
UML Profile for Enterprise Distributed 
Object Computing Specification

This OMG document replaces the submission (ad/2001-06-09) and the draft adopted specification 
(ptc/2001-12-04). It is an OMG Final Adopted Specification, which has been approved by the OMG 
board and technical plenaries, and is currently in the finalization phase. Comments on the content of 
this document are welcomed, and should be directed to issues@omg.org by July 1, 2002.

You may view the pending issues for this specification from the OMG revision issues web page 
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues. 

The FTF Recommendation and Report for this specification will be published on September 20, 
2002. 

OMG Adopted Specification
ptc/02-02-05





UML Profile for Enterprise Distributed 
Object Computing Specification

FTF Final Adopted Specification
February 2002



Copyright 2000, 2001, CBOP
Copyright 2000, 2001, Data Access Technologies
Copyright 2000, 2001, DSTC
Copyright 2000, 2001, EDS
Copyright 2000, 2001, Fujitsu
Copyright 2000, 2001, IBM
Copyright 2000, 2001, Iona Technologies
Copyright 2000, 2001, Open_IT
Copyright 2000, 2001, Sun Microsystems
Copyright 2000, 2001, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid 
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the 
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein 
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention.  OMG specifications are prospective and advisory only.  Prospective users 
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an 
Object Management Group specification in accordance with the license and notices set forth on this page.  This document 
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF 
TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR  
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed 
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, 
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above 
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole 
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or 
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in 
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information 
storage and retrieval systems--without permission of the copyright owner. 

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in 
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG® and 
Object Management are registered trademarks of the Object Management Group, Inc. OMG OBJECT MANAGEMENT 



GROUP, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE INFORMATION BROKERAGE, 
OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES, CORBASERVICES, CORBANET, CORBAMED, 
CORBADOMAINS, GIOP, IIOP, OMA, CORBA THE GEEK, UNIFIED MODELING LANGUAGE, UML, and UML 
CUBE LOGO are registered trademarks or trademarks of the Object Management Group, Inc.  

X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on 
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.





Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1 Guide to the Specification . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1.1 Overall Structure of the Specification  . . . . . . . 1-1

1.2 Conformance Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

1.2.1 Summary of optional versus mandatory interfaces 1-3
1.2.2 Compliance Points . . . . . . . . . . . . . . . . . . . . . . 1-3

1.2.3 Optional Compliance Points  . . . . . . . . . . . . . . 1-4

1.3 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.1 CBOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

1.3.2 Data Access Technologies . . . . . . . . . . . . . . . . 1-5
1.3.3 DSTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

1.3.4 EDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.3.5 Fujitsu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

1.3.6 IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
1.3.7 Iona  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

1.3.8 Open-IT and SINTEF  . . . . . . . . . . . . . . . . . . . 1-7
1.3.9 Sun Microsystems . . . . . . . . . . . . . . . . . . . . . . 1-8

1.3.10 Unisys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.3.11 ebXML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

2. EDOC Profile: Rationale and Application  . . . . . . . . . . . . . 2-1

Section I - Vision

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
February 2002 UML Profile for Enterprise Distributed Object Computing                          i



Contents
Section II - The EDOC Profile Elements

2.2 The Enterprise Collaboration Architecture  . . . . . . . . . . . . 2-3
2.2.1 Component Collaboration Architecture . . . . . . 2-4

2.2.2 Entities profile  . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
2.2.3 Events Profile  . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

2.2.4 Business Process profile  . . . . . . . . . . . . . . . . . 2-7
2.2.5 Relationships profile  . . . . . . . . . . . . . . . . . . . . 2-7

2.3 Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

2.4 Technology Specific Models and Technology Mappings  . 2-10

Section III - Application of the EDOC Profile Elements

2.5 Separation of Concerns and Viewpoint Specifications  . . . 2-12

2.6 Enterprise Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
2.6.1 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

2.6.2 EDOC Enterprise Subprofile . . . . . . . . . . . . . . 2-15

2.7 Computational Specification . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.7.1 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

2.7.2 EDOC Computational Specifications  . . . . . . . 2-16
2.7.3 Levels of ProcessComponent in a Computational 

Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

2.8 Information Specification  . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

2.8.1 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2.8.2 EDOC Information Specifications . . . . . . . . . . 2-20

2.9 Engineering Specification . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
2.9.1 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

2.9.2 EDOC Engineering Specifications  . . . . . . . . . 2-21

2.10 Technology Specification  . . . . . . . . . . . . . . . . . . . . . . . . . 2-21

2.11 Specification Integrity - Interviewpoint Correspondences . 2-21
2.11.1 Computational-Enterprise Interrelationships . . 2-21

2.11.2 Computational-Information Interrelationships 2-21
2.11.3 Computational-Engineering Interrelationships 2-22

2.11.4 Engineering-Technology Interrelationships . . . 2-22

3. The Enterprise Collaboration Architecture . . . . . . . . . . . . 3-1

Section I - ECA Design Rationale

3.1 Key Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.1.1 Recursive component composition  . . . . . . . . . 3-3
3.1.2 Process Specification . . . . . . . . . . . . . . . . . . . . 3-4
ii UML Profile for Enterprise Distributed Object Computing                                              February 2002



Contents
3.1.3 Specification of Event Driven Systems  . . . . . . 3-6

3.1.4 Integration of Process and Information Models 3-6
3.1.5 Rigorous relationship  specification  . . . . . . . . 3-7

3.1.6 Mappings to Technology - Platform Independence 3-8

3.2 ECA Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Section II - the Component Collaboration Architecture

3.3 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.3.1 Problems to be solved  . . . . . . . . . . . . . . . . . . . 3-10
3.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

3.3.3 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
3.3.4 Conceptual Framework  . . . . . . . . . . . . . . . . . . 3-17

3.4 CCA Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

3.4.1 Structural Specification . . . . . . . . . . . . . . . . . . 3-21
3.4.2 Choreography  . . . . . . . . . . . . . . . . . . . . . . . . . 3-38

3.4.3 Composition  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
3.4.4 Document Model . . . . . . . . . . . . . . . . . . . . . . . 3-59

3.4.5 Model Management . . . . . . . . . . . . . . . . . . . . . 3-67

3.5 CCA Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-71

3.5.1 CCA Specification Notation  . . . . . . . . . . . . . . 3-71
3.5.2 Composite Component Notation . . . . . . . . . . . 3-73

3.5.3 Community Process Notation  . . . . . . . . . . . . . 3-75

3.6 UML Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-75
3.6.1 Tables mapping concepts to profile elements  . 3-75

3.6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79
3.6.3 Stereotypes for Structural Specification . . . . . . 3-81

3.6.4 Stereotypes for Choreography . . . . . . . . . . . . . 3-97
3.6.5 Stereotypes for Composition . . . . . . . . . . . . . . 3-104

3.6.6 DocumentModel «profile» Package . . . . . . . . . 3-111
3.6.7 UML  Model_Management  Package . . . . . . . .  3-115

3.6.8 Relationships  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-115
3.6.9 General OCL  Definition Constraints . . . . . . . .  3-130

3.7 Diagramming CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-131

3.7.1 Types of Diagram 3-131
3.7.2 The Buy/Sell Example . . . . . . . . . . . . . . . . . . . 3-131

3.7.3 Collaboration diagram shows community 
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-132

3.7.4 Class diagram for protocol structure  . . . . . . . . 3-133

3.7.5 Activity Diagram (Choreography) for a 
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-135
February 2002 UML Profile for Enterprise Distributed Object Computing iii



Contents
3.7.6 Class Diagram for Component Structure . . . . . 3-136
3.7.7 Class Diagram for Interface . . . . . . . . . . . . . . . 3-138

3.7.8 Class Diagram for Process Components 
with multiple ports  . . . . . . . . . . . . . . . . . . . . . 3-140

3.7.9 Activity Diagram showing the Choreography 
of a Process Component  . . . . . . . . . . . . . . . . . 3-141

3.7.10 Collaboration Diagram for Process Component 
Composition  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-141

3.7.11 Model Management . . . . . . . . . . . . . . . . . . . . . 3-144
3.7.12 Using the CCA Notation for Component & Protocol 

Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-146

Section III - The Entities Profile

3.8 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-147

3.8.1 Normative sections  . . . . . . . . . . . . . . . . . . . . . 3-147
3.8.2 Relationship to other parts of ECA  . . . . . . . . . 3-147

3.8.3 Design Concepts  . . . . . . . . . . . . . . . . . . . . . . . 3-148
3.8.4 Standard UML Facilities . . . . . . . . . . . . . . . . . 3-154

3.9 Entity Viewpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-155

3.9.1 Information Viewpoint . . . . . . . . . . . . . . . . . . . 3-155
3.9.2 Composition viewpoint  . . . . . . . . . . . . . . . . . . 3-156

3.10 Entity Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-157

3.10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-157
3.10.2 Entity Package . . . . . . . . . . . . . . . . . . . . . . . . . 3-158

3.11 Entity UML Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-168
3.11.1 Metamodel Mapping to Profile  . . . . . . . . . . . . 3-169

3.11.2 Entity Package . . . . . . . . . . . . . . . . . . . . . . . . . 3-169

Section IV - The Events Profile

3.12 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-179
3.12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-179

3.12.2 Overall design rationale . . . . . . . . . . . . . . . . . . 3-180
3.12.3 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-181

3.12.4 Key Concepts of event driven business 
and system models . . . . . . . . . . . . . . . . . . . . . . 3-182

3.12.5 Event and Notification based Interaction 
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-185

3.12.6 Leveraging event based models . . . . . . . . . . . . 3-188

3.13 Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-190

3.13.1 Business Process View  . . . . . . . . . . . . . . . . . . 3-190
3.13.2 Entity View  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192
iv UML Profile for Enterprise Distributed Object Computing                                              February 2002



Contents
3.13.3 Whole Event Model . . . . . . . . . . . . . . . . . . . . . 3-192

3.13.4 Publish and Subscribe Package  . . . . . . . . . . . . 3-194
3.13.5 Event Package . . . . . . . . . . . . . . . . . . . . . . . . . 3-199

3.14 UML Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-206
3.14.1 Table mapping concepts to profile elements  . . 3-206

3.14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-207
3.14.3 Publish and Subscribe Package  . . . . . . . . . . . . 3-207

3.14.4 Event Package 2  . . . . . . . . . . . . . . . . . . . . . . . 3-210

3.15 Relationship to other ECA profiles . . . . . . . . . . . . . . . . . . 3-215
3.15.1 Relationship to Business Process profile and Entities 

profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-215

3.15.2 Relationship to ECA CCA profile . . . . . . . . . . 3-216

3.16 Relationship other paradigms  . . . . . . . . . . . . . . . . . . . . . . 3-217
3.16.1 ebXML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-218

3.17 Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-218

Section V - The Business Process Profile

3.18 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-220

3.19 Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-220
3.19.1 Business Process metamodel . . . . . . . . . . . . . . 3-225

3.20 UML Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-245

3.20.1 Table mapping concepts to profile elements  . . 3-245
3.20.2 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 3-266

3.21 Notation for Activity and ProcessRole  . . . . . . . . . . . . . . . 3-268

3.22 Process Model Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-270
3.22.1 Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-271

3.22.2 Terminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-272
3.22.3 Activity Preconditions and Activity 

Postconditions . . . . . . . . . . . . . . . . . . . . . . . . . 3-273

3.22.4 Simple Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275
3.22.5 While and Repeat-Until Loops  . . . . . . . . . . . . 3-276

3.22.6 For Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-277
3.22.7 Multi-Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-278

3.23 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-279

Section VI - The Relationships Profile

3.24 Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-280

3.24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-280
3.24.2 Non-Binary Relationships . . . . . . . . . . . . . . . . 3-281
February 2002 UML Profile for Enterprise Distributed Object Computing v



Contents
3.24.3 Example: Mutually Orthogonal Non-Binary 
Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . 3-282

3.24.4 Example: Multiple Subtyping  . . . . . . . . . . . . . 3-285
3.24.5 Other Relationship Requirements  . . . . . . . . . . 3-285

3.25 Using UML to Address the Requirements: An Overview . 3-286

3.26 Formal Virtual Metamodel of the UML Extensions  . . . . . 3-286
3.26.1 Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . 3-287

3.26.2 Reference Relationships  . . . . . . . . . . . . . . . . . 3-294

3.27 Mapping the Relationships to Technical Platforms . . . . . . 3-298
3.27.1 Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . 3-298

3.27.2 Reference Relationships  . . . . . . . . . . . . . . . . . 3-301

3.28 Examples Using the UML Extensions . . . . . . . . . . . . . . . . 3-302

3.28.1 Example: List and Subordination  . . . . . . . . . . 3-302
3.28.2 Example: Reference Relationships  . . . . . . . . . 3-304

4. The Patterns Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Section I - Rationale

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

4.2 Pattern Principle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.3 Notation for Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4

4.4 Simple Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.5 Pattern Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6

4.6 Pattern Composition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

4.7 Summary of Pattern Formats . . . . . . . . . . . . . . . . . . . . . . . 4-8

4.8 Applying Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Section II - Patterns Metamodel

4.9 EDOC::Pattern Package  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
4.9.1  Business Pattern Name . . . . . . . . . . . . . . . . . . 4-11

4.9.2 Business Pattern Package  . . . . . . . . . . . . . . . . 4-12
4.9.3 Business Pattern Binding . . . . . . . . . . . . . . . . . 4-13

Section III - UML Profile

4.10 Table mapping concepts to profile elements  . . . . . . . . . . . 4-14

4.11 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

4.12 Pattern Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.12.1 BP Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

4.12.2 BP Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
vi UML Profile for Enterprise Distributed Object Computing                                              February 2002



Contents
4.12.3 BP Binding  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

5. Technology Specific Models  . . . . . . . . . . . . . . . . . . . . . . . . .  5-1

Section I - The EJB and Java Metamodels

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2 The Java Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.2.1 Class Contents . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
5.2.2 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

5.2.3 JavaType  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
5.2.4 TypeDescriptor  . . . . . . . . . . . . . . . . . . . . . . . . 5-10

5.2.5 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
5.2.6 Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

5.3 The Enterprise JavaBeans Metamodel . . . . . . . . . . . . . . . . 5-12

5.3.1 Main  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
5.3.2 EJB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18

5.3.3 Entity Bean  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
5.3.4 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

5.3.5 EJB Implementation  . . . . . . . . . . . . . . . . . . . . 5-26
5.3.6 References to Resources  . . . . . . . . . . . . . . . . . 5-28

5.3.7 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30

5.4 UML Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
5.4.1 Java Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31

5.4.2 EJB Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32

Section II - Flow Composition Model

5.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32

5.6 FCMCore Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33

5.6.1 FCMComposition  . . . . . . . . . . . . . . . . . . . . . . 5-34
5.6.2 FCMComponent  . . . . . . . . . . . . . . . . . . . . . . . 5-34

5.6.3 FCMNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
5.6.4 FCMConnection  . . . . . . . . . . . . . . . . . . . . . . . 5-35

5.6.5 FCMOperation . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
5.6.6 FCMParameter  . . . . . . . . . . . . . . . . . . . . . . . . 5-35

5.6.7 FCMCommand  . . . . . . . . . . . . . . . . . . . . . . . . 5-35
5.6.8 FCMFunction  . . . . . . . . . . . . . . . . . . . . . . . . . 5-36

5.6.9 FCMTerminal  . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
5.6.10 FCMTerminalToNodeLink and 

FCMTerminalToTerminalLink . . . . . . . . . . . . . 5-36

5.6.11 FCMAnnotation . . . . . . . . . . . . . . . . . . . . . . . . 5-36
February 2002 UML Profile for Enterprise Distributed Object Computing vii



Contents
5.6.12 FCMSource and FCMSink  . . . . . . . . . . . . . . . 5-37
5.6.13 FCMCompositionBinding . . . . . . . . . . . . . . . . 5-37

5.6.14 TDLangElement  . . . . . . . . . . . . . . . . . . . . . . . 5-37
5.6.15 FCMType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37

5.7 FCM Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38

5.7.1 FCMControlLink . . . . . . . . . . . . . . . . . . . . . . . 5-39
5.7.2 FCMDataLink . . . . . . . . . . . . . . . . . . . . . . . . . 5-39

5.7.3 FCMDecisionNode  . . . . . . . . . . . . . . . . . . . . . 5-39
5.7.4 FCMConditionalControlLink  . . . . . . . . . . . . . 5-40

5.7.5 FCMJoinNode . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
5.7.6 FCMJoinCommand . . . . . . . . . . . . . . . . . . . . . 5-40

5.7.7 FCMMappingNode  . . . . . . . . . . . . . . . . . . . . . 5-40
5.7.8 FCMMappingDataLink . . . . . . . . . . . . . . . . . . 5-41

5.7.9 FCMMapping  . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
5.7.10 FCMCondition . . . . . . . . . . . . . . . . . . . . . . . . . 5-41

5.7.11 FCMBranchNode  . . . . . . . . . . . . . . . . . . . . . . 5-41

5.8 FCM Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41

5.9 Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42

6. UML Profile for MOF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Section I - Introduction

Section II - UML to MOF Mapping Table

Section III - Mapping Details

6.1 ModelElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.1.1 Tags on UML ModelElement  . . . . . . . . . . . . . 6-4

6.1.2 ModelElement Property Map . . . . . . . . . . . . . . 6-4
6.1.3 ModelElement Constraints  . . . . . . . . . . . . . . . 6-4

6.1.4 ModelElement Limitations  . . . . . . . . . . . . . . . 6-4

6.2 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.1 Tags on UML Model with Stereotype 

<<metamodel>>  . . . . . . . . . . . . . . . . . . . . . . . 6-5

6.2.2 Model-to-Package Property Map . . . . . . . . . . . 6-5

6.2.3 Model-to-Package Constraints . . . . . . . . . . . . . 6-5
6.2.4 Model-to-Package Limitations  . . . . . . . . . . . . 6-5

6.3 Import  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.3.1 Tags on UML ElementImport  . . . . . . . . . . . . . 6-6

6.3.2 ElementImport-to-Import Property Map. . . . . .  6-6
6.3.3 ElementImport-to-Import Constraints . . . . . . . 6-6
viii UML Profile for Enterprise Distributed Object Computing                                              February 2002



Contents
6.3.4 ElementImport-to-Import Limitations . . . . . . . 6-6

6.4 Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.4.1 Tags on UML Class . . . . . . . . . . . . . . . . . . . . . 6-6

6.4.2 Class Property Map . . . . . . . . . . . . . . . . . . . . . 6-7
6.4.3 Class Constraints . . . . . . . . . . . . . . . . . . . . . . . 6-7

6.4.4 Class Limitations  . . . . . . . . . . . . . . . . . . . . . . .  6-7

6.5 Attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
6.5.1 Tags on UML Attribute with No Stereotype  . . 6-7

6.5.2 Attribute Property Map  . . . . . . . . . . . . . . . . . . 6-8
6.5.3 Attribute Constraints . . . . . . . . . . . . . . . . . . . . 6-8

6.5.4 Attribute Limitations . . . . . . . . . . . . . . . . . . . . 6-8

6.6 Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
6.6.1 Tags on UML Attribute with Stereotype 

<<reference>> . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

6.6.2 Explicit Reference Property Map  . . . . . . . . . . 6-9
6.6.3 Implicit Reference Property Map . . . . . . . . . . .  6-9

6.6.4 Reference Constraints  . . . . . . . . . . . . . . . . . . . 6-9
6.6.5 Reference Limitations . . . . . . . . . . . . . . . . . . . 6-10

6.7 Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

6.7.1 Tags on UML Operation  . . . . . . . . . . . . . . . . . 6-10
6.7.2 Operation Property Map  . . . . . . . . . . . . . . . . . 6-10

6.7.3 Operation Constraints  . . . . . . . . . . . . . . . . . . . 6-10
6.7.4 Operation Limitations  . . . . . . . . . . . . . . . . . . . 6-10

6.8 Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
6.8.1 Tags on UML Parameter  . . . . . . . . . . . . . . . . . 6-11

6.8.2 Parameter Property Map  . . . . . . . . . . . . . . . . . 6-11
6.8.3 Parameter Constraints  . . . . . . . . . . . . . . . . . . . 6-11

6.8.4 Parameter Limitations  . . . . . . . . . . . . . . . . . . . 6-11

6.9 Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
6.9.1 Tags on UML Exception  . . . . . . . . . . . . . . . . . 6-11

6.9.2 Exception Property Map  . . . . . . . . . . . . . . . . . 6-12
6.9.3 Exception Constraints  . . . . . . . . . . . . . . . . . . . 6-12

6.9.4 Exception Limitations . . . . . . . . . . . . . . . . . . . 6-12

6.10 Exception Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
6.10.1 Tags on Attribute of UML Exception  . . . . . . . 6-12

6.10.2 Attribute-to-Parameter Property Map  . . . . . . . 6-12
6.10.3 Attribute-to-Parameter Constraints  . . . . . . . . . 6-12

6.10.4 Attribute-to-Parameter Limitations  . . . . . . . . . 6-12

6.11 Association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13

6.11.1 Tags on UML Association . . . . . . . . . . . . . . . . 6-13
February 2002 UML Profile for Enterprise Distributed Object Computing ix



Contents
6.11.2 Association Property Map . . . . . . . . . . . . . . . . 6-13
6.11.3 Association Constraints . . . . . . . . . . . . . . . . . . 6-13

6.11.4 Association Limitations . . . . . . . . . . . . . . . . . . 6-13

6.12 AssociationEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
6.12.1 Tags on UML AssociationEnd . . . . . . . . . . . . . 6-13

6.12.2 AssociationEnd Property Map . . . . . . . . . . . . . 6-14
6.12.3 AssociationEnd Constraints  . . . . . . . . . . . . . . .  6-14

6.12.4 AssociationEnd Limitations . . . . . . . . . . . . . . . 6-14

6.13 DataType  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-14
6.13.1 Tags on UML DataType . . . . . . . . . . . . . . . . . . 6-15

6.13.2 DataType Property Map . . . . . . . . . . . . . . . . . .  6-15
6.13.3 DataType Constraints  . . . . . . . . . . . . . . . . . . . 6-15

6.13.4 DataType Limitations  . . . . . . . . . . . . . . . . . . . 6-15

6.14 Constant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16

6.14.1 Tags on UML DataValue . . . . . . . . . . . . . . . . . 6-16
6.14.2 DataValue-to-Constant Property Map  . . . . . . . 6-16

6.14.3 DataValue-to-Constant Constraints  . . . . . . . . . 6-16
6.14.4 DataValue-to-Constant Limitations . . . . . . . . . 6-16

6.15 Constraint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16

6.15.1 Tags on UML Constraint . . . . . . . . . . . . . . . . . 6-16
6.15.2 Constraint Property Map . . . . . . . . . . . . . . . . . 6-17

6.15.3 Constraint Constraints . . . . . . . . . . . . . . . . . . . 6-17
6.15.4 Constraint Limitations . . . . . . . . . . . . . . . . . . . 6-17

6.16 Generalizes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17

6.16.1 Tags on UML Generalization . . . . . . . . . . . . . . 6-17
6.16.2 Generalization-to-Generalizes Property Map  . 6-17

6.16.3 Generalization-to-Generalizes Constraints  . . . 6-17
6.16.4 Generalization-to-Generalizes Limitations  . . . 6-17

6.17 Tag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
6.17.1 Tags on UML TaggedValue . . . . . . . . . . . . . . . 6-18

6.17.2 TaggedValue-to-Tag Property Map  . . . . . . . . . 6-18
6.17.3 TaggedValue-to-Tag Constraints  . . . . . . . . . . . 6-18

6.17.4 TaggedValue-to-Tag Limitations  . . . . . . . . . . . 6-18

6.18 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19

6.19 Associations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19

6.20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20

6.21 DataTypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20

6.22 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
x UML Profile for Enterprise Distributed Object Computing                                              February 2002



Contents
Appendix A - References  . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
February 2002 UML Profile for Enterprise Distributed Object Computing xi



Contents
xii UML Profile for Enterprise Distributed Object Computing                                              February 2002



Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 600 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization’s charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG's objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 

Intended Audience and Use

The information described in this manual is aimed at managers and software designers 
who want to produce applications that comply with the family of OMG standards. The 
benefit of compliance is, in general, to be able to produce interoperable applications 
that run in heterogeneous, distributed environments. 

Context of OMG Modeling

The OMG is dedicated to producing a framework and specifications for commercially 
available object-oriented environments. The Object Management Architecture (as 
defined in the Object Management Architecture Guide) is the umbrella architecture for 
OMG specifications. The defining model for the architecture is the Reference Model, 
February 2002 UML Profile for Enterprise Distributed Object Computing xiii



which classifies the components, interfaces, and protocols that compose an object 
system. The Reference Model consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive 
requests and responses in a distributed environment. It is the foundation for 
building applications from distributed objects and for interoperability between 
applications in hetero- and homogeneous environments. The architecture and 
specifications of the Object Request Broker are described in CORBA: Common 
Object Request Broker Architecture and Specification

• Object Services, a collection of services (interfaces and objects) that support 
basic functions for using and implementing objects. Services are necessary to 
construct any distributed application and are always independent of application 
domains. For example, the Life Cycle Service defines conventions for creating, 
deleting, copying, and moving objects; it does not dictate how the objects are 
implemented in an application. Specifications for Object Services are contained in 
CORBAservices: Common Object Services Specification.

• Common Facilities, a collection of services that many applications may share, 
but which are not as fundamental as the Object Services. For instance, a system 
management or electronic mail facility could be classified as a common facility.

• Application Objects, which are objects specific to particular commercial 
products or end user systems. Application Objects correspond to the traditional 
notion of applications, so they are not standardized by the OMG. Instead, 
Application Objects constitute the uppermost layer of the Reference Model.

• OMG Modeling, a collection of modeling specifications that advance the state of 
the industry by enabling OO visual modeling tool interoperability. OMG 
Modeling provides a set of CORBA interfaces that can be used to define and 
manipulate a set of interoperable metamodels. 

OMG formal documents are available from our web site in PostScript and PDF format. 
To obtain print-on-demand books in the documentation set or other OMG publications, 
contact the Object Management Group, Inc., at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA  02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org
xiv UML Profile for Enterprise Distributed Object Computing                                                      February 2002



 Typographical Conventions

The type styles shown below are used in this document to distinguish programming 
statements from ordinary English. However, these conventions are not used in tables or 
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax 
elements. 

Courier bold - Programming language elements. 

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the 
name of a document, specification, or other publication. 

Acknowledgments

This specification was prepared by the following companies:

• CBOP

• Data Access Technologies

• DSTC

• EDS

• Fujitsu

• IBM

• Iona Technologies

• Open-IT

• Sun Microsystems

• Unisys

Supporting companies are:

• Adaptive

• Hitachi

• Netaccount

• SINTEF
February 2002 UML Profile for EDOC xv



xvi UML Profile for Enterprise Distributed Object Computing                                                      February 2002



Introduction 1
Contents

This chapter includes the following topics. 

1.1 Guide to the Specification

1.1.1 Overall Structure of the Specification

Chapter 1 introduces the specification. 

Chapter 2 explains the overall rationale for the approach, and provides a framework for 
system specification using the EDOC Profile. It provides a detailed rationale for the 
modeling choices made and describes how the various elements in the specification 
may be used, within the viewpoint oriented framework of the Reference Model of 
Open Distributed Processing (RM-ODP), to model all phases of a software system’s 
lifecycle, including, but not limited to:

• The analysis phase when the roles played by the system’s components in the 
business it supports are defined and related to the business requirements.

• The design and implementation phases, when detailed specifications for the 
system’s components are developed.

Topic Page

“Guide to the Specification” 1-1

“Conformance Issues” 1-3

“Proof of Concept” 1-5
February 2002 UML Profile for Enterprise Distributed Object Computing 1-1



1

• The maintenance phase, when, after implementation, the system’s structure or 
behavior is modified and tuned to meet the changing business environment in which 
it will work.

Chapter 3 is the Enterprise Collaboration Architecture (ECA) and contains the detailed 
profile specifications for platform/ technology independent modeling elements of the 
profile, specifically:

• The Component Collaboration Architecture (CCA) which details how the UML 
concepts of classes, collaborations and activity graphs can be used to model, at 
varying and mixed levels of granularity, the structure and behavior of the 
components that comprise a system.

• The Entities profile, which describes a set of UML extensions that may be used to 
model entity objects that are representations of concepts in the application problem 
domain and define them as composable components.

• The Events profile, which describes a set of UML extensions that may be used on 
their own, or in combination with the other EDOC elements, to model event driven 
systems.

• The Business Processes profile, which specializes the CCA, and describes a set of 
UML extensions that may be used on their own, or in combination with the other 
EDOC elements, to model workflow-style business processes in the context of the 
components and entities that model the business.

• The Relationships profile, which describes the extensions to the UML core facilities 
to meet the need for rigorous relationship specification in general and in business 
modeling and software modeling in particular.

Chapter 4 is the Patterns Profile, which defines how to use UML and relevant parts of 
the ECA profile to express object models such as Business Function Object Patterns 
(BFOP) using pattern application mechanisms.

Chapter 5 provides a set of technology specific mappings. It contains Java, Enterprise 
JavaBeans (EJB) and Flow Composition Model (FCM) metamodels abstracted from 
their respective specifications:

• The EJB metamodel is intended to provide sufficient detail to support the creation 
assembly and deployment of Enterprise JavaBeans. 

• The Java metamodel is intended to provide sufficient detail to support the EJB 
metamodel. 

• The Flow Composition Model provides a common set of design abstractions across 
a variety of flow model types used in message brokering and delivery.

Chapter 6 (UML Profile for MOF) is a normative two way mapping between UML and 
the MOF. Although this is not called for in the RFP, it is deemed essential, since, for 
the profiles proposed to be understood, it has been necessary to include metamodels 
that explain the concepts that the profiles express.
1-2 UML Profile for Enterprise Distributed Object Computing February 2002



1

Note: Part II of this specification, (ad/2001/08/20) is non-normative and contains 
supporting information in the form of the following Annexes:

• Annex A - Procurement, Buyer/Seller example

• Annex B - Meeting Room example

• Annex C - Hospital example

• Annex D - Examples of Patterns

• Annex E - Technology mappings from EDOC to Distributed Component and 
Message Flow Platform Specific Models 

In addition, XMI and DTD data files for the metamodels in the EJB/Java/FCM profiles 
are included in the zip file containing this Part II of the specification, in the folder 
named “XMI and DTDs.”

1.2 Conformance Issues

1.2.1 Summary of optional versus mandatory interfaces

For a modeling tool to claim compliance to the EDOC specification it must implement 
at least one of the mandatory compliance points in Section 1.2.2.1, and state the name 
of the compliance point(s). The mandatory compliance points are all variations on the 
ability to model or interchange designs using the Enterprise Component Architecture 
(ECA), which forms the core of EDOC.

There are a number of other normative profiles and metamodels contained within this 
specification, and these are given named optional compliance points in Section 1.2.3, 
“Optional Compliance Points,” on page 1-4.

1.2.2 Compliance Points

1.2.2.1 Mandatory Compliance Points

At least one of the following compliance points must be implemented for a tool or 
model to claim compliance with the EDOC specification.

Table 1-1 Mandatory Compliance Points

Mandatory Compliance Point 
Name

MOF 
Repository 

MOF XMI 
interchange 

UML Profile UML Profile XMI 
interchange 

ECA MOF Repository yes no no no

ECA MOF XMI Interchange no yes no no

ECA MOF Repository and 
Interchange

yes yes no no

ECA UML Profile no no yes no
February 2002 UML Profile for EDOC:  Conformance Issues 1-3



1

The columns in Table 1-1 are defined as follows:

MOF Repository

Any implementation of a CORBA server defined by generating and implementing the 
IDL and its semantics, as defined in MOF 1.3 (formal/00-04-03), from MOF models 
defined in the package "ECA" and all of its sub-packages.

MOF XMI interchange

Any implementation of a service that produces XML documents that conform to the 
XMI DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the 
MOF package "ECA" and all of its sub-packages.

UML Profile

Any tool or model that implements the Profile mechanisms defined in UML 1.4 (ad/01-
02-13), and which is populated with stereotypes, tagged values and constraints defined 
in the ECA «profile» Package, and all of its sub-packages, and provides standard 
UML1.4 notation for such models.

UML Profile XMI interchange

Any tool or model which is capable of producing XML documents that comform to the 
XMI DTD  produced by applying the XMI 1.1 specification (formal/00-11-02) to the 
MOF package UML Interchange metamodel, as defined in chapter 5 of UML 1.4 
(ad/01-02-13), and correctly encodes the stereotypes and tagged values defined in the 
ECA «profile» Package, and all of its sub-packages.

1.2.3 Optional Compliance Points

The specification has the following optional compliance points:

Patterns Profile 

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13), 
and which is populated with stereotypes, tagged values and constraints defined in the 
EDOC::Pattern «profile» Package, and all of its sub-packages.

Patterns Model

Or any tool that implements the semantics of the MOF metamodel EDOC::Pattern 
package (Chapter 4), and allows access to patterns generated either by generated MOF 
1.3 (formal/00-04-03) IDL interfaces or via XML documents produced via the 
application of XMI 1.1 (formal/00-11-02) to the metamodel.

ECA UML XMI Interchange no no no yes

ECA UML Profile and Interchange no no yes yes

Table 1-1 Mandatory Compliance Points
1-4 UML Profile for Enterprise Distributed Object Computing February 2002



1

Java Model

Use of the normative Java metamodel (see Section 5.2, “The Java Metamodel,” on 
page 5-2) by instantiation, code generation, invocation, or serialization as defined by 
the MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-02) specifications.

EJB Model

Use of the normative EJB metamodel (see Section 5.3, “The Enterprise JavaBeans 
Metamodel,” on page 5-12) by instantiation, code generation, invocation, or 
serialization as defined by the MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-
02) specifications.

FCM Model

Use of the normative FCM metamodel (see Chapter 5, “ Section II - Flow Composition 
Model”) by instantiation, code generation, invocation, or serialization as defined by the 
MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-02) specifications.

UML Profile for MOF

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13), 
and which is populated with stereotypes, tagged values and constraints defined in the 
uml2mof «profile» Package (Chapter 6).

CCA Notation

1.3 Proof of Concept

This specification is a practical approach to the need for specifying EDOC systems, 
based on the following real world experience of the companies concerned:

1.3.1 CBOP

CBOP is a consortium in Japan, promoting the reuse and the sharing of business 
domain models and software components. The submission of the pattern mechanism to 
the UML profile for EDOC RFP was based on the CBOP standards that are focused on 
the normalization of business object patterns for modeling. Current work of CBOP is, 
inter alia, concerned with the development of UML tools that enable the application of 
patterns in object modeling with UML. The EDOC standard will be taken in to account 
in these tools as well as the CBOP standards.

1.3.2 Data Access Technologies

The CCA profile (see Chapter 3, “Section II - The Component Collaboration 
Architecture”) is based on product development done by Data Access Technologies 
under a cooperative agreement with the National Institute of Technologies - Advanced 
Technology Program. The basis for CCA has been proven in two related works - one as 
a distributed user interface toolkit for Enterprise Java Beans and more recently as the 
February 2002 UML Profile for EDOC:  Proof of Concept 1-5



1

basis for "Component X Studio" which provides drag-and-drop assembly of server-side 
application components. Component-X Studio is has been released as a product. 
Portions of this same model have also been incorporated into ebXml for it's 
specification schema, giving CCA an XML based technology mapping. Finally, 
portions of CCA and the related entity model derive from standards, development and 
consulting work done in relation to the "Business Object Component Architecture" 
which, while never standardized has proven to be a solid foundation for modeling and 
implementing a systems information viewpoint. In all cases of the above works, model 
based development has been used throughout the lifecycle, from design to deployment 
- proving the sufficiency of the base models to drive execution.

1.3.3 DSTC

DSTC has used its dMOF product to develop a MOF respository and Human Usable 
Textual Notation I/O tools which support modeling of Business Processes conforming 
to the metamodel in Chapter 3, “Section V - The Business Process Profile”). 
Significant Business Process models have been created using these generated tools, and 
mapped using XSLT into XML workflow process definitions, which execute on the 
DSTC's Breeze workflow engine. dMOF is a commercial product installed at many 
customer sites world-wide, and Breeze is in development and is currently being beta-
tested by four DSTC partner organizations.

In addition the dMOF tool has been used to validate the MOF conformance of all the 
meta-models in Chapter 3. XMI documents containing these meta-models will be 
submitted as separate conveniece documents.

1.3.4 EDS

EDS developed the Enterprise Business Object Facility (EBOF) product in conjunction 
with work on the Business Object Facility specification. This product serves as a proof 
of concept for important aspects of this submission. It incorporated UML models as 
the basis for generating executable, distributed, CORBA applications. This involved 
consideration of transactions, persistence, management of relationships, operations on 
extents, performance optimization and many other factors. This product was sold to a 
major software vendor.

1.3.5 Fujitsu

This submission is based in part upon Fujitsu's system analysis and design 
methodology, "Application Architecture/Business Rule Modeling". The methodology is 
built into Fujitsu's product, "Application Architecture / Business Rule Modeler - 
AA/BRMODELER", which has been used for the development of many mission 
critical business systems. Although applied mainly to the development of COBOL 
applications, the methodology includes object-oriented characteristics. In this 
submission, the elements of the methodology and its related product are represented as 
UML elements and extensions. In the methodology, the specification of business rules 
is of special concern. The business rules are separated in types and attributed to objects 
corresponding to the types. These rules are represented in a formal grammar, and they 
1-6 UML Profile for Enterprise Distributed Object Computing February 2002



1

are compiled into executable programs by using AA/BRMODELER. 
AA/BRMODELER has sold approximately 5000 sets in Japan since it was developed 
in 1994. It has been applied to approximately 300 projects, some of scale greater than 
7,000 person-months. 

1.3.6 IBM

IBM has extensive experience in enterprise architectures, Java, Enterprise Java Beans, 
CORBA, UML, MOF, and metadata.  The WebSphere, MQ, and VisualAge product 
lines provide sophisticated analysis, design, deployment, and execution functionality 
embodying all of the key representative technologies.

1.3.7 Iona

The Relationships Profile is based on many years of modeling experience in industry 
and in the development of related products and standards. It uses ISO's General 
Relationship Model and the work of Haim Kilov and James Ross in their book 
"Information Modeling", which is based on long-term modeling experience in areas 
such as telecommunications, finance, insurance, document management, and business 
process change. 

The Process Profile incorporates Iona experience modeling enterprise processes with 
customers from use case descriptions, business models, and other IT system 
requirements information. It is also based on experience developing process definition 
and management products for environments ranging from concurrent engineering to 
document processing. 

1.3.8 Open-IT and SINTEF

The profile incorporates results and experience from the UML profile and associated 
lexical language that was developed in the European Union funded OBOE project. As 
part of this project supporting tools were developed and the technology was applied at 
a user site . A full description of the project is available at [7]. (see Appendix A).

The ODP concepts have been applied for the development of the OMG Finance domain 
General Ledgers specification in the COMPASS project, and a mapping framework for 
Microsoft COM has been developed by Netaccount (formerly Economica). More 
information on this is available at [6] (see Appendix A).

The ODP concepts have also been applied in the domain of geographic information 
systems. The DISGIS project has demonstrated the usefulness of the separation of 
concerns in terms of the 5 viewpoints defined by the RM-ODP, and developed an 
interoperability framework based on this (See [5], Appendix A). The use of the ODP 
viewpoints have also been found useful in the context of geographic information 
system standardization in ISO/TC211 (See [8], Appendix A) and the Open Geodata 
Consortium (See [9], Appendix A).
February 2002 UML Profile for EDOC:  Proof of Concept 1-7



1

The enterprise specification concepts have been derived from work for the UK 
Ministry of Defence and Eurocontrol together with participation in the development of 
the ODP – Enterprise Language standard (See [4], Appendix A).

1.3.9 Sun Microsystems

Sun Microsystems’ internal IT group has successfully implemented large scale 
Enterprise Integration using a conceptual meta-model close to that defined in the 
Events profile (Chapter 3, “Section IV - The Events Profile”), covering business 
process, entity, and event architecture. While this has not been using UML, the work 
modeled the enterprise and the interaction between system components based on an 
enterprise business object/event information model. Business objects and events have 
been modeled in a Sun IT internal language, SDDL, a self describing data language, 
the syntax of which is equivalent to the modeling framework proposed here.

This implementation is successful, and by a rough estimate 50% of Sun’s key 
applications participate in event driven processes, and in total about a million event 
notifications are sent among these applications every day.

1.3.10 Unisys

Unisys has extensive experience in enterprise architectures, commercial  metadata 
repositories, metadata interchange, Java, Enterprise Java  Beans, CORBA, COM+, 
UML, and MOF.  Unisys products provide extensive and  distributed metadata 
management services.  Unisys has designed numerous  metamodels using UML, and 
has deployed numerous metamodels using MOF,  including metamodels of Java, 
CORBA IDL, UML, and CWM.

1.3.11 ebXML

The ebXML Business Process Specification Schema (BPSS), which was adopted as a 
specification on May 11th 2001, is aligned with and validates the Component 
Collaboration Architecture (CCA). This alignment was demonstrated as part of the 
ebXML “proof of concept” on the same day. This alignment validates the use of CCA 
concepts to express Business-to-Business processes in a precise (executable) manner.  
The United Nations and Oasis jointly sponsor EbXML.
1-8 UML Profile for Enterprise Distributed Object Computing February 2002



EDOC Profile: Rationale and 
Application 2
Contents

This chapter includes the following topics. 

Topic Page

Section I - Vision

“Overview” 2-2

Section II - The EDOC Profile Elements

“The Enterprise Collaboration Architecture” 2-3

“Patterns” 2-8

“Technology Specific Models and Technology Mappings” 2-10

Section III - Application of the EDOC Profile Elements

“Separation of Concerns and Viewpoint Specifications” 2-12

“Enterprise Specification” 2-14

“Computational Specification” 2-16

“Information Specification” 2-19

“Engineering Specification” 2-20

“Technology Specification” 2-21

“Specification Integrity - Interviewpoint 
Correspondences”

2-21
February 2002 UML Profile for Enterprise Distributed Object Computing 2-1



2

Section I - Vision

2.1 Overview

The vision of the EDOC Profile is to simplify the development of component based 
EDOC systems by means of a modeling framework, based on UML 1.4 and 
conforming to the OMG Model Driven Architecture (see [30] in Appendix A), that 
provides:

• A platform independent, recursive collaboration based modeling approach that can 
be used at different levels of granularity and different degrees of coupling, for both 
business and systems modeling and encompasses:

• A loosely coupled, re-useable business collaboration architecture that can be 
leveraged by business-to-business  (b2b) and business-to-customer (b2c) 
applications, as well as for enterprise application integration.

• A business component architecture that provides interoperable business 
components and services, re-use and composability of components and re-use of 
designs and patterns, while being independent of choice of technology  (e.g., 
component models), independent of choice of middleware (e.g., message services) 
and independent of choice of paradigms (e.g., synchronous or asynchronous 
interactions).

• Modeling concepts for describing clearly the business processes and associated 
rules that the systems support, the application structure and use of infrastructure 
services, and the breakdown of the system into configurable components.

• An architectural approach that allows the integration of “process models” and 
“information models.”

• A development approach that allows two-way traceability between the specification, 
implementation and operation of Enterprise computing systems and the business 
functions that they are designed to support.

• Support for system evolution and the specification of collaboration between 
systems.

• A notation that is accessible and coherent.

The vision addresses key business needs by enabling the development of tools that 
support:

• Business collaborations as a central concern – covering alliances, outsourcing, 
supply chains, and internet commerce, and dealing with relationships that are in 
constant flux where what is inside the enterprise today is outside tomorrow, and 
vice versa.

• Process engineering by assembling services – so that basic business functions can 
remain relatively constant while who performs them and in what sequence changes, 
and services themselves can become proactive.

• The ability for parts of the enterprise to react quickly and reliably to change 
through:
2-2 UML Profile for Enterprise Distributed Object Computing February 2002



2

• Shorter development time and improved quality of applications meeting market 
needs, improved interoperability between systems and support for distributed 
computing.

• Reduced lead time and improved quality resulting from the ability to generate a 
substantial portion of application code.

• More robust specification by removing ambiguity and enabling more rigorous 
analysis of designs.

• A new marketplace for interoperable collaboration based infrastructures and 
business components.

The EDOC Profile provides this modeling framework by defining:

• A set of Profile Elements comprising:

• A technology independent profile, the Enterprise Collaboration Architecture 
(ECA) allowing the definition of Platform Independent Models as defined by the 
MDA.

• A Patterns Profile that can be applied in specifications that use the ECA.

• A set of Technology specific Models allowing the definition of Platform 
Dependent Models as defined by the MDA.

• A structure for the application of the Profile Elements in the specification of EDOC 
systems that conforms to the MDA.

This remainder of this chapter:

• provides an overview of the Profile Elements (Section II), and 

• defines how the Profile Elements are applied in the specification of an EDOC 
system (Section III).

The ECA is fully defined in Chapter 3, the Patterns Profile in Chapter 4, and the 
Technology specific Models in Chapter 5. Non-normative mappings from the ECA to 
the Technology specific Models defined in Chapter 5 are described in Section II.

Section II - The EDOC Profile Elements

2.2 The Enterprise Collaboration Architecture

The Enterprise Collaboration Architecture (ECA) comprises a set of five UML 
profiles:

• The Component Collaboration Architecture (CCA) which details how the UML 
concepts of classes, collaborations and activity graphs can be used to model, at 
varying and mixed levels of granularity, the structure and behavior of the 
components that comprise a system.

• The Entities profile, which describes a set of UML extensions that may be used to 
model entity objects that are representations of concepts in the application problem 
domain and define them as composable components.
February 2002 UML Profile for EDOC:  The Enterprise Collaboration Architecture 2-3



2

• The Events profile, which describes a set of UML extensions that may be used on 
their own, or in combination with the other EDOC elements, to model event driven 
systems.

• The Business Process profile, which specializes the CCA, and describes a set of 
UML extensions that may be used on their own, or in combination with the other 
EDOC elements, to model system behavior in the context of the business it 
supports.

• The Relationships profile, which describes the extensions to the UML core facilities 
to meet the need for rigorous relationship specification in general and in business 
modeling and software modeling in particular.

Each profile consists of a set of UML extensions that represent concepts needed to 
model specific aspects of EDOC systems. The concepts are described in terms of UML 
profiles. 

The semantics of each profile (except for the Relationships Profile) are also expressed 
in a UML-independent MOF metamodel.

The ECA profiles are technology independent and are used together to define platform 
independent models of EDOC systems in conformance with the MDA. In particular, 
they enable the modeling of the concepts that until now have had to be specified 
programmatically in terms of the use of services such as events/ notifications, support 
for relationships and persistence. 

2.2.1 Component Collaboration Architecture 

The Component Collaboration Architecture (CCA) details how the UML concepts of 
classes, collaborations and activity graphs can be used to model, at varying and mixed 
levels of granularity, the structure and behavior of the components that comprise a 
system. It defines an architecture of recursive decomposition and assembly of parts, 
which may be applied to many domains.  

The term component is used here to designate a logical concept  - a “part,” something 
that can be incorporated in a logical composition. It is referred to in the CCA as a 
Process Component. In many cases Process Components will correspond, and have a 
mapping, to physical components and/or deployment units in a particular technology. 

A Process Component is a processing component: it collaborates with other Process 
Components within a CCA Composition, interacting with them through Ports, where 
Ports are an abstraction of interfaces of various types (e.g., synchronous, 
asynchronous).  Process Components can be used to build other Process Components 
or to implement roles in a process – such as a vendor in a buy-sell process. 

Process Components collaborate at a given level of specification collaborate and are 
themselves decomposed at the next lower level of specification. Thus the concepts of 
Process Component and Composition are interdependent.
2-4 UML Profile for Enterprise Distributed Object Computing February 2002



2

The recursive decomposition of Process Components utilizes two constructs in parallel: 
Composition (using UML Collaboration) to show what Process Components must be 
assembled and how they are put together to achieve the goal, and Choreography (using 
UML Activity Graph) to show the flow of activities to achieve a goal.  The CCA 
integrates these concepts of “what” and “when” at each level.

Since CCA, by its very nature, may be applied at many levels and the specification 
requirements at these various levels are not exactly the same, the CCA can be further 
specialized with profiles for each level using the same profile mechanisms. Thus 
Process Components exposed on the Internet will require features of security and 
distribution, while more local Process Components will only require a way to 
communicate, and there may be requirements for Process Components for specific 
purposes such as business-2-business e-commerce, enterprise application integration, 
distributed objects, real-time etc.

It is specifically intended that different kinds and granularities of Process Components 
at different levels will be joined by the recursive nature of the CCA.  Thus Process 
Components describing a worldwide B2B business process can decompose into 
application level Process Components integrated across the enterprise and these can 
decompose into program level Process Components within a single system.  However, 
this capability for recursive decomposition is not always required.  Any Process 
Component may be implemented directly in the technology of choice without requiring 
decomposition into other Process Components.

2.2.2 Entities profile

The Entities profile describes a set of UML extensions that may be used to model 
entity objects that are representations of concepts in the application problem domain 
and define them as composable components.

The goal is to define the entities with their attributes, relationships, operations, 
constraints and dependencies at a technology-independent level as components within 
system modeled using the CCA. The component determines the unit of distribution and 
interfaces that must be complemented by other components.  The profile includes 
declarative elements for placing constraints on the profile and for rules that will 
propagate the effects of changes and events.  

The Entities profile is used with the Events and Business Process profiles to allow 
definition of the logic of automated business processes and of events that may be 
exchanged  to achieve more loosely coupled integration.  These three profiles together 
support the design of an EDOC system on the foundation provided by the CCA. 

The Entities profile is used to define a representation of the business and operations 
that effect changes in state of the business model.  Business processes modeled using 
the Events profile and the Business Process profile operate on this model where the 
process flow determines when operations should occur as a result of inputs from other 
systems, the occurrence of business events or the actions of human participants.
February 2002 UML Profile for EDOC:  The Enterprise Collaboration Architecture 2-5



2

2.2.3 Events Profile

The Events profile describes a set of UML extensions that may be used on their own, 
or in combination with the other EDOC elements, to model event driven systems.

An event driven system is a system in which actions result from business events. 
Whenever a business event happens anywhere in the enterprise, some person or thing, 
somewhere, may react to it by taking some action. Business rules determine what event 
leads to what action. Usually the action is a business activity that changes the state of 
one or more business entities. Any state change to a business entity may constitute a 
new business event, to which, in turn, some other person or thing, somewhere else, 
may react by taking some action. The purpose of the Event Profile is to define the use 
of the concepts in the CCA, Entity and Event profiles, and to extend them in order to 
support the design of event-driven business systems. 

The main concepts in event driven business models are the business entity, business 
event, business process, business activity and business rule. So the basic building 
blocks are the business process and the business entity. The two are ‘wired together’ by 
a flow of actions from process to entity, and by a flow of events from entity to process. 
In a component framework, therefore, business processes have event inflow and action 
outflow, and entities have action inflow and event outflow.

This means that CCA business process components and CCA business entity 
components can be created by modeling:

• A business process as a set of rules of the type notification/condition/activity (This 
is the event-driven equivalent of the commonly known event/condition/action rule).

• A business entity as set of operation/state/event causalities.

The connection from business process to business entity is a configurable mapping of 
activity to operation.

The connection from business entity to business process is a configurable set of 
subscriptions.

With these building blocks it is possible to model a number of event-based interactions. 
Furthermore, by reconfiguring the activity to operation mapping and/or the 
subscriptions, it is possible to re-engineer the business process and its execution in the 
system.

However, neither the business world, nor the computing world applies only one 
paradigm to their problem space. Businesses use a combination of loosely coupled and 
tightly coupled processes and computing solutions deploy a combination of loosely 
coupled and tightly coupled styles of communication and interaction between 
distributed components. Consequently, while the Events profile is defined to support 
the event-driven flavor of loosely coupled business and systems models, it allows such 
models to co-habit with more tightly coupled models.
2-6 UML Profile for Enterprise Distributed Object Computing February 2002



2

2.2.4 Business Process profile

The Business Process profile specializes the CCA, and describes a set of UML 
extensions that may be used on their own, or in combination with the other EDOC 
elements, to model system behavior in the context of the business it supports.

The Business Process profile provides modeling concepts that allow the description of 
business processes in terms of a composition of business activities, selection criteria 
for the entities that carry out these activities, and their communication and 
coordination. In particular, the Business Process profile provides the ability to express:

• Complex dependencies between individual business tasks (i.e., logical units of 
work) constituting a business process, as well as rich concurrency semantics.

• Representation of several business tasks at one level of abstraction as a single 
business task at a higher level of abstraction and precisely defining relationships 
between such tasks, covering activation and termination semantics for these tasks.

• Representation of iteration in business tasks.

• Various time expressions, such as duration of a task and support for expression of 
deadlines.

• Support for the detection of unexpected occurrences while performing business 
tasks that need to be acted upon, i.e., exceptional situations.

• Associations between the specifications of business tasks and business roles that 
perform these tasks and also those roles that are needed for task execution.

• Initiation of specific tasks in response to the occurrence of business events.

• The exposure of actions that take place during a business process as business events.

2.2.5 Relationships profile

The Relationships profile describes the extensions to the UML core facilities to meet 
the need for rigorous relationship specification in general and in business modeling and 
software modeling in particular.

Relationships are fundamental to behavior because they are the paths over which 
actions occur, therefore clear, concise and rigorous specification of relationship 
semantics is of utmost importance. Furthermore, it should be noted that multiplicities 
are not the most important or most interesting properties of relationships. Property 
determinations are much more important for the semantics of a relationship, and 
distinguish among different kinds of relationships. The fragments of relationship 
invariants about property determination represent an essential fragment of those elusive 
“business rules” that are the backbone of a good specification and that should never be 
only “in the code.”

At the same time, it is very desirable to discover and specify – rather than reinvent – 
those kinds of relationships that are encountered in all specifications, so that reuse at 
the specification level becomes possible. Such generic relationships extend the set of 
reusable constructs that already exist in UML.
February 2002 UML Profile for EDOC:  The Enterprise Collaboration Architecture 2-7



2

The Relationships profile defines generic relationships that provide concepts and 
constructs that permit UML to be used for specification of businesses and systems in a 
more rigorous manner than (and without restrictions currently imposed by) the base 
UML 1.4. Generic relationships provide for explicit specification of relationship 
semantics in class diagrams using invariants, in accordance with UML 1.4 Section 
2.3.2: “The static semantics ... are defined as a set of invariants of an instance of the 
[association].... These invariants have to be satisfied for the construct to be 
meaningful.”

The approach presented is extensible, and if it appears that in a particular business (or 
a set of applications) additional generic relationships are needed and useful, then they 
may be precisely and explicitly defined and added in a manner similar to the 
definitions provided here.

The profile also provides advice for choosing and using a subset of UML for business 
modeling such a that the business models represented in terms of this subset will be 
readable and understandable by all stakeholders, specifically, business subject matter 
experts, analysts, and developers (as well as managers). The generic relationships 
described here are among the most important constructs of this subset.

2.3 Patterns

A key element of the EDOC Profile design rationale is the ability to exploit the 
capability of patterns to capture modeling know-how or techniques and help developers 
to maintain efficiency and consistency in products. Patterns allow standard models to 
be reused to build good object models for EDOC systems.

Many approaches to the use of patterns have been proposed, for example “Design 
Pattern” proposed by E.Gamma et.al (see [28] in Appendix A),  “Analysis Patterns” 
proposed by M. Fowler [27] or “Catalysis Approach” proposed by D. D’Souza [26]. In 
its use of patterns the EDOC Profile focuses on improving sharability and reusability 
of object models rather than on assisting modeling efforts by illustrating good 
modeling techniques.

EDOC Patterns improve the sharability and reusability of models, by supporting the 
following features:

• Models are made consistent with predefined normative modeling constructs, not 
only with modeling manners and notations.

• Modeling constructs  for common atomic objects, such as, Date, Currency, Country-
code are predefined.

• Common aggregated objects, such as Customer, Company, or Order, which 
represent business entities, are predefined as normative modeling constructs, using 
normative atomic objects.

• Business concepts, such as Trade, Invoice, or Settlement, which are typically 
represented as relationships among objects, are defined as aggregations of the 
common elementary aggregated objects or simple objects, and are predefined as 
normative modeling constructs.
2-8 UML Profile for Enterprise Distributed Object Computing February 2002



2

• Aggregations that can be predefined using the more basic and elementary patterns 
as base, are defined as object patterns.

• Patterns can represent business concepts where they provide for aggregation of 
more elementary patterns, thus aggregation or composition mechanisms are 
provided in patterns.

• Business rules that govern a business concept are represented with a pattern with 
encapsulated  constraints and a mechanism for constraint inheritance among 
patterns is provided.

A pattern is a set of types that can be instantiated to create an object model. Making a 
pattern from a set of object models requires identifying and defining the common types 
among those object models as their metamodel as in the ECA. Identifying and 
specifying many reusable business object patterns enables quick and high quality 
model development by selecting appropriate patterns to use in the project as a 
template.

The Patterns profile defines a standard means, Business Function Object Patterns 
(BFOP), for expressing object models using the UML package notation, together with 
the mechanisms for applying patterns that are required to describe models.

BFOP is a set of object patterns laid out in a hierarchical multi-layer structure, the 
Basic, Unit, Basic Model, Product (application systems) and Option layers.  For 
example, Figure 2-1 illustrates how “Sales/Purchase Pattern” is composed from “Sales 
Order & Purchase Order Pattern”, “Closing Pattern” and so on.  The UML 
parameterized collaboration mechanism is used to materialize the pattern integration. 

One of the major benefits of using this multi-layered structure is that it enables reuse 
(inheritance) of the constraints that have been defined and encapsulated in patterns in 
the layers. It provides a normalized way to define constraints and is effective in 
maintaining consistency within the object model.

The concepts of Business Pattern Package (defining a pattern) and Business Pattern 
Binding (applying a pattern) have the features of pattern inheritance and pattern 
composition. This capability is useful for expressing patterns that include the objects 
constructed by recursive component composition as defined by the ECA.

The Patterns Profile defines three basic forms of pattern:

• A simple pattern, which is a pattern consisting of minimal elements needed to form 
a pattern.

• An inherited pattern, which is a pattern defined by inheriting from another pattern.

• A composite pattern, which is a pattern defined as a result of combining more than 
two patterns: the composite pattern concept is an extension of the inherited pattern.  

Using the above three basic forms of pattern as the base, notations for expressing 
patterns and their metamodel are defined. 

The instantiation of a composite pattern in a hierarchical structure becomes possible by 
resolving pattern inheritance and collaboration by performing "unfold." When 
composite patterns are granular enough to include implementation details, it is possible 
to use them to describe a component concept such as that defined in the CCA, each 
February 2002 UML Profile for EDOC:  Patterns 2-9



2

pattern package can be implemented with real components instead of unfolding it into 
a components pattern. In short, the proposed pattern concept and mechanism can be 
applied to the components based development that is required for EDOC systems.

The Patterns profile also includes standard models from the ECA such as Business 
Entities, Business Processes, Business Events and Business Rules, together with a set 
of common and reusable patterns of relationship properties that occur in business 
modeling.

The profile does not define any new metamodel elements. The pattern notation uses 
currently available metamodel elements and patterns are described using the UML 
pattern notation.

Figure 2-1 An Example of BFOP Pattern Hierarchy

2.4 Technology Specific Models and Technology Mappings 

The focus of the ECA is on enterprise, computational and information specifications 
for a platform independent model of an EDOC system. These are transformed further 
to engineering and technology specifications for platform specific models using 
technology concepts from an appropriate Technology Specific Model. 

Neither the business world, nor the computing world, applies only one paradigm to 
their problem space. Businesses use a combination of loosely coupled and tightly 
coupled processes, and computing solutions to deploy a combination of loosely 
coupled and tightly coupled styles of communication and interaction between 
distributed components.

B a s ic  L a y e r  M a s t e r & D e t a i l A s s o c i a t i o n

U n i t  L a y e r  

B a s ic  M o d e l  L a y e r  

C lo s in g

S a l e s O r d e r & P u r c h a s e

O r d e r

S a l e s /P u r c h a s e

S y s te m / . S u b s y s t e m  

C o m m o n  

p a t t e rn s  

In d u s t r ia l  

c o m p o n e n ts  

F r a m e w o r k s  

P r o d u c ts  
 

F ig u r e  1 :  A n   E x a m p le  o f  B F O P  P a t t e r n  H ie r a r c h y  
2-10 UML Profile for Enterprise Distributed Object Computing February 2002



2

An ECA based business process can be defined as event driven for some of its steps 
and workflow or request/response driven for others. Likewise, distributed components 
in the ECA can be configured to communicate with each other in a mixture of event-
driven publish-and-subscribe, asynchronous peer-to-peer, and client-server remote 
invocation styles. 

