in workflow systems.

An abstract composition may also be thought of as a pattern, with contextual binding
being the parameter substitution.

Fully Scoped name

ECA::CCA::ContextualBinding

Owned by

Composition
February 2004 ECA: CCA Metamodel 3-45

3

Extends

None

Properties

None

Related elements

owner
The composition that is using the abstract composed component and wants to bind a
more specific ProcessComponent for an abstract one. The owner of the
ContextualBinding.

fills
The ComponentUsage that should have the ProcessComponent it uses replaced. This
component usage does not have to be within the same composition as the contextual
binding, it may be anywhere the component usage occurs visible from the scope of the
composition owning the binding.

bindsTo
The concrete component that will be bound to the component usage.

Constraints

The ProcessComponent related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills.”

3.4.3.7 CommunityProcess

Semantics

Community processes may be thought of as the “top level composition” in a CCA
specification. It is a specification of a composition of ProcessComponents that work
together for some purpose other than specifying another ProcessComponent.

Components within a community process represent roles that components may play
within the process. These roles are later bound to particular components realizing
processes.

One kind of CommunityProcess would be a business process, in which case the nested
components represent business partner roles in that process. For example, a community
process could define the usage of a buyer, a seller, a freight forwarder and two banks
for a sale and delivery process.

Note that designs can be done “top down” or as an assembly of existing
ProcessComponents (bottom up). When design is being done top down, it is usually
the CommunityProcess that comes first and then ProcessComponents specified to fill
the roles of that process.
3-46 Enterprise Collaboation Architecture February 2004

3

CommunityProcesses are also useful for standards bodies to specify the roles and
interactions of a B2B process.

Fully Scoped name

ECA::CCA::CommunityProcess

Owned by

Package

Extends

Composition and Package

Properties

None

Related elements

None

Constraints

None

3.4.4 Document Model
The document model defines the information that can be transferred between and
manipulated by ProcessComponents. It also forms the base for information in entities.
February 2004 ECA: CCA Metamodel 3-47

3

Figure 3-7 Document Metamodel

A data element represents a type of data that may either be primitive DataTypes or
composite. CompositeData has named attributes that reference other types. Any type
may have a DataInvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked
as required and/or many to indicate cardinality. DataTypes define local data – these
types are defined outside of CCA. ExternalDocument defines a document defined in
an external type system. An enumeration defines a type with a fixed set of values.

3.4.4.1 DataElement

Semantics

DataElement is the abstract supertype of all data types. It defines some kind of
information.

Fully Scoped name

ECA::DocumentModel::DataElement
3-48 Enterprise Collaboation Architecture February 2004

3

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

constraints
Constraints applied to the values of this data type.

Constraints

None

3.4.4.2 DataType

Semantics

A primitive data type, such as an integer, string, picture, movie.

Primitive data types may have their structure and semantics defined outside of CCA.
The following data types are defined for all specializations of CCA: String, Integer,
Float, Decimal, Boolean.

Fully Scoped name

ECA::DocumentModel::DataType

Owned by

Package

Extends

DataElement

Properties

None

Related elements

None
February 2004 ECA: CCA Metamodel 3-49

3

Constraints

None

3.4.4.3 Enumeration

Semantics

An enumeration defines a type that may have a fixed set of values.

Fully Scoped name

ECA::Documentmodel::Enumeration

Owned by

Package

Extends

DataElement

Properties

None

Related elements

Values
The set of values the enumeration may have.

Initial
The initial, or default, value of the enumeration.

Constraints

None

3.4.4.4 EnumerationValue

Semantics

A possible value of an enumeration.

Fully Scoped name

ECA::DOCUMENTMODEL::EnumerationValue
3-50 Enterprise Collaboation Architecture February 2004

3

Owned by

Enumeration

Extends

None

Properties

name

Related elements

Enumeration
The owning enumeration.

Constraints

None

3.4.4.5 CompositeData

Semantics

A datatype composed of other types in the form of attributes.

Fully Scoped name

ECA::DocumentModel::CompositreData

Owned by

Package

Extend

DataElements

Properties

None

Related elements

Feature
The attributes that form the composite.
February 2004 ECA: CCA Metamodel 3-51

3

Supertype
A type from which this type is specialized. The composite will include all attributes of
all supertypes as attributes of itself.

Subtypes
The types derived from this type.

Constraints

3.4.4.6 Attribute

Semantics

Defines one “slot” of a composite type that may be filled by a data element of “type.”

Fully Scoped name

ECA::DOCUMENTMODEL::Attribute

Owned by

CompositeData

Extends

None

Properties

isByValue
Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

required
Indicates that the attribute slot must have a value for the composite to be valid.

many
Indicates that there may be multiple occurrences of values. These values are always
ordered.

initialValue
An expression returning the initial value of the attribute.
3-52 Enterprise Collaboation Architecture February 2004

3

Related elements

type
The type of information that the attribute may hold. Type instances may also be filled
by a subtype.

owner
The composite of which this is an attribute.

Constraints

None

3.4.4.7 DataInvariant

Semantics

A constraint on the legal values of a data element.

Fully Scoped name

ECA::DOCUMENTMODEL::DataInvarient

Owned by

DataElement

Extends

None

Properties

Expression
The expression that must return true for the data element to be valid.

isOnCommit (Default: False)
True indicates that the constraint only applies to a fully formed data element, not to
one under construction.

Related elements

ConstrainedElement
The data element that will be constrained.
February 2004 ECA: CCA Metamodel 3-53

3

3.4.4.8 ExternalDocument

Semantics

A large, self contained document defined in an external type systems such as XML,
Cobol, or Java that may or may not map to the ECA document model.

Fully Scoped name

ECA::DOCUMENTMODEL::ExternalDocument

Owned by

Package

Extends

DataElement

Properties

All properties are tagged values.

MimeType
The type of the document specified as a string compatible with the “mime”
declarations.

SpecURL
A reference to an external document definition compatible with the mimeType, such as
a DTD or Schema. If the MimeType does not define a specification form (e.g., GIF),
then this attribute will be blank.

ExternalName
The name of the document within the SpecURL. For example, an element name within
a DTD. If the MimeType does not define a specification form (e.g., GIF) or the
specification form only specifies one document, then this attribute will be blank.

Related elements

None

Constraints

None

3.4.5 Model Management
Model management defines how CCA models are structured and organized.
3-54 Enterprise Collaboation Architecture February 2004

3

Figure 3-8 Model Management Metamodel

A package defines a logical hierarchy of reusable model elements. Elements that may
be defined in a package are PackageContent and may be ProcessComponents,
Protocols, DataElements, CommunityProcesses, and other packages. An
ImportedElement defines a “shortcut” visibility of a package content in a package
that is not its owner. Shortcuts are useful to organize reusable elements from different
perspectives.

Note that ProcessComponents are also packages, allowing elements that are specific to
that component to be defined within the scope of that component.
February 2004 ECA: CCA Metamodel 3-55

3

3.4.5.1 Package

Semantics

Defines a structural container for “top level” model elements that may be referenced
by name for other model elements.

Fully Scoped name

ECA::ModelManagement::Package

Owned by

Package or model (global scope)

Extends

PackageContent

Properties

None

Related elements

OwnedElements
The model elements within the package and visible from outside of the package.

Constraints

None

3.4.5.2 PackageContent

Semantics

An abstract capability that represents an element that may be placed in a package and
thus referenced by name from any other element.

Fully Scoped name

ECA::ModelManagement::

Owned by

Package

Extends

None
3-56 Enterprise Collaboation Architecture February 2004

3

Properties

name

Related elements

namespace

Constraints

3.4.5.3 ElementImport

Semantics

Defines an “Alias” for one element within another package.

Fully Scoped name

ECA::ModelManagement::ElementImport

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

ModelElement
The element to be imported.

Constraints

None

3.5 CCA Notation
CCA uses UML notation with a few extensions and conventions to make diagrams
more readable and compact for CCA aware tools. The UML mapping given in The
UML Profile for ECA specification shows how CCA is expressed in the UML
Metamodel, which has standard notation. Unless stated otherwise, all other UML
elements use the base UML 1.4 notation. The following are additions to this base UML
1.4 notation.
February 2004 ECA: CCA Notation 3-57

3

3.5.1 CCA Specification Notation
A ProcessComponent is based on the notation for a subsystem with extensions for
ports and properties. Consider the following diagram template for ProcessComponent
notation.

Figure 3-9 ProcessComponent specification notation

Figure 3-10 ProcessComponent specification notation (expanded ProtocolPorts)

• A ProcessComponent represents its external contract as a subsystems with the
following addition:
• The ProcessComponent type may be represented as an icon in the component

name compartment. “t” above.

• Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle. In the above,
“Receives,” “Sends,” “Responder,” and “Initiator” are all ports. The type of the port
is not represented in the diagram.

• Flow ports are represented as an arrow going through a box. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have
an arrow pointing into the box. A sender has the background and text color
inverted.

Component

Property Type

Responder Initiator

Value

t

Receives Sends

Component t

Property Type Value

SendsReceives

 Initiator

SendsX
ReceivesY
ReceivesZ

 Responder

ReceivesA
SendsB
SendsC
3-58 Enterprise Collaboation Architecture February 2004

3

• Protocol ports and Operation ports are boxes extending out of the component.
Protocol ports representing an initiator have the colors of their background and text
reversed. In the above, “Initiator” is a protocol port of an initiator and “Responder”
is a protocol port that is not an initiator. ProtocolPorts may show nested, the Ports
of the used Protocol.

• Multiports are shown as a shaded box grouping the set of ports it contains.

• Property Definitions are in a separate compartment listing the property name, type,
and default value (if any). The name, type, and value are separated by lines. Each
property is on a separate line.

3.5.2 Composite Component Notation
A composite is shown as a ProcessComponent with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

Figure 3-11 - Composite Component notation (without internal ComponentUsages)

Component

Responder Initiator

t

Receives

Property Type Value

Sends

February 2004 ECA: CCA Notation 3-59

3

Figure 3-12 - Composite Component notation

• The ports on the composite component being defined are shown in the same way as
they are on a ProcessComponent, but in this case represent the port connector.

• A component usage is shown as a smaller version of a ProcessComponent inside
the composite component. Note Usage (1..2) are component usages.

• Port connectors are shown in the same fashion as ports, on component usages. The
ports on Usage 1..2 are all port usages.

• Connectors are shown as lines between port usages or port proxies. All the lines in
the above are connectors.

• Property values may be shown on component usages (in the same way as the
property definition), or may be suppressed.

Component t

Responder

Receives

Usage 1 t

Property Type Value

SendsReceives

Usage 2 t

Property Type Value

Responder Initiator

Property Type

3-60 Enterprise Collaboation Architecture February 2004

3

3.5.3 Community Process Notation
A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

Figure 3-13 Community Process notation

In the above example “BuySellProcess” is a community process with component usage
for “Buyer” and “Seller,” which are connected via their “buy” and “sell” ports,
respectively.

3.6 Diagramming CCA
CCA models may be diagrammed using generic as well as CCA specific notations. The
generic notations (as found in UML 1.4) are supported by a wide variety of tools that
allow CCA concepts to be made part of the larger enterprise picture without specific
tool support. When using generic notations the CCA model stereotypes should be used.
CCA aware design & implementation tools may provide the CCA specific notation in
addition to or instead of the other forms of notation.

This section suggests a non-normative way to utilize generic UML diagrams and CCA
notation to express CCA concepts. For the generic diagrams it does so using an “out of
the box” UML tool – Rational Rose 2000e ®.

3.6.1 Types of Diagram
The diagrams used to express CCA concepts are as follows.

3.6.1.1 Class Diagrams for the Document Model
These are used to express the document model.

BuySellProcess

Buyer t

Buy

Seller t

Sell
February 2004 ECA: Diagramming CCA 3-61

3

3.6.1.2 Class Diagrams for the Component Structure
These are used to define components & protocols, their ports and properties.

3.6.1.3 Collaboration Diagrams for Composition
These are used to express the composition of components within another component or
community processes.

3.6.1.4 State or Activity Diagrams for Protocols & Process Components
These express the ordering constraints on ports within or between components.

3.6.1.5 CCA Notation for Process Component Structure & Composition
This expresses the component structure and composition in a more compact and
intuitive form, thus replacing the class and collaboration diagrams. We will show how
the CCA notation expresses the same concepts found in the generic diagrams.

3.6.2 The Buy/Sell Example
The techniques for diagramming CCA will be presented by example. We will utilize a
simple buy/sell business process to illustrate the concepts. We will summarize the
points in the specification from the perspective of using a diagramming tool.

The basic business problem of buy/sell is to define a “community process” with two
actors – a buyer and seller. These two actors “collaborate” within this process to effect
an order.

3.6.3 Collaboration Diagram Shows Community Process
At the highest level we show a collaboration diagram of the Buy/Sell community
process. In the design tool we also created a package for this process to hold the
relevant model elements. See Figure 3-20.

Figure 3-20 Top Level Collaboration Diagram

 : Buyer : Seller

 : Buys : Sells

Buy/Sell Comminity
Process
3-62 Enterprise Collaboation Architecture February 2004

3

This collaboration shows both business roles: “Buyer” and “Seller.” These are each a
“ComponentUsage” in the CCA Meta-model. It also shows that the buyer has a “buys”
port and the seller has a “sells” port that are connected by a Connection in this
collaboration. The “buys” and “sells” ports are “PortConnectors” in the CCA Meta-
model. The line between “Buys” and “sells” indicates that the buyer and seller
collaborate on these ports using a “Connection.”

There is no way to show which port is the initiator and which is the responder in a
collaboration diagram, so we have noted the “buys” in blue and “sells” in green, for
those of you who have color (for others you may be able to tell from the shade).

Note that “buys” and “sells” are shown inside of “buyer” and “seller,” respectively.
The use of this nested classifier notation shows that the ports are owned by the
component. We could also have shown the ports separately with a connected line, but
nesting them seems to better reflect the underlying semantics.

The design tool we are using does not show stereotypes in a collaboration diagram. If
they did show, you would see that buyer and seller have the <<ComponentUsage>>
stereotype and “Buys” and “Sells” have the <<PortConnector>> stereotype. You would
also see that the entire package has the stereotype <<CommunityProcess>>.

The following is a summary of the elements, stereotypes, and base elements you would
use in a collaboration diagram for a community process.

3.6.4 Class Diagram for Protocol Structure
The buys and sells ports seen in the community process must have a prescribed
protocol, a description of what information flows between them. This is shown in a
class diagram (). Additional information as to when information flows between them
is shown on an associated state or activity diagram. The class diagram can include the
definition of the data that flows between them (the document model), or this
information can be shown on a separate class diagram.

Figure 3-21 Class diagram for protocol structure

Order
<<CompositeData>>

OrderConfirmation
<<Compos iteData>>

SendOrder
(from BuySellProtocol)

<<FlowPort>>
GetConfirmat ion

(from BuySellProtocol)

<<FlowPort>>

BuySellProtocol
<<Protocol>><<responds>>

<<initiates>>

OrderDenied
<<Compos iteData>>GetDenied

(from BuySellProtocol)

<<FlowPort>>

<<initiates>>

Class diagram for buy/sell protocol
February 2004 ECA: Diagramming CCA 3-63

3

This diagram shows the protocol as well as the data used in the protocol (detail
suppressed for this view). The protocol is a class stereotyped as <<Protocol>>. It has
a set of flow ports: SendOrder, GetConfirmation, GetDenied. Each of these flow ports
has an association to the data that flows over it; Order, OrderConfirmation, and
OrderDenied – respectively.

A very important aspect of a port is its direction (initiates or responds), which is a
tagged value. Since these tagged values don’t show on the diagram we have also
stereotyped the relation to the ports as either <<initiates>> or <<responds>> and have
changed their color as was done in the collaboration diagram.

What this diagram shows is that implementers of the protocol “BuySellProtocol” will
receive a “SendOrder” containing an “Order” and will send out a “GetConfirmation”
(with data “OrderConfirmation”) and/or a “GetDenied” (with data “OrderDenied”).

The following is a summary of the elements, stereotypes, and base elements you would
use in a collaboration diagram for a protocol.

3.6.5 Activity Diagram (Choreography) for a Protocol
The class diagram for a protocol () shows what the protocol will send and receive but
not when. The activity diagram of the protocol adds this information by specifying
when each port will perform its activity (sending and receiving information).

Figure 3-22 Protocol Activity Diagram

3.6.5.1 Choreography of a Protocol
As you can see, the activity diagram for the protocol is quite simple, it shows the start
state, one activation of each port and the transitions between them. It also shows that
after the “SendOrder” a choice is made and either “GetConfirmation” or “GetDenied”
is activated, but not both.

SendOrder

GetConfirmation GetDenied

<<Success>> <<BusinessFailure>>
3-64 Enterprise Collaboation Architecture February 2004

3

The start state (Black circle) shows where the protocol will start. It then goes to a
“PortActivity” for the SendOrder port (the port and the activity have the same name in
this case). It then shows a choice (the diamond) and PortActivities for
GetConfirmation and GetDenied ports. It then shows that either of these ends the
protocol, but that GetConfirmation ends it with the status of Business Success while
GetDenied ends it with BusinessFailure. (Success and failure can be tested in later
transitions, using a guard on the transition). The transitions (each of the arrows) clearly
shows the flow of control in the protocol.

Note that if there are multiple activities for one port it may be convenient to use swim
lanes, one for each port. But swim lanes are not required.

What cannot be seen is that each PortActivity has a tagged value: “represents” to
connect it to the port it is an activity of. In the example “represents” will be the same
as the activity name.

3.6.6 Class Diagram for Component Structure
The external “contract” of a component is shown on two diagrams – the class diagram
for structure and the activity diagram for Choreography (much like the protocol). The
structure shows the process component(s), their ports, and properties.

Figure 3-23 Class Diagram for Component Structure

This class diagram shows two process components being defined: “Buyer” and
“Seller.” Each process component uses the “ProcessComponent” stereotype. It also
shows that each of these components has one protocol port each: “Buys” and “Sells,”
respectively and that both of these ProtocolPorts implement the BuySellProtocol we
saw earlier.

We can also see that the buyer “initiates” the protocol via the “Buys” port and that the
seller “responds” to (or implements) that interface via the “Sells” port. As before, both
ports will have their direction set in a tagged value – the color and stereotypes on
relations is just informational.

You may also note that we chose to define the ports as nested classes of their process
components, as can be seen from the phrases (from Buyer) and (from Seller). This
helps organize the classes but is purely optional.

Buys
(from Buyer)

<<ProtocolPort>>

Buyer
<<ProcessComponent>> <<in itiat es>> Sells

(from Seller)

<<ProtocolPort>>

Seller
<<ProcessComponent>><<responds>>

BuySellProtocol
<<Protocol>>
February 2004 ECA: Diagramming CCA 3-65

3

These components are the ones we saw being used inside of the community process.