The EDOC Profile anticipates three levels of component coupling: linked, tightly 
coupled and loosely coupled.

Linked coupling refers to components that are co-located in the same address space.  
These components interact with each other directly, without communicating over a 
network.  As such, they can interact without being identifiable over the network. 
Messaging will generally be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers.  These components 
will also interact with synchronous messaging, but messaging will occur over a 
network.  While some messaging between the components may be asynchronous for 
performance and recoverability considerations, components are tightly coupled if any 
interactions between them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously, 
through a messaging infrastructure.  Communication is through messages and events.  
A message or event is issued in the scope of one transaction and accepted by one or 
more recipients in independent transactions.  Messages and events are stored and 
forwarded.  A message is a communicated with a defined recipient, and an event is a 
communicated (published) with self-declaring recipients (subscribers) unknown to the 
publisher.

The level of coupling between components has important performance and system 
flexibility implications.  Generally, components should be designed in a level-of-
coupling hierarchy so that components that are linked are within components that are 
tightly coupled, and tightly coupled components are then loosely coupled with each 
other.  This coupling hierarchy should be reflected in the network accessibility 
property of components and the synchronous vs. asynchronous property of their ports.

With a consistent mapping to a particular technology, implementations of 
independently developed specifications should be operationally interoperable.  
Furthermore, components implemented with different technologies should be 
operationally interoperable if the technology mappings are consistent with the 
transformations provided by bridges between the technologies.

ECA based specifications can be mapped down to various technology choices, and in 
particular both container-managed components and message-based services. Two 
Technology Specific Models are defined as part of the EDOC Profile, for Enterprise 
Java Beans and Java enterprise computing architectures, and for the Flow Composition 
Model (FCM). 

The EJB metamodel captures the concepts that will be used to design an Enterprise 
JavaBean-based application down to the Java implementation classes. The metamodel 
includes the assembly and deployment descriptor.

FCM is a general-purpose model that supports creating flow compositions of 
components and defining behaviors of those compositions using wiring diagrams. It 
provides a common set of technology abstractions across a variety of flow model types 
February 2002 UML Profile for EDOC:  Technology Specific Models and Technology Mappings 2-11



2

used in message brokering. FCM is closely tied to MQ-Series but it has more general 
applicability and is positioned as a layer of abstraction just above middleware 
technology,in contrast to the ECA Processes profile which is intended technology 
neutral and intended for use in an analysis level model.

Normative mappings from ECA to these models is the subject of future RFPs. Proof of 
concept mappings are given in Section III.

Section III - Application of the EDOC Profile Elements

2.5 Separation of Concerns and Viewpoint Specifications

The RFP states that:

 “Successful implementation of an enterprise computing system requires the operation 
of the system to be directly related to the business processes it supports. A good 
object-oriented model for an enterprise computing system must therefore provide a 
clear connection back to the business processes and business domain that are the basis 
for the requirements of the system. However, this model must also be carried forward 
into an effective implementation architecture for the system. This is not trivial because 
of the demanding nature of the target enterprise distributed computing environment.”1

This is reflected in the vision for this EDOC profile to provide:

• A development approach that allows two-way traceability between the specification, 
implementation and operation of Enterprise computing systems and the business 
functions that they are designed to support.

• In order to clearly and coherently address these requirements, the specification of an 
EDOC system must be structured to address a number of distinct sets of concerns:

• The behavior of the system, in the context of the business for which it is 
implemented (i.e., its roles in some enterprise that is greater than it itself), has to 
be specified in a way that can be traceably linked to its design.

• The structure of the application processing carried out by the system has to be 
defined in terms of configurations of objects and the interactions between them.

• The semantics of the application processing carried out by the system have to be 
expressed in a way that can be traceably linked from its roles through to the 
functions the system provides.

• The infrastructure of the system has to be defined in terms of the use of object 
services to support the application processing structure.

1. RFP p19 under the heading of “Enterprise Computing Systems”
2-12 UML Profile for Enterprise Distributed Object Computing February 2002



2

• The qualitative aspects of the system (e.g., performance and reliability objectives) 
have to be defined together with the hardware and software products that realize 
the system. These determine the physical configuration of application processing 
and supporting services across available resources, and how the system is 
managed.

This is the problem addressed by the Reference Model of Open Distributed Processing 
(RM-ODP) (see [1], [2], [3] Appendix A) and this specification uses as the conceptual 
framework for an EDOC system specification the concept of viewpoints defined in the 
RM-ODP. It partitions a system specification into five viewpoint specifications, namely 
the

• enterprise specification,

• computational specification,

• information specification,

• engineering specification, and

• technology specification.

The set of linked specifications, taken together, ensure that the system can be 
implemented and operated in such a way that its behavior will meet the business needs 
of its owners, and, furthermore, that its owners will understand the constraints on their 
business that operation of the system will impose.

This section explains how the concepts defined by in the EDOC Profile can be used to 
develop a full set of viewpoint specifications for an EDOC system and how 
specification integrity across the various viewpoint specifications can be ensured. In 
summary (Figure 2-2):

• The CCA, the Events profile, the Entities profile the Processes profile and the 
Relationships profile from the ECA are used, with relevant Patterns, to produce an 
enterprise specification (Enterprise viewpoint).

• The CCA, the Entities profile and the Events profile from the ECA are used, with 
relevant Patterns, to produce a computational specification (Computational 
viewpoint).

• The Entities profile and Relationships profile from the ECA are used, with relevant 
Patterns, to produce an information specification (Information viewpoint).

• A technology abstraction model such as the Flow Composition Model (FCM), with 
relevant Patterns, is used to produce an engineering specification (Engineering 
viewpoint).

• The mappings to various technologies, in particular, to J2EE with EJB, to CORBA 
3 with CCM and to MS DNA/.NET with DCOM, are used to produce technology 
specifications (Technology viewpoint).
February 2002 UML Profile for EDOC:  Separation of Concerns and Viewpoint Specifications 2-13



2

Figure 2-2 EDOC Profile elements related to the ISO RM ODP viewpoints

Such a specification structure is valid for all phases of a software system’s lifecycle, 
including, but not limited to the

• analysis phase when the roles played by the system’s components in the business it 
supports are defined and related to the business requirements,

• design and implementation phases, when detailed specifications for the system’s 
components are developed, and

• maintenance phase, when, after implementation, the system’s behavior is modified 
and tuned to meet the changing business environment in which it will work.

The overall structure of the EDOC Profile in the context of the ISO RM-ODP 
viewpoints is illustrated in Figure 2-2.

2.6 Enterprise Specification

2.6.1 Concepts

The enterprise specification of an EDOCsystem provides the essential traceability 
between the system design and the business processes and the business domain that are 
the basis for the requirement for the system.

The basis of the enterprise specification is provided by the concepts of the ODP 
enterprise language (modeled using the ECA elements). These concepts are defined in 
Appendix A - [4].

An enterprise specification models the structure and behavior of the system in the 
context of the business organization of which it forms a part in the following terms:

E n ter prise v ie w po in t
(C C A , Pro cesses , E ntitie s, R e lation ships, Events)

E n ter prise v ie w po in t
(C C A , Pro cesses , E ntitie s, R e lation ships, Events)

In fo rm a tion  view p oint 
(En tit ie s, R elation ship s) (C C A , En tit ie s, E ven ts)

C om p u tation al view p oin tIn fo rm a tion  view p oint 
(En tit ie s, R elation ship s) (C C A , En tit ie s, E ven ts)

C om p u tation al view p oin t

T ec hn o lo gy  view po int
(U M L fo r J2E E /EJB /JM S, C O R B A  3/C C M , C O M , S O A P, ebX M L) 

T ec hn o lo gy  view po int
(U M L fo r J2E E /EJB /JM S, C O R B A  3/C C M , C O M , S O A P, ebX M L) 

Pa rt I:Techno lo gy  
Spec ific  M o de ls
Pa rt I:Techno lo gy  
Spec ific  M o de ls

Pa rt II:  
EC A to
techno log y 
m app ing s 

Pa rt II:  
EC A to
techno log y 
m app ing s 

Pa rt I: E C A

(Tech no log y ab strac tio n: FC M )

E n gin eer in g  v iew p oin t
(Tech no log y ab strac tio n: FC M )

E n gin eer in g  v iew p oin t

Pa rt I : P attern s - app lied to  a ll  view points
2-14 UML Profile for Enterprise Distributed Object Computing February 2002



2

• the business processes supported by the system,

• steps in those processes and relationships between steps,

• business rules (policies) that apply to the steps,

• artifacts acted on by each step,

• enterprise objects representing the business entities involved, 

• the roles that they fulfil in supporting the business processes, and 

• the relationships between roles (including interaction relationships) where roles 
identify responsibility for steps in the business processes. 

An EDOC system or each component of that system is modeled as an enterprise object 
and is assigned a role or roles in the community: hence, it is associated with specific 
parts of one or more processes. These roles identify the parts of the business processes 
for which the system is responsible and the artifacts that are involved. Such artifacts 
and resources represent the information held and acted upon by the system.

The central concept of any enterprise specification is that of a community that models 
a collection of entities interacting to achieve some purpose, which is defined by the 
objective of the community concerned. Each community is modeled as a configuration 
of enterprise objects in roles. The EDOC system of concern (or the components of that 
system) is modeled as one or more of the enterprise objects that are the members of the 
community.

The behavior of the members of the community is identified by the roles they fulfil, 
and is defined in terms of a set of actions, each of which may also be modeled as a 
step of one or more processes. Each process is designed to achieve the objective of the 
community.

Depending upon what it models, an enterprise object may be further refined as a 
community in a process of recursive decomposition. 

Policies (business rules) may be associated with any other enterprise language concept 
and may be expressed in the form of constraints on any concept, or relationship 
between two concepts.

2.6.2 EDOC Enterprise Subprofile

The EDOC enterprise specification makes use of the CCA for the role-based definition 
of the enterprise structure, where:

• Communities are modeled as Composed Components with associated Composition 
and Choreography definitions.

• Enterprise objects are modeled as ProcessComponents.

• The interactions in which enterprise objects can participate are defined by Ports and 
the associated Protocols.

It makes use of the Processes profile for the process-based definition of the enterprise 
structure.
February 2002 UML Profile for EDOC:  Enterprise Specification 2-15



2

It makes use of the Event profile for the definition of event driven enterprise structures.

It makes use of the Entities profile for the definition of entities and rules. Artifacts, 
performers and responsible parties, which are the subject of the interactions, are 
modeled as entities.

It makes use of the Relationships profile for rigorous specification of relationships. 

2.7 Computational Specification

2.7.1 Concepts

The computational specification describes the implementation of the EDOC system (or 
components that comprise that system) in order to carry out the processing required by 
the system roles in the enterprise specification. It does this in terms of functional 
decomposition of the system into computational objects that interact at interfaces, and 
thereby enables distribution. It defines:

• Computational objects that play some functional role in the system and which can 
be described in terms of provided interfaces and used interfaces: a set of 
computational objects will correspond to the implementation of roles of the system 
in enterprise processes, and associated enterprise events and business rules.

• The interfaces at which the computational objects interact: this includes different 
types of interfaces and also describes data involved in computational interactions 
corresponding to the information objects in the information specification.

• The collaboration structures among a set of computational objects.

The computational viewpoint is closely related to the enterprise viewpoint in that the 
computational objects represent a functional mapping of enterprise concepts like 
business processes, rules, events etc. where these relate to the roles of the system in the 
enterprise specification. Ways of ensuring consistency (conformance/reference points) 
between enterprise and computational specifications should be supported (consistency 
statements for corresponding conformance/reference points in the two viewpoint 
specifications).

The EDOC computational specification concepts are based on the RM-ODP Part 3 
Clause 7 (see Appendix A [3]).

2.7.2 EDOC Computational Specifications

An EDOC computational specification makes use of the CCA for the basic definition 
of the computational structure, where:

• Computational objects are modeled as ProcessComponents.

• The interfaces at which computational objects interact are modeled by Ports.

• Collaboration structures among a set of computational objects are modeled by 
Compositions with associated Choreographies.
2-16 UML Profile for Enterprise Distributed Object Computing February 2002



2

It makes use of the Entities Model for the definition of entity components, where entity 
components correspond to entities in the information specification.

It makes use of the Events Model for the definition of event driven computational 
structures.

2.7.3 Levels of ProcessComponent in a Computational Specification

An EDOC computational specification can specify ProcessComponents at a number of 
different levels. These levels correspond to four general categories of 
ProcessComponent: 

• E-Business Components

• Application  Components

• Distributed Components

• Program Components

2.7.3.1 E-Business Components

E-Business Components are used as the integration point between enterprises, 
enterprises and customers or somewhat independent parts of a large enterprise (such as 
an acquired division).  Interfaces to E-Business Components will frequently be directly 
accessible on the Internet as part of a web portal.

The E-Business Component has the potential to spawn new forms of business and new 
ways for business to work together.

E-Business Components integrate business entities that may share no common 
computing management or infrastructure.  Interactions between E-Business 
components must be very loosely coupled and are always asynchronous.  No 
assumptions of shared resources may be made between the parties, and the internals of 
the E-Business components will frequently be changed without informing other parties.

2.7.3.2 Application Components

Application Components represent new and legacy applications within an enterprise.  
Application Components are used to integrate applications (EAI) and create new 
applications, frequently to facilitate E-Business Components.

Application Components represent large-grain functional units.  Each Application 
Component may be implemented in different technologies for different parts of the 
enterprise.  Integrating Application Components facilitates enterprise-wide business 
processes and efficiencies.

Individual Application Components may be individually managed, but the integration 
falls under common management that may impose standards for interoperability and 
security.
February 2002 UML Profile for EDOC:  Computational Specification 2-17



2

Application Components use a wide variety of integration techniques including 
messaging, events, Internet exchanges and object or procedural RPC. Application 
Components are frequently wrapped legacy systems.

2.7.3.3 Distributed Components

Distributed Components are functional parts of distributed applications.  These 
components are generally integrated within a common middleware infrastructure such 
as EJB, CORBA Components or DCOM.  Distributed components have well defined 
interfaces and share common services and resources within an application.

Distributed Components provide for world-wide applications that can use a variety of 
technologies. Most distributed component interactions are synchronous.

2.7.3.4 Program Components

Program Components act within a single process to facilitate a program or larger grain 
component.  Program Components may be technical in nature – such as a query 
component, or business focused – such as a “customer” component.  These 
components will integrate under a common technology – such as J2EE.

Program Components provide the capability for drag-and-drop assembly of 
applications from fine-grain parts.

Note that some Program Components will provide access to the “outside world”, such 
as CORBA or XML thus making a set of Program Components into a larger grain 
component.

The destination between Program Components and all others is quite important as 
these are the only components that do not use some kind of distributed technology – 
they are only used and visible within the context of  “a program.”

2.7.3.5 Relationships between ProcessComponent levels

Relationships between ProcessComponent levels

Figure 2-3 shows how configurations of ProcessComponents at one level may use and 
be composed of ProcessComponents at lower levels.  It also shows that at any level 
ProcessComponents may be primitive, that is – directly implemented without being a 
Composition.  ProcessComponents may re-use and compose ProcessComponents at 
lower levels or the same level.
2-18 UML Profile for Enterprise Distributed Object Computing February 2002



2

Figure 2-3  ProcessComponent Composition at multiple levels

There is no requirement or expectation that an EDOC computational specification must 
use all of these levels.  For example, an E-Business Component could be directly 
composed of Program Components or it could use every levels.

2.8 Information Specification

2.8.1 Concepts

The information specification defines the semantics of information and information 
processing involved in the parts of the business processes carried out by the EDOC 
system (or by components that comprise that system). The information specification 
concepts are taken from the RM-ODP Part 3 Clause 6 (see Appendix A [3]).

The information specification is expressed in terms of

• a configuration of information objects (static schema), 

• the behavior of those information objects (dynamic schema), and 

• the constraints that apply to either of the above (invariant schema).

The information objects identified correspond to enterprise objects in the enterprise 
specification for which information is held and processed by the system.

The structure of the information objects and the relationships between them are defined 
in terms of static (structural) configurations of information objects. This includes the 
structure of individual information objects and the structure comprising a set of related 
information objects.

The behavior of the interrelated information objects is defined in terms of state 
changes that can occur and relate to the effects of the process steps in the enterprise 
specification.

E-business Components

Application Components

Distributed Components

Program Components
February 2002 UML Profile for EDOC:  Information Specification 2-19



2

The constraints relate to the business rules that apply to the process steps in the 
enterprise specification and define predicates on the information objects that must 
always be true.

2.8.2 EDOC Information Specifications

An EDOC information specification makes use of the Entities profile and the 
Relationships profile for the basic definition of the information structure, where:

• information objects are modeled as Entities and Relationships;

• constraints are defined in terms of enumerated states, relationship properties, and 
invariants from UML.

It makes use of the Choreography from the CCA for the definition of behavior of 
Entities in terms of changes of EntityState.

It makes use of the Relationships profile for rigorous specification of relationships.

2.9 Engineering Specification 

2.9.1 Concepts

The engineering specification defines the distribution transparency requirements and 
the services required to provide these transparencies in support of the processing 
specified by the computational specification. In addition, the engineering specification 
describes the means by which distribution is provided. The engineering specification 
concepts are taken from the RM-ODP Part 3 Clause 8 (see Appendix A [3]).

The engineering specification is derived from the computational specification by 
applying a technology mapping.  The technology mapping incorporates standard 
interface and naming protocols to define consistent interface types and specifications.

The engineering specification will also incorporate additional design decisions. One of 
the key aspects of the engineering specification is the strategy for distributed 
computing, governing such issues as:

• which objects are network accessible and which are not: objects that are not 
network accessible must be co-located with objects with which they have 
relationships or from which they receive messages;  

• the scope of transactions and the use of asynchronous messaging;  

• which elements are persistent and how they are mapped to a persistent data store.

The engineering specification provides the basis for code generation.  Currently, the 
ECA elements along with current UML design facilities can provide specifications for 
code to implement the objects, their interfaces, code to assure model integrity and 
methods to support certain services and protocols.  Humans will still be required to 
program the business logic of methods and processes.
2-20 UML Profile for Enterprise Distributed Object Computing February 2002



2

2.9.2 EDOC Engineering Specifications

These are defined by mapping from the computational specification to a technology 
abstraction model such as FCM. Examples of such mappings are given in Section II.

2.10 Technology Specification

The technology specification is concerned with the choice and deployment of software 
and hardware products for implementing the system and with the associated mappings 
from  technology abstraction models such as FCM to the corresponding technologies 
(e.g. J2EE with EJB, Flow Composition Model (FCM), CORBA 3 with CCM and MS 
DNA/.Net with DCOM).

2.11 Specification Integrity - Interviewpoint Correspondences

This section identifies relationships that are required to exist between viewpoint 
specifications and are expressed through relationships between elements in different 
viewpoint specifications.  

2.11.1 Computational-Enterprise Interrelationships

A Process in the computational specification is related one or more sets of Activities in 
one or more Processes in the enterprise specification, where performance of those 
Activities is the responsibility of the EDOC system. It may also be related to Business 
Rules that apply to those Activities.

An Entity in the computational specification is related to a Entity referenced (as an 
artifact)  in at least one Activity in a Process in the enterprise specification, where the 
Activity is the responsibility of the EDOC system.

A BusinessNotification in the computational specification is related to a 
BusinessNotification associated with an Activity in a Process in the enterprise 
specification, where the Activity is the responsibility of the EDOC system.

A Rule in the computational specification is related to a Rule that applies to Activities 
in one or more Processes in the enterprise specification, where the Activities are the 
responsibility of the EDOC system.

2.11.2 Computational-Information Interrelationships

A Entity in the computational specification is related to an entity or a configuration of 
Entities in a static schema in the information specification.

A Process in the computational specification is related to a Choreography in the 
information description and can be related also to an invariant schema.

A BusinessNotification in the computational specification is related to a Choreogrphy 
in the information description.
February 2002 UML Profile for EDOC:  Technology Specification 2-21



2

A Rule in the computational specification is related to an invariant schema in the 
information specification.

2.11.3 Computational-Engineering Interrelationships

These depend upon the specific technology mappings that are applied.

2.11.4 Engineering-Technology Interrelationships

These depend upon the specific technology mappings that are applied.
2-22 UML Profile for Enterprise Distributed Object Computing February 2002



The Enterprise Collaboration 
Architecture 3
Contents

This chapter includes the following topics. 

Topic Page

Section I - ECA Design Rationale 3-1

“Key Design Features” 3-2

“ECA Elements” 3-9

Section II - The Component Collaboration 
Architecture

3-9

“Rationale” 3-10

“CCA Metamodel” 3-20

“CCA Notation” 3-71

“UML Profile” 3-75

“Diagramming CCA” 3-131

Section III - The Entities Profile 3-146

“Introduction” 3-147

“Entity Viewpoints” 3-155

“Entity Metamodel” 3-157

“Entity UML Profile” 3-168

Section IV - The Events Profile 3-177

“Rationale” 3-179
February 2002 UML Profile for Enterprise Distributed Object Computing 3-1



3

Section I - ECA Design Rationale

This chapter describes the Enterprise Collaboration Architecture (ECA) – a model-
driven architecture approach for specifying Enterprise Distributed Object Computing 
systems. 

3.1 Key Design Features

Five key design features of the ECA address the EDOC vision:

• Recursive component composition;

• Support for event-driven systems;

• Process specification;

• Integration of process and information models;

• Technology independence, allowing implementation of a design using different 
technologies.

“Metamodel” 3-190

“UML Profile” 3-206

“Relationship to other ECA profiles” 3-215

“Relationship other paradigms” 3-217

“Example” 3-218

Section V - The Business Process Profile 3-218

“Introduction” 3-220

“Metamodel” 3-220

“UML Profile” 3-245

“Notation for Activity and ProcessRole” 3-268

“Process Model Patterns” 3-270

“Full Model” 3-279

Section VI - The Relationships Profile 3-279

“Requirements” 3-280

“Using UML to Address the Requirements: An Overview” 3-286

“Formal Virtual Metamodel of the UML Extensions” 3-286

“Mapping the Relationships to Technical Platforms” 3-298

“Examples Using the UML Extensions” 3-302

Topic Page
3-2 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.1.1 Recursive component composition

Business processes are by their very nature collaborations – a set of people, 
departments, divisions or companies, working together to achieve some purpose or set 
of purposes.

Such a collaboration can be viewed as a “composition” with the people, departments 
etc. as “components” of that composition having “roles” that represent how each 
component is to behave within the composition (note that the same component may 
have different roles in the same or different compositions, just as a person, department 
etc. may have many roles with respect to many processes).

This dynamic of component and composition is fundamental, the concept of 
component only makes sense with respect to some specific kind of composition and the 
concept of composition only makes sense when there can be components to compose 
it.

When a high-level business process is considered, such as buying and selling, there are 
roles within this buy-sell process for the buyer and seller.  In some cases there may be 
other roles, such as banks, freight forwarders and brokers.  Each of these is defined as 
a component within the high-level process, e.g. it is a component of the “buy-sell” 
process, playing some role.

Besides identifying the roles it is necessary to identify how each of the components 
must interact with the other components for the process to unfold.  Thus, for each kind 
of interaction that exists between roles there is a protocol for that interaction defined 
by the information that flows and the timing of that flow, for example the interaction of 
the seller with a freight forwarder is completely different from the interaction with the 
buyer.  This leads to the next important concept – that of interactions.  Interactions are 
well defined protocols between roles within some composition. Each interaction point 
on a component is called a “port”, which is the point of interaction of roles.

Finally, reflecting what is seen in the world, it is necessary to allow “drill down” from 
one level of granularity to another.  When you place an order on the web you see a 
single face (the web portal) playing a single role (the seller).  This simplified view 
represents the seller’s role in the buy-sell process (you represent the other role). Inside 
of the seller, when it is opened up, you see order processing, credit, warehousing, 
shipping – all of the roles it takes to get you your order.  This more fine-grain process 
represents the way a particular component has been configured to play the role of the 
seller, another seller may involve other choices.

Adding this concept of drill-down takes us from “flat” component composition to 
recursive component composition – the ability to define components as compositions 
of finer grain components.

Thus, components are defined in terms of sub-components playing roles and 
interacting through ports.  At the highest level, processes are self-contained, the entire 
community of roles is identified.  When you “open up” one of the components you 
may find a “primitive” component, one defined in terms of pre-established constructs 
such as may be found in Java or the UML Action language.  The other thing you may 
find is another composition.  What looks like an atomic component at one level may 
reveal a complex lattice of sub-components when “opened up”.
February 2002 UML Profile for EDOC:  Key Design Features 3-3



3

A recursive component architecture can be used “top down”, by defining new 
processes in terms of higher level compositions.  It can also be used “bottom up” by 
assembling existing components into new compositions – making new components.  
As new basic capabilities are required they can either by defined from existing 
components or new primitive components can be supplied, so there is no “brick wall” 
when some fundamental capability you need was not anticipated.

In such a recursive component architecture there is a clear separation between the 
“inside” of a component and its “outside”.  The outside of a component exposes a set 
of named ports, each with a defined interaction that connects it with a compatible port 
in another component.  These ports specify what information flows between the 
compatible components and under what conditions the information flows.  The outside 
of a component is not concerned with the internal composition or process of the 
component.

One other aspect of component technology is that of configurability.  Components may 
be very general in nature, which promotes reuse.  These very general components must 
be configured when used in a specific role.  This may be seen in the property panels of 
bean-boxes or COM components.  The ability to configure a component is essential to 
making it general and reusable.  We call a configuration point a “property”.

To summarize the points;

• The concepts of component and composition are fundamentally tied.

• Components may be primitive or compositions of sub-components

• Each component can play roles within other compositions.

• Components interact with each other, within composite processes, through ports.

• Component composition is recursive, allowing decomposition and assembly.

The advantages of this approach are

• A single simple paradigm describes large grain and fine grain process components.

• Components are reusable across many compositions

• New components may be defined as collaborations of existing components

• New fundamental capabilities may defined as primitive components.

• The collaborative and recursive nature of processes may be directly represented.

3.1.2 Process Specification

The Business Process profile specializes the CCA, and describes a set of UML 
extensions that may be used on their own, or in combination with the other EDOC 
elements, to model system behavior in the context of the business it supports.

The profile provides modeling concepts that allow the description of business 
processes in terms of a composition of business activities, selection criteria for the 
entities that carry out these activities, and their communication and coordination. In 
particular, the Business Process profile provides the ability to express:
3-4 UML Profile for Enterprise Distributed Object Computing February 2002



3

• complex dependencies between individual business tasks (i.e. logical units of work) 
constituting a business process, as well as rich concurrency semantics;

• representation of several business tasks at one level of abstraction as a single 
business task at a higher level of abstraction and precisely defining relationships 
between such tasks, covering activation and termination semantics for these tasks;

• representation of iteration in business tasks;

• various time expressions, such as duration of a task and support for expression of 
deadlines;

• support for the detection of unexpected occurrences while performing business tasks 
that need to be acted upon, i.e. exceptional situations;

• associations between the specifications of business tasks and business roles that 
perform these tasks and also those roles that are needed for task execution;

• initiation of specific tasks in response to the occurrence of business events;

• the exposure of actions that take place during a business process as business events.

The modeling of processes in the ECA profile addresses an RFP requirement, but, 
more importantly, processes are important elements in the representation of 
interactions between components, systems and enterprises. Processes are the 
mechanisms of collaborations.  Processes define the roles of the participants and 
artifacts involved in collaborations.  Processes also define the manner in which events 
can drive the operation of the enterprise. Consequently, it is essential that the ECA 
model include a representation of processes that enables a modeler to define a 
framework for the operation of an enterprise. 

The modeling of processes in the ECA profile reflects the OMG Workflow 
Management Facility model.  A process contains activities, which perform the actions 
of the process.  The activities may invoke other processes, and they may employ 
resources.  The Workflow Management Facility resource interface represents the 
participation of that resource, i.e., a role in the ECA context.  The resource/role 
captures the state and supports the interaction between the activity and a potentially 
wide variety of resources. 

The ECA model goes slightly beyond the Workflow Management Facility 
specification.  First, it extends the resource concept by defining performers and 
artifacts (active and passive participants).  Second, it adds the ability to attach pre and 
post conditions to activities.  These are concepts that are consistent with workflow 
management concepts and provide basic flow control mechanisms.  These were not 
addressed in the Workflow Management Facility specification because it focused 
primarily on interoperability between workflow management systems. 

The ECA profile does not attempt to define a representation of the action semantics of 
processes, nor does it define the relationship of processes to organizations or 
applications.  These are left to other RFPs to be addressed by specialists in these areas.
February 2002 UML Profile for EDOC:  Key Design Features 3-5



3

3.1.3 Specification of Event Driven Systems

Event driven computing is becoming the preferred distributed computing paradigm in 
many enterprises and in many collaborations between enterprises.  Event driven 
computing combines two kinds of loosely coupled architectures.

The first one is loosely coupled, distributed components that communicate with each 
other through asynchronous messaging.

The other one is loosely coupled business process execution. Here enterprises 
collaborate under an overall long term contract, but do not execute their day to day 
interaction in traditional workflow, or request/response style interaction.

In event driven computing the most important aspect of a process is the events that 
happen during its execution, and the most important part of the component-to-
component communication is the notification of such events from the party that made 
them happen to all the parties that need to react to them.

In ECA we support both the definition of loosely coupled business processes, as well 
as the loosely coupled communication between distributed components.

Neither the world, nor the computing world, however, apply only one paradigm to their 
problem space. Businesses use a combination of loosely coupled and tightly coupled 
processes, and computing solutions deploy a combination of loosely coupled and 
tightly coupled styles of communication and interaction between distributed 
components.

An ECA process can be defined as event driven for some of its steps and workflow or 
request/response driven for others. ECA distributed components can be configured to 
communicate with each other in a mixture of event-driven publish-and-subscribe, 
asynchronous peer-to-peer, and client-server remote invocation styles.

The essential elements of the purely event driven approach are: 

• Business Process objects are configured with a set of Business Rule parameters that 
determine what Business Events trigger actions, and what the action should be. 

• Business Process objects operate on Business Entity objects which represent people, 
products, and other business resources and artifacts. 

• When actions are performed on Business Entity objects, Business Events happen. 

• All Business Entity objects are capable of notifying the world of events that happen 
to them. 

• All Business Process objects are capable of subscribing to such events and 
interpreting them throughout their set of business rules.

3.1.4 Integration of Process and Information Models

IT systems are specified with entity and process models, where entity models describe 
the things (entities, attributes, relationships, invariants) in the IT system and process 
models specify the processes, sub-processes, activities, resources, roles, and rules of IT 
system behavior.
3-6 UML Profile for Enterprise Distributed Object Computing February 2002



3

Information modeling tools, such as those based on the UML metamodel, are used to 
specify entity models. Process definition tools, such as those provided by BPR and 
workflow vendors, are used to specify process models. As these entity model and 
process model tools are based on different metamodels, the integration of their models 
into the IT system specification is a problem.

IT system designers and developers typically work round the problem by looking at 
one model, then the other, and then do their own composition for that moment (perhaps 
influenced by memories of other compositions). One result of this is that the normative 
entity and process models when composed, by each individual at multiple moments in 
time, become non-normative individual interpretations of the IT system specification. 
Also of concern is the impact of model changes to the composition – evolution of 
process and entity models is reasonably certain, especially during IT system 
development projects.

This specification specifies how the UML metamodel may be extended to become a 
common underlying metamodel for expressing IT system entities, processes, and their 
relationships, Although entity and process modeling styles are very different, their 
underlying metamodels are not and thus the process and information viewpoints can be 
reconciled. 

With this metamodel UML, workflow, and BPR vendors can provide new tools that 
combine entity-orientated and process-orientated modeling techniques to produce 
integrated IT system models.

3.1.5 Rigorous relationship specification

Rigorous relationship specification is a major aspect of business modeling and 
software modeling. The semantics of a class diagram is shown in its structure – the 
collections of “lines” – that has to be defined by means of appropriate invariants and 
represented graphically. Moreover, relationships are fundamental to behavior because 
they are the paths over which actions occur, therefore clear, concise and rigorous 
specification of relationship semantics is of utmost importance.

Multiplicities are not the most important or most interesting properties of 
relationships1. Property determinations are much more important for the semantics of a 
relationship, and distinguish among different kinds of relationships. The fragments of 
relationship invariants about property determination represent an essential fragment of 
those elusive “business rules” that are the backbone of a good specification and that 
should never be only “in the code.”

1. In most cases, the multiplicities follow from the generic relationship invariant and therefore 
do not need to be explicitly shown in the diagram: the Stereotype takes care of that. Such 
diagrams are less cluttered.
February 2002 UML Profile for EDOC:  Key Design Features 3-7



3

At the same time, it is very desirable to discover and specify – rather than reinvent – 
those kinds of relationships that are encountered in all specifications, so that reuse at 
the specification level becomes possible. Such generic relationships extend the set of 
reusable constructs that already exist in UML.

It is also desirable that the approach taken for the specification of relationships should 
be extensible so that, if it appears that in a particular business (or a set of applications) 
additional generic relationships are needed and useful, then they may be precisely and 
explicitly defined and added in a manner similar to the existing definitions.

Generic relationships can provide concepts and constructs that permit UML to be used 
for specification of businesses and systems in a more rigorous manner than (and 
without restrictions currently imposed by) the base UML 1.3. Generic relationships can 
provide for explicit specification of relationship semantics in class diagrams, a line 
between boxes – even a named line! – should not be considered an adequate 
relationship specification.2  

3.1.6 Mappings to Technology - Platform Independence

Viewpoint abstractions in the context of model-based development provide 
mechanisms for specifying platform independent models of business applications. 

Such platform independence is an important element in systems that can adapt to 
change and, hence, is a fundamental element of the EDOC vision (). The rate of 
change of today’s enterprises and their requirements generates demands for flexible 
and dynamic systems that are capable of coping with the ever changing business 
requirements and with changes in software and hardware technologies.

2. A combination of two interrelated lines required by the currently existing UML metamodel 
is an exception; specifically, an association line that simply mandates a link is acceptable, 
but only if it is paired with a <<Reference>> dependency line.
3-8 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-1 EDOC framework vision

3.2 ECA Elements

The Enterprise Collaboration Architecture (ECA) comprises a set of five UML profiles. 
Each profile consists of a set of UML extensions that represent concepts needed to 
model specific aspects of EDOC systems and address specific aspects of the key design 
features. The concepts are described in terms of UML profiles. The semantics of each 
profile (except for the Relationships Profile) are also expressed in a UML-independent 
MOF metamodel. These profiles are defined in the remainder of this chapter: 

• the Component Collaboration Architecture (CCA) which details how the UML 
concepts of classes, collaborations and activity graphs can be used to model, at 
varying and mixed levels of granularity, the structure and behavior of the 
components that comprise a system – Section II;

• the Entities profile, which describes a set of UML extensions that may be used to 
model entity objects that are representations of concepts in the application problem 
domain and define them as composable components – Section III;

• the Events profile, which describes a set of UML extensions that may be used on 
their own, or in combination with the other EDOC elements, to model event driven 
systems – Section IV;

• the Business Process profile, which specializes the CCA, and describes a set of 
UML extensions that may be used on their own, or in combination with the other 
EDOC elements, to model system behavior in the context of the business it supports 
– Section V;

• the Relationships profile, which describes the extensions to the UML core facilities 
to meet the need for rigorous relationship specification in general and in business 
modeling and software modeling in particular – Section VI.

Platform specific

CORBA
(CORBA 
Services)

Enterprise 
JavaBeans
(Java RM I 

servlets)
DCO M ActiveX

etc

DCO M ActiveX
etc

CORBA 
Components

Flow 
Composition 

M odel

CORBA
(CORBA 
Services)

Enterprise 
JavaBeans
(Java RM I 

servlets)
DCO M ActiveX

etc

DCO M ActiveX
etcDCO M ActiveX

etc

DCO M ActiveX
etc

CORBA 
Components

Flow 
Composition 

M odel

ECA Framework
(UM L with extensions)

Platform
indepentent

ECA Framework
(UM L with extensions)

Platform
indepentent
February 2002 UML Profile for EDOC:  ECA Elements 3-9



3

The ECA profiles are technology independent and are used together to define platform 
independent models of EDOC systems in conformance with the MDA. In particular, 
they enable the modeling of the concepts that until now have had to be specified 
programmatically in terms of the use of services such as events/ notification, support 
for relationships and persistence.

Section II - The Component Collaboration Architecture

The Component Collaboration Architecture (CCA) details how the UML concepts of 
classes, collaborations and activity graphs can be used to model, at varying and mixed 
levels of granularity, the structure and behavior of the components that comprise a 
system.

3.3 Rationale

3.3.1 Problems to be solved

The information system has become the backbone of the modern enterprise.  Within 
the enterprise, business processes are instrumented with applications, workflow 
systems, web portals and productivity tools that are necessary for the business to 
function.

While the enterprise has become more dependent on the information system the rate of 
change in business has increased, making it imperative that the information system 
keeps pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex.  Many of 
these systems have evolved over years in such a way that they are not well understood, 
do not integrate and are fragile.  The result is that the business may become dependent 
on an information infrastructure that cannot evolve at the pace required to support 
business goals.

The way in which to design, build, integrate and maintain information systems that are 
flexible, reusable, resilient and scalable is now becoming well understood but not well 
supported.  The CCA is one of a number of the elements required to address these 
needs by supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

3.3.1.1 Recursive decomposition and assembly

Information systems are, by their very nature, complex.  The only viable way to 
manage and isolate this complexity is to decompose these systems into simpler parts 
that work together in well-defined ways and may evolve independently over time.  
These parts can than be separately managed and understood.  We must also avoid re-
inventing parts that have already been produced, by reusing knowledge and 
functionality whenever practical.
3-10 UML Profile for Enterprise Distributed Object Computing February 2002



3

The requirements to decompose and reuse are two aspects of the same problem.  A 
complex system may be decomposed “top down”, revealing the underlying parts.  
However, systems will also be assembled from existing or bought-in parts – building 
up from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and 
“bottom up” assembly of existing parts.  Bringing together top-down specification and 
bottom-up assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of parts in 
implementation is repeated at many levels.  The composition of parts at one level is the 
part at the next level up.  In today’s web-integrated world this pattern repeats up to the 
global information system that is the Internet and extends down into the technology 
components that make up a system infrastructure – such as operating systems, 
communications, DBMS systems and desktop tools.

Having a rigorous and consistent way to understand and deal with this hierarchy of 
parts and compositions, how they work and interact at each level and how one level 
relates to the next, is absolutely necessary for achieve the business goals of a flexible 
and scalable information systems.

3.3.1.2 Traceability

The development process not only extends “up and down” as described above, but also 
evolves over time and at different levels of abstraction.  The artifacts of the 
development process at the beginning of a project may be general and “fuzzy” 
requirements that, as the project progresses, become precisely defined either in terms 
of formal requirements or the parts of the resulting system.  Requirements at various 
stages of the project result in designs, implementations and running systems (at least 
when everything goes well!).  Since parts evolve over time at multiple levels and at 
differing rates it can become almost impossible to keep track of what happened and 
why.

Old approaches to this problem required locking-down each level of the process in a 
“waterfall”.  Such approaches would work in environments where everything is known, 
well understood and stable.  Unfortunately such environments seldom, if ever, occur in 
reality.  In most cases the system becomes understood as it evolves, the technology 
changes, and new business requirements are introduced for good and valid reasons.  
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the 
parts  of the system and the artifacts of the development process be traceable both in 
terms of cause-effect and of changes over time.  Moreover, this traceability must take 
into account the fact that changes happen at different rates with different parts of the 
system, further complicating the relationships among them.  The tools and techniques 
of the development process must maintain and support this traceability.
February 2002 UML Profile for EDOC:  Rationale 3-11



3

3.3.1.3 Automating the development process

In the early days of any complex and specialized new technology, there are “gurus” 
able to cope with it. However, as a technology progresses the ways to use it for 
common needs becomes better understood and better supported.  Eventually those 
things that required the gurus can be done by “normal people” or at least as part of 
repeatable “factory” processes.  As the technology progresses, the gurus are needed to 
solve new and harder problems – but not those already solved.

Software technology is undergoing this evolution.  The initial advances in automated 
software production came from compilers and languages, leading to DBMS systems, 
spreadsheets, word processors, workflow systems and a host of other tools.  The end-
user today is able to accomplish some things that would have challenged the gurus of 
30 years ago.

This evolution in automation has not gone far enough.  It is still common to re-invent 
infrastructures, techniques and capabilities every time a new application is produced.  
This is not only expensive, it makes the resulting solutions very specialized, and hard 
to integrate and evolve.

Automation depends on the ability to abstract away from common features, services, 
patterns and technology bindings so that application developers can focus on 
application problems.  In this way the ability to automate is coupled with the ability to 
define abstract viewpoints of a system – some of which may be constant across the 
entire system.  

The challenge today is to take the advances in high-level modeling, design and 
specification and use them to produce factory-like automation of enterprise systems.  
We can use techniques that have been successful in the past, both in software and other 
disciplines to automate the steps of going from design to deployment of enterprise 
scale systems.  Automating the development process at this level will embrace two 
central concepts; reusable parts, and model-based development. It will allow tools to 
apply pre-established implementation patterns to known modeling patterns.  CCA 
defines one such modeling pattern.

3.3.1.4 Loose coupling

Systems that are constructed from parts and must survive over time, and survive reuse 
in multiple environments, present some special requirements.  The way in which the 
parts interact must be precisely understood so that they can work together, yet they 
must also be loosely coupled so that each may evolve independently.  These seemingly 
contradictory goals depend on being able to describe what is important about how parts 
interact while specifically not coupling that description to things that will change or 
how the parts carry out their responsibility.

Software parts interact within the context of some agreement or contract – there must 
be some common basis for communication.  The richer the basis of communication the 
richer the potential for interaction and collaboration.  The technology of interaction is 
generally taken care of by communications and middleware while the semantics of 
interaction are better described by UML and the CCA.
3-12 UML Profile for Enterprise Distributed Object Computing February 2002



3

So while the contract for interaction is required, factors such as implementation, 
location and technology should be separately specified.  This allows the contract of 
interaction to survive the inevitable changes in requirements, technologies and systems.

Loose coupling is necessarily achieved by the capability of the systems to provide “late 
binding” of interactions to implementation.

3.3.1.5 Technology Independence

A factor in loose coupling is technology independence i.e. the ability to separate the 
high-level design of a part or a composition of parts from the technology choices that 
realize it.  Since technology is so transient and variations so prevalent it is common for 
the same “logical” part to use different technologies over time and interact with 
different technologies at the same time.  Thus a key ingredient is the separation high-
level design from the technology that implements it.  This separation is also key to the 
goal of automated development.

3.3.1.6 Enabling a business component Marketplace

The demand to rapidly deploy and evolve large scale applications on the internet has 
made brute force methods of producing applications a threat to the enterprise.  Only by 
being able to provision solutions quickly and integrate those solutions with existing 
legacy applications can the enterprise hope to achieve new business initiatives in the 
timeframe required to compete.

Component technologies have already been a success in desktop systems and user 
interfaces.  But this does not solve the enterprise problem.  Recently the methods and 
technologies for enterprise scale components have started to become available.  These 
include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml, 
EJB & .net., What has not emerged is the way to bring these technologies together into 
a coherent enterprise solution and component marketplace.

Our vision is one of a simple drag and drop environment for the assembly of 
enterprise components that is integrated with and leverages a component 
marketplace.  This will make buying and using a software component as natural as 
buying a battery for a flashlight.

3.3.1.7 Simplicity

A solution that encompasses all the other requirements but is too complex will not be 
used.  Thus our final requirement is one of simplicity.  A CCA model must make sense 
without too much theory or special knowledge, and must be tractable for those who 
understand the domain, rather than the technology.  It must support the construction of 
simple tools and techniques that assist the developer by providing a simple yet 
powerful paradigm. Simplicity needs to be defined in terms of the problem – how 
simply can the paradigm so0lve my business problems.  Simplistic infrastructure and 
tools that make it hard to solve real problems are not viable.
February 2002 UML Profile for EDOC:  Rationale 3-13



3

3.3.2 Approach

Our approach to these requirements is to utilize the Unified Modeling Language 
(UML) as a basis for an architecture of recursive decomposition and assembly of parts.  
CCA profiles three UML diagrams and adds one optional diagram.

3.3.2.1 Class Structure (Structure)

The class structure is used to show the structure of ProcessComponents and the 
information which flows between them.

3.3.2.2 Statecharts (Choreography)

Statecharts are used to specify the dynamic (or temporal) contract of protocols and 
components, when messages should be sent or received on various ports.  The 
Choreography specifies the intended external behavior of a component, either by 
specifying transitions directly on its ports or indirectly via its protocols.

3.3.2.3 Collaborations (Composition)

Collaborations are used to show the composition of a ProcessComponent (or 
community) by using a set of other ProcessComponents, configuring them and 
connecting them together.

3.3.2.4 CCA Notation (Structure & Composition)

CCA Also defines a notation which integrates the ProcessComponent structure and 
composition.

3.3.3 Concepts

At the outset it should be made clear that we are dealing with a logical concept of 
component - “part”, something that can be incorporated in a logical composition. It is 
referred to in the CCA as a ProcessComponent. In some cases ProcessComponents will 
correspond and have a mapping to physical components and/or deployment units in a 
particular technology. 

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA 
be further specialized, using the same mechanisms, for specific purposes such as 
Business-2-Business, e-commerce, enterprise application integration (EAI), distributed 
objects, real-time etc.

It is specifically intended that different kinds and granularities of ProcessComponents 
at different levels will be joined by the recursive nature of the CCA.  Thus 
ProcessComponents describing a worldwide B2B business process can decompose into 
application level ProcessComponents integrated across the enterprise which can 
decompose into program level ProcessComponents within a single system.  However, 
3-14 UML Profile for Enterprise Distributed Object Computing February 2002



3

this capability for recursive decomposition is not always required.  Any 
ProcessComponent’s part may be implemented directly in the technology of choice 
without requiring decomposition into other ProcessComponents.

The CCA describes how ProcessComponents at a given level of specification 
collaborate and how they are decomposed  at the next lower level of specification.  
Since the specification requirements at these various levels are not exactly the same, 
the CCA is further specialized with profiles for each level.  For example, 
ProcessComponents exposed on the Internet will require features of security and 
distribution, while more local ProcessComponents will only require a way to 
communicate.

The recursive decomposition of ProcessComponents utilizes two constructs in parallel: 
composition (using UML Collaboration) to show what ProcessComponents must be 
assembled and how they are put together to achieve the goal, and choreography (the 
UML Statechart) to show the coordination of activities to achieve a goal.  The CCA 
integrates these concepts of “what” and “when” at each level.

Concepts from the Object Oriented Role Analysis Method (OORAM)  and Real-time 
Object Oriented Modeling (ROOM)  have been adapted and incorporated into CCA.

3.3.3.1 What is a Component Anyway?

There are many kinds of components – software and otherwise.  A component is 
simply something capable of composing into a composition – or part of an assembly.  
There are very different kinds of compositions and very different kinds of components.  
For every kind of component there must be a corresponding kind of composition for it 
to assemble into.  Therefore any kind of component should be qualified as to the type 
of composition. CCA does not claim to be “the” component model, it is “a” component 
model with a corresponding composition model.

CCA ProcessComponents are processing components, ones that collaborate with other 
CCA ProcessComponents within a CCA composition.  CCA ProcessComponents can 
be used to build other CCA ProcessComponents or to implement roles in a process – 
such as a vendor in a buy-sell process.  The CCA concepts of component and 
composition are interdependent.

There are other forms of software and design components, including UML 
components, EJBs, COM components, CORBA components, etc.  CCA 
ProcessComponents and composition are orthogonal to these concepts.  A technology 
component, such as an EJB may be the implementation platform for a CCA 
ProcessComponent.

Some forms of components and compositions allow components to be built from other 
components, this is a recursive component architecture.  CCA is such a recursive 
component architecture.
February 2002 UML Profile for EDOC:  Rationale 3-15



3

3.3.3.2 ProcessComponent Libraries

While the CCA describes the mechanisms of composition it does not provide a 
complete ProcessComponent library.  ProcessComponent libraries may be defined and 
extended for various domains.  A ProcessComponent library is essential for CCA to 
become useful without having to re-invent basic concepts.

3.3.3.3 Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.  
However, it is a specific goal of CCA that when a CCA specification is combined with 
a specific infrastructure, executable primitive ProcessComponents and a technology 
profile, it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be 
realized by a given technology set.  For example, a technology profile for Java may 
enable Java components to be composed and execute using dynamic execution and/or 
code generation.  A technology profile for CORBA may describe how CORBA 
components can be composed to create new CORBA components and systems.  In 
RM-ODP terms, the technology profile represents the engineering and technology 
specifications.

Some technology profiles may require additional information in the specification to 
execute as desired; this is generally done using tagged values in the specification and 
options in the mapping.  The way in which technology specific choices are combined 
with a CCA specification is outside of the scope of the CCA, but within the scope of 
the technology profile.  For example, a Java mapping may provide a way to specify the 
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated 
development of executable systems from high-level specifications.

For details of possible (non-normative) mappings from the CCA Profile to various 
engineering and technology options, see Section II of this specification.

3.3.3.4 Specification Vs. Methodology

The CCA provides a way to specify a system in terms of a hierarchical structure of 
Communities of ProcessComponents and Entities that, when combined with 
specifications prepared using technology profiles, is sufficiently complete to execute.  
Thus the CCA specification is the end-result of the analysis and design process.  The 
CCA does not specify the method by which this specification is achieved.  Different 
situations may require different methods.  For example; a project involving the 
integration of existing legacy systems will require a different method than one 
involving the creation of a new real-time system – but both may share certain kinds of 
specification.
3-16 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.3.3.5 Notation

The CCA defines some new notations to simplify the presentation of designs for the 
user.  These new notations are optional in that standard UML notation may be used 
when such is preferred or CCA specific tooling is not available.  The CCA notation can 
be used to achieve greater simplicity and economy of expression.

3.3.4 Conceptual Framework

Figure 3-2  Structure and dependencies of the CCA Metamodel 

3.3.4.1 ProcessComponent Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA 
component is separate from how that component is realized. The contract specifies the 
“outside” of the component.  Inside of a component is its realization – how it satisfies 
its contract.   The outside of the component is the component specification.  A 
component with only a specification is abstract, it is just the “outside” with no 
“inside.”

3.3.4.2 Protocols and Choreography

Part of a component’s specification is the set of protocols it implements. A protocol 
specifies what messages the component sends and receives when it collaborates with 
another component and the choreography of those messages – when they can be sent 
and received.  Each protocol the component supports is provided via a “port”, the 
connection point between components.

Protocols, ports and choreography comprise the contract on the outside of the 
component.  Protocols are also used for large-grain interactions, such as for B2B 
components.

Document Model
(from CcaProfile)

Component Specification

(from CcaProfile)

Composition
(from CcaProfile)

Model 
Management

(from CcaProfile)

Choreography
(from CcaProfile)
February 2002 UML Profile for EDOC:  Rationale 3-17



3

The protocol specifies the conversation between two components (via their ports).  
Each component that is using that protocol must use it  from the perspective of the 
“initiating role” or the “responding role”.  Each of these components will use every 
port in the protocol, but in complementary directions.  

For example, a protocol “X” has a flow port “A” that initiates a message and a flow 
port “B” that responds to a message.  Component “Y” which responds to protocol “X” 
will also receive “A” and initiate “B”. But, Component “Z” which initiates protocol 
“X” will also initiate message “A” and respond to message “B” – thus initiating a 
protocol will “invert” the directions of all ports in the protocol.

3.3.4.3 Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside 
and outside).  Frequently a concrete component inherits its external contract from an 
abstract component – implementing that component.

There may be any number of implementations for a ProcessComponent and various 
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• primitive components – those that are built with programming languages or by 
wrapping legacy systems.  

• Composed Components – Components that are built from other components; these 
use other components to implement the new components functionality.  Composed 
components are defined using a composition.

3.3.4.4 Composition

Compositions define how components are used.  Inside of a composition components 
are used, configured and connected.  This connected set of component usages 
implements the behavior of the composition in terms of these other components – 
which may be primitive, composed or abstract components.

Compositions are used to build composed components out of other components and to 
describe community processes – how a set of large grain components works together 
for some purpose.  Components used in a community process represent the roles of 
that process.

Central to compositions are the connections between components, values for 
configuration properties and the ability to bind concrete components to a component 
usage.

3.3.4.5 Document & Information Model

The information that flows between components is described in a Document Model, 
the structure of information exchanged.  The document model also forms the basis for 
information entities and a generic information model.  The information model is acted 
on by CCA ProcessComponents (see the Entities profile, Section III, below).
3-18 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.3.4.6 Model Management

To help organize the elements of a CCA model a “package” structure is used exactly 
as it is used in UML.  Packages provide a hierarchical name space in which to define 
components and component artifacts.  Model elements that are specific to a process, 
protocol or component may also be nested within these, since they also act as 
packages.
February 2002 UML Profile for EDOC:  Rationale 3-19



3

3.4 CCA Metamodel

Figure 3-3 CCA Major Elements

Figure 3-3 is a combined model of the major elements of the CCA component 
specification defined below.

DirectionType

 initiates
 responds

<<Enumeration>>

ultiPort
ProtocolPort
<boundary>>

RespondingRole

- name : String

InitiatingRole

- name : String

Protocol

1
+uses

1

0..1

1

+responder
0..1

1

0..1

1
+initiator

0..1

1

Transition

- preCondition : Status

PortActivityPortConnector

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n

ProcessComponent

- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

Composition

ContextualBinding

1

n

+owner1

+bindings
n

1 +bindsTo1

PropertyDefinition

- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n

0..1

0..n +typeProperty

0..1+constrains

0..n

1

n

+component 1

+properties n

ComponentUsage
name : String

n

1

n

+uses

1

Uses

n

1

+uses
n

+owner1

n

1

n

+fills
1

PropertyValue

- value : Expression

n

1

n

+fills
1

1

n

+owner

1

n

OperationPort
<<boundary>>

Connection PseudoState

- kind : PseudostateKind

Node

- name : StringAbstractTransition

n 1

+outgoing

n

+source

1

n 1

+incoming

n

+target

1

Choreography

nn

n

+connections

n

n

0..1

+subtypes

n

+supertype

0..1

CommunityProcess

Status

success
timeoutFailure
technicalFailure
businessFailure
anyFailure
anyStatus

<<Enumeration>>

PseudostateKind
choice
fork
initial
join
success
failure

<<Enumeration>>

Interface

PortOwner

Port

- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

<<boundary>>
n

1

+ports n

+owner1

UsageContext

PortUsage

1

n

+represents

1

n

1

n

+extent 1

+portsUsed

n

IsComposition

IsChoreography

GranularityKind

- program
- owned
- shared

<<Enumeration>>
3-20 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.4.1 Structural Specification

The structural specification represents the physical structure of the component contract, 
defining the component and its ports.

Figure 3-4 Structural Specification Metamodel

A ProcessComponent represents the contract for a component that performs actions – 
it “does something”.  A ProcessComponent may define a set of  Ports for interaction 
with other ProcessComponents.  The ProcessComponent defines the external contract 
of the component in terms of ports and a Choreography of port activities (sending or 

DirectionType

- initiates
- responds

<<Enumeration>>

ort

- name : String
- isSynchronous :  Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

<<boundary>>

PortOwner

n

1

+portsn

+owner 1

Ports

ProtocolPort
<<boundary>>

RespondingRole

- name : String

InitiatingRole

- name : String

Protocol

1

+uses

1

ProtocolType
0..1

1

+responder 0..1

1

0..1
1+initiator

0..1
1

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n

FlowType

ProcessComponent

- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

PropertyDefinition

- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n
PropertyType

0..1

0..n +typeProperty

0..1+constrains

0..n

DynType

1

n

+component 1

+properties n

Properties

MultiPort

Composition

Choreography

n
0..1

+subtypes

n
Generalization

+supertype

0..1

IsChoreography

OperationPort
<boundary>>

Interface

UsageContext

IsComposition

GranularityKind

- program
- owned
- shared

<<Enumeration>>
February 2002 UML Profile for EDOC:  CCA Metamodel 3-21



3

receiving messages or initiating sub-protocols).  At a high level of abstraction a 
ProcessComponent can represent a business partner, other ProcessComponents 
represent business activities or finer-grain capabilities.

The contract of the ProcessComponent is realized via ports.  A port defines a point of 
interaction between ProcessComponents.  The simpler form of port is the FlowPort, 
which may produce or consume a single data type.  More complex interactions 
between components use a ProtocolPort, which refers to a Protocol, a complete 
“conversation” between components.  Protocols may also use other protocols as sub-
protocols.  Protocols, like ProcessComponents, are defined in terms of the set of ports 
they realize and the choreography of interactions across those ports.  A protocol may 
optionally define names for the initiating and responding roles.

ProcessComponents may have Property Definitions.  A property definition defines a 
configuration parameter of the component, which can be set, when the component is 
used.

The behavior of a ProcessComponent may be further specified by its composition, the 
composition shows how other components are used to define and implement the 
composite component. The specification of the ProcessComponent and protocol may 
include Choreography to sequence the actions of multiple ports and their associated 
actions.  The actions of each port may be Choreographed. Composition and 
Choreography are defined in their own sections.  

A ProcessComponent may have a supertype (derived from Choreography). One 
common use of supertype is to place abstract ProcessComponents within compositions 
and then produce separate realizations of those components as subtype composite or 
primitive components, which can then be substituted for the abstract components when 
the composition is used, or even at runtime.

An Interface represents a standard object interface.  It may contain OperationPorts, 
representing call-return semantics, and FlowPorts – representing one-way operations.

A MultiPort is a grouping of ports whose actions are tied together.  Information must 
be available on all sub-ports of the MultiPort for any action to occur within  an 
attached component. 

An OperationPort defines a port which realizes a typical request/response operation 
and allows ProcessComponents to represent both document oriented (FlowPort) and 
method oriented (OperationPort) subsystems.

3.4.1.1 ProcessComponent

Semantics

A ProcessComponent represents an active processing unit – it does something.  A 
ProcessComponent may realize a set of Ports for interaction with other 
ProcessComponents and it may be configured with properties.  

Each ProcessComponent defines a set of ports for interaction with other 
ProcessComponents and has a set of properties that are used to configure the 
ProcessComponent when it is used.
3-22 UML Profile for Enterprise Distributed Object Computing February 2002



3

The order in which actions of the Process Component’s ports do something may be 
specified using Choreography.  The choreography of a ProcessComponent specifies the 
external temporal contact of the ProcessComponent (when it will do what) based on 
the actions of its ports and the ports in protocols of its ports.

UML base element(s) in the Profile and Stereotype 

Classifier Stereotyped as <<ProcessComponent>>

Fully Scoped name

ECA::CCA::ProcessComponent

Owned by

Package

Extends

Composition (indicating that the ProcessComponent may be composed of other 
ProcessComponents and that its ports may be choreographed).

Package (Indicating that a ProcessComponent may own the specification of other 
elements).

UsageContext (Indicating that the ProcessComponent may be the context for 
PortUsages representing the activities of its ports).

Properties

Granularity

A GranularityKind which defines the scope in which the component operates.  The 
values may be:

• Program – the component is local to a program instance (default)

• Owned – the component is visible outside of the scope of a particular program but 
dedicated to a particular task or session which controls its life cycle.

• Shared – the component is generally visible to external entities via some kind of 
distributed infrastructure. 

Specializations of CCA may define additional granularity values.

UML Representation

Tagged value 

isPersistent

Indicates that the component stores session specific state across interactions.  The 
mechanisms for management of sessions are defined outside of the scope of CCA.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-23



3

UML Representation

Tagged value

primitiveKind

Components implementation includes additional implementation semantics defined 
elsewhere, perhaps in an action language or programming language.  If the component 
has an implementation specification primitiveKind specifies the implementation 
specific type, normally the name of a programming language.  If primitive kind is 
blank, the composition is the full specification of the components implantation – the 
component is not primitive.

UML Representation

Tagged value

primitiveSpec

If primitiveKind has a value, primitiveSpec identifies the location of the 
implementation.  The syntax of primitiveKind is implementation specific.

UML Representation

Tagged value

Related elements

Ports (via “PortOwner”)

“Ports” is the set of Ports on the ProcessComponent.  Each port provides a connection 
point for interaction with other components or services and realizes a specific protocol.  
The protocol may be simple and use a “FlowPort” or the protocol may be complex and 
use a “ProtocolPort” or an “OperationPort”.  If allowed by its protocol, a port may 
send and receive information.

UML Representation

Required Aggregation Association from Port (Ports)

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent may inherit specification elements  (ports, properties & states 
(from Choreography) from a supertype. That supertype must also be a 
ProcessComponent.  A subtype component is bound by the contract of its supertypes 
but it may add elements, override property values and restrict referenced types.

A component may be substituted by a subtype of that component.

UML Representation

Generalization
3-24 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties (Any number)

To make a component capable of being reused in a variety of conditions it is necessary 
to be able to define and set properties of that component.  Properties represents the list 
of properties defined for this component.

UML Representation

Classifier.feature referencing an attribute.

Constraints

A process component may only inherit from another process component.

3.4.1.2 Port

Semantics

A port realizes a simple or complex conversation for a ProcessComponent or protocol.  
All interactions with a ProcessComponent are done via one of its ports.

When a component is instantiated, each of its ports is instantiated as well, providing a 
well-defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.  
Multi-party conversions are defined by components using multiple ports, one for each 
kind of party.

Business Example: Flight reservation Port

UML base element(s) in the Profile and Stereotype

Class (abstract)

Fully Scoped name

ECA::CCA::Port

Owned by

ProcessComponent or Protocol via PortOwner

Extends

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-25



3

Properties

isTransactional

Indicates that interactions with the component are transactional & atomic (in most 
implementations this will require that a transaction be started on receipt of a message).  
Non-transactional components either maintain no state or must execute within a 
transactional component.  The mechanisms for management of transactions are defined 
outside of the scope of CCA.

UML Representation

Tagged Value

isSynchronous

A port may interact synchronously or asynchronously.  A port that is marked as 
synchronous is required to interact using synchronous messages and return values.

UML Representation

Tagged Value

name

The name of the port.  The name will, by default, be the same as the name of the 
protocol role or document type it realizes.

UML Representation

ModelElement::name

Direction

Indicates that the port will either initiate or respond to the related type.  An initiating 
port will send the first message.  Note that by using ProtocolPorts a port may be the 
initiator of some protocols and the responder to others.  The values of DirectionKind 
may be:

Initiates – this port will initiate the conversation by sending the first message.

Responds – this port will respond to the initial message and (potentially) continue the 
conversation.

UML Representation

Tagged Value and stereotype of “Owner” relation.

PostCondition

The status of the conversation indicated by the use of this port.  This status may be 
queried in the postCondition of a transition.

UML Representation

Tagged Value
3-26 UML Profile for Enterprise Distributed Object Computing February 2002



3

Related elements

“Owner” ProcessComponent or Protocol (Exactly One via PortOwner)

A Port specifies the realization of protocol by a ProcessComponent.  This relation 
specifies the ProcessComponent that realizes the protocol.

UML Representation

Required aggregate association  (Ports).  This association will have a stereotype of 
“initiates” or “responds” to indicate “direction.”

Constraints

None

3.4.1.3 FlowPort

Semantics

A Flow Port is a port which defines a data flow in or out of the port  on behalf of the 
owning component or protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<FlowPort>>

Fully Scoped name

ECA::CCA::FlowPort

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

type

The type of data element that may flow into our out of the port.

UML Representation

Required relation 
February 2002 UML Profile for EDOC:  CCA Metamodel 3-27



3

TypeProperty

The type of information sent or received by this port as determined by a configurable 
property.  The expression must return a valid type name.  This is used to build generic 
components that may have the type of their ports configured.  If type and typeProperty 
are both set then the property expression must return the name of a subtype of type.

UML Representation

Tagged value containing the name of the property attribute.

Constraints

None

3.4.1.4 ProtocolPort

Semantics

A protocol port is a port which defines the use of a protocol  A protocol port is used 
for potentially complex two-way interactions between components, such as is common 
in B2B protocols.  Since a protocol has two “roles” (the initiator and responder), the 
direction is used to determine which role the protocol port is taking on.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ProtocolPort>>

Fully Scoped name

ECA::CCA::ProtocolPort

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

uses

The protocol to use, which becomes the specification of this port’s behavior.
3-28 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML Representation

Generalization – the ProtocolPort inherits the Protocol.

Constraints

None

3.4.1.5 OperationPort

Semantics

An operation port represents the typical call/return pattern of an operation.  The 
OperationPort is a PortOwner which is constrained to contain only flow ports, exactly 
one of which must have its direction set to “initiates”.  The other “responds” ports will 
be the return values of the operation.

UML base element(s) in the Profile and Stereotype

Operation (no stereotype)

Note1: The type of the “initiates” flow port will be the signature of the operation.  
Each attribute of the type will be one parameter of the operation.

Note2: Owned flow ports of postCondition==Success and direction==”responds” will 
be a return value for the operation.  All other flow ports where direction==”responds” 
will correspond to an exception.

Fully Scoped name

ECA::CCA::OperationPort

Owned by

PortOwner (Protocol or ProcessComponent)

Extends

Port and PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports representing the call and returns.

UML Representation

Initiates ports – signature of the operation
February 2002 UML Profile for EDOC:  CCA Metamodel 3-29



3

Responds ports – return values of the operation.

Constraints

As a PortOwner, the OperationPort:

• May only contain FlowPorts.

• Must contain exactly one flow port with direction set to "responds."

• Must contain exactly one flow port with direction set to “initiates” (the call).

3.4.1.6 MultiPort

Semantics

A MultiPort combines a set of ports which are behaviorally related.  Each port owned 
by the MultiPort will “buffer” information sent to that port until all the ports within the 
MultiPort have received data, at this time all the ports will send their data.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<MultiPort>>

Fully Scoped name

ECA::CCA::MultiPort

Owned by

PortOwner

Extends

Port & PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports owned by the MultiPort.

UML Representation

Required aggregation association 

Constraints

Owned ports will not forward data until all sub-ports have received data.
3-30 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.4.1.7 Protocol

Semantics

A protocol defines a type of conversation between two parties, the initiator and 
responder.  One protocol role is the initiator of the conversation and the other the 
responder.  However, after the conversation has been initiated, individual messages and 
sub-protocols may by initiated by either party. The ports of a protocol are specified 
with respect to the responder.

Within the protocol are sub-ports. Each port contained by a protocol defines a sub-
action of that protocol until, ultimately, everything is defined in terms of FlowPorts.

A Protocol is also a choreography, indicating that activities of its ports (and, potentially 
their sub-ports) may be sequenced using an activity graph.

A protocol must be used by a two ProtocolPorts to become active.

The protocol specifies the conversation between two ProcessComponents (via their 
ports).  Each component that is using that protocol must use it from the perspective of 
the “initiating role” or the “responding role.” Each of these components will use every 
port in the protocol, but in complementary directions.  

For example, a protocol “X” has a flow port “A” that initiates a message and a flow 
port “B” that responds to a message.  Component “Y” which responds to protocol “X” 
will also receive “A” and initiate “B”. But, Component “Z” which initiates protocol 
“X” will initiate message “A” and respond to message “B” – thus initiating a protocol 
will “invert” the directions of all ports in the protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<Protocol>>

Fully Scoped name

ECA::CCA::Protocol

Owned by

Package

Extends

Choreography – Indicating that the contract of the protocol includes a sequencing of 
the port activities.

Package – Indicating that the protocol may contain the specification of other model 
elements (Most probably other protocols or documents).

Properties

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-31



3

Related elements

Ports (Via PortOwner)

The ports which define the sub-actions of the protocol.  For example, a “callReturn” 
protocol may have a “call” FlowPort and a “return” FlowPort.

UML Representation

Required aggregate association

Initiator

The role which sends the first message in the protocol.  Note that this is optional, in 
which case the initiating role name will be “Initiator”.

UML Representation

Required relation 

Responder

The role which receives the first message in the protocol.  Note that this is optional, in 
which case the responding role name will be “Responder”.

UML Representation

Required relation 

Constraints

None

3.4.1.8 Interface

Semantics

An interface is a protocol constrained to match the capabilities of the typical object 
interface.  It is constrained to only contain OperationPorts and FlowPorts and all of its 
ports must respond to the interaction (making interfaces one-way).

Each OperationPort or FlowPort in the Interface will map to a method.  A ProtocolPort 
which initiates the Interface will call the interface.  A ProtocolPort which Responds 
will implement the interface.

UML base element(s) in the Profile and Stereotype

Classifier (Usually Interface, but any classifier will do)

Fully Scoped name

ECA::CCA::Interface
3-32 UML Profile for Enterprise Distributed Object Computing February 2002



3

Owned by

Package

Extends

Protocol

Properties

None

Related elements

Ports (Via Protocol & PortOwner)

The ports which define the sub-actions of the protocol.  For example, a “callReturn” 
protocol may have a “call” flowport and a “return” port.

Initiator (Via Protocol)

The role which calls the interface.  Note that this is optional, in which case the 
initiating role name will be “Initiator”. roles.

Responder (Via Protocol)

The role which implements the interface.  Note that this is optional, in which case the 
responding role name will be “Responder”. 

Constraints

The Ports related by the “Ports” association must;

be of type OperationPort or FlowPort.

have direction == ”responds”.

3.4.1.9 InitiatingRole

Semantics

The role of the protocol which will send the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <InitiatingRole>

Fully Scoped name

ECA::CCA::InitiatingRole
February 2002 UML Profile for EDOC:  CCA Metamodel 3-33



3

Owned by

Protocol

Extends

None

Properties

name

Role name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation 

Constraints

None

3.4.1.10 RespondingRole

Semantics

The role in the protocol which will receive the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <RespondingRole>

Fully Scoped name

ECA::CCA::RespondingRole

Owned by

Protocol
3-34 UML Profile for Enterprise Distributed Object Computing February 2002



3

Extends

None

Properties

Name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation 

Constraints

None

3.4.1.11 PropertyDefinition

Semantics

To allow for greater flexibility and reuse, ProcessComponents may have properties 
which may be set when the ProcessComponent is used.  A PropertyDefinition defines 
that such a property exists, its name and type.

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::CCA::PropertyDefinition

Owned by

ProcessComponent

Extends

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-35



3

Properties

name

Name of the property being modeled

UML Representation

ModelElement:name

initial

An expression indicating the initial & default value.

UML Representation

Attribute::initialValue

isLocked

The property may not be changed.

UML Representation

StructuralFeature::changeability

Related elements

component

The owning component

UML Representation

Classifier.feature referencing an attribute.ModelElement::namespace

type

The type of the property

UML Representation

StructuralFeature::type

Constraints

If the “constrains” relation contains any links, the PropertyValue must contain the fully 
qualified name of a DataElement.
3-36 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.4.1.12 PortOwner

Semantics

An abstract meta-class used to group the meta-classes that may own ports: Process 
component, Protocol, OperationPort and MultiPort.

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortOwner

Owned by

None

Extends

None

Related elements

ports

The owned ports

UML Representation

Required relation 

Constraints

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-37



3

3.4.2 Choreography

Figure 3-5 Choreography Metamodel

A Choreography specifies how messages will flow between PortUsages.  The 
choreography may be externally oriented, specifying the contract a component will 
have with other components or, it may be internally oriented, specifying the flow of 
messages within a composition.  External chirographies are shown as an activity graph 
while internal choreography is shown as part of a collaboration.  An external 
choreography may be defined for a protocol or a ProcessComponent.

A Choreography uses 
transitions to order 
usages of ports.

Status

- success
- timeoutFailure
- technicalFailure
- businessFailure
- anyFailure
- anyStatus

<<Enumeration>>

PseudoState

- kind : PseudostateKind

Transition

- preCondit ion : Status

PortActivity

Connection

PseudostateKind

- choice
- fork
- initial
- join
- success
- failure

<<Enumeration>>

UsageContext

Port

- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition :  Status

<<boundary>>

PortUsage

1

n

+extent
1

+portsUsed
n

PortUsages

1

n

+represents

1

n

Represents

Node

- name : String
AbstractTransition

n
1

+outgoing

n

+source

1

Source
n1

+incoming

n

+target

1

arget

Choreography

n
+nodes

n

Nodes

n +connectionsn

Connections

n

0..1

+subtypes
n Generalization

+supertype

0..1
3-38 UML Profile for Enterprise Distributed Object Computing February 2002



3

A Choreography uses Connections and transitions to order port messages as a state 
machine.  Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that is inherited by ProcessComponents and 
protocols.

Initial, interim and terminating states are known as a “PseudoState” as defined in 
UML.  CCA adds the pseudo states for success and failure end-states.

Ordering  is controlled by connections between nodes (state and port usage being a 
kind of node).  Transitions specify flow of control that will occur if the conditions 
(Precondition) are met.  Transitions between port activities specify what should happen 
(contractually), while Connections between PortConnections specify what will happen 
at runtime.

3.4.2.1 Choreography

Semantics

An abstract class inherited by protocol and ProcessComponent which owns nodes and 
AbstractTransitions.  A choreography specifies the ordering of port activities.

UML base element(s) in the Profile and Stereotype

Choreography - State Machine stereotyped as <<choreography>>: (context references 
classifier)

Fully Scoped name

ECA::CCA::Choreography

Owned by

None

Extends

None

Properties

None

Related elements

Nodes

The states and port usages to be choreographed.

UML Representation

PseudoState -  StateMachine.top
February 2002 UML Profile for EDOC:  CCA Metamodel 3-39



3

PortActivity ::SubmachineState

AbstractTransitions

The connections and transitions between nodes.

UML Representation

Transition: StateMachine:transition

Connection: Collaboration::AssociationRole

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent, protocol or CommunityProcess may inherit specification 
elements  (ports, properties & states (from Choreography) from a supertype. That 
supertype must also be a ProcessComponent.  A subtype component is bound by the 
contract of its supertypes but it may add elements, override property values and restrict 
referenced types.

A component may be substituted by a subtype.

Constraints: The subtype-supertype relation may only exist between elements of the 
same meta-type.  A ProcessComponent may only inherit from another 
ProcessComponent.  A Protocol may only inherit from another Protocol and a 
CommunityProcess may only inherit from another CommunityProcess.

UML Representation

Generalization of classifier related by context.

3.4.2.2 Node

Semantics

Node is an abstract element that specifies something that can be the source and/or 
target of a connection or transition and thus ordered within the choreographed process.  
The nodes that do “real work” are PortUsages.

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::Node

Owned by

Choreography
3-40 UML Profile for Enterprise Distributed Object Computing February 2002



3

Extends

None

Properties

name

UML Representation

ModelElement:name

Related elements

Choreography

The owning protocol or ProcessComponent.

UML Representation

See Choreography

Incoming

Transitions that cause this node to become active.

UML Representation

Transition: State:incoming

Connection: AssociationEndRole

outgoing

Nodes that may become active after this node completes.

UML Representation

State: outgoing

Connection: AssociationEndRole

Constraints

None

3.4.2.3 AbstractTransition

Semantics

The flow of data and/or control between two nodes.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-41



3

UML base element(s) in the Profile and Stereotype

None - abstract

Fully Scoped name

ECA::CCA::AbstractTransition

Owned by

Choreography

Extends

None

Properties

None

Related elements

Choreography

The owning choreography.

UML Representation

See Choreography

Source

The node which is transferring control and/or data.

UML Representation

Connection: AssociationEndRole

Transition: Transition:source

Target

The node to which data and/or control will be transferred.

UML Representation

Connection: AssociationEndRole

Transition: Transition:target

Constraints

The source and target nodes associated with the AbstractTransition must be owned by 
the same choreography as the AbstractTransition.
3-42 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.4.2.4 Transition

Semantics

The contractual specification that the related nodes will activate based on the ordering 
imposed by the set of transitions between nodes.  Transitions, which declare a contract 
may be differentiated from Connections which realize a contract.

UML base element(s) in the Profile and Stereotype

Transition (No Stereotype)

Fully Scoped name

ECA::CCA::Transition

Owned by

Choreography

Extends

AbstractTransition

Properties

preCondition

A constraint on the transition such that it may only fire if the prior PortUsage 
terminated with the referenced condition.

UML Representation

Transition:guard

Related elements

Choreography (Via AbstractTransition)

The owning choreography.

UML Representation

See Choreography

Source

The node which is transferring control and/or data.

UML Representation

Transition: Transition:source
February 2002 UML Profile for EDOC:  CCA Metamodel 3-43



3

Target

The node to which data and/or control will be transferred.

UML Representation

Transition: Transition:target

Constraints

A transition may not connect PortConnectors.

3.4.2.5 PortUsage

Semantics

The usage of a port as part of a choreography.

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortUsage

Owned by

Choreography

Extends

Node & Usage Context

Properties

None

Related elements

extent

The component, component usage or PortUsage to which the PortUsage is attached. 

If the extent is a ComponentUsage the PortUsage must be a PortConnector for a port of 
the underlying ProcessComponent.  This allows Connections between components 
being used within a composition.

If the extent is a PortUsage the PortUsage must represent a ProtocolPort which owns 
the represented usage.  This allows the choreography of nested ports.
3-44 UML Profile for Enterprise Distributed Object Computing February 2002



3

If the extent is a ProcessComponent the usage represents a port on the 
ProcessComponent and that ProcessComponent must be the composition owning both 
the port and the port usage.  This allows Connections and transitions to be connected to 
the external ports of a component.

UML Representation

State machine: Owner of state machine

Collaboration: Association Role

Represents

The port which the PortUsage uses.

UML Representation

State machine: tagged value

Collaboration: ClassifierRole::base

Constraints

None

3.4.2.6 UsageContext

Semantics

When a port is used within a choreography it must be used within some context.  
UsageContext represents an abstract supertype of all elements that may be the context 
of a port.  These are;

• ProcessComponent – as the owner of port activities and port connectors.

• ComponentUsage – as the owner of port connectors, representing the use of each of the 
component’s ports.

• PortUsages – representing ports nested via protocols.

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::UsageContext

Owned by

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-45



3

Extends

None

Properties

None

Related elements

PortsUsed

Provides context for port usage

UML Representation

State machine: owned states

Collaboration: AssociationRole

Constraints

None

3.4.2.7 PortActivity

Semantics

Port activity is state, part of the “contract” of a ProcessComponent or protocol, 
specifying the activation of a port such the ordering of port activities can be 
choreographed with transitions.  A PortActivity (used with transitions) defines the 
contract of the component while a PortConnector (used with Connections) specifies the 
realization of a component’s actions in terms of other components.

UML base element(s) in the Profile and Stereotype

CompositeState Stereotyped as <<PortActivity>>

Fully Scoped name

ECA::CCA::PortActivity

Owned by

Protocol or ProcessComponent via Choreography

Extends

PortUsage
3-46 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties

None

Related elements

None

Constraints

Port Activities may only be connected using transitions.

3.4.2.8 PseudoState

Semantics

PseudoState specifies starting, ending or intermediate states in the choreography of the 
contract of a protocol or ProcessComponent.

UML base element(s) in the Profile and Stereotype

Depending on value of kind:

• Success – FinalState Stereotyped as <<success>>

• Failure – FinalState Stereotyped as <<failure>>

• All Others - PseudoState (no stereotype) with kind set to same value.

Fully Scoped name

ECA::CCA::PseudoState

Owned by

Choreography

Extends

Node

Properties

Kind ; PseudostateKind

choice Splits an incoming transition into several disjoint outgoing transition. Each 
outgoing transition has a guard condition that is evaluated after prior actions on the 
incoming path have been completed. At least one outgoing transition must be enabled 
or the model is ill-formed.

fork - Splits an incoming transition into several concurrent outgoing transitions.  All 
the transitions fire together.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-47



3

initial - The default target of a transition to the enclosing composite state.

join - Merges transitions from concurrent regions into a single outgoing transition.  
Join PseudoState will proceed after all its incoming Transition have triggered.

success - The end-state indicating that the choreography ended in success.

failure - The end-state indicating that the choreography ended in failure.

Related elements

None

Constraints

PseudoStates may only be connected using transitions.

3.4.3 Composition

Composition is an abstract capability that is used for ProcessComponents and for 
community processes.  Compositions shows how a set of components can be used to 
define and perhaps to implement a process.
3-48 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-6 Composition metamodel

A composition contains ComponentUsages to show how other ProcessComponents 
may be used to define the composite.  Note that the same ProcessComponent may be 
used multiple times for different purposes.  Each time a ProcessComponent is used, 

PortConnector

Connection

Dependencies 
are informative, 
not normative.

UsageContext

ort
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

PortUsage

1

n

+extent1

+portsUsed
n

PortUsages

1

n

+represents
1

n

Represents

ContextualBinding

Composit ion
owns

1+owner 1

+bindings

Bindings

ProcessComponent

1

n

+bindsTo
1

n BindsTo

creates

ComponentUsage
name : String

1

n

+fills 1

n

Fills

1

n

+owner

1

+uses
n

ComponentUsages

reates

1

n +uses

1

n

Uses

PropertyValue

- value : Expression

n

1

+configurationn

+owner1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

n

1

n

+fills 1

ValueFor

CommunityProcess

AbstractTransitionChoreography
n

+connect ions

n

Connections

IsChoreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

connects

IsComposition
February 2002 UML Profile for EDOC:  CCA Metamodel 3-49



3

each of its ports will also be used with a “PortConnector”.  A port connector shows 
the connection point for each use of that component within the composition, including 
the ports on the component being defined.  

Attached to a ProcessComponent usage are PropertyValues, configuring the 
ProcessComponent with properties that have been defined in property definitions.

A composition also contains a set of “Connections”.  A connection joins 
compatible ports on ProcessComponents together to define a flow of data.  The 
other side will receive anything sent out of one side.  So a Connection is a form of 
logical event registration (one-way registration for a flow port or Operation port, 
two-way registration for a ProtocolPort).

A Contextual Binding allows realized ProcessComponents to be substituted for 
abstract ProcessComponents when a composition is used.  

Compositions may be ProcessComponents or CommunityProcesses.  
CommunityProcess define a top-level process in terms of the roles played by 
process components representing actors in the process.

3.4.3.1 Composition

Semantics

Composition is an abstract class for CommunityProcesses or ProcessComponents.  
Compositions describe how instances of ProcessComponents (called 
ComponentUsages) are configured (with PropertyValues and ContextualBindings) and 
connected (with Connections) to implement the composed ProcessComponent or 
CommunityProcess.  

UML base element(s) in the Profile and Stereotype

Collaboration (with represented classifier being the ProcessComponent or 
CommunityProcess being defined) – stereotyped as <<Composition>>

Fully Scoped name

ECA::CCA::Composition

Owned by

None

Extends

Choreography

Properties

None
3-50 UML Profile for Enterprise Distributed Object Computing February 2002



3

Related elements

bindings

ContextualBindings defined within the context of the composition.

UML Representation

ModelElement::clientDependency

uses

ComponentUsages defined within the context of the composition.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Connection (via choreography and AbstractTransition)

The flow of data and control between port connectors.

UML Representation

Collaboration:: ownedElement  (Owned AssociationRoles)

PortConnector (via Choreography and nodes)

The port instances to be connected by Connections.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Constraints

None

3.4.3.2 ComponentUsage

Semantics

A composition uses other ProcessComponents to define the process of the composition 
(a community process or ProcessComponent),  “ComponentUsage” represents such a 
use of a component.  The “uses” relation references the kind of component being used.  
Component Usage is part of the “inside” of a composed component.  

The composition can be thought of as a template of ProcessComponent instances.  
Each component instance will have a “ComponentUsage” to say what kind of 
ProcessComponent it is, what its property values are and how it is connected to other 
ProcessComponents. A ComponentUsage will cause a ProcessComponent instance to 
be created at runtime (this instantiation may be real or virtual).
February 2002 UML Profile for EDOC:  CCA Metamodel 3-51



3

Each use of a ProcessComponent will carry with it a set of “portConnectors” which 
will be the connection points to other ProcessComponents.

UML base element(s) in the Profile and Stereotype

ClassifierRole Stereotyped as “ComponentUsage”

Fully Scoped name

ECA::CCA::ComponentUsage

Owned by

Composition

Extends

UsageContext

Properties

Name

The name of the activity for which the component is being used.

UML Representation

ModelElement::name

Related elements

owner

The owning composition 

UML Representation

ClassifierRole::(owning collaboration)

Uses

The type of ProcessComponent to use.

UML Representation

ClassifierRole::base

PortsUsed (Via UsageContext)

PortConnectors for each port on the used component.

UML Representation

AssociationRole
3-52 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints

None

3.4.3.3 PortConnector

Semantics

The PortConnector provides a “connection point” for ComponentUsages within a 
composition and exposes the defined ports within the composition.  The connections 
between PortConnectors are made with Connections. 

PortConnections are “implied” by other model elements and will normally be created 
by design tools.  PortConnections should be created as follows:

For each ComponentUsage there will be exactly one PortUsage for each port defined 
for the ProcessComponent being used.  

For each port on the ProcessComponent being defined there will be exactly one 
PortUsage to support Connections to and from “outside” ports.  

For each port within a protocol, OperationPort or MultiPort created for one of the 
above two reasons, a PortConnector may be created for each contained port.  This 
allows Connections to be connected to finer grain elements, such as Connections 
within a protocol.

In summary, the “ProcessComponent” / “Port” pattern which defines the components 
external interface is essentially replicated in the “ComponentUsage” / “portConnector” 
part of the composition.  Each time a component is used, each of its ports is used as 
well.  Sub-ports of protocols also become PortConnectors.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as PortConnector

Fully Scoped name

ECA::CCA::PortConnector

Owned by

Composition

Extends

PortUsage

Properties

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-53



3

Related elements

Represents (via PortUsage)

The port of which this is a port. 

Contexts (via PortUsage)

The associated owner of the port.

Incoming and Outgoing Connections  (Via PortUsage and Node)

The Connections.

Constraints

PortConnectors are intended to be connected with Connections, Transitions may not be 
connected to a PortConnector

3.4.3.4 Connection

Semantics

A Connection connects two PortConnectors within a composition.  Each port can 
produce and/or consume message events.  The connection logically registers each port 
connector as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages, 
it doesn’t not know “who” will be on the other side.  The composition shows how a 
ProcessComponent will be used within a context and thus how it will be connected to 
other components within that context.  A Connection connects exactly two 
PortConnectors.  

Connections may be distinguished from transitions in that Connections specify what 
events will flow between ProcessComponents while transitions specify the contract of 
port ordering.

UML base element(s) in the Profile and Stereotype

AssociationRole optionally stereotyped as <<Connection>>

Note: A Connection to a port contained by an interface will be represented by an 
operation, not a classifier.  In this case the association role is directed to the 
ProtocolPort realizing the interface and a message attached with a call action 
referencing the operation in question.

Fully Scoped name

ECA::CCA::Connection

Owned by

Composition
3-54 UML Profile for Enterprise Distributed Object Computing February 2002



3

Extends

AbstractTransition

Properties

None

Related elements

Source and Target PortConnectors (Via PortUsage, Node & AbstractTransition)

The PortConnectors between which the Connection is being defined.

Constraints

• The source and target nodes of a Connection must be PortConnectors.

• The source and target nodes must be port connectors owned by the same 
composition as the Connection.

3.4.3.5 PropertyValue

Semantics

To be useful in a variety of conditions, a ProcessComponent may have configuration 
properties –which are defined by a PropertyDefinition.  When the component is used in 
a ComponentUsage those properties values may be set using a PropertyValue.  These 
values will be used to construct or configure a component instance.

A PropertyValue should be included whenever the default property value is not correct 
in the given context.

UML base element(s) in the Profile and Stereotype

Constraint stereotyped as <PropertyValue>

Fully Scoped name

ECA::CCA::PropertyValue

Owned by

ComponentUsage

Extends

None
February 2002 UML Profile for EDOC:  CCA Metamodel 3-55



3

Properties

value

An expression for the value of the property.

UML Representation

Constraint::body

Related elements

Owner

The component usage being configured with a value.

UML Representation

ModelElement::namespace

Fills

The property being modified.

UML Representation

Constraint:constrainedElement referencing an attribute of <Owner>.

Constraints

“fills” must relate to a property definition of the ProcessComponent that the owner 
uses.

The type returned by the PropertyValue expression must be compatible with the type 
defined by the PropertyDefinition.

3.4.3.6 ContextualBinding

Semantics

A composition is able to use abstract ProcessComponents in compositions – we call 
these abstract compositions.  The use of an abstract composition implies that at some 
point a concrete component will be bound to that composition.  That binding may be 
done at runtime or when the composition is used as a component in another 
composition.  

For example, a composed “Pricing” component may use an abstract component 
“PriceFormula.” In our “InternationalSales” composition we may want to say that 
“PriceFormula” uses “InternationalPricing.”

Contextual Binding allows the substitution of a more concrete ProcessComponent for a 
compatible abstract ProcessComponent when an abstract composed ProcessComponent 
is used.  So within the composition that uses the abstract component (International 
3-56 UML Profile for Enterprise Distributed Object Computing February 2002



3

Sales) we say the use of  a particular Component (use of PriceFormula) will be bound 
to a concrete component (InternationalPricing).  These semantics correspond with the 
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding.  But these 
are out of scope for CCA.  Some specializations of CCA may subtype 
ContextualBinding and apply selection formula to the binding, as is common in 
workflow systems.

An abstract composition may also be thought of as a pattern, with contextual binding 
being the parameter substitution.

UML base element(s) in the Profile and Stereotype

Binding stereotyped as <ContextualBinding>

Fully Scoped name

ECA::CCA::ContextualBinding

Owned by

Composition

Extends

None

Properties

None

Related elements

owner

The composition which is using the abstract composed component and wants to bind a 
more specific ProcessComponent for an abstract one.  The owner of the 
ContextualBinding.

UML Representation

ModelElement::namespace

fills

The ComponentUsage which should have the ProcessComponent it uses replaced.  
This component usage does not have to be within the same composition as the 
contextual binding, it may be anywhere the component usage  occurs visible from the 
scope of the composition owning the binding.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-57



3

UML Representation

Binding::client

bindsTo

The concrete component which will be bound to the component usage. 

UML Representation

Binding::supplier

Constraints

The ProcessComponent related to by “bindsTo” must be a subtype of the component 
used by the component usage related to by “fills.”

3.4.3.7 CommunityProcess

Semantics

Community processes may be thought of as the “top level composition” in a CCA 
specification, it is a specification of a composition of ProcessComponents that work 
together for some purpose other than specifying another ProcessComponent.  

One kind of CommunityProcess would be a business process, in which case the nested 
components represent business partner roles in that process.  For example, a 
community process could define the usage of a buyer, a seller, a freight forwarder and 
two banks for a sale and delivery process.

Note that designs can be done “top down” or as an assembly of existing 
ProcessComponents (bottom up).  When design is being done top down, it is usually 
the CommunityProcess which comes first and then ProcessComponents specified to fill 
the roles of that process.  

CommunityProcesses are also useful for standards bodies to specify the roles and 
interactions of a B2B process.

UML base element(s) in the Profile and Stereotype

Subsystem stereotyped as <<CommunityProcess>> with a Composition 

Fully Scoped name

ECA::CCA::CommunityProcess

Owned by

Package

Extends

Composition and Package
3-58 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties

None

Related elements

None

Constraints

None

3.4.4 Document Model

The document model defines the information that can be transferred between and 
manipulated by ProcessComponents.  It also forms the base for information in entities.

Figure 3-7 Document Metamodel

A data element represents a type of data which may either be primitive  DataTypes or 
composite.  CompositeData has named attributes which reference other types.  Any 
type may have a DataInvariant expression.

DataType

Enumeration 
Value

name : String

Emumeration

n
+values
n

+enumeration

1+ini tial 1

DataInvariant

expression : String
onCommit : Boolean

DataE lement
1

n +constrainedElement

1+constraints

n

Attribute

byValue : B oolean
required : Boolean
many : Boolean
ini tialValue : E xpression

1

n

+type1

n

CompositeData

n

1
+feature

n+owner

1

n

0..1

+subtypesn

+supertype

0..1

ExternalDocument

mimeType : String
specURL : String
externalName : String
February 2002 UML Profile for EDOC:  CCA Metamodel 3-59



3

Attributes may be isByValue, which are strongly contained or may simply reference 
other data elements provided by some external service.  Attributes may also be marked 
as required and/or many to indicate cardinality. DataTypes define local data – these 
types are defined outside of CCA.  ExternalDocument defines a document defined in 
an external type system.  An enumeration defines a type with a fixed set of values.

3.4.4.1 DataElement

Semantics

DataElement is the abstract supertype of all data types. It defines some kind of 
information.

UML base element(s) in the Profile and Stereotype

Classifier (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataElement

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

constraints

Constraints applied to the values of this data type.

Constraints

None

3.4.4.2 DataType

Semantics

A primitive data type, such as an integer, string, picture, movie…
3-60 UML Profile for Enterprise Distributed Object Computing February 2002



3

Primitive data types may have their structure and semantics defined outside of CCA.  
The following data types are defined for all specializations of CCA: String, Integer, 
Float, Decimal, Boolean.

UML base element(s) in the Profile and Stereotype

DataType (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataType

Owned by

Package

Extends

DataElement

Properties

None

Related elements

None

Constraints

None

3.4.4.3 Enumeration

Semantics

An enumeration defines a type that may have a fixed set of values.

UML base element(s) in the Profile and Stereotype

Corresponds to User defined enumeration stereotypes of UML DataType. 

Fully Scoped name

ECA::Documentmodel::Enumeration

Owned by

Package
February 2002 UML Profile for EDOC:  CCA Metamodel 3-61



3

Extends

DataElement

Properties

None

Related elements

Values

The set of values the enumeration may have.

UML Representation

ModelElement::namespace

Initial

The initial, or default, value of the enumeration.

UML Representation

Tagged value

Constraints

None

3.4.4.4 EnumerationValue

Semantics

A possible value of an enumeration.

UML base element(s) in the Profile and Stereotype

The values of User defined enumeration stereotypes of UML DataType. 

Fully Scoped name

ECA::DOCUMENTMODEL::EnumerationValue

Owned by

Enumeration

Extends

None
3-62 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties

name

Related elements

Enumeration

The owning enumeration.

UML Representation

ModelElement:namespace

Constraints

None

3.4.4.5 CompositeData

Semantics

A datatype composed of other types in the form of attributes.

UML base element(s) in the Profile and Stereotype

Class Stereotyped as <<CompositeData>>

Fully Scoped name

ECA::DocumentModel::CompositreData

Owned by

Package

Extend

DataElements

Properties

None

Related elements

Feature

The attributes which form the composite.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-63



3

UML Representation

Classifier.feature

Supertype

A type from which this type is specialized.  The composite will include all attributes of 
all supertypes as attributes of itself.

Subtypes

The types derived from this type.

Constraints

UML Representation

Generalization

3.4.4.6 Attribute

Semantics

Defines one “slot” of a composite type that may be filled by a data element of “type.”

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::DOCUMENTMODEL::Attribute

Owned by

CompositeData

Extends

None

Properties

isByValue

Indicates that the composite data is stored within the composite as opposed to 
referenced by the composite.

UML Representation

Stand-alone Tagged Value to apply to UML Attribute (a Stereotype of Attribute is not 
created to hold this TaggedValue : 
3-64 UML Profile for Enterprise Distributed Object Computing February 2002



3

required

Indicates that the attribute slot must have a value for the composite to be valid.

UML Representation

StructuralFeature::multiplicity

many

Indicates that there may be multiple occurrences of values.  These values are always 
ordered.

UML Representation

StructuralFeature::multiplicity

initialValue

An expression returning the initial value of the attribute.

UML Representation

Attribute::initialValue

Related elements

type

The type of information which the attribute may hold.  Type instances may also be 
filled by a subtype.

UML Representation

StructuralFeature::type

owner

The composite of which this is an attribute.

UML Representation

ModelElement::namespace

Constraints

None

3.4.4.7 DataInvariant

Semantics

A constraint on the legal values of a data element.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-65



3

UML base element(s) in the Profile and Stereotype

Constraint

Fully Scoped name

ECA::DOCUMENTMODEL::DataInvarient

Owned by

DataElement

Extends

None

Properties

Expression

The expression which must return true for the data element to be valid.

UML Representation

Constraint::body

isOnCommit (Default: False)

True indicates that the constraint only applies to a fully formed data element, not to 
one under construction.

UML Representation

Tagged Value

Related elements

ConstrainedElement

The data element that will be constrained.

UML Representation

Constraint::constrainedElement

3.4.4.8 ExternalDocument

Semantics

A large, self contained document defined in an external type systems such as XML, 
Cobol or Java that may or may not map to the ECA document model.
3-66 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML base element(s) in the Profile and Stereotype

DataType Stereotyped as <<ExternalDocument>>

Fully Scoped name

ECA::DOCUMENTMODEL::ExternalDocument

Owned by

Package

Extends

DataElement

Properties

All properties are tagged values

MimeType

The type of the document specified as a string compatible with the “mime” 
declarations.

SpecURL

A reference to an external document definition compatible with the mimiType, such as 
a DTD or Schema.  If the MimeType does not define a specification form (E.G. GIF) 
then this attribute will be blank.

ExternalName

The name of the document within the SpecURL.  For example, an element name within 
a DTD. If the MimeType does not define a specification form (E.G. GIF) or the 
specification form only specifies one document then this attribute will be blank.

Related elements

None

Constraints

None

3.4.5 Model Management

Model management defines how CCA models are structured and organized.  It directly 
maps to its UML counterparts and is only included as an ownership anchor for the 
other elements.
February 2002 UML Profile for EDOC:  CCA Metamodel 3-67



3

Figure 3-8 Model Management Metamodel 

A package defines a logical hierarchy of reusable model elements.  Elements that may 
be defined in a package are PackageContent and may be ProcessComponents, 
Protocols, DataElements, CommunityProcesses and other packages.  A 
ImportedElement defines a “shortcut” visibility of a package content in a package 
that is not its owner. Shortcuts are useful to organize reusable elements from different 
perspectives.

Note that ProcessComponents are also packages, allowing elements which are specific 
to that component to be defined within the scope of that component. 

3.4.5.1 Package

Semantics

Defines a structural container for “top level” model elements that may be referenced by 
name for other model elements.

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String = ""
primitiveSpec : String

(from CCA)

DataElement
(from DocumentModel)

Package

PackageContent

name : String
n

1

+ownedElements

n

+namespace

1

ElementImport

1

n

+modelElement

1

+elementImport

n

CommunityProcess
(from CCA)

Composition
(from CCA)

Protocol
(from CCA)
3-68 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML base element(s) in the Profile and Stereotype

Package

Fully Scoped name

ECA::ModelManagement::Package

Owned by

Package or model (global scope)

Extends

PackageContent

Properties

None

Related elements

OwnedElements

The model elements within the package and visible from outside of the package.

UML Representation

Namespace::OwnedElement

Constraints

None

3.4.5.2 PackageContent

Semantics

An abstract capability that represents an element that may be placed in a package and 
thus referenced by name from any other element.

UML base element(s) in the Profile and Stereotype

ModelElement

Fully Scoped name

ECA::ModelManagement::

Owned by

Package
February 2002 UML Profile for EDOC:  CCA Metamodel 3-69



3

Extends

None

Properties

name

UML Representation

ModelElement::name

Related elements

namespace

UML Representation

ModelElement::namespace

Constraints

3.4.5.3 ElementImport

Semantics

Defines an “Alias” for one element within another package.

UML base element(s) in the Profile and Stereotype

ElementImport (No Stereotype)

Fully Scoped name

ECA::ModelManagement::ElementImport

Owned by

Package

Extends

PackageContent

Properties

None
3-70 UML Profile for Enterprise Distributed Object Computing February 2002



3

Related elements

ModelElement

The element to be imported.

Constraints

None

3.5 CCA Notation

CCA uses UML notation with a few extensions and conventions to make diagrams 
more readable and compact for CCA aware tools.  The UML mapping shown how 
CCA is expressed in the UML Metamodel which has standard notation.  Unless stated 
otherwise, all other UML elements use the base UML 1.4 notation.  The following are 
additions this base UML 1.4 notation.

3.5.1 CCA Specification Notation

A ProcessComponent is based on the notation for a subsystem with extensions for 
ports and properties.  Consider the following diagram template for ProcessComponent 
notation.

Figure 3-9  ProcessComponent specification notation

Component

Property Type

Responder Initiator

Value

t

Receives Sends
February 2002 UML Profile for EDOC:  CCA Notation 3-71



3

 

Figure 3-10 ProcessComponent specification notation (expanded ProtocolPorts)  

• A ProcessComponent represents its external contract as a subsystems with the 
following addition:

• The ProcessComponent type may be represented as an icon in the component name 
compartment.  “t” above.

• Ports are represented as going through the boundary of the box. The port is  itself a 
smaller rectangle with the name of the port inside the rectangle. In the above, 
“Receives,” “Sends,” “Responder,” and “Initiator” are all ports. The type of the port 
is not represented in the diagram.

• Flow ports are represented as an arrow going through a box.  Flow ports that send 
have the arrow pointing out of the box while flow ports that receive (Receives) have 
an arrow pointing into the box. A sender has the background and text color inverted.

• Protocol ports and Operation ports are boxes extending out of the component.  
Protocol ports representing an initiator have the colors of their background and text 
reversed.  In the above, “Initiator” is a protocol port of an initiator and “Responder” 
is a protocol port that is not an initiator. ProtocolPorts may show nested, the Ports 
of the used Protocol.

• Multiports are shown as a shaded box grouping the set of ports it contains.

• Property Definitions are in a separate compartment listing the property name, type 
and default value (if any).  The name, type and value are separated by lines. Each 
property is on a separate line.

Component t

Property Type Value

SendsReceives

  Initiator

SendsX

ReceivesY

ReceivesZ

  Responder

ReceivesA

SendsB

SendsC
3-72 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.5.2 Composite Component Notation

A composite is shown as a ProcessComponent with the composition in the center.  The 
composition is a new notation but may also be rendered with a UML collaboration.

Figure 3-11 -  Composite Component notation (without internal ComponentUsages) 

Component

Responder Initiator

t

Receives

Property Type Value

Sends

 
 

February 2002 UML Profile for EDOC:  CCA Notation 3-73



3

Figure 3-12 -  Composite Component notation 

• The ports on the composite component being defined are shown in the same way as 
they are on a ProcessComponent, but in this case represent the port connector.

• A component usage is shown as a smaller version of a ProcessComponent inside 
the composite component.  Note Usage (1..2) are component usages. 

• Port connectors are shown in the same fashion as ports, on component usages.  The 
ports on Usage 1..2 are all port usages.

• Connectors are shown as lines between port usages or port proxies.  All the lines in 
the above are connectors.

• Property values may be shown on component usages (in the same way as the 
property definition), or may be suppressed.

Component t

Responder

Receives

Usage 1 t

Property Type Value

SendsReceives

Usage 2 t

Property Type Value

Responder Initiator

Property Type

 
 

3-74 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.5.3 Community Process Notation

A community process is shown in the same way as a composite component with the 
exception that a community process has no external ports.

Figure 3-13 Community Process notation

In the above example “BuySellProcess” is a community process with component usage 
for “Buyer” and “Seller” which are connected via their “buy” and “sell” ports, 
respectively.

3.6 UML Profile

The CCA profile specifies how CCA concepts relate to and are represented in standard 
UML using stereotypes, tagged values and constraints.  This allows off-the-shelf UML 
tools to represent CCA and interchange CCA models.

The CCA profile is organized as a single package which corresponds to the ECA::CCA 
package in the logical model and the CCA <<profile>> package.  In addition there is a 
package for the document model which is used by CCA.

3.6.1 Tables mapping concepts to profile elements

The following tables provide a summary of the CCA elements as stereotypes and 
tagged values.  These stereotypes and tagged values may be used in standard UML 
models, and represented in standard UML diagrams (See “Diagramming CCA” for an 
example).

BuySellProcess

Buyer t

Buy

Seller t

Sell
February 2002 UML Profile for EDOC:  UML Profile 3-75



3

Table 3-1 Stereotypes for Structural Specification (UML notation: Class Diagram)

Metamodel element name Stereotype name UML 
base Class

Parent Tags Constraints

ProcessComponent ProcessComponent Classifier N/A granularity
isPersistent
primitiveKind
primitiveSpec

Port Port Class N/A isSynchronous 
isTransactional
direction
postCondition

FlowPort FlowPort Class Port typeProperty

ProtocolPort ProtocolPort Class Port uses

MultiPort MultiPort Class Port

OperationPort N/A Operation Port

Protocol Protocol Class N/A

Interface N/A Classifier N/A

InitiatingRole InitiatingRole Class N/A

RespondingRole InitiatingRole Class N/A

PropertyDefinition PropertyDefinition Attribute N/A

«enumeration» DirectionKind DirectionKind Enumeration

«enumeration» GranularityKind GranularityKind Enumeration N/A

Direction (value) initiates Association N/A

Direction (value) responds Association N/A

Table 3-2 TaggedValues for Structural Specification

Metamodel attribute 
name Tag Stereotype Type Multiplicity Description

granularity granularity ProcessComponent «enumeration» 
GranularityKind

0..1

primitiveKind primitiveKind String 0..1

primitiveSpec primitiveSpec String 0..1

isPersistent isPersistent Boolean 1 default=false

isSynchronous isSynchronous Port and 
specializations: 
ProtocolPort or 
FlowPort or 
MultiPort or 
OperationPort 

Boolean 1 default=false

isTransactional isTransactional Boolean 1 default=false
3-76 UML Profile for Enterprise Distributed Object Computing February 2002



3

direction direction «enumeration» 
DirectionKind

1

postCondition postCondition «enumeration» 
Status

0..1

typeProperty typeProperty FlowPort Attribute 0..1 Reference a  
PropertyDefinition of 
the owner 
ProcessComponent. 

Table 3-3 Stereotypes for Choreography (UML notation: Statechart Diagram)

Metamodel element 
name

Stereotype name UML Base Class Parent Tags Constraints

Choreography Choreography StateMachine or N/A

PortActivity PortActivity CompositeState N/A represents

Transition N/A (UML element) Transition N/A

Pseudostate N/A (UML element) or
Success or Failure

Pseudostate N/A

Pseudostate Success FinalState N/A

Pseudostate Failure FinalState N/A

«enumeration» 
Status

Status Enumeration

Table 3-4 TaggedValues for Choreography

Metamodel 
attribute name

Tag Stereotype Type Multiplicity Description

represents represents PortActivity Class, constrained to
«ProtocolPort» or 
«FlowPort» or «MultiPort» 
or «OperationPort»

1

Table 3-5 Stereotypes for Composition (UML notation: Collaboration Diagram at specification 
level)

Metamodel element name Stereotype name UML Base Class Parent Tags Con-
straints

Composition Composition Collaboration N/A

ComponentUsage ComponentUsage ClassifierRole N/A

PortConnector PortConnector ClassifierRole N/A

Connection Connection AssociationRole N/A

PropertyValue PropertyValue Constraint N/A

ContextualBinding ContextualBinding Binding N/A

CommunityProcess CommunityProcess Subsystem N/A

Table 3-2 TaggedValues for Structural Specification
February 2002 UML Profile for EDOC:  UML Profile 3-77



3

Table 3-6 TaggedValues for Composition

Metamodel 
attribute name Tag Stereotype Type Multiplicity Description

represents represents PortConnector Class, 
constrained to
«ProtocolPort» or
«FlowPort» or
«MultiPort» 

1

Table 3-7 Stereotypes for DocumentModel  (UML notation: Class Diagram)

Metamodel element name Stereotype name UML Base Class Parent Tags Constraints

CompositeData CompositeData Class N/A

ExternalDocument ExternalDocument DataType N/A

DataInvariant DataInvariant Constraint N/A

DataType N/A (UML) DataType N/A

Enumeration N/A (UML) Enumeration N/A

Attribute N/A (UML) Attribute N/A

Table 3-8 TaggedValues for DocumentModel

Metamodel 
attribute name

Tag Stereotype Type Multiplicity Description

isOnCommit isOnCommit DataInvariant Boolean 1

isByValue isByValue N/A 1 Apply to Attribute of  
«CompositeData»

mimeType mimeType ExternalDocument String 0..1

specURL specURL String 0..1

externalName externalName String 0..1
3-78 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.2 Introduction

The UML Profile for CCA accesses a number of UML Packages.  The CCA 
<<profile>> extends these packages with CCA stereotypes & semantics.

Figure 3-14  UML«metamodel»  and CCA «profile»Packages

Each CCA stereotype extends a specific UML model element as shown below.

Core
(from Foundation)

<<metamodel>>

CCA
(from ECA)

<<profile>>

State_Machines
(from Behavioral_Elements)

<<metamodel>>
Collaborations

(from Behavioral_Elements)

<<metamodel>>

Data_Types

(from Foundation)

<<metamodel>>

Model_Management
(from Logical View)

<<metamodel>>

<<access>> <<access>> <<access>>
<<access>> <<access>>
February 2002 UML Profile for EDOC:  UML Profile 3-79



3

Figure 3-15 Stereotypes in the UML Profile for CCA

Subsystem

(from Model_Management)

+ isInstantiable : Boolean

ProcessComponent

<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

<<stereotype>>
PropertyDefinition

<<taggedValue>> + isLocked : Boolean

<<stereotype>>

Attribute

(from Core)

<<metaclass>>

DirectionKind

+ Initiates
+ Responds

<<Enumeration>>

MultiPort
<<stereotype>>

Port

<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

<<stereotype>>

FlowPort
<<stereotype>>

Class

(from Core)

<<metaclass>>

ProtocolPort
<<stereotype>>

Protocol

<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

<<stereotype>>

Operation

(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

Signal

(from Common_Behavior)

<<metaclass>>

<<stereotype>>

<<stereotype>>

Classifier

(from Core)

<<metaclass>>

<<stereotype>>

Parameter

(from Core)

<<metaclass>>

1

n

+type1

+typedParameter

n

typeProperty [0..1]
<<taggedValue>>

<<stereotype>><<stereotype>><<stereotype>>

uses [1]
<<taggedValue>>

<<stereotype>>

PortActivity

<<taggedValue>> + represents [1] : Port

<<stereotype>>

Choreography
<<stereotype>>

Pseudostate

(from State_Machines)

<<metaclass>>
FinalState

(from State_Machines)

<<metaclass>>

Status

+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

<<enumeration>>
CompositeState

(from State_Machines)

<<metaclass>>

Transition

(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>>
n0..1

+transitions

n

+stateMachine

0..1

<<stereotype>> <<stereotype>>

ClassifierRole

(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

PortConnector
<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole

(from Collaborations)

<<metaclass>>
Binding

(from Core)

<<metaclass>>

PropertyValue
<<stereotype>>

Constraint

(from Core)

<<metaclass>>
Collaboration

(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

CommunityProcess
<<stereotype>>

Class

(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>> <<stereotype>>
<<stereotype>>

<<stereotype>>
<<stereotype>> represents [1..1]

<<taggedValue>>

CompositeData
<<stereotype>>

Class

(from Core)

<<metaclass>>

DataInvariant

+ isOnCommit : Boolean = false

<<stereotype>>

Constraint

(from Core)

<<metaclass>>

ExternalDocument

<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>

<<stereotype>>

<<stereotype>><<stereotype>>
3-80 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.3 Stereotypes for Structural Specification\

Figure 3-16  Stereotypes for Structural Specification

Applicable Subset

Classifier, Class,  Attribute

3.6.3.1 «ProcessComponent»

Inheritance 

Foundation::Core::Classifier
«ProcessComponent»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

ProcessComponent
<<stereotype>>

<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

PropertyDefinition
<<stereotype>>

<<taggedValue>> + isLocked : Boolean

Attribute
(from Core)

<<metaclass>>

DirectionKind
<<Enumeration>>

+ Initiates
+ Responds

MultiPort
<<stereotype>>

Port
<<stereotype>>

<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

FlowPort
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>>

ProtocolPort
<<stereotype>>

<<stereotype>>

Protocol
<<stereotype>>

<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

uses [1]
<<taggedValue>>

<<stereotype>>

Operation
(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

<<stereotype>>

typeProperty [0..1]
<<taggedValue>>

<<stereotype>>

Signal
(from Common_Behavior)

<<metaclass>>
Classifier

(from Core)

<<metaclass>>
Parameter
(from Core)

<<metaclass>>

1

n

+type1

+typedParameter

n

<<stereotype>>
February 2002 UML Profile for EDOC:  UML Profile 3-81



3

3.6.3.2 Relationships3

Correspondence of metamodel attributes  with UML attributes

Tagged Values

Constraints expressed generically

The set of all the «Port» of a «ProcessComponent» is the set of «Port» or its 
specializations,  that are aggregated in the «ProcessComponent».

Relationship Role(s)

Ports   owner

Generalization    supertype subtypes {only with «ProcessComponent»}

Properties component

Uses owner

ComponentUsages owner

Bindings owner

Bindings bindsTo

Connections _connections 

Nodes _nodes

PortUsages extent

Is_A_Choreography is_specialization

Is_A_Composition is_ specialization

PackageElements owner ownerElements

ImportElement modelElement elementImport

3. The “Relationships” header references the relationships in which the Model Element  
participates, and the name of the role in the relationship. The section "Relationships", see   
below, includes the specifications for these relationships, and their mapping between 
metamodel and UML representation.

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement

Tagged Value name Type Multiplicity Description

granularity String 0..1

primitiveKind String 0..1

primitiveSpec String 0..1

isPersistent Boolean 1 default=false
3-82 UML Profile for Enterprise Distributed Object Computing February 2002



3

The supertype of a «ProcessComponent» must be a «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessComponent

inv:
supertype->isEmpty() or 
supertype.isStereoKinded("ProcessComponent")

def: 
  -- the Ports in the ProcessComponent : 
  -- composed in the ProcessComponent

 let ports : Set( Class) = 
  (association->select( anAssociationEnd : AssociationEnd | 
   anAssociationEnd.aggregationKind = ak_composite)
  ->association->connection – association)
  ->participant
  ->select( aClassifier : Classifier|
   anElement.isStereoKinded( «Port»))

Diagram Notation

N/A

3.6.3.3 «Port»

Inheritance 

Foundation::Core::Class
«Port»

Instantiation in a model

Abstract

Semantics

Corresponds to the element of same name in the metamodel.

The «Port» stereotype has been introduced for clarity and brevity, defining in a 
common ancestor, the taggedValues corresponding to  attributes of Port in the 
metamodel, and reused along the stereotypes specialization of «Port» : «FlowPort», 
«ProtocolPort», «MultiPort» and «OperationPort».
February 2002 UML Profile for EDOC:  UML Profile 3-83



3

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

Constraints expressed generically

A «Port» must be aggregated into a «Protocol» or a «ProcessComponent», or a 
«MultiPort».  

Note that the metamodel Interface corresponds in the UML Profile to a UML Classifier 
which may or may not by a UML Interface, and that the metamodel OperationPort 
corresponds to a UML Operation. However, UML Interface is the recommended model 
element to use.  Although in the metamodel both Interface and OperationPort may 
contain other Port, in the UML Profile these, and their relationships are directly 
supported by UML. Neither Interface or OperationPort appear in the constraint below, 
as candidate owners for «Port».  This allows arbitrary UML classifiers (of any kind) to 
be used with CCA. Only the operations of these classifiers will correspond to CCA 
elements.

The relationship between the Port and the PortOwner shall have the stereotype 
<<initiates>> or the stereotype <<responds>> which shall have the same value as 
“direction.”

Formal Constraints Expressed in Terms of the UML Metamodel

context Port

inv: 
aggregatedOwner->notEmpty()

inv:
ownerAggregation.isStereoKinded("initiates") implies 

direction = "Initiates"

inv:

Relationship Role(s)

Ports   ports

Represents represents

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement

Tagged Value name Type Multiplicity Description

isSynchronous Boolean 1 default=false

isTransactional Boolean 1 default=false

direction DirectionKind 1

postCondition «enumeration» Status 0..1
3-84 UML Profile for Enterprise Distributed Object Computing February 2002



3

ownerAggregation.isStereoKinded("responds") implies 
direction = "Responds"

def:
  -- the owner of the Port
 let aggregatedOwner : Class = ownerAggregation.participant

def:
let ownerAggregation : Class = 

  (association->association->connection – association)->
select( anAssociationEnd : AssociationEnd | 

   anAssociationEnd.aggregationKind = ak_composite)
  ->select( anAssocRole : AssociationRole|
   anAssocRole->participant.isStereoKinded( «Protocol») or 

anAssocRole->participant.isStereoKinded( «ProcessComponent») 
or 

anAssocRole->participant..isStereoKinded( «MultiPort»))
->any( true) 

    Diagram Notation

N/A

3.6.3.4 «FlowPort»

Inheritance 

Foundation::Core::Class
ECA::CCA::ComponentSpecification::«Port»

«FlowPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.
February 2002 UML Profile for EDOC:  UML Profile 3-85



3

Relationships

Tagged Values

Constraints expressed generically

The «FlowPort» must reference as its type a DataType, Enumeration, 
«CompositeData» or «ExternalDocument» or their specializations.

The typeProperty of «FlowPort», if is specified, it must reference an Attribute 
stereotyped as «PropertyDefinition», owned by the same «ProcessComponent» that 
owns the «FlowPort». If the initialValue of the «ProperyDefinition» is set, then the 
value must be the name of a DataElement, Enumeration, «CompositeData» or 
«ExternalDocument». 

Formal Constraints Expressed in Terms of the UML Metamodel

context FlowPort

inv:
type->notEmpty() 

inv:
typeProperty->isEmpty() or (

typeProperty.owner = this.aggregatedOwner)

def: 
let type : Classifier = 

  (association->association->connection - association)-
>participant

->select( aClassifier : Classifier|
anElement.isOclKindOf( DataElement) or
anElement.isOclKindOf( Enumeration) or

anElement.isStereoKinded( «CompositeData») or   
anElement.isStereoKinded( «ExternalDocument»))

Diagram Notation

N/A

Relationship Role(s)

FlowType _type

TypeProperty constrains 

Tagged Value name Type Multiplicity Description

typeProperty Attribute 0..1 Refer to a  «PropertyDefinition» of the owner 
«ProcessComponent». When the «ProcessComponent» is 
used as a «ComponentUsage», the value held by the 
«PropertyValue» in the «ComponentUsage» will be 
interpreted as the actual type of the «FlowPort», for its 
specific «PortUsage» in the «ComponentUsage».
3-86 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.3.5 «ProtocolPort»

Inheritance 

Foundation::Core::Class
ECA::CCA::ComponentSpecification::«Port»

«ProtocolPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Tagged Values

N/A

Constraints expressed generically

A «ProtocolPort» must reference a «Protocol», or its specializations, through a 
Generalization Relationship, with the «Protocol» as the parent.

Formal Constraints Expressed in Terms of the UML Metamodel

context ProtocolPort
inv:

generalization->notEmpty() and 
generalization.parent->select( aGeneralizable : 
GeneralizableElement |

aGeneralizable.isStereoKinded("Protocol"))
->notEmpty()

Diagram Notation

N/A

3.6.3.6 «MultiPort»

Inheritance 

Foundation::Core::Class
ECA::CCA::ComponentSpecification::«Port»

«MultiPort»

Relationship Role(s)

ProtocolType _uses
February 2002 UML Profile for EDOC:  UML Profile 3-87



3

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Tagged Values

N/A

Constraints expressed generically

All the «Port» aggregated by the «MultiPort», must be «FlowPort» or its 
specializations.

Formal Constraints Expressed in Terms of the UML Metamodel

context MultiPort

inv:
ports->forAll( aClass : Class | 
aClass.isStereoKinded("FlowPort"))

def:
 let ports : Set( Class) = 
  (association->select( anAssociationEnd : AssociationEnd | 

  anAssociationEnd.aggregationKind = ak_composite)
  ->association->connection – association)
  ->participant
  ->select( aClassifier : Classifier|
   anElement.isStereoKinded( «Port»))

Diagram Notation

N/A

3.6.3.7 UML Operation represents OperationPort

Semantics

The concept of OperationPort in the metamodel, is represented by a standard UML 
operation.

The OperationPort is constrained to contain only FlowPorts.

Relationship Role(s)

Ports owner
3-88 UML Profile for Enterprise Distributed Object Computing February 2002



3

The signature, of the UML Operation representing an OperationPort, is derived from 
the type of the one and only FlowPort of the OperationPort, with direction="initiates". 
For each Attribute of the FlowPort, the UML Operation will have an input Parameter 
with type equal to the type of the Attribute in the FlowPort.