3.6.7 Class Diagram for Interface
Classical “services” are provided for with the CCA “Interface,” such a service
interface corresponds to the normal concept of an object. An interface is a one-way
version of a protocol and may not have sub-protocols, once such service is defined for
our example.

Figure 3-24 Class Diagram for Interface

Since the semantics of such an interface are will understood, let’s just relate to the
CCA elements, as shown below.

Note that the use of a stereotype for an interface is optional, allowing the use of other
forms of UML classifiers.

Interfaces may have the same tagged values as protocol, but interfaces don’t need
“direction,” the direction is always “responds.”

Table 3-1 Elements of an Interface

Example Element CCA Element UML Element
CustService Interface Interface

CheckCustomer FlowPort Operation

CheckCustomer. order DataElement Parameter

checkCredit OperationPort Operation

CheckCredit. amount FlowPort Parameter

CustS ervice

checkCustomer(order : Order)
checkCredit(amount : Float) : Boolean

<<Interface>>
3-66 Enterprise Collaboation Architecture February 2004

3

3.6.7.1 Using Interfaces
While we are on the subject, let’s also look at the class diagram for a process
component with a port that implements this interface.

Figure 3-25 Using Interfaces

This diagram shows an “Entity” ProcessComponent (see entity model) called
“CustomerComponent,” which exposes a ProtocolPort (EnqStatus) that implements
this interface.

CustService

checkCustomer()
checkCredit()

<<Interface>>

EnqStatus
(from CustomerComponent)

<<ProtocolPort>>

CustomerComponent
<<Entity>><<responds>>
February 2004 ECA: Diagramming CCA 3-67

3

3.6.8 Class Diagram for Process Components with Multiple Ports
Up to this point we have seen process components with only one port, while most
process components interact with multiple other components. We are going to define
such a component that will be used inside other components later.

Figure 3-26 Process Components with multiple ports

This diagram defines the OrderValidation ProcessComponent. Note that it has the
following ports:

• checkOrder – responding flow port (the order)

• CheckCustomer – initiating protocol port to a service

• AcceptOrder – initiating flow port (the order)

• Reject – initiating flow port (OrderDenied)

C us tS ervic e

c hec k C us tom er()
c hec k C red it ()

< < Interfac e> >

C hec k C us tom er
(from O rderV a lidat ion)

< < P rotoc o lP ort> >

c hec k O rder
(from O rderV a lidat ion)

< < F low P ort> >

ac c eptO rder
(from C hec k C us tom er)

< < F low P ort> >

O rder
(from B uy S e ll)

< < C om pos i teD at a> >

O rderV a lida t ion
< < P roc es s C om ponent> >

O rderD en ied
< < C om pos i teD at a> >

re jec t
(from O rderV a lidat ion)

< < F low P ort> >

< < in i ti ates > >

< <r es pond s > >

< < in it ia tes > >

< < in it ia tes > >

O rder V alida t ion
C om ponent
3-68 Enterprise Collaboation Architecture February 2004

3

3.6.9 Activity Diagram showing the Choreography of a Process Component
Since our Order Validation process component has multiple ports, we may also want to
specify the choreography of those ports, when each will activate. This is done using an
activity diagram much like the protocol.

Figure 3-27 Choreography of a Process Component

Since the model elements used here are the same as those for the protocol, we will not
repeat the tables.

3.6.10 Collaboration Diagram for Process Component Composition
A composition collaboration diagram shows how components are used to help define
and (perhaps) implement another component. We have already seen one composition,
for the community process. Now we will look at a collaboration diagram that specifies
the inside of one of our process components – the seller.

checkOrder

rejectacc eptOrder

CheckCustomer

success failure

Order Validation
Choreography
February 2004 ECA: Diagramming CCA 3-69

3

Figure 3-28 Process Component Composition

This is a collaboration diagram “inside” the seller, which the seller will do to
implement its protocol by using other components. This is a very specific use of a
collaboration diagram and needs some explanation.

First note that, like the community process, we are showing the ports of components
and of protocols nested inside the component or protocol.

The Component Usages are as follows:

• Validate – uses the “OrderValidation” component.

• CustBean – uses the CustomerComponent.

• Process – uses the “OrderProcessing” component (not previously shown).

If we look inside of “Validate” we see a classifier role for each port: checkOrder,
reject, CheckCustomer & acceptOrder. We see the same pattern repeated inside of
CustBean and Process.

Note – “Seller : Sells” - This is the representation of the “Sells” port on the component
being defined – in this case “Seller.” There will be such a “proxy” PortConnector for
each port on the outside of the component for which we are making the collaboration
diagram. Since this port is a protocol port, it also has sub-ports that show up as nested
classifier roles.

Seller : Sells

Validate : OrderValidation

 : checkOrder

 : reject

 :
acceptOrder

 : CheckCustomer

Process : OrderProcessing

 : doOrder

 : ProcessedOrder

CustBean :
CustomerComponent

 : SendOrder

 : GetDenied

 :
GetConfirmation

 : EnqStatus

Seller Composit ion

1: checkCustomer(order : Order)
3-70 Enterprise Collaboation Architecture February 2004

3

To “connect” one port to another we draw an association role (a line representing a
Connection) from one port to another. The connected ports must have compatible
types and directions. So in this diagram we have made the connections, as listed
below.

3.6.10.1 Connections in the example

Each of these connections will cause data to flow from one component to the other, via
the selected ports. It is these Connections that connect the activities of the components
together in the context of this composition.

3.6.10.2 Special note on “proxy” port activities.
As can be seen from the example, we need to connect the “outside” ports (those on the
component being defined) with the “inside” ports (those on the components being
used). The PortConnectors for the outside ports are shown without an owning
ComponentUsage, while the PortConnectors for the components being used are shown
inside of the ComponentUsage being used.

3.6.10.3 Special note on protocols
Since protocols give us the ability to “nest” ports, ports may be seen within ports to
any level. This example only shows one level of such nesting. The same kind of
nesting is used within activity diagrams – since activities may be nested as well.

3.6.11 Model Management
While the organizational structure of components is not visible in a diagram, it is
visible in tools. The screen shot in Figure 3-29 shows how the example components
are organized in the Data Access Technologies’ UML tool. Note how using nested
classes (such as Ports being inside of their ProcessComponent) helps to organize the
model and keep namespaces separate.

Table 3-2 Connections

From Component Usage From Port Connector To Port Connector To Component Usage
Seller Sells CheckOrder Validate

CheckOrder Reject GetDenied Seller

Validate CheckCustomer EnqStatus * Using Operation “checkCust” CustBean

Validate AcceptOrder DoOrder Process

Process ProcessOrder GetConfirmation Seller
February 2004 ECA: Diagramming CCA 3-71

3

.

Figure 3-29 Model Management

3.6.12 Using the CCA Notation for Component & Protocol Structure
Figure 3-30 shows the CCA notation being used for the protocol and process component structure,
above. Note that as with the UML notation, this is done from an out-of-the-box tool (Component-
X®) - the notation is not quite standard CCA yet.

This shows the community process and protocol corresponding to the UML example above.
3-72 Enterprise Collaboation Architecture February 2004

3

.

Figure 3-30 Community Process and Protocol

Figure 3-31 Composition in CCA notation

Figure 3-31 shows the seller composition in CCA notation; it is equivalent to the seller collabora-
tion diagram.

Section III - The Entities Model
The Entities model describes a model that may be used to model entity objects that are
representations of concepts in the application problem domain and define them as
composable components.
February 2004 ECA: Diagramming CCA 3-73

3

Section 3.7 introduces the model and concepts associated with it. Section 3.8
describes different entity viewpoints. Section 3.9 presents the Entity conceptual
metamodel.

3.7 Introduction
This section describes the following:

• The Entities model relationship to other models.

• The design concepts incorporated in the Entities model.

3.7.1 Relationship to other parts of ECA
The following paragraphs briefly describe the links to other models in the ECA
specification.

3.7.1.1 The Business Process model
The Entities model is used to define a representation of the application domain.
Processes operate on this model where the process flow determines that operations
should occur on the domain model as a result of inputs from other systems, the
occurrence of business events, or the actions of human participants.

The Entities model also provides a root modeling element for identifiable processes.
In a business domain a process is also an identifiable concept that has instances with
attributes, operations, and relationships. As such, it shares the characteristics of Entity
objects and can be operated on the same as entities. A process could be the subject
matter of another process.

3.7.1.2 The CCA model
Elements of the Entities model are also characterized as composed components that
can be composed into larger components. As components they may be made available
for composition of a variety of systems. As composed components, they may be
configured from independently created components. The component model determines
the unit of composition and the interconnection of interfaces that enables the
components to work together.

3.7.1.3 The Events model
The event model defines the integration of systems and components using events to
drive the processing. Events may be published or received by entities and processes.
Events may be forwarded synchronously or asynchronously. Synchronous events
typically will be delivered within the context of the current transaction. Asynchronous
events generally will be stored and delivered in the context of a new transaction. The
use of events for integration reduces coupling and improves the ease by which a
system may be adapted or extended.
3-74 Enterprise Collaboation Architecture February 2004

3

The Entities model recognizes the publish and subscribe ports as elements that may be
attached to entity components. In addition, it defines the Data Probe port to generate
events requested on an ad hoc basis.

3.7.1.4 The Patterns profile
Patterns may be used to replicate frequently occurring entity structures including
attributes, relationships, operations, rules, and constraints.

3.7.2 Design Concepts
The entity model reflects the integration of a number of design concepts:

• Composition

• Encapsulation

• Ports

• Identity

• Events

• Domain Modeling

• Entity Role

• Events

• Data Monitoring

• Distributed Computing

• Levels of Coupling

These concepts are each discussed in the paragraphs that follow.

3.7.2.1 Composition
Entities are representations of concepts that exist in the real world or application
problem domain. The primary purpose of the entity model is to model entities–their
relationships, attributes, and methods—and define them as composable components.

The information viewpoint will provide the primary notation for modeling entities, and
their attributes and relationships as data. The entities represented in the information
viewpoint are then incorporated into objects, described as composable components.

Entities are incorporated into systems where they may be acted upon by processes,
interact with other entities, and generate events. Thus entities are components in a
larger system. The component relationships of entities to other components is
expressed in the composition viewpoint. In this viewpoint entities are components that
are composed into larger components.
February 2004 ECA: Introduction 3-75

3

As a component, an entity may have several different ports. It receives and responds to
messages. It may send messages and receive return values, it may generate events or
asynchronous messages, and it may receive events or asynchronous messages. In
addition, it may accept ad hoc requests to generate messages based on changes in its
state.

Entities that represent primary concepts, such as Customer, will often be composed
with related entities and value objects as deployable components. So the Customer and
Account entities could be composed into one component also containing the Customer
Address and Account Entry value objects.

3.7.2.2 Encapsulation
Entity components are intended to be encapsulations of their associated data and
functionality. Process Component defined in the CCA specification provides the basic
representation of encapsulation. It provides the external interfaces by which these
components are linked to other components and composed into larger components.
At the same time, it does not define the component implementation.

Data Manager extends this by incorporating Composite Data. Consequently, a data
manager contains composite data that describes the state of the component. Data
Manager incorporates the composite data and relationships of Entity Data along with
methods to operate on the data.

A Data Manager may be implemented as an object. The object has an interface,
modeled as a component port, and it has state data that may be accessed through the
port. The object may also have other ports. It may have data probe ports to generate
messages based on ad hoc requests. It may send asynchronous messages and events. If
it has a unique identity (i.e., is an Entity), and is sharable and network accessible, it
can receive asynchronous messages and events.

Data Manager comprehends value objects, objects that are passed by value, i.e., by
copying the data, not by reference. Consequently, the data structure is exposed when a
copy is performed. It is important to distinguish between the value object that has a
functional interface, and the state of the value object, the Entity Data, which is passed
when a value object is passed as a parameter.

Value objects are not sharable nor network accessible. They cannot receive messages
over the network, and they are not sharable because they are always passed by value
rather than by reference.

Data Managers may be network accessible or not. A Data Manager may be only
accessible by reference to a related entity that is network accessible. For example, an
order line item is identifiable but may only be accessible through the order.

An Entity may be a copy of a primary Entity (i.e., a clone) for purposes of improving
performance. An Entity clone may be a copy of an entity on a client system that is
used for interactive operations. Or the clone could be the instantiation of an entity
when concurrency control is performed by a database (i.e., the primary entity is in the
database). The clone is instantiated with a copy of the entity’s state. The primary
Entity should be locked when the copy is taken so that its state will not change while
3-76 Enterprise Collaboation Architecture February 2004

3

operations are being performed on the clone. The clone is not sharable because it
should not exist beyond the transaction in which it was created. Its lock on the primary
entity will expire when its transaction terminates.

3.7.2.3 Ports
Components interact with their environment through ports. A port has a defined
interaction protocol. Ports may send messages, receive messages, or both. A port may
be implemented as an object interface (e.g., CORBA or Java interface).

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of a transaction. An asynchronous port communicates in a store-and-forward
manner so that sending a message occurs in the context of one transaction and receipt
of the message then occurs in the context of another transaction.

Ports may communicate with messages or event notices. A message is directed to a
specific destination. An event notice is published to the communication infrastructure
to be delivered to subscribers—destinations that have expressed interest. The messages
and event notices may be communicated synchronously or asynchronously.

All Data Managers will have interface port(s) that represent the interface of the
component; these ports may be synchronous, asynchronous, or a combination of both.

3.7.2.4 Identity
Unique identity is introduced on Entity Data and implicitly on Entity with the addition
of a Key. A prime key is required to be unique within the extent of the type. In
general, identifiable components are passed by reference.

The key may be comprised of one or more attributes of the state of the component, and
these elements must be immutable. The key can also have elements that are Foreign
Keys of other Entities. A Foreign Key is identified through a relationship with another
Entity from which the Foreign Key is derived.

An Entity component has a primary instance (i.e., the location of the master copy of its
state). This master copy may be in a database or it may be instantiated as an
object/component. Copies of an Entity state may be instantiated in Entity clones.
These are not sharable and, in general, should not exist beyond the scope of a single
transaction.

Entity components can be “managed.” This property specifies that the extent of all
members of a type and its sub-types is known and may be accessed as a set. The key
of an identifiable component must be unique within its managed extent. The
implementation implication of being managed is that the type will have an extent
manager or “home” that will provide query access to the extent and may provide
attributes and methods that apply to all members of the extent or the members
collectively (e.g., the number of members).
February 2004 ECA: Introduction 3-77

3

3.7.2.5 Domain Modeling
The first step in modeling a business domain may be to create an information
viewpoint. The information viewpoint exposes the Entity Data along with its attributes
and relationships. These Entity Data elements will be incorporated into Entity
components to define their functionality and interfaces.

In modeling a business domain, business concepts that are uniquely identifiable must
be represented by identifiable computational components. For example, an object
representing an employee, a purchase order, an office, or a part specification will have
a unique identifier that associates the object with the real-world counterpart. As such,
a consistent representation of the business will have a single representation of each
real-world thing as an identifiable object. While an implementation may replicate such
elements for performance or reliability, replicas are still logically a single
representation and must be maintained with consistent state if the system is to yield
consistent results.

For the most part, the identifiable elements that model the business domain are
characterized as Entities. Rules and Processes are also Entities because they have state
and are identifiable, but they are computational artifacts that describe activities in
which entities are involved.

3.7.2.6 Entity Role
The Entity Role is an important extension to the Entity representation. It may be
impractical to design an Entity component to anticipate all circumstances in which an
entity may be involved. Each situation may involve different state and behavior. An
Entity Role incorporates aspects of an Entity associated with a particular context.
Essentially it extends an Entity on an ad hoc basis. The unique identity of an Entity
Role is the entity identifier coupled with its context identifier. Consequently, the
context must also be represented as an Entity component. For example, a person has
the role of an employee as a member of an enterprise (context), or may be a member
of a project team. An entity may have many roles as appropriate to the different
contexts in which it participates.

An Entity Role is dependent upon the associated parent entity. The association is
immutable. If an Entity ceases to exist, all of its roles will also cease to exist. An
Entity Role cannot be assigned to another parent Entity.

An Entity Role is not an appropriate representation for such concepts as an
organizational position or the specification of a process participant. These concepts
may define characteristics of the entities that can be assigned, but should not include
characteristics that are unique to a particular Entity when assigned. Consequently, a
process participant is an Entity that represents a potential association of a process with
an Entity. Different Entities may be assigned to the participation over time. An Entity
Role may be assigned to the participation, as an employee may be assigned to
participate in a process, and a different employee may be substituted at a later time.

An Entity Role may be a “virtual entity” if it incorporates all of the interface
characteristics of the entity it represents. For example, an Entity Role may inherit the
interface of its associated Entity, incorporate the interface by inheritance, and
incorporate the entity state and behavior by delegation.
3-78 Enterprise Collaboation Architecture February 2004

3

3.7.2.7 Events
An event represents a change of state in a system that is of interest outside the scope of
the component in which it occurs. An event may be defined as a change of state that
causes a condition of interest to become true, or an event may be associated with a
state transition to a particular state, from a particular state, or from one state to another
state. When an event occurs a notice can be generated.

The ability to generate event notices can be designed into a component. The content of
the event notice is defined to provide appropriate information about the event. Event
notices are published—they are issued to the event communication infrastructure to be
received by subscribers. The publisher of an event notice is not expected to be aware
of the subscribers, and thus there may be many subscribers or none. Similarly, the
subscribers are not aware of the specific sources of event notices to which they
subscribe.

The Event Publication and Event Subscription ports provide the complementary
interfaces for this publish and subscribe linkage between components. These ports may
be defined as operating in synchronous or asynchronous mode.

The mode of a subscriber must match the mode of the receiver for an event notice to
be communicated. In synchronous mode, an event notice would be delivered to all
subscribers within the context of the transaction in which the event occurred. In
asynchronous mode, the event would be delivered in a store-and-forward manner, the
event notice would be captured in one transaction and accepted by each subscriber in
different transactions.

3.7.2.8 Data Monitoring
Data monitoring refers to the ability to ad hoc initiate detection of changes in data in
order to initiate desired actions. This capability is an important element of flexibility
and modularity of system design. It allows actions to be initiated based on changes in
state without explicitly embedding the initiation of those actions in the executable
logic that changes the data.

For example, an application may be designed to monitor the price of a commodity to
initiate buy or sell orders or alert a customer. It should not be necessary to modify the
logic of the commodity tracking system in order to link this monitoring application to
price changes.

Similarly, when a system is assembled or extended using components, actions of some
components may be dependent on changes in state in other components. By providing
the ability to monitor changes in the data of a component, the logic of the component
need not be designed to anticipate each specific dependence.