For each  ownedFlowPort with direction="responds" and postCondition="Success", 
then the UML Operation will have return Parameters with same type as the type of the 
FlowPort.

All other FlowPort in the OperationPort  with direction="responds", correspond to 
raisedException Signal of the UML Operation.  The structure of the Signal is derived 
from the FlowPort type : the Signal will have Attribute with same name and type of the 
Attribute of the type of the FlowPort.

Relationships 

 N/A

Tagged Values

N/A

Constraints expressed generically

.N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

3.6.3.8 «Protocol»

Inheritance 

Foundation::Core::Class
«Protocol»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.
February 2002 UML Profile for EDOC:  UML Profile 3-89



3

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Protocol» must be a «Protocol».

The set of all the «Port»s of a «Protocol» is the set of «Port»s or its specializations,  
that are aggregated in the «Protocol».

A «Protocol» may have an Aggregation with at most one «InitiatingRole».

A «Protocol» may have an Aggregation with at most one «RespondingRole». 

Formal Constraints Expressed in Terms of the UML Metamodel

context Protocol

inv: initiatingRole->size() < 2

inv: respondingRole->size() < 2

inv: 
supertype->isEmpty() or supertype.isStereoKinded("Protocol")

def: 
  -- the Ports in the Protocol : Association composed in the 

Protocol

 let ports : Set( Class) = 

Relationship Role(s)

Ports owner

ProtocolType _uses

Generalization supertype subtypes (only with «Protocol»)

Node nodes

Connection connections

PackageElements owner ownedElements

Is_a_Choreography is_specialization

ImportElement modelElement elementImport

Initiator _initiator

Responder _responder

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement
3-90 UML Profile for Enterprise Distributed Object Computing February 2002



3

  (association->select( anAssociationEnd : AssociationEnd | 
  anAssociationEnd.aggregationKind = ak_composite)

  ->association->connection – association)
  ->participant
  ->select( aClassifier : Classifier|
   anElement.isStereoKinded( «Port»))

def:
let initiatingRole : Class = (association->select( 
anAssociationEnd : AssociationEnd | 
  anAssociationEnd.aggregationKind = ak_composite)

  ->association->connection – association)
  ->participant
  ->select( aClassifier : Classifier|
   anElement.isStereoKinded( «InitiatingRole»))

def:
let repondingRole: Class = (association->select( 
anAssociationEnd : AssociationEnd | 
  anAssociationEnd.aggregationKind = ak_composite)

  ->association->connection – association)
  ->participant
  ->select( aClassifier : Classifier|
   anElement.isStereoKinded( «RespondingRole»))

Diagram Notation

N/A

3.6.3.9 «InitiatingRole»

Inheritance 

Foundation::Core::Class

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.
February 2002 UML Profile for EDOC:  UML Profile 3-91



3

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context InitiatingRole

Diagram Notation

N/A

3.6.3.10 «RespondingRole»

Inheritance 

Foundation::Core::Class
«RespondingRole»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationship Role(s)

Initiator _initiator

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement
3-92 UML Profile for Enterprise Distributed Object Computing February 2002



3

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context RespondingRole

Diagram Notation

N/A

3.6.3.11 UML Classifier represents Interface

Inheritance 

N/A

Instantiation in a model

Concrete subtypes of classifier.

Semantics

The metamodel element Interface corresponds to the UML Classifier.

Foundation::Core::Classifier

A metamodel Interface can only contain metamodel OperationPort, and OperationPort 
can only contain constrained FlowPort.

An Classifier Classifier contains UML  Operation features, corresponding to the 
OperationPort of the metamodel Interface. 

The metamodel FlowPort, owned by OperationPort, are mapped into the UML 
Parameter of the UML Operation. Parameter include the return type, and alternate 
exceptional result types. 

Relationship Role(s)

Responder _responder

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement
February 2002 UML Profile for EDOC:  UML Profile 3-93



3

The metamodel FlowPort of the OperationPort must comply with constraints, ensuring 
that the OperationPort FlowPort can be mapped to the Parameter of the UML 
Operation.

The metamodel Interface can only have OperationPort and FlowPort, because only 
these can be mapped to UML Operation. The OperationPort and FlowPort of Interface, 
can only have direction="responds".

The «InitiatingRole», initiator of the Classifier, is the role that invokes operations in 
the Classifier. The «RespondingRole», responder of the Classifier, is the role that 
implements the operations in the Classifier.

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

Relationship Role(s)

ProtocolType _uses

Generalization supertype subtypes (only with Classifier)

Node nodes

Connection connections

PackageElements owner ownedElements

Is_a_Choreography is_specialization

Initiator _initiator

Responder _responder

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement
3-94 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.3.12 «PropertyDefinition»

Inheritance 

Foundation::Core::Attribute
«PropertyDefinition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

The owner of an Attribute stereotyped «PropertyDefinition» must be stereotyped as 
«ProcessComponent» or its specializations.

The type of an Attribute stereotyped «PropertyDefinition» must be set, and be a 
DataType, or an Enumeration, or a Class stereotyped as «CompositeData» or its 
specializations.

If the «PropertyDefinition» is the typeProperty of a «FlowPort»,  owned by the same 
«ProcessComponent» that owns the «PropertyDefinition», then if the initialValue of the 
«ProperyDefinition» is set, then the value must be the name of a DataElement, 
Enumeration, «CompositeData» or «ExternalDocument». 

Relationship Role(s)

Properties properties

PropertyType type

TypeProperty typeProperty

ValueFor fills

Metamodel attribute name UML attribute name UML attribute owner Description

name name ModelElement

initial initialValue Attribute

isLocked changeability StructuralFeature
February 2002 UML Profile for EDOC:  UML Profile 3-95



3

Formal Constraints Expressed in Terms of the UML Metamodel

context PropertyDefinition

inv:
owner->notEmpty() and 

owner.isStereoKinded( "ProcessComponent")

inv:
type->notEmpty() and (

type.oclIsTypeOf( DataType) or
type.oclIsTypeOf( Enumeration) or
type.isStereoKinded( "CompositeData")) 

-- ojo constrain initialValue when typeProperty of a FlowPort

Diagram Notation

N/A

3.6.3.13 «enumeration» DirectionKind

Instantiation in a model

Concrete 

Semantics

Corresponds to the enumeration named  "DirectionType" in the metamodel. 

The DirectionKind enumeration in the metamodel is a UML Enumeration.

Enumeration Literals

Corresponding to the enumeration literals of same name in the metamodel.

Initiates

Responds

3.6.3.14 «enumeration» GranularityKind

Instantiation in a model

Concrete 

Semantics

Corresponds to the enumeration named “GranularityKind” in the Meta-model, used by 
the metaatribute named "granularity", of ProcessComponent.
3-96 UML Profile for Enterprise Distributed Object Computing February 2002



3

The set of candidate values for "granularity" in the metamodel, has been formalized in 
the UML Profile as an Enumeration named "GranularityKind". 

Specializations of CCA may define specializations of GranularityKind with additional 
EnumerationLiterals.

Enumeration Literals

Corresponding to the enumeration literals of same name and semantics, in the 
metamodel.

Program

Owned

Shared

3.6.4 Stereotypes for Choreography

Figure 3-17  Stereotypes for Choreography 

Applicable Subset

StateMachine, CompositeState, Transition, Pseudostate, FinalState

3.6.4.1 «Choreography»

Inheritance 

Behavioral_Elements::State_Machines::StateMachine
«Choreography»

PortActivity
<<stereotype>>

<<taggedValue>> + represents [1] : Port

Choreography
<<stereotype>>

Pseudostate
(from State_Machines)

<<metaclass>>

FinalState
(from State_Machines)

<<metaclass>>

Transition
(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>>
n0..1

+transitions

n

+stateMachine

0..1

<<stereotype>>

Status
<<enumeration>>

+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

CompositeState
(from State_Machines)

<<metaclass>>

<<stereotype>>
February 2002 UML Profile for EDOC:  UML Profile 3-97



3

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Tagged Values

N/A

Constraints expressed generically

The context of a StateMachine stereotyped as «Choreography» will be a Classifier 
stereotyped as «ProcessComponent» or a Class stereotyped as «Protocol» or a 
Subsystem stereotyped as <<CommunityProcess>>, or their specializations.

Formal Constraints Expressed in Terms of the UML Metamodel

context Choreography

inv:
context->notEmpty() and (

context->isStereoKinded( «ProcessComponent») or
context->isStereoKinded( «Protocol») or
context->isStereoKinded( «CommunityProcess»))

Diagram Notation

N/A

3.6.4.2 «PortActivity»

Inheritance 

Behavioral_Elements::State_Machines::CompositeState
«PortActivity»

Instantiation in a model

Concrete

Relationship Role(s)

Is_a_Choreography is_generalization 

Nodes _node

Connections _connections
3-98 UML Profile for Enterprise Distributed Object Computing February 2002



3

Semantics

Corresponds to the element of same name in the metamodel.

When a PortActivity in the metamodel references as "represents" a FlowPort, then it 
corresponds to a «PortActivity» stereotype of CompositeState with no subvertex.

When the PortActivity in the metamodel references as "represents" a MultiPort, then it 
corresponds to a «PortActivity» stereotype of CompositeState with   subvertexes 
«PortActivity» corresponding to the «FlowPort» of the «MultiPort». 

When the PortActivity in the metamodel references as "represents" a «ProtocolPort», 
then it corresponds to a «PortActivity» stereotype of CompositeState.

To choreograph the «Port» in the "represents" «ProtocolPort», in the context of the 
«PortActivity», then «PortActivity» subvertexes can be nested, corresponding to the 
«Port» of the «Protocol» of the "represents" «ProtocolPort». 

Relationships 

Correspondence of metamodel attributes  with UML attributes

Tagged Values

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context PortActivity

Relationship Role(s)

Nodes nodes 

Target target 

Source source

PortUsages portsUsed

Represents _represents

Metamodel 
attribute name

UML 
attribute name

UML 
attribute owner 

Description

name name ModelElement Initialize equal to the name of 
the "“represents”" «Port»

Tagged 
Value name

Type Multiplicity Description

represents Class, constrained to «Port» or its 
specializations 

1

February 2002 UML Profile for EDOC:  UML Profile 3-99



3

Diagram Notation

N/A

3.6.4.3 UML Transition

Inheritance 

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Transition corresponds to the UML model element of the 
same name.

Behavioral_Elements::State_Machines::Transition

The "preCondition" metaattribute  corresponds to a UML Guard whose expression 
body will evaluate true under the same conditions as it would the "preCondition" 
metaattribute.

Relationships 

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

Relationship Role(s)

Target incoming

Source outgoing

Connections connections
3-100 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.4.4 UML Pseudostate 

Inheritance 

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Pseudostate corresponds to the UML model element of the 
same name.

Behavioral_Elements::State_Machines:: Pseudostate

CCA Pseudostate maps to UML Pseudostate except when the CCA-metamodel 
attribute "kind" of the Pseudostate has value "Success" or "Failure", that map to 
stereotypes of UML FinalState. Please see stereotypes «Success» and «Failure», below.

The semantics of the metamodel element Pseudostate are equivalent to the semantics of 
UML Pseudostate with corresponding "kind" values.

Relationships 

Tagged Values

N/A

Constraints expressed generically

N/A

Metamodel kind UML kind : 
Foundation::Data_Types::PseudostateKind

choice pk_choice

fork pk_fork

initial pk_initial

join pk_join

Relationship Role(s)

Nodes nodes 

Target target 

Source source

PortUsages portsUsed
February 2002 UML Profile for EDOC:  UML Profile 3-101



3

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

3.6.4.5 «Success»

Inheritance 

Behavioral_Elements::State_Machines::FinalState
«Success»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

Relationship Role(s)

Nodes nodes 

Target target 

Source source

PortUsages portsUsed
3-102 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.4.6 «Failure»

Inheritance 

Behavioral_Elements::State_Machines::FinalState
«Failure»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

3.6.4.7 «enumeration» Status

Instantiation in a model

Concrete 

Semantics

Corresponds to the enumeration of same name in the metamodel. 

Relationship Role(s)

Nodes nodes 

Target target 

Source source

PortUsages portsUsed
February 2002 UML Profile for EDOC:  UML Profile 3-103



3

Enumeration Literals

Corresponding to the enumeration literals of the enumeration of same name in the 
metamodel, 

Success

BusinessFailure 

TimeoutFailure

TechnicalFailure

AnyFailure

AnyStatus

3.6.5 Stereotypes for Composition 

Figure 3-18  Stereotypes for Composition

Applicable Subset

Collaboration,  ClassifierRole, AssociationRole, Constraint, Binding.

ClassifierRole
(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

<<stereotype>>

PortConnector
<<stereotype>>

<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole
(from Collaborations)

<<metaclass>>

<<stereotype>>

Binding
(from Core)

<<metaclass>>

<<stereotype>>

PropertyValue
<<stereotype>>

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

Collaboration
(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

<<stereotype>>

CommunityProcess
<<stereotype>>

Class
(from Core)

<<metaclass>>

represents [1..1]

<<taggedValue>>

Subsystem
(from Model_Management)

<<stereotype>>
3-104 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.5.1 «Composition»

Inheritance 

Behavioral_Elements::Collaborations::Collaboration
«Composition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Composition» must be a «Composition».

Formal Constraints Expressed in Terms of the UML Metamodel

context Composition

inv:
supertype->isEmpty() or supertype.isStereoKinded("Composition")

Diagram Notation

N/A

Relationship Role(s)

Is_a_Composition is_generalization

Generalization parent child {only with «Composition»}

ComponentIUsages owner

Nodes _nodes

Connections _connections

Bindings owner

PackageElements owner ownerElements

UML Namespace owner of  «PortConnector» ClassifierRoles
February 2002 UML Profile for EDOC:  UML Profile 3-105



3

3.6.5.2 «ComponentUsage»

Inheritance 

Behavioral_Elements::Collaborations::ClassifierRole

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context ComponentUsage

Diagram Notation

N/A

Relationship Role(s)

Nodes nodes

ComponentUsages uses

Fills fills

PortUsages extent

Configuration owner

Metamodel attribute 
name

UML attribute 
name

UML attribute 
owner 

Description

name name ModelElement
3-106 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.5.3 «PortConnector»

Inheritance 

Behavioral_Elements::Collaborations::ClassifierRole
«PortConnector»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Correspondence of metamodel attributes  with UML attributes

Tagged Values

N/A

Constraints expressed generically

If the «Port» used by the «PortConnector» is a «FlowPort», and the «FlowPort» 
specifies a "typeProperty" (a «PropertyDefinition» in the owner «ProcessComponent»), 
then the actual type of the «PortConnector» will be a DataType, Enumeration,  
«CompositeData» or «ExternalDocument», with the name equal to the value of the 
«PropertyValue» of  the «ComponentUsage» corresponding to the 
«PropertyDefinition» in the used «ProcessComponent». 

Formal Constraints Expressed in Terms of the UML Metamodel

context PortConnector

Relationship Role(s)

PortUsages PortsUsed, extent

Represents _represents

Target target

Source source

Nodes nodes

Metamodel 
attribute name

UML 
attribute name

UML 
attribute owner 

Description

name name ModelElement
February 2002 UML Profile for EDOC:  UML Profile 3-107



3

Diagram Notation

N/A

3.6.5.4 «Connection»

Inheritance 

Behavioral_Elements::Collaborations::AssociationRole
«Connection»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of named "Connection" in the metamodel. 

If one of the «Connection»s link participants is a «PortConnector» that "uses" a UML 
Classifier (corresponding to a metamodel Interface),  then the UML Operation that will 
be invoked on the Classifier, is identified by a UML Message of a UML Interaction in 
the «Composition».  The UML Message will have an action attribute initialized with a 
CallAction on the UML Operation.

Relationships 

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context Connection

Diagram Notation

N/A

Relationship Role(s)

Connections connections

Source outgoing

Target incoming
3-108 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.5.5 «PropertyValue»

Inheritance 

Foundation::Core::Constraint

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Tagged Values

N/A

Constraints expressed generically

If the «PropertyValue» configures the value of a «PropertyDefinition» that is the 
"typeProperty" of a «FlowPort», then the value configured by the «PropertyValue» 
must be the name of a DataType, Enumeration, «CompositeData» or 
«ExternalDocument».

A «PropertyValue» is an ownedElement of a «Composition» as Namespace.

Formal Constraints Expressed in Terms of the UML Metamodel

context PropertyValue

inv:
namespace->notEmpty() and 

namespace.isStereoKinded("Composition")

Diagram Notation

N/A

3.6.5.6 «ContextualBinding»

Inheritance 

Foundation::Core::Binding

Relationship Role(s)

Configuration configuration

ValueFor _fills
February 2002 UML Profile for EDOC:  UML Profile 3-109



3

«ContextualBinding»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

A «ContextualBinding» is an ownedElement of a «Composition».

The "client" of a ContextualBinding is  a «ComponentUsage» in the «Composition».

The "supplier" of a ContextualBinding is  a «ProcessComponent».

In the «Composition», the «ProcessComponent» will be used as the "uses" for the 
«ComponenUsage».

Relationships 

N/A

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

context ContextualBinding

Diagram Notation

N/A

3.6.5.7 «CommunityProcess»

Inheritance 

ModelManagement::Subsystem
«CommunityProcess»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.
3-110 UML Profile for Enterprise Distributed Object Computing February 2002



3

Relationships 

N/A

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

context CommunityProcess

Diagram Notation

N/A

3.6.6 DocumentModel «profile» Package

The metamodel elements named Attribute, DataType and Enumeration correspond to 
the UML model elements of the same name and are not stereotyped.

The metaattribute named "initialValue" of the metamodel Attribute, corresponds to the 
attribute of same name of UML Attribute.

The metaattribute named "required" and "many" of the metamodel Attribute, are 
combined as a UML Multiplicity. The  MultiplicityRange, will have the "lower" 
attribute value equal to 0, if the corresponding metamodel Attribute has the "required" 
meta-attribute equal to false, and greater than 0, if "required" is true. The 
MultiplicityRange will have the "upper" attribute value equal to 1, if the corresponding 
metamodel Attribute has the "many" meta-attribute equal to false, and and greater than 
1, if "many" is true.

The metamodel element named Enumeration has a metaattribute named "initial" and 
type EnumerationValue. In the UML Profile, the responsibility of specifying an initial 
value, is delegated to the UML Attribute with type equal to the Enumeration. The 
initialValue attribute, of type Expression,  in UML  Attribute will be used to specify 
the default initial value of Enumeration.

The metamodel element named Enumeration Value corresponds to the UML model 
element named EnumerationLiteral.

The metamodel Attribute and UML Attribute correspond to each other completely, 
with the exception of the meta-attribute named "isByValue".

To represent "isByValue", a TaggedDefinition of same name and type Boolean is 
defined, to be applied on UML Attribute.
February 2002 UML Profile for EDOC:  UML Profile 3-111



3

The TaggedDefinition is defined without creating a Stereotype of Attribute.

Figure 3-19  Stereotypes for DocumentModel 

3.6.6.1 «CompositeData»

Inheritance 

Foundation::Core::Class
«CompositeData»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

The «isByValue» TaggedDefinition can be applied to UML Attribute feature of 
«CompositeData».

Relationships 

Tagged Values

N/A

Relationship Role(s)

Generalization supertype subtypes {only with «CompositeData»}

PropertyType type

AttributeType type

DataAttribute owner

DataConstraint constrainedElement

FlowType type

PackageContent ownedElements

ImportElement importedElement

CompositeData
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>>

DataInvariant
<<stereotype>>

+ isOnCommit : Boolean = false

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

ExternalDocument
<<stereotype>>

<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>
3-112 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints expressed generically

The supertype of an «CompositeData» must be a «CompositeData».

The type of Attributes of «CompositeData» will be a DataType, an Enumeration, or a 
Class stereotyped as «CompositeData»,  or a DataType stereotyped 
«ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel

context CompositeData

inv:
supertype->isEmpty() or 
supertype.isStereoKinded("CompositeData")

inv:
feature->select( aFeature : Feature | aFeature.isOCLTypeOf( 
Attribute))
->collect( aFeature : Feature | aFeature.oclAsType( 
Attribute).type)
->forAll( aClassifier : Classifier |

aClassifier.isOclKindOf( DataType) or 
aClassifier.isOclKindOf( Enumeration) or 
aClassifier.isStereoKinded( "CompositeData") or 
aClassifier.isStereoKinded( "ExternalDocument"))

Diagram Notation

N/A

3.6.6.2 "isByValue" Tagged Definition

The metamodel Attributes and UML Attributes correspond to each other completely, 
with the exception of the meta-attribute named "isByValue".

To represent the metamodel attribute named "isByValue", a Tagged Definition of 
named "isByValue" and type Boolean is defined, to be applied on UML Attribute.

The Tagged Definition is defined without creating a Stereotype of Attribute.

3.6.6.3 «DataInvariant»

Inheritance 

Foundation::Core::Constraint
«DataInvariant»

Tagged Value name Type Multiplicity Description

isByValue Boolean 0..1 default = true
February 2002 UML Profile for EDOC:  UML Profile 3-113



3

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Correspondence of metamodel attributes  with UML attributes

Tagged Values

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context DataInvariant

Diagram Notation

N/A

3.6.6.4 «ExternalDocument»

Inheritance 

Foundation::Core::DataType
«ExternalDocument»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationship Role(s)

DataConstraint constrains

Metamodel attribute 
name

UML attribute 
name

UML attribute 
owner 

Description

expression body Constraint

Tagged Value name Type Multiplicity Description

isOnCommit Boolean 1 default=false
3-114 UML Profile for Enterprise Distributed Object Computing February 2002



3

Relationships 

Tagged Values

Constraints expressed generically

N/AFormal Constraints Expressed in Terms of the UML Metamodel

context ExternalDocument

Diagram Notation

N/A

3.6.7 UML  Model_Management  Package

There is no «profile» Package in the UML Profile for CCA, corresponding to the 
ModelManagement Package of the metamodel.

All the concrete metamodel elements have counterparts in UML, and therefore no 
stereotypes are required.

The metamodel elements named Package and ElementImport correspond to the UML 
model elements of the same name.

3.6.8 Relationships 

This section specifies the correspondence between associations defined in the CCA 
Meta-model and associations defined in the UML Meta-model. The relationship name 
is the same as that found in the CCA Model diagrams (detail level).  This 
correspondence is shown in the tables below, with a header for each relationship in the 

Relationship Role(s)

Generalization supertype subtypes {only with «ExternalDocument»}

PropertyType type

AttributeType type

DataAttribute owner

DataConstraint constrainedElement

FlowType type

PackageContent ownedElements

ImportElement importedElement

Tagged Value name Type Multiplicity Description

mimeType String 0..1

specURL String 0..1

externalName String 0..1
February 2002 UML Profile for EDOC:  UML Profile 3-115



3

metamodel.  This section provides detailed information for those implementing 
transformations between UML and MOF CCA tools, it is not required to use or 
understand CCA.

How to use this section.

Each relationship between two concepts in the metamodel, or their specializations, is 
represented with a UML relationship(s), and in some cases  as a taggedValue, or by 
relating through UML Association. 

The tables show the Left Hand and Right Hand sides of relationships, with the role 
names, the actual model elements at the ends of the relationship, and the 
specializations or stereotypes of interest, related through the relationship - directly or 
by inheritance. Multiple related metamodel elements or stereotypes may appear, at any 
side of relationships used by multiple elements.

The semantics of each row and column in the table are 

• For each relationship in the metamodel, there is one or more tables, each table 
showing a particular mapping for that relationship.  Each table has two lines – one 
for the CCA model (MOF) and one for the UML model (UML) 

• For each relationship mapping in the metamodel :

• there is one row, labeled MOF, that describes the relationship in the metamodel. Its 
columns mean :

• "LeftHandSide"  in MOF rows, it names the MOF metamodel element that 
participates or inherits the relationship whose UML mapping we want to express. 
It may be the same as "LeftHandSide related", or a subtype of it. There may be 
multiple names, for various subtypes of polymorphically related metamodel 
elements.

• "LeftHandSide related": in MOF rows, it names the actual metamodel element 
referenced by the relationship. May be the same as "LeftHandSide", or a 
supertype of it. 

• "LeftHandSide role name":  in MOF rows, it names the relationship role on the 
LeftHandSide.

• "RightHandSide role name":  in MOF rows, it names the relationship role on the 
RightHandSide.

• "RightHandSide related": in MOF rows it names the other actual MOF metamodel 
element referenced by the relationship. May be the same as 'RightHandSide", or a 
supertype of it. 

• "RightHandSide": in MOF rows, it names the other metamodel element that 
participates or inherits the relationship whose UML mapping we want to express. 
It may be the same as in "RightHandSide related", or a subtype of it. There may 
be multiple names, for various subtypes of polymorphically related metamodel 
elements.

• row labeled 'UML' defining the corresponding UML Meta-model relationship. 
There may be additional tables for various UML mappings, describing alternative 
representations of the metamodel relationship in UML. The UML columns mean:
3-116 UML Profile for Enterprise Distributed Object Computing February 2002



3

• "LeftHandSide": In UML rows, it names the UML stereotype corresponding to 
the LHS MOF metamodel element. There may be multiple names, for various 
stereotypes and specializations.

• "LeftHandSide related": In UML rows, it names the baseClass of the LHS UML 
stereotype, or the supertype of the baseClass, that is the actual UML model 
element referenced by the relationship.

• "LeftHandSide role name":  in UML  rows, it names the relationship role on the 
LeftHandSide

• "RightHandSide role name": in UML  rows, it names the relationship role on the 
RightHandSide '.

• "RightHandSide related": In UML rows, it names the baseClass of the RHS UML 
stereotype, or the supertype of the baseClass, that is the actual UML model 
element referenced by the relationship. 

• "RightHandSide": In UML rows, it names the UML  stereotype corresponding to 
the RHS MOF metamodel element. There may be multiple names, for various 
stereotypes and specializations.
February 2002 UML Profile for EDOC:  UML Profile 3-117



3

3.6.8.1 AttributeType

3.6.8.2 Bindings

3.6.8.3 BindsTo

3.6.8.4 Configuration

3.6.8.5 Connections in Choreography

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Attribute Attribute _type type DataElement DataType or 
Enumeration or 
CompositeData 
ExternalDocument

UML «Property
Definition»

Attribute typedFeature type Classifier DataType or 
Enumeration or 
«CompositeData»   
«ExternalDocument»             

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF Composition Composition owner bindings ContextualBinding ContextualBinding

UML «Composition » Namespace namespace ownedElement ModelElement «ContextualBinding»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ContextualBinding ProcessComponent _bindsTo bindsTo ProcessComponent ProcessComponent 

UML «ContextualBinding» ModelElement supplier
Dependency

supplier ModelElement «ProcessComponent»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ComponentUsage ComponentUsage owner configuration PropertyValue PropertyValue

UML «ComponentUsage» ModelElement constrained
Element

constraint Constraint «PropertyValue»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Choreography Choreography _choreography connections AbstractTransition Transition             

UML «Choreography» StateMachine stateMachine transitions Transition Transition 
3-118 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.8.6 Connections in Composition

3.6.8.7 DataAttribute

3.6.8.8 DataConstraint

3.6.8.9 DataGeneralization 

3.6.8.10 Fills

MOF or  
UML

LeftHandSide   LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Composition Choreography _choreography _connections AbstractTransition Transition             

UML «Composition» Collaboration namespace ownedElement AssociationRole «Connection»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF CompositeData CompositeData owner feature DataElement Attribute

UML «CompositeData» Classifier owner feature Feature Attribute

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF DataInvariant DataInvariant constraints constrained-
Element

DataElement DataElement subtypes: 
DataType  or  
Enumeration or 
CompositeData or 
ExternalDocument

UML «DataInvariant» Constraint constraint constrained-
Element

ModelElement DataType  or  
Enumeration or 
«CompositeData» or 
«ExternalDocument»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF CompositeData CompositeData supertype subtypes CompositeData CompositeData

UML «CompositeData» Generalizable
Element

generalization.
parent

specialization. 
child

Generalizable-
Element

«CompositeData»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ContextualBinding ProcessComponent _fills fills Process
Component

ProcessComponent 

UML «ContextualBinding» ModelElement client
Dependency

fills ModelElement «Process
Component»
February 2002 UML Profile for EDOC:  UML Profile 3-119



3

3.6.8.11 FlowType

3.6.8.12 Generalization 

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF FlowPort FlowPort   _ type type DataElement DataType or Enumeration 
or CompositeData or 
ExternalDocument

UML «FlowPort» ClassifierRole     
(indirectly thru 
AssociationEnd and 
Association indirectly 
thru 
AssociationEndRole 
and AssociationRole)

association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

ClassifierRole      
(indirectly thru 
AssociationEnd and 
Associationindirectly 
thru 
AssociationEndRole and 
AssociationRole)

DataType or Enumeration 
or «CompositeData» or   
«ExternalDocument»   

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ProcessComponent             Choreography supertype subtypes Choreography ProcessComponent

UML «ProcessComponent»     Generalizable
Element

generalization. 
parent

specialization.
child

Generalizable 
Element

«ProcessComponent»     

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Protocol              Choreography supertype subtypes Choreography Protocol              

UML «Protocol» Generalizable
Element

generalization. parent specialization.
child

Generalizable 
Element

«Protocol»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Community
Process

Choreography supertype subtypes Choreography CommunityProcess

UML «Community
Process»

Generalizable
Element

generalization. 
parent

specialization. 
child

Generalizable 
Element

«CommunityProcess»

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Interface              Choreography supertype subtypes Choreography Interface      

UML Classifier Generalizable-
Element

generalization. 
parent

specialization. 
child

Generalizable 
Element

Classifier
3-120 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.8.13 ImportElement

3.6.8.14 Initiator

3.6.8.15 Is_a_Choreography

3.6.8.16 Is_a_Composition

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ElementImport Element Import elementImport modelElement PackageContent Package or DataType   
or Enumeration or 
CompositeData or 
ExternalDocument or  
Protocol or Interface or 
Process Component or 
CommunityProcess

UML ElementImport ElementImport elementImport importedElement ModelElement Package or DataType   
or Enumeration or   
«CompositeData» or 
«Protocol» or  Classifier 
or «ProcessComponent»  
or «CommunityProcess»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Protocol or     
Interface

Protocol _initiator initiator InitiatingRole InitiatingRole

UML «Protocol» or 
Classifier

Classifier association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

Classifier «InitiatingRole»

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide

MOF ProcessComponent
or Protocol or           
Interface

Process
Component

is specialization is generalization Choreography Choreography

UML «ProcessComponent» 
or «Protocol» or    
Classifier

ModelElement context behavior StateMachine «Choreography»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide

MOF ProcessComponent   
CommunityProcess

Process
Component

is specialization is generalization Composition Composition

UML «ProcessComponent»
«ComunityProcess»

Classifier represented 
Classifier

collaboration Collaboration «Composition» 
February 2002 UML Profile for EDOC:  UML Profile 3-121



3

3.6.8.17 Nodes in Choreography

3.6.8.18 Nodes in Composition

 

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Choreography Choreography _choreography _nodes Node PortActivity   or  
Pseudostate 

UML «Choreography» StateMachine container. 
stateMachine 
container. 
container. ... 
stateMachine

top.subvertex 
top.subvertex. 
subvertex…

StateVertex «PortActivity»  or                                    
«Success» or     
«Failure» or   
Pseudostate 

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Choreography Choreography _choreography _nodes Node PortActivity   or       
Pseudostate 

UML «Choreography» Composition namespace ownedElement ClassifierRole «PortActivity»  or                                    
«Success» or     
«Failure» or   
Pseudostate 
3-122 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.8.19 PackageElements

3.6.8.20 Ports

(*) Constrained to «FlowPort». See Stereotype definitions, in sections above.

Additional Notes:

The MOF row is the description of the relationship in the metamodel:

The ProcessComponent, Protocol and MultiPort inherits from PortOwner, and 
therefore has a role 'owner' in a relationship with Port, which participates in the 
relationship with the role name 'ports'. Specific subtypes of Port are FlowPort, 
ProtocolPort, OperationPort and MultiPort, that are related with ProcessComponent 
through the relationship inherited from Port.

The UML row identifies the UML relationships to represent the relationship in the 
metamodel, above.

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Package 
ProcessComponent 
Protocol 
Interface 
CommunityProcess

Package owner ownedElements PackageContent Package or        
DataType or 
Enumeration or 
CompositeData or 
ExternalDocument or     
Protocol or Interface or 
ProcessComponent or  
CommunityProcess

UML Package 
«ProcessComponent» 
«Protocol»       
Classifier 
«CommunityProcess»

Namespace owner ownedElement ModelElement Package or DataType or 
Enumeration or  
«CompositeData» or 
«Protocol» or Classifier  
or «ProcessComponent»  
or «CommunityProcess» 
indirectly through  
behavior.top.subvertex

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ProcessComponent  
or Protocol  or  
MultiPort * 

PortOwner owner ports Port FlowPort  or 
ProtocolPort or  
MultiPort 

UML «ProcessComponent
» or «Protocol» or 
«MultiPort»*

Classifier 
(indirectly thru 
AssociationEnd 
and Association)

association. 
association. 
connection. 
participant  
the Association 
may be 
stereotyped as 
«initiates» or 
«responds»

association. 
association. 
connection. 
participant

Classifier 
(indirectly thru 
AssociationEnd 
and Association)

«FlowPort» or 
«ProtocolPort» or  
«MultiPort»
February 2002 UML Profile for EDOC:  UML Profile 3-123



3

The stereotypes «ProcessComponent», «Protocol» and «MultiPort», corresponding 
to the metamodel elements of the same name, has a baseClass inheriting from 
Classifier, and therefore may be the participant in an AssociationEnd of a UML 
Association, with Classifier as the participant of the other AssociationEnd. The 
stereotypes with baseClass subtype of Classifier, «Port», «FlowPort», 
«ProtocolPort», and «MultiPort», corresponding to the metamodel elements of same 
name, are related with «ProcessComponent» through the said relationships with 
UML AssociationEnd and UML Association. MultiPort may only aggregate 
FlowPort.

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF ProcessComponent  
or Protocol  or 
Interface 

PortOwner owner ports Port OperationPort

UML «ProcessComponent
» or «Protocol» or 
Classifier

Classifier  owner feature Feature Operation

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF OperationPort PortOwner owner ports Port Exactly  one 
FlowPort with 
direction 
="InitiatesResponds"

UML Operation BehavioralFeature behavioralFeature parameter Parameter For each attribute of 
the «FlowPort».type 
a Parameter  with 
kind=pdk_in   and 
Parameter.type =           
the type of the 
Attribute                  

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF OperationPort PortOwner owner ports Port At most one FlowPort 
with 
direction="Responds" and 
postCondition="Success" 

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter  with 
Parameter.type= 
FlowPort.type and  
kind=pdk_return
3-124 UML Profile for Enterprise Distributed Object Computing February 2002



3

A metamodel Interface, owner of OperationPort, owner of FlowPort, map in the UML 
Profile, to a UML Classifier, owner of UML Operation, with UML Parameter with the 
type corresponding to the type of the metamodel FlowPort.

3.6.8.21 PortUsages in Choreography

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF OperationPort PortOwner owner ports Port with 
direction="Responds" 
and postCondition<>
"Success"

FlowPort

UML Operation BehavioralFeature context raisedSignal Signal Signal with feature = 
«FlowPort».type. 
feature

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF Interface PortOwner owner ports Port OperationPort

UML Classifier Classifier owner feature Feature Operation

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF OperationPort PortOwner owner ports Port FlowPort 

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF ProcessComponent  
or Protocol

UsageContext extent portsUsed PortUsage PortActivity    or 
Pseudostate

UML «ProcessComponent»  
or  «Protocol» 
indirectly through 
«Choreography»

ModelElement 
indirectly 
through 
StateMachine

indirectly 
through 
container. 
stateMachine. 
context

indirectly through  
behavior. 
top.subvertex

StateVertex 
indirectly through 
StateMachine

«PortActivity» or 
Pseudostate or 
«Success» or 
«Failure» 
indirectly through 
«Choreography»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF PortActivity UsageContext extent portsUsed PortUsage PortActivity    or 
Pseudostate

UML «PortActivity»  CompositeState container subvertex StateVertex «PortActivity»   or 
Pseudostate or 
«Success» or 
«Failure»
February 2002 UML Profile for EDOC:  UML Profile 3-125



3

3.6.8.22 PortUsages in Composition

 MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide role 
name

RightHandSide role 
name

RightHandSide    
related

RightHandSide 

MOF ProcessComponent UsageContext extent portsUsed PortUsage PortConnector

UML «ProcessComponent» 
indirectly through 
«Composition»

Classifier              
indirectly through 
Collaboration

indirectly through 
_representedClassifier
. ownedElements

indirectly through 
owner. 
representedClassifier   
or owner.owner

ClassifierRole  
indirectly through 
Collaboration

«PortConnector» 
indirectly through 
«Composition»

MOF or  
UML

LeftHandSide   LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Component Usage UsageContext extent portsUsed PortUsage PortConnector

UML «Component 
Usage»

ClassifierRole     
(indirectly thru 
AssociationEndRole 
and AssociationRole)

association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

ClassifierRole 
(indirectly thru 
AssociationEndRole 
and AssociationRole)

«PortConnector»

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF PortConnector UsageContext extent portsUsed PortUsage PortConnector

UML «PortConnector» ClassifierRole 
(indirectly thru 
AssociationEndRole 
and AssociationRole)

association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

ClassifierRole 
(indirectly thru 
AssociationEndRole 
and 
AssociationRole)

«PortConnector»
3-126 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.8.23 Properties 

3.6.8.24 PropertyType

3.6.8.25 ProtocolType

3.6.8.26 Represents in Choreography

The metamodel element Choreography is represented by a UML StateMachine, where 
a PortActivity in the metamodel is mapped to a stereotype of CompositeState.

MOF or  
UML

LeftHandSide   LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Process
Component

Process
Component

component properties PropertyDefinition PropertyDefinition

UML «Process
Component»

Classifier owner feature StructuralFeature 
Attribute

«Property 
Definition»

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF PropertyDefinition PropertyDefinition _type type DataElement DataType or 
Enumeration or 
CompositeData 
ExternalDocument

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or 
Enumeration or 
«CompositeData»  
«ExternalDocument»             

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF ProtocolPort ProtocolPort _uses uses Protocol Protocol

UML «ProtocolPort» Generalizable 
Element

specialization. 
child 

generalization. 
parent

Generalizable 
Element

«Protocol»
February 2002 UML Profile for EDOC:  UML Profile 3-127



3

The Represents relationship in the metamodel, that links a PortActivity with a Port, 
corresponds in UML to a TaggedValue of the Stereotype «PortActivity».

3.6.8.27 Represents in Composition

The metamodel element Composition is represented by a UML Collaboration. 

A PortConnector is mapped to a ClassifierRole. 

The "Represents" relationship linking a PortActivity with a Port, is represented in 
UML  as a the UML relationship between a ClassifierRole and its base Classifier.

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF FlowPort or  
ProtocolPort or 
OperationPort or 
MultiPort

Port   represents _represents PortUsage PortActivity 

UML «FlowPort» or 
«ProtocolPort» or 
«OperationPort » 
or «MultiPort»

Class                 taggedValue 
"uses"

N/A : tagged values 
not bidirectional

SimpleState or 
Composite State or 
SubmachineState 
or StubState or 
ActionState or 
Subactivity State

«PortActivity»        

MOF or  
UML

LeftHandSide     LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF FlowPort or  
ProtocolPort or 
OperationPort or 
MultiPort

Port   represents _represents PortUsage PortConnector

UML «FlowPort» or 
«ProtocolPort» or 
«OperationPort » or 
«MultiPort»

Classifier base _base ClassifierRole «PortConnector»       
3-128 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.6.8.28 Responder

3.6.8.29 Source

3.6.8.30 Target

3.6.8.31 TypeProperty

MOF or  
UML

LeftHandSide LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Protocol or 
Interface

Protocol _initiator initiator RespondingRole RespondingRole

UML «Protocol» or 
Classifier

Classifier association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

Classifier «RespondingRole»

MOF or  
UML

LeftHandSide   LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF PortActivity   or 
Pseudostate 

Node target   incoming AbstractTransition Transition                      

UML «PortActivity»  or                                    
«Success» or     
«Failure» or   
Pseudostate 

StateVertex target    incoming Transition Transition   

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF PortActivity   or       
Pseudostate 

Node source outgoing AbstractTransition Transition                      

UML «PortActivity»  or                                    
«Success» or     
«Failure» or   
Pseudostate 

StateVertex source outgoing Transition Transition   

MOF or  
UML

LeftHandSide  LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF FlowPort FlowPort  _ typeProperty typeProperty Property 
Definition

Property Definition

UML «FlowPort» Class N/A : tagged 
values not 
bidirectional 

taggedValue named 
"typeExp"

Attribute «Property Definition»
February 2002 UML Profile for EDOC:  UML Profile 3-129



3

3.6.8.32 Uses

3.6.8.33 ValueFor

3.6.9 General OCL  Definition Constraints

These definition constrains have been incorporated from the OMG Document ad/2000-
02-02, UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data 
Access Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS 
AG, Lucent Technologies, Inc. and Persistence Software.

context ModelElement 

def:
let allStereotypes : Set( Stereotype) =

-- set with the Stereotype applied to the 
-- ModelElement and all the stereotypes 
-- inherited by that Stereotype

self.stereotype->union( 

self.stereotype.generalization.parent.allStereotypes)

let isStereoTyped( theStereotypeName : String ) : Boolean =
-- returns true if an Stereotype 
-- with name equalto the argument as been 
-- applied to the ModelElement

self.stereotype.name = theStereotypeName

let isStereoKinded( theStereotypeName : String ) : Boolean =
-- returns true if an Stereotype with its 
-- name equal to the argument, or equal to
-- any of its inherited Stereotypes, 
-- has been applied to the ModelElement,

self.allStereotypes->exists( aStereotype : Stereotype | 
aStereotype.name = theStereotypeName)

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Composition Composition owner uses ComponentUsage ComponentUsage

UML «Composition» Namespace owner ownedElement ModelElement  «Component
  Usage»

MOF or  
UML

LeftHandSide    LeftHandSide 
related 

LeftHandSide 
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF PropertyValue PropertyValue elementImport fills Property- 
Definition

Property- Definition

UML «PropertyValue» Constraint elementImport constrained 
Element

Model
Element

Property 
Definition
3-130 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.7 Diagramming CCA 

CCA models may be diagramed using generic as well as CCA specific notations.   The 
generic notations (as found in UML 1.4) are supported by a wide variety of tools which 
allow CCA concepts to be made part of the larger enterprise picture without specific 
tool support.  When using generic notations the CCA profile stereotypes should be 
used.  CCA aware design & implementation tools may provide the CCA specific 
notation in addition to or instead of the other forms of notation.

This section suggests a non-normative way to utilize generic UML diagrams and CCA 
notation to express CCA concepts.  For the generic diagrams it does so using an “out 
of the box” UML tool – Rational Rose 2000e ®.

3.7.1 Types of Diagram

The diagrams used to express CCA concepts are as follows:

3.7.1.1 Class Diagrams for the Document Model

These are used to express the document model.

3.7.1.2 Class Diagrams for the Component Structure

These are used to define components & protocols, their ports and properties.

3.7.1.3 Collaboration Diagrams for Composition

These are used to express the composition of components within another component or 
community processes.

3.7.1.4 State or Activity Diagrams for Protocols & Process Components

These express the ordering constraints on ports within or between components.

3.7.1.5 CCA Notation for Process Component Structure & Composition

This expresses the component structure and composition in a more compact and 
intuitive form, thus replacing the class and collaboration diagrams.  We will show how 
the CCA notation expresses the same concepts found in the generic diagrams.

3.7.2 The Buy/Sell Example

The techniques for diagramming CCA will be presented by example.  We will utilize a 
simple buy/sell business process to illustrate the concepts.  We will summarize the 
points in the specification from the perspective of using a diagramming tool.
February 2002 UML Profile for EDOC:  Diagramming CCA 3-131



3

The basic business problem of buy/sell is to define a “community process”  with two 
actors – a buyer and seller.  These two actors “collaborate” within this process to effect 
an order.

3.7.3 Collaboration diagram shows community process

At the highest level we show a collaboration diagram of the Buy/Sell community 
process.  In the design tool we also created a package for this process to hold the 
relevant model elements.  See Figure 3-20.

Figure 3-20  Top Level Collaboration Diagram

This collaboration shows both business roles: “Buyer” and “Seller.” These are each a 
“ComponentUsage” in the CCA Meta-model.  It also shown that the buyer has a 
“buys” port and the seller has a “sells” port that are connected by a Connection in this 
collaboration.  The “buys” and “sells” ports are “PortConnectors” in the CCA Meta-
model.  The line between “Buys” and “sells” indicates that the buyer and seller 
collaborate on these ports using a “Connection.”

There is no way to show which port is the initiator and which is the responder in a 
collaboration diagram, so we have noted the “buys” in blue and “sells” in green, for 
those of you who have color (for others you may be able to tell from the shade).

Note that “buys” and “sells” are shown inside of “buyer” and “seller”, respectively.  
The use of this nested classifier notation shown that the ports are owned by the 
component.  We could have also shown the ports separately with a connected line, but 
nesting them seems to better reflect the underlying semantics.

The design tool we are using does not show stereotypes in a collaboration diagram, if 
they did show you would see that buyer and seller have the <<ComponentUsage>> 
stereotype and “Buys” and “Sells” have the <<PortConnector>> stereotype. You would 
also see that the entire package has the stereotype <<CommunityProcess>>.  

The following is a summary of the elements, stereotypes and base elements you would 
use in a collaboration diagram for a community process:

 : Buyer  : Seller

 : Buys  : Sells

Buy/Sell Comminity 
Process
3-132 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.7.3.1 Summary of stereotypes for a Community Process

* Denotes the name used in the design tool

3.7.4 Class diagram for protocol structure

The buys and sells ports seen in the community process must have a prescribed 
protocol, a description of what information flows between them.  This is shown in a 
class diagram ().  Additional information as to when information flows between them 
is shown on an associated state or activity diagram.  The class diagram can include the 
definition of the data that flows between them (the document model), or this 
information can be shown on a separate class diagram

Figure 3-21 Class diagram for protocol structure 

This diagram shows the protocol as well as the data used in the protocol (detail 
suppressed for this view).  The protocol is a class stereotyped as <<Protocol>>.  It has 
a set of flow ports: SendOrder, GetConfirmation, GetDenied.  Each of these flow ports 
has an association to the data that flows over it; Order, OrderConfirmation and 
OrderDenied – respectively.

Table 3-9 Summary of stereotypes for a Community Process

CCA element Stereotype Base UML Element Example Elements

CommunityProcess <<CommunityProcess>> Package or Subsystem BuySell

ComponentUsage <<ComponentUsage>> Classifier Role (Object*) Buyer, Seller

PortConnector <<PortConnector>> Classifier Role (Object*) Buys, Sells

Connection None Association Role (Object 
Link*)

Link from buys to sells

ContextualBinding <<ContextualBinding>> Binding  (Note*) None – used to refine which 
component type to use

PropertyValue <<PropertyValue>> Constraint  (Note*) None – use to set a 
configuration property of a 
component

rder
<<CompositeData>>

OrderConfirmation
<<Compos iteData>>

endOrder
(from BuySellProtocol)

<<FlowPort>>
etConfirmat ion

(from BuySellProtocol)

<<FlowPort>>

BuySellProtocol
<<Protocol>><<responds>>

<<initiat es>>

OrderDenied
<<Compos iteData>>etDenied

(from BuySellProtocol)

<<FlowPort>>

<<initiates>>

Class diagram for buy/sell protocol
February 2002 UML Profile for EDOC:  Diagramming CCA 3-133



3

A very important aspect of a port is its direction (initiates or responds), which is a 
tagged value.  Since these tagged values don’t sow on the diagram we have also 
stereotyped the relation to the ports as either <<initiates>> or <<responds>> and have 
changed their color as was done in the collaboration diagram.  

What this diagram shows is that implementers of the protocol “BuySellProtocol” will 
receive a “SendOrder” containing an “Order” and will send out a “GetConfirmation” 
(with data “OrderConfirmation”) and/or a “GetDenied” (with data “OrderDenied”).

The following is a summary of the elements, stereotypes and base elements you would 
use in a collaboration diagram for a protocol:

3.7.4.1 Summary of stereotypes for a Protocol

3.7.4.2 Summary of tagged values for a Protocol

While tagged values can’t be seen in the diagram, these elements will have tagged 
values.  The tagged values used to define a protocol are listed in Table 3-11.

Table 3-10 Summary of stereotypes for a Protocol

CCA element Stereotype Base UML Element Example Elements

Protocol <<Protocol>> Class or Subsystem BuySellProtocol

FlowPort <<FlowPort>> Class SendOrder, GetConfirmation, GetDenied

“Ports” relation Optional: <<initiates>> or 
<<responds>>

Association Lines between FlowPorts and BuySellProtocol

ProtocolPort <<ProtocolPort>> Class None – used to nest one protocol in another

OperationPort <<OperationPort>> Class None – used to define a two-way message (could 
have been used for BuySell)

InitiatingRole <<InitiatingRole>> with 
relation to protocol

Class None – Used to name the initiating “side” of the 
protocol (the client)

RespondingRole <<RespondingRole>> with 
relation to protocol

Class None – Used to name the responding “side” of the 
protocol (the service)

Interface Optional: <<Interface>> Classifier None – defines an object service

Direction (value) <<initiates>> Association SendOrder

Direction (value) <<responds>> Association OrderConfirmation, OrderDenied

Table 3-11 Summary of tagged values for a Protocol

CCA attribute Tagged Vale Applies to Example Values

synchronous synchronous FlowPort, ProtocolPort, 
OperationPort, MultiPort

All ports 
Synchronous=false (The response may come back 
at a later time)

transactional transactional FlowPort, ProtocolPort, 
OperationPort, MultiPort

True for all ports – each interaction is atomic.

direction direction FlowPort, ProtocolPort, 
OperationPort, MultiPort

Initiates for SendOrder.
responds for GetConfirmation & GetDenied

postCondition postcondition FlowPort, ProtocolPort, 
OperationPort, MultiPort

GetConfirmation=Success
GetDenied=BusinessFailure
3-134 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.7.5 Activity Diagram (Choreography) for a Protocol

The class diagram for a protocol () shows what the protocol will send and receive but 
not when.  The activity diagram of the protocol adds this information by specifying 
when each port will perform its activity (sending and receiving information).

Figure 3-22  

3.7.5.1 Choreography of a Protocol

As you can see, the activity diagram for the protocol is quite simple, it shows the start 
state, one activation of each port and the transitions between them.  It also shows that 
after the “SendOrder” a choice is made and either “GetConfirmation” or “GetDenied” 
is activated, but not both.

The start state (Black circle) shown where the protocol will start.  It then goes to a 
“PortActivity” for the SendOrder port (the port and the activity have the same name in 
this case).  It then shows a choice (the diamond) and PortActivities for 
GetConfirmation and GetDenied ports.  It then shows that either of these ends the 
protocol, but that GetConfirmation ends it with the status of Business Success while 
GetDenied ends it with BusinessFailure. (Success and failure can be tested in later 
transitions, using a guard on the transition).  The transitions (each of the arrows) 
clearly shows the flow of control in the protocol.

Note that if there are multiple activities for one port it may be convenient to use swim 
lanes, one for each port.  But swim lanes are not required.

What can not be seen is that each PortActivity has a tagged value: “represents” to 
connect it to the port it is an activity of.  In the example “represents” will be the same 
as the activity name.

SendOrder

GetConfirmation GetDenied

<<Success>> <<BusinessFailure>>
February 2002 UML Profile for EDOC:  Diagramming CCA 3-135



3

3.7.5.2 Summary of stereotypes for an Activity Diagram or Choreography

3.7.5.3 Summary of tagged values for a Choreography

While tagged values can’t be seen in the diagram, these elements will have tagged 
values.  The tagged values used to define a Choreography are:

3.7.6 Class Diagram for Component Structure

The external “contract” of a component is shown on two diagrams – the class diagram 
for structure and the activity diagram for Choreography (much like the protocol).  The 
structure shows the process component(s), their ports and properties.

Figure 3-23 Class Diagram for Component Structure 

Table 3-12 Stereotypes for an Activity Diagram or Choreography

CCA element Stereotype Base UML Element Example Elements

Choreography <<Choreography>> StateMachine BuySellProtocol (not visible)

PortActivity <<PortActivity>> State SendOrder, GetConfirmation, GetDenied

Pseudostate (initial) None (Black circle) Pseudostate (initial) Start state

Pseudostate (fork) None (bar) Pseudostate (fork) None – shows concurrency in process

Pseudostate (join) None (bar) Pseudostate (join) None – shows concurrency coming together.

Pseudostate (choice) None (diamond) Pseudostate (choice) Choice of confirm or denied.

Transition <<Choreography-Transition>> Transition All arrows

Table 3-13 Tagged Values for a Choreography

CCA attribute Tagged Vale Applies to Example Values

represents <<represents>> PortActivity All Activities
Represents has the same value as 
element name.

Buys
(from Buyer)

<<ProtocolPort>>

Buyer
<<ProcessComponent>> << in itiat es>> Sells

(from Seller)

<<ProtocolPort>>

Se ll er
<<ProcessComponent>><<responds>>

BuySellProtocol
<<Protocol>>
3-136 UML Profile for Enterprise Distributed Object Computing February 2002



3

This class diagram shows two process components being defined: “Buyer” and 
“Seller.” Each process component uses the “ProcessComponent” stereotype. It also 
shows that each of these components has one protocol port each: “Buys” and “Sells,” 
respectively and that both of these ProtocolPorts implement the BuySellProtocol we 
saw earlier.

We can also see that the buyer “initiates” the protocol via the “Buys” port and that the 
seller “responds” to (or implements) that interface via the “Sells” port. As before, both 
ports will have their direction set in a tagged value – the color and stereotypes on 
relations is just informational.

You may also note that we choose to define the ports as nested classes of their process 
components, as can be seen from the phrases (from Buyer) and (from Seller).  This 
helps organize the classes but is purely optional.

These components are the ones we saw being used inside of the community process.

3.7.6.1 Summary of stereotypes for a Process Component Class Diagram

3.7.6.2 Summary of tagged values for a Process Component Class Diagram

While tagged values can’t be seen in the diagram, these elements will have tagged 
values.  The tagged values used to define a process component are:

Table 3-14 Stereotypes for a Process Component Class Diagram

CCA element Stereotype Base UML Element Example Elements

ProcessComponent <<ProcessComponent>> StateMachine Buyer, Seller

FlowPort <<FlowPort>> Class None – for primitive flows

“Ports” relation Optional: <<initiates>> or 
<<responds>>

Association Associations between ProtocolPorts and 
ProcessComponents

ProtocolPort <<ProtocolPort>> Class Buys, Sells

OperationPort <<OperationPort>> Class None – used to define a two-way message 

MultiPort <<MultiPort>> Class None – Shows a set of ports with a behavioral 
constraint

PropertyDefinition <<PropertyDefinition>> Attribute None – shows a configuration value

Direction (value) <<initiates>> Association Buyer

Direction (value) <<responds>> Association Seller

Table 3-15 tagged values for a Process Component Class Diagram

CCA attribute Tagged Vale Applies to Example Values

granularity granularity ProcessComponent Buyer & Seller are “shared”

isPersistent isPersistent ProcessComponent Buyer & Seller are persistent

primitiveKind PrimitiveKind ProcessComponent Buyer & Seller are not primitive so have no 
primitiveKind.

primitiveSpec PrimitiveSpec ProcessComponent Buyer & Seller are not primitive so have no 
primitiveSpec
February 2002 UML Profile for EDOC:  Diagramming CCA 3-137



3

3.7.7 Class Diagram for Interface

Classical “services” are provided for with the CCA “Interface”, such a service interface 
corresponds to the normal concept of an object.  An interface is a one-way version of 
a protocol and may not have sub-protocols.  Once such service is defined for our 
example.

Figure 3-24  Class Diagram for Interface 

Since the semantics of such an interface are will understood, let’s just relate to the 
CCA elements:

Note that the use of a stereotype for an interface is optional., allowing the use of other 
forms of UML classifiers.

Interfaces may have the same tagged values as protocol, but interfaces don’t need 
“direction,” the direction is always “responds.”

synchronous synchronous FlowPort, ProtocolPort, 
OperationPort, MultiPort

All ports 
Synchronous=false (The response may come back 
at a later time)

transactional transactional FlowPort, ProtocolPort, 
OperationPort, MultiPort

True for all ports – each interaction is atomic.

direction direction FlowPort, ProtocolPort, 
OperationPort, MultiPort

Initiates for Buys
responds for Sells

postCondition postcondition FlowPort, ProtocolPort, 
OperationPort, MultiPort

N/A

initial None: UML “Initial 
Value”

PropertyDefinition None

isLocked None: UML 
changeability

PropertyDefinition None

Table 3-16 Elements of an Interface

Example Element CCA Element UML Element

CustService Interface Interface

CheckCustomer FlowPort Operation

CheckCustomer. order DataElement Parameter

checkCredit OperationPort Operation

CheckCredit. amount FlowPort Parameter

Table 3-15 tagged values for a Process Component Class Diagram

ustService

checkCustomer(order : Order)
checkCredit(amount : Float) : Boolean

<<Interface>>
3-138 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.7.7.1 Using Interfaces

While we are on the subject, let’s also look at the class diagram for a process 
component with a port that implements this interface.

Figure 3-25  Using Interfaces

This diagram shown an “Entity” ProcessComponent (see entity profile) called 
“CustomerComponent” which  exposes a ProtocolPort (EnqStatus) which implements 
this interface.

CustS ervice

checkCustomer()
checkCredit()

<Interface>>

EnqStatus
(from CustomerComponent)

<<ProtocolPort>>

CustomerComponent
<<Entity>><<responds>>
February 2002 UML Profile for EDOC:  Diagramming CCA 3-139



3

3.7.8 Class Diagram for Process Components with multiple ports

Up to this point we have seen process components with only one port, while most 
process components interact with multiple other components. We are going to define 
such a component that will be used inside other components later.

Figure 3-26  Process Components with multiple ports

This diagram defines the OrderValidation ProcessComponent. Note that it has the 
following ports:

• checkOrder – responding flow port (the order)

• CheckCustomer – initiating protocol port to a service

• AcceptOrder – initiating flow port (the order)

• Reject – initiating flow port (OrderDenied)

C us tS e rvic e

c he c k C us tom e r()
c he c k C red it()

< < In te rfac e > >

C hec k C us tom er
(from  O rd erV a lida t ion )

< < P ro toc o lP ort> >

c he c k O rde r
( from  O rd erV a lida t ion )

< < F low P ort> >

ac c ep tO rder
(from  C hec k C us tom e r)

< < F low P ort> >

O rd er
(from  B uy S e ll)

< < C o m pos i teD at a> >

O rd erV a lida t ion
< < P roc es s C om p onent> >

O rd erD en ie d
< < C o m pos i teD at a> >

re je c t
(from  O rd erV a lida t ion )

< < F low P ort> >

< < in i ti ate s > >

< <r es pon d s > >

< < in it ia te s > >

< < in it ia te s > >

O rd er V a lid a t ion  
C om po nent
3-140 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.7.9 Activity Diagram showing the Choreography of a Process Component

Since our Order Validation process component has multiple ports, we may also want to 
specify the choreography of those ports, when each will activate.  This is done using an 
activity diagram much like the protocol.

Figure 3-27  Choreography of a Process Component

Since the model elements used here are the same as those for the protocol, we will not 
repeat the tables.

3.7.10 Collaboration Diagram for Process Component Composition

A composition collaboration diagram shows how components are used to help define 
and (perhaps) implement another component.  We have already seen one composition, 
for the community process.  Now we will look at a collaboration diagram which 
specifies the inside of one of our process components – the seller

checkOrder

rejectacceptOrder

CheckCustomer

success failure

Order Validation 
Choreography
February 2002 UML Profile for EDOC:  Diagramming CCA 3-141



3

Figure 3-28 Process Component Composition

This is a collaboration diagram “inside” the seller, which the seller will do to 
implement its protocol by using other components. This is a very specific use of a 
collaboration diagram and needs some explanation.

First note that, like the community process, we are showing the ports of components 
and of protocols nested inside the component or protocol.  

The Component Usages are as follows:

• Validate – uses the “OrderValidation” component

• CustBean – uses the CustomerComponent

• Process – uses the “OrderProcessing” component (not previously shown)

If we look inside of “Validate” we see a classifier role for each port: checkOrder, 
reject, CheckCustomer & acceptOrder. We see the same pattern repeated inside of 
CustBean and Process.

Note – “Seller : Sells” - This is the representation of the “Sells” port on the component 
being defined – in this case “Seller.” There will be such a “proxy” PortConnector for 
each port on the outside of the component for which we are making the collaboration 
diagram.  Since this port is a protocol port, it also has sub-ports which show up as 
nested classifier roles.

Seller : Sells

Validate : OrderValidation

 : checkOrder

 : reject

 : 
acceptOrder

 : CheckCustomer

Process : OrderProcessing

 : doOrder

 : ProcessedOrder

CustB ean : 
CustomerComponent

 : SendOrder

 : GetDenied

 : 
GetConfirmation

 : EnqStatus

Seller Composit ion

1: checkCustomer(order : Order)
3-142 UML Profile for Enterprise Distributed Object Computing February 2002



3

To “connect” one port to another we draw an association role (a line representing a 
Connection) from one port to another.  The connected ports must have compatible 
types and directions.  So in this diagram we have made the following connections:

3.7.10.1 Connections in the example

Each of these connections will cause data to flow from one component to the other, via 
the selected ports. It is these Connections which connect the activities of the 
components together in the context of this composition.  

3.7.10.2 Summary of stereotypes for a Process Component Collaboration

3.7.10.3 Special note on “proxy” port activities.

As can be seen from the example, we need to connect the “outside” ports (those on the 
component being defined) with the “inside” ports (those on the components being 
used).  The PortConnectors for the outside ports are shown without an owning 
ComponentUsage, while the PortConnectors for the components being used are shown 
inside of the ComponentUsage being used.

Table 3-17 Connections

From Component Usage From Port Connector To Port Connector To Component Usage

Seller Sells CheckOrder Validate

CheckOrder Reject GetDenied Seller

Validate CheckCustomer EnqStatus * Using Operation “checkCust” CustBean

Validate AcceptOrder DoOrder Process

Process ProcessOrder GetConfirmation Seller

Table 3-18 Stereotypes for a Process Component Collaboration

CCA element Stereotype Base UML Element Example Elements

Composition <<Composition>> Collaboration Seller Composition

ProcessComponent Implied Classifier Seller

ComponentUsage <<Component-
 Usage>>

Classifier Role (Object*) Validate, Process, CustBean

PortConnector <<PortConnector>> Classifier Role (Object*) Seller, SendOrder, GetDenied, GetConfirmation
CheckOrder, reject, CheckCustomer, acceptOrder
DoOrder, ProcessOrder
EnqStatus

Connection Connection (Optional) Association Role (Object 
Link*)

See above table

ContextualBinding <<ContextualBinding>> Binding  (Note*) None – used to refine which component type to 
use

PropertyValue <<PropertyValue>> Constraint  (Note*) None – use to set a configuration property of a 
component
February 2002 UML Profile for EDOC:  Diagramming CCA 3-143



3

3.7.10.4 Special note on protocols

Since protocols give us the ability to “nest” ports, ports may be seen within ports to 
any level.  This example only shown one level of such nesting.  The same kind of 
nesting is used within activity diagrams – since activities may be nested as well.

3.7.11 Model Management

While the organizational structure of components is not visible in a diagram, it is 
visible in tools.  The screen shot in  shows how the example components are organized 
in the Data Access Technologies’ UML tool.  Note how using nested classes (such as 
Ports being inside of their ProcessComponent) helps to organize the model and keep 
namespaces separate.
3-144 UML Profile for Enterprise Distributed Object Computing February 2002



3

.

Figure 3-29  Model Management
February 2002 UML Profile for EDOC:  Diagramming CCA 3-145



3

3.7.12 Using the CCA Notation for Component & Protocol Structure

Figure x-x shows the CCA notation being used for the protocol and process component structure, 
above.  Note that as with the UML notation, this is done from an out-of-the-box tool (Component-
X®) - the notation is not quite standard CCA yet.

This shows the community process and protocol corresponding to the UML example, above

.

Figure 3-30  Community Process and Protocol

Figure 3-31 Composition in CCA notation

Figure 3-31 shows the seller composition in CCA notation; it is equivalent to the seller collabora-
tion diagram.
3-146 UML Profile for Enterprise Distributed Object Computing February 2002



3

Section III - The Entities Profile

The Entities profile describes a set of UML extensions that may be used to model 
entity objects that are representations of concepts in the application problem domain 
and define them as composable components.

Section 3.8  introduces the profile and concepts associated with it.  Section 3.9  
describes different entity viewpoints.  Section 3.10  presents the Entity conceptual 
metamodel.  Section 3.11  defines the UML extensions required to implement the 
Entity metamodel as a UML profile.

3.8 Introduction

This section describes the following:

• Normative sections of this section

• The Entities profile relationship to other profiles

• The design concepts incorporated in the Entities profile

• Standard UML facilities incorporated in this profile

3.8.1 Normative sections

Section 3.8  to Section 3.11  of this chapter should be viewed as the adopted 
specification.  Of those sections, only Section 3.10  and Section 3.11  are normative.  
The other sections provide an introduction to the chapter and a conceptual background.

3.8.2 Relationship to other parts of ECA

The following paragraphs briefly describe the links to other profiles in the ECA 
specification.

3.8.2.1 The Business Process profile

The Entities profile is used to define a representation of the application domain.  
Processes operate on this model where the process flow determines that operations 
should occur on the domain model as a result of inputs from other systems, the 
occurrence of business events or the actions of human participants.  

The Entities profile also provides a root modeling element for identifiable processes.  
In a business domain a process is also an identifiable concept that has instances with 
attributes, operations and relationships.  As such, it shares the characteristics of Entity 
objects and can be operated on the same as entities.  A process could be the subject 
matter of another process.
February 2002 UML Profile for EDOC:  Introduction 3-147



3

3.8.2.2 The CCA profile

Elements of the Entities profile are also characterized as composed components that 
can be composed into larger components. As components they may be made available 
for composition of a variety of systems. As composed components, they may be 
configured from independently created components.  The component profile 
determines the unit of composition and the interconnection of interfaces that enables 
the components to work together.

3.8.2.3 The Events profile

The event profile defines the integration of systems and components using events to 
drive the processing.  Events may be published or received by entities and processes.  
Events may be forwarded synchronously or asynchronously.  Synchronous events will 
typically be delivered within the context of the current transaction.  Asynchronous 
events will generally be stored and delivered in the context of a new transaction.  The 
use of events for integration reduces coupling and improves the ease by which a system 
may be adapted or extended.

The Entities profile recognizes the publish and subscribe ports as elements that may be 
attached to entity components.  In addition, it defines the Data Probe port to generate 
events requested on an ad hoc basis.

3.8.2.4 The Relationships profile

Entities have relationships.  Relationships represent associations between the real-
world counterparts of domain model elements.  The variety of relationships is defined 
by the Relationship Profile.  

3.8.2.5 The Patterns profile

Patterns may be used to replicate frequently occurring entity structures including 
attributes, relationships, operations, rules, and constraints.

3.8.3 Design Concepts

The entity model reflects the integration of a number of design concepts:  

• Composition

• Encapsulation

• Ports

• Identity

• Events

• Domain Modeling

• Entity Role

• Events
3-148 UML Profile for Enterprise Distributed Object Computing February 2002



3

• Data Monitoring

• Distributed Computing

• Levels of Coupling

These concepts are each discussed in the paragraphs that follow.

3.8.3.1 Composition

Entities are representations of concepts that exist in the real world or application 
problem domain.  The primary purpose of the entity profile is to model entities–their 
relationships, attributes and methods—and define them as composable components.  

The information viewpoint will provide the primary notation for modeling entities and 
their attributes and relationships as data.  The entities represented in the information 
viewpoint are then incorporated into objects, described as composable components.

Entities are incorporated into systems where they may be acted upon by processes, 
interact with other entities and generate events.  Thus entities are components in a 
larger system.  The component relationships of entities to other components is 
expressed in the composition viewpoint.  In this viewpoint entities are components that 
are composed into larger components.  

As a component, an entity may have several different ports.  It receives and responds to 
messages.  It may send messages and receive return values, it may generate events or 
asynchronous messages and it may receive events or asynchronous messages.  In 
addition, it may accept ad hoc requests to generate messages based on changes in its 
state.

Entities that represent primary concepts, such as Customer, will often be composed 
with related entities and value objects as deployable components.  So the Customer and 
Account entities could be composed into one component also containing the Customer 
Address and Account Entry value objects.

3.8.3.2 Encapsulation

Entity components are intended to be encapsulations of their associated data and 
functionality.  Process Component defined in the CCA specification provides the basic 
representation of encapsulation. It provides the external interfaces by which these 
components are linked to other components and composed into larger components.    
At the same time, it does not define the component implementation.

Data Manager extends this by incorporating Composite Data. Consequently, a data 
manager contains composite data that describes the state of the component.  Data 
Manager incorporates the composite data and relationships of Entity Data along with 
methods to operate on the data.  

A Data Manager may be implemented as an object.  The object has an interface, 
modeled as a component port, and it has state data that may be accessed through the 
port. The object may also have other ports. It may have data probe ports to generate 
February 2002 UML Profile for EDOC:  Introduction 3-149



3

messages based on ad hoc requests.  It may send asynchronous messages and events.  
If it has a unique identity (i.e., is an Entity), and is sharable and network accessible, it 
can receive asynchronous messages and events.

Data Manager comprehends value objects, objects that are passed by value, i.e., by 
copying the data, not by reference.  Consequently, the data structure is exposed when a 
copy is performed.  It is important to distinguish between the value object that has a 
functional interface, and the state of the value object, the Entity Data, which is passed 
when a value object is passed as a parameter.

Value objects are not sharable nor network accessible.  They cannot receive messages 
over the network, and they are not sharable because they are always passed by value 
rather than by reference. 

Data Managers may be network accessible or not.  A Data Manager may be only 
accessible by reference to a related entity that is network accessible.  For example, a 
order line item is identifiable but may only be accessible through the order.

An Entity may be a copy of a primary Entity, i.e., a clone, for purposes of improving 
performance. An Entity clone may be a copy of an entity on a client system that is used 
for interactive operations.  Or the clone could be the instantiation of an entity when 
concurrency control is performed by a database (i.e., the primary entity is in the 
database).  The clone is instantiated with a copy of the entity’s state.  The primary 
Entity should be locked when the copy is taken so that it’s state will not change while 
operations are being performed on the clone.  The clone is not sharable because it 
should not exist beyond the transaction in which it was created.  Its lock on the 
primary entity will expire when its transaction terminates.

3.8.3.3 Ports

Components interact with their environment through ports.  A port has a defined 
interaction protocol.  Ports may send messages, receive messages, or both.  A port may 
be implemented as an object interface, e.g., CORBA or Java interface.

Ports are synchronous or asynchronous.  A synchronous port communicates within the 
context of a transaction.  An asynchronous port communicates in a store-and-forward 
manner so that sending a message occurs in the context of one transaction and receipt 
of the message then occurs in the context of another transaction.

Ports may communicate with messages or event notices.  A message is directed to a 
specific destination.  An event notice is published to the communication infrastructure 
to be delivered to subscribers—destinations that have expressed interest.  The messages 
and event notices may be communicated synchronously or asynchronously.

All Data Managers will have interface port(s) that represents the interface of the 
component; these ports may be synchronous, asynchronous or a combination of both.

3.8.3.4 Identity

Unique identity is introduced on Entity Data and implicitly on Entity with the addition 
of a Key.  A prime key is required to be unique within the extent of the type.  In 
general, identifiable components are passed by reference.  
3-150 UML Profile for Enterprise Distributed Object Computing February 2002



3

The key may be comprised of one or more attributes of the state of the component, and 
these elements must be immutable.  The key can also have elements that are Foreign 
Keys of other Entities.  A Foreign Key is identified through a relationship with another 
Entity from which the Foreign Key is derived.

An Entity component has a primary instance, i.e., the location of the master copy of its 
state.  This master copy may be in a database or it may be instantiated as an 
object/component.  Copies of an Entity state may be instantiated in Entity clones.  
These are not sharable and, in general, should not exist beyond the scope of a single 
transaction.  

Entity components can be “managed.”  This property specifies that the extent of all 
members of a type and its sub-types is known and may be accessed as a set.  The key 
of an identifiable component must be unique within its managed extent.  The 
implementation implication of being managed is that the type will have an extent 
manager or “home” that will provide query access to the extent and may provide 
attributes and methods that apply to all members of the extent or the members 
collectively, e.g., the number of members.

3.8.3.5 Domain Modeling

The first step in modeling a business domain may be to create and information 
viewpoint.  The information viewpoint exposes the Entity Data along with its attributes 
and relationships.  These Entity Data elements will be incorporated into Entity 
components to define their functionality and interfaces.

In modeling a business domain, business concepts that are uniquely identifiable must 
be represented by identifiable computational components.  For example, an object 
representing an employee, a purchase order, an office or a part specification will have 
a unique identifier that associates the object with the real-world counterpart.  As such, 
a consistent representation of the business will have a single representation of each 
real-world thing as an identifiable object.  While an implementation may replicate such 
elements for performance or reliability, replicas are still logically a single 
representation and must be maintained with consistent state if the system is to yield 
consistent results.

For the most part, the identifiable elements that model the business domain are 
characterized as Entities.  Rules and Processes are also Entities because they have state 
and are identifiable, but they are computational artifacts that describe activities in 
which entities are involved.

3.8.3.6 Entity Role

The Entity Role is an important extension to the Entity representation.  It may be 
impractical to design an Entity component to anticipate all circumstances in which an 
entity may be involved.  Each situation may involve different state and behavior.  An 
Entity Role incorporates aspects of an Entity associated with a particular context.  It 
essentially extends an Entity on an ad hoc basis.  The unique identity of an Entity Role 
is the entity identifier coupled with its context identifier.  Consequently, the context 
must also be represented as an Entity component.  For example, a person has the role 
February 2002 UML Profile for EDOC:  Introduction 3-151



3

of an employee as a member of an enterprise (context), or may be a member of a 
project team.  An entity may have many roles as appropriate to the different contexts in 
which it participates.

An Entity Role is dependent upon the associated parent entity.  The association is 
immutable.  If an Entity ceases to exist, all of its roles will also cease to exist.  An 
Entity Role cannot be assigned to another parent Entity.

An Entity Role is not an appropriate representation for such concepts as an 
organizational position or the specification of a process participant.  These concepts 
may define characteristics of the entities that can be assigned, but should not include 
characteristics that are unique to a particular Entity when assigned.  Consequently, a 
process participant is an Entity that represents a potential association of a process with 
an Entity.  Different Entities may be assigned to the participation over time.  An Entity 
Role may be assigned to the participation, as an employee may be assigned to 
participate in a process, and a different employee may be substituted at a later time.

An Entity Role may be a “virtual entity” if it incorporates all of the interface 
characteristics of the entity it represents.  For example, an Entity Role may inherit the 
interface of its associated Entity, incorporate the interface by inheritance and 
incorporate the entity state and behavior by delegation.

3.8.3.7 Events

An event represents a change of state in a system that is of interest outside the scope of 
the component in which it occurs.  An event may be defined as a change of state that 
causes a condition of interest to become true, or an event may be associated with a 
state transition to a particular state, from a particular state, or from one state to another 
state.  When an event occurs a notice can be generated.

The ability to generate event notices can be designed into a component.  The content of 
the event notice is defined to provide appropriate information about the event.  Event 
notices are published—they are issued to the event communication infrastructure to be 
received by subscribers.  The publisher of an event notice is not expected to be aware 
of the subscribers, and thus there may be many subscribers or none.  Similarly, the 
subscribers are not aware of the specific sources of event notices to which they 
subscribe.

The Event Publication and Event Subscription ports provide the complementary 
interfaces for this publish and subscribe linkage between components.  These ports 
may be defined as operating in synchronous or asynchronous mode.  

The mode of a subscriber must match the mode of the receiver for an event notice to be 
communicated.  In synchronous mode, an event notice would be delivered to all 
subscribers within the context of the transaction in which the event occurred.  In 
asynchronous mode, the event would be delivered in a store-and-forward manner, the 
event notice would be captured in one transaction and accepted by each subscriber in 
different transactions.
3-152 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.8.3.8 Data Monitoring

Data monitoring refers to the ability to ad hoc initiate detection of changes in data in 
order to initiate desired actions.  This capability is an important element of flexibility 
and modularity of system design.  It allows actions to be initiated based on changes in 
state without explicitly embedding the initiation of those actions in the executable logic 
that changes the data.

For example, an application may be designed to monitor the price of a commodity to 
initiate buy or sell orders or alert a customer.  It should not be necessary to modify the 
logic of the commodity tracking system in order to link this monitoring application to 
price changes.

Similarly, when a system is assembled or extended using components, actions of some 
components may be dependent on changes in state in other components.  By providing 
the ability to monitor changes in the data of a component, the logic of the component 
need not be designed to anticipate each specific dependence.

The Data Probe port provides the interface for accepting and removing monitoring 
requests and for issuing events or messages when the specified events occur in the state 
of the Entity.  A request will defines the state of interest, the type of message to be sent 
and the message addressee.  

3.8.3.9 Distributed Computing

Components that are remotely accessible must be identifiable.  Their unique identity is 
the basis for locating them in the distributed computing environment.  It is also the 
basis for sharing a single representation of the state of the thing being represented.

To support network access, they must have one or more ports that support network 
access protocols.  For example, a network accessible component might have ports 
synchronous messaging ports implemented as CORBA interfaces, and event 
subscription and publication ports implemented as JMS (Java Messaging Service) 
subscriber and publisher interfaces.

Data Managers that are not network accessible will be restricted to being co-located 
with components that reference them.  For example, an order item is uniquely 
identified within an order, but remote access may be only through interfaces to the 
containing order. 

Relationships require that the participating Entity Data structures are identifiable.  At 
the same time, the Data Manager of an Entity Data structure may not be network 
accessible.  In a distributed computing environment, components that participate in 
relationships must be either co-located or be network accessible.  A relationship cannot 
be implemented if the members cannot communicate with each other.  

While distribution of computing is primarily an implementation issue, the ability for 
components to be distributed must be considered fairly early in the design.  Where 
Entity components are not network accessible, operations on their containing 
components will likely reflect indirect access from remote components.
February 2002 UML Profile for EDOC:  Introduction 3-153



3

3.8.3.10 Levels of Coupling

The Entity Model anticipates three levels of component coupling: linked, tightly 
coupled and loosely coupled.

Linked coupling refers to components that are co-located in the same address space.  
These components interact with each other directly, without communicating over a 
network.  As such, they can interact without being network accessible components.  
Messaging will generally be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers.  These components 
will also interact with synchronous messaging, but messaging will occur over a 
network.  While some messaging between the components may be asynchronous for 
performance and recoverability considerations, components are tightly coupled if any 
interactions between them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously, 
through a messaging infrastructure.  Communication is through messages and events.  
These components might be characterized as enterprise applications.  A message or 
event is issued in the scope of one transaction and accepted by one or more recipients 
in independent transactions.  Messages and events are stored and forwarded.  A 
message is a communicated with a defined recipient, and an event is a communicated 
(published) with self-declaring recipients (subscribers) unknown to the publisher.

The level of coupling between components has important performance and system 
flexibility implications.  Generally, components should be designed in a level-of-
coupling hierarchy so that components that are linked are within components that are 
tightly coupled, and tightly coupled components are within components that are 
loosely coupled with each other.  This coupling hierarchy should be reflected in the 
network accessibility property of components and the synchronous vs. asynchronous 
property of their ports.

3.8.4 Standard UML Facilities

This section briefly describes the standard elements of UML that are incorporated in 
the profile.

Attributes

Composite Data elements define their data elements with attributes.  Composite Data 
elements are incorporated as the data structures of Data Managers, which are 
specialized to entities.  The interfaces to Data Managers provide access to the attributes 
and will generally have methods by the same name as accessers.  

Methods

Methods are specified as in UML.  From a component perspective, methods, including 
the attribute accesser methods, are incorporated in the port(s) which receive messages 
and return a result.
3-154 UML Profile for Enterprise Distributed Object Computing February 2002



3

Relationships

Relationships express associations between non-primitive elements.  Identifiable, 
sharable and network accessible elements can have relationships that extend over a 
distributed network.

Activity Graphs

Activity Graphs may be used to describe flow of control between elements, although 
these will be more applicable for describing processes.

State Machines

Changes of state of elements with data may be described with state machines.  
Publication of events may be defined in terms of state transitions.

Interaction diagrams

Interaction diagrams may be used to describe the flow of control between executable 
elements.

Object Constraint Language

OCL is used to express conditions for triggers, as well as in other applicable UML 
elements.

3.9 Entity Viewpoints

The entity profile provides elements that appear in different viewpoints.  These 
viewpoints are for different purposes and represent entities differently, using different 
forms of notation.  Two viewpoints of particular interest are presented below: the 
information viewpoint and the composition viewpoint.  Entities also appear in other 
diagrams, for example, in interaction diagrams as vertical lines and in activity 
diagrams as swim lanes.

3.9.1 Information Viewpoint

The information viewpoint models Entity Data and their relationships.  Entities 
represent concepts in the problem domain, and relationships represent relationships 
between the problem domain concepts.  The model essentially defines the vocabulary 
used in discussing the problem domain, and it represents the structure of the objects 
and databases used to represent the business concepts in the computer.

A model viewed from the information viewpoint is shown below.  It includes four 
Entities: Customer, Address, Account, and Entry.  Each of these can be uniquely 
identified, but Address and Entry are unique within the contexts of Customer and 
February 2002 UML Profile for EDOC:  Entity Viewpoints 3-155



3

Account, respectively.    Consequently, as components, Address and Entry may be 
specified as not sharable or network accessible.  They would be implemented as pass-
by-value objects.

Figure 3-32  Entity Model in the Information Viewpoint

The information viewpoint says nothing about interfaces or object-oriented 
functionality that may be associated with these Entities.  Nor does it define how these 
objects might be packaged in a composed system.  Those aspects are defined by the 
Entity components that incorporate the Entity Data.

3.9.2 Composition viewpoint

The composition viewpoint describes how the software artifacts are configured as 
components and compositions of components.  The diagram below depicts an Account 
Composition component, which is composed of Account Entity and Entry Entity 
components.  

Figure 3-33 Entity Model in the Composition Viewpoint

 
Address 

- Street : String 
- City : String 
- State : String 
- ZIP : String 

Customer 
- Name : String 
- Phone : Integer 

Account 

- AccountNumber : Integer 
- Balance : Integer 

Entry 

- EntryNumber : Integer 
- Credit/Debit : String 
- Amount : Currency  
- Purpose : String 

A c c o u n t

E n try

A c c o u n tC o m p o s it io n

A c c o u n t

E n try

A c c o u n tC o m p o s it io n
3-156 UML Profile for Enterprise Distributed Object Computing February 2002



3

The Account entity may request attribute values from the Entry object, or, assuming 
the Entry object is a pass-by-value object, it may pass the Entry object by value.  This 
means it passes a copy of the state of the Entry object, but it retains its reference to the 
original Entry object for future operations.

The Account and Entry objects are both components used to compose the 
AccountComponent.  However, this could be simply the logical model of the 
composition.  The implementation of the AccountComponent might be primitive, 
making the Account and Entry objects inseparable, but logically independent.

The ports in this model are interface ports and message-sending ports—they 
incorporate synchronous messages, typical of messaging with objects.  The 
AccountComposition component may or may not expose the same interfaces as the 
Account component.  It also could expose an interface for the Entry component, but 
none is specified here.

The composition viewpoint drives consideration of network accessibility and the 
clustering of objects for composition and distribution.

3.10 Entity Metamodel

This section describes the entity meta-model.  This model provides a basis for 
understanding the modeling concepts and their relationships.  The next section 
describes the implementation of the model in UML.

3.10.1 Overview

The diagram, below, depicts the elements to be considered; those that are part of this 
profile specification are highlighted.  Central to this model are Data Manager and its 
specializations; these are the core elements of the Entities profile.  They encapsulate 
data and other components, exposing their functionality through ports. 
February 2002 UML Profile for EDOC:  Entity Metamodel 3-157



3

Figure 3-34  Entity Metamodel

Through ports components receive and respond to messages, publish and subscribe to 
events and expose state changes response to ad hoc requests to Data Probe ports.  

Entities represent the application domain.  As components they encapsulate the 
functionality, state and relationships of domain concepts.  Entity components 
incorporate Entity Data structures, which are the core elements of the information 
model.

3.10.2 Entity Package

This section describes the elements of the Entity metamodel in detail.

 

Publication 
(from Events) 

Subscription 
(from Events) 

Process Component 
(from CCA) 

Port 
(from CCA) 

Foreign  
Key 

Relationship 
(from Core) 

1 
1 

1 
1 

Key Element 

EntityData Key 
+ PrimeKey : Boolean 

1..n 
1..n 

1..n 
1..n 

1 0..n 1 0..n 

KeyAttribute 

Entity Role 
+ VirtualEntity : Boolean 

Entity 
+ Managed : Boolean 

1 

0..n 

1 

+Context 

0..n 0..n 
+Parent 

0..n 

Data Probe (Port) 
- ExtentProbe = Boolean 

1 
0..n 

+probes 

1 
0..n 

Attribute 
(from CCA) 

Composite Data 
(from CCA) 

Data Manager 
+ NetworkAccess : Boolean 
+ Sharable : Boolean 

1 
1 

1 
1 

MultiPort 
(from CCA) 

FlowPort 
(from CCA) 

+Manages 
3-158 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.10.2.1 DataManager

Semantics

A Data Manager is a functional component that provides access to and may perform 
operations on its associated Composite Data (i.e., its state).  

The Data Manager defines ports for access to operations on the state data.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Data Manager

Owned by

Package

Properties

Network Access

A Boolean value which indicates if the Data Manager is intended to be accessible over 
the network.

Sharable

A Boolean value which indicates if the Data Manager can be shared by multiple 
transactions/sessions.  A Data Manager that is not sharable is either transient or 
depends on a sharable Data Manager that contains it for persistence.  For example, an 
address may not be sharable (although its state may be passed by value), but it can be 
persistent by association with a Customer that is sharable.

Related elements

Process Component

Data Manager inherits from Process Component and adds the quality of having 
associated state. 

Composite Data

Composite Data defines the data structure that is encapsulated by the Data Manager.

Entity

Entity specializes Data Manager for representation of identifiable application domain 
things.
February 2002 UML Profile for EDOC:  Entity Metamodel 3-159



3

Constraints

N/A

3.10.2.2 EntityData

Semantics

Entity Data is the data structure that represents a concept in the business domain.  It is 
equivalent to an entity in data modeling or a relation in a relational database.  In a Data 
Manager or its specializations, such as Entity, it represents the state of an object.

Entity Data has attributes (from Data Element) and relationships.  The information 
viewpoint is a viewpoint on Entity Data elements.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::EntityData

Owned by

Package

Properties

N/A

Related elements

Composite Data

Entity Data inherits from Composite Data and adds relationships.

Relationship

Describes an association between Entity Data elements.

Data Manager

A Entity Data element is incorporated in a Data Manager which gives it functionality 
and ports as a component.

Constraints

• Entity Data must have a prime Key that is unique within the extent of the Entity 
Data type (i.e., the type and all sub-types).

• Entity Data is managed by an Entity Data Manager. 
3-160 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.10.2.3 Key

Semantics

A Key is a value that may be used to identify a Data Entity for some purpose.  
Generally, it will be a unique identifier within some context.  A Key designated Prime 
Key = true is the key intended for unique identity of the Data Entity within the extent 
of the Data Entity type.

A Key is composed of key elements which may be selected attribute values of the 
associated Data Entity or Foreign Keys.  A Foreign Key is the key of a related Date 
Entity.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Key

Owned by

Entity Data

Properties

Prime Key

A Boolean value that indicates if the Key is intended to be the primary unique identity 
of the associated Entity Data type.  If so, the value must be unique within the extent of 
the identifiable type.

Related elements

Composite Data

A Key is a specialization of Composite Data.

Entity Data

A Key describes an identifier of an Entity Data type.

Key Element

A Key Element is one segment of a Key, which is either a reference to an attribute of 
the associated Data Entity or a reference to the key of an associated Data Entity.

Constraints

• If Key is Prime Key = true, then the value must be unique within the extent of the 
associated Entity Data type and its sub-types.
February 2002 UML Profile for EDOC:  Entity Metamodel 3-161



3

• The attributes that are incorporated into the key must be immutable.

• The Key Elements that comprise the key have an immutable sequence.

3.10.2.4 Key Element

Semantics

A Key Element is one segment of a Key, which is either a reference to an attribute of 
the associated Data Entity or a reference to the key of an associated Data Entity.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Key Element

Owned by

Key

Properties

N/A

Related elements

Key

The Key in which the Key Element appears.

Key Attribute

A Specialization of Key Element that references an attribute in the associated Entity 
Data..

Foreign Key

A specialization of Key Element that references the Key of an Entity Data structure 
that is related to the Entity Data identified by the containing Key.

Constraints

N/A
3-162 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.10.2.5 Foreign Key

Semantics

A Foreign Key is a Key Element that is the value of a related Entity Data structure.  
The subject Entity Data structure derives its identity, in part, from the related Entity 
Data structure.  For example, the line item of an order may be uniquely identified by 
the line number and the key of the associated order.  The Foreign Key element 
references the relationship in order to identify the related Entity Data that contains the 
Foreign Key value..

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Foreign Key

Owned by

Key

Properties

N/A.

Related elements

Key Element

Foreign Key is a specialization of Key Element.

Relationship

The associated relationship identifies the Entity Data from which the Foreign Key 
value is obtained..

Constraints

• If the associated Key has PrimeKey = true, then he relationship used to obtain the 
Foreign Key value must be immutable.  

3.10.2.6 Key Attribute

Semantics

A Key Attribute identifies an attribute of the associated Entity Data that is included as 
an element of the Entity Data key.  The value of the attribute becomes an element of 
the key of an instance of the Entity Data type.
February 2002 UML Profile for EDOC:  Entity Metamodel 3-163



3

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Key Attribute

Owned by

Key

Properties

N/A.

Related elements

Key Element

Key Attribute inherits from Key Element.

Attribute

Attribute is the Attribute of the Entity Data structure that is to be incorporated as an 
element of the containing Key..

Constraints

If the containing Key is designated PrimeKey = true, then the Attribute values that are 
incorporated into the key must be immutable.

3.10.2.7 Entity

Semantics

An Entity is an object representing something in the real world of the application 
domain.  It incorporates Entity Data that represents the state of the real world thing, 
and it provides the functionality to encapsulate the Entity Data and provide associated 
business logic.  

An Entity instance has identity derived from the Key of its associated Entity Data.

Entity is the abstract super type of all identifiable application domain elements.  This 
includes Entities that have a collection of rules to operate on the state of related 
entities.  It also includes Entities that incorporate process elements that act on other 
Entities.  The rule set and process specializations introduce additional elements, but 
have the basic characteristics of being identifiable, having local state (Composite Data) 
often viewed as their “context,” and having relationships to other Entities that they 
may act upon.
3-164 UML Profile for Enterprise Distributed Object Computing February 2002



3

If an Entity is managed, all instances of the type and its sub-types are known, each 
instance has unique identity, and the type can have operations and attributes associated 
with the extent (i.e., applicable to all instances).  This is typically implemented as a 
type manager or “home” object that represents the extent.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Entity

Owned by

Package

Properties

In the list, below, only Managed is introduced as a property by Entity, but 
NetworkAccess and Sharable, inherited from Data Manager, are also discussed to 
clarify the implications.

Managed

A Boolean value that indicates if the Entity type is managed.  If it is managed, then the 
implementation provides a mechanism for accessing the extent of all instances of the 
type and its sub-types and may provide a mechanism for dynamically applying rules to 
all instances.  This typically is implemented as a “home” or “type manager.”

NetworkAccessible

A Boolean value that indicates if the Entity is expected to be accessed over the 
network.  This implies that it has a network interface (e.g., CORBA IDL).  An Entity 
that is not NetworkAccessible can only be accessed over the network through an 
associated Entity that is NetworkAccessible.

Sharable

A Boolean value that indicates if the Entity can be shared by multiple, concurrent 
transactions or users.  A Sharable Entity will enforce controls to serialize access by 
concurrent transactions.

An Entity that is not sharable may be instantiated for use by a particular user or 
transaction. It generally contains a copy of the primary Entity Data instance 
representing the real world thing. The primary Entity Data instance may be in a 
database and the copy is created to perform operations on the Entity Data.  
Alternatively, the Entity Data may be managed by an Entity that is sharable, but the 
copy is created so that processing can be localized on another server.  In either case, it 
would be expected that the primary Entity Data would be locked when the copy is 
taken and released when the copy is deleted. Changes to the copy would likely be 
applied to the primary instance prior to removing the lock.
February 2002 UML Profile for EDOC:  Entity Metamodel 3-165



3

Entities that are not sharable may also be implemented as value objects, which are 
always passed by value over the network. While they may have unique identity by 
association with an identifiable Entity, they may not have a key that reflects this unique 
identity and their Entity Data does not carry its unique identity when passed by value.

An Entity that is sharable is expected to be persistent. An Entity that is not sharable 
may be persistent if it is incorporated in the state of a sharable Entity.

Related elements

DataManager

Entity inherits from DataManager and adds the requirement that its associated 
Composite Data is Entity Data.  It also adds the ability to accept Data Probes and the 
ability to be Managed.

Entity Role

Entity Role inherits from Entity as a specialized representation of an Entity in a 
particular context.  The Entity Role contains Entity Data that is associated with the 
parent Entity in the particular context.  Entity Role is associated with another Entity 
that represents the context in which it applies.  Thus the parent Entity might be a 
person, the Entity Role might be the person as an employee, and the context entity 
might be the employer. 

An Entity may have many Entity Roles.  Each Entity Role defines characteristics of the 
Entity in a particular context, such as person in the role of an employee within a 
corporation.  An Entity may be the context for many Role Entities as a corporation is 
the context of many employees.

Data Probe

A Data Probe port is associated with an Entity that accepts requests to detect changes 
in the internal state of the Entity and forwards messages or events when the states of 
interest become true.

Constraints

• An Entity manages Entity Data, which may have a key and relationships.

• A managed Entity must have a Primary Key.

• A network Accessible Entity must have a Primary Key

• An Entity that is Sharable will serialize concurrent transactions that attempt to 
access its data.
3-166 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.10.2.8 Entity Role

Semantics

An Entity Role extends its parent Entity for participation in a particular context.  An 
Entity may have a number of associated Entity Roles reflecting participation in 
multiple contexts.  The Entity might have several Entity Roles of the same type at the 
same time, but each should be associated with a different context.

The context of an Entity Role is also represented by an Entity.  The context could be a 
corporation where the parent is a person and the Entity Role is an employee.  A context 
may have many entity roles of the same type or different types representing 
participation of different parent Entities for different purposes.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Entity Role

Owned by

Entity (context)

Properties

VirtualEntity

A Boolean value that indicates if the Entity Role incorporates and extends the primary 
interface of the parent Entity it represents, i.e., it can be used in place of the primary 
Entity.

Related elements

Entity

• Inheritance—Entity Role inherits from Entity such that it functions as an entity but 
it derives its unique identity from the Entity it represents (i.e., a Foreign Key).

• Context association—An Entity Role represents an Entity in a particular context.  
This association defines the context.

• Parent association—An Entity Role represents an entity in a particular context.  
This association defines the parent Entity being represented.

Constraints

The parent entity of an entity role cannot be dynamically changed.
February 2002 UML Profile for EDOC:  Entity Metamodel 3-167



3

3.10.2.9 DataProbe

Semantics 

A Data Probe port is associated with an Entity and accepts ad hoc requests to detect 
changes in the internal state of the Entity.  The Data Probe then forwards messages or 
events when the states of interest become true until the request is removed.  A Data 
Probe may serve many requests concurrently, producing various messages or events 
when the appropriate states occur.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::ECA::Entity::Data Probe

Owned by

Entity

Properties

ExtentProbe

ExtentProbe = true indicates that requests apply to the extent of the associated entity as 
opposed to a particular instance.  In implementation, an ExtentProbe would be 
associated with a “home” or “type manager.”

Related elements

Multi Port

Data Probe inherits from Multi Port.

Entity

The Entity that will accept probe requests.

Constraints

• DataProbes only emit messages (i.e., output only).

• DataProbe can only attach to an Entity with  Managed = true..

3.11 Entity UML Profile

This section specifies the entity model as a UML profile.  The profile consists of 
standard UML facilities with the addition of a number of extensions specified in terms 
of stereotypes, tagged values and constraints.  
3-168 UML Profile for Enterprise Distributed Object Computing February 2002



3

The section begins with a table that maps the conceptual metamodel elements to the 
UML elements, and then describes the UML package and the UML extensions in 
detail.

3.11.1 Metamodel Mapping to Profile

Table 3-19 provides a mapping of metamodel elements to UML profile elements.

3.11.2 Entity Package

Figure 3-35 illustrates the extensions required for the entity model and the 
relationships of these extensions to elements described in other ECA models.  The 
extensions shown in this diagram are discussed in the paragraphs that follow.

Table 3-19 Element Mappings

Metamodel Element UML Profile Element UML Base Class

Data Manager Data Manager Class

Entity Data Entity Data Class

Entity Entity Class

Entity Role Entity Role Class

Key Key Class

Key Element Key Element Attribute

Key Attribute Key Attribute Attribute

Foreign Key Foreign Key Attribute

Data Probe Data Probe Class
February 2002 UML Profile for EDOC:  Entity UML Profile 3-169



3

Figure 3-35 Entity Model Extensions to UML

3.11.2.1 Data Manager

Inheritance

Class
Process Component

Data Manager

Instantiation in model

Concrete

 

Entity 
<<tagDefinition>> - Managed = Boolean 

<<stereotype>> 

EntityRole 
- virtualEntity : bool 

<<stereotype>> 
<<Stereotype>> 

Process Component 
(from CCA) 

<<stereotype>> 
Port 

(from CCA) 
<<stereotype>> 

CompositeData 
(from CCA) 

<<stereotype>> 

DataProbe 
<<tagDefinition>> - ExtentProbe 

<<stereotype>> 

Key 
<<tagDefinition>> - primeKey : Boolean 

<<stereotype>> 

DataManager 
<<tagDefinition>> - NetworkAccess : Boolean 
<<tagDefinition>> - Sharable : Boolean 

<<stereotype>> 

<<Association>> 
<<Stereotype>> 

<<Stereotype>> 

Entity Data 
<<stereotype>> 

<<Stereotype>> 

Attribute 
(from UML) 

Key Attribute 
<<stereotype>> 

AttributeName 
<<Tagged Value>> 

Foreign Key 
<<stereotype>> 

Key Element 
<<stereotype>> 

Relationship 
(from UML) 

<<Stereotype>> 

<<Stereotype>> 

<<Stereotype>> 

<<Stereotype>> Probes 
<<Tagged Value>> 

Key 
<<Tagged Value>> 

KeyElements 
<<Tagged Value>> 

Multi Port 
(from CCA) 

<<stereotype>> 

<<Stereotype>> 

<<Stereotype>> 

<<Class Feature>> 

KeySource 
<<Tagged Value>> 

<<Class Feature>> 
RoleOf 

0..n 

1..1 
<<Aggregation>> 

Context 
0..n 

1..1 
<<Aggregation>> 
3-170 UML Profile for Enterprise Distributed Object Computing February 2002



3

Semantics

A data manager is a functional component that provides access to and may perform 
operations on its associated Composite Data (i.e., its state).  Since, without 
specialization, it is not uniquely identifiable it would be expected to get its identity 
from a context, i.e., it may be embedded in another component or it could exist only 
for a particular session.

Tagged values

Network Access 

A Boolean property that expresses whether the implementation would be expected to 
have a network accessible interface.

Sharable 

A Boolean property that indicates if the implementation can be shared across multiple 
sessions and/or in by concurrent transactions..

Manages 

A reference to the associated Composite Data specification.

Constraints

N/A

Diagram notation

Equivalent to Class

3.11.2.2 Entity Data

Inheritance

Class

Composite Data

Entity Data

Instantiation in a model

Concrete

Semantics

Entity Data is the data structure that represents a concept in the business domain.  It is 
equivalent to an entity in data modeling or a relation in a relational database.  In a Data 
Manager or its specializations, such as Entity, it represents the state of an object.
February 2002 UML Profile for EDOC:  Entity UML Profile 3-171



3

Entity Data has attributes (from Data Element) and relationships.  The information 
viewpoint is a viewpoint on Entity Data elements.

Tagged values

Key 

A reference to the associated Key specification(s).

Constraints

• Entity Data must have a prime Key that is unique within the extent of the Entity 
Data type (i.e., the type and all sub-types).

• Entity Data is managed by an Entity Data Manager. 

Diagram notation

None

3.11.2.3 Key

Inheritance

Class
Composite Data

Key

Instantiation in a model

Concrete

Semantics

A Key is a value that may be used to identify a Data Entity for some purpose.  
Generally, it will be a unique identifier within some context. A Key designated Prime 
Key = true is the key intended for unique identity of the Data Entity within the extent 
of the Data Entity type.

A Key is composed of key elements which may be selected attribute values of the 
associated Data Entity or Foreign Keys.  A Foreign Key is the key of a related Date 
Entity.

Tagged values

Prime Key

A Boolean value that indicates if the Key is intended to be the primary unique identity 
of the associated Entity Data type. If so, the value must be unique within the extent of 
the identifiable type.
3-172 UML Profile for Enterprise Distributed Object Computing February 2002



3

Key Elements

A list of key elements consisting of references to attributes and relationships of the 
associated Entity Data.

Constraints

• If Key is Prime Key = true, then the value must be unique within the extent of the 
associated Entity Data type and its sub-types.

• The attributes that are incorporated into the key must be immutable.

• The Key Elements that comprise the key have an immutable sequence.

Diagram notation

Similar to Class

3.11.2.4 Key Element

Inheritance

Attribute
Key Element

Instantiation in a model

Abstract

Semantics

A Key Element is one segment of a Key, which is either a reference to an attribute of 
the associated Data Entity or a reference to the key of an associated Data Entity.

Tagged values

N/A

Constraints

N/A.

Diagram notation

N/A

3.11.2.5 Foreign Key

Inheritance

Attribute
Key Element
February 2002 UML Profile for EDOC:  Entity UML Profile 3-173



3

Foreign Key

Instantiation in a model

Concrete

Semantics

A Foreign Key is a Key Element that contains a reference to a related Entity Data 
structure.  The subject Entity Data structure derives its identity, in part, from the prime 
key of the related Entity Data structure.  For example, the line item of an order may be 
uniquely identified by the line number and the key of the associated order.  The 
Foreign Key element references the relationship in order to identify the related Entity 
Data that contains the Foreign Key value.

Tagged values

KeySource

A reference to the relationship through which the value and structure of the foreign key 
are derived.

Constraints

• The related Entity Data must have a prime key.

• If the containing Key is designated PrimeKey = true, then the relationship for the 
KeySource must be immutable.

Diagram notation

Attribute

3.11.2.6 Key Attribute

Inheritance

Attribute
Key Element

Key Attribute

Instantiation in a model

Concrete

Semantics

A Key Attribute identifies an attribute of the associated Entity Data that is included as 
an element of the Entity Data key.  The value of the attribute becomes an element of 
the key of an instance of the Entity Data type.
3-174 UML Profile for Enterprise Distributed Object Computing February 2002



3

Tagged values

AttributeName

The identity of the attribute in the associated Entity Data that is incorporated as an 
element of the Key.

Constraints

• If the containing Key is designated PrimeKey = true, then the Attribute values that 
are incorporated into the key must be immutable.

Diagram notation

Attribute

3.11.2.7 Entity

Inheritance

Class
Process Component

Data Manager
Entity

Instantiation in a model

Concrete

Semantics

An Entity is an object representing something in the real world of the application 
domain.  It incorporates Entity Data that represents the state of the real world thing, 
and it provides the functionality to encapsulate the Entity Data and provide associated 
business logic.  

An Entity instance has identity derived from the Key of its associated Entity Data.

Entity is the abstract super type of all identifiable application domain elements.  This 
includes Entities that have a collection of rules to operate on the state of related 
entities. It also includes Entities that incorporate process elements that act on other 
Entities. The rule set and process specializations introduce additional elements, but 
have the basic characteristics of being identifiable, having local state (Composite Data) 
often viewed as their “context,” and having relationships to other Entities that they 
may act upon.

If an Entity is managed, all instances of the type and its sub-types are known, each 
instance has unique identity, and the type can have operations and attributes associated 
with the extent (i.e., applicable to all instances).  This is typically implemented as a 
type manager or “home” object that represents the extent.
February 2002 UML Profile for EDOC:  Entity UML Profile 3-175



3

Tagged values

In the list, below, only Managed is introduced as a tagged value by Entity, but 
NetworkAccess and Sharable, inherited from Data Manager, are also discussed to 
clarify the implications.

Probes

Identifies Data Probe ports associated with the Entity type.

Managed

A Boolean value that indicates if the Entity type is managed.  If it is managed, then the 
implementation provides a mechanism for accessing the extent of all instances of the 
type and its sub-types and may provide a mechanism for dynamically applying rules to 
all instances. This typically is implemented as a “home” or “type manager.”

NetworkAccessible

A Boolean value that indicates if the Entity is expected to be accessed over the 
network.  This implies that it has a network interface (e.g., CORBA IDL).  An Entity 
that is not NetworkAccessible can only be accessed over the network through an 
associated Entity that is NetworkAccessible.

Sharable

A Boolean value that indicates if the Entity can be shared by multiple, concurrent 
transactions or users. A Sharable Entity will enforce controls to serialize access by 
concurrent transactions.

An Entity that is not sharable may be instantiated for use by a particular user or 
transaction.  It generally contains a copy of the primary Entity Data instance 
representing the real world thing.  The primary Entity Data instance may be in a 
database and the copy is created to perform operations on the Entity Data.  
Alternatively, the Entity Data may be managed by an Entity that is sharable, but the 
copy is created so that processing can be localized on another server.  In either case, it 
would be expected that the primary Entity Data would be locked when the copy is 
taken and released when the copy is deleted.  Changes to the copy would likely be 
applied to the primary instance prior to removing the lock.

Entities that are not sharable may also be implemented as value objects, which are 
always passed by value over the network.  While they may have unique identity by 
association with an identifiable Entity, they may not have a key that reflects this unique 
identity and their Entity Data does not carry its unique identity when passed by value.

An Entity that is sharable is expected to be persistent. An Entity that is not sharable 
may be persistent if it is incorporated in the state of a sharable Entity.

Constraints

• An Entity manages Entity Data, which may have a key and relationships.

• A managed Entity must have a Primary Key.

• A network Accessible Entity must have a Primary Key
3-176 UML Profile for Enterprise Distributed Object Computing February 2002



3

• An Entity that is Sharable will serialize concurrent transactions that attempt to 
access its data.

Diagram notation

Equivalent to Class

3.11.2.8 Entity Role

Inheritance

Class
Process Component

Data Manager
Entity

Entity Role

Instantiation in a model

Concrete

Semantics

An Entity Role extends its parent Entity for participation in a particular context.  An 
Entity may have a number of associated Entity Roles reflecting participation in 
multiple contexts.  The Entity might have several Entity Roles of the same type at the 
same time, but each should be associated with a different context.

The context of an Entity Role is also represented by an Entity.  The context could be a 
corporation where the parent is a person and the Entity Role is an employee.  A context 
may have many entity roles of the same type or different types representing 
participation of different parent Entities for different purposes.

Tagged values

VirtualEntity

A Boolean value that indicates if the Entity Role incorporates and extends the primary 
interface of the parent Entity it represents, i.e., it can be used in place of the primary 
Entity.

Constraints

The parent entity of an entity role cannot be dynamically changed.

Diagram notation

Equivalent to Class
February 2002 UML Profile for EDOC:  Entity UML Profile 3-177



3

3.11.2.9 Data Probe

Inheritance

Class
Proto Port

Port 
MultiPort

Data Probe

Instantiation in a model

Concrete

Semantics 

A Data Probe port is associated with an Entity and accepts ad hoc requests to detect 
changes in the internal state of the Entity.  The Data Probe then forwards messages or 
events when the states of interest become true until the request is removed. A Data 
Probe may serve many requests concurrently, producing various message types when 
the appropriate states occur.

Tagged values

ExtentProbe

ExtentProbe = true indicates that requests apply to the extent of the associated entity as 
opposed to a particular instance.  In implementation, an ExtentProbe would be 
associated with a “home” or “type manager.”

Constraints

• DataProbes only emit messages (i.e., output only).

• DataProbe can only attach to an Entity with Managed = true.

Diagram notation

Same as Port (from CCA).

Section IV - The Events Profile

The Events profile describes a set of UML extensions that may be used on their own, 
or in combination with the other EDOC elements, to model event driven systems.
3-178 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.12 Rationale

3.12.1 Introduction

Event driven computing is becoming the preferred distributed computing paradigm in 
many enterprises and in many collaborations between enterprises.

Event driven computing combines two kinds of loosely coupled architectures:

• Event driven process architecture. This is a loosely coupled process architecture 
where the activities are not sequenced in traditional workflow fashion. Rather each 
participant in the process has autonomous responsibilities and performs those 
responsibilities on the basis of loosely coupled notifications, (in the supply chain 
world a.k.a. business signals).

• Publish and subscribe information distribution architecture. Publish and Subscribe 
is a loosely coupled mechanism for getting information from publishers to 
subscribers, while keeping the two independent of each other. Publish and subscribe 
is often implemented as loosely coupled, distributed components that communicate 
with each other through asynchronous messaging.

In event driven computing the most important aspect of the business process is the 
events that happen during its execution, and the most important part of the component-
to-component communication is the notification of such events from the component 
that made them happen to all the components that need to react to them.

In ECA we support both the definition of loosely coupled event-driven business 
processes, and the loosely coupled publish and subscribe communication between 
distributed components.

Neither the business world, nor the computing world, however, applies only one 
paradigm to their problem space. Businesses use a combination of loosely coupled and 
tightly coupled business processes and computing solutions deploy a combination of 
loosely coupled and tightly coupled styles of communication and interaction between 
distributed components.

This document describes in detail the event-driven flavor of loosely coupled business 
and systems models, and also illustrates how such models can co-habit with more 
tightly coupled models.

An ECA based business process can be defined as event driven for some of its steps 
and workflow or request/response driven for others. Likewise, distributed components 
in the ECA component  profile can be configured to communicate with each other in a 
mixture of publish-and-subscribe, asynchronous Point-to-Point, and client-server 
remote invocation styles.

This document will focus on  the purely event driven paradigm.

We will cover the following topics:

• Design Rationale

• Event driven business model
February 2002 UML Profile for EDOC:  Rationale 3-179



3

• Event driven computing

• Event driven business computing

• Publish and Subscribe

• Key Concepts of event driven business and system models

• Metamodel for specifying event driven business systems

• UML Profile for the Metamodel

• Relationship to other ECA profiles

• Relationship to other paradigms

• Applicability and leverage of event driven models

3.12.2 Overall design rationale

This profile is based on the following design principles:

• Alignment with the BOI roadmap (BOM/98-12-04) with respect to business 
process, business entity, business event, and business rule.

• The event as a central rather than peripheral concept.

• Business Processes should be loosely coupled:

• Autonomy of  participants in a business process

• Distinction between process and entity

• Clear separation of business logic, i.e. rules from business execution, i.e. the 
action taken once rules have been resolved.

•  Information distribution should be loosely coupled

• Use of Publish and Subscribe rather than point-to-point

• Ubiquitous event notification

• Asynchronous computing

• Shared information model

• Loose coupling of  the Events profile with the Business Process profile, Entities 
profile, and component profile

• Re-usability of paradigm

• Recursive use of event notifications

• Applicability under multiple paradigms

• The Events profile is intended to support both business process modeling and  
EAI.

• The proposed profile is intended for either tightly coupled client/server or peer-to-
peer computing, or loosely coupled event-driven computing, or combinations of 
both.
3-180 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.12.3 Concepts

3.12.3.1 Event Based Business Model

An event based business model is driven by business events. Whenever a business 
event happens anywhere in the enterprise, some person or thing, somewhere, reacts to 
it by taking some action. Business rules determine what event leads to what action. 
Usually the action is a business activity that changes the state of one or more business 
entities. Every state change to an Entity constitutes a new business event, to which, in 
turn, some other person or thing, somewhere else, reacts by taking some action.

The main concepts in event driven business models are the business entity, business 
event, business process, business activity and business rule. 

This continuous, cyclical view of the interaction between these five business concepts 
can be depicted as follows:

Figure 3-36 Event Based Business Modeling 

3.12.3.2 Event Driven Computing

Event driven computing is a computing paradigm where interaction among components 
is based on notification of what happened, as opposed to instructions of what should 
happen. 

“What happened” is reflected as events. The communication that the event happened is 
reflected as notifications. The reaction to the notification (or indirectly to the event) is 
reflected as activities.
February 2002 UML Profile for EDOC:  Rationale 3-181



3

Two important layers provide loose coupling between event, notification and activity.

The events are decoupled from the act of notification by configurable subscriptions.

The act of notification is decoupled from the activity by configurable notification rules.

Event driven computing is a very flexible, yet powerful architecture for enterprise 
distributed object computing. The main architectural principle is that individual 
components are kept as autonomous as possible, and that the loose coupling and 
configuarability enable rapid reconfiguration of the system to meet changing business 
model requirements such as mergers, outsourcing and business re-engineering. Under 
event driven enterprise computing all business entities are self-contained, and typically 
do not directly change each other’s state.

3.12.3.3 Event Driven Business Computing

Event driven business computing is a paradigm that executes business processes by 
capturing events that happen in the enterprise, notifying the appropriate other parties in 
the enterprise or outside the enterprise, and reacting to such notifications. 

Business processes are configured with a set of subscriptions, and a set of notification 
rules that determine what activity to start (or end) based on each notification. 

Business Entities are the people, products, and other business resources and artifacts 
that business activities operate on. When actions are performed on Business Entities, 
Business Events happen. All Business Entities are capable of notifying the world of 
events that happen to them. 

Business Processes that are capable of subscribing to such event notifications are 
called EventBasedProcesses. They assign notifications to activities based on a set of 
Notification Rules.

3.12.3.4 Publish and Subscribe

In a Publish and Subscribe information distribution model, publishers publish 
information, and subscribers subscribe to information. Publishing simply means make 
the information openly available for consumption. Subscribing simply means 
expressing an interest in the information and consuming it when it gets delivered. The 
information is transferred from Publisher to Subscriber ‘automatically’, usually 
through the use of asynchronous message middleware. Publishers do not know which 
subscribers will receiver their data, and subscribers do not know where the information 
comes from. The information, however, describes the state of a process or an entity 
that is of interest to both publisher and subscriber, and both parties share the 
information model that describes these states (and state changes).

3.12.4 Key Concepts of event driven business and system models 

3.12.4.1 EventBasedProcess

This is a concept introduced by this ECA Events profile, but based on  the 
Choreography element in the ECA component profile.
3-182 UML Profile for Enterprise Distributed Object Computing February 2002



3

EventBasedProcesses are identifiable series of activities that change states of business 
entities, thereby causing business events. For example, the activities in the Shipping 
process may cause allocation events against the Inventory Entity, and pick, pack, and 
ship events against the Shipment Entity.

3.12.4.2 Entity

This is a concept from the Entities profile.

Business Entities are representations of entities of significance to the business, 
identifiable by an ID, operated on during business process execution, and characterized 
by having a lifecycle expressed as a set of entity states. Examples are Customer, 
Purchase Order, Product, and Payment. In the Events profile, we use the supertype of 
Entity, DataManager, as the managers of the data behind an Entity. An 
EventBasedDataManager is capable of publishing information about all changes to the 
data it manages. Because a EventBasedDataManager is a kind of EventBasedProcess, it 
can also publish information about state changes in its internal process.

3.12.4.3 BusinessEvent

This is a concept introduced by this ECA Events profile.

BusinessEvents are state changes whose occurrence is of significance to the execution 
of business processes. Typically business events reflect state changes in Business 
Entities. These can be thought of as  entity events. Examples are the approval of a 
Purchase Order, or Receipt of a Payment. A more indirect type of business event is a 
state change to a business process or to a collaboration between two business 
processes. These are called ProcessEvents.

3.12.4.4 Notification

This is a concept introduced by this ECA Events profile. This is a concept only, it is 
not represented by a specific element in the Events profile. It is implemented using the 
dataflow part of the Business Process profile.

A notification is a triggered dataflow between two roles, or between two components. 
The trigger that causes the notification can be ‘manual’, or timed, or it can be due to 
the fact that an event has happened. When triggered by an event, it is called an event 
notification. Event notification, too, is just a concept, and not modeled explicitly.

The notification is always one-way only. The source of the notification is usually an 
Entity, but can also be an EventBasedProcess. The destination is usually an 
EventBasedProcess.

A notification can be thought of as the delivery of  a set of data from a publisher to a 
subscriber. The data delivered is a PubSubNotice. A PubSubNotice is just a set of data, 
it is immutable, and it does not have any behavior of its own. There is no implication 
in the PubSubNotice as to what the recipient is going to do when it receives the 
PubSubNotice. An EventNotice is a special kind of PubSubNotice.
February 2002 UML Profile for EDOC:  Rationale 3-183



3

All business events are associated with an EventNotice and the corresponding 
notification will be take place whenever the business event happens successfully.

Similarly, when a business event is supposed to have happened but didn’t, ‘failure’ 
notifications will be take place.

An EventNotice always conveys the following information:

• the EventBasedProcess or entity the event happened against, 

• the trigger that caused it, 

• the identification of the before state, 

• the after state, 

• the change between the two states.

3.12.4.5 Publisher

This is a concept introduced by this ECA events profile.

A publisher is a component that provides PubSubNotices.

3.12.4.6 Subscriber

This is concept introduced by this ECA Events profile.

A subscriber is a role or component that holds subscriptions to one or more 
PubSubNotices.

3.12.4.7 Subscription

This is a concept introduced by this ECA Events profile.

A subscription establishes a flow of PubSubNotices to the subscriber. A subscription 
identifies the type of EventNotice, e.g. the kind of event you want to be notified about. 
A subscription may additionally have a SubscriptionClause associated. The 
SubscriptionClause functions as a filter much like a where-clause on the content of the 
notification.

3.12.4.8 NotificationRule

This is a concept introduced by this ECA Events profile.

NotificationRules are rules that govern the execution of (part of) an 
EventBasedProcess. A NotificationRule is a mapping from a BusinessNotification to 
an activity, optionally guarded by a EventCondition. An EventCondition is a 
dependency on the receipt of additional, related PubSubNotices.
3-184 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.12.5 Event and Notification based Interaction Models

So the basic building blocks are the EventBasedProcess and the Entity, as shown in 
Figure 3-37. The two are ‘wired together’ by a flow of actions from process to entity, 
and by a flow of EventNotices from entity to process. In a component framework, 
therefore, EventBasedProcesses have EventNotices inflow and action outflow, and 
Entities have action inflow and EventNotice outflow. A messaging infrastructure 
manages the delivery of EventNotices from entities to processes. The actions too, 
incidentally, can be implemented via a messaging infrastructure, but the corresponding 
messages are usually point-to-point.

This means that we can create CCA EventBasedProcess components and CCA event-
based Entity components if we can model:

• A EventBasedProcess as a set of Notification Rules of the type 
notification/condition/activity (This is the event-driven equivalent of the commonly 
known even/condition/action rule).

• An event-based Entity as set of action/state/event causalities.

The connection from EventBasedProcess to Entity is governed by a configurable 
mapping of notification to action, namely the notification rule.

The connection from Entity to EventBasedProcess is governed by a configurable set of 
subscriptions.

With these building blocks we can model a number of event-based interactions. And by 
reconfiguring the Notification Rules and/or the Subscriptions, we can easily re-
engineer the business process and its execution in the system.

The very simplest model is a single process affecting a single entity, but this is not very 
interesting.

The simplest model of interest is a single process affecting multiple entities. 

A slightly more complex interaction is process-to-process notifications. This model is 
used in supply chain models, a.k.a. business signal. 

Another flavor of interaction is the delegation of the responsibility to deal with 
notifications. This model is used in EAI integration where legacy applications can be 
“wrapped” behind publishers and subscribers of notifications.

These three flavors map to three kinds of interaction in the component model: 
Interaction between a master and slave component, interaction between two peer 
components, and interaction between the boundary of a component and its 
subcomponents.