The Data Probe port provides the interface for accepting and removing monitoring
requests and for issuing events or messages when the specified events occur in the
state of the Entity. A request will define the state of interest, the type of message to be
sent, and the message addressee.
February 2004 ECA: Introduction 3-79

3

3.7.2.9 Distributed Computing
Components that are remotely accessible must be identifiable. Their unique identity is
the basis for locating them in the distributed computing environment. It is also the
basis for sharing a single representation of the state of the thing being represented.

To support network access, they must have one or more ports that support network
access protocols. For example, a network accessible component might have ports
synchronous messaging ports implemented as CORBA interfaces, and event
subscription and publication ports implemented as JMS (Java Messaging Service)
subscriber and publisher interfaces.

Data Managers that are not network accessible will be restricted to being co-located
with components that reference them. For example, an order item is uniquely identified
within an order, but remote access may be only through interfaces to the containing
order.

Relationships require that the participating Entity Data structures are identifiable. At
the same time, the Data Manager of an Entity Data structure may not be network
accessible. In a distributed computing environment, components that participate in
relationships must be either co-located or be network accessible. A relationship cannot
be implemented if the members cannot communicate with each other.

While distribution of computing is primarily an implementation issue, the ability for
components to be distributed must be considered fairly early in the design. Where
Entity components are not network accessible, operations on their containing
components will likely reflect indirect access from remote components.

3.7.2.10 Levels of Coupling
The Entity Model anticipates three levels of component coupling: linked, tightly
coupled, and loosely coupled.

Linked coupling refers to components that are co-located in the same address space.
These components interact with each other directly, without communicating over a
network. As such, they can interact without being network accessible components.
Messaging will generally be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers. These components
will also interact with synchronous messaging, but messaging will occur over a
network. While some messaging between the components may be asynchronous for
performance and recoverability considerations, components are tightly coupled if any
interactions between them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously,
through a messaging infrastructure. Communication is through messages and events.
These components might be characterized as enterprise applications. A message or
event is issued in the scope of one transaction and accepted by one or more recipients
in independent transactions. Messages and events are stored and forwarded. A message
is a communicated with a defined recipient, and an event is a communicated
(published) with self-declaring recipients (subscribers) unknown to the publisher.
3-80 Enterprise Collaboation Architecture February 2004

3

The level of coupling between components has important performance and system
flexibility implications. Generally, components should be designed in a level-of-
coupling hierarchy so that components that are linked are within components that are
tightly coupled, and tightly coupled components are within components that are
loosely coupled with each other. This coupling hierarchy should be reflected in the
network accessibility property of components and the synchronous vs. asynchronous
property of their ports.

3.7.3 Standard UML Facilities
This section briefly describes the standard elements of UML that are incorporated in
the model.

Attributes

Composite Data elements define their data elements with attributes. Composite Data
elements are incorporated as the data structures of Data Managers, which are
specialized to entities. The interfaces to Data Managers provide access to the attributes
and will generally have methods by the same name as accessers.

Methods

Methods are specified as in UML. From a component perspective methods, including
the attribute accesser methods, are incorporated in the port(s) that receive messages
and return a result.

Relationships

Relationships express associations between non-primitive elements. Identifiable,
sharable, and network accessible elements can have relationships that extend over a
distributed network.

Activity Graphs

Activity Graphs may be used to describe flow of control between elements, although
these will be more applicable for describing processes.

State Machines

Changes of state of elements with data may be described with state machines.
Publication of events may be defined in terms of state transitions.

Interaction diagrams

Interaction diagrams may be used to describe the flow of control between executable
elements.

Object Constraint Language

OCL is used to express conditions for triggers, as well as in other applicable UML
elements.
February 2004 ECA: Introduction 3-81

3

3.8 Entity Viewpoints
The entity model provides elements that appear in different viewpoints. These
viewpoints are for different purposes and represent entities differently, using different
forms of notation. Two viewpoints of particular interest are presented below: the
information viewpoint and the composition viewpoint. Entities also appear in other
diagrams, for example, in interaction diagrams as vertical lines and in activity
diagrams as swim lanes.

3.8.1 Information Viewpoint
The information viewpoint models Entity Data and their relationships. Entities
represent concepts in the problem domain, and relationships represent relationships
between the problem domain concepts. The model essentially defines the vocabulary
used in discussing the problem domain, and it represents the structure of the objects
and databases used to represent the business concepts in the computer.

A model viewed from the information viewpoint is shown below. It includes four
Entities: Customer, Address, Account, and Entry. Each of these can be uniquely
identified, but Address and Entry are unique within the contexts of Customer and
Account, respectively. Consequently, as components, Address and Entry may be
specified as not sharable or network accessible. They would be implemented as pass-
by-value objects.

Figure 3-32 Entity Model in the Information Viewpoint

The information viewpoint says nothing about interfaces or object-oriented
functionality that may be associated with these Entities. Nor does it define how these
objects might be packaged in a composed system. Those aspects are defined by the
Entity components that incorporate the Entity Data.

Address

- Street : String
- City : String
- State : String
- ZIP : String

Customer
- Name : String
- Phone : Integer

Account
- AccountNumber : Integer
- Balance : Integer

Entry
- EntryNumber : Integer
- Credit/Debit : String
- Amount : Currency
- Purpose : String
3-82 Enterprise Collaboation Architecture February 2004

3

3.8.2 Composition viewpoint
The composition viewpoint describes how the software artifacts are configured as
components and compositions of components. The diagram below depicts an Account
Composition component, which is composed of Account Entity and Entry Entity
components.

Figure 3-33 Entity Model in the Composition Viewpoint

The Account entity may request attribute values from the Entry object, or, assuming
the Entry object is a pass-by-value object, it may pass the Entry object by value. This
means it passes a copy of the state of the Entry object, but it retains its reference to the
original Entry object for future operations.

The Account and Entry objects are both components used to compose the
AccountComponent. However, this could be simply the logical model of the
composition. The implementation of the AccountComponent might be primitive,
making the Account and Entry objects inseparable, but logically independent.

The ports in this model are interface ports and message-sending ports—they
incorporate synchronous messages, typical of messaging with objects. The
AccountComposition component may or may not expose the same interfaces as the
Account component. It also could expose an interface for the Entry component, but
none is specified here.

The composition viewpoint drives consideration of network accessibility and the
clustering of objects for composition and distribution.

3.9 Entity Metamodel
This section describes the entity meta-model. This model provides a basis for
understanding the modeling concepts and their relationships.

A c c o u n t

E n try

A c c o u n tC o m p o s itio n

A c c o u n t

E n try

A c c o u n tC o m p o s itio n
February 2004 ECA: Entity Metamodel 3-83

3

3.9.1 Overview
The diagram, below, depicts the elements to be considered; those that are part of this
model specification are highlighted. Central to this model are Data Manager and its
specializations; these are the core elements of the Entities model. They encapsulate
data and other components, exposing their functionality through ports.

Figure 3-34 Entity Metamodel

Through ports components receive and respond to messages, publish and subscribe to
events, and expose state changes response to ad hoc requests to Data Probe ports.

Entities represent the application domain. As components they encapsulate the
functionality, state, and relationships of domain concepts. Entity components
incorporate Entity Data structures, which are the core elements of the information
model.

3.9.2 Entity Package
This section describes the elements of the Entity metamodel in detail.

Publication
(from Events)

Subscription
(from Events)

Process Component
(from CCA)

Port
(from CCA)

Foreign
Key

Relationship
(from Core)

1
1

1
1

Key Element

EntityData Key
+ PrimeKey : Boolean

1..n
1..n

1..n
1..n

1 0..n 1 0..n

KeyAttribute

Entity Role
+ VirtualEntity : Boolean

Entity
+ Managed : Boolean

1

0..n

1

+Context
0..n 0..n

+Parent
0..n

Data Probe (Port)
- ExtentProbe = Boolean

1
0..n

+probes

1
0..n

Attribute
(from CCA)

Composite Data
(from CCA)

Data Manager
+ NetworkAccess : Boolean
+ Sharable : Boolean

1
1

1
1

MultiPort
(from CCA)

FlowPort
(from CCA)

+Manages
3-84 Enterprise Collaboation Architecture February 2004

3

3.9.2.1 DataManager

Semantics

A Data Manager is a functional component that provides access to and may perform
operations on its associated Composite Data (i.e., its state).

The Data Manager defines ports for access to operations on the state data.

Fully Scoped name

EDOC::ECA::Entity::Data Manager

Owned by

Package

Properties

Network Access
A Boolean value that indicates if the Data Manager is intended to be accessible over
the network.

Sharable
A Boolean value that indicates if the Data Manager can be shared by multiple
transactions/sessions. A Data Manager that is not sharable is either transient or
depends on a sharable Data Manager that contains it for persistence. For example, an
address may not be sharable (although its state may be passed by value), but it can be
persistent by association with a Customer that is sharable.

Related elements

Process Component
Data Manager inherits from Process Component and adds the quality of having
associated state.

Composite Data
Composite Data defines the data structure that is encapsulated by the Data Manager.

Entity
Entity specializes Data Manager for representation of identifiable application domain
things.

Constraints

N/A
February 2004 ECA: Entity Metamodel 3-85

3

3.9.2.2 EntityData

Semantics

Entity Data is the data structure that represents a concept in the business domain. It is
equivalent to an entity in data modeling or a relation in a relational database. In a Data
Manager or its specializations, such as Entity, it represents the state of an object.

Entity Data has attributes (from Data Element) and relationships. The information
viewpoint is a viewpoint on Entity Data elements.

Fully Scoped name

EDOC::ECA::Entity::EntityData

Owned by

Package

Properties

N/A

Related elements

Composite Data
Entity Data inherits from Composite Data and adds relationships.

Relationship
Describes an association between Entity Data elements.

Data Manager
An Entity Data element is incorporated in a Data Manager that gives it functionality
and ports as a component.

Constraints

• Entity Data must have a prime Key that is unique within the extent of the Entity
Data type (i.e., the type and all sub-types).

• Entity Data is managed by an Entity Data Manager.
3-86 Enterprise Collaboation Architecture February 2004

3

3.9.2.3 Key

Semantics

A Key is a value that may be used to identify a Data Entity for some purpose.
Generally, it will be a unique identifier within some context. A Key designated Prime
Key = true is the key intended for unique identity of the Data Entity within the extent
of the Data Entity type.

A Key is composed of key elements that may be selected attribute values of the
associated Data Entity or Foreign Keys. A Foreign Key is the key of a related Data
Entity.

Fully Scoped name

EDOC::ECA::Entity::Key

Owned by

Entity Data

Properties

Prime Key
A Boolean value that indicates if the Key is intended to be the primary unique identity
of the associated Entity Data type. If so, the value must be unique within the extent of
the identifiable type.

Related elements

Composite Data
A Key is a specialization of Composite Data.

Entity Data
A Key describes an identifier of an Entity Data type.

Key Element

A Key Element is one segment of a Key, which is either a reference to an attribute of
the associated Data Entity or a reference to the key of an associated Data Entity.

Constraints

• If Key is Prime Key = true, then the value must be unique within the extent of the
associated Entity Data type and its sub-types.

• The attributes that are incorporated into the key must be immutable.

• The Key Elements that comprise the key have an immutable sequence.
February 2004 ECA: Entity Metamodel 3-87

3

3.9.2.4 Key Element

Semantics

A Key Element is one segment of a Key, which is either a reference to an attribute of
the associated Data Entity or a reference to the key of an associated Data Entity.

Fully Scoped name

EDOC::ECA::Entity::Key Element

Owned by

Key

Properties

N/A

Related elements

Key
The Key in which the Key Element appears.

Key Attribute
A Specialization of Key Element that references an attribute in the associated Entity
Data.

Foreign Key
A specialization of Key Element that references the Key of an Entity Data structure
that is related to the Entity Data identified by the containing Key.

Constraints

N/A

3.9.2.5 Foreign Key

Semantics

A Foreign Key is a Key Element that is the value of a related Entity Data structure.
The subject Entity Data structure derives its identity, in part, from the related Entity
Data structure. For example, the line item of an order may be identified uniquely by
the line number and the key of the associated order. The Foreign Key element
references the relationship in order to identify the related Entity Data that contains the
Foreign Key value.
3-88 Enterprise Collaboation Architecture February 2004

3

Fully Scoped name

EDOC::ECA::Entity::Foreign Key

Owned by

Key

Properties

N/A.

Related elements

Key Element
Foreign Key is a specialization of Key Element.

Relationship
The associated relationship identifies the Entity Data from which the Foreign Key
value is obtained.

Constraints

• If the associated Key has PrimeKey = true, then the relationship used to obtain the
Foreign Key value must be immutable.

3.9.2.6 Key Attribute

Semantics

A Key Attribute identifies an attribute of the associated Entity Data that is included as
an element of the Entity Data key. The value of the attribute becomes an element of the
key of an instance of the Entity Data type.

Fully Scoped name

EDOC::ECA::Entity::Key Attribute

Owned by

Key

Properties

N/A.
February 2004 ECA: Entity Metamodel 3-89

3

Related elements

Key Element
Key Attribute inherits from Key Element.

Attribute
Attribute is the Attribute of the Entity Data structure that is to be incorporated as an
element of the containing Key.

Constraints

If the containing Key is designated PrimeKey = true, then the Attribute values that are
incorporated into the key must be immutable.

3.9.2.7 Entity

Semantics

An Entity is an object representing something in the real world of the application
domain. It incorporates Entity Data that represents the state of the real world thing, and
it provides the functionality to encapsulate the Entity Data and provide associated
business logic.

An Entity instance has identity derived from the Key of its associated Entity Data.

Entity is the abstract super type of all identifiable application domain elements. This
includes Entities that have a collection of rules to operate on the state of related
entities. It also includes Entities that incorporate process elements that act on other
Entities. The rule set and process specializations introduce additional elements, but
have the basic characteristics of being identifiable, having local state (Composite Data)
often viewed as their “context,” and having relationships to other Entities that they
may act upon.

If an Entity is managed, all instances of the type and its sub-types are known, each
instance has unique identity, and the type can have operations and attributes associated
with the extent (i.e., applicable to all instances). This is typically implemented as a
type manager or “home” object that represents the extent.

Fully Scoped name

EDOC::ECA::Entity::Entity

Owned by

Package
3-90 Enterprise Collaboation Architecture February 2004

3

Properties

In the list below only Managed is introduced as a property by Entity, but
NetworkAccess and Sharable, inherited from Data Manager, are also discussed to
clarify the implications.

Managed
A Boolean value that indicates if the Entity type is managed. If it is managed, then the
implementation provides a mechanism for accessing the extent of all instances of the
type and its sub-types and may provide a mechanism for dynamically applying rules to
all instances. This typically is implemented as a “home” or “type manager.”

NetworkAccessible
A Boolean value that indicates if the Entity is expected to be accessed over the
network. This implies that it has a network interface (e.g., CORBA IDL). An Entity
that is not NetworkAccessible can only be accessed over the network through an
associated Entity that is NetworkAccessible.

Sharable
A Boolean value that indicates if the Entity can be shared by multiple, concurrent
transactions or users. A Sharable Entity will enforce controls to serialize access by
concurrent transactions.

An Entity that is not sharable may be instantiated for use by a particular user or
transaction. It generally contains a copy of the primary Entity Data instance
representing the real world thing. The primary Entity Data instance may be in a
database and the copy is created to perform operations on the Entity Data.
Alternatively, the Entity Data may be managed by an Entity that is sharable, but the
copy is created so that processing can be localized on another server. In either case, it
would be expected that the primary Entity Data would be locked when the copy is
taken and released when the copy is deleted. Changes to the copy would likely be
applied to the primary instance prior to removing the lock.

Entities that are not sharable may also be implemented as value objects, which are
always passed by value over the network. While they may have unique identity by
association with an identifiable Entity, they may not have a key that reflects this
unique identity and their Entity Data does not carry its unique identity when passed by
value.

An Entity that is sharable is expected to be persistent. An Entity that is not sharable
may be persistent if it is incorporated in the state of a sharable Entity.

Related elements

DataManager
Entity inherits from DataManager and adds the requirement that its associated
Composite Data is Entity Data. It also adds the ability to accept Data Probes and the
ability to be Managed.
February 2004 ECA: Entity Metamodel 3-91

3

Entity Role
Entity Role inherits from Entity as a specialized representation of an Entity in a
particular context. The Entity Role contains Entity Data that is associated with the
parent Entity in the particular context. Entity Role is associated with another Entity
that represents the context in which it applies. Thus the parent Entity might be a
person, the Entity Role might be the person as an employee, and the context entity
might be the employer.

An Entity may have many Entity Roles. Each Entity Role defines characteristics of the
Entity in a particular context, such as person in the role of an employee within a
corporation. An Entity may be the context for many Role Entities as a corporation is
the context of many employees.

Data Probe
A Data Probe port is associated with an Entity that accepts requests to detect changes
in the internal state of the Entity and forwards messages or events when the states of
interest become true.

Constraints

• An Entity manages Entity Data, which may have a key and relationships.

• A managed Entity must have a Primary Key.

• A network Accessible Entity must have a Primary Key.

• An Entity that is Sharable will serialize concurrent transactions that attempt to
access its data.

3.9.2.8 Entity Role

Semantics

An Entity Role extends its parent Entity for participation in a particular context. An
Entity may have a number of associated Entity Roles reflecting participation in
multiple contexts. The Entity might have several Entity Roles of the same type at the
same time, but each should be associated with a different context.

The context of an Entity Role is also represented by an Entity. The context could be a
corporation where the parent is a person and the Entity Role is an employee. A context
may have many entity roles of the same type or different types representing
participation of different parent Entities for different purposes.

Fully Scoped name

EDOC::ECA::Entity::Entity Role

Owned by

Entity (context)
3-92 Enterprise Collaboation Architecture February 2004

3

Properties

VirtualEntity
A Boolean value that indicates if the Entity Role incorporates and extends the primary
interface of the parent Entity it represents (i.e., it can be used in place of the primary
Entity).

Related elements

Entity
• Inheritance—Entity Role inherits from Entity such that it functions as an entity but

it derives its unique identity from the Entity it represents (i.e., a Foreign Key).

• Context association—An Entity Role represents an Entity in a particular context.
This association defines the context.

• Parent association—An Entity Role represents an entity in a particular context.
This association defines the parent Entity being represented.

Constraints

The parent entity of an entity role cannot be dynamically changed.

3.9.2.9 DataProbe

Semantics

A Data Probe port is associated with an Entity and accepts ad hoc requests to detect
changes in the internal state of the Entity. The Data Probe then forwards messages or
events when the states of interest become true until the request is removed. A Data
Probe may serve many requests concurrently, producing various messages or events
when the appropriate states occur.

Fully Scoped name

EDOC::ECA::Entity::Data Probe

Owned by

Entity

Properties

ExtentProbe
ExtentProbe = true indicates that requests apply to the extent of the associated entity as
opposed to a particular instance. In implementation, an ExtentProbe would be
associated with a “home” or “type manager.”
February 2004 ECA: Entity Metamodel 3-93

3

Related elements

Multi Port
Data Probe inherits from Multi Port.