Yet another kind of interaction that can also be based on events and notifications is a 
collaboration between processes. This model is used often in b2b interactions. Even 
web services can be implemented using event concepts and loosely coupled messaging.
February 2002 UML Profile for EDOC:  Rationale 3-185



3

3.12.5.1 Intra Process Event Notification

The simplest model a single process affecting multiple entities. This can be modeled 
pictorially something like this:

Figure 3-37 Intra Process Event Notification  

This corresponds to interaction between a master and a set of slave components. The 
process has the logic to evaluate notifications and invokes actions on the entities.

3.12.5.2 Cross Process Event Notification

A picture of loosely coupled cross process notification:
3-186 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-38 Cross Process Event Notification  

This corresponds to interaction between two peer components.

3.12.5.3 Delegation

Delegation is passing on of a responsibility. Relative to the event driven model, 
delegation is the passing of the business notification to another process, for it to 
resolve, typically a sub process. There is a distinct expectation that the business 
activity will happen, but it will happen as part of the sub process, not in the main 
process. However, to the outside processes it will appear as if the main process 
performed the business activity, and any event will look like they happened in the main 
process and any notifications will come from the main process.
February 2002 UML Profile for EDOC:  Rationale 3-187



3

Figure 3-39  Delegation  

In the component model this the interaction between the boundary of a component and 
its subcomponents.

3.12.6 Leveraging event based models

3.12.6.1 Business Event Types

A variety of standard event types enable a rich set of event-based scenarios.

Success events

A success event is the ‘normal’ event. It reflects the successful execution of an action 
on an entity or the successful initiation or completion of an activity within the process.

Failure events

A failure event is a type of ‘exception’ event. It reflects that an action on an entity was 
attempted but failed, or that the initiation of an activity failed, or that an activity was 
forced to terminate unsuccessfully. In programming languages this is the equivalent of 
‘raising an exception.’
3-188 UML Profile for Enterprise Distributed Object Computing February 2002



3

TimeOut-Events

This is one of the most useful events for management. A TimeOut-event is an abstract 
event that reflects that something should have happened within a certain time period, 
but didn’t. Typically this would be something like ‘shipment was scheduled but did not 
happen’ within the allotted time. This can be generated based on an overdue condition 
relative to a scheduled time

Mutual exclusion events

This type of event signifies that a given event that might be expected according to the 
business process, did not happen, due to another alternative event happening. This may 
be due to the process calling for a mutually exclusive choice between two parallel 
events, or based on the occurrence of an event that normally happens after the event in 
question, indicating that an event was ‘skipped.’

Data change events

These are useful for replication of data from one place to another. Whenever the source 
data changes, events are generated, even if the change in data is not considered an 
event in an entity life cycle sense.

Timed notifications

This is in some sense the simplest kind of notification; it is simply an alarm clock or 
planning calendar. You can schedule notifications based on a schedule of trigger times. 
The event, in some sense, is the clock reaching the scheduled time. The notification is 
usually about the state of something as per that time, or in some cases it could be the 
timed release of a number of accumulated event notifications.

3.12.6.2 Event Algebra

Events may be ANDed/ ORed, included, excluded, to create new event types.

For instance creditApproved event, and shipmentReady event may be ANDed to 
releaseApproved event.

For instance orderApproved event and NOT licenseDenied event may be ANDed to 
shipmentReleased event.

For instance orderShipped event, and NOT shipmentInvoiced event may be ANDed to 
invoice exception event.

For instance orderShipped event and orderCanceled event may be ORed to produce an 
orderClosed event.

Such event algebra is performed by value-added event agents. They take event 
notifications as their input and produce value added event notifications as their output.

Such an agent could also be turning event notifications into time-released notifications.
February 2002 UML Profile for EDOC:  Rationale 3-189



3

3.12.6.3 Management by Exception

One of the most important ways to leverage event driven computing is to manage by 
exception notifications. If the business model defines all the events that should occur in 
the normal course of business, then intelligent agents can be set up to track the 
progress of each process instance and issue notifications whenever something 
happened too late or didn’t happen at all. These agents would issue timeout-event 
notifications, mutual exclusion event notifications, and other exception notifications.

Event notifications can also be used to monitor workloads and to give input for 
rebalancing of loads within a process.

3.13 Metamodel

This is a meta-model for event-driven business computing, specifying the concepts 
described above. The model consists of two packages:

• Publish and Subscribe Package

• Event Package

These two packages are described in detail below, but first we show two views across 
the packages:

• Process View (showing how a Business Process produces and reacts to events)

• Entity View (showing how Business Entities produce and react to events)

We also show both packages and both views together in a full overview diagram of the 
metamodel for  the Events profile.

3.13.1 Business Process View

This is an overview of the business process aspect of event-driven business computing. 
The yellow (shaded) elements are directly part of the business process view. The white 
elements belong to other views and provide the context for this view (see Figure 3-40).
3-190 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-40  Business Process View of metamodel 

An EventBasedProcess is a specialized choreography. A choreography (from the CCA 
Profile) is a set of Nodes (States and PortUsages) and the Connections between them.  
An EventBasedProcess generates ProcessEvents upon successful or failed entry into or 
exit from its Nodes. A ProcessEvent is a kind of BusinessEvent. An 
EventBasedProcess is a Publisher and will publish EventNotices for each of its 
ProcessEvents. An EventBasedProcess is also a Subscriber and will hold subscriptions 
to PubSubNotices, specifically EventNotices from other processes and from entities. 

The NotificationRule is the loose coupling between the receipt of a EventNotice and 
entry into or exit from a Node. One or more EventConditions may guard the 
NotitificationRule. An EventCondition requires the receipt of an additional 
EventNotice, governed by another subscription.

Business Process View of Event Model

ProcessEvents 
reflect s uccessful 
or failed entry into 
and/or successful 
or  failed exit from 
Nodes

Publisher

EventNotice

BusinessEvent

0..n

1

+triggeredBy
0..n

+triggers
1

0..n

0. .1

+describes
0..n

+describedBy
0. .1

DataEvent

NotificationRule 
governs entry into 
or exit from 
Nodes

Publication

0..n

0..n

+offers
0..n

+offere...
0..n

PubSubNotice

1. .n

1..n

+announcedBy

1. .n

+announces

1..n

Subscriber

Choreography

(from CCA)

ProcessEvent

(from Event)

EventCondition

condition : Expression

EventbasedProces s

(from Event)

0..n0..n

lifeCycle

Subscription

1..n

1..n

+subscribedBy

1..n

+subscribesTo
1..n

0..n

0. .n

+requiredBy

0..n

+requires
0. .n

Node

(from CCA)

1..2

0..n

+reflectedIn

1..2

+reflects

0..n

NotificationRule

condition : Expression

0. .n

0..n

+guardedBy
0. .n

+guards
0..n

1..2

0. .1

+governedBy
1..2

+governs

0. .1
February 2002 UML Profile for EDOC:  Metamodel 3-191



3

3.13.2 Entity View

This is an overview of the entity aspect of event-driven business computing. The 
yellow (shaded) elements are directly part of the entity view. The white elements 
belong to other views and provide the context for this view.

Figure 3-41  Entity View of metamodel

In the Entities profile Entity is a kind of DataManager. Further, a DataManager is a 
kind of Choreography. An EventBasedDataManager is a special DataManager that 
generates DataEvents each time its data changes. DataEvents are a kind of 
BusinessEvent. Since a DataManager is also a kind of Choreography, it can also 
generate ProcessEvents about its own internal choreography.

3.13.3 Whole Event Model

The following is a diagram of the whole metamodel for the Events profile. The yellow 
(shaded) elements are directly part of the metamodel, and will be described in detail 
below, divided into two packages: Publish and Subscribe, and Event. The white 
elements belong to other profiles and provide the context for this view.

Entity View  o f E vent  M odel

E ventbasedDataM anager

D ataE ve nt

1

0. .n

1

0. .n

lifeCyc le

E ventNotice

B us inessE vent

0..n

1

+ triggeredB y

0..n

+ triggers
1

0..n

0..1

+ desc ribes

0..n

+ desc ribedB y
0..1

S ub sc rib er

S ubsc ript ion

P ubS ubNotice

1..n

1..n

+ subsc r ibe dBy
1..n

+ subsc ribesTo
1..n

P ub lisher

P ublicat ion

1..n

1. .n

+ announcedB y

1..n

+ announces
1. .n

0..n

0..n

+ offers

0..n

+ offeredB y
0..n

E ventbas edP rocess

E ntity
(fr o m  E n ti ty)

Dat aMa nager
(fr o m  E n ti ty)
3-192 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-42 Complete Metamodel for Event Modeling

Eventb asedD at
aMan ager

DataEvent

1

0. .n

1

0. .n

li feCyc le

Pub lisher
DataManager

(from Entity )

Busines sEvent

EventNotic e

(from Event)

1

0..n

+ triggers
1

+ triggeredBy
0..n

0..1

0..n

+desc ribedBy
0..1

+desc ribes

0..n

Compos iteData

(from CCA)

Public ation

public ationClause : ex press ion
dom ain : S tring

0..n

0..n

+offers
0..n

+offered By
0..n

Subs c ri b er

PubS ubNotic e

1..n

1 ..n
+announc edBy

1..n
+announc es

1 ..n

EventCondition

c ondition : Ex press ion

Eventbas edProc ess

Subs cription

s ubs c ripti onClaus e : expres s io n
dom ain : S tring

1..n

1..n
+subs cr ibedBy

1..n

+subsc ribes To

1..n

0..n

0..n
+ requi redBy

0..n
+ requires

0..n

Choreography

(from CCA)

Proc ess Event

entry : Boolean
s uc cess  : Boolean

0..n0..n

li feCyc le

Notific ationRule

c ondi tion : Ex press ion
0..n

0..n +guardedBy

0..n+guards

0..n

Node

(from  CCA)

1..2

0..n

+ reflec tedIn
1..2

+ refl ec ts

0..n

0..1

1. .2

+governs
0..1

+governedBy
1. .2
February 2002 UML Profile for EDOC:  Metamodel 3-193



3

3.13.4 Publish and Subscribe Package

This is an overview of the publish and subscribe aspect of event-driven business 
computing. The yellow (shaded) elements are directly part of the publish and subscribe 
package. Each of them will be described in detail below. The white elements belong to 
other views and provide the context for this view.

Figure 3-43  Metamodel of event notification view

A publisher is a component that offers a list of publications, and produces (publishes) 
PubSubNotices accordingly. Publication is the commitment to send PubSubNotice. 
PubSubNotice is the data structure in which the PubSubNotice instances will be 
published.

EventNotice is a kind of PubSubNotice.

A subscriber is a component that holds Subscriptions, and receives PubSubNotices 
accordingly. Subscription is the loose coupling between the sending of the notice and 
the receipt of the notice. A subscriptionClause determines whether the subscriber gets 
notified or not.

S ub s c rib er

P ub li s her

S ubs c ript ion

s ubs c ript ionClaus e : ex pres s ion

dom ain : S tring

P ublic at ion

pub lic at ionClaus e : ex pres s ion

dom ain : S tring

0. .n

0. .n

+ offers
0. .n

+ offeredB y

0. .n

P ubS ubNotic e

1. .n

1. .n

+ s ubs c ribedB y

1. .n+ s ubs c ri bes To

1. .n

1. .n

1. .n

+ announc edB y

1. .n

+ announc es

1. .n

Pu b lish  and S ubscribe  (P ubS ub) P ackage 

F lowPort

(from  CCA )

Com pos iteData

(from  CCA )
3-194 UML Profile for Enterprise Distributed Object Computing February 2002



3

Notification is the sending of an PubSubNotice from the Publisher to the Subscriber 
when an event happens within the Publisher. This is usually handled by middleware, 
and publisher and subscriber are loosely coupled and anonymous relative to each other.

3.13.4.1 Publisher

Semantics

A publisher is a component that exposes a list of publications, and produces 
PubSubNotices accordingly.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::CCA::Event:: Publisher

Owned By

None

Properties

None

Related elements

Publication

Publisher offers one or more Publications

Constraints

None

3.13.4.2 Publication

Semantics

A Publication is a declaration of capability and intent to produce a PubSubNotice.

UML base element(s) in the Profile

Inherits from FlowPort in CCA Profile

Fully Scoped Name

EDOC::CCA::Event:: Publication
February 2002 UML Profile for EDOC:  Metamodel 3-195



3

Owned By

Publisher

Properties

publicationClause

Expression based on attributes of PubSubNotice, describing the instance subset that 
will be produced according to this publication.

domain

A domain in which the PubSubNotices for this publication will be produced.

Related Elements

Publisher

A Publication is offeredBy exactly one Publisher.

PubSubNotice

A Publication announces one or more PubSubNotices.

FlowPort 

A Publication Inherits from FlowPort as per the Component Profile.

Constraints

PublicationClause Expression is constrained to the values of the attributes of the 
associated EventNotice.

3.13.4.3 Subscriber

Semantics

A subscriber is a role or component that exposes a list of subscriptions, and consumes 
PubSubNotices accordingly.

UML base element(s) in the Profile

Class

Fully Scoped Name

EDOC::CCA::Event:: Subscriber

Owned By

None
3-196 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties

None

Related elements

Subscription

A Subscriber holds one or more Subscriptions.

Constraints

None

3.13.4.4 Subscription

Semantics

Subscription is the expression of interest in receiving and capability to receive a 
PubSubNotice.

UML base element(s) in the Profile

Inherits from FlowPort in Component Profile.

Fully Scoped Name

EDOC::CCA::Event:: Subscription

Owned By

Subscriber

Properties

subscriptionClause

Expression based on attributes of PubSubNotice, describing the instance subset of 
interest to this subscription.

domain

A domain of interest. Only PubSubNotices produced within this domain are of interest.

Related Elements

Subscriber

A Subscription is heldBy exactly one Subscriber.

EventNotice

A Subscription subscribesTo one or more EventNotices.
February 2002 UML Profile for EDOC:  Metamodel 3-197



3

FlowPort 

A Subscription Inherits from FlowPort as per Component Profile.

Constraints

SubscriptionClause Expression is constrained to the values of the attributes of the 
associated EventNotice. If the subscription is for more than one event notice, the 
expression is constrained to attributes that are common to all the event notices of 
interest.

3.13.4.5 PubSubNotice

Semantics

A PubSubNotice is any data structure that is announcedBy a publication and/or 
subscribedTo by a subscription. Instances of PubSubNotice are communicated as 
DataFlows from publishers to subscribers based on the subscriptions.

UML base element(s) in the Profile

Inherits from CompositeData as per Entities profile.

Fully Scoped Name

EDOC::CCA::Event:: PubSubNotice

Owned By

None

Properties

None

Related Elements

Subscription

A PubSubNotice is subscribedBy one or more Subscriptions.

Publication

A PubSubNotice announcedBy one or more Publications.

CompositeData

A PubSubNotice Inherits from CompositeData as per Entities profile.

Constraints

None
3-198 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.13.5 Event Package

This is an overview of event aspect of event-driven business computing. The yellow 
(shaded) elements are directly part of the event package. Each of them will be 
described in detail below. The white elements belong to other views and provide the 
context for this view.

Figure 3-44 Diagram of Event Package

3.13.5.1 BusinessEvent

Semantics

A business event is any event of business interest that happens within an enterprise. 
BusinessEvents are either ProcessEvents or DataEvents.

UML base element(s) in the Profile

Class

Pub lisher

(from P ubS ub )

DataManager

(from Entity )

BusinessE vent

EventNotice

1

0..n
+t riggers

1

+triggeredB y

0..n

0..1

0..n

+desc ribedBy

0..1

+describes

EventbasedDataManager

DataEvent

1

0. .n

1

0. .n

lifeCyc le

Event P ackage 

PubSubNotice

(from PubSub)

Subscriber

(from P ubS ub )

EventCondition

condition : Express ion

EventbasedProcess

Subscription

(from PubSub)

1..n

1..n

+subscribedBy
1..n

+subscribesTo
1..n

0..n
0..n

+requiredB y

0..n

+requires
0..n

Choreography

(from CCA)

ProcessEvent

entry : Boolean
success : Boolean

0..n0..n

lifeCyc le

Notifica tionRule

condition : Express ion
0..n0..n

+guardedB y
0..n

+guards
0..n

Node

(from  CCA )

1..2

0. .n

+reflec tedIn
1..2

+reflec ts

0. .n

0..1

1..2

+governs

0..1

+governedBy

1..2

0..n
February 2002 UML Profile for EDOC:  Metamodel 3-199



3

Fully Scoped Name

EDOC::CCA::Event:: BusinessEvent

Owned By

None

Properties

None

Related Elements

EventNotice

A business event triggers one or more event notices.

A business event is describedBy one or more event notices.

ProcessEvent

Business event is the Abstract supertype of ProcessEvent.

DataEvent

Business event is the Abstract supertype of DataEvent.

Constraints

None

3.13.5.2 ProcessEvent

Semantics

A process event is any business event that reflects a state change within a process, i.e. 
entry into or exit from Nodes in a Choreography.

UML base element(s) in the Profile

Inherits from BusinessEvent

Fully Scoped Name

EDOC::CCA::Event:: ProcessEvent

Owned By

EventBasedProcess
3-200 UML Profile for Enterprise Distributed Object Computing February 2002



3

Properties

None

Related Elements

Node

A ProcessEvent reflects the entry into or exit from one Node (or the exit from one and 
entry into another, i.e., two Nodes). 

BusinessEvent

ProcessEvent Inherits from BusinessEvent. 

Constraints

Any Node referenced must  belongs to the EventBasedProcess that also owns this 
ProcessEvent.

3.13.5.3 DataEvent

Semantics

A data event is any business event that reflects a changes in data managed by a 
DataManager.

UML base element(s) in the Profile

Inherits from BusinessEvent

Fully Scoped Name

EDOC::CCA::Event:: DataEvent

Owned By

EventBasedDataManager

Properties

None

Related Elements

BusinessEvent

ProcessEvent Inherits from BusinessEvent.

Constraints

None
February 2002 UML Profile for EDOC:  Metamodel 3-201



3

3.13.5.4 EventNotice

Semantics

An event notice is any PubSubNotice that is triggered by a business event.

UML base element(s) in the Profile

Inherits from PubSubNotice

Fully Scoped Name

EDOC::CCA::Event:: EventNotice

Owned By

None

Properties

None

Related Elements

BusinessEvent

An event notice is triggeredBy exactly one Business Event.

An event notice may describe at most one Business Events.

PubSubNotice

An event notice Inherits from PubSubNotice.

Constraints

None

3.13.5.5 EventBasedProcess

Semantics

An EventBasedProcess is a subtype of Choreography (CCA profile). It is a Subscriber 
and has NotificationRules associated with its Subscriptions. It is a Publisher and 
publishes ProcessEvents. ProcessEvents describe the life cycle of the 
EventBasedProcess.

UML base element(s) in the Profile

Inherits from Choreography (from CCA profile).
3-202 UML Profile for Enterprise Distributed Object Computing February 2002



3

Fully Scoped Name

EDOC::CCA::Event:: EventBasedProcess

Owned By

None

Properties

None

Related Elements

ProcessEvent

An EventBasedProcess owns a set of ProcessEvents which together describes the life 
cycle of the EventBasedProcess.

Choreography

An EventBasedProcess Inherits from Choreography (from CCA profile).

Publisher

An EventBasedProcess Inherits from Publisher.

Subscriber

An EventBasedProcess Inherits from Subscriber.

EventBasedDataManager

An EventBasedProcess is the supertype of EventBasedDataManager.

Constraints

None

3.13.5.6 EventBasedDataManager

Semantics

An EventBasedDataManager is a DataManager. It is also a Publisher and publishes 
DataEvents when its data changes. It may also be a subscriber, typically subscribing to 
PubSubNotices relating to the maintenance of its data, e.g., replication.

UML base element(s) in the Profile

Inherits from DataManager (from Entities profile).
February 2002 UML Profile for EDOC:  Metamodel 3-203



3

Fully Scoped Name

EDOC::CCA::Event:: EventBasedDataManager

Owned By

None

Properties

None

Related Elements

DataEvent

An EventBasedDataManager owns a set of DataEvents which together describes 
possible changes to the data owned by the EventBasedDataManager.

DataManager  

An EventBasedDataManager Inherits from DataManager (from Entities profile).

Publisher

An EventBasedDataManager Inherits from Publisher.

Subscriber

An EventBasedDataManager Inherits from Subscriber.

EventBasedDataManager

An EventBasedDataManager  inherits from  EventBasedProcess.

Constraints

None

3.13.5.7 NotificationRule

Semantics

An NotificationRule is a rule associated with a subscription which determines what 
should happen within the EventBasedProcess holding the subscription when a 
qualifying PubSubNotice is delivered. Optionally the NotificationRule can be further 
guarded by an EventCondition that requires the delivery of additional events.
3-204 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML base element(s) in the Profile

Class

Fully Scoped Name

EDOC::CCA::Event:: NotificationRule

Owned By

EventBasedProcess

Properties

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of 
the PubSubNotice that will cause the change in the EventBasedProcess indicated by 
this NotificationRule 

Related Elements

Subscription

A  NotificationRule is associated with a Subscription and ‘fires’ upon receipt of the 
PubSubNotice associated with the Subscription.

EventCondition

A NotificationRule may be guardedBy one or more EventConditions calling for the 
receipt of additional events before this NotificationRule will ‘fire’ successfully.

Node

A NotificationRule governs the entry into or exit from one Node (or the exit from one 
and entry into another, i.e., two Nodes). 

Constraints

Any EventConditions must reference Subscriptions belonging to the same 
EventBasedProcess as the NotificationRule.

3.13.5.8 EventCondition

Semantics

An EventCondition identifies a subscription and specifies a PubSubNotice instance 
subset of which one must have been received to satisfy this condition.
February 2002 UML Profile for EDOC:  Metamodel 3-205



3

UML base element(s) in the Profile

Class

Fully Scoped Name

EDOC::CCA::Event:: EventCondition

Owned By

NotificationRule

Properties

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of 
the PubSubNotice that will satisfy the guard constituted by  this EventCondition.

Related Elements 

Subscription 

An  EventCondition is requires a Subscription and ‘fires’ upon receipt of a 
PubSubNotice associated with the Subscription. If the received PubSubNotice satisfies 
the condition expression, then the EventCondition has been satisfied. 

Constraints

None

3.14 UML Profile

3.14.1 Table mapping concepts to profile elements

Table 3-20 Mapping Events Concepts to Profile Elements

Metamodel element Profile element UML base element

Publisher Publisher Class

Publication Publication FlowPort/Class

Subscriber Subscriber Class

Subscription Subscription FlowPort/Class

PubSubNotice PubSubNotice CompositeData/Class

BusinessEvent BusinessEvent Class

ProcessEvent ProcessEvent Class

DataEvent DataEvent Class

EventNotice EventNotice CompositeData/Class

EventBasedProcess EventBasedProcess Choreography/Classifier
3-206 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.14.2 Introduction

The following lists, divided into two packages, the elements in the Events profile.

3.14.3 Publish and Subscribe Package

3.14.3.1 Publisher

Inheritance

Class

Publisher

Instantiation in a model

Concrete

Semantics

A publisher is a component that exposes a list of publications, and produces 
PubSubNotices accordingly.

Tagged Values

offers

Reference: Publisher offers one or more Publications.

Constraints

None

3.14.3.2 Publication

Inheritance

Class

ProtoPort

Port

Flowport

EventBasedDataManager EventBasedDataManager Choreography/Classifier

NotificationRule NotificationRule Class

EventCondition EventCondition Class

Table 3-20 Mapping Events Concepts to Profile Elements
February 2002 UML Profile for EDOC:  UML Profile 3-207



3

Publication

Instantiation in a model

Concrete

Semantics

A Publication is a declaration of capability and intent to produce a PubSubNotice.

Tagged Values

publicationClause

Expression based on attributes of PubSubNotice, describing the instance subset that 
will be produced according to this publication.

domain

A domain in which the PubSubNotices for this publication will be produced.

Publisher

Reference: A Publication is offeredBy exactly one Publisher.

announces

Reference: A Publication announces one or more PubSubNotices.

Constraints

PublicationClause Expression is constrained to the values of the attributes of the 
associated EventNotice.

3.14.3.3 Subscriber

Inheritance

Class

Subscriber

Instantiation in a model

Concrete

Semantics

A subscriber is a role or component that exposes a list of subscriptions, and consumes 
PubSubNotices accordingly.
3-208 UML Profile for Enterprise Distributed Object Computing February 2002



3

Tagged Values

holds

Reference: A Subscriber holds one or more Subscriptions.

Constraints

None

3.14.3.4 Subscription

Inheritance

Class

ProtoPort

Port

Flowport 

Subscription

Instantiation in a model

Concrete

Semantics

Subscription is the expression of interest in receiving and capability to receive a 
PubSubNotice.

Tagged Values

subscriptionClause

Expression based on attributes of PubSubNotice, describing the instance subset of 
interest to this subscription.

domain

A domain of interest. Only PubSubNotices produced within this domain are of interest.

heldBy

Reference: A Subscription is heldBy exactly one Subscriber.

subscribesTo

Reference: A Subscription subscribesTo one or more EventNotices.
February 2002 UML Profile for EDOC:  UML Profile 3-209



3

Constraints

SubscriptionClause Expression is constrained to the values of the attributes of the 
associated EventNotice. If the subscription is for more than one event notice, the 
expression is constrained to attributes that are common to all the event notices of 
interest.

3.14.3.5 PubSubNotice

Inheritance

Class

CompositeData

PubSubNotice

Instantiation in a model

Concrete

Semantics

A PubSubNotice is any data structure that is announcedBy a publication and/or 
subscribedTo by a subscription. Instances of PubSubNotice are communicated as 
dataflows from publishers to subscribers based on the subscriptions.

Tagged Values

subscribedBy

Reference: A PubSubNotice is subscribedBy one or more Subscriptions.

announcedBy

Reference: A PubSubNotice announcedBy one or more Publications.

Constraints

None

3.14.4 Event Package 2

3.14.4.1 BusinessEvent

Inheritance

Class

BusinessEvent
3-210 UML Profile for Enterprise Distributed Object Computing February 2002



3

Instantiation in a model

Abstract

Semantics

A business event is any event of business interest that happens within an enterprise. 
BusinessEvents are either ProcessEvents or DataEvents.

Tagged Values

triggers

Reference: A business event triggers one or more event notices.

describedBy

Reference: A business event is describedBy one or more event notices.

Constraints

None

3.14.4.2 ProcessEvent

Inheritance

Class

BusinessEvent

ProcessEvent

Instantiation in a model

Concrete

Semantics

A process event is any business event that reflects a state change within a process, i.e. 
entry into or exit from Nodes in a Choreography.

Tagged Values

reflects

Reference: A ProcessEvent reflects the entry into or exit from one Node (or the exit 
from one and entry into another, i.e. two Nodes).

Constraints

Any Node referenced must  belong to the EventBasedProcess that also owns this 
ProcessEvent.
February 2002 UML Profile for EDOC:  UML Profile 3-211



3

3.14.4.3 DataEvent

Inheritance

Class

BusinessEvent

DataEvent

Instantiation in a model

Concrete

Semantics

A data event is any business event that reflects a changes in data managed by a 
DataManager.

Tagged Values

None

Constraints

None

3.14.4.4 EventNotice

Inheritance

Class

CompositeData

PubSubNotice

EventNotice

Instantiation in a model

Concrete

Semantics

An event notice is any PubSubNotice that is triggered by a business event.

Tagged Values

triggeredBy

Reference: An event notice is triggeredBy exactly one Business Event
3-212 UML Profile for Enterprise Distributed Object Computing February 2002



3

An event notice may describe at most one Business Events.

Constraints

None

3.14.4.5 EventBasedProcess

Inheritance

Choreography

EventBasedProcess

Instantiation in a model

Concrete

Semantics

An EventBasedProcess is a subtype of Choreography. It is a Subscriber and has 
NotificationRules associated with its Subscriptions. It is a Publisher and publishes 
ProcessEvents. ProcessEvents describe the life cycle of the EventBasedProcess.

Tagged Values

None

Constraints

None

3.14.4.6 EventBasedDataManager

Inheritance

Choreography

ProcessComponent

DataManager

EventBasedDataManager

Instantiation in a model

Concrete
February 2002 UML Profile for EDOC:  UML Profile 3-213



3

Semantics

An EventBasedDataManager is a DataManager. It is also a Publisher and publishes 
DataEvents when its data changes. It may also be a subscriber, typically subscribing to 
PubSubNotices relating to the maintenance of its data, e.g., replication.

Tagged Values

None

Constraints

None

3.14.4.7 NotificationRule

Inheritance

Class

NotificationRule

Instantiation in a model

Concrete

Semantics

A NotificationRule is a rule associated with a subscription which determines what 
should happen within the EventBasedProcess holding the subscription when a 
qualifying PubSubNotice is delivered. Optionally the NotificationRule can be further 
guarded by an EventCondition that requires the delivery of additional events.

Tagged Values

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of 
the PubSubNotice that will cause the change in the EventBasedProcess indicated by 
this NotificationRule. 

subscription

Reference: A  NotificationRule is associated with a Subscription and ‘fires’ upon 
receipt of the PubSubNotice associated with the Subscription.

guardedBy

Reference: A NotificationRule may be guardedBy one or more EventConditions calling 
for the receipt of additional events before this NotificationRule will ‘fire’ successfully.
3-214 UML Profile for Enterprise Distributed Object Computing February 2002



3

Node

A NotificationRule governs the entry into or exit from one Node (or the exit from one 
and entry into another, i.e., two Nodes). 

Constraints

Any EventConditions must reference Subscriptions belonging to the same 
EventBasedProcess as the NotificationRule.

3.14.4.8 EventCondition

Inheritance

Class

EventCondition

Instantiation in a model

Concrete

Semantics

An EventCondition identifies a subscription and specifies a PubSubNotice instance 
subset of which one must have been received to satisfy this condition.

Tagged Values

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of 
the PubSubNotice that will satisfy the guard constituted by  this EventCondition.

requires

Reference: An EventCondition is requires a Subscription and ‘fires’ upon receipt of a 
PubSubNotice associated with the Subscription. If the received PubSubNotice satisfies 
the condition expression, then the EventCondition has been satisfied. 

Constraints

None

3.15 Relationship to other ECA profiles

3.15.1 Relationship to Business Process profile and Entities profile 

The ECA Business Process profile describes a process as a set of activities.
February 2002 UML Profile for EDOC:  Relationship to other ECA profiles 3-215



3

Activities are defined in terms of responsible party, performers, artifacts, and pre and 
post conditions.

Activity diagrams may be used to show roles and flow between activities.

Collaboration diagrams may be used to show roles and message flow between roles.

The Business Process profile does not specify which performers act on what artifacts, 
and how.

It does not specify directly the relationship between states of artifacts and the pre and 
post conditions of activities. 

It does not show directly what triggers each activity.

(Above three statements are qualified: other than as annotated in activity diagram as 
control flow and object flow.)

The Business Process profile, relies on components to implement the choreography. 
The states and transitions of choreography implement the control flows of the activity 
diagram. 

The messages implement the information flows from the collaboration diagram.

The Events profile (this profile) describes events that happen to artifacts (entities). It 
describes business events as changes from one state to another. The Events profile 
describes how activities result in state changes, i.e. events.

It describes how these BusinessEvents map to EventNotices, and how subscriptions can 
channel notifications to processes, and how delivery of a EventNotice can be mapped 
by NotificationRules to  activities.

The Events profile does not describe who or what within the process establishes the 
subscription, or who or what within the process reacts to receipts of notifications.

3.15.2 Relationship to ECA CCA profile

3.15.2.1 Modeling Events with Components

Events are changes in state to either entities or processes.

Just about anything that happens in a business, has interest to someone else, and so 
every event (to an entity or to a process) has the potential for causing notification.

At the system level this means that any process or entity has to offer notification (i.e. 
allow subscription) to any of its state change notifications. 

Most event notifications also trigger rules of some kind. If state of inventory changes 
to 'below-minimum-stock-level' some re-order rule kicks in. If state of the order-
process changes to 'over-due' then some expediting rule kicks in.

At the system level this means that NotificationRules and BusinessConditions must be 
able to refer to events.

All activities result in a new state, or in failure.
3-216 UML Profile for Enterprise Distributed Object Computing February 2002



3

At the system level this means that definitions of activities and operations include 
postconditions. These postconditions could be either expressions of events (i.e. state 
change), or more likely expression of state (where the state change, or event, is 
implicit.).

The Events profile relies on the CCA profile to implement the outgoing event 
notification flows from an entity component, and the incoming event notification flows 
to a process component. Event notification flows happen from flow port to flow port.

The Events profile relies on the CCA profile to implement the linkage between (the 
completion of) an action on an entity and (an instance of) an event . The event model 
specifies which activity causes which event. 

3.16 Relationship other paradigms

In general the central idea of event driven computing is that event notifications trigger 
action and/or communication, and that very little action or communication is not 
triggered by event notifications.

There are four main kinds of communication: 

• Business notification: A one-way, information-only, notification. A special subtype 
is event-notification that informs that an event just happened. This is the main form 
of communication in event-driven computing.

• Query: A two-way, request, response, with the response being the query result set. 
This is a more tightly coupled model. However a query could be triggered by the 
loosely coupled receipt of a business notification. Also the gathering of data for a 
business notification could require one or more tightly coupled queries.

• Collaboration: A two-way, negotiation-style, communication that may or may not 
result in a new state between the parties. An atomic style subtype is the ebXML 
business transaction. This could be implemented in many ways. One way is to 
consider the requests and responses in the collaboration to simply be business 
notifications. Regardless how the collaboration itself is implemented, it could 
certainly be triggered by the loosely coupled receipt of a business notification. For 
instance notification of an event within the enterprise might trigger the collaboration 
to order more inventory.

• Method invocation: A one-way, with optional return parameters, communication 
that usually causes the state at the remote end to change in a predefined way. Again, 
a method invocation could be triggered by the loosely coupled receipt of a business 
notification. Also under event driven computing entity operations, which are often 
implemented as method invocations, will trigger the sending of one or more loosely 
coupled event notifications. A cousin of method invocation, web service invocation, 
is usually likely to be implemented as one way transfer of messages over standard 
internet protocols. As such you could easily have web services react directly to 
event notifications.

So again, event notifications can trigger many kinds of communication, and based on 
business rules and or subscriptions, the kind of communication may be another 
notification, a collaboration, a method invocation or a query.
February 2002 UML Profile for EDOC:  Relationship other paradigms 3-217



3

Many times a tightly coupled systems model can be replaced with an event based 
model to create more flexibility in business and systems re-engineering. Generically, 
replacing state machines with event-driven computing always adds loose coupling. In a 
state machine, the event is both the thing that happened and the stimulus for something 
else to happen. The two cannot be separated. In event driven computing the event, the 
sending of a notification, the receipt of the notification, and the reaction to the 
notification are all separate, and can be much more easily reconfigured upon demand.

The above is true both at a generic business level and at a system level.

3.16.1 ebXML

ebXML is a large initiative to model and implement business collaborations based on 
XML message exchanges between the parties. 

There are several relationships of the event model to ebXML.

First, event driven computing within the enterprise is the best way to determine when 
to initiate business collaborations.

Second, the XML message exchanges could themselves be treated as business 
notifications.

Thirdly, the ebXML business model is based in part on a model for exchange of 
economic resources, where each such exchange is called an economic event. The 
capture of such economic events is similar to the capture of normal business events, 
and the communication of the notifications can be the same for both.

Fourth, the model for economic resources deals also with future commitments, which 
can be thought of as promises to execute economic events in the future. This extends 
the event model into prediction of events and executions against those predictions.

ebXML, phase one, was approved in May of 2001. In this phase, the ebXML business 
process choreography is already near identical to the ECA choreography. It is predicted 
that ebXML phase two will bring further alignment to ECA, and to the evolving web 
services standards.

3.17 Example

In the engineering of EventBasedProcesses you identify the business entities to be 
affected and examine their available business events and ‘communicated’ business 
notifications. Activities for the EventBasedProcess are then constructed to contain 
NotificationRules that ‘listen’ for the appropriate business notifications, and business 
activities that cause the appropriate business events to happen. The process can easily 
be re-engineered by changing the subscriptions, or the NotificationRules, thus causing 
different business activities to happen in response to a given business notification.

A basic EventBasedProcess, and its relationships to business entities can be depicted 
on a diagram such as that below
3-218 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-45 Business process/entity/event diagram 

Processes and entities are depicted as large boxes. Activities within a process are ovals. 
Events are ‘dog-eared’ boxes. Entity operations are fat arrows. Entity states are 
hexagons. Business notifications are arrows from event boxes to the left side of process 
boxes. Invocations of  entity operations are arrows from activity ovals to the fat arrows.

This diagram contains notational elements that can (almost) all be mapped directly to 
an Activity Diagram for the EventBasedProcess, a  State Chart for the Entity, and a 
Sequence Diagram for the interaction between the two.

Section V - The Business Process Profile

The Business Process profile specializes the CCA, and describes a set of UML 
extensions that may be used on their own, or in combination with the other EDOC 
elements, to model system behavior in the context of the business it supports.
February 2002 UML Profile for EDOC:  Example 3-219



3

3.18 Introduction

The Business Process profile provides modeling concepts that allow the description of 
business processes in terms of a composition of business activities, selection criteria 
for the entities that carry out these activities, and their communication and 
coordination. In particular, the Business Process profile provides the ability to express:

• Complex dependencies between individual business tasks (i.e., logical units of 
work) constituting a business process, as well as rich concurrency semantics.

• Representation of several business tasks at one level of abstraction as a single 
business task at a higher level of abstraction and precisely defining relationships 
between such tasks, covering activation and termination semantics for these tasks.

• Representation of iteration in business tasks.

• Various time expressions, such as duration of a task and support for expression of 
deadlines.

• Support for the detection of unexpected occurrences while performing business 
tasks that need to be acted upon, i.e., exceptional situations.

• Associations between the specifications of business tasks and business roles that 
perform these tasks and also those roles that are needed for task execution.

• Initiation of specific tasks in response to the occurrence of business events.

• The exposure of actions that take place during a business process as business events.

3.19 Metamodel

This model is organized with three main model elements to describe a business 
process: BusinessProcess, CompoundTask and Activity as shown in Figure 3-46 in 
which the derivation from the CCA is shown. BusinessProcess is the outermost layer of 
composition representing a complete process specification. It is a ProcessComponent 
for the purpose of its usage inside other CCA Compositions, but its Composition is 
constrained in the same way as a CompoundTask.In other words, BusinessProcesses 
are the entry point from CCA to a process definition. CompoundTasks are also 
specializations of CCA ProcessComponents, but their Ports are constrained 
specializations of CCA Ports which represent the data required to initiate an enactment 
of its Composition, which defines how it executes. The only ComponentUsages 
CompoundTasks and BusinessProcesses may contain are Activities, which are 
specializations of CCA ComponentUsages. Activities are the pieces of work required 
to complete a Process, and CompoundTasks are the containers for a logical set of 
Activities and the DataFlows that define the temporal and data dependencies between 
them. DataFlows are specializations of CCA Flows that connect the PortConnectors on 
the Activities. Activities are always usages of a CompoundTask definition, which 
defines the Port types and their correlation semantics. CompoundTasks defining an 
Activity either compose additional Activities and DataFlows to show how this Activity 
is performed, or the Activity also refers to a Performer ProcessRole via the 
performedBy association, which is a binding to a ProcessComponent that fulfils the 
requirements of the ProcessRole. Performer ProcessRoles are the exit point from a 
process definition which allows it to invoke ProcessComponents (and their 
3-220 UML Profile for Enterprise Distributed Object Computing February 2002



3

specializations, such as Entities). Many Activities may be usages of the same 
CompoundTask definition, and many activities in the same CompoundTask may be 
performed by the same ProcessRole.

(See Section 3.23 for the combined Process Model)

Figure 3-46  Composition of Process ModelElements.

DataFlows (constrained Flows) allow the connection of the ProcessPortConnectors 
representing the ProcessFlowPorts of a  CompoundTask to the ProcessPortConnectors 
of its contained Activities and vice versa. We will call the ProcessPortConnectors 
representing usage of a ProcessFlowPort in an InputGroup input 
ProcessPortConnectors. Likewise the ProcessPortConnectors representing usage of a 
ProcessFlowPort in an OutputGroup or ExceptionGroup are called output and 
exception ProcessPortConnectors, respectively.

The flow of data typically goes from input ProcessPortConnectors of the 
CompoundTask to the input ProcessPortConnectors of an Activity contained by the 
CompoundTask, and then from the output ProcessPortConnectors of the Activity to 
either the input ProcessPortConnectors of another contained Activity or to the output 
or exception ProcessPortConnectors of the CompoundTask. 

ProcessFlowPorts are the formal types of inputs to and outputs from a CompoundTask. 
They have a multiplicity, given by the attribute pair multiplicity_lb, and 
multiplicity_ub, which indicates the lower bound on the number of values that needs 
to be received or transmitted by the PortConnector instantiating this port type at 
runtime, as well as the upper bound on the number of values that the PortConnector 
can hold before it begins discarding them.  

Activity

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA) ComponentUsage

name : String
(from CCA)

n1 n

+uses

1

Composition
(from CCA)

n

1

+uses n

+owner

1

CompoundTask

BusinessProcess

BusinessProcessEntity

Entity

Managed : Boolean
(from Entity)
February 2002 UML Profile for EDOC:  Metamodel 3-221



3

Multiports are used to aggregate FlowPorts. The MultiPort specializations, InputGroup, 
OutputGroup and ExceptionGroup,  indicate that a set of ProcessFlowPorts, when used 
in some Composition, must all receive values from DataFlows before any of the values 
are received or transmitted by the CompoundTask which owns them. The can be 
considered to be correlators. A ProcessMultiPort may be synchronous or 
asynchronous, as indicated by its synchronous attribute inherited from Port. Usages of 
Synchronous ProcessMultiPorts indicate the initiation or termination of the execution 
of some Activity owning the PortUsage, whereas usages of asynchronous 
ProcessMultiPorts may only have the values in their contained ProcessFlowPorts 
transmitted into or out of an already executing Activity.

Figure 3-47 Inputs and Outputs of Process ModelElements.

In addition:

• An Activity may specify required Artifact(s) that select information entities to be 
used or produced.

Port

name : String
synchronous : Boolean
transactional : Boolean
direction : DirectionType
postCondition : Status

(from CCA)

<<boundary>>

PortUsage
(from CCA)

1 n

+represents

1 n

PortConnector
(from CCA)

AbstractTransition
(from CCA)

Node

name : String

(from CCA) n1

+outgoing

n

+source

1

n1

+incoming

n

+target

1

FlowPort
(from CCA)

<<boundary>>
MultiPort

(from CCA)

ProcessMultiPort

InputGroup OutputGroup

ExceptionGroup

ProcessFlowPort
multiplicity_lb : short
multiplicity_ub : short

ProcessPortConnector
DataFlow

Connection
(from CCA)

connects
3-222 UML Profile for Enterprise Distributed Object Computing February 2002



3

• An Activity may specify ResponsibleParty(s) that select people, company, or other 
group roles that are responsible for the Activity . 

• Each Activity may have ActivityPreCondition(s) and ActivityPostCondition(s) that 
further constrain when it starts and how it completes (see Process Model Patterns, 
Section 3.22).

Figure 3-48  Diagram of the Roles aspect of the Process Model.

The model in Figure 3-48 shows the ownership of ProcessRoles by CompoundTasks 
(via their ProcessComponent base class). ProcessRoles have three kinds of 
relationships with Activities. An Activity may be performedBy a ProcessRole, or it is 
possible that an Activity has a usesArtifact association with a ProcessRole, or a 
ProcessRole may be responsible for an Activity, as indicated by a responsibleFor 
association end role. The same ProcessRole may have several associations with 
different Activities, for example to be the performer for one activity, while also being 
an artifact for another, or to be both the responsible party and performer for an 
Activity. The specific ProcessRoles of Performer, Artifact and ResponsibleParty are 
constrained to be associated with Activities only by the performedBy, usesArtifact and 
responsibleFor associations respectively, and are useful in many cases where 
ProcessRoles do not need to be re-used.

Performer Artifact ResponsibleParty

ProcessRole

selectionRule : string
creationRule : string

Activity

0..n
0..n

+responsibleFor
0..n

0..n

0..n
0..n

+usesArtifact

0..n
0..n

0..1 0..n

+performedBy

0..1 0..n

CompoundTask

BusinessProcess

Composition
(from CCA) ComponentUsage

name : String
n1

+uses

n

+owner

1

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA)

n

1

n
+uses

1

February 2002 UML Profile for EDOC:  Metamodel 3-223



3

At run time a ProcessRole represents the binding of a state variable in its owner 
CompoundTask to a concrete ProcessComponent instance that meets the requirements 
of the selectionRule or creationRule attributes of the ProcessRole. Typically the 
performer roles of an Activity will have a type from which the defining 
CompoundTask of that Activity have been derived. The OperationPorts of the 
ProcessComponent identified by the ProcessRole will be represented as a pair of an 
InputGroup and an OutputGroup that contain ProcessFlowPorts that represent the input 
and output parameters of the OperationPort. Exceptions are represented by additional 
ExceptionGroups.

In addition to the basic set of model elements given above, there are a number of other 
important concepts required in the modeling of Processes that can be expressed as 
patterns of use of these basic elements:

• ActivityPreCondition

• ActivityPostCondition

• Timeout

• Terminate

• Loops

• Simple Loop

• While and Repeat/Until Loop

• For Loop

• Multitask

These are explained in Section 3.22, “Process Model Patterns,” on page 3-270.

An example of a CompoundTask containing Activities is shown in Figure 3-49.
3-224 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-49  A labeled CompoundTask Diagram

3.19.1 Business Process metamodel

The metamodel for the Business Process profile is contained in a single package, 
BusinessProcess.

3.19.1.1 CompoundTask

Semantics

A CompoundTask defines how to coordinate a set of related Activities that, in 
combination, perform some larger scale activity, ultimately in the context of a Business 
Process. It represents the formal type and Correlation Protocol Contract of Ports 
available on Activities that use the CompoundTask. It is also a container (Composition) 
of Activities that use other CompoundTasks (or, when describing recursion, that re-use 
this CompoundTask), a container of the DataFlows between these Activities, and the 
ProcessRoles which model bindings to Objects required by these Activities.

RequestGrpWeightingsRequest

Get Best Suppliers

Check SuppliersRank Suppliers

Sources
Maintain Suppliers

Sources

Sources

Freight
Sources

No valid
sources

Ranked
sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sourcesRanked

sources

No valid
sources

No valid
sources

Sources

Freight
Sources

Activity

CompoundTask

input ProcessPortConnector

output ProcessPortConnector

exception ProcessPortConnectorDataFlow

InputGroup

OutputGroup

ExceptionGroup

ProcessRole
February 2002 UML Profile for EDOC:  Metamodel 3-225



3

UML base element(s) in the Profile and Stereotype

Classifier stereotyped as <<CompoundTask>>, Collaboration stereotyped as 
<<ProcessComposition>>

Fully Scoped name

ECA::BusinessProcess::CompoundTask

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess

CompoundTask

Properties

Associated elements

Constraints

[1] All Ports owned by a CompoundTask must be ProcessMultiPorts.

[2] All ComponentUsages contained by a CompoundTask must be Activities.

[3] All PortUsages directly contained by a CompoundTask must represent 
ProcessMultiPorts owned by the CompoundTask.

3.19.1.2 Activity

Semantics

Activity represents the execution of a part of a Business Process using one of two 
mechanisms (but not both). The mechanisms are:

• The creation of a Composition of nested Activities, ProcessRoles and DataFlows 
described by the CompoundTask that the Activity references through its uses 
association.

• The execution of some feature of an Object bound to a ProcessRole instance 
referred to via the Activity’s performedBy association. (See Section 3.19.1.12, 
“ProcessRole,” on page 3-241.)

Hence an Activity represents an action that is either described by a further 
decomposition in the form of a CompoundTask or it represents and action that is 
performed by objects bound to ProcessRoles either statically, or at runtime as the 
Activity enters the Running state.

An Activity may also be associated via the usesArtifact and responsibleFor 
associations to one or more ProcessRoles. These ProcessRoles will be bound to 
Objects at run time as the Activity enters the Running state.
3-226 UML Profile for Enterprise Distributed Object Computing February 2002



3

An Activity’s PortUsages representing InputGroups (input PortUsages), which contain 
ProcessPortConnectors representing ProcessFlowPorts (input ProcessPortConnectors), 
are the alternative means by which the Activity may supply data to these mechanisms 
to initiate some action. 

PortUsages representing synchronous InputGroups owned by an Activity instance 
represent different initializations, and only one of these will ever be enabled, at which 
time the Activity instance will begin its execution.

An Activity instance must be in the Running state before it can use any data in input 
PortUsages (synchronous or asynchronous) from its containing Activity instance. 

If no Synchronous input PortUsages are present, then the Activity will be initialized as 
part of the initialization of its container Activity. This will allow it to receive 
asynchronous inputs as soon as they propagate into the container Activity.

When an Activity is performedBy a ProcessRole which has not yet been bound, the 
ProcessRole will be bound to an appropriate Object during the initialization of the 
Activity. The binding for the Role will last at least for the duration of the life time of 
the Activity, but the Object it binds to may exist before the binding is created, and may 
live longer than the binding. Once bound, the Role will persist until all other Activities 
to which it is associated have completed.

Asynchronous input PortUsages owned by an Activity represent the means by which 
the Activity may accept input values during its active life time. When an Activity is in 
the NotStarted state (none of its synchronous input PortUsages is enabled) all data 
values that arrive at a ProcessPortConnector in an asynchronous PortUsage will be kept 
in that Port Connector only up to its multiplicity’s upper bound. Additional values will 
cause discarding. However, once the Activity enters the Running state the sets of 
correlated Inputs will be consumed by the Activity.

Note – This behavior trades off the resource savings of keeping asynchronous values 
only up to and including the slots defined by an Input’s multiplicities against the ability 
to queue all asynchronous flows on behalf of Activities yet to be enabled. The problem 
is that in many process definitions, choices are made about which path a process will 
take, leaving many Activities’ input PortUsages only partially satisfied and unable to 
ever become enabled. In a long-lived Process this may mean that large numbers of data 
values arriving at asynchronous Inputs will be queued, never to be consumed by that 
Activity.
February 2002 UML Profile for EDOC:  Metamodel 3-227



3

Figure 3-50  State Machine describing execution of Activities and CompoundTasks.

Runtime Semantics: Figure 3-50 shows the state machine for an Activity instance. 
When an Activity is created, only the resources required to enact the PortUsage 
behavior of the Activity are created. The Activity then enters the NotStarted state. In 
this state the Activity may accept Flows at its input ProcessPortConnectors.

Once one of its synchronous input PortUsages is enabled (or it has no synchronous 
input PortUsages), ProcessRole binding is performed (as specified for ProcessRole in 
Section 3.19.1.12, “ProcessRole,” on page 3-241). 

Then, if the Activity uses a CompoundTask that is a non-empty Composition, all the 
resources to represent the contained DataFlows, Bindings and nested Activities are 
allocated and all nested Activities are created. The Activity now enters the Running 
state.

An Activity instance enters the Completed state when none of its contained Activity 
instances that have synchronous output PortUsages containing values (that are not also 
exception PortUsages) are in the Running state and there are no DataFlows that are in 
the process of delivering their data (which could then trigger the running of another 
Activity). Note, this means that not all contained Activities need to have executed, only 
that none (that have synchronous output ProcessMultiPorts) are running. This results in 
a quiescent model for completion.

Alternatively, if an Activity instance has an exception PortUsage that is satisfied, then 
all Activity instances that are contained by this Activity instance and are in the 
Running state are aborted. The Activity will then satisfy the quiescent model 
completion criteria just outlined.

An Activity instance enters the Completed state, if a satisfied synchronous output 
PortUsage is enabled. If there is more than one satisfied synchronous output 
PortUsage, then the choice of which one to enable is arbitrary. If there is no 
synchronous output PortUsage that is satisfied, then the Activity instance’s system 
ExceptionGroup is enabled.
3-228 UML Profile for Enterprise Distributed Object Computing February 2002



3

If a nested Activity instance contained by an Activity enters the Completed state with 
an exception PortUsage enabled and the exception is unhandled (see Section 3.19.1.11, 
“ExceptionGroup,” on page 3-240 for the definition of handled and unhandled 
ExceptionGroups), then the containing Activity instance’s system ExceptionGroup is 
enabled.

If an Activity instance is aborted, it terminates all of its contained Activity instances 
and enters the Aborted state.

If the Activity uses an empty Composition it must have a performedBy link to a 
ProcessRole, which will now be bound, and the Activity instance enters the Running 
state. While in the Running state, values from enabled input ProcessPortConnector 
instances may be consumed. In most cases this will mean that the PortUsage that was 
enabled has a collection of input Parameters for a method on the Object bound to the 
performer ProcessRole, which will be invoked. The return of the method will place 
values into an output PortUsage (representing an OutputGroup or ExceptionGroup), 
which will enable that PortUsage.

The Activity instance enters the Stopped state when one of its synchronous 
OutputGroup instances is enabled. If this is an ExceptionGroup instance, then it enters 
the Aborted state, otherwise it enters the Completed state.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<Activity>>

Fully Scoped name

ECA::BusinessProcess::Activity

Owned by

CompoundTask

Inheritance

ECA::CCA:: ComponentUsage

Activity

Properties

Associated elements

uses (from ComponentUsage)

An Activity is always associated with a CompoundTask via the uses association

performedBy

An Activity with an empty CompoundTask Composition must be linked to a single 
ProcessRole via the performedBy association.
February 2002 UML Profile for EDOC:  Metamodel 3-229



3

usesArtifact

An Activity may require access to Objects via a ProcessRole to use as a passive 
resource. Its usesArtifact association indicates the Roles it uses for this purpose.

responsibleFor

An Activity in a BusinessProcess may be performedBy a ProcessRole that does so on 
behalf of another Role or Roles that are responsible for the Activity. The 
responsibleFor association allows these Roles to identify Object representing 
responsible parties.

Constraints

[1] An Activity that uses a CompoundTask definition with no internal Composition 
must have a performedBy link.

3.19.1.3 BusinessProcess

Semantics

A BusinessProcess defines the ProcessComponent view of a process definition that 
coordinates a set of related Activities. It defines a complete business process which can 
be invoked from another CCA Composition, usually using OperationPorts which are 
connected via DataFlows (a subtype of CCA Flow) to the ProcessPortConnectors of 
the Activities which it contains. In other words a BusinessProcess is an ordinary 
ProcessComponent on the outside, and a CompoundTask on the inside.

UML base element(s) in the Profile and Stereotype

Classifier stereotyped as <<BusinessProcess>>

Fully Scoped name

ECA::BusinessProcess::BusinessProcess

Owned by

Inheritance

ECA::CCA::ComponentDefintion::ProcessComponent

BusinessProcess

Properties

Associated elements

Constraints

All ComponentUsages contained by a BusinessProcess must be Activities.
3-230 UML Profile for Enterprise Distributed Object Computing February 2002



3

All Connectors contained by a BusinessProcess must be DataFlows.

3.19.1.4 BusinessProcessEntity

Semantics

A BusinessProcessEntity is a BusinessProcess that is also an Entity with identity. It is 
used to model long-lived processes that may require management and or interaction 
during their lifetime.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<BusinessProcessEntity>>

Fully Scoped name

ECA::BusinessProcess::BusinessProcessEntity

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess

BusinessProcessEntity

ECA::Entity::Entity

BusinessProcessEntity

Properties

Associated elements

Constraints

N/A

3.19.1.5 ProcessFlowPort

Semantics

ProcessFlowPort represents data used in CompoundTask input/output.

Runtime Semantics: A ProcessFlowPort instance (represented by a 
ProcessPortConnector on an Activity) is satisfied when it has at least multiplicity_lb 
values, otherwise it is unsatisfied. It may not have more than multiplicity_ub values.

If a ProcessFlowPort instance is the sink of more than one DataFlow, then data values 
for that instance can be supplied by any one of those DataFlows up to the upper bound 
its multiplicity. In the default case of a multiplicity of {1,1} this implies OR semantics. 
February 2002 UML Profile for EDOC:  Metamodel 3-231



3

If more values are supplied than the multiplicity’s upper bound, the ProcessFlowPort 
instance’s collection remains at the size of the upper bound, and some arbitrary set of 
values are discarded.

When a ProcessFlowPort instance is enabled and its containing CompoundTask 
instance (represented by an Activity) is in the Running state, it transmits its values 
using all the associated DataFlows (AND semantics) as appropriate. If the 
ProcessFlowPort instance is contained by an asynchronous InputGroup instance, it then 
discards its values and resets its state to unsatisfied or satisfied according to its 
multiplicity.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ProcessFlowPort>>

Fully Scoped name

ECA::BusinessProcess::ProcessFlowPort

Owned by 

ProcessMultiPort

Inheritance

ECA::CCA::FlowPort

ProcessFlowPort

Properties

multiplicity_lb : short

multiplicity_ub : short

The multiplicity of a ProcessFlowPort instance allows it to act as a collection of data 
values of the same type. A multiplicity is expressed as a lower-bound, upper-bound 
pair {multiplicity_lb, multiplicity_ub}, where -1 is used in the upper bound to indicate 
infinity. The default multiplicity is {1,1} which represents a singleton collection.

Associated elements

ECA::CCA::DocumentModel::DataElement

A ProcessFlowPort is optionally associated with a DataElement by the type 
association, which is inherited from FlowPort. A ProcessFlowPort that does not have 
an associated type can be thought of as a control point. That is, the values handled by 
these ProcessFlowPorts are like objects that have identity but no attributes. They can 
be used, in conjunction with DataFlows, to describe control flow constraints that do not 
involve data values.
3-232 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints

[1] A ProcessFlowPort must be owned by a ProcessMultiPort.

3.19.1.6 ProcessPortConnector

Semantics

A ProcessPortConnector represents the usage of a ProcessFlowPort in the context of a 
CompoundTask.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<ProcessPortConnector>>

Fully Scoped name

ECA::BusinessProcess::ProcessPortConnector

Owned by

CompoundTask

Inheritance

ECA::CCA::ComponentDefinition::PortConnector

ProcessPortConnector

Properties

Associated elements

represents (from PortUsage)

A ProcessPortConnector is always associated with a ProcessFlowPort via the 
represents association.

outgoing (from Node)

A ProcessPortConnector may be associated with zero or more DataFlows via the 
outgoing association.

incoming (from Node)

A ProcessPortConnector may be associated with zero or more DataFlows via the 
incoming association.

Constraints

[1] All Ports associated with a ProcessPortConnector by the represents association 
must be ProcessFlowPorts.
February 2002 UML Profile for EDOC:  Metamodel 3-233



3

[2] All ProcessPortConnectors must be owned by CompoundTasks.

3.19.1.7 DataFlow

Semantics

A DataFlow represents a causal relationship in a business process. The source of the 
DataFlow must “happen” before the sink of the DataFlow. DataFlows also propagate 
data values between causally related ProcessPortConnectors. In the case that a 
DataFlow connects two ProcessPortConnectors in synchronous ProcessMultiPorts, the 
implication is that the Activities occur in strict temporal sequence.

Runtime Semantics: A DataFlow instance is created when its containing 
CompoundTask instance is created.

The enabling of the source of a DataFlow causes the enabling of the DataFlow, which 
then propagates the values from the source ProcessPortConnector to the sink 
ProcessPortConnector. The sink ProcessPortConnector may then discard values as 
necessary if its multiplicity upper bound is reached.

UML base element(s) in the Profile and Stereotype

AssociationRole stereotyped as <<DataFlow>>

Fully Scoped name

ECA::BusinessProcess::DataFlow

Owned by

CompoundTask

Inheritance

ECA::CCA:: Connection

DataFlow

Properties

Associated elements

Constraints

[1] A ProcessPortConnector is a source of a DataFlow. A DataFlow has exactly one 
source ProcessPortConnector, but a ProcessPortConnector can be the source of zero or 
more DataFlows.

[2] A ProcessPortConnector is a sink of a DataFlow. A ProcessPortConnector has 
exactly one sink ProcessPortConnector, but a ProcessPortConnector can be the sink of 
zero or more DataFlows.
3-234 UML Profile for Enterprise Distributed Object Computing February 2002



3

[3] The ProcessPortConnector that is the source of a DataFlow must be contained 
(indirectly) by the same CompoundTask as the DataFlow, and must be either:

• a ProcessPortConnector representing a ProcessFlowPort of an InputGroup of the 
CompoundTask; or

• a ProcessPortConnector representing a ProcessFlowPort owned by a  PortUsage 
representing an OutputGroup of a CompoundTask used by an Activity directly 
contained by the DataFlow’s containing CompoundTask.

[4] A ProcessPortConnector that is the sink of a DataFlow must be contained 
(indirectly) by the same CompoundTask as the DataFlow, and must be either:

• a ProcessPortConnector representing a ProcessFlowPort of an OutputGroup of the 
CompoundTask; or

• a ProcessPortConnector representing a ProcessFlowPort owned by a  PortUsage 
representing an InputGroup of a CompoundTask used by an Activity directly 
contained by the DataFlow's containing CompoundTask.

The well-formed-ness rules above can be considered as reading “DataFlows cannot 
cross the boundaries of CompoundTasks.” Figure 3-51 shows three illegal DataFlows 
(Note how the illegal DataFlows cross Task boundaries).

Figure 3-51  Illegal DataFlows crossing Task boundaries.

[5] The type of the ProcessFlowPort represented by the source ProcessPortConnector 
of a DataFlow must be the same as (or coerce-able to) the type of the ProcessFlowPort 
represented by the sink ProcessPortConnector of a DataFlow. Coercible includes 
converting a value of type T to a member of type collection<T> and vice versa.

[6] DataFlows between ProcessPortConnectors owned by PortUsage representing 
synchronous ProcessMultiPorts within a CompoundTask should be acyclic; that is, 
things cannot happen in a circular order. (However, see Business Process Patterns in 
Section 3.22, “Process Model Patterns,” on page 3-270 for how to specify processes 
involving looping.)

CT2

A

CT1
February 2002 UML Profile for EDOC:  Metamodel 3-235



3

3.19.1.8 ProcessMultiPort 

Semantics

ProcessMultiPort represents a set of related ProcessFlowPorts used to describe the 
inputs and outputs of CompoundTasks. They act as a form of correlator for DataFlows.

Run-Time Semantics:  As this section describes the semantics of ProcessMultiPorts, 
owned by CompoundTasks, we use the terminology ProcessMultiPort instance to 
mean a PortUsage representing a ProcessMultiport owned by an Activity, which we 
call a CompoundTask instance. In the same way the term ProcessFlowPort instance 
is used to mean a ProcessPortConnector contained by the PortUsage representing the 
ProcessMultiport.

A ProcessMultiPort instance is satisfied when all of its contained ProcessFlowPort 
instances are satisfied (AND semantics), otherwise it is unsatisfied. 

If a ProcessMultiPort instance is satisfied then it may be enabled. However, at most 
one synchronous InputGroup instance of a CompoundTask instance and one 
synchronous OutputGroup instance of a CompoundTask instance may be enabled and, 
once enabled, must remain in that state. An asynchronous ProcessMultiPort instance 
does not have these constraints. It will enable its ProcessFlowPort instances whenever 
it becomes enabled allowing them to transfer their contents and reset their state to 
unsatisfied (or satisfied if their multiplicity_lb is zero). This semantics is described 
formally using the Protocol in Figure 3-52 .

See the definitions of InputGroup in Section 3.19.1.9, “InputGroup,” on page 3-238 
and OutputGroup in Section 3.19.1.10, “OutputGroup,” on page 3-239 for more 
specific behavioral specifications.
3-236 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-52  Example Protocol describing the behavior of ProcessMultiPorts.
February 2002 UML Profile for EDOC:  Metamodel 3-237



3

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ProcessMultiPort>>

Fully Scoped name

ECA::BusinessProcess::ProcessMultiPort

Owned by

CompoundTask 

Inheritance

ECA::CCA::MultiPort

ProcessMultiPort

Properties

synchronous : boolean (from Port)

A value of TRUE indicates that this ProcessMultiPort represents either parameters that 
may be used to trigger a CompoundTask instance to enter the Running state, or results 
that are available when the instance enters the Stopped state.

A value of FALSE indicates that while the CompoundTask instance is in the Running 
state, the ProcessMultiPort may either asynchronously consume one or more sets of 
data, or asynchronously emit one or more sets of data.

Associated elements

ProcessFlowPort

A ProcessMultiPort provides a correlation framework for a number of 
ProcessFlowPorts.

Constraints

[1] The Composition owning a ProcessMultiPort must be a CompoundTask.

3.19.1.9 InputGroup

Semantics

InputGroup is a specialization of ProcessMultiPort. It is a container for a number of 
ProcessFlowPorts which are the inputs to a CompoundTask. 

Runtime Semantics: The InputGroup implies special semantics for the lifecycle of an 
Activity using the CompoundTask definition that owns it when its synchronous 
attribute is TRUE. In this case the InputGroup must be enabled before the Activity may 
enter its Running state.
3-238 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<InputGroup>>

Fully Scoped name

ECA::BusinessProcess::InputGroup

Owned by

CompoundTask (via its base class Composition)

Inheritance

ECA::CCA::ComponentSpecification::ProcessMultiPort

InputGroup

Properties 

Associated elements

Constraints

3.19.1.10 OutputGroup

Semantics

OutputGroup represents a possible outcome of a CompoundTask; it provides data 
values associated with that outcome. In the case of a synchronous OutputGroup it also 
serves as an indication that an Activity using the CompoundTask definition to which 
the OutputGroup belongs has entered the Stopped state.

OutputGroup models a collection of data values produced by a CompoundTask.

Runtime Semantics: The OutputGroup implies special semantics for the lifecycle of an 
Activity using the CompoundTask definition which owns it when its synchronous 
attribute is TRUE. In this case the Activity must be in its Stopped state before the 
OutputGroup may be enabled. 

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<OutputGroup>>

Fully Scoped name

ECA::BusinessProcess::OutputGroup

Owned by

CompoundTask
February 2002 UML Profile for EDOC:  Metamodel 3-239



3

Properties

Associated element

Constraints

3.19.1.11 ExceptionGroup

Semantics

ExceptionGroup represents the outcome of a CompoundTask that failed to complete 
its function. In a CompoundTask, an Activity’s ProcessPortConnectors representing the 
ProcessFlowPorts of ExceptionGroup can be handled either by an exception handler 
(an Activity) to which the Port Connectors have DataFlows, or by an ExceptionGroup 
of the containing CompoundTask to which it has DataFlows. If, at runtime, an 
Activity’s ExceptionGroup is not handled and the Exception is enabled, then it will be 
propagated. That is, the containing CompoundTask instance’s system Exception will 
be enabled (which consequently causes the CompoundTask instance to abort its 
contained Activities and terminate in the Aborted state).

Figure 3-53  An ExceptionGroup that is handled by and Activity

 

Figure 3-54 An unhandled ExceptionGroup that will be propagated if it is enabled at runtime.

Activity

Error

Exception
Handler

Error 2

handled ExceptionGroup

unhandled ExceptionGroup

Activity

Error propagated ExceptionGroup

CompoundTask

Error
3-240 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ExceptionGroup>>

Fully Scoped name

ECA::BusinessProcess::ExceptionGroup

Owned by

CompoundTask

Properties 

Associated elements

Constraints

3.19.1.12 ProcessRole

Semantics

ProcessRole defines a placeholder for concrete ProcessComponents that perform an 
Activity or that are used in the performing of an Activity. It defines a placeholder for 
behavior in a context. ProcessRole is a subtype of ComponentUsage with some 
qualifying attributes. The owner of a ProcessRole is a CompoundTask and the behavior 
of the ProcessRole becomes part of the behavior of Activities to which it is associated. 
The uses association of a ProcessRole (inherited from ComponentUsage) defines the 
type of ProcessComponent that is required to be bound to the placeholder.

Runtime Semantics: When an Activity is enabled, binding of any associated unbound 
ProcessRole instances ensues based on the values of the selectionRule and 
creationRule expressions. Note that some ProcessRole instances may have been bound 
previously due to an association with another Activity that has already been enabled so 
no further binding is needed.

If both the selectionRule and creationRule expressions are empty, then it is left up to 
the Activity itself to perform binding. Otherwise, binding takes place as follows:

Binding of an unbound ProcessRole begins by determining the candidate instances. 
These are the set of ProcessComponent instances with a compatible type and that 
satisfy the selectionRule. The selectionRule may refer to the values of the input 
ProcessPortConnectors of any of the ProcessRole's associated Activities. It is 
incumbent on the modeler to ensure that the selectionRule is well-formed in the face of 
attributes that may not yet have values.

If there are no candidate instances, and the creationRule expression is non-empty, it 
will be used to generate a new candidate instance (or instances if the expression returns 
multiples).
February 2002 UML Profile for EDOC:  Metamodel 3-241



3

One of the candidate instances will then be bound to the ProcessRole. If there are no 
candidate instances, the containing Activity instance will have its system 
ExceptionGroup enabled.

We note that something akin to the OMG Trader service can be used for this binding 
process. Also, the bound entity may be a proxy for a person such as a worklist in a 
workflow execution environment.

Inheritance

ECA::CCA::ComponentUsage

ProcessRole

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<ProcessRole>>

Fully Scoped name

ECA::BusinessProcess::ProcessRole

Owned by

CompoundTask

Properties 

selectionRule

An expression describing the set of entities that may be bound to this ProcessRole.

creationRule

An expression describing how to create a new entity that may be bound to this 
ProcessRole.

Associated elements 

ProcessComponent: the uses association, inherited from ComponentUsage, indicates a 
type of ProcessComponent (an abstract ProcessComponent). A concrete instance of 
this type must be bound to the ProcessRole at runtime.

Activity: these may be associated with ProcessRoles by one or more of the following: 
performedBy and/or usesArtifact and/or responsibleFor.

Constraints

[1] The ProcessComponent at the opposite end of the uses association must be abstract.
3-242 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.19.1.13 Performer

Semantics

A Performer ProcessRole is specifically for identifying an Entity that can perform the 
Activity to which it is associated.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole

Performer

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<Performer>>

Fully Scoped name

ECA::BusinessProcess::Performer

Owned by

CompoundTask

Properties

Associated elements

Activity: these may be associated with Performers by a performedBy association.

Constraints 

 [1] A Performer may only be associated with Activities using the performedBy 
association.

3.19.1.14 Artifact

Semantics

A Performer ProcessRole is specifically for identifying an Entity that is needed by an 
Activity as a resource.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole 

Artifact
February 2002 UML Profile for EDOC:  Metamodel 3-243



3

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<Artifact>>

Fully Scoped name

ECA::BusinessProcess::Artifact

Owned by 

CompoundTask

Properties

Associated elements

Activity: these may be associated with Artifact by a usesArtifact association.

Constraints 

 [1] An Artifact may only be associated with Activities using the usesArtifact 
association.

3.19.1.15 ResponsibleParty

Semantics

A ResponsibleParty ProcessRole is specifically for identifying an Entity that has 
responsibility for the Activity to which it is associated.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole

ResponsibleParty

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as <<ResponsibleParty>>

Fully Scoped name

ECA::BusinessProcess::ResponsibleParty

Owned by 

CompoundTask
3-244 UML Profile for Enterprise Distributed Object Computing February 2002



3

Associated elements

Activity: these may be associated with ResponsibleParties by a responsibleFor 
association.

Constraints

[1] A ResponsibleParty may only be associated with Activities using the 
responsibleFor association.

3.20 UML Profile

3.20.1 Table mapping concepts to profile elements

3.20.1.1 BusinessProcess «profile» Package : Stereotypes
Table 3-21 BusinessProcess «profile» Package : Stereotypes

Metamodel element 
name

Stereotype name UML base Class Parent Tags Constraints

CompoundTask CompoundTask Classifier Process-Component

Activity Activity ClassifierRole Component-Usage

BusinessProcess BusinessProcess Classifier Process-Component

BusinessProcessEntity BusinessProcess-Entity Classifier Entity
BusinessProcess

ProcessFlowPort ProcessFlowPort Class FlowPort multiplicity_lb
multiplicity_ub

ProcessPortConnector ProcessPortConnector ClassifierRole PortConnector

DataFlow DataFlow AssociationRole Connection

ProcessMultiPort ProcessMultiPort Class MultiPort

InputGroup InputGroup Class ProcessMultiPort

OutputGroup OutputGroup Class ProcessMultiPort

ExceptionGroup ExceptionGroup Class OutputGroup

ProcessRole ProcessRole ClassifierRole Component-Usage selectionRule
creationRule

Performer Performer ClassifierRole ProcessRole

Artifact Artifact ClassifierRole ProcessRole

ResponsibleParty ResponsibleParty ClassifierRole ProcessRole

Performance Performance AssociationRole

ArtifactUse ArtifactUse AssociationRole

Responsibility Responsibility AssociationRole
February 2002 UML Profile for EDOC:  UML Profile 3-245



3

3.20.1.2 BusinessProcess «profile» Package : TaggedValues
Table 3-22 BusinessProcess «profile» Package : TaggedValues

Metamodel attribute 
name

Tag Stereotype Type Multiplicity Description

multiplicity_lb multiplicity_lb ProcessFlowPort short 1 default=1

multiplicity_ub multiplicity_ub ProcessFlowPort short 1 default=1

selectionRule selectionRule ProcessRole string 0..1  

creationRule creationRule ProcessRole string 0..1  
3-246 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-55  BusinessProcess «profile» Package

3.20.1.3 Applicable Subset of UML

Classifier, Class, Attribute, Collaboration, ClassifierRole, AssociationRole

Class
(from Core)

<<metaclass>>

FlowPort
<<stereotype>>

MultiPort
<<stereotype>>

Port
(from CCA)

<<stereotype>>

<<stereotype>><<stereotype>> <<stereotype>>

<<stereotype>>
ProcessMultiPort

<<stereotype>>
ProcessFlowPort

<<taggedValue>> + multiplicity_lb : short
<<taggedValue>> + multiplicity_ub : short

<<stereotype>>
OutputGroup

<<stereotype>>
InputGroup

<<stereotype>>
ExceptionGroup

ProcessRole

<<taggedValue>> + selectionRule : string

<<stereotype>>

<<taggedValue>> + creationRule : string

<<stereotype>>
Performer

<<stereotype>>
Artifact

<<stereotype>>
ResponsibleParty

AssociationRole
(from Core)

<<metaclass>>

<<stereotype>>

Connection
(from CCA)

<<stereotype>>

<<stereotype>>
DataFlow

ClassifierRole
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>>

<<stereotype>>
ArtifactUse

<<stereotype>>
Performance

<<stereotype>>
Responsibility

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

PortConnector
(from CCA)

<<stereotype>>

<<stereotype>>
Activity

ComponentUsage
(from CCA)

<<stereotype>>

<<stereotype>>

<<stereotype>>
CompoundTask

ProcessComponent
(from CCA)

<<stereotype>>

<<stereotype>>
BusinessProcess

Collaboration
(from Core)

<<metaclass>>
Classifier

(from Core)

<<metaclass>>

<<stereotype>>
ProcessPortConnector

<<stereotype>>
ProcessComposit ion

Composit ion
(from CCA)

<<stereotype>>

<<stereotype>>
BusinessProcessEntity

<<stereotype>>
Entity

(from Entity)
February 2002 UML Profile for EDOC:  UML Profile 3-247



3

3.20.1.4 «ProcessComposition»

Inheritance 

Behavioral_Elements::Collaborations::Collaboration
ECA::CCA:: «Composition»

«ProcessComposition»

Instantiation in a model

Concrete

Semantics

A Collaboration that represents the composition of Classifiers which are stereotyped  
«CompoundTask», «BusinessProcess» or «BusinessProcessEntity».

Relationships 

Tagged Values

N/A

Constraints expressed generically

The supertype of a «ProcessComposition» must be a «ProcessComposition».

All owned ClassifierRoles must be stereotyped «ProcessRole» (or one of its 
specializations) or «Activity».

All owned AssociationRoles must be stereotyped «Performance», «ArtifactUse», 
«Responsibility» or «DataFlow».

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessComposition

inv:
supertype->isEmpty() or 
supertype.isStereoKinded("ProcessComposition")

inv: 
   ownedClassifierRoles->forAll ( aCRole : ClassifierRole |

aCRole.isStereoKinded("Activity") or
aCRole.isStereoKinded("ProcessRole") )

Relationship Role(s)

Generalization parent, child {only with «ProcessComposition»}

Activities owner

ProcessRoles owner

DataFlows _connections
3-248 UML Profile for Enterprise Distributed Object Computing February 2002



3

( 
inv: 
ownedAssocRoles->forAll ( anARole : AssociationRole |

aCRole.isStereoKinded("Performance ") or
aCRole.isStereoKinded("ArtifactUse ") or
aCRole.isStereoKinded("Responsibility ") or
aCRole.isStereoKinded("DataFlow ") )

def:
let ownedClassifierRoles: Set (ClassifierRole) =   namespace-
>select( aClassifierRole : ClassifierRole )

def:
   let ownedAssocRoles: Set (AssociationRole) =   namespace->select

anAssocRole : AssociationRole )

Diagram Notation

N/A

3.20.1.5 «Activity»

Inheritance 

This stereotype has the following inheritances:
Behavioral_Elements::Collaborations::ClassifierRole

CCA::ComponentDefinition:: «ComponentUsage»
«Activity»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

Correspondence of metamodel attributes  with UML attributes

N/A

Tagged Values

N/A

Relationship Role(s)

Performance _performedBy

ArtifactUse _usesArtifact

Responsibility _responsibleFor
February 2002 UML Profile for EDOC:  UML Profile 3-249



3

Constraints expressed generically

 Any AssociationRole in which an «Activity» participates must be stereotyped  
«Performance», «ArtifactUse» or «Responsibility».

Formal Constraints Expressed in Terms of the UML Metamodel

context Activity

inv: 
participAssocRoles->forAll ( anARole : AssociationRole |

aCRole.isStereoKinded("Performance ") or
aCRole.isStereoKinded("ArtifactUse ") or
aCRole.isStereoKinded("Responsibility ") or
aCRole.isStereoKinded("DataFlow ") )

def:
let participAssocRoles: Set (AssociationRole) =   ...

Diagram Notation

N/A

3.20.1.6 «CompoundTask»

Inheritance 

This stereotype has the following inheritances:
Foundation::Core::Classifier

ECA::CCA:: «ProcessComponent»
ECA::BusinessProcess:: «BusinessProcess» 

«CompoundTask»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

None
3-250 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints expressed generically

Only InputGroups, OutputGroups and ExceptionGroups may be directly owned by a 
CompoundTask.

Formal Constraints Expressed in Terms of the UML Metamodel

context CompoundTask

inv: (ownedElement
       - select( aClassifier : Classifier|
                 anElement.isStereoKinded( «InputGroup»))
       - select( aClassifier : Classifier|
                 anElement.isStereoKinded( «OutputGroup»))
       - select( aClassifier : Classifier|
                 anElement.isStereoKinded( «ExceptionGroup»))
      )->isEmpty()

Diagram Notation

N/A

3.20.1.7 «BusinessProcess»

Inheritance 

Foundation::Core::Classifier
ECA::CCA:: «ProcessComponent»

«BusinessProcess»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

None

Constraints expressed generically

N/A
February 2002 UML Profile for EDOC:  UML Profile 3-251



3

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

3.20.1.8 «BusinessProcessEntity»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Classifier
ECA::CCA:: «ProcessComponent»

«BusinessProcessEntity»
ECA::Entity:: «Entity»

«BusinessProcessEntity»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

None

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A
3-252 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.20.1.9 «ProcessFlowPort»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Class
ECA::CCA::«Port»

ECA::CCA:: «FlowPort»
«ProcessFlowPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

Constraints expressed generically

The ProcessFlowPort must be contained within a ProcessMultiPort.

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessFlowPort

inv:
owner.isStereoKinded(«ProcessMultiPort»)

Diagram Notation

N/A

Table 3-23 «ProcessFlowPort» Tagged Values

Tagged Value 
name Stereotype Type Multiplicity Description

multiplicity_lb ProcessFlowPort short 1 the lower bound of values 
needed to enable this port

multiplicity_ub ProcessFlowPort short 1 the upper bound of values 
that can be stored by the port 
before discarding
February 2002 UML Profile for EDOC:  UML Profile 3-253



3

3.20.1.10 «ProcessPortConnector»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::ComponentDefinition:: «PortConnector»

«ProcessPortConnector»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

A «ProcessPortConnector»  must be owned by an «Activity» as Namespace.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

All AssociationRoles in which a «ProcessPortConnector» participates must be 
stereotyped «DataFlow».

The owning Collaboration of a «ProcessPortConnector» must be stereotyped 
«ProcessComposition».

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcesPortConnector

inv:

  participate->forAll( anAssocEndRole : AssociationEndRole |
anAssocEndRole.associationRole.isStereoKinded(«DataFlow») )

inv:

   owner.isStereoKinded(«ProcessComposition»)
3-254 UML Profile for Enterprise Distributed Object Computing February 2002



3

Diagram Notation

N/A

3.20.1.11 «DataFlow»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::AssociationRole
ECA::CCA:: Connection

«DataFlow»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of named "DataFlow" in the metamodel. 

«DataFlow» stereotyped AssociationRoles will be connected to the source and target 
«PortConnector» ClassifierRole through AssociationEndRole. A DataFlow may either 
connect a generic ProcessComponent PortConnector on a BusinessProcess to a 
ProcessPortConnector of one of its Activities or it may connect two 
ProcessPortConnectors when owned by a CompoundTask.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

At least one AssociationEndRole of a DataFlow must be a ProcessFlowPort.

A DataFlow may only connect the following kinds of ProcessFlowPorts. "CT" is short 
for CompoundTask, and indicates ProcessPortConnectors representing the 
ProcessFlowPorts contained by its three kinds of ProcessMultiPorts. The other three 
labels refer to any ProcessPortConnectors on an Activity in the CompoundTask's 
Composition.
February 2002 UML Profile for EDOC:  UML Profile 3-255



3

These connection constraints can also be expressed as follows:

A ProcessPortConnector representing a ProcessFlowPort owned by an InputGroup of 
the CompoundTask which is represented by the Collaboration may not be the target of 
any DataFlows.

A ProcessPortConnector representing a ProcessFlowPort owned by an OuputGroup 
(including ExceptionGroups) of the CompoundTask which is represented by the 
Collaboration may not be the source of any DataFlows.

A ProcessPortConnector owned by any Activity in the Collaboration which represents 
a ProcessFlowPort owned by an OuputGroup (including ExceptionGroups) may not be 
the target of any DataFlows.

A ProcessPortConnector owned by any Activity in the Collaboration which represents 
a ProcessFlowPort owned by an InputGroup may not be the source of any DataFlows.

Formal Constraints Expressed in Terms of the UML Metamodel

context CompositionFlow

Diagram Notation

N/A

3.20.1.12 «ProcessMultiPort»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Class
ECA::CCA:: «Port»

ECA::CCA::«MultiPort»
«ProcessMultiPort»

 target
 

source

CT Input
Group

CT Output
Group

CT Exception
Group

Activity Input
Group

Activity Output
Group

Activity 
Exception
Group

CT InputGroup N Y Y Y N N

CT OutputGroup N N N N N N

CT Exception
Group

N N N N N N

Activity
InputGroup

N N N N N N

Activity
OutputGroup

N Y Y Y N N

Activity Exception
Group

N Y Y Y N N
3-256 UML Profile for Enterprise Distributed Object Computing February 2002



3

Instantiation in a model

Abstract

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

All the «Port» owned by or aggregated by the «ProcessMultiPort», must be 
«ProcessFlowPort».

Formal Constraints Expressed in Terms of the UML Metamodel

context MultiPort

inv:
allPorts->forAll( aClass : Class |

 
aClass.isStereoKinded("ProcessFlowPort"))

def: 

    -- the Ports in the Protocol : 
    -- the Ports in the namespace of the Protocol
    -- plus the ones aggregated or composed in the Protocol

  let allPorts: Set( Class) = ownedPorts->union(aggregatedPorts)

    -- the Ports in the namespace of the Protocol
  let ownedPorts : Set( Class) = 
    ownedElement->select( anElement : ModelElement | 

anElement.isStereoKinded( «Port»))

    -- the Ports aggregated or composed in the Protocol
  let aggregatedPorts: Set( Class) = 
    (association->select( anAssociationEnd : AssociationEnd | 
      anAssociationEnd.aggregationKind = ak_aggregate or
      anAssociationEnd.aggregationKind = ak_composite)
    ->association->connection – association)
    ->participant
    ->select( aClassifier : Classifier | 

aClassifier.isStereoKinded( «Port»))
February 2002 UML Profile for EDOC:  UML Profile 3-257



3

Diagram Notation

N/A

3.20.1.13 «InputGroup»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification::«Port»

ECA::CCA::«MultiPort»
ECA::BusinessProcess::«ProcessMultiPort»

«InputGroup»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

3.20.1.14 «OutputGroup»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification::«Port»

ECA::CCA::«MultiPort»
ECA::BusinessProcess::«ProcessMultiPort»

«OutputGroup»
3-258 UML Profile for Enterprise Distributed Object Computing February 2002



3

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N.A

3.20.1.15 «ExceptionGroup»

Inheritance 

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification::«Port»

CCA::ComponentSpecification::«MultiPort»
CCA::BusinessProcess::«ProcessMultiPort»

CCA::BusinessProcess::«OutputGroup»
«ExceptionGroup»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes
February 2002 UML Profile for EDOC:  UML Profile 3-259



3

Tagged Values

N/A

Constraints expressed generically

All the «Port» owned by or aggregated by the «ProcessMultiPort», must be 
«ProcessFlowPort».

Formal Constraints Expressed in Terms of the UML Metamodel

3.20.1.16 «ProcessRole»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
«ProcessRole»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Tagged Values

Relationship Role(s)

Performance performedBy

ArtifactUse usesArtifact

Responsibility responsibleFor

Table 3-24 «ProcessRole» Tagged Values

Tagged Value name Stereotype Type Multiplicity Description

selectionRule ProcessRole string 0..1 an expression indicating an object or objects to be bound 
to the Role

creationRule ProcessRole short 0..1 an expression giving sufficient arguments to a 
constructor for a new object instance to be created
3-260 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessRole

Diagram Notation

N/A

3.20.1.17 «Performer»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»

«Performer»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles 
stereotyped «Performance».

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessRole

inv:
participates->forAll( anAssocEndRole : AssociationEndRole |

   anAssocEndRole.associationRole.isStereoKinded(«Performance») )
February 2002 UML Profile for EDOC:  UML Profile 3-261



3

Diagram Notation

N/A

3.20.1.18 «Artifact»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»

«Artifact»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles 
stereotyped «ArtifactUse».

Formal Constraints Expressed in Terms of the UML Metamodel

context Artifact

inv:
participates->forAll( anAssocEndRole : AssociationEndRole |

   anAssocEndRole.associationRole.isStereoKinded(«ArtifactUse») )

Diagram Notation

N/A
3-262 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.20.1.19 «ResponsibleParty»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»

«ResponsibleParty»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles 
stereotyped «Responsibility».

Formal Constraints Expressed in Terms of the UML Metamodel

context ResponsibleParty

inv:
participates->forAll( anAssocEndRole : AssociationEndRole |

   
anAssocEndRole.associationRole.isStereoKinded(«Responsibility»
) )

Diagram Notation

N/A

3.20.1.20 «Performance»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::AssociationRole
«Performance»
February 2002 UML Profile for EDOC:  UML Profile 3-263



3

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named performedBy, which 
must have stereotype kind «ProcessRole».

The AssociationRole must have an AssociationRoleEnd named _performedBy, 
which must have stereotype kind «Activity».

Formal Constraints Expressed in Terms of the UML Metamodel

context Performance:

Diagram Notation

N/A

3.20.1.21 «ArtifactUse»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::AssociationRole
«ArtifactUse»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes
3-264 UML Profile for Enterprise Distributed Object Computing February 2002



3

Tagged Values

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named usesArtifact, which 
must have stereotype kind «ProcessRole».

The AssociationRole must have an AssociationRoleEnd named _usesArtifact, which 
must have stereotype kind «Activity».

Formal Constraints Expressed in Terms of the UML Metamodel

context ArtifactUse:

Diagram Notation

N/A

3.20.1.22 «Responsibility»

Inheritance 

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::AssociationRole
«Responsibility»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships 

As per base stereotypes

Tagged Values

N/A

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named responsibleFor, which 
must have stereotype kind «ProcessRole».

The AssociationRole must have an AssociationRoleEnd named _responsibleFor, which 
must have stereotype kind «Activity».
February 2002 UML Profile for EDOC:  UML Profile 3-265



3

Formal Constraints Expressed in Terms of the UML Metamodel

context Responsibility:

Diagram Notation

N/A

3.20.2 Relationships

This section specifies the correspondence between associations defined in the Business 
Process meta-model and associations defined in the UML meta-model.  The 
relationship name is the same as that found in the Full Business Process metamodel 
diagram (Figure 3-74).

The format of the following tables is explained in detail in Section 3.6.8, 
“Relationships,” on page 3-115.

3.20.2.1 CompoundTask own ProcessMultiPort subtypes
Table 3-25 CompoundTask own ProcessMultiPort subtypes

MOF or  
UML

LeftHandSide    LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF CompoundTask PortOwner owner ports Port InputGroup
OutputGroup
ExceptionGroup

UML «CompoundTask» Namespace owner ownedElement ModelElement «InputGroup»  
«OutputGroup» 
«ExceptionGroup» 
3-266 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.20.2.2 ProcessMultiPort Subtypes own ProcessFlowPorts

3.20.2.3 Activities and ProcessPortConnectors owned by CompoundTasks 
and BusinessProcesses

3.20.2.4 CompoundTask owns Activity and DataFlow

Table 3-26 ProcessMultiPort Subtypes own ProcessFlowPorts

MOF or  
UML

LeftHandSide   LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide 
related

RightHandSide 

MOF InputGroup or 
ouputGroup or 
ExceptionGroup 

PortOwner owner ports Port ProcessFlowPort

UML «InputGroup» or 
«OutputGroup» or 
«ExceptionGroup»

Classifier  owner feature Feature «ProcessFlowPort»

Table 3-27 Activities and ProcessPortConnectors owned by CompoundTasks and BusinessProcesses

MOF 
or  
UML

LeftHandSide LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF CompoundTask or
BusinessProcess or
BusinessProcess
Entity

UsageContext extent portsUsed PortUsage ProcessPortConnector

UML «CompoundTask» or 
«BusinessProcess» or 
«BusinessProcessEntity» 
indirectly through 
«Composition»

Classifier              
indirectly through 
Collaboration

indirectly through 
_represented
Classifier. 
ownedElements

indirectly through 
owner. represented
Classifier or 
owner.owner

ClassifierRole 
indirectly through 
Collaboration

«ProcessPortConnector» 
indirectly through 
«Composition»

MOF Activity UsageContext extent portsUsed PortUsage ProcessPortConnector

UML «Activity» ClassifierRole 
(indirectly thru 
AssociationEnd
Role and 
AssociationRole)

association. 
association. 
connection. 
participant

association. 
association. 
connection. 
participant

ClassifierRole 
(indirectly thru 
AssociationEnd
Role and 
AssociationRole)

«ProcessPortConnector»

Table 3-28 CompoundTask owns Activity and DataFlow

MOF or  
UML

LeftHandSide LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide

MOF CompoundTask or 
BusinessProcess or 
BusinessProcess
Entity 

Composition owner uses ComponentUsage Activity

UML «Process
Composition» 

Namespace owner ownedElement ModelElement  «Activity»

MOF CompoundTask or 
BusinessProcess or 
BusinessProcessEntity 

Composition owner uses Connection DataFlow

UML «Process
Composition» 

Namespace owner ownedElement ModelElement  «DataFlow»
February 2002 UML Profile for EDOC:  UML Profile 3-267



3

3.20.2.5 Activity uses CompoundTask

3.20.2.6 Represents in CompoundTask and BusinessProcess

The metamodel element Composition (the "inside" of a CompoundTask or 
BusinessProcess) is represented by a UML Collaboration. 

A ProcessPortConnector is mapped to a ClassifierRole. 

The "Represents" relationship linking a ProcessPortConnector with a ProcessFlowPort, 
is represented in UML  as a the UML relationship between a ClassifierRole and its 
base Classifier.

3.21 Notation for Activity and ProcessRole
As shown in Figure 3-56, an Activity is represented similarly to a ProcessComponent. If the Activ-
ity uses a CompoundTask that is not primitive (i.e., the Composition is non-empty and the isPrim-
itive attribute is false), then the ProcessComponent rectangle has a drop-shadow as shown in Figure 
3-57.

Table 3-29 Activity uses CompoundTask

MOF or  
UML

LeftHandSide     LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide 

MOF Activity Component-
Usage

_uses uses ProcessComponent CompoundTask

UML «Activity» ClassifierRole _base base Classifier «CompoundTask»

Table 3-30 Represents in CompoundTask and BusinessProcess

MOF or  
UML

LeftHandSide   LeftHandSide  
related 

LeftHandSide   
role name

RightHandSide 
role name

RightHandSide    
related

RightHandSide

MOF ProcessFlowPort Port   represents _represents PortUsage ProcessPort
Connector

UML «ProcessFlowPort» Classifier base _base ClassifierRole «ProcessPort
Connector»       
3-268 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-56  Activity with synchronous and asynchronous InputGroups, an OutputGroup and an 
ExceptionGroup.

 

Figure 3-57  Activity that is involves creation of a Composition of nested Activities, etc.

Activity

Synch
InputGroup

input ProcessPortConnector

Asynch InputGroup

performedBy

usesArtifact

Synch
OutputGroup

output ProcessPortConnector

ExceptionGroup

ArtifactPerformer ResponsibleParty

ProcessRole

  

Activity
February 2002 UML Profile for EDOC:  Notation for Activity and ProcessRole 3-269



3

 

Figure 3-58  A CompoundTask showing its composed Activities.

The lollipops represent ProcessFlowPorts and the boxes surrounding them represent 
ProcessMultiPorts. InputGroups appear on the left-hand side of the Activity and 
OutputGroups appear on the right-hand side. Rectangular tabs are used to indicate 
synchronous ProcessMultiPorts, rounded tabs are used to indicate asynchronous 
ProcessMultiPorts. Triangular or bevel-edged tabs are used to indicate 
ExceptionGroups, which are a kind of OutputGroup, and hence always appear on the 
right.

ProcessRoles are drawn as octagons and are associated with Activities by either the 
performedBy association for Performer roles, the usesArtifact association for Artifact 
roles, or the responsibleFor association for ResponsibleParty roles. These associations 
are drawn as a solid line annotated with the association name. See Section 3.19.1.12, 
“ProcessRole,” on page 3-241 for more detail on the definition and usage of 
ProcessRoles. It should be noted that a single ProcessRole may be an artifact role in 
one association and a performer role in another association at the same time. 
Additionally, an Activity that has a uses association to a CompoundTask with 
composed Activities, DataFlows and ProcessRoles, may not have a performedBy 
association to a ProcessRole.

3.22 Process Model Patterns

The rest of this section describes various patterns of common usage and associated 
special notation that may be useful when using the ECA Process Model. We first 
describe the pattern in terms of its normal notation, possibly with parameterized parts, 
and in some cases then provide alternative shorthand notations.

We begin with some simple patterns then move on to more complex patterns involving 
looping. In general, arbitrary loops in a business process specification can be quite 
subtle in their behavior, especially in conjunction with concurrent threads. It is for this 

CT

TaskA

CompoundTask

DataFlow

ControlPoint (degenerate DataElement)
3-270 UML Profile for Enterprise Distributed Object Computing February 2002



3

reason that we restrict an Activity with synchronous DataGroups to executing once 
only. The looping patterns presented here avoid these problems since they are always 
defined in terms of an underlying recursive invocation structure.

It should be noted that the UML template notation, and the Patterns Framework 
introduced in Chapter 4, are not sufficient to express the complexity required by these 
patterns, since they usually consist of a CompoundTask parameterized by an Activity 
that will have some unknown number of ProcessMultiPorts and ProcessFlowPorts. 
When instantiating such a template with respect to a particular Activity, the 
CompoundTask needs to have corresponding ProcessMultiPorts and ProcessFlowPorts 
connected by Flows to the equivalent ports on the Activity argument to the template.

3.22.1 Timeout 

Figure 3-59  Timeout Pattern

Often we will want to have an Activity timeout after some period. The pattern shown 
in Figure 3-59 illustrates how we might do this. The Activity and timer are started at 
the same time. If the timer finishes and sends a message on its asynchronous 
OutputGroup before the Activity finishes, then the ExceptionGroup will be enabled 
and the CompoundTask will terminate, thus terminating all contained Activities. On 
the other hand, if the Activity finishes first, the CompoundTask will terminate without 
waiting for the timer (since it has no synchronous OutputGroups).

A shorthand notation for this pattern is given in Figure 3-60. This notation may also 
include a duration parameter, or absolute time parameter, which would be provided as 
input to the underlying timer activity.

activity

Timeout
activity
February 2002 UML Profile for EDOC:  Process Model Patterns 3-271



3

Figure 3-60 Timer pattern notation

Note we do not mandate any particular implementation for the timer task, we merely 
posit its existence. It would be up to the modeler to have an appropriate performedBy 
association, or for particular mappings to provide a suitable implementation.

3.22.2 Terminate 

Figure 3-61  Templated activity supporting a terminate message.

We may wish to be able to terminate an Activity before it has completed of its own 
accord. The pattern shown in Figure 3-61 illustrates how an Activity can be wrapped to 
support an additional asynchronous InputGroup that, on reception of a message, will 
result in the activity being terminated and an exception being thrown.

That is, if a message is sent to the asynchronous InputGroup of the CompoundTask, 
then it will immediately flow to the CompoundTask’s ExceptionGroup causing the 
CompoundTask to terminate, thus terminating the contained Activity.

There is no suggested shorthand notation for this pattern. However, tools may wish to 
support the implicit inclusion of an appropriately labeled asynchronous InputGroup 
and corresponding ExceptionGroup on any arbitrary Activity.

2pm,
March 20, 20005minactivity activity activity

activity

Terminate
activity
3-272 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.22.3 Activity Preconditions and Activity Postconditions 

Figure 3-62  Preconditions on an InputGroup and an OutputGroup.

Sometimes it may be desirable to add a precondition to the InputGroup of an Activity, 
or the OutputGroup of a CompoundTask, to further constrain the enabling of the 
InputGroup/ OutputGroup. For example, there may be multiple DataFlows to an input, 
but we wish to ignore any values that fall outside a given range. Figure 3-62 illustrates 
how one might attach such a guard constraint where x and y are attributes of the 
DataGroup (or perhaps even attributes of their contained DataElements).

Figure 3-63  An equivalent model to that of , using condition tasks.

Figure 3-63 shows an equivalent CompoundTask to that of Figure 3-62 but using 
explicit filter Activities.

If a filter Activity does not produce enough outputs to satisfy the multiplicity 
requirements of the Activity it is guarding, then the Activity will not start. As can be 
seen from Figure 3-63, if neither filter is satisfied, then Activity ‘A’ will never run, so 

Q

AP {-5 < x < 5}

{y < 0}

Q

AP {-5 < x < 5}

{y < 0}

  
February 2002 UML Profile for EDOC:  Process Model Patterns 3-273



3

the CompoundTask instance will satisfy its completion criteria (quiescence) without 
either OutputGroup being satisfied which causes its system ExceptionGroup to be 
enabled.

In a similar way, we may also attach a post-condition to an Activity’s OutputGroup to 
ensure that the result of the Activity satisfies some condition. This is shown in Figure 
3-64.

Figure 3-64  Post-conditions on OutputGroups of Activities.

Figure 3-65 shows an equivalent CompoundTask to that of  but using explicit filter 
Activities that have a ‘success’ OutputGroup and a ‘fail’ ExceptionGroup. Thus, if the 
postcondition does not hold, the CompoundTask's system ExceptionGroup will be 
enabled.

Figure 3-65  An equivalent model to that of , using condition tasks.

Q

P {-5 < x < 5}

{y < 0}

Q

AP {-5 < x < 5}

{y < 0}
3-274 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.22.4 Simple Loop

 

Figure 3-66  Simple Loop Pattern 

The pattern shown in Figure 3-66 shows how we might repeatedly invoke an Activity 
until a particular OutputGroup is enabled. If the cardinality of the Output in the loop 
CompoundTask is 0..*, then all the results of the Activity will be collected. If it is 0..m 
for some finite m, then some subset of those results will be collected.

In this case, we assume that the exit condition and the loop action are combined into a 
single Activity, possibly via a CompoundTask. Normally this will not be the case, 
however, and the more general patterns described in Section 3.22.5, “While and 
Repeat-Until Loops,” on page 3-276 through Section 3.22.7, “Multi-Task,” on 
page 3-278 will be used.

A special-case shorthand notation for such a loop is shown in Figure 3-67. The looping 
flow indicates that simple recursion is taking place. Any OutputGroup containing a 
ProcessPortConnector that is the source of a looping flow may only be the source of 
flows to a single InputGroup.

Figure 3-67  Simple Loop Notation  

activity

Loop
activity

Loop

done

The results of
the activity and
the recursive call
will be merged.

0..m

activity
February 2002 UML Profile for EDOC:  Process Model Patterns 3-275



3

3.22.5 While and Repeat-Until Loops

Figure 3-68  While Loop Pattern  

In Figure 3-68 we see a more general ‘while’ loop pattern with separate exit test and 
loop body, and Figure 3-69 shows a slightly different pattern that results in a ‘repeat-
until’ loop. The ‘while’ and ‘until’ Activities represent some kind of boolean 
expression evaluation engine.

Figure 3-69  Repeat/Until Loop Pattern  

while

Loop
while,

activity

Loop

done
0..m

activity

until

Loop
until, activity

Loop

done
0..m

activity
3-276 UML Profile for Enterprise Distributed Object Computing February 2002



3

As for the Simple Loop, these loops could be drawn as shown in Figure 3-70 and Figure 3-71 
respectively.

Figure 3-70  While Loop Notation  

Figure 3-71  Repeat-Until Notation

3.22.6 For Loop

Figure 3-72 For Loop Pattern 

The pattern in Figure 3-72 shows how to do a for-loop with a generalized initialization 
step, loop test, and loop body as popularized by the C, C++, and Java languages. Note 
that the inner loop is the while-loop pattern and hence the special-case notation for 
while-loops can be used.

activity

while

done

untilactivity

done

while

Loop

ForLoop

done
0..m

activity

ForLoop

init
0..m

init, while, activity
February 2002 UML Profile for EDOC:  Process Model Patterns 3-277



3

3.22.7 Multi-Task

Figure 3-73  Pattern for a multi-task

The pattern in Figure 3-73 shows how to process a collection of items in parallel and 
collect the results. The split activity takes a collection of items and splits them into a 
head and a tail. The head is passed to the activity for processing, while a concurrent 
recursive invocation of the loop is initiated to process the tail. If, however, the 
collection is empty, then the split’s other OutputGroup is enabled and the loop 
CompoundTask finishes. No explicit flow from this OutputGroup to the 
CompoundTask’s OutputGroup is required since all it’s Outputs will be satisfied with a 
zero cardinality.

Intuitively, what happens when this pattern executes is as follows. When a collection of 
items is passed in to the multi-task pattern, a set of concurrent loops and activities is 
spawned, one pair for each item in the collection. The activity processes an item, and 
the concurrent loop recursively handles the other n-1 items.

Note that if an Activity processing an item throws an exception, it is caught and passed 
to a second Output in the OutputGroup. This means that a single failed Activity doesn’t 
cause all the other Activities to be terminated and the completed activities to throw 
away their results. This is especially useful in the case where we might wish to apply 
the timer pattern to the Activity.

No shorthand notation for multitask is suggested.

activity

Loop
split, activity

Loop

0..m

split

0..m
3-278 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.23 Full Model

The diagram below represents the full metamodel for the Business Process profile.

Figure 3-74  Combined MOF model of Process

Composition
(from CCA)

ComponentUsage

name : String

(from CCA)

n1

+uses

n

+owner

1

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA)

n

1

n
+uses

1

PortConnecto r

(from CCA)

PortActivity
(from CCA)

Multi Port
(from CCA)

FlowPort

(from CCA)

<<boundary>>

Port

name : String
synchronous : Boolean
transactional : Boolean
direction : DirectionType
postCondition : Status

(from CCA)

<<boundary>>

UsageContext
(from CCA)

PortUsage
(from CCA)

1 n

+represents

1 n

1

+extent

1

AbstractTransition
(from CCA)

Node

name :  Stri ng

n 1

+outgoing

n

+source

1

n 1

+incoming

n

+target

1

ProcessPortConnector

ProcessFlowPort

multipl icity_lb : short
multipl icity_ub : short

ProcessMultiPort

InputGroup OutputGroup

ExceptionGroup

DataFlow

BusinessProcess

CompoundTask

ProcessRole

selectionRule : string
creationRule : string

Activi ty

0..n 0..n
+responsibleFor
0..n 0..n

0..n 0..n
+usesArtifact
0..n 0..n

0..1 0..n
+performedBy
0..1 0..n

Connection
(from CCA)

connects

BusinessProcessEntity

Enti ty

Managed : Boolean

(from Entity)

Arti fact Performer ResponsibleParty
February 2002 UML Profile for EDOC:  Full Model 3-279



3

Section VI - The Relationships Profile

The Relationships profile describes the extensions to the UML core facilities to meet 
the need for rigorous relationship specification in general and in business modeling and 
software modeling in particular.

3.24 Requirements

3.24.1 Introduction

This section describes extensions to the UML core facilities that support the need for 
rigorous relationship specification in general and in business modeling and software 
modeling in particular. In this context, the most important and most interesting aspects 
of behavior are in the relationships between participants rather than in the behavior of 
participants4. Therefore clear, concise and rigorous specification of relationship 
semantics is of utmost importance. 

Note that multiplicities are not the most important or most interesting properties of 
relationships5. Property determinations are much more important for the semantics of a 
relationship, and distinguish among different kinds of relationships. The fragments of 
relationship invariants about property determination represent an essential fragment of 
those elusive “business rules” that are the backbone of a good specification and that 
should never be only “in the code.”

At the same time, it is very desirable to discover and specify – rather than reinvent – 
those kinds of relationships that are encountered in all specifications, so that reuse at 
the specification level becomes possible. Such generic relationships extend the set of 
reusable constructs that already exist in UML.

This section includes somewhat simplified examples that demonstrate the practical 
usage of these relationships.

The section also provides advice for choosing and using a subset of UML for business 
modeling such a that the business models represented in terms of this subset will be 
readable and understandable by all stakeholders, specifically, business subject matter 
experts, analysts, and developers (as well as managers). The generic relationships 
described here are among the most important constructs of this subset.

The UML extensions described in this document were not invented from scratch; they 
were reused from existing international standards and based on existing modeling 
practice. The material about generic relationships presented here is based on long-term 

4.“Behavior must be described at the system level, not the object level: all interesting behavior 
is in the relationships between objects, and it is impossible to understand behavior of the 
system by looking only at the behavior of its parts.” (From the keynote of Anthony Hall at 
Requirements Engineering’97)

5. In most cases, the multiplicities follow from the generic relationship invariant and therefore 
do not need to be explicitly shown in the diagram: the Stereotype takes care of that. Such 
diagrams are less cluttered.
3-280 UML Profile for Enterprise Distributed Object Computing February 2002



3

experience in modeling in various areas (telecommunications, finance, insurance, 
document management, business process change, etc.) described in [12], [10], [14], 
[17] (Appendix A) and elsewhere. 

Similarly to UML, we use invariants to specify the semantics of various kinds of 
relationships. UML 1.4 Section 2.3.2 states, “The static semantics ... are defined as a 
set of invariants of an instance of the [association].... These invariants have to be 
satisfied for the construct to be meaningful..” 

The approach presented here is extensible, and if it appears that in a particular business 
(or a set of applications) additional generic relationships are needed and useful, then 
they may be precisely and explicitly defined and added in a manner similar to the 
definitions provided here.

Generic relationships provide concepts and constructs that permit UML to be used for 
specification of businesses and systems in a more rigorous manner than (and without 
restrictions currently imposed by) the base UML 1.4. Generic relationships provide for 
explicit specification of relationship semantics in class diagrams, so that a line between 
boxes – even a named line! – will not be considered an adequate relationship 
specification.6  Names  by themselves do not determine semantics; if a name is used then 
it has to be precisely defined in the same manner that generic relationship stereotype 
names like “Assembly” are defined in this document7.

The semantics of a class diagram is in its structure – the collections of “lines” – and so 
it has to be appropriately defined and represented graphically. Fortunately, UML 
provides adequate extension facilities to satisfy this goal. 

3.24.2 Non-Binary Relationships

In many cases, a relationship – such as subtyping or UML aggregation – is defined 
between more than two participants. This happens because the invariant that defines 
the relationship refers to all its participants rather than just to two of them. Therefore, 
several binary relationships are not equivalent to one non-binary.  The joint properties 
of these binary relationships (formalized in the invariant referring to all of them) would 
not be specified in the former case. More specifically, such invariants often describe 
how the properties of one relationship participant – such as the “whole” – are 
determined on the basis of the (joint) properties of the other relationship participants – 
such as its “parts.”

6. A combination of two interrelated lines required by the currently existing UML metamodel 
is an exception; specifically, an association line that simply mandates a link is acceptable, 
but only if it is paired with a <<Reference>> dependency line. <<Reference>> is defined 
later in this document.

7. After a precisely defined relationship was named, the name may be used again and again 
without repeating the semantics. Such a name may be used instead of the semantics (and 
vice versa).
February 2002 UML Profile for EDOC:  Requirements 3-281



3

Based on substantial modeling experience – see also the examples below – we consider 
most relationships to be asymmetric, and more specifically, we state that an 
asymmetric relationship relates8 a source type to a non-empty set of target types. As a 
familiar example, in a generic Aggregation relationship (which corresponds to the RM-
ODP composition9), the “whole” is related to a “collection of parts,” and the specific 
invariant determines the kind of this relationship. In other words, only a collection of 
all AssociationEnds jointly realizes an Association.

As a more specific consequence, visible in Figure 3-75, we must clearly and explicitly 
distinguish between two or more aggregations for the same whole (which are not 
interrelated by any invariant) and a non-binary aggregation defined by a specific 
(property determination) invariant. 

Since UML version 1.4 requires an Aggregation to be binary only, we have to remove 
this restriction (e.g., from UML 1.4, Section 2.5.3, Rule 3; also, UML 1.4, Sections 3.3 
and 3.43.3 are affected since an “aggregation tree” may have its own semantics and is 
not just a presentation option; etc.). After that, we can apply the “Aggregation” 
Stereotype and its subtypes to Association10 (note that the property determination 
invariant is explicitly used to define this Stereotype)

Appropriate icons — that can represent directionality — are essential for a better 
graphical representation. Clearly, there is no need to have an icon for every conceivable 
modeling element, but the already existing (asymmetric!) UML icons representing a 
relationship (e.g., diamond for aggregation or triangle for subtyping), together with a 
Stereotype abbreviating the invariant of the relationship type, solve the problem, as 
seen from the examples. 

3.24.3 Example: Mutually Orthogonal Non-Binary Aggregations

Figure 3-75 demonstrates the need for non-binary aggregations, for different (mutually 
orthogonal) aggregations for the same whole, and for an asymmetric representation of 
non-binary relationships in general. 

Currently, UML 1.4 restricts aggregations to being binary; this restriction does not 
permit clear representation of business requirements, specifically the invariants, like 
the ones shown in the example. Similarly, UML treats all parts for the same aggregate 
in an equal manner; this restriction does not permit grouping only those parts that 
“belong together” because those parts are referred to in the same aggregation invariant 
for property determination. 

8. This is based on the mathematical concept of a relation used in formal specifications; see, 
for example, [PST91].

9. RM-ODP [RM-ODP] defines a composition of objects as follows: “A combination of two or 
more objects yielding a new object, at a different level of abstraction. The characteristics of 
the new object are determined by the objects being combined and by the way they are com-
bined.” Similarly, other <X>s (such as behaviors) can be composed.
3-282 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML also does not currently specify how to show mutually orthogonal (independent) 
aggregations on a diagram. Such aggregations appear quite often, in particular when 
different viewpoints have to be considered11. Finally, the current UML represents non-
binary associations in a way that does not clearly distinguish between association 
source and target. Such distinction is needed for non-binary Aggregation Associations.

The example shows how UML is extended to deal with these issues by using the 
generic relationships described in this document. The diagram below (see Figure 3-75) 
demonstrates two aggregations– a content-based and a logical layout-based 
decomposition of an OMG Domain Task Force (DTF) specification document. 

Figure 3-75  UML Extensions Representing Multiple Viewpoints

The two decompositions in Figure 3-75 show two different viewpoints used to better 
understand different aspects of such a document. Clearly, concerns used in these 
viewpoints are different and therefore ought to be distinguished explicitly.

On the one hand, a DTF specification document, from the content-based viewpoint, is 
decomposed into fragments of general nature, fragments that deal with domain-specific 
issues, and fragments that deal with CORBA-specific issues. In accordance with OMG 
requirements, these fragments have to be present in a document in order for it to be a 
DTF specification; this explains the <<Assembly>> Stereotype (defined below). 

10. This traditionally has been represented graphically as a “diamond” attached to the 
“whole”. Other representations are certainly possible.

11. Presenting (abstractions of) the different aggregations of the same whole in the same dia-
gram provides a roadmap that enhances understanding of complex specifications. As a more 
specific example, four different ways to decompose a Trade were deemed necessary by the 
business experts in an exotic option environment.

 

general domain-specific CORBA-specific 

prose 

diagrams 

DTF spec document 

content-based 

<<Assembly>> 

logical layout-based 

<<Assembly>> 
February 2002 UML Profile for EDOC:  Requirements 3-283



3

Further, the fragments may exist independently of the existence of the DTF 
specification document, as often happens when the specification authors reuse some of 
their already existing document fragments. Therefore the diamond is white rather than 
black; this aggregation is shared. 

On the other hand, the same document is decomposed from the logical layout-based 
viewpoint into fragments that represent text and fragments that represent diagrams. 
Again, the <<Assembly>> Stereotype is used since OMG requires that such documents 
contain both text and (UML) diagrams. And again, these fragments may exist 
independently of the existence of the document itself.

There is no 1:1 relationship between a fragment of the content-based decomposition 
and a fragment of the logical layout-based decomposition. Moreover, in a more 
detailed specification it is possible to define reference relationships (see below) 
between some content-based fragments and some logical layout-based fragments. And 
for a specific DTF OMG document, it is possible to be more detailed about the nature 
of the content-based fragments, and also about the nature of their types.

From the above description it can be seen that this specification presents two 
<<Aggregations>> rather than five. The invariants that define these two aggregations 
clearly demonstrate this: for example, the value of the document property12 named 
“abstract” is determined jointly by the values of the content properties of the parts in 
the content-based aggregation, while the value of the document property named 
“number of pages” is determined jointly by the values of the properties “number of 
pages” of the parts in the logical layout-based aggregation. (It is possible to be more 
detailed and consider physical layout-based aggregation as well, but for simplicity the 
logical and physical layout-based aggregations were merged.)

Finally, observe that each relationship shown in the diagram above has an indication of 
its Stereotype (a “type name”) and its own name. The former may be sufficient if the 
modeler and the client believe that non-unique names are appropriate for the context 
and will not (ever!) lead to misunderstandings. However, the use of identifiers (i.e., 
names that uniquely distinguish a thing (in this case, a relationship) from another 
thing) is recommended. Of course, the stereotype is essential since it abbreviates the 
invariant for the particular kind of relationship.

12. Properties are, for simplicity, not shown in the diagram. At the same time, the designation 
of a relationship as an Aggregation requires, at an appropriate level of detail, to specify the 
property determination invariant of that specific relationship (e.g., of content-based). This 
invariant refers to the appropriate properties, and usually is not represented graphically.
3-284 UML Profile for Enterprise Distributed Object Computing February 2002



3

3.24.4 Example: Multiple Subtyping

The simple example shown in  demonstrates the need to be able to specify multiple 
subtyping hierarchies for the same supertype. As for any relationship, each subtyping 
hierarchy (with its subtypes) is defined by its invariant; and the invariant of one 
subtyping hierarchy is independent of the invariant of the other subtyping hierarchy (or 
hierarchies).

Figure 3-76  Multiple Subtyping Hierarchies for the Same Supertype

In this example, an employee satisfies exactly one subtype in the gender-related 
subtyping hierarchy and at least one subtype in the function-related subtyping 
hierarchy. Thus, the function-related subtyping is overlapping: the employee may 
satisfy either one or both subtypes in this hierarchy at the same time. Clearly, the two 
subtyping hierarchies presented above are mutually independent. It means that the four 
subtypes shown in the diagram cannot be merged into one subtyping hierarchy: such 
merge would destroy the semantics represented there.

3.24.5 Other Relationship Requirements

The following additional important generic relationships (and their subtypes) have 
been defined in  and elsewhere:

• Reference: A binary, asymmetric relationship in which the properties of instances of 
one type determine the properties of instances of another type.

Our employee

Male

Female

Technical Managerial

function-related

{overlapping}

gender-related

"Exhaustive", or "complete"
is a default and therefore we
don't show it
February 2002 UML Profile for EDOC:  Requirements 3-285



3

3.25 Using UML to Address the Requirements: An Overview

Some of the required relationships can be represented in UML in a straightforward 
manner. UML 1.4 permits specification of multiple mutually independent (mutually 
orthogonal) subtyping hierarchies of the same supertype, as well as the specification of 
multiple subtypes of the same supertype in the same subtyping hierarchy13. This was 
demonstrated in the example above. In addition, some of the generic subtypes of 
composition may be presented using existing UML constructs (see below).

In UML a subtype hierarchy is called a partition14. A sub/supertype relationship is 
called a Generalization, which has one element in the role of parent and one in the role 
of child. A Generalization has a property called the discriminator. If two 
Generalizations have the same parent and the same discriminator, then they are part of 
the same partition. 

A Generalization partition can be constrained to be complete or incomplete and, 
separately, to be disjoint or overlapping. If a partition is incomplete it means that there 
could conceivably be instances of the supertype that are not instances of any of the 
subtypes. Complete is the default. If a subtype hierarchy is disjoint it means that no 
instance of the supertype can be an instance of more than one of the subtypes. Disjoint 
is the default.

Therefore, in what follows, the generic subtyping relationship will not be discussed 
further (although its UML representation will be used in examples).  The generic 
relationships for which UML extensions are presented include only aggregation, 
reference, and symmetric relationships. The representation of these generic 
relationships will be accomplished by extending the UML core elements “Association” 
and “Dependency.”

3.26 Formal Virtual Metamodel of the UML Extensions

A virtual metamodel (VMM) is a formal model of a package of extensions to the UML 
metamodel using UML’s own built-in extension mechanisms.  UML’s primary 
extension mechanisms are Stereotypes and TaggedValues. 

This VMM defines only Stereotypes. It does not define any TaggedValues. Figure 3-77 
is a class diagram of the VMM. Stereotypes defined by the VMM are denoted by 
Classes boxes with the <<stereotype>> keyword. The fact that a Stereotype extends a 

13. In this manner, it is possible to support the specification of dynamic typing, i.e., of a thing 
acquiring and losing type(s). A thing acquires a type when it acquires the properties 
(satisfies the invariant) of that type; and a thing loses a type when it loses the properties (no 
longer satisfies the invariant of) that type. As an example, consider a person acquiring and 
losing such types as employee, homeowner, stockholder, and so on.

14. Not to be confused with a “swim lane” partition in an activity graph
3-286 UML Profile for Enterprise Distributed Object Computing February 2002



3

particular element of the UML metamodel is shown via a Dependency stereotyped 
<<baseElement>> that points from the Class box representing the Stereotype to a Class 
box representing the UML metamodel element.

Figure 3-77  Class Diagram of the Virtual Metamodel

3.26.1 Aggregations

3.26.1.1 Stereotype: Aggregation

Inheritance

Association
Aggregation

Instantiation in a model

Concrete

 _ 

Aggregation 

_ 

<<stereotype>> 

_ 

AbstractReference 

_ 

<<stereotype>> 

_ _ _ 

ReferenceForCreate 

_ 

<<stereotype>> 

_ 

Assembly 

_ 

<<stereotype>> 

_ 

Subordination 

_ 

<<stereotype>> 

_ 

List 

_ 

<<stereotype>> 

_ 

Dependency 

_ 

(from UMLCore) 

_ 

Association 

_ 

(from UMLCore) 

_ 

Relationship 

_ 

(from UMLCore) 

_ 

<<stereotype>> 

_ 

<<stereotype>> 

_ 

Packet 

_ 

<<stereotype>> 

_ 

{overlapping} 

_ 

Reference 

_ 

<<stereotype>> 

_ 

{incomplete} 

_ 

{incomplete} 

_ _ _ _ _ 
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-287



3

Semantics

For an Aggregation, the properties of one of the participants (of the source type) – also 
called the “whole” – are determined, in part, by the properties of the other participants 
– also called the “parts.”