Entity
The Entity that will accept probe requests.

Constraints

• DataProbes only emit messages (i.e., output only).

• DataProbe can only attach to an Entity with Managed = true.

Section IV - The Events Model
The Events model describes a model that may be used on their own, or in combination
with the other EDOC elements, to model event driven systems.

3.10 Rationale

3.10.1 Introduction
Event driven computing is becoming the preferred distributed computing paradigm in
many enterprises and in many collaborations between enterprises.

Event driven computing combines two kinds of loosely coupled architectures:

• Event driven process architecture. This is a loosely coupled process architecture
where the activities are not sequenced in traditional workflow fashion. Rather each
participant in the process has autonomous responsibilities and performs those
responsibilities on the basis of loosely coupled notifications, (in the supply chain
world a.k.a. business signals).

• Publish and subscribe information distribution architecture. Publish and Subscribe
is a loosely coupled mechanism for getting information from publishers to
subscribers, while keeping the two independent of each other. Publish and subscribe
is often implemented as loosely coupled, distributed components that communicate
with each other through asynchronous messaging.

In event driven computing the most important aspect of the business process is the
events that happen during its execution, and the most important part of the component-
to-component communication is the notification of such events from the component
that made them happen to all the components that need to react to them.

In ECA we support both the definition of loosely coupled event-driven business
processes, and the loosely coupled publish and subscribe communication between
distributed components.
3-94 Enterprise Collaboation Architecture February 2004

3

Neither the business world, nor the computing world, however, applies only one
paradigm to their problem space. Businesses use a combination of loosely coupled and
tightly coupled business processes and computing solutions deploy a combination of
loosely coupled and tightly coupled styles of communication and interaction between
distributed components.

This document describes in detail the event-driven flavor of loosely coupled business
and systems models, and also illustrates how such models can co-habit with more
tightly coupled models.

An ECA based business process can be defined as event driven for some of its steps
and workflow or request/response driven for others. Likewise, distributed components
in the ECA component model can be configured to communicate with each other in a
mixture of publish-and-subscribe, asynchronous Point-to-Point, and client-server
remote invocation styles.

This document focuses on the purely event driven paradigm, and covers the following
topics:

• Design rationale

• Event driven business model

• Event driven computing

• Event driven business computing

• Publish and subscribe

• Key concepts of event driven business and system models

• Metamodel for specifying event driven business systems

• Relationship to other ECA models

• Relationship to other paradigms

• Applicability and leverage of event driven models

3.10.2 Overall Design Rationale
This model is based on the following design principles:

• Alignment with the BOI roadmap (BOM/98-12-04) with respect to business
process, business entity, business event, and business rule.

• The event as a central rather than peripheral concept.

• Business Processes should be loosely coupled:
• Autonomy of participants in a business process
• Distinction between process and entity
• Clear separation of business logic (i.e., rules from business execution (i.e., the

action taken once rules have been resolved)).

• Information distribution should be loosely coupled
• Use of Publish and Subscribe rather than point-to-point
• Ubiquitous event notification
February 2004 ECA: Rationale 3-95

3

• Asynchronous computing
• Shared information model

• Loose coupling of the Events model with the Business Process model, Entities
model, and component model

• Re-usability of paradigm
• Recursive use of event notifications

• Applicability under multiple paradigms
• The Events model is intended to support both business process modeling and

EAI.
• The proposed model is intended for either tightly coupled client/server or peer-to-

peer computing, or loosely coupled event-driven computing, or combinations of
both.

3.10.3 Concepts

3.10.3.1 Event based business model
An event based business model is driven by business events. Whenever a business
event happens anywhere in the enterprise, some person or thing, somewhere, reacts to
it by taking some action. Business rules determine what event leads to what action.
Usually the action is a business activity that changes the state of one or more business
entities. Every state change to an Entity constitutes a new business event, to which, in
turn, some other person or thing, somewhere else, reacts by taking some action.

The main concepts in event driven business models are the business entity, business
event, business process, business activity, and business rule.

This continuous, cyclical view of the interaction between these five business concepts
can be depicted as follows:
3-96 Enterprise Collaboation Architecture February 2004

3

Figure 3-36 Event Based Business Modeling

3.10.3.2 Event Driven Computing
Event driven computing is a computing paradigm where interaction among
components is based on notification of what happened, as opposed to instructions of
what should happen.

“What happened” is reflected as events. The communication that the event happened is
reflected as notifications. The reaction to the notification (or indirectly to the event) is
reflected as activities.

Two important layers provide loose coupling between event, notification, and activity.

The events are decoupled from the act of notification by configurable subscriptions.

The act of notification is decoupled from the activity by configurable notification
rules.

Event driven computing is a very flexible, yet powerful architecture for enterprise
distributed object computing. The main architectural principle is that individual
components are kept as autonomous as possible, and that the loose coupling and
configuarability enable rapid reconfiguration of the system to meet changing business
model requirements such as mergers, outsourcing, and business re-engineering. Under
event driven enterprise computing all business entities are self-contained, and typically
do not directly change each other’s state.
February 2004 ECA: Rationale 3-97

3

3.10.3.3 Event Driven Business Computing
Event driven business computing is a paradigm that executes business processes by
capturing events that happen in the enterprise, notifying the appropriate other parties in
the enterprise or outside the enterprise, and reacting to such notifications.

Business processes are configured with a set of subscriptions, and a set of notification
rules that determine what activity to start (or end) based on each notification.

Business Entities are the people, products, and other business resources and artifacts
that business activities operate on. When actions are performed on Business Entities,
Business Events happen. All Business Entities are capable of notifying the world of
events that happen to them.

Business Processes that are capable of subscribing to such event notifications are
called EventBasedProcesses. They assign notifications to activities based on a set of
Notification Rules.

3.10.3.4 Publish and Subscribe
In a Publish and Subscribe information distribution model, publishers publish
information, and subscribers subscribe to information. Publishing simply means make
the information openly available for consumption. Subscribing simply means
expressing an interest in the information and consuming it when it gets delivered. The
information is transferred from Publisher to Subscriber ‘automatically,’ usually
through the use of asynchronous message middleware. Publishers do not know which
subscribers will receive their data, and subscribers do not know where the information
comes from. The information, however, describes the state of a process or an entity
that is of interest to both publisher and subscriber, and both parties share the
information model that describes these states (and state changes).

3.10.4 Key Concepts of Event Driven Business and System Models

3.10.4.1 EventBasedProcess
This is a concept introduced by this ECA Events model, but based on the
Choreography element in the ECA component model.

EventBasedProcesses are identifiable series of activities that change states of business
entities, thereby causing business events. For example, the activities in the Shipping
process may cause allocation events against the Inventory Entity, and pick, pack, and
ship events against the Shipment Entity.

3.10.4.2 Entity
This is a concept from the Entities model.

Business Entities are representations of entities of significance to the business,
identifiable by an ID, operated on during business process execution, and characterized
by having a lifecycle expressed as a set of entity states. Examples are Customer,
3-98 Enterprise Collaboation Architecture February 2004

3

Purchase Order, Product, and Payment. In the Events model, we use the supertype of
Entity, DataManager as the managers of the data behind an Entity. An
EventBasedDataManager is capable of publishing information about all changes to the
data it manages. Because an EventBasedDataManager is a kind of EventBasedProcess,
it can also publish information about state changes in its internal process.

3.10.4.3 BusinessEvent
This is a concept introduced by this ECA Events model.

BusinessEvents are state changes whose occurrence is of significance to the execution
of business processes. Typically business events reflect state changes in Business
Entities. These can be thought of as entity events. Examples are the approval of a
Purchase Order, or Receipt of a Payment. A more indirect type of business event is a
state change to a business process or to a collaboration between two business
processes. These are called ProcessEvents.

3.10.4.4 Notification
This is a concept introduced by this ECA Events model. This is a concept only, it is not
represented by a specific element in the Events model. It is implemented using the
dataflow part of the Business Process model.

A notification is a triggered dataflow between two roles, or between two components.
The trigger that causes the notification can be ‘manual,’ or timed, or it can be due to
the fact that an event has happened. When triggered by an event, it is called an event
notification. Event notification, too, is just a concept, and not modeled explicitly.

The notification is always one-way only. The source of the notification is usually an
Entity, but can also be an EventBasedProcess. The destination is usually an
EventBasedProcess.

A notification can be thought of as the delivery of a set of data from a publisher to a
subscriber. The data delivered is a PubSubNotice. A PubSubNotice is just a set of data,
it is immutable, and it does not have any behavior of its own. There is no implication
in the PubSubNotice as to what the recipient is going to do when it receives the
PubSubNotice.An EventNotice is a special kind of PubSubNotice.

All business events are associated with an EventNotice and the corresponding
notification will take place whenever the business event happens successfully.

Similarly, when a business event is supposed to have happened but didn’t, ‘failure’
notifications will take place.

An EventNotice always conveys the following information:

• EventBasedProcess or entity the event happened against,

• trigger that caused it,

• identification of the before state,

• after state,
February 2004 ECA: Rationale 3-99

3

• change between the two states.

3.10.4.5 Publisher
This is a concept introduced by this ECA events model.

A publisher is a component that provides PubSubNotices.

3.10.4.6 Subscriber
This is a concept introduced by this ECA Events model.

A subscriber is a role or component that holds subscriptions to one or more
PubSubNotices.

3.10.4.7 Subscription
This is a concept introduced by this ECA Events model.

A subscription establishes a flow of PubSubNotices to the subscriber. A subscription
identifies the type of EventNotice (e.g., the kind of event you want to be notified
about). A subscription may additionally have a SubscriptionClause associated. The
SubscriptionClause functions as a filter much like a where-clause on the content of the
notification.

3.10.4.8 NotificationRule
This is a concept introduced by this ECA Events model.

NotificationRules are rules that govern the execution of (part of) an
EventBasedProcess. A NotificationRule is a mapping from a BusinessNotification to
an activity, optionally guarded by an EventCondition. An EventCondition is a
dependency on the receipt of additional, related PubSubNotices.

3.10.5 Event and Notification based Interaction Models
The basic building blocks are the EventBasedProcess and the Entity, as shown in
Figure 3-37. The two are ‘wired together’ by a flow of actions from process to entity,
and by a flow of EventNotices from entity to process. In a component framework,
therefore, EventBasedProcesses have EventNotices inflow and action outflow, and
Entities have action inflow and EventNotice outflow. A messaging infrastructure
manages the delivery of EventNotices from entities to processes. The actions too,
incidentally, can be implemented via a messaging infrastructure, but the corresponding
messages are usually point-to-point.

This means that we can create CCA EventBasedProcess components and CCA event-
based Entity components if we can model:
3-100 Enterprise Collaboation Architecture February 2004

3

• An EventBasedProcess as a set of Notification Rules of the type
notification/condition/activity. (This is the event-driven equivalent of the commonly
known even/condition/action rule.)

• An event-based Entity as a set of action/state/event causalities.

The connection from EventBasedProcess to Entity is governed by a configurable
mapping of notification to action, namely the notification rule.

The connection from Entity to EventBasedProcess is governed by a configurable set of
subscriptions.

With these building blocks we can model a number of event-based interactions. And by
reconfiguring the Notification Rules and/or the Subscriptions, we can easily re-
engineer the business process and its execution in the system.

The very simplest model is a single process affecting a single entity, but this is not
very interesting.

The simplest model of interest is a single process affecting multiple entities.

A slightly more complex interaction is process-to-process notifications. This model is
used in supply chain models, a.k.a. business signal.

Another flavor of interaction is the delegation of the responsibility to deal with
notifications. This model is used in EAI integration where legacy applications can be
“wrapped” behind publishers and subscribers of notifications.

These three flavors map to three kinds of interaction in the component model:

• interaction between a master and slave component,

• interaction between two peer components, and

• interaction between the boundary of a component and its subcomponents.

Yet another kind of interaction that can also be based on events and notifications is a
collaboration between processes. This model is used often in b2b interactions. Even
web services can be implemented using event concepts and loosely coupled messaging.

3.10.5.1 Intra Process Event Notification
The simplest model is a single process affecting multiple entities. This can be modeled
pictorially as shown in Figure 3-37.
February 2004 ECA: Rationale 3-101

3

Figure 3-37 Intra Process Event Notification

This corresponds to interaction between a master and a set of slave components. The
process has the logic to evaluate notifications and invokes actions on the entities.

3.10.5.2 Cross Process Event Notification
A picture of loosely coupled cross process notification:
3-102 Enterprise Collaboation Architecture February 2004

3

Figure 3-38 Cross Process Event Notification

This corresponds to interaction between two peer components.

3.10.5.3 Delegation
Delegation is passing on of a responsibility. Relative to the event driven model,
delegation is the passing of the business notification to another process, for it to
resolve, typically a sub process. There is a distinct expectation that the business
activity will happen, but it will happen as part of the sub process, not in the main
process. However, to the outside processes it will appear as if the main process
performed the business activity, and any events will look like they happened in the
main process and any notifications will come from the main process.
February 2004 ECA: Rationale 3-103

3

Figure 3-39 Delegation

In the component model this is the interaction between the boundary of a component
and its subcomponents.

3.10.6 Leveraging Event Based Models

3.10.6.1 Business Event Types
A variety of standard event types enable a rich set of event-based scenarios.

Success events

A success event is the ‘normal’ event. It reflects the successful execution of an action
on an entity or the successful initiation or completion of an activity within the process.

Failure events

A failure event is a type of ‘exception’ event. It reflects that an action on an entity was
attempted but failed, or that the initiation of an activity failed, or that an activity was
forced to terminate unsuccessfully. In programming languages this is the equivalent of
‘raising an exception.’
3-104 Enterprise Collaboation Architecture February 2004

3

TimeOut-Events

This is one of the most useful events for management. A TimeOut-event is an abstract
event that reflects that something should have happened within a certain time period,
but didn’t. Typically this would be something like ‘shipment was scheduled but did not
happen’ within the allotted time. This can be generated based on an overdue condition
relative to a scheduled time.

Mutual exclusion events

This type of event signifies that a given event that might be expected according to the
business process did not happen due to another alternative event happening. This may
be due to the process calling for a mutually exclusive choice between two parallel
events, or based on the occurrence of an event that normally happens after the event in
question, indicating that an event was ‘skipped.’

Data change events

These are useful for replication of data from one place to another. Whenever the source
data changes, events are generated, even if the change in data is not considered an
event in an entity life cycle sense.

Timed notifications

This is in some sense the simplest kind of notification; it is simply an alarm clock or
planning calendar. You can schedule notifications based on a schedule of trigger times.
The event, in some sense, is the clock reaching the scheduled time. The notification is
usually about the state of something as per that time, or in some cases it could be the
timed release of a number of accumulated event notifications.

3.10.6.2 Event Algebra
Events may be ANDed/ ORed, included, excluded, to create new event types. For
instance:

CreditApproved event, and shipmentReady event may be ANDed to
releaseApproved event.

OrderApproved event and NOT licenseDenied event may be ANDed to
shipmentReleased event.

OrderShipped event, and NOT shipmentInvoiced event may be ANDed to invoice
exception event.

OrderShipped event and orderCanceled event may be ORed to produce an
orderClosed event.

Such event algebra is performed by value-added event agents. They take event
notifications as their input and produce value added event notifications as their output.

Such an agent could also be turning event notifications into time-released notifications.
February 2004 ECA: Rationale 3-105

3

3.10.6.3 Management by Exception
One of the most important ways to leverage event driven computing is to manage by
exception notifications. If the business model defines all the events that should occur
in the normal course of business, then intelligent agents can be set up to track the
progress of each process instance and issue notifications whenever something
happened too late or didn’t happen at all. These agents would issue timeout-event
notifications, mutual exclusion event notifications, and other exception notifications.

Event notifications can also be used to monitor workloads and to give input for
rebalancing of loads within a process.

3.11 Metamodel
This is a meta-model for event-driven business computing, specifying the concepts
described above. The model consists of two packages:

• Publish and Subscribe Package

• Event Package

These two packages are described in detail below, but first we show two views across
the packages:

• Process View (showing how a Business Process produces and reacts to events)

• Entity View (showing how Business Entities produce and react to events)

We also show both packages and both views together in a full overview diagram of the
metamodel for the Events model.

3.11.1 Business Process View
This is an overview of the business process aspect of event-driven business computing.
The yellow (shaded) elements are directly part of the business process view. The white
elements belong to other views and provide the context for this view (see Figure 3-40).
3-106 Enterprise Collaboation Architecture February 2004

3

Figure 3-40 Business Process View of metamodel

An EventBasedProcess is a specialized choreography. A choreography (from the CCA
Model) is a set of Nodes (States and PortUsages) and the Connections between them.
An EventBasedProcess generates ProcessEvents upon successful or failed entry into or
exit from its Nodes. A ProcessEvent is a kind of BusinessEvent. An
EventBasedProcess is a Publisher and will publish EventNotices for each of its
ProcessEvents. An EventBasedProcess is also a Subscriber and will hold subscriptions
to PubSubNotices, specifically EventNotices from other processes and from entities.

The NotificationRule is the loose coupling between the receipt of an EventNotice and
entry into or exit from a Node. One or more EventConditions may guard the
NotitificationRule. An EventCondition requires the receipt of an additional
EventNotice, governed by another subscription.
February 2004 ECA: Metamodel 3-107

3

3.11.2 Entity View
This is an overview of the entity aspect of event-driven business computing. The
yellow (shaded) elements are directly part of the entity view. The white elements
belong to other views and provide the context for this view.

Figure 3-41 Entity View of metamodel

In the Entities model Entity is a kind of DataManager. Further, a DataManager is a
kind of Choreography. An EventBasedDataManager is a special DataManager that
generates DataEvents each time its data changes. DataEvents are a kind of
BusinessEvent. Since a DataManager is also a kind of Choreography, it can also
generate ProcessEvents about its own internal choreography.
3-108 Enterprise Collaboation Architecture February 2004

3

3.11.3 Whole Event Model
The following is a diagram of the whole metamodel for the Events model. The yellow
(shaded) elements are directly part of the metamodel, and will be described in detail
below, divided into two packages: Publish and Subscribe, and Event. The white
elements belong to other models and provide the context for this view.

Figure 3-42 Complete Metamodel for Event Modeling
February 2004 ECA: Metamodel 3-109

3

3.11.4 Publish and Subscribe Package
This is an overview of the publish and subscribe aspect of event-driven business
computing. The yellow (shaded) elements are directly part of the publish and subscribe
package. Each of them will be described in detail below. The white elements belong to
other views and provide the context for this view.

Figure 3-43 Metamodel of event notification view

A publisher is a component that offers a list of publications, and produces (publishes)
PubSubNotices accordingly. Publication is the commitment to send PubSubNotice.
PubSubNotice is the data structure in which the PubSubNotice instances will be
published.

EventNotice is a kind of PubSubNotice.