The Aggregation properties captured by the Packet, Assembly, Subordination, and List 
Stereotypes described below are orthogonal to whether the aggregate’s 
AggregationKind is shared (corresponding to shared Aggregation) or composite 
(corresponding to hierarchical Aggregation).

Tagged Values

None

Constraints

Constraints Expressed Generically

Invariant - An aggregate (“whole”) type corresponds to one or more part types, and an 
aggregate instance corresponds to zero or more instances of each part type. There 
exists at least one property of an aggregate instance determined by the properties of its 
part instances. There exists also at least one property of an aggregate instance 
independent of the properties of its part instances.

Note – It is not possible to express all the semantics of Aggregation specified in the 
Invariant above – including the property determination semantics – in a way that can 
be rendered in OCL nor in a structured English that maps to OCL15. The OCL 
constraints for Aggregation merely pin down the relationship of the Aggregation 
Stereotype to previously existing concepts about aggregation in the UML metamodel. 
On the other hand, the formal constraints for the sub-Stereotypes of Aggregation 
(Assembly, Subordination, etc.) in subsequent sections really do express the essential 
semantic distinctions that these more specific Stereotypes convey.

Formal Constraints Expressed in Terms of the UML Metamodel

English

Invariant: For exactly one of the participants in the Association, AggregationKind = 
shared or AggregationKind = composite.

OCL
inv OneAggregate:
   self.connections->select (end | end.aggregation <> #none)

->size = 1

15. The UML specification makes no claim that all the semantics are expressed in OCL; it 
labels the OCL assertions only as well-formedness rules.
3-288 UML Profile for Enterprise Distributed Object Computing February 2002



3

UML Constraint Relaxed

The following UML 1.4 constraint16 is relaxed, i.e. is not in force in this UML profile

English

Invariant: If an Association has three or more AssociationEnds, then no 
AssociationEnd may be an aggregation or composition.  [RELAXED]

OCL
self.allConnections->size >=3 implies self.allConnections

->forall(aggregation = #none)  --RELAXED

Diagram Notation17

An Aggregation uses the traditional UML aggregation diamond notation. When the 
Aggregation is non-binary, we do not use the standard UML notation for non-binary 
associations; instead, the line extending away from the aggregate and away from the 
diamond divides into branches, with each branch extending to one of the parts,18 as 
shown in Figure 3-78 and Figure 3-79.

Multiplicities may be shown in the normal UML fashion and must be specified in the 
model for the model to be well formed. However, in most cases the specific sub-
Stereotype of Aggregation (e.g., Assembly, Subordination, etc.) is sufficient for 
presentation to humans, and showing the multiplicities on the diagram produces 
needless clutter. A tool vendor could choose to set default multiplicity values in the 
models based on the specific Aggregation sub-Stereotype.

Figure 3-78  Notation for Shared, Non-Binary Aggregation

16. UML 1.4 specification, http://cgi.omg.org/cgi-bin/doc?ad/01-02-13, section 2.5.3, well-
formedness rule [3] for Association.

17. This diagram notation, as well as notations for subtypes of Aggregation and for Symmetric 
Relationships, show – as an example! – two target types. Except for Reference relationships, 
there may be any strictly positive number of target types.

 

part of one type part of another type 

aggregate 

<<Aggregation> 
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-289



3

Figure 3-79  Notation for Composite, Non-Binary Aggregation

Note – At some abstraction level it may be unknown or unimportant whether the 
diamond is white or black, i.e., whether the Aggregation is hierarchical or not. In this 
case, the choice is to be less restrictive: the Aggregation is, by default, non-hierarchical 
(the diamond is white).  The explicit specification of the <<Aggregation>> Stereotype 
may not be needed since the diamond takes care of that.

Observe also that in some cases the modeler does not want to make certain choices 
because such choices – at that particular specification stage – may be unimportant or 
irrelevant. This is an example of using abstraction to suppress irrelevant details. 

Thus it may well be possible that the modeler will choose <<Aggregation>> without 
making any further decisions as to the specific subtype of this <<Aggregation>>, and 
therefore this Stereotype is not abstract. 

At the same time, the invariant of <<Aggregation>> includes a substantial amount of 
important semantic information, specifically, information about property values of the 
aggregate determined by property values of its parts; this is a very important 
consideration in choosing an <<Aggregation>> as opposed to other relationships.

3.26.1.2 Stereotype: Assembly

Inheritance

Association
Aggregation

Assembly

18. This approach is quite intuitive and has a certain consistency with the notation used for 
depicting Generalization partitions (i.e. subtype hierarchies).

 

part of one type part of another type 

aggregate 

<<Aggregation> 
3-290 UML Profile for Enterprise Distributed Object Computing February 2002



3

Instantiation in a model

Concrete

Semantics

An Assembly is an Aggregation for which the aggregate (whole) cannot exist without 
its parts.

Tagged Values

None

Constraints

Constraints Expressed Generically

Invariant: The existence of an aggregate instance implies the existence of at least one 
corresponding part instance. 

Formal Constraints Expressed in Terms of the UML Metamodel

English

Invariant: The multiplicity of the part ends of the association must have a lower bound 
of at least 1.

OCL

  inv PartMultiplicity:
  let parts= self.connections->select (end | end.aggregation = 

#none) in parts->forAll (multiplicity.range->forAll (lower >= 1) 
)

Note – The sub-Stereotypes of Aggregation (Assembly, Subordination, etc.) essentially 
specify a set of multiplicity constraints. At first glance the UML-aware reader may 
conclude that these Stereotypes merely duplicate the ability to express multiplicity that 
UML already has and are therefore unnecessary. In order to understand the added 
value, one must consider non-binary Aggregations. 

For example, the invariant of Assembly constrains the multiplicities on all of the part 
AssociationEnds in a non-binary Aggregation, and thus adds another level of validation 
that can be conducted as to whether a model is well formed. In addition, multiplicities 
in this context are realizations of the semantics specified in the appropriate invariants 
at a (somewhat) higher abstraction level preferable for human readers. 

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the 
Stereotype keyword is <<Assembly>>. Therefore the specific diagrams are not 
provided here.
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-291



3

3.26.1.3 Stereotype: Subordination

Inheritance

Association
Aggregation

Subordination

Instantiation in a model

Concrete

Semantics

A Subordination is an Aggregation for which the parts cannot exist without their 
aggregate (whole).

Tagged Values

None

Constraints

Constraints Expressed Generically

Invariant: The existence of a part instance implies the existence of at least one 
corresponding aggregate instance. 

Formal Constraints Expressed in Terms of the UML Metamodel

English

Invariant: The multiplicity of the aggregate end of the association must have a lower 
bound of at least 1.

OCL
inv AggregateMultiplicity:
  let aggregate = self.connections->select (end | end.aggregation 

<> #none) in aggregate.multiplicity.range
->forAll (lower >= 1)

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the 
Stereotype keyword is <<Subordination>>. Therefore the specific diagrams are not 
provided here.

3.26.1.4 Stereotype: Packet

Inheritance

Association
3-292 UML Profile for Enterprise Distributed Object Computing February 2002



3

Aggregation
Packet

Instantiation in a model

Concrete

Semantics

A Packet is an Aggregation for which the parts can exist without their aggregate, and 
the aggregate can exist without its parts. This is the default for Aggregation.

Tagged Values

None

Constraints

No additional Constraints beyond those inherited from Aggregation.

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the 
Stereotype keyword is <<Packet>>. Therefore the specific diagrams are not provided 
here.

3.26.1.5 Stereotype: List

Inheritance

Association
Aggregation

Assembly
List

Association
Aggregation

Subordination
List

Instantiation in a model

Concrete

Semantics

A List is an Aggregation for which the parts cannot exist without their aggregate, and 
the aggregate cannot exist without its parts. Thus, a List is a subtype of both Assembly 
and Subordination; both subtypings are incomplete.

Tagged Values

None
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-293



3

Constraints

No additional Constraints beyond those inherited from Assembly and Subordination.

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the 
Stereotype keyword is <<Packet>>. Therefore the specific diagrams are not provided 
here.

3.26.1.6 Special Notes on Shared and Composite Aggregations

As mentioned above, any of the forms of Aggregation defined here can be used with 
either shared or composite aggregation (also known as weak and strong aggregation, 
respectively). Sometimes it is helpful to think of shared and composite aggregations as 
non-hierarchical and hierarchical aggregations, respectively.

In UML the aggregate in a composite aggregation is allowed to have multiplicity of 
either 1..1 or 0..1, although many modelers are under the misconception that composite 
aggregation implies a multiplicity of 1..1 for the aggregate. 

A composite aggregation stereotyped as a <<Subordination>> constrains the 
aggregate’s multiplicity to 1..1. Similarly, in UML the aggregate in a shared 
aggregation is allowed to have multiplicity of either 1..* or 0..*. A shared aggregation 
stereotyped as a <<Subordination>> constrains the aggregate’s multiplicity to 1..*. 

3.26.2 Reference Relationships

3.26.2.1 Stereotype: AbstractReference

Inheritance

Dependency
AbstractReference

Instantiation in a model

Abstract

Semantics

The property values of one participant – the maintained – are determined, in part, by 
the property values of the other participant – the referenced. The maintained and 
referenced participants are the client and supplier, respectively, in the UML 
Dependency relationship. AbstractReference is specialized into Reference and 
ReferenceForCreate, as shown below.

Tagged Values

None
3-294 UML Profile for Enterprise Distributed Object Computing February 2002



3

Constraints

Constraints Expressed Generically

Invariant: The existence of a maintained instance implies that if a corresponding 
instance of the reference type exists, then some property values of the instance of the 
maintained element are determined by some property values of the corresponding 
instance of the referenced element. 

Formal Constraints Expressed in Terms of the UML Metamodel

It is not possible to express the constraints formally in terms of the UML metamodel.19

Diagram Notation

Since AbstractReference is abstract, no notation is defined for it. However, notation is 
defined for its sub-Stereotypes.

3.26.2.2 Stereotype: Reference

Inheritance

Dependency
Reference

Instantiation in a model

Concrete

Semantics

A Reference is the most common form of AbstractReference for which the property 
values of the maintained instance are determined, in part, by the current property 
values of the referenced instance. 

Tagged Values

None

19. However, it is possible to define an implementation mapping. See notes in the sections on 
Reference and ReferenceForCreate below.
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-295



3

Constraints

Constraints Expressed Generically

Invariant: The property values of the maintained instance are determined, in part, by 
the current property values of the referenced instance. The property values of the client 
must be reviewed and possibly changed whenever any of the properties of the supplier 
changes.

Formal Constraints Expressed in Terms of the UML Metamodel

It is not possible to express the constraints formally in terms of the UML metamodel.

Diagram Notation

The notation is the standard UML Dependency notation with the <<Reference>> 
Stereotype, as shown in Figure 3-80.  Note that <<Reference>> can be abbreviated as 
<<Ref>>.

Figure 3-80  Notation for Reference

3.26.2.3 Stereotype: ReferenceForCreate

Inheritance

Dependency
AbstractReference

Instantiation in a model

Concrete

referenced

maintained

<<Reference>>
3-296 UML Profile for Enterprise Distributed Object Computing February 2002



3

Semantics

A ReferenceForCreate is an AbstractReference for which the property values of the 
maintained instance are determined, in part, by the property values of the referenced 
instance at the time that the maintained instance is created. Once the maintained 
instance is created, its properties are not affected by changes to the referenced instance.

Tagged Values

None

Constraints

Constraints Expressed Generically

The property values of the maintained instance are determined, in part, by the property 
values of the referenced instance at the time that the maintained instance is created. 
The properties of the referenced element must be examined whenever an instance of 
the maintained element is created.

Constraints Expressed in Terms of the UML Metamodel

It is not possible to express the constraints formally in terms of the UML metamodel.

The notation is standard UML Dependency notation with the <<ReferenceForCreate>> 
Stereotype, as shown in Figure 3-81.

Figure 3-81  Notation for ReferenceForCreate

Referenced

Maintained

<<ReferenceForCreate>>
February 2002 UML Profile for EDOC:  Formal Virtual Metamodel of the UML Extensions 3-297



3

3.27 Mapping the Relationships to Technical Platforms

This non-normative subsection addresses the mapping of the relationships defined in 
this document to technical platforms such as CORBA IDL, XML, Java, etc.  

A mapping to a technical platform can use one of two basic approaches:

Type 1. It can describe how to transform a model to a set of declarations expressed in 
the native declarative language of the chosen technical platform.  This kind of 
transformation targeted to the CORBA platform generates declarations expressed in 
CORBA IDL, i.e. CORBA interfaces, valuetypes, etc.  If targeted to the Java platform, 
it generates declarative Java code, i.e. Java interfaces and abstract classes.  If targeted 
to XML, it generates an XML DTD or XML Schema, both of which are essentially 
declarative code.

Type 2. It can describe how transform a model to another UML model expressed in 
terms of a UML profile targeted to the chosen technical platform, such as the UML 
Profile for CORBA20 or the UML Profile for EJB21.  Such UML profiles support 
expression via UML of declarative semantics in terms of the concepts native to the 
chosen technical platform.

Within the scope of this mapping section, we refer to these two types of mappings as 
Type 1 and Type 2 mappings.

3.27.1 Aggregations

3.27.1.1 Decomposing Non-Binary Aggregations

Any Type 1 or Type 2 mapping algorithm that covers the transformation of UML 1.4 
binary aggregation associations can be applied in a straightforward manner to the 
transformation of non-binary aggregations.  Prior to executing the transformation, all 
non-binary aggregations should be decomposed into binary aggregations.  The rules for 
decomposition are as follows:

• The participant classifier (i.e., the type) of the aggregate end of the non-binary 
aggregation becomes the participant classifier on the aggregate end of all of the 
binary aggregations resulting from the decomposition.  

• The properties (such as name and multiplicity) of the aggregate end of each of the 
resulting binary aggregations are the same as the properties of the aggregate end 
of the non-binary aggregation.  There is one exception to this rule:

• Typically the name of the aggregate end of each of the binary aggregations is the 
same as the name of the aggregate end of the non-binary aggregation, as 
illustrated by Figure 3-82.  The exception case is where more than one of the 

20. [UML-CORBA]

21. [JSR-40]
3-298 UML Profile for Enterprise Distributed Object Computing February 2002



3

aggregee ends of the non-binary aggregation have the same participant classifier, 
as in Figure 3-83, where Z is the participant classifier for two aggregee ends of 
the non-binary aggregation.  In that case, there would be a name conflict if the 
aggregate end of both of the resulting non-binary aggregations had the same name 
(e.g. if both of the aggregate ends opposite Z in Figure 3-83 were named “a”).  
The rule for disambiguating the aggregate end names is to prepend the name with 
the name of the aggregee end.  Thus in Figure 3-83, “z2” and “z” are prepended 
to the names of the respective aggregate ends of the binary aggregations.

• The participant classifier of the aggregee ends of the non-binary aggregation 
become the respective participant classifiers of the aggregee ends of the resulting 
binary aggregations.

• The properties of the aggregee end of each of the resulting binary aggregations 
are the same as the properties of the corresponding aggregee ends of the non-
binary aggregation.

3.27.1.2 Ignoring Aggregation Sub(stereo)types 

Type 1 and Type 2 mapping algorithms should ignore all of the specific aggregation 
stereotypes defined in this profile that modify the a binary or non-binary aggregation 
(Assembly, Subordination, List, and Packet).  These specific stereotypes are merely 
constraints on the multiplicities of the association ends.  Any mapping of standard 
UML 1.4 aggregation associations would have to have rules for how the transformation 
is affected by these multiplicities.  The presence of the stereotypes does not mean that 
these multiplicities are missing. Therefore the multiplicities can drive the 
transformation and the stereotypes are redundant.

3.27.1.3 Leveraging General Mappings 

With these rules in hand, well-defined mappings such as the MOF-IDL22, MOF-XML 
(i.e. XMI)23, and MOF-Java24 mappings can be readily applied to the kind of binary 
and non-binary aggregations associations supported by this relationship profile.  Since 
these well-defined mappings specify how to transform MOF models, some slight 
adjustments are necessary to apply them to UML models.  The adjustments are quite 
minor and are necessitated by the slight degree to which the MOF and UML are out of 
sync with each other, a misalignment that is slated to be fixed by the UML 2.0 
Infrastructure RFP process.

22. [MOF 1.3] 

23. [XMI 1.1] 

24. [JSR-40] 
February 2002 UML Profile for EDOC:  Mapping the Relationships to Technical Platforms 3-299



3

As an alternative to using MOF technology mappings, UML technology mappings can 
be leveraged as well.  There are currently no standardized UML technology mappings, 
but a number of tools have defined their own proprietary mappings. Again, by applying 
the rules for decomposing non-binary aggregations it is straightforward to leverage 
such mappings.

Figure 3-82  Association End Names Resulting from Decomposing a Non-Binary Aggregation 
(General Case)

X Z

A

Y

+a

+x +y +z

X Y Z

A

+x +y +z

+a +a +a
3-300 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-83  Association End Names Resulting from Decomposing a Non-Binary Aggregation 
(Special Case)

3.27.2 Reference Relationships

Reference dependencies are not used to drive Type 1 or Type 2 transformations.  
Mapping algorithms ignore them, treating them essentially as documentation.  
References are most typically used in conceptual models that are not used as input for 
transformations.

X Y

A

+x +y

+a

Z

+z

+z2

X

Y Z

A

+x

+y +z

+z2

+a

+a
+za

+z2a
February 2002 UML Profile for EDOC:  Mapping the Relationships to Technical Platforms 3-301



3

3.28 Examples Using the UML Extensions

3.28.1 Example: List and Subordination

This example [15] (see Appendix A) demonstrates a fragment of an accounting 
specification in which it was essential to show and to distinguish between specific 
Stereotypes of Aggregation25. 

A reconciliation in accounting compares one collection of accounts having a particular 
account representation with another collection of accounts having a different, but 
related, account representation. As a result of a reconciliation comparison, pair-offs 
and breaks are found. 

Each pair-off results in two sets of account items. One set, drawn from one collection 
of accounts, corresponds (in accordance with “matching criteria” chosen by the user) 
to another set drawn from the other collection of accounts. (Although each account 
item is a part of exactly one account, the account items in the set that participates in a 
pair-off may be drawn from more than one account.) A pair-off happens because 
corresponding sets of account items were found, and:

• either these lists are representations of the same transaction and their (monetary 
values for) account items pair-off (match) within tolerance, or

• it is not important whether these sets are representations of the same transaction(s), 
but the sum of (monetary values for) account items in one representation is equal, 
within a specified tolerance, to the sum of (monetary values for) account items in 
the other representation.

Account items from either collection that do not participate in a pair-off represent 
breaks. Account items that are parts of breaks participate, together with the collections 
of accounts mentioned above, in subsequent reconciliation activities. A break will 
disappear as a result of a subsequent, possibly manual, pair-off. Figure 3-84 shows a 
fragment of this specification.)

25. If it were necessary to apply the currently existing UML 1.3 then some fragments of this 
specification would be shown using the (partial!) realization of these Stereotypes by means 
of multiplicities, and in some cases the problems would look very severe because of the need 
to show a non-binary aggregation. However, the excessive amount of multiplicities would 
overload the diagram, and its understanding by users would be much more difficult since the 
diagram would show the realization of a construct rather than the (abbreviation of the) 
construct itself.
3-302 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-84  Fragment of Reconciliation Specification

Figure 3-84  shows that AnAccountSet is an Assembly of AccountItems, so that in 
order for AnAccounSet to exist, its AccountItems have to exist. Further, AnAccountSet 
is specialized into OneAccountSet and AnotherAccountSet for reconciliation purposes, 
as described above. 

Each AccountSet is drawn, when a reconciliation (attempt) is accomplished, from its 
AccountCollection, so that the AccountCollection has to exist first. And finally, a 
PairOffOrBreak is a List since it results in establishing a reconciled (or non-
reconcilable) correspondence between OneAccountSet and AnotherAccountSet. 
Therefore all three participants of the Aggregation are essential for the existence of this 
Aggregation.

 

PairOffOrBreak 

OneAccountCollection 

OneAccountSet 

AnotherAccountCollection 

AnotherAccountSet 

<<List>> 

<<Subordination>> <<Subordination>> 

AnAccountSet 

AccountItem 

<<Assembly>> 
February 2002 UML Profile for EDOC:  Examples Using the UML Extensions 3-303



3

3.28.2 Example: Reference Relationships

This example demonstrates the semantics of property determination for information 
input and its syntactic and semantic validation. As this and other examples show, 
multiplicities are not the most important fragment of relationship semantics; 
specifically, the purpose of the specification shown here is to demonstrate relationships 
used for property determination. 

Without the <<Reference>> Stereotype it would be necessary to use Notes in a class 
diagram or informal prose to represent the semantics. As shown in the class diagram 
below, the essential structure of the specification becomes clear only by means of the 
<<reference>> generic relationship Stereotype. 

Figure 3-85  <<Reference>> Stereotype Used To Show Structure of Specification

Informa ti onForSyntaxCheck

SyntaxChec k

Vali dat edBus inessEnti tyEntryW indowForABus inessEntity

Sema nticValidat ion

Info rm ationForSe mantic Va lidation

<<Reference>>

<<Reference>>

<<Reference>>

<<Reference>> <<Reference>>

<<Reference>>
3-304 UML Profile for Enterprise Distributed Object Computing February 2002



3

Figure 3-85  shows a typical (and recommended!) approach to a common situation 
during information input and validation [11] (see Appendix A). The proposed values 
for the business entity are to be entered from a screen and checked for correctness. 
These screen-entered values by themselves do not determine the values of the 
ValidatedBusinessEntity. Rather, there are both syntax checks (for example, that the 
value is of the appropriate base type such as “integer”) and semantic checks (for 
example, that the value belongs to the set of permissible values such as “state name;” 
or that the customer that claims to be known is actually known). 

Business rules are specified for the SyntaxCheck and for the SemanticValidation. Each 
business rule, as a maintained entity, has two reference relationships – pointing to the 
EntryWindowForABusinessEntity and to the InformationForValidation – since the 
properties of the business rule will be determined, in part, by the properties of two of 
its reference entities. Similarly, the ValidatedBusinessEntity has two reference 
relationships pointing to these two business rules since the properties of the 
ValidatedBusinessEntity will be determined, in part, by the properties of these rules.

Clearly, the specific property determination invariants will have to be provided 
explicitly in the specification of each of these reference relationships. The diagram 
indicates that these relationships exist and that such invariants are to be provided – 
otherwise the specification is incomplete. If these invariants are simple enough, then 
they may also be represented as Notes in the diagram.
February 2002 UML Profile for EDOC:  Examples Using the UML Extensions 3-305



3

3-306 UML Profile for Enterprise Distributed Object Computing February 2002



The Patterns Profile 4
Contents

This chapter includes the following topics. 

Section/Topic Page

Section I - Rationale 4-2

“Introduction” 4-2

“Pattern Principle” 4-3

“Notation for Patterns” 4-4

“Simple Pattern” 4-6

“Pattern Inheritance” 4-6

“Pattern Composition” 4-7

“Summary of Pattern Formats” 4-8

“Applying Patterns” 4-8

Section II - Patterns Metamodel 4-10

“EDOC::Pattern Package” 4-11

Section III - UML Profile 4-14

“Table mapping concepts to profile elements” 4-14

“Introduction” 4-14

“Pattern Package” 4-15
February 2002 UML Profile for Enterprise Distributed Object Computing 4-1



4

Section I - Rationale

4.1 Introduction

The UML Profile for EDOC specification is designed to provide standard means, 
Business Function Object Patterns (BFOP), for expressing object models using UML 
package notation together with the mechanisms for applying patterns that are required 
to describe models.

Successful implementation of an enterprise computing system requires that the system 
operation to be directly related to the business processes it supports. Reusable standard 
models are required in order to build good object models for EDOC systems.

Standard models have Business Entities Objects, Business Processes Objects, Business 
Event Objects and Business Rules Objects of ECA. They also include a set of common 
and reusable patterns of relationship properties that occur in business modeling. BFOP 
is being developed to achieve this objective.

BFOP is a set of object patterns laid out in a hierarchical multi-layer structure, the 
Basic, Unit, Basic Model, Product (application systems), and Option layers. 

Figure 4-1 on page 4-3 illustrates how “Sales/Purchase Pattern” is composed from 
“Sales Order & Purchase Order Pattern,” “Closing Pattern,” and so on.  The UML 
parameterized collaboration mechanism is used to materialize the pattern integration. 

One of the major benefits for using this multi-layered structure is that it enables reuse 
(inheritance) of the constraints that have been defined and encapsulated in patterns in 
the layers. It provides a normalized way to define constraints and is effective in 
maintaining consistency within the object model.

The proposed notion of Business Pattern Package (BP Package) defining a pattern and 
Business Pattern Binding (BP Binding) applying a pattern has the features of pattern 
inheritance and pattern composition. This capability is useful for expressing patterns 
that include the objects constructed by recursive component composition of ECA.
4-2 UML Profile for Enterprise Distributed Object Computing February 2002



4

Figure 4-1   An Example of BFOP Pattern Hierarchy

4.2 Pattern Principle

A pattern is something used to represent modeling know-how or techniques that help 
developers to maintain efficiency and consistency in products. 

In the world of object modeling, many approaches to the use of patterns have been 
proposed, for example, “Design Pattern” proposed by E. Gamma et al [Gamma 95],  
“Analysis Patterns” proposed by M. Fowler [Fowler 97], or “Catalysis Approach” 
proposed by D. D’Souza [D’Souza 99]. In its use of patterns this submission focuses 
more on improving sharability and reusability of object models than on assisting 
modeling efforts by illustrating good modeling techniques.

To improve sharability and reusability of object models, patterns must support the 
following features:

• The model must offer predefined normative modeling constructs, not just modeling 
conventions and notations.

• Predefined modeling constructs should include the common atomic objects, such as, 
Date, Currency, Country-code, which can then be used without explanation.

• Common aggregated objects, such as Customer, Company, or Order, which 
represent business entities, also should be predefined as normative modeling 
constructs, using the normative atomic objects.

• Business concept, such as, Trade, Invoice, or Settlement, which are typically 
represented as relationship among objects, should be defined as aggregations of the 
common elementary aggregated objects or simple objects. They also have to be 
predefined as normative modeling constructs.

Basic Layer Master & Detail Association 

Unit Layer 

Basic Model Layer 

Closing 

Sales Order & Purchase 
Order 

Sales/Purchase

System/.Subsystem 

Common 

patterns 

Industrial 

components 

Frameworks 

Products 
February 2002 UML Profile for EDOC:  Pattern Principle 4-3



4

• Those aggregations that can be predefined using more basic and elementary patterns 
as a base, may be defined as object patterns.

• Patterns can represent a business concept where they provide for aggregation of 
more elementary patterns. Therefore, the aggregation or composition mechanism is 
an essential element of patterns.

4.3 Notation for Patterns

Business rules that govern a business concept can be represented with a pattern with 
constraints encapsulated in it. Thus, the mechanism for constraint inheritance among 
patterns must be provided.

In this section, the concept and format of patterns are discussed from the viewpoint of 
pattern notation, relationships among patterns and pattern types and their instances.

We considered that there are three basic forms on expressing patterns. First, the simple 
pattern which is a pattern consisting of minimal elements needed to form a pattern. 
Second, the inherited pattern which is a pattern defined by inheriting from another 
pattern. And the third is the composite pattern which is a pattern defined as a result of 
combining more than two patterns. The composite pattern concept is an extension of 
the inherited pattern.  Using the above three basic pattern forms as the base, we 
propose the following notations for expressing patterns and their metamodel. 

It is important to consider the issue of type and its instantiation from the metamodel 
viewpoint. A pattern is a set of types that can be instantiated to create object models. A 
pattern for a set of object models is created by identifying and defining the common 
types among those object models, using a metamodel such as in the ECA profiles. 
Identifying and specifying many reusable business object patterns is useful for quick 
and high quality model development that can be attained by selecting appropriate 
patterns among various ones to use in the project as a template.

The instantiation of a composite pattern in a hierarchical structure becomes possible by 
resolving pattern inheritance and collaboration by "unfolding". When  a composite 
pattern is granular enough to include implementation details, and it is possible to use it 
to describe a component concept such as CCA, each pattern package can be 
implemented with real components instead of unfolding it into a component pattern. In 
short, the proposed pattern concept and mechanism can be applied to the components 
based development that is required in EDOC.
4-4 UML Profile for Enterprise Distributed Object Computing February 2002



4

 

Figure 4-2  Defining the “Composition” Pattern

Figure 4-3   Applying the “Composition” Pattern

Pattern Constraints 

Pattern Parameter 

Pattern Diagram 

Pattern Operations 

<Composite> <Leaf> 

<Component> 

<<BP Package>> 
Composition 

 Business Pattern Name 

Required generalization 

Pattern 

Simple Composite 

Composition 

Leaf 

Actual classes in model 

Business Pattern Binding 

Pattern parameter binding with renaming 

Component 

Composite
<<BP Binding>>
February 2002 UML Profile for EDOC:  Notation for Patterns 4-5



4

Figure 4-4   Unfolded “Composition” Pattern

4.4 Simple Pattern

A simple pattern consists of minimal elements and does not involve another pattern.  In 
BFOP, type (i.e., an abstract class) and relationship among types are significant 
elements for specifying the static structure of a simple pattern.  In addition to the static 
structure, operations are defined to characterize the pattern's behaviors. Constraints for 
the operation can be specified as the pre/post conditions described in OCL. Figure 4-5 
illustrates the notation for a simple pattern.

Figure 4-5   The format of Simple Pattern  

4.5 Pattern Inheritance

The pattern inheritance mechanism is provided to describe a pattern that is defined in 
conjunction with another already existing pattern. The names of types and attributes in 
the inherited pattern can be renamed as appropriate for the inheriting pattern. This 
provides the way to build various patterns for specific usage.

Generalization consistent with pattern 

Pattern 

Simple Composite 

operations

<A> <B>

constraints
4-6 UML Profile for Enterprise Distributed Object Computing February 2002



4

For instance, the pattern <header>-<detail> can be used to generate many patterns that 
share the common characteristics of the header-detail. Typically, patterns inherited 
from the <header>-<detail> need stricter constraints than the original pattern. If the 
pattern <A'>-<B'> is created from the pattern <A>-<B>, the types A and B are 
replaced with subtype A' and B' respectively. Figure 4-6 shows the notation and 
mechanism of the inherited pattern.

Figure 4-6   The Format of Pattern Inheritance

4.6 Pattern Composition

The third form of pattern, composite pattern, provides a way to build more complex 
patterns. When combining two patterns to describe a composite pattern, a new type 
(i.e., logical class) is created which shares the common characteristics of the original 
patterns. The new combining type is expressed using the parameterized collaboration 
in UML 1.4. The pattern composition is useful for building hierarchical structure of 
patterns. Figure 4-7 is a simple diagram illustrating the notation of composite pattern.

operations

<A> <B>

constraint

operations

A’ B’

constraints

P1

P1

P2
February 2002 UML Profile for EDOC:  Pattern Composition 4-7



4

 

Figure 4-7  The Format of Pattern Composition

4.7 Summary of Pattern Formats

The pattern formats described above can be explained using package diagram in UML 
notation as in Figure 4-8.   

Figure 4-8  The Summary of  Pattern Formats

4.8 Applying Patterns

The upper diagrams of  illustrate how the “Organization Pattern” is composed from 
“Employee Assignment Pattern” and “Organization Structure Pattern” in the BFOP 
hierarchy structure.  The UML parameterized collaboration mechanism is used to 

A

P1 P2

P3

<A>

P2

<A>

P1

B

C

SSSSiiiimmmmpleplepleple PattPattPattPatterererernnnn PPPPatatatattttteeeerrrrnnnn IIIInnnnhhhheeeerrrriiiittttaaaannnncececece PPPPatatatattttteeeerrrrn Cn Cn Cn Coooommmmppppoooossssiiiittttioioioionnnn
4-8 UML Profile for Enterprise Distributed Object Computing February 2002



4

materialize the pattern integration.  The lower diagrams of Figure 4-9  show the steps 
of unfolding. The right and down arrows show the generated  “Organization  
(Subsystem).” 

Figure 4-9  An Example of BFOP Structure and Unfolding

Organization  
Structure 

Organization  

Employee 
Assignment 

<Organization> 

OrganizationStructure 

Period <EnterpriseOrg> 

<Department> 

<Employee>  

Assignment 

OurEnterprise 

Organization 
Structure 

OurEmployee

Period 

Assignment 

Organization  
Structure 

Employee 
Assignment 

Organization  

Organization 
Structure 

Employee 
Assignment 

Unfold 

Department 

Organization  

1

1

*

*

** 

**

*

11

1

**

1

*

BFOP: Structure 

<Employee>

Emplyee 

OurEnterprise 

Organization 
Structure 

Employee 
Assignment 

Department 

Organization  

OurEmployees 

Emplyee 

Organization 

OurEnterprise OurEmployees 

Unfold 
February 2002 UML Profile for EDOC:  Applying Patterns 4-9



4

Section II - Patterns Metamodel

Figure 4-10 depicts the elements to be considered; those that are part of this profile 
specification are highlighted. This metamodel is organized with three main model 
elements to describe a Business Pattern: Business Pattern Name, Business Pattern 
Package and Business Pattern Binding. Business Pattern Names are to identify patterns 
defined with Business Pattern Packages and also are used to invoke patterns with those 
pattern names.

Figure 4-10   Metamodel for Business Pattern Package

Package 
(from Core)

Business Pattern Package

Constraint 
(from Core)

0…1

*

owns 

Template Parameter 
(from Model Element)

owns 

Operation 
(from Core)

0…1
*

owns 

Collaboration  
(from Core)

Business Pattern Binding 1
*

+ replaces with renaming 

Namespace 
(from core)

Business Pattern Name

BusinessPatternName: string
4-10 UML Profile for Enterprise Distributed Object Computing February 2002



4

4.9 EDOC::Pattern Package

4.9.1  Business Pattern Name

Semantics

Business Pattern Name is the name of business patterns defined by Business Pattern 
Package.

UML base element(s) in the Profile

Class

Fully Scoped name

EDOC::Pattern::Business Pattern Name

Owned by

Package

Properties

Business Pattern Name

Business Pattern Name is the name of pattern defined in Business Pattern Package.

Related elements

Namespace

Business Pattern Name inherits from Namespace and adds the Business Pattern Name 
of Business Pattern Package.

Business Pattern Package

Business Pattern Package specializes Business Pattern Name for defining Business 
Pattern Package associating Business Pattern Name.

Business Pattern Binding

Business Pattern Binding specializes Business Pattern Name for invoking Business 
Pattern Package with associated Business Pattern Name.

Constraints

None
February 2002 UML Profile for EDOC:  EDOC::Pattern Package 4-11



4

4.9.2 Business Pattern Package

Semantics

Business Pattern Package is used to specify patterns and handle them as design 
elements.

UML base element(s) in the Profile

class

Fully Scoped name

EDOC::Pattern::Business Pattern Package

Owned by

Package

Properties

N/A

Related elements

Business Pattern Name

Business Pattern Package inherits from Business Pattern Name and adds elements for 
defining a pattern.

Package

Business Pattern Package inherits from package and adds elements for defining a 
pattern.

Template Parameter

Template Parameter represents formal parameters of defined pattern, which are class 
names to be replaced with actual class names at unfolding pattern.

Constraint

Constraint declares the semantics of defined pattern. A Business Pattern Package can 
be specified more precisely.

Operation

Operation is the set of method definitions and extends the functions of patterns. A 
Business Pattern Package can be handled like a component or a class.
4-12 UML Profile for Enterprise Distributed Object Computing February 2002



4

Owns

Business Pattern Package owns a template in a parameterized collaboration diagram 
with constraints and operations.

Constraints

None

4.9.3 Business Pattern Binding

Business Pattern Binding indicates applying patterns and also represents a 
parameterized collaboration.

UML base element(s) in the Profile

Collaboration

Fully Scoped name

EDOC::Pattern::Business Pattern Binding

Owned by

Package

Properties

N/A

Related elements

Business Pattern Name

Business Pattern Binding inherits from Business Pattern Name and add elements for 
invoking a pattern.

Collaboration

Business Pattern Binding inherits from Collaboration and adds elements for invoking a 
pattern.

Template Parameter

Template Parameter represents to replace the elements of patterns such as class names 
or attributes when patterns are unfolded in another pattern or class diagram.

Replaces with renaming

The element names such as class name, attribute name or method name used in 
patterns are replaced when patterns are unfolded.
February 2002 UML Profile for EDOC:  EDOC::Pattern Package 4-13



4

Constraints

None

Section III - UML Profile

4.10 Table mapping concepts to profile elements

Table 4-1 provides a mapping of metamodel elements to UML profile elements.

4.11 Introduction

Figure 4-11 illustrates the extensions required for the pattern model and the 
relationships of these extensions to elements in UML 1.4.  The extensions shown in 
this diagram are discussed in the paragraphs that follow. 

The BP Package is a stereotype which inherits BP Name and Package for defining a 
new pattern, the BP Binding is a stereotype which inherits BP Name and Collaboration 
for pattern invocation with renaming, and the BP Name is a stereotype which inherits 
Namespace for identifying and sharing a pattern name between a BP Package’s stuff 
and a BP Binding’s stuff.

Figure 4-11  Patterns <<profile>> Package

Table 4-1 Element Mappings

Metamodel Element UML Profile Element UML Base Class

Business Pattern Name BP Name Class

Business Pattern Package BP Package Class

Business Pattern Binding BP Binding Class

Package 
(from Core)

<<stereotype>> 
BP Package

Collaboration  
(from Core)

<<stereotype>> 
BP Binding

Namespace 
(from core)

<<stereotype>> 
BP Name
4-14 UML Profile for Enterprise Distributed Object Computing February 2002



4

4.12 Pattern Package

4.12.1 BP Name

Inheritance 

This stereotype has the following inheritances:

Package (from UMLCore)

BP Package

Instantiation in a model

Abstract

Semantics

The BP Name is a stereotype that inherits Namespace for identifying and sharing a 
pattern name between a BP Package’s stuff and a BP Binding’s stuff.

Tagged Values

N/A

Constraints

N/A

Diagram Notation

N/A

4.12.2 BP Package

Inheritance 

This stereotype has the following inheritances:

Package (from UMLCore)
BP Package

BP Name
BP Package

Instantiation in a model

Concrete
February 2002 UML Profile for EDOC:  Pattern Package 4-15



4

Semantics

The BP Package is a stereotype that inherits BP Name and Package for defining a new 
pattern. A pattern definition consists of a BP Name and a collaboration diagram as a 
pattern body. A collaboration diagram may have some BP binding which invocate 
patterns with renaming. The notion of renaming is not included in collaboration of 
UML 1.4. However, the collaboration diagram created by unfolding pattern is a 
collaboration diagram in UML 1.4.

One of the major benefits for using this multi-layered structure is that it enables reuse 
(inheritance) of the constraints which have been defined and encapsulated in patterns 
in the layers. It provides a normalized way to define constraints and is effective in 
maintaining consistency within the object model.

The Operations of the BP Package are provided  to treat the BP Package as a class or 
component. It can be used to draw a pattern of component relations and refinement 
relations between lower and upper of abstraction model level. 

Tagged Values

N/A

Constraints

N/A

Diagram Notation 

Figure 4-12  Notation for Business Pattern Package

<<BP Package>> 
NNNNNN 

Template Parameter 

<A> <B> 

C 

<<BP Name>> 

Operation Definition 
Constraint Description 
4-16 UML Profile for Enterprise Distributed Object Computing February 2002



4

4.12.3 BP Binding

Inheritance 

This stereotype has the following inheritances:

Package (from UMLCore)
BP Binding

BP Name
BP Package

Instantiation in a model

Concrete

Semantics

The BP Binding is a stereotype that inherits BP Name and Collaboration for pattern 
invocation with renaming.

The renaming for model elements of pattern body may be allowed in pattern 
invocation. 

Here, instead of UML’s graphical notation, lets use symbolic expressions for 
explaining the meaning of pattern framework concerning renaming as follows. 

Formal Parameter ::<…> 
Pattern definition::
    defpattern “pattern name” = “pattern body” 
Pattern invocation :: 
“pattern name” ( “Actual parameter List”) [“Renaming List”]
Renaming List::
    [“Name”/”New Name”,…,”Name”/”New Name”]

Example of pattern definition::

defpattern A =  <a > + <b> + c + d
defpattern B =  A(a1,b1)[c/c1] + e + f
defpattern C =  A(<a>, b2)

Example of pattern invocation and unfolded result:

     B( )              ( a1 + b1 + c1 + d + e + f
     B( )[c1/c2, e/e1] ( a1 + b1 + c2 + d + e1 + f
     C(a3)             ( a3 + b2 + c + d

Here, the symbol “a”, “b”, “c”,.. is supposed to be a model element such a class name, 
attribute name and so no. The symbol “+” is supposed to be a model element like an 
association. The pattern A has two parameters “<a>” and “<b>”.  Also, it has two 
model elements “c” and “d”. The “c” is renamed into “c1” in the pattern B. In this way, 
more general name like “c” is used in the pattern definition, but more specific name 
like “c1” is preferable in a concrete model. 
February 2002 UML Profile for EDOC:  Pattern Package 4-17



4

Tagged Values

N/A

Constraints

If a corresponding actual parameter is not specified on BP Binding, formal parameter 
is used as a default element.

Diagram Notation

Figure 4-13   Notation for Business Pattern Binding

<Template Parameter> 

<<BP Binding>> 

NNNNNN

“New Class Name” 

<BP Name>> 

“Original Class Name”[  ] 
4-18 UML Profile for Enterprise Distributed Object Computing February 2002



Technology Specific Models 5
Contents

This chapter includes the following topics. 

Section I - The EJB and Java Metamodels

5.1 Introduction

This section describes the Enterprise JavaBeans © metamodel abstracted for the 
purpose of design and deployment of application components to the Enterprise 
JavaBeans architecture. This metamodel describes the EJB 1.1 specification, 

Topic Page

Section I - The EJB and Java Metamodels 5-1

“Introduction” 5-1

“The Java Metamodel” 5-2

“The Enterprise JavaBeans Metamodel” 5-12

“UML Profile” 5-31

Section II - Flow Composition Model 5-32

“Introduction” 5-32

“FCMCore Package” 5-33

“FCM Package” 5-38

“FCM Profile” 5-41

“Example” 5-42
February 2002 UML Profile for Enterprise Distributed Object Computing 5-1



5

specifically the content of the “Public Release” version of the 1.1 specification.  The 
metamodel is included to demonstrate the generality of the proposed analysis profile 
by showing that it can be mapped to more than one implementation architecture. The 
submitters believe this generality should be provided to maximize the utility of the 
profile.

The metamodel is intended to define sufficient structure to support the EJB 
development life cycle, i.e., the creation, assembly and deployment of Enterprise 
JavaBeans. As the Java language is the foundation to the Enterprise JavaBeans 
architecture, a Java metamodel has been developed as a foundation to the Enterprise 
JavaBeans metamodel. The intent of the Java metamodel is to capture sufficient detail 
to support the Enterprise JavaBeans metamodel. It is not a complete metamodel of the 
Java language. The Java metamodel describes the Java language specification used by 
EJB 1.1, i.e., Java language specification version 1.3.

The following pages will describe the two metamodels. Each metamodel is presented 
as a series of class diagrams. Each class diagram is followed by a description of the 
important features of the diagram.  Each metamodel element can also be mapped to a 
profile representation using the patterns described in the UML Profile for MOF that is 
included in this document. As the metamodel is completed with the constraints spelled 
out in the Enterprise JavaBeans architecture, those can also be projected into the 
profile. The submitters intend the metamodel to be used  as input for the UML Profile 
for EJB now in public draft within the Java Community Process under JSR-000026 
(see http://jcp.org/jsr/detail/26.jsp) through such a mapping.

5.2 The Java Metamodel

The Java metamodel is described using the following 5 diagrams:

Figure 5-1 on page 5-3, Class Contents describes Java Classes/Interfaces/Exceptions.

Figure 5-2 on page 5-8, Polymorphism describes Java polymorphism.

Figure 5-3 on page 5-9, JavaType describes how Java typed elements are related to 
their types.

Figure 5-5 on page 5-11, Data Types describes the basic Java data types.

Figure 5-6 on page 5-12, Names factors the name attribute into a superclass.
5-2 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.2.1 Class Contents

Figure 5-1 Class Contents

5.2.1.1 JavaPackage

Semantics

A Java package, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java::JavaPackage

Owned by

Package

ArrayType

arrayDimensions : Integer

Field

is Final :  Boolean
is St atic : Boolean

JavaPackage

JavaClass

isPublic : Boolean
isAbstract : Boolean
isFinal : Boolean

0..*1..1

+fields

0..*1..1

0..*

0..1

+declaredClasses

0..*

+declaringClass

0..1

0..*

0..1

+javaClasses
0..*

+javaPac kage 0..1

Method

isAbstract : Boolean
isNative : Boolean
isSynchronized : Boolean
isFinal : Boolean
isConstructor : Boolean
isStatic : Boolean

0..*

1..1
+methods

0..*

1..1

0..*

+javaExceptions

0..*

JavaParameter

isFinal : Boolean

0..1

0..*

+inputToMethod

0..1

+inputParameters
0..*{ordered}

0..1

0..1

+returnedFromMethod
0..1

+returnParameter
0..1 {ordered}
February 2002 UML Profile for EDOC:  The Java Metamodel 5-3



5

Properties

Related elements

JavaClass

The Java classes contained in the package.

Constraints

N/A

5.2.1.2 JavaClass

Semantics

A Java class, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java::JavaClass

Owned by

JavaPackage

Properties

isPublic

Boolean value indicating whether the class is public.

isAbstract

Boolean value indicating whether the class is abstract.

IsFinal

Boolean value indicating whether the class is final.

Related elements

JavaPackage

The Java package the class is in.

JavaClass

Declared/Declaring classes.

Field

The fields in the class.
5-4 UML Profile for Enterprise Distributed Object Computing February 2002



5

Method

The methods on the class.

The methods that throw this exception.

JavaParameter

The parameter type.

ArrayType

Subclasses JavaClass, adding array dimensions.

The type of the components in the array.

Constraints

N/A

5.2.1.3 Field

Semantics

A Java field, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java::Field

Owned by

JavaClass

Properties

isFinal

Boolean value indicating whether the field is final.

IsStatic

Boolean value indicating whether the field is static.

Related elements

JavaClass

The class containing the field.

Constraints

N/A
February 2002 UML Profile for EDOC:  The Java Metamodel 5-5



5

5.2.1.4 Method

Semantics

A Java method, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java::Method

Owned by

JavaClass

Properties

isAbstract

Boolean value indicating whether the method is abstract.

isNative

Boolean value indicating whether the method is native.

isSynchronized

Boolean value indicating whether the method is synchronized.

isFinal

Boolean value indicating whether the method is final.

IsConstructor

Boolean value indicating whether the method s a constructor.

IsStatic

Boolean value indicating whether the method is static.

Related Elements

JavaClass

The class the method belongs to.

The exceptions the method throws.

JavaParameter

The input and return parameters on the method.
5-6 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.2.1.5 JavaParameter

Semantics

A Java parameter, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java::Parameter

Owned by

Method

Properties

isFinal

Boolean value indicating whether the parameter is final.

Related elements

Method

The method the parameter is an input or return parameter for.

Constraints

N/A

5.2.1.6 ArrayType

Semantics

A Java array type, as defined in the Java Language Specification.

Fully Scoped name

EDOC::Java:ArrayType

Owned by

Package

Properties

arrayDimensions

Integer value giving the dimensions of the array type.
February 2002 UML Profile for EDOC:  The Java Metamodel 5-7



5

Related elements

JavaClass

Subclasses JavaClass and adds array dimensions.

ArrayType uses JavaClass to identify the type of its components.

Constraints

N/A

5.2.2 Polymorphism

Figure 5-2 Polymorphism

5.2.2.1 JavaClass

See Section 5.2.3.1, “JavaType,” on page 5-10 for Semantics, Fully Scoped name, 
Owned by, and Properties.

Related elements

JavaClass

The relationships in Figure 5-2 represent: 

Super/sub-classing of classes and interfaces

The relationship between interfaces and implementing classes.

The JavaClass on the left represents an implementing class.  The one on the right 
represents an interface.

Constraints

N/A

JavaClass

1

0..*

+extendsClass

1

+extendingClass

0..*
JavaClass

0..*

0..*

+implementingClass 0..*

+implementsInterface0..*

0.. *

0..*

+extendingInterface

0.. *

+extendsInterface

0..*
5-8 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.2.3 JavaType

Figure 5-3  JavaType

Field, JavaParameter, ArrayType, and JavaClass are described in TypedElement. 

Semantics

Abstract class that identifies subclasses as having a type as part of their definition.

Fully Scoped name

EDOC::Java::TypedElement

Owned by

Package

Properties

Related elements

JavaType

The associated type.

Field, JavaParameter, ArrayType

Concrete subclasses.

Constraints

N/A

Field JavaParameter ArrayType JavaClass

JavaTypeTypedElement

0..1

+type

0..1
February 2002 UML Profile for EDOC:  The Java Metamodel 5-9



5

5.2.3.1 JavaType

Semantics

Abstract class whose subclasses are the Java types.

Fully Scoped name

EDOC::Java::JavaType

Owned by

Package

Properties

Related elements

JavaType

The elements that are of this type.

ArrayType, JavaClass, JavaDataType

Concrete subclasses.

Constraints

N/A

5.2.4 TypeDescriptor

Figure 5-4  TypeDescriptor

TDLangClassifier
(from TDLang)

TDLangElement
(from TDLang)

1..1 0..*

+tdLangSharedType

1..1

+tdLangTypedElement

0..*
/

<<derived>>

TypedElementJavaType
5-10 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.2.4.1 TDLangClassifier

TDLangElement is a class in the Common Application Metamodel, which is part of the 
Enterprise Application Integration submission due to finalize in August. It is used in 
the model to tie TypedElements (via TDLangElement) into the data typing and type 
composition structure that this metamodel provides, as well as to JavaTypes.

5.2.4.2 TDLangElement

TDLangElement, also a  class in the Common Application Metamodel, provides the 
linkage to TDLangClassifiers.

5.2.5 Data Types

Figure 5-5  Data Types

This diagram describes the primitive data types and other types used within this 
metamodel, and is included for completeness.

JavaClass Method Field

VisibilityKindVisible

1..1

+visibilityKind

1..1

Public Private Protected Package

TypeKindJavaClass

0..1

+typeKind

0..1

TypeClass TypeInterface TypeException

Integer
<<datatype>>

Boolean
<<datatype>>

String
<<datatype>>
February 2002 UML Profile for EDOC:  The Java Metamodel 5-11



5

5.2.6 Names

Figure 5-6  Names

This diagram shows the factoring of the name attribute into an abstract superclass 
called NamedElement.  It is included for completeness.

5.3 The Enterprise JavaBeans Metamodel

This metamodel is dependent on the Java metamodel described above. It captures the 
concepts that will be used to design an Enterprise JavaBean-based application down to 
the Java implementation classes. 

NamedElement

name : String

JavaClass JavaPackage Field Method JavaParameter
5-12 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.3.1 Main

Figure 5-7  Main

Session and Entity are the two main object types for components implemented using 
the Enterprise JavaBeans architecture.  Entity and Session derive from an abstract 
parent class, EnterpriseBean.

5.3.1.1 EJBJar

Semantics

The EJBJar element is the root element of the EJB deployment descriptor.

Fully Scoped name

EDOC::EJB::EJBJar

Owned by

Package

EJBJar

description : String
displayName : String
smallIcon : String
largeIcon : String
ejbClientJar : String

Session

transactionType : TransactionType
sessionType : SessionType

Entity

isReentrant : Boolean

Assembly

EnterpriseBean

description : String
displayName : String
smallIcon : String
largeIcon : String

0..1

1..1

+assemblyDescriptor

0..1
+ejbJar

1..1

1..*

+enterpriseBeans

1..*
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-13



5

Properties

description

The description element is used by the ejb-jar file producer to provide text describing 
the parent element.  The description element should include any information that the 
ejb-jar file producer wants to provide to the consumer of the ejb-jar file (i.e. to the 
Deployer). Typically, the tools used by the ejb-jar file consumer will display the 
description when processing the parent element.

displayName

The display-name element contains a short name that is intended to be display by tools.  
Example:  <display-name>Employee Self Service</display-name>.

SmallIcon

Optional small icon file name.

LargeIcon

Optional small icon file name.

EjbClientJar

Optional name of an ejb-client-jar file for the ejb-jar.

Related elements

Assembly

Assembly descriptor.

EnterpriseBean

Included EnterpriseBeans.

Constraints

N/A

5.3.1.2 Assembly

Semantics

The assembly-descriptor element contains application-assembly information.  The 
application-assembly information consists of the following parts: the definition of 
security roles, the definition of method permissions, and the definition of transaction 
attributes for enterprise beans with container-managed transaction demarcation.  All 
the parts are optional in the sense that they are omitted if the lists represented by them 
are empty.  Providing an assembly-descriptor in the deployment descriptor is optional 
for the ejb-jar file producer.
5-14 UML Profile for Enterprise Distributed Object Computing February 2002



5

Fully Scoped name

EDOC::EJB::Assembly

Owned by

EJBJar

Properties

Related elements

EJBJar

Identifies the deployment descriptor it belongs to.

Constraints

N/A

5.3.1.3 EnterpriseBean

Semantics

EnterpriseBean is a class.  It can have attributes, operations, and associations.  These 
are actually derived/filtered from its implementation classes and interfaces.  For 
mapping and browsing purposes, though, you would like the EnterpriseBean to appear 
as a class.  

In this light, even Session Beans can have associations and properties implemented by 
their bean.  For example, it would be meaningful to describe associations from a 
Session to the Entities that it uses to perform its work.

Fully Scoped name

EDOC::EJB::EnterpriseBean

Owned by

EJBJar

Properties

Description

The description element is used by the ejb-jar file producer to provide text describing 
the parent element.  The description element should include any information that the 
ejb-jar file producer wants to provide to the consumer of the ejb-jar file (i.e., to the 
Deployer). Typically, the tools used by the ejb-jar file consumer will display the 
description when processing the parent element.
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-15



5

displayName

The display-name element contains a short name that is intended to be display by tools.

SmallIcon

Optional small icon file name.

LargeIcon

Optional small icon file name.

Related elements

EJBJar

Identifies the deployment descriptor it belongs to.

Session, Entity

The concrete subclasses of EnterpriseBean

Constraints

N/A

5.3.1.4 Session

Semantics

A transient object which provides more behavior than state.  It maps to session bean in 
the Enterprise JavaBean specification.

Fully Scoped name

EDOC::EJB::Session

Owned by

Package

Properties

transactionType

The transaction-type element specifies an enterprise bean's transaction management 
type.

sessionType

Whether the session bean is stateful or stateless.
5-16 UML Profile for Enterprise Distributed Object Computing February 2002



5

Related elements

EnterpriseBean

Abstract superclass.

Constraints

N/A

5.3.1.5 Entity

Semantics

A persistent object which that is more state-oriented than behavior-oriented. It maps to 
entity bean in the Enterprise JavaBean specification.

Fully Scoped name

EDOC::EJB::Entity

Owned by

Package

Properties

isReentrant

Boolean value indicating whether the entity bean is reentrant.

Related elements

EnterpriseBean

Abstract superclass.

Constraints

N/A
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-17



5

5.3.2 EJB

Figure 5-8  EJB

This diagram shows how EnterpriseBean is associated with objects that enable binding 
the deployed Enterprise Bean into the runtime environment and managing access to the 
bean.

5.3.2.1 EnterpriseBean

Semantics,  Fully Scoped name, Owned by, and Properties are described in 
Section 5.3.1.3, “EnterpriseBean,” on page 5-15.

Related elements

SecurityRoleRef

Security role references by the enterprise bean.

EJBRef

References to the homes of other enterprise beans using “logical” names.

ResourceRef

References to external resources.

EnvEn try

descrip tion  : S tring
nam e  : S tring
va lue  : S tring
type : E nvE ntryT ype

Resou rceRe f

descrip ti on  : S tring
nam e  : S tring
typ e : St ring
au th : ResA uthT ypeBase
l ink : S tring

S ecuri tyR o leR e f

nam e  : S tring
descripti on  : S tring
l ink : S tring

E jbRe f

nam e  : S tring
type : E jbRefT ype
hom e  : S tring
rem ote  : S tring
l ink : S tring
descrip tion  : S tring

E n terp ri seB ean

descrip tion  : S tring
d isplayNam e : S tring
sm al l Icon  : String
la rgeIcon  : String

0 ..*

1

+envi ronm entP rope rties

0 ..*

+e jb

1

E jbToEnvi ronmen tP rope rties

0 ..*

1

+resou rceRefs
0 ..*

+e jb 1

E jbToResources

0 ..* 1

+secu ri tyRo leRe fs

0 ..* 1E jbToRo les

0 ..*

1

+e jbRe fs

0 ..*

+e jb
1

E jbToE jb Re fs
5-18 UML Profile for Enterprise Distributed Object Computing February 2002



5

EnvEntry

Environment entries access by the enterprise bean.

Constraint

N/A

5.3.2.2 SecurityRoleRef

Semantics

Security role references by an enterprise bean 

Fully Scoped name

EDOC::EJB::SecurityRoleRef

Owned by

EnterpriseBean

Properties

name

Name of the security role reference.

Description

Optional description text.

link

Used to link a security role reference to a defined security role. link must contain the 
name of a defined security role.

Related elements

EnterpriseBean

Enterprise bean that contains the reference.

Constraints

N/A

5.3.2.3 EJBRef

Semantics

The declaration of a reference to an enterprise bean’s home.
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-19



5

Fully Scoped name

EDOC::EJB::EJBRef

Owned by

EnterpriseBean

Properties

name

Name of the reference.

type

The expected type of the referenced enterprise bean.

home

The fully-qualified name of the enterprise bean’s home interface.

remote

The fully-qualified name of the enterprise bean’s remote interface.

link

Links an EJB reference to a target enterprise bean.

Description

Optional description text.

Related elements

EnterpriseBean

Enterprise bean that contains the reference.

Constraints

N/A

5.3.2.4 ResourceRef

Semantics

Declaration of an enterprise bean’s reference to an external resource.

Fully Scoped name

EDOC::EJB::ResourceRef
5-20 UML Profile for Enterprise Distributed Object Computing February 2002



5

Owned by

EnterpriseBean

Properties

Description

Optional description text.

Name

Name of the environment entry used in the enterprise bean.

type

Type of the resource manager connection factory that the enterprise bean expects.

auth

Specifies whether the enterprise bean signs on programmatically to the resource 
manager, or whether the Container will sign on to the resource manager on behalf of 
the bean.

link

Link to a resource manager connection factory that exists in the operational 
environment.

Related elements

EnterpriseBean

Enterprise bean that contains the reference.

Constraints

5.3.2.5 EnvEntry

Semantics

Declaration of an environment entry for an enterprise bean.

Fully Scoped name

EDOC::EJB::EnvEntry

Owned by

EnterpriseBean
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-21



5

Properties

name

Name of the environment entry.

Description

Optional description text.

value

Value of the environment entry.

Type

Expected type of the environment entry’s value

Related elements

EnterpriseBean

Enterprise bean that contains the reference.

Constraints

N/A
5-22 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.3.3 Entity Bean

Figure 5-9  Entity Bean

Because Entities are persistent and state-oriented, they have additional associations 
compared to Sessions. This diagram shows how an Entity is associated with the Java 
fields which are its persistent and key fields. A ContainerManagedEntity’s persistent 
fields are a subset of the fields of its implementing EJB class.  
(ContainerManagedEntity is reified specifically to support this association.) The 
relationship of key fields is more complex, but when there is a complex key the key 
fields are a subset of the EJB class fields. These fields then correspond by name to 
fields of the Entity’s Primary Key Class.

Entity is described in Section 5.3.1.5, “Entity,” on page 5-17.  Field is described in 
Section 5.2.1.3, “Field,” on page 5-5.

5.3.3.1 ContainerManagedEntity

Semantics

An Entity which delegates responsibility for persistence to the EJB container. Maps to 
an