A subscriber is a component that holds Subscriptions and receives PubSubNotices
accordingly. Subscription is the loose coupling between the sending of the notice and
the receipt of the notice. A subscriptionClause determines whether the subscriber gets
notified or not.

Sub scrib er

Pub li sher

Subscription

subscriptionClause : express ion
dom ain : S tring

Publication

publicationClause : express ion
dom ain : S tring

0..n

0..n

+offers
0..n

+offeredBy
0..n

PubSubNotice

1..n

1..n
+subscribedBy

1..n+s ubscribesTo

1..n

1..n

1..n

+announcedBy

1..n
+announc es

1..n

Pu blish and S ubscribe (PubSub) Package

FlowPort
(from CCA)

Com pos iteData
(from CCA)
3-110 Enterprise Collaboation Architecture February 2004

3

Notification is the sending of a PubSubNotice from the Publisher to the Subscriber
when an event happens within the Publisher. This is usually handled by middleware,
and publisher and subscriber are loosely coupled and anonymous relative to each other.

3.11.4.1 Publisher

Semantics

A publisher is a component that exposes a list of publications and produces
PubSubNotices accordingly.

Fully Scoped name

EDOC::CCA::Event:: Publisher

Owned By

None

Properties

None

Related elements

Publication

Publisher offers one or more Publications.

Constraints

None

3.11.4.2 Publication

Semantics

A Publication is a declaration of capability and intent to produce a PubSubNotice.

Fully Scoped Name

EDOC::CCA::Event:: Publication

Owned By

Publisher
February 2004 ECA: Metamodel 3-111

3

Properties

publicationClause
Expression based on attributes of PubSubNotice, describing the instance subset that
will be produced according to this publication.

domain
A domain in which the PubSubNotices for this publication will be produced.

Related Elements

Publisher
A Publication is offeredBy exactly one Publisher.

PubSubNotice
A Publication announces one or more PubSubNotices.

FlowPort
A Publication Inherits from FlowPort as per the Component Model.

Constraints

PublicationClause Expression is constrained to the values of the attributes of the
associated EventNotice.

3.11.4.3 Subscriber

Semantics

A subscriber is a role or component that exposes a list of subscriptions and consumes
PubSubNotices accordingly.

Fully Scoped Name

EDOC::CCA::Event:: Subscriber

Owned By

None

Properties

None
3-112 Enterprise Collaboation Architecture February 2004

3

Related elements

Subscription
A Subscriber holds one or more Subscriptions.

Constraints

None

3.11.4.4 Subscription

Semantics

Subscription is the expression of interest in receiving and capability to receive a
PubSubNotice.

Fully Scoped Name

EDOC::CCA::Event:: Subscription

Owned By

Subscriber

Properties

subscriptionClause
Expression based on attributes of PubSubNotice, describing the instance subset of
interest to this subscription.

domain
A domain of interest. Only PubSubNotices produced within this domain are of interest.

Related Elements

Subscriber
A Subscription is heldBy exactly one Subscriber.

EventNotice
A Subscription subscribesTo one or more EventNotices.

FlowPort
A Subscription Inherits from FlowPort as per Component Model.
February 2004 ECA: Metamodel 3-113

3

Constraints

SubscriptionClause Expression is constrained to the values of the attributes of the
associated EventNotice. If the subscription is for more than one event notice, the
expression is constrained to attributes that are common to all the event notices of
interest.

3.11.4.5 PubSubNotice

Semantics

A PubSubNotice is any data structure that is announcedBy a publication and/or
subscribedTo by a subscription. Instances of PubSubNotice are communicated as
DataFlows from publishers to subscribers based on the subscriptions.

Fully Scoped Name

EDOC::CCA::Event:: PubSubNotice

Owned By

None

Properties

None

Related Elements

Subscription
A PubSubNotice is subscribedBy one or more Subscriptions.

Publication
A PubSubNotice is announcedBy one or more Publications.

CompositeData
A PubSubNotice Inherits from CompositeData as per Entities model.

Constraints

None

3.11.5 Event Package
This is an overview of event aspect of event-driven business computing. The yellow
(shaded) elements are directly part of the event package. Each of them will be
described in detail below. The white elements belong to other views and provide the
context for this view.
3-114 Enterprise Collaboation Architecture February 2004

3

Figure 3-44 Diagram of Event Package

3.11.5.1 BusinessEvent

Semantics

A business event is any event of business interest that happens within an enterprise.
BusinessEvents are either ProcessEvents or DataEvents.

Fully Scoped Name

EDOC::CCA::Event:: BusinessEvent

Owned By

None
February 2004 ECA: Metamodel 3-115

3

Properties

None

Related Elements

EventNotice
A business event triggers zero or more event notices.

A business event is describedBy one or more event notices.

ProcessEvent
Business event is the Abstract supertype of ProcessEvent.

DataEvent
Business event is the Abstract supertype of DataEvent.

Constraints

None

3.11.5.2 ProcessEvent

Semantics

A process event is any business event that reflects a state change within a process (i.e.,
entry into or exit from Nodes in a Choreography).

Fully Scoped Name

EDOC::CCA::Event:: ProcessEvent

Owned By

EventBasedProcess

Properties

None

Related Elements

Node
A ProcessEvent reflects the entry into or exit from one Node (or the exit from one and
entry into another, i.e., two Nodes).

BusinessEvent
ProcessEvent Inherits from BusinessEvent.
3-116 Enterprise Collaboation Architecture February 2004

3

Constraints

Any Node referenced must belong to the EventBasedProcess that also owns this
ProcessEvent.

3.11.5.3 DataEvent

Semantics

A data event is any business event that reflects a change in data managed by a
DataManager.

Fully Scoped Name

EDOC::CCA::Event:: DataEvent

Owned By

EventBasedDataManager

Properties

None

Related Elements

BusinessEvent

ProcessEvent Inherits from BusinessEvent.

Constraints

None

3.11.5.4 EventNotice

Semantics

An event notice is any PubSubNotice that is triggered by a business event.

Fully Scoped Name

EDOC::CCA::Event:: EventNotice

Owned By

None

Properties

None
February 2004 ECA: Metamodel 3-117

3

Related Elements

BusinessEvent
An event notice is triggeredBy exactly one Business Event.

An event notice may describe at most one Business Events.

PubSubNotice
An event notice Inherits from PubSubNotice.

Constraints

None

3.11.5.5 EventBasedProcess

Semantics

An EventBasedProcess is a subtype of Choreography (CCA model). It is a Subscriber
and has NotificationRules associated with its Subscriptions. It is a Publisher and
publishes ProcessEvents. ProcessEvents describe the life cycle of the
EventBasedProcess.

Fully Scoped Name

EDOC::CCA::Event:: EventBasedProcess

Owned By

None

Properties

None

Related Elements

ProcessEvent
An EventBasedProcess owns a set of ProcessEvents that together describes the life
cycle of the EventBasedProcess.

Choreography
An EventBasedProcess Inherits from Choreography (from CCA model).

Publisher
An EventBasedProcess Inherits from Publisher.
3-118 Enterprise Collaboation Architecture February 2004

3

Subscriber
An EventBasedProcess Inherits from Subscriber.

EventBasedDataManager
An EventBasedProcess is the supertype of EventBasedDataManager.

Constraints

None

3.11.5.6 EventBasedDataManager

Semantics

An EventBasedDataManager is a DataManager. It is also a Publisher and publishes
DataEvents when its data changes. It may also be a subscriber, typically subscribing to
PubSubNotices relating to the maintenance of its data, e.g., replication.

Fully Scoped Name

EDOC::CCA::Event:: EventBasedDataManager

Owned By

None

Properties

None

Related Elements

DataEvent
An EventBasedDataManager owns a set of DataEvents that together describes possible
changes to the data owned by the EventBasedDataManager.

DataManager
An EventBasedDataManager Inherits from DataManager (from Entities model).

Publisher
An EventBasedDataManager Inherits from Publisher.

Subscriber
An EventBasedDataManager Inherits from Subscriber.
February 2004 ECA: Metamodel 3-119

3

EventBasedDataManager
An EventBasedDataManager inherits from EventBasedProcess.

Constraints

None

3.11.5.7 NotificationRule

Semantics

A NotificationRule is a rule associated with a subscription that determines what should
happen within the EventBasedProcess holding the subscription when a qualifying
PubSubNotice is delivered. Optionally, the NotificationRule can be further guarded by
an EventCondition that requires the delivery of additional events.

Fully Scoped Name

EDOC::CCA::Event:: NotificationRule

Owned By

EventBasedProcess

Properties

Condition
An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will cause the change in the EventBasedProcess indicated by
this NotificationRule.

Related Elements

Subscription
A NotificationRule is associated with a Subscription and ‘fires’ upon receipt of the
PubSubNotice associated with the Subscription.

EventCondition
A NotificationRule may be guardedBy one or more EventConditions calling for the
receipt of additional events before this NotificationRule will ‘fire’ successfully.

The EventCondition guarding the NotificationRule must be satisfied before the
NotificationRule’s Condition is evaluated.

Node
A NotificationRule governs the entry into or exit from one Node (or the exit from one
and entry into another, i.e., two Nodes).
3-120 Enterprise Collaboation Architecture February 2004

3

Constraints

Any EventCondition must reference Subscriptions belonging to the same
EventBasedProcess as the NotificationRule.

3.11.5.8 EventCondition

Semantics

An EventCondition identifies a subscription and specifies a PubSubNotice instance
subset of which one must have been received to satisfy this condition.

Fully Scoped Name

EDOC::CCA::Event:: EventCondition

Owned By

NotificationRule

Properties

Condition
An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will satisfy the guard constituted by this EventCondition.

Related Elements

Subscription
An EventCondition requires a Subscription and ‘fires’ upon receipt of a PubSubNotice
associated with the Subscription. If the received PubSubNotice satisfies the condition
expression, then the EventCondition has been satisfied.

Constraints

None

3.12 Relationship to other ECA Models

3.12.1 Relationship to Business Process Model and Entities Model
The ECA Business Process model describes a process as a set of activities.

Activities are defined in terms of responsible party, performers, artifacts, and pre and
post conditions.

The Business Process model does not specify which performers act on what
artifacts, and how.
February 2004 ECA: Relationship to other ECA Models 3-121

3

It does not specify directly the relationship between states of artifacts and the pre
and post conditions of activities.

It does not show directly what triggers each activity.

(Above three statements are qualified: other than as annotated in activity diagram as
control flow and object flow.)

The Business Process model relies on components to implement the choreography. The
states and transitions of choreography implement the control flows of the activity
diagram.

The messages implement the information flows from the collaboration diagram.

The Events model (this model) describes events that happen to artifacts (entities). It
describes business events as changes from one state to another. The Events model
describes how activities result in state changes (i.e., events).

It describes how these BusinessEvents map to EventNotices, and how subscriptions
can channel notifications to processes, and how delivery of an EventNotice can be
mapped by NotificationRules to activities.

The Events model does not describe who or what within the process establishes the
subscription, or who or what within the process reacts to receipts of notifications.

3.12.2 Relationship to ECA CCA Model

3.12.2.1 Modeling Events with Components
Events are changes in state to either entities or processes.

Just about anything that happens in a business has interest to someone else, and so
every event (to an entity or to a process) has the potential for causing notification.

At the system level this means that any process or entity has to offer notification (i.e.,
allow subscription) to any of its state change notifications.

Most event notifications also trigger rules of some kind. If state of inventory changes
to 'below-minimum-stock-level' some re-order rule kicks in. If state of the order-
process changes to 'over-due' then some expediting rule kicks in.

At the system level this means that NotificationRules and BusinessConditions must be
able to refer to events.

All activities result in a new state, or in failure.

At the system level this means that definitions of activities and operations include
postconditions. These postconditions could be either expressions of events (i.e., state
change) or more likely expression of state (where the state change, or event, is
implicit).

The Events model relies on the CCA model to implement the outgoing event
notification flows from an entity component, and the incoming event notification flows
to a process component. Event notification flows happen from flow port to flow port.
3-122 Enterprise Collaboation Architecture February 2004

3

The Events model relies on the CCA model to implement the linkage between (the
completion of) an action on an entity and (an instance of) an event. The event model
specifies which activity causes which event.

3.13 Relationship Other Paradigms
In general the central idea of event driven computing is that event notifications trigger
action and/or communication, and that very little action or communication is not
triggered by event notifications.

There are four main kinds of communication:

• Business notification: A one-way, information-only, notification. A special subtype
is event-notification that informs that an event just happened. This is the main form
of communication in event-driven computing.

• Query: A two-way, request, response, with the response being the query result set.
This is a more tightly coupled model. However a query could be triggered by the
loosely coupled receipt of a business notification. Also the gathering of data for a
business notification could require one or more tightly coupled queries.

• Collaboration: A two-way, negotiation-style, communication that may or may not
result in a new state between the parties. An atomic style subtype is the ebXML
business transaction. This could be implemented in many ways. One way is to
consider the requests and responses in the collaboration to simply be business
notifications. Regardless how the collaboration itself is implemented, it could
certainly be triggered by the loosely coupled receipt of a business notification. For
instance notification of an event within the enterprise might trigger the
collaboration to order more inventory.

• Method invocation: A one-way, with optional return parameters, communication
that usually causes the state at the remote end to change in a predefined way. Again,
a method invocation could be triggered by the loosely coupled receipt of a business
notification. Also under event driven computing entity operations, which are often
implemented as method invocations, will trigger the sending of one or more loosely
coupled event notifications. A cousin of method invocation, web service invocation,
is usually likely to be implemented as one way transfer of messages over standard
internet protocols. As such you could easily have web services react directly to
event notifications.

So again, event notifications can trigger many kinds of communication, and based on
business rules and or subscriptions, the kind of communication may be another
notification, a collaboration, a method invocation, or a query.

Many times a tightly coupled systems model can be replaced with an event based
model to create more flexibility in business and systems re-engineering. Generically
replacing state machines with event-driven computing always adds loose coupling. In a
state machine, the event is both the thing that happened and the stimulus for something
else to happen. The two cannot be separated. In event driven computing the event, the
sending of a notification, the receipt of the notification, and the reaction to the
notification are all separate, and can be much more easily reconfigured upon demand.

The above is true both at a generic business level and at a system level.
February 2004 ECA: Relationship Other Paradigms 3-123

3

3.13.1 ebXML
ebXML is a large initiative to model and implement business collaborations based on
XML message exchanges between the parties.

There are several relationships of the event model to ebXML.

First, event driven computing within the enterprise is the best way to determine when
to initiate business collaborations.

Second, the XML message exchanges could themselves be treated as business
notifications.

Thirdly, the ebXML business model is based in part on a model for exchange of
economic resources, where each such exchange is called an economic event. The
capture of such economic events is similar to the capture of normal business events,
and the communication of the notifications can be the same for both.

Fourth, the model for economic resources deals also with future commitments, which
can be thought of as promises to execute economic events in the future. This extends
the event model into prediction of events and executions against those predictions.

ebXML, phase one, was approved in May of 2001. In this phase, the ebXML business
process choreography is already near identical to the ECA choreography. It is predicted
that ebXML phase two will bring further alignment to ECA, and to the evolving web
services standards.

3.14 Example
In the engineering of EventBasedProcesses you identify the business entities to be
affected and examine their available business events and ‘communicated’ business
notifications. Activities for the EventBasedProcess are then constructed to contain
NotificationRules that ‘listen’ for the appropriate business notifications, and business
activities that cause the appropriate business events to happen. The process can easily
be re-engineered by changing the subscriptions, or the NotificationRules, thus causing
different business activities to happen in response to a given business notification.

A basic EventBasedProcess, and its relationships to business entities can be depicted
on a diagram such as that below.
3-124 Enterprise Collaboation Architecture February 2004

3

Figure 3-45 Business process/entity/event diagram

Processes and entities are depicted as large boxes. Activities within a process are ovals.
Events are ‘dog-eared’ boxes. Entity operations are fat arrows. Entity states are
hexagons. Business notifications are arrows from event boxes to the left side of
process boxes. Invocations of entity operations are arrows from activity ovals to the
fat arrows.

This diagram contains notational elements that can (almost) all be mapped directly to
an Activity Diagram for the EventBasedProcess, a State Chart for the Entity, and a
Sequence Diagram for the interaction between the two.
February 2004 ECA: Example 3-125

3

Section V - The Business Process Model
The Business Process model specializes the CCA, and describes a set of UML
extensions that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports.

3.15 Introduction
The Business Process model provides modeling concepts that allow the description of
business processes in terms of a composition of business activities, selection criteria
for the entities that carry out these activities, and their communication and
coordination. In particular, the Business Process model provides the ability to express:

• Complex dependencies between individual business tasks (i.e., logical units of
work) constituting a business process, as well as rich concurrency semantics.

• Representation of several business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks.

• Representation of iteration in business tasks.

• Various time expressions, such as duration of a task and support for expression of
deadlines.

• Support for the detection of unexpected occurrences while performing business
tasks that need to be acted upon (i.e., exceptional situations).

• Associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution.

• Initiation of specific tasks in response to the occurrence of business events.

• The exposure of actions that take place during a business process as business
events.

3.16 Metamodel
This model is organized with three main model elements to describe a business
process: BusinessProcess, CompoundTask, and Activity as shown in Figure 3-46 in
which the derivation from the CCA is shown. BusinessProcess is the outermost layer
of composition representing a complete process specification. It is a
ProcessComponent for the purpose of its usage inside other CCA Compositions, but its
Composition is constrained in the same way as a CompoundTask. In other words,
BusinessProcesses are the entry point from CCA to a process definition.
CompoundTasks are also specializations of CCA ProcessComponents, but their Ports
are constrained specializations of CCA Ports that represent the data required to initiate
an enactment of its Composition, which defines how it executes.

The only ComponentUsages CompoundTasks and BusinessProcesses may contain are
Activities, which are specializations of CCA ComponentUsages. Activities are the
pieces of work required to complete a Process, and CompoundTasks are the containers
3-126 Enterprise Collaboation Architecture February 2004

3

for a logical set of Activities and the DataFlows that define the temporal and data
dependencies between them. DataFlows are specializations of CCA Flows that connect
the PortConnectors on the Activities.

Activities are always usages of a CompoundTask definition, which defines the Port
types and their correlation semantics. CompoundTasks defining an Activity either
compose additional Activities and DataFlows to show how this Activity is performed,
or the Activity also refers to a Performer ProcessRole via the performedBy
association, which is a binding to a ProcessComponent that fulfills the requirements of
the ProcessRole. Performer ProcessRoles are the exit point from a process definition
that allows it to invoke ProcessComponents (and their specializations, such as
Entities). Many Activities may be usages of the same CompoundTask definition, and
many activities in the same CompoundTask may be performed by the same
ProcessRole.

(See Section 3.19 for the combined Process Model)

Figure 3-46 Composition of Process ModelElements

DataFlows (constrained Flows) allow the connection of the ProcessPortConnectors
representing the ProcessFlowPorts of a CompoundTask to the ProcessPortConnectors
of its contained Activities and vice versa. We will call the ProcessPortConnectors
representing usage of a ProcessFlowPort in an InputGroup input
ProcessPortConnectors. Likewise the ProcessPortConnectors representing usage of a
ProcessFlowPort in an OutputGroup or ExceptionGroup are called output and
exception ProcessPortConnectors, respectively.

Activity

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA) ComponentUsage

name : String
(from CCA)

n1 n

+uses

1

Composition
(from CCA)

n

1

+uses n

+owner

1

CompoundTask

BusinessProcess

BusinessProcessEntity

Entity

Managed : Boolean
(from Entity)
February 2004 ECA: Metamodel 3-127

3

The flow of data typically goes from input ProcessPortConnectors of the
CompoundTask to the input ProcessPortConnectors of an Activity contained by the
CompoundTask, and then from the output ProcessPortConnectors of the Activity to
either the input ProcessPortConnectors of another contained Activity or to the output
or exception ProcessPortConnectors of the CompoundTask.

ProcessFlowPorts are the formal types of inputs to and outputs from a CompoundTask.
They have a multiplicity, given by the attribute pair multiplicity_lb and
multiplicity_ub, which indicates the lower bound on the number of values that needs
to be received or transmitted by the PortConnector instantiating this port type at
runtime, as well as the upper bound on the number of values that the PortConnector
can hold before it begins discarding them.

Multiports are used to aggregate FlowPorts. The MultiPort specializations,
InputGroup, OutputGroup, and ExceptionGroup indicate that a set of
ProcessFlowPorts, when used in some Composition, must all receive values from
DataFlows before any of the values are received or transmitted by the CompoundTask
that owns them. They can be considered to be correlators. A ProcessMultiPort may be
synchronous or asynchronous, as indicated by its synchronous attribute inherited from
Port. Usages of Synchronous ProcessMultiPorts indicate the initiation or termination of
the execution of some Activity owning the PortUsage, whereas usages of asynchronous
ProcessMultiPorts may only have the values in their contained ProcessFlowPorts
transmitted into or out of an already executing Activity.
3-128 Enterprise Collaboation Architecture February 2004

3

Figure 3-47 Inputs and Outputs of Process ModelElements

In addition:

• An Activity may specify required Artifact(s) that select information entities to be
used or produced.

• An Activity may specify ResponsibleParty(s) that select people, company, or other
group roles that are responsible for the Activity.

• Each Activity may have ActivityPreCondition(s) and ActivityPostCondition(s) that
further constrain when it starts and how it completes (see Section 3.18, “Process
Model Patterns,” on page 3-152).

Port

name : String
synchronous : Boolean
transactional : Boolean
direction : DirectionType
postCondition : Status

(from CCA)

<<boundary>>

PortUsage
(from CCA)

1 n

+represents

1 n

PortConnector
(from CCA)

AbstractTransition
(from CCA)

Node

name : String
(from CCA) n1

+outgoing
n

+source
1

n1
+incoming

n
+target
1

FlowPort
(from CCA)

<<boundary>>
MultiPort

(from CCA)

ProcessMultiPort

InputGroup OutputGroup

ExceptionGroup

ProcessFlowPort
multiplicity_lb : short
multiplicity_ub : short

ProcessPortConnector
DataFlow

Connection
(from CCA)

connects
February 2004 ECA: Metamodel 3-129

3

Figure 3-48 Diagram of the Roles aspect of the Process Model

The model in Figure 3-48 shows the ownership of ProcessRoles by CompoundTasks
(via their ProcessComponent base class). ProcessRoles have three kinds of
relationships with Activities. An Activity may be performedBy a ProcessRole, or it is
possible that an Activity has a usesArtifact association with a ProcessRole, or a
ProcessRole may be responsible for an Activity, as indicated by a responsibleFor
association end role. The same ProcessRole may have several associations with
different Activities, for example to be the performer for one activity, while also being
an artifact for another, or to be both the responsible party and performer for an
Activity. The specific ProcessRoles of Performer, Artifact, and ResponsibleParty are
constrained to be associated with Activities only by the performedBy, usesArtifact, and
responsibleFor associations respectively, and are useful in many cases where
ProcessRoles do not need to be re-used.

At run time a ProcessRole represents the binding of a state variable in its owner
CompoundTask to a concrete ProcessComponent instance that meets the requirements
of the selectionRule or creationRule attributes of the ProcessRole. Typically the
performer roles of an Activity will have a type from which the defining
CompoundTask of that Activity has been derived. The OperationPorts of the
ProcessComponent identified by the ProcessRole will be represented as a pair of an

Performer Artifact ResponsibleParty

ProcessRole
selectionRule : string
creationRule : string

Activity

0..n
0..n

+responsibleFor
0..n

0..n

0..n
0..n

+usesArtifact
0..n

0..n

0..1 0..n
+performedBy
0..1 0..n

CompoundTask

BusinessProcess

Composition
(from CCA) ComponentUsage

name : String
n1

+uses

n

+owner

1

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = fa lse
primitiveKind : String
primitiveSpec : String

(from CCA)

n

1

n
+uses

1

3-130 Enterprise Collaboation Architecture February 2004

3

InputGroup and an OutputGroup that contain ProcessFlowPorts that represent the input
and output parameters of the OperationPort. Exceptions are represented by additional
ExceptionGroups.

In addition to the basic set of model elements given above, there are a number of other
important concepts required in the modeling of Processes that can be expressed as
patterns of use of these basic elements:

• ActivityPreCondition

• ActivityPostCondition

• Timeout

• Terminate

• Loops
• Simple Loop
• While and Repeat/Until Loop
• For Loop

• Multitask

These are explained in Section 3.18, “Process Model Patterns,” on page 3-152.

An example of a CompoundTask containing Activities is shown in Figure 3-49.
February 2004 ECA: Metamodel 3-131

3

Figure 3-49 A labeled CompoundTask Diagram

3.16.1 Business Process Metamodel
The metamodel for the Business Process model is contained in a single package,
BusinessProcess.

3.16.1.1 CompoundTask

Semantics

A CompoundTask defines how to coordinate a set of related Activities that, in
combination, perform some larger scale activity, ultimately in the context of a Business
Process. It represents the formal type and Correlation Protocol Contract of Ports
available on Activities that use the CompoundTask. It is also a container

RequestGrpWeightingsRequest

Get Best Suppliers

Check SuppliersRank Suppliers

Sources
Maintain Suppliers

Sources

Sources

Freight
Sources

No valid
sources

Ranked
sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sourcesRanked

sources

No valid
sources

No valid
sources

Sources

Freight
Sources

Activity

CompoundTask

input ProcessPortConnector

output ProcessPortConnector

exception ProcessPortConnectorDataFlow

InputGroup

OutputGroup

ExceptionGroup

ProcessRole
3-132 Enterprise Collaboation Architecture February 2004

3

(Composition) of Activities that use other CompoundTasks (or, when describing
recursion, that re-use this CompoundTask), a container of the DataFlows between these
Activities, and the ProcessRoles that model bindings to Objects required by these
Activities.

Fully Scoped name

ECA::BusinessProcess::CompoundTask

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess
CompoundTask

Properties

Associated elements

Constraints

[1] All Ports owned by a CompoundTask must be ProcessMultiPorts.

[2] All ComponentUsages contained by a CompoundTask must be Activities or
ProcessRoles.

3.16.1.2 Activity

Semantics

Activity represents the execution of a part of a Business Process using one of two
mechanisms (but not both). The mechanisms are:

• The creation of a Composition of nested Activities, ProcessRoles, and DataFlows
described by the CompoundTask that the Activity references through its uses
association.

• The execution of some feature of an Object bound to a ProcessRole instance
referred to via the Activity’s performedBy association. (See Section 3.16.1.12,
“ProcessRole,” on page 3-147.)

Hence an Activity represents an action that is either described by a further
decomposition in the form of a CompoundTask or it represents and action that is
performed by objects bound to ProcessRoles either statically, or at runtime as the
Activity enters the Running state.

An Activity may also be associated via the usesArtifact and responsibleFor
associations to one or more ProcessRoles. These ProcessRoles will be bound to
Objects at run time as the Activity enters the Running state.
February 2004 ECA: Metamodel 3-133

3

An Activity’s PortUsages representing InputGroups (input PortUsages), which contain
ProcessPortConnectors representing ProcessFlowPorts (input ProcessPortConnectors),
are the alternative means by which the Activity may supply data to these mechanisms
to initiate some action.

PortUsages representing synchronous InputGroups owned by an Activity instance
represent different initializations, and only one of these will ever be enabled, at which
time the Activity instance will begin its execution.

An Activity instance must be in the Running state before it can use any data in input
PortUsages (synchronous or asynchronous) from its containing Activity instance.

If no Synchronous input PortUsages are present, then the Activity will be initialized as
part of the initialization of its container Activity. This will allow it to receive
asynchronous inputs as soon as they propagate into the container Activity.

When an Activity is performedBy a ProcessRole that has not yet been bound, the
ProcessRole will be bound to an appropriate Object during the initialization of the
Activity. The binding for the Role will last at least for the duration of the life time of
the Activity, but the Object it binds to may exist before the binding is created, and may
live longer than the binding. Once bound, the Role will persist until all other Activities
to which it is associated have completed.

Asynchronous input PortUsages owned by an Activity represent the means by which
the Activity may accept input values during its active life time. When an Activity is in
the NotStarted state (none of its synchronous input PortUsages is enabled) all data
values that arrive at a ProcessPortConnector in an asynchronous PortUsage will be
kept in that Port Connector only up to its multiplicity’s upper bound. Additional values
will cause discarding. However, once the Activity enters the Running state the sets of
correlated Inputs will be consumed by the Activity.

Note – This behavior trades off the resource savings of keeping asynchronous values
only up to and including the slots defined by an Input’s multiplicities against the
ability to queue all asynchronous flows on behalf of Activities yet to be enabled. The
problem is that in many process definitions, choices are made about which path a
process will take, leaving many Activities’ input PortUsages only partially satisfied
and unable to ever become enabled. In a long-lived Process this may mean that large
numbers of data values arriving at asynchronous Inputs will be queued, never to be
consumed by that Activity.
3-134 Enterprise Collaboation Architecture February 2004

3

Figure 3-50 State Machine describing execution of Activities and CompoundTasks

Runtime Semantics: Figure 3-50 shows the state machine for an Activity instance.
When an Activity is created, only the resources required to enact the PortUsage
behavior of the Activity are created. The Activity then enters the NotStarted state. In
this state the Activity may accept Flows at its input ProcessPortConnectors.

Once one of its synchronous input PortUsages is enabled (or it has no synchronous
input PortUsages), ProcessRole binding is performed (as specified for ProcessRole in
Section 3.16.1.12, “ProcessRole,” on page 3-147).

Then, if the Activity uses a CompoundTask that is a non-empty Composition, all the
resources to represent the contained DataFlows, Bindings, and nested Activities are
allocated and all nested Activities are created. The Activity now enters the Running
state.

An Activity instance enters the Completed state when none of its contained Activity
instances that have synchronous output PortUsages containing values (that are not also
exception PortUsages) are in the Running state and there are no DataFlows that are in
the process of delivering their data (which could then trigger the running of another
Activity). Note, this means that not all contained Activities need to have executed,
only that none (that have synchronous output ProcessMultiPorts) are running. This
results in a quiescent model for completion.

Alternatively, if an Activity instance has an exception PortUsage that is satisfied, then
all Activity instances that are contained by this Activity instance and are in the
Running state are aborted. The Activity will then satisfy the quiescent model
completion criteria just outlined.

An Activity instance enters the Completed state, if a satisfied synchronous output
PortUsage is enabled. If there is more than one satisfied synchronous output
PortUsage, then the choice of which one to enable is arbitrary. If there is no
synchronous output PortUsage that is satisfied, then the Activity instance’s system
ExceptionGroup is enabled.
February 2004 ECA: Metamodel 3-135

3

If a nested Activity instance contained by an Activity enters the Completed state with
an exception PortUsage enabled and the exception is unhandled (see Section 3.16.1.11,
“ExceptionGroup,” on page 3-146 for the definition of handled and unhandled
ExceptionGroups), then the containing Activity instance’s system ExceptionGroup is
enabled.

If an Activity instance is aborted, it terminates all of its contained Activity instances
and enters the Aborted state.

If the Activity uses an empty Composition, it must have a performedBy link to a
ProcessRole, which will now be bound, and the Activity instance enters the Running
state. While in the Running state, values from enabled input ProcessPortConnector
instances may be consumed. In most cases this will mean that the PortUsage that was
enabled has a collection of input Parameters for a method on the Object bound to the
performer ProcessRole, which will be invoked. The return of the method will place
values into an output PortUsage (representing an OutputGroup or ExceptionGroup),
which will enable that PortUsage.

The Activity instance enters the Stopped state when one of its synchronous
OutputGroup instances is enabled. If this is an ExceptionGroup instance, then it enters
the Aborted state, otherwise it enters the Completed state.

Fully Scoped name

ECA::BusinessProcess::Activity

Owned by

CompoundTask

Inheritance

ECA::CCA:: ComponentUsage

Activity

Properties

Associated elements

uses (from ComponentUsage)
An Activity is always associated with a CompoundTask via the uses association.

performedBy
An Activity with an empty CompoundTask Composition must be linked to a single
ProcessRole via the performedBy association.

usesArtifact
An Activity may require access to Objects via a ProcessRole to use as a passive
resource. Its usesArtifact association indicates the Roles it uses for this purpose.
3-136 Enterprise Collaboation Architecture February 2004

3

responsibleFor
An Activity in a BusinessProcess may be performedBy a ProcessRole that does so on
behalf of another Role or Roles that are responsible for the Activity. The
responsibleFor association allows these Roles to identify Object representing
responsible parties.

Constraints

[1] An Activity that uses a CompoundTask definition with no internal Composition
must have a performedBy link.

3.16.1.3 BusinessProcess

Semantics

A BusinessProcess defines the ProcessComponent view of a process definition that
coordinates a set of related Activities. It defines a complete business process that can
be invoked from another CCA Composition, usually using OperationPorts, which are
connected via DataFlows (a subtype of CCA Flow) to the ProcessPortConnectors of
the Activities that it contains. In other words, a BusinessProcess is an ordinary
ProcessComponent on the outside and a CompoundTask on the inside.

Fully Scoped name

ECA::BusinessProcess::BusinessProcess

Owned by

Inheritance

ECA::CCA::ComponentDefinition::ProcessComponent

BusinessProcess

Properties

Associated elements

Constraints

All ComponentUsages contained by a BusinessProcess must be Activities.

All Connectors contained by a BusinessProcess must be DataFlows.
February 2004 ECA: Metamodel 3-137

3

3.16.1.4 BusinessProcessEntity

Semantics

A BusinessProcessEntity is a BusinessProcess that is also an Entity with identity. It is
used to model long-lived processes that may require management and or interaction
during their lifetime.

Fully Scoped name

ECA::BusinessProcess::BusinessProcessEntity

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess

BusinessProcessEntity

ECA::Entity::Entity

BusinessProcessEntity

Properties

Associated elements

Constraints

N/A

3.16.1.5 ProcessFlowPort

Semantics

ProcessFlowPort represents data used in CompoundTask input/output.

Runtime Semantics: A ProcessFlowPort instance (represented by a
ProcessPortConnector on an Activity) is satisfied when it has at least multiplicity_lb
values, otherwise it is unsatisfied. It may not have more than multiplicity_ub values.

If a ProcessFlowPort instance is the sink of more than one DataFlow, then data values
for that instance can be supplied by any one of those DataFlows up to the upper bound
its multiplicity. In the default case of a multiplicity of {1,1} this implies OR semantics.
If more values are supplied than the multiplicity’s upper bound, the ProcessFlowPort
instance’s collection remains at the size of the upper bound, and some arbitrary set of
values are discarded.

When a ProcessFlowPort instance is enabled and its containing CompoundTask
instance (represented by an Activity) is in the Running state, it transmits its values
using all the associated DataFlows (AND semantics) as appropriate. If the
3-138 Enterprise Collaboation Architecture February 2004

3

ProcessFlowPort instance is contained by an asynchronous InputGroup instance, it then
discards its values and resets its state to unsatisfied or satisfied according to its
multiplicity.

Fully Scoped name

ECA::BusinessProcess::ProcessFlowPort

Owned by

ProcessMultiPort

Inheritance

ECA::CCA::FlowPort

ProcessFlowPort

Properties

multiplicity_lb : short

multiplicity_ub : short

The multiplicity of a ProcessFlowPort instance allows it to act as a collection of data
values of the same type. A multiplicity is expressed as a lower-bound, upper-bound
pair {multiplicity_lb, multiplicity_ub}, where -1 is used in the upper bound to indicate
infinity. The default multiplicity is {1,1} which represents a singleton collection.

Associated elements

ECA::CCA::DocumentModel::DataElement

A ProcessFlowPort is optionally associated with a DataElement by the type
association, which is inherited from FlowPort. A ProcessFlowPort that does not have
an associated type can be thought of as a control point. That is, the values handled by
these ProcessFlowPorts are like objects that have identity but no attributes. They can
be used, in conjunction with DataFlows, to describe control flow constraints that do
not involve data values.

Constraints

[1] A ProcessFlowPort must be owned by a ProcessMultiPort.

3.16.1.6 ProcessPortConnector

Semantics

A ProcessPortConnector represents the usage of a ProcessFlowPort in the context of a
CompoundTask.
February 2004 ECA: Metamodel 3-139

3

Fully Scoped name

ECA::BusinessProcess::ProcessPortConnector

Owned by

CompoundTask

Inheritance

ECA::CCA::ComponentDefinition::PortConnector

ProcessPortConnector

Properties

Associated elements

represents (from PortUsage)
A ProcessPortConnector is always associated with a ProcessFlowPort via the
represents association.

outgoing (from Node)
A ProcessPortConnector may be associated with zero or more DataFlows via the
outgoing association.

incoming (from Node)
A ProcessPortConnector may be associated with zero or more DataFlows via the
incoming association.

Constraints

[1] All Ports associated with a ProcessPortConnector by the represents association
must be ProcessFlowPorts.

[2] All ProcessPortConnectors must be owned by CompoundTasks.

3.16.1.7 DataFlow

Semantics

A DataFlow represents a causal relationship in a business process. The source of the
DataFlow must “happen” before the sink of the DataFlow. DataFlows also propagate
data values between causally related ProcessPortConnectors. In the case that a
DataFlow connects two ProcessPortConnectors in synchronous ProcessMultiPorts, the
implication is that the Activities occur in strict temporal sequence.

Runtime Semantics: A DataFlow instance is created when its containing
CompoundTask instance is created.
3-140 Enterprise Collaboation Architecture February 2004

3

The enabling of the source of a DataFlow causes the enabling of the DataFlow, which
then propagates the values from the source ProcessPortConnector to the sink
ProcessPortConnector. The sink ProcessPortConnector may then discard values as
necessary if its multiplicity upper bound is reached.

Fully Scoped name

ECA::BusinessProcess::DataFlow

Owned by

CompoundTask

Inheritance

ECA::CCA:: Connection

DataFlow

Properties

Associated elements

Constraints

[1] A ProcessPortConnector is a source of a DataFlow. A DataFlow has exactly one
source ProcessPortConnector, but a ProcessPortConnector can be the source of
zero or more DataFlows.

[2] A ProcessPortConnector is a sink of a DataFlow. A ProcessPortConnector has
exactly one sink ProcessPortConnector, but a ProcessPortConnector can be the
sink of zero or more DataFlows.

[3] The ProcessPortConnector that is the source of a DataFlow must be contained
(indirectly) by the same CompoundTask as the DataFlow, and must be either:
• a ProcessPortConnector representing a ProcessFlowPort of an InputGroup of the

CompoundTask; or
• a ProcessPortConnector representing a ProcessFlowPort owned by a PortUsage

representing an OutputGroup of a CompoundTask used by an Activity directly
contained by the DataFlow’s containing CompoundTask.

[4] A ProcessPortConnector that is the sink of a DataFlow must be contained
(indirectly) by the same CompoundTask as the DataFlow, and must be either:
• a ProcessPortConnector representing a ProcessFlowPort of an OutputGroup of

the CompoundTask; or
• a ProcessPortConnector representing a ProcessFlowPort owned by a PortUsage

representing an InputGroup of a CompoundTask used by an Activity directly
contained by the DataFlow’s containing CompoundTask.
February 2004 ECA: Metamodel 3-141

3

The well-formedness rules above can be considered as reading “DataFlows cannot
cross the boundaries of CompoundTasks.” Figure 3-51 shows three illegal DataFlows
(Note how the illegal DataFlows cross Task boundaries).

Figure 3-51 Illegal DataFlows crossing Task boundaries

[5] The type of the ProcessFlowPort represented by the source ProcessPortConnector
of a DataFlow must be the same as (or coerce-able to) the type of the
ProcessFlowPort represented by the sink ProcessPortConnector of a DataFlow.
Coercible includes converting a value of type T to a member of type

collection<T>
and vice versa.

[6] DataFlows between ProcessPortConnectors owned by PortUsage representing
synchronous ProcessMultiPorts within a CompoundTask should be acyclic; that is,
things cannot happen in a circular order. (However, see Business Process Patterns
in Section 3.18, “Process Model Patterns,” on page 3-152 for how to specify
processes involving looping.)

3.16.1.8 ProcessMultiPort

Semantics

ProcessMultiPort represents a set of related ProcessFlowPorts used to describe the
inputs and outputs of CompoundTasks. They act as a form of correlator for DataFlows.

Run-Time Semantics: As this section describes the semantics of ProcessMultiPorts,
owned by CompoundTasks, we use the terminology ProcessMultiPort instance to
mean a PortUsage representing a ProcessMultiport owned by an Activity, which we
call a CompoundTask instance. In the same way the term ProcessFlowPort instance
is used to mean a ProcessPortConnector contained by the PortUsage representing the
ProcessMultiport.

A ProcessMultiPort instance is satisfied when all of its contained ProcessFlowPort
instances are satisfied (AND semantics), otherwise it is unsatisfied.

CT2

A

CT1
3-142 Enterprise Collaboation Architecture February 2004

3

If a ProcessMultiPort instance is satisfied, then it may be enabled. However, at most
one synchronous InputGroup instance of a CompoundTask instance and one
synchronous OutputGroup instance of a CompoundTask instance may be enabled and,
once enabled, must remain in that state. An asynchronous ProcessMultiPort instance
does not have these constraints. It will enable its ProcessFlowPort instances whenever
it becomes enabled allowing them to transfer their contents and reset their state to
unsatisfied (or satisfied if their multiplicity_lb is zero). This semantics is described
formally using the Protocol in Figure 3-52 .

See the definitions of InputGroup in Section 3.16.1.9, “InputGroup,” on page 3-144,
and OutputGroup in Section 3.16.1.10, “OutputGroup,” on page 3-145 for more
specific behavioral specifications.
February 2004 ECA: Metamodel 3-143

3

Figure 3-52 Example Protocol describing the behavior of ProcessMultiPorts
3-144 Enterprise Collaboation Architecture February 2004

3

Fully Scoped name

ECA::BusinessProcess::ProcessMultiPort

Owned by

CompoundTask

Inheritance

ECA::CCA::MultiPort

ProcessMultiPort

Properties

synchronous : boolean (from Port)

A value of TRUE indicates that this ProcessMultiPort represents either parameters that
may be used to trigger a CompoundTask instance to enter the Running state, or results
that are available when the instance enters the Stopped state.

A value of FALSE indicates that while the CompoundTask instance is in the Running
state, the ProcessMultiPort may either asynchronously consume one or more sets of
data, or asynchronously emit one or more sets of data.

Associated elements

ProcessFlowPort

A ProcessMultiPort provides a correlation framework for a number of
ProcessFlowPorts.

Constraints

[1] The Composition owning a ProcessMultiPort must be a CompoundTask.

3.16.1.9 InputGroup

Semantics

InputGroup is a specialization of ProcessMultiPort. It is a container for a number of
ProcessFlowPorts, which are the inputs to a CompoundTask.

Runtime Semantics: The InputGroup implies special semantics for the lifecycle of an
Activity using the CompoundTask definition that owns it when its synchronous
attribute is TRUE. In this case the InputGroup must be enabled before the Activity
may enter its Running state.

Fully Scoped name

ECA::BusinessProcess::InputGroup
February 2004 ECA: Metamodel 3-145

3

Owned by

CompoundTask (via its base class Composition)

Inheritance

ECA::CCA::ComponentSpecification::ProcessMultiPort

InputGroup

Properties

Associated elements

Constraints

3.16.1.10 OutputGroup

Semantics

OutputGroup represents a possible outcome of a CompoundTask; it provides data
values associated with that outcome. In the case of a synchronous OutputGroup it also
serves as an indication that an Activity using the CompoundTask definition to which
the OutputGroup belongs has entered the Stopped state.

OutputGroup models a collection of data values produced by a CompoundTask.

Runtime Semantics: The OutputGroup implies special semantics for the lifecycle of an
Activity using the CompoundTask definition that owns it when its synchronous
attribute is TRUE. In this case the Activity must be in its Stopped state before the
OutputGroup may be enabled.

Fully Scoped name

ECA::BusinessProcess::OutputGroup

Owned by

CompoundTask
3-146 Enterprise Collaboation Architecture February 2004

3

Properties

Associated element

Constraints

3.16.1.11 ExceptionGroup

Semantics

ExceptionGroup represents the outcome of a CompoundTask that failed to complete
its function. In a CompoundTask, an Activity’s ProcessPortConnectors representing the
ProcessFlowPorts of ExceptionGroup can be handled either by an exception handler
(an Activity) to which the Port Connectors have DataFlows, or by an ExceptionGroup
of the containing CompoundTask to which it has DataFlows. If, at runtime, an
Activity’s ExceptionGroup is not handled and the Exception is enabled, then it will be
propagated. That is, the containing CompoundTask instance’s system Exception will
be enabled (which consequently causes the CompoundTask instance to abort its
contained Activities and terminate in the Aborted state).

Figure 3-53 An ExceptionGroup that is handled by and Activity

Figure 3-54 An unhandled ExceptionGroup that will be propagated if it is enabled at runtime

Activity

Error

Exception
Handler

Error 2

handled ExceptionGroup

unhandled ExceptionGroup

Activity

Error propagated ExceptionGroup

C om poundTask

Error
February 2004 ECA: Metamodel 3-147

3

Fully Scoped name

ECA::BusinessProcess::ExceptionGroup

Owned by

CompoundTask

Properties

Associated elements

Constraints

3.16.1.12 ProcessRole

Semantics

ProcessRole defines a placeholder for concrete ProcessComponents that perform an
Activity or that are used in the performing of an Activity. It defines a placeholder for
behavior in a context. ProcessRole is a subtype of ComponentUsage with some
qualifying attributes. The owner of a ProcessRole is a CompoundTask and the behavior
of the ProcessRole becomes part of the behavior of Activities to which it is associated.
The uses association of a ProcessRole (inherited from ComponentUsage) defines the
type of ProcessComponent that is required to be bound to the placeholder.

Runtime Semantics: When an Activity is enabled, binding of any associated unbound
ProcessRole instances ensues based on the values of the selectionRule and
creationRule expressions. Note that some ProcessRole instances may have been bound
previously due to an association with another Activity that has already been enabled so
no further binding is needed.

If both the selectionRule and creationRule expressions are empty, then it is left up to
the Activity itself to perform binding, otherwise binding takes place as follows:

Binding of an unbound ProcessRole begins by determining the candidate instances.
These are the set of ProcessComponent instances with a compatible type and that
satisfy the selectionRule. The selectionRule may refer to the values of the input
ProcessPortConnectors of any of the ProcessRole’s associated Activities. It is
incumbent on the modeler to ensure that the selectionRule is well-formed in the face of
attributes that may not yet have values.

If there are no candidate instances, and the creationRule expression is non-empty, it
will be used to generate a new candidate instance (or instances if the expression returns
multiples).

One of the candidate instances will then be bound to the ProcessRole. If there are no
candidate instances, the containing Activity instance will have its system
ExceptionGroup enabled.
3-148 Enterprise Collaboation Architecture February 2004

3

We note that something akin to the OMG Trader service can be used for this binding
process. Also, the bound entity may be a proxy for a person such as a worklist in a
workflow execution environment.

Inheritance

ECA::CCA::ComponentUsage

ProcessRole

Fully Scoped name

ECA::BusinessProcess::ProcessRole

Owned by

CompoundTask

Properties

selectionRule
An expression describing the set of entities that may be bound to this ProcessRole.

creationRule
An expression describing how to create a new entity that may be bound to this
ProcessRole.

Associated elements

ProcessComponent: The uses association, inherited from ComponentUsage, indicates a
type of ProcessComponent (an abstract ProcessComponent). A concrete instance of
this type must be bound to the ProcessRole at runtime.

Activity: These may be associated with ProcessRoles by one or more of the following:
performedBy and/or usesArtifact and/or responsibleFor.

Constraints

[1] The ProcessComponent at the opposite end of the uses association must be abstract.

3.16.1.13 Performer

Semantics

A Performer ProcessRole is specifically for identifying an Entity that can perform the
Activity to which it is associated.
February 2004 ECA: Metamodel 3-149

3

Inheritance

ECA::CCA::ComponentUsage
ProcessRole

Performer

Fully Scoped name

ECA::BusinessProcess::Performer

Owned by

CompoundTask

Properties

Associated elements

Activity: These may be associated with Performers by a performedBy association.

Constraints

 [1] A Performer may only be associated with Activities using the performedBy
association.

3.16.1.14 Artifact

Semantics

A Performer ProcessRole is specifically for identifying an Entity that is needed by an
Activity as a resource.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole

Artifact

Fully Scoped name

ECA::BusinessProcess::Artifact

Owned by

CompoundTask

Properties

Associated elements

Activity: These may be associated with Artifact by a usesArtifact association.
3-150 Enterprise Collaboation Architecture February 2004

3

Constraints

[1] An Artifact may only be associated with Activities using the usesArtifact
association.

3.16.1.15 ResponsibleParty

Semantics

A ResponsibleParty ProcessRole is specifically for identifying an Entity that has
responsibility for the Activity to which it is associated.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole

ResponsibleParty

Fully Scoped name

ECA::BusinessProcess::ResponsibleParty

Owned by

CompoundTask

Associated elements

Activity: These may be associated with ResponsibleParties by a responsibleFor
association.

Constraints

[1] A ResponsibleParty may only be associated with Activities using the
responsibleFor association.

3.17 Notation for Activity and ProcessRole
As shown in Figure 3-56, an Activity is represented similarly to a ProcessComponent. If the Activ-
ity uses a CompoundTask that is not primitive (i.e., the Composition is non-empty and the isPrim-
itive attribute is false), then the ProcessComponent rectangle has a drop-shadow as shown in Figure
3-57.
February 2004 ECA: Notation for Activity and ProcessRole 3-151

3

Figure 3-56 Activity with synchronous and asynchronous InputGroups, an OutputGroup and an
ExceptionGroup

Figure 3-57 Activity that is involves creation of a Composition of nested Activities, etc.

Activity

Synch
InputGroup

input ProcessPortConnector

Asynch InputGroup

performedBy

usesArtifact

Synch
OutputGroup

output ProcessPortConnector

ExceptionGroup

ArtifactPerformer ResponsibleParty

ProcessRole

Activity
3-152 Enterprise Collaboation Architecture February 2004

3

Figure 3-58 A CompoundTask showing its composed Activities

The lollipops represent ProcessFlowPorts and the boxes surrounding them represent
ProcessMultiPorts. InputGroups appear on the left-hand side of the Activity and
OutputGroups appear on the right-hand side. Rectangular tabs are used to indicate
synchronous ProcessMultiPorts, rounded tabs are used to indicate asynchronous
ProcessMultiPorts. Triangular or bevel-edged tabs are used to indicate
ExceptionGroups, which are a kind of OutputGroup, and hence always appear on the
right.

ProcessRoles are drawn as octagons and are associated with Activities by either the
performedBy association for Performer roles, the usesArtifact association for Artifact
roles, or the responsibleFor association for ResponsibleParty roles. These associations
are drawn as a solid line annotated with the association name. See Section 3.16.1.12,
“ProcessRole,” on page 3-147 for more detail on the definition and usage of
ProcessRoles. It should be noted that a single ProcessRole may be an artifact role in
one association and a performer role in another association at the same time.
Additionally, an Activity that has a uses association to a CompoundTask with
composed Activities, DataFlows and ProcessRoles, may not have a performedBy
association to a ProcessRole.

3.18 Process Model Patterns
The rest of this section describes various patterns of common usage and associated
special notation that may be useful when using the ECA Process Model. We first
describe the pattern in terms of its normal notation, possibly with parameterized parts,
and in some cases then provide alternative shorthand notations.

We begin with some simple patterns then move on to more complex patterns involving
looping. In general, arbitrary loops in a business process specification can be quite
subtle in their behavior, especially in conjunction with concurrent threads. It is for this

CT

TaskA

CompoundTask

DataFlow

ControlPoint (degenerate DataElement)
February 2004 ECA: Process Model Patterns 3-153

3

reason that we restrict an Activity with synchronous DataGroups to executing once
only. The looping patterns presented here avoid these problems since they are always
defined in terms of an underlying recursive invocation structure.

It should be noted that the UML template notation, and the Patterns Framework
introduced in Chapter 4, are not sufficient to express the complexity required by these
patterns, since they usually consist of a CompoundTask parameterized by an Activity
that will have some unknown number of ProcessMultiPorts and ProcessFlowPorts.
When instantiating such a template with respect to a particular Activity, the
CompoundTask needs to have corresponding ProcessMultiPorts and ProcessFlowPorts
connected by Flows to the equivalent ports on the Activity argument to the template.

3.18.1 Timeout

Figure 3-59 Timeout Pattern

Often we will want to have an Activity timeout after some period. The pattern shown
in Figure 3-59 illustrates how we might do this. The Activity and timer are started at
the same time. If the timer finishes and sends a message on its asynchronous
OutputGroup before the Activity finishes, then the ExceptionGroup will be enabled
and the CompoundTask will terminate, thus terminating all contained Activities. On
the other hand, if the Activity finishes first, the CompoundTask will terminate without
waiting for the timer (since it has no synchronous OutputGroups).

A shorthand notation for this pattern is given in Figure 3-60. This notation may also
include a duration parameter, or absolute time parameter, which would be provided as
input to the underlying timer activity.

activity

Timeout
activity
3-154 Enterprise Collaboation Architecture February 2004

3

Figure 3-60 Timer pattern notation

Note we do not mandate any particular implementation for the timer task, we merely
posit its existence. It would be up to the modeler to have an appropriate performedBy
association, or for particular mappings to provide a suitable implementation.

3.18.2 Terminate

Figure 3-61 Templated activity supporting a terminate message

We may wish to be able to terminate an Activity before it has completed of its own
accord. The pattern shown in Figure 3-61 illustrates how an Activity can be wrapped to
support an additional asynchronous InputGroup that, on reception of a message, will
result in the activity being terminated and an exception being thrown.

That is, if a message is sent to the asynchronous InputGroup of the CompoundTask,
then it will immediately flow to the CompoundTask’s ExceptionGroup causing the
CompoundTask to terminate, thus terminating the contained Activity.

There is no suggested shorthand notation for this pattern. However, tools may wish to
support the implicit inclusion of an appropriately labeled asynchronous InputGroup
and corresponding ExceptionGroup on any arbitrary Activity.

2pm ,
M arch 20, 20005m inactivity activity activity

activity

Terminate
activity
February 2004 ECA: Process Model Patterns 3-155

3

3.18.3 Activity Preconditions and Activity Postconditions

Figure 3-62 Preconditions on an InputGroup and an OutputGroup

Sometimes it may be desirable to add a precondition to the InputGroup of an Activity,
or the OutputGroup of a CompoundTask, to further constrain the enabling of the
InputGroup/ OutputGroup. For example, there may be multiple DataFlows to an input,
but we wish to ignore any values that fall outside a given range. Figure 3-62 illustrates
how one might attach such a guard constraint where x and y are attributes of the
DataGroup (or perhaps even attributes of their contained DataElements).

Figure 3-63 An equivalent model to that of Figure 3-62 using condition tasks

Figure 3-63 shows an equivalent CompoundTask to that of Figure 3-62 but using
explicit filter Activities.

If a filter Activity does not produce enough outputs to satisfy the multiplicity
requirements of the Activity it is guarding, then the Activity will not start. As can be
seen from Figure 3-63, if neither filter is satisfied, then Activity ‘A’ will never run, so

Q

AP {-5 < x < 5}

{y < 0}

Q

AP {-5 < x < 5}

{y < 0}

3-156 Enterprise Collaboation Architecture February 2004

3

the CompoundTask instance will satisfy its completion criteria (quiescence) without
either OutputGroup being satisfied, which causes its system ExceptionGroup to be
enabled.

In a similar way, we may also attach a post-condition to an Activity’s OutputGroup to
ensure that the result of the Activity satisfies some condition. This is shown in Figure
3-64.

Figure 3-64 Post-conditions on OutputGroups of Activities

Figure 3-65 shows an equivalent CompoundTask to that of Figure 3-64 but using
explicit filter Activities that have a ‘success’ OutputGroup and a ‘fail’
ExceptionGroup. Thus, if the postcondition does not hold, the CompoundTask’s system
ExceptionGroup will be enabled.

Figure 3-65 An equivalent model to that of Figure 3-64, using condition tasks

Q

P {-5 < x < 5}

{y < 0}

Q

AP {-5 < x < 5}

{y < 0}
February 2004 ECA: Process Model Patterns 3-157

3

3.18.4 Simple Loop

Figure 3-66 Simple Loop Pattern

The pattern shown in Figure 3-66 shows how we might repeatedly invoke an Activity
until a particular OutputGroup is enabled. If the cardinality of the Output in the loop
CompoundTask is 0..*, then all the results of the Activity will be collected. If it is 0..m
for some finite m, then some subset of those results will be collected.

In this case, we assume that the exit condition and the loop action are combined into a
single Activity, possibly via a CompoundTask. Normally this will not be the case,
however, and the more general patterns described in Section 3.18.5, “While and
Repeat-Until Loops,” on page 3-158 through Section 3.18.7, “Multi-Task,” on
page 3-160 will be used.

A special-case shorthand notation for such a loop is shown in Figure 3-67. The looping
flow indicates that simple recursion is taking place. Any OutputGroup containing a
ProcessPortConnector that is the source of a looping flow may only be the source of
flows to a single InputGroup.

Figure 3-67 Simple Loop Notation

activity

Loop
activity

Loop

done

The results of
the activity and
the recursive call
will be merged.

0..m

activity
3-158 Enterprise Collaboation Architecture February 2004

3

3.18.5 While and Repeat-Until Loops

Figure 3-68 While Loop Pattern

In Figure 3-68 we see a more general ‘while’ loop pattern with separate exit test and
loop body, and Figure 3-69 shows a slightly different pattern that results in a ‘repeat-
until’ loop. The ‘while’ and ‘until’ Activities represent some kind of boolean
expression evaluation engine.

Figure 3-69 Repeat/Until Loop Pattern

while

Loop
while,
activity

Loop

done
0..m

activity

until

Loop
until, activity

Loop

done
0..m

activity
February 2004 ECA: Process Model Patterns 3-159

3

As for the Simple Loop, these loops could be drawn as shown in Figure 3-70 and Figure 3-71
respectively.

Figure 3-70 While Loop Notation

Figure 3-71 Repeat-Until Notation

3.18.6 For Loop

Figure 3-72 For Loop Pattern

The pattern in Figure 3-72 shows how to do a for-loop with a generalized initialization
step, loop test, and loop body as popularized by the C, C++, and Java languages. Note
that the inner loop is the while-loop pattern and hence the special-case notation for
while-loops can be used.

activity

while

done

untilactivity

done

while

Loop

ForLoop

done
0..m

activity

ForLoop

init
0..m

init, while, activity
3-160 Enterprise Collaboation Architecture February 2004

3

3.18.7 Multi-Task

Figure 3-73 Pattern for a multi-task

The pattern in Figure 3-73 shows how to process a collection of items in parallel and
collect the results. The split activity takes a collection of items and splits them into a
head and a tail. The head is passed to the activity for processing, while a concurrent
recursive invocation of the loop is initiated to process the tail. If, however, the
collection is empty, then the split’s other OutputGroup is enabled and the loop
CompoundTask finishes. No explicit flow from this OutputGroup to the
CompoundTask’s OutputGroup is required since all its Outputs will be satisfied with a
zero cardinality.

Intuitively, what happens when this pattern executes is as follows. When a collection
of items is passed in to the multi-task pattern, a set of concurrent loops and activities is
spawned, one pair for each item in the collection. The activity processes an item, and
the concurrent loop recursively handles the other n-1 items.

Note that if an Activity processing an item throws an exception, it is caught and passed
to a second Output in the OutputGroup. This means that a single failed Activity
doesn’t cause all the other Activities to be terminated and the completed activities to
throw away their results. This is especially useful in the case where we might wish to
apply the timer pattern to the Activity.

No shorthand notation for multitask is suggested.

activity

Loop
split, activity

Loop

0..m

split

0..m
February 2004 ECA: Process Model Patterns 3-161

3

3.19 Full Model
The diagram below represents the full metamodel for the Business Process model.

Figure 3-74 Combined MOF model of Process

Composition
(from CCA)

ComponentUsage

name : String
(from CCA)

n1

+uses

n

+owner

1

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA)

n

1

n
+uses

1

PortConnector
(from CCA)

PortActivity
(from CCA)

Multi Port
(from CCA)

FlowPort
(from CCA)

<<boundary>>

Port

name : String
synchronous : Boolean
transactional : Boolean
direction : DirectionType
postCondition : Status

(from CCA)

<<boundary>>

UsageContext
(from CCA)

PortUsage
(from CCA)

1 n

+represents

1 n

1

+extent

1

AbstractTransit ion
(from CCA)

Node

name : Stri ng
n 1

+outgoing

n

+source

1

n 1

+incoming

n

+target

1

ProcessPortConnector

ProcessFlowPort
multiplicity_lb : short
multiplicity_ub : short

ProcessMultiPort

InputGroup OutputGroup

ExceptionGroup

DataFlow

BusinessProcess

CompoundTask

ProcessRole

selecti onRule : string
creat ionRule : string

Activi ty

0..n 0..n
+responsibleFor
0..n 0..n

0..n 0..n
+usesArtifact
0..n 0..n

0..1 0..n
+performedBy
0..1 0..n

Connection
(from CCA)

connects

BusinessProcessEntity

Enti ty

Managed : Boolean
(from Entity)

Arti fact Performer ResponsibleParty
3-162 Enterprise Collaboation Architecture February 2004

References A
[2] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 1 – Over-
view – ISO/IEC 10746-1 | ITU-T Recommendation X.901

[3] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 2 – Foun-
dations – ISO/IEC 10746-2 | ITU-T Recommendation X.902

[4] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 3 – Ar-
chitecture – ISO/IEC 10746-3 | ITU-T Recommendation X.903

[5] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Enterprise
Viewpoint – ITU-T Recommendation X.911 | ISO/IEC 15414

[6] DISGIS Web site: http://www.disgis.com

[7] COMPASS Web site: http://www.compassgl.org

[8] OBOE Web site: http://www.dbis.informatik.uni-frankfurt.de/~oboe/

[9] ISO TC211 Web site: http://www.statkart.no/isotc211/

[10] Open Geodata Consortium Web site: http://www.opengis.org

[11] ISO/IEC JTC1/SC21, Information Technology. Open Systems Interconnection - Manage-
ment Information Services - Structure of Management Information - Part 7: General Relationship
Model, 1995. ISO/IEC 10165-7.

[12] T.Gilb, G.Weinberg. Humanized Input. Winthrop Publ., 1977.

[13] H.Kilov, J.Ross. Information modeling. Prentice-Hall, 1994.

[14] H.Kilov, L.Cuthbert. A model for document management. Computer Communications,
Vol. 18, No. 6 (June 1995), pp. 408-417

[15] H.Kilov. Business specifications. Prentice-Hall, 1999.
February 2004 Enterprise Collaboration Architecture A-1

[16] H.Kilov, A.Ash. How to ask questions: Handling complexity in a business specification.
In: Proceedings of the OOPSLA’97 Workshop on object-oriented behavioral semantics (Atlanta,
October 6th, 1997), ed. by H.Kilov, B.Rumpe, I.Simmonds, Munich University of Technology,
TUM-I9737, pp. 99-114.

[17] H.Kilov, A.Ash. An information management project: what to do when your business spec-
ification is ready. In: Proceedings of the Second ECOOP Workshop on Precise Behavioral Seman-
tics, Brussels, July 24, 1998 (ed. by H.Kilov and B.Rumpe). Technical University of Munich,
TUM-I9813, pp. 95-104.

[18] H.Kilov, B.Rumpe, I.Simmonds (Eds.). Behavioral specifications of businesses and sys-
tems. Kluwer Academic Publishers, 1999.

[19] B.Potter, J.Sinclair, D.Till. An introduction to formal specification and Z. Prentice-Hall,
1991.

[20] Sun Java Community Process JSR-26 currently under public review, http://jcp.org/jsr/de-
tail/26.jsp

[21] Sun Java Community Process JSR-40 not yet released for public review, ht-
tp://jcp.org/jsr/detail/40.jsp

[22] MOF 1.3 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-09-05

[23] UML Profile for CORBA 1.1 specification, OMG document http://cgi.omg.org/cgi-
bin/doc? ptc/01-01-06

[24] Unified Modeling Language Specification, Version 1.4, OMG document ht-
tp://cgi.omg.org/cgi-bin/doc?ad/01-02-13

[25] XMI 1.1 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-10-02

[26] Unified Modeling Language Specification, Version 1.3, June, 1999 http://cgi.omg.org/cgi-
bin/doc?ad/99-06-08

[27] Desmond F. D’Souza, Alan Cameron Wills. Objects, Components, and frameworks with
UML: The Catalysis Approach. Reading, Mass., Addison-Wesley, 1999.

[28] Martin Fowler. M. Analysis Patterns: Reusable Object Models. Reading, Mass., Addison-
Wesley, 1997.

[29] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[30] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development Pro-
cess. Addison-Wesley, Reading, Mass., 1999.

[31] OMG, Model Driven Architecture – under development

[32] Trygve Reenskaugh, Per Wold and Odd Arild Lehne. Working with Objects : the OORAM
Software Engineering Method 1996 Manning Publications Co. 1996

[33] Bran Selic, Garth Gullekson and Paul T. Ward Real-Time Object-Oriented Modeling. John
Willey & Sons, Inc. 1994
A-2 Enterprise Collaboration Architecture February 2004

Glossary
The Glossary defines the specialist terms used in this specification.

Term Explanation

b2b Business to Business

b2c Business to Customer

BFOP Business Function Object Pattern

CBOP Common Business Object Patterns Consortium

CCA Component Collaboration Architecture – a profile for specifying components at
multiple levels of granularity

EAI Enterprise Application Integration

ebXML XML for Electronic Business

ECA Enterprise Collaboration Architecture – a set of profiles for making technology
independent models of EDOC systems

EDOC Enterprise Distributed Object Computing – what the specification is all about.

EJB Enterprise JavaBeans

FCM Flow Composition Model

RM-ODP Reference Model of Open Distributed Processing

UML Unified Modeling Language

VMM Virtual metamodel: a formal model of a package of extensions to the UML metamodel
using UML’s own built-in extension mechanisms
December 2003 Enterprise Collaboration Architecture Index-1

Index-2 Enterprise Collaboration Architecture December 2003

Index
A
AbstractTransition 3-33
Application Components 2-12
Application Objects viii
Attribute 3-52

B
Business Process model 2-3, 2-6, 3-8

C
CCA Major Elements 3-17
CCA Notation 3-57
Choreography 3-18, 3-30
Common Facilities viii
community 2-9
Community Process Notation 3-61
CommunityProcess 3-46
Compliance points 1-3
Component Collaboration Architecture (CCA) 2-3, 2-4, 3-8
Component coupling 3-80
Components 3-15
ComponentUsage 3-41
Composed Components 3-15
Composite Component Notation 3-59
CompositeData 3-51
Composition 3-2, 3-38
Composition viewpoint 3-83
Computational specification 2-10
Computational viewpoint 2-8
Computational-Enterprise Interrelationships 2-16
Conformance Issues 1-2
Connection 3-43
ContextualBinding 3-45

D
Data Access Technologies 1-3
DataElement 3-48
DataInvariant 3-53
DataType 3-49
Diagramming CCA 3-61
Distributed Components 2-12
Document & Information Model 3-16
Document Model 3-47
DSTC 1-4

E
E-Business Components 2-12
ebXML 1-6
ECA design features 3-2
ECA Elements 3-7
EDOC Computational Specifications 2-11
EDOC Engineering Specifications 2-15
EDOC Enterprise Submodel 2-10
EDOC framework vision 3-7
EDOC information specification 2-14
EDS 1-4
ElementImport 3-57
Engineering specification 2-15
Engineering viewpoint 2-8
Enterprise specification 2-9
Enterprise viewpoint 2-8
Entities model 2-3, 2-4, 3-8, 3-73

Entity Metamodel 3-83
Entity Role 3-78
Entity Viewpoints 3-82
Enumeration 3-50
EnumerationValue 3-50
Event driven computing 3-5
Events Model 3-94
Events model 2-3, 2-5, 3-8
ExternalDocument 3-54

F
FlowPort 3-18, 3-23
Fujitsu 1-4

I
IBM 1-5
Information specification 2-14
Information viewpoin 2-8
Information Viewpoint 3-82
Interface 3-27
Interfaces 3-67
Interrelationships 2-16
Iona 1-5

L
Levels of Coupling 3-80

M
Mandatory compliance points 1-3
Mappings to Technology - Platform Independence 3-7
Metamodel 3-106
Model Management 3-16, 3-54
Models 3-8
MOF Repository 1-3
MOF XMI interchange 1-3
multiple ports 3-68
MultiPort 3-19, 3-25

N
Node 3-32
Notation 3-58

O
Object Management Architecture

Reference model for vii
Object Management Group vii
Object Request Broker viii
Object Services viii
OMG Modeling viii
Open-IT and SINTEF 1-5
OperationPort 3-24
OperationPorts 3-19

P
PackageContent 3-56
Port 3-21
PortActivity 3-36
PortConnector 3-42
PortOwner 3-29
Ports 3-18
PortUsage 3-34
primitive components 3-15
February 2004 Enterprise Collaboration Architecture, v1.0 1

Index
ProcessComponent 3-15, 3-18
ProcessComponents 2-11
Program Components 2-12
Property Definitions 3-19
PropertyDefinition 3-28
PropertyValue 3-44
Protocol 3-26
ProtocolPort 3-18, 3-23
PseudoState 3-31, 3-37

R
Recursive component composition 3-2
Reference model 1-vii
Relationships between ProcessComponent levels 2-13

S
Sun Microsystems 1-6

T
Technology specification 2-15
Transition 3-34

U
UsageContext 3-35
2 Enterprise Collaboration Architecture, v1.0 February 2004

	Contents
	Preface
	About the Object Management Group
	Intended Audience and Use
	Context of OMG Modeling
	Acknowledgments

	1. Introduction
	1.1 Guide to the Specification
	1.1.1 Overall Structure of the Specification

	1.2 Conformance Issues
	1.2.1 Summary of optional versus mandatory interfaces
	1.2.2 Compliance Points
	1.2.3 Optional Compliance Points

	1.3 Proof of Concept
	1.3.1 Data Access Technologies
	1.3.2 DSTC
	1.3.3 EDS
	1.3.4 Fujitsu
	1.3.5 IBM
	1.3.6 Iona
	1.3.7 Open-IT and SINTEF
	1.3.8 Sun Microsystems
	1.3.9 ebXML

	2. ECA: Rationale and Application
	2.1 Overview
	2.2 The Enterprise Collaboration Architecture
	2.2.1 Component Collaboration Architecture
	2.2.2 Entities Model
	2.2.3 Events Model
	2.2.4 Business Process Model

	2.3 Separation of Concerns and Viewpoint Specifications
	2.4 Enterprise Specification
	2.4.1 Concepts
	2.4.2 EDOC Enterprise Submodel

	2.5 Computational Specification
	2.5.1 Concepts
	2.5.2 EDOC Computational Specifications
	2.5.3 Levels of ProcessComponent in a Computational Specification

	2.6 Information Specification
	2.6.1 Concepts
	2.6.2 EDOC Information Specifications

	2.7 Engineering Specification
	2.7.1 Concepts
	2.7.2 EDOC Engineering Specifications

	2.8 Technology Specification
	2.9 Specification Integrity - Interviewpoint Correspondences
	2.9.1 Computational-Enterprise Interrelationships
	2.9.2 Computational-Information Interrelationships
	2.9.3 Computational-Engineering Interrelationships
	2.9.4 Engineering-Technology Interrelationships

	3. The Enterprise Collaboration Architecture Model
	3.1 Key Design Features
	3.1.1 Recursive Component Composition
	3.1.2 Process Specification
	3.1.3 Specification of Event Driven Systems
	3.1.4 Integration of Process and Information Models
	3.1.5 Rigorous Relationship Specification
	3.1.6 Mappings to Technology - Platform Independence

	3.2 ECA Elements
	3.3 Rationale
	3.3.1 Problems to be Solved
	3.3.2 Concepts
	3.3.3 Conceptual Framework

	3.4 CCA Metamodel
	3.4.1 Structural Specification
	3.4.2 Choreography
	3.4.3 Composition
	3.4.4 Document Model
	3.4.5 Model Management

	3.5 CCA Notation
	3.5.1 CCA Specification Notation
	3.5.2 Composite Component Notation
	3.5.3 Community Process Notation

	3.6 Diagramming CCA
	3.6.1 Types of Diagram
	3.6.2 The Buy/Sell Example
	3.6.3 Collaboration Diagram Shows Community Process
	3.6.4 Class Diagram for Protocol Structure
	3.6.5 Activity Diagram (Choreography) for a Protocol
	3.6.6 Class Diagram for Component Structure
	3.6.7 Class Diagram for Interface
	3.6.8 Class Diagram for Process Components with Multiple Ports
	3.6.9 Activity Diagram showing the Choreography of a Process Component
	3.6.10 Collaboration Diagram for Process Component Composition
	3.6.11 Model Management
	3.6.12 Using the CCA Notation for Component & Protocol Structure

	3.7 Introduction
	3.7.1 Relationship to other parts of ECA
	3.7.2 Design Concepts
	3.7.3 Standard UML Facilities

	3.8 Entity Viewpoints
	3.8.1 Information Viewpoint
	3.8.2 Composition viewpoint

	3.9 Entity Metamodel
	3.9.1 Overview
	3.9.2 Entity Package

	3.10 Rationale
	3.10.1 Introduction
	3.10.2 Overall Design Rationale
	3.10.3 Concepts
	3.10.4 Key Concepts of Event Driven Business and System Models
	3.10.5 Event and Notification based Interaction Models
	3.10.6 Leveraging Event Based Models

	3.11 Metamodel
	3.11.1 Business Process View
	3.11.2 Entity View
	3.11.3 Whole Event Model
	3.11.4 Publish and Subscribe Package
	3.11.5 Event Package

	3.12 Relationship to other ECA Models
	3.12.1 Relationship to Business Process Model and Entities Model
	3.12.2 Relationship to ECA CCA Model

	3.13 Relationship Other Paradigms
	3.13.1 ebXML

	3.14 Example
	3.15 Introduction
	3.16 Metamodel
	3.16.1 Business Process Metamodel

	3.17 Notation for Activity and ProcessRole
	3.18 Process Model Patterns
	3.18.1 Timeout
	3.18.2 Terminate
	3.18.3 Activity Preconditions and Activity Postconditions
	3.18.4 Simple Loop
	3.18.5 While and Repeat-Until Loops
	3.18.6 For Loop
	3.18.7 Multi-Task

	3.19 Full Model

	A. References
	Glossary
	Index

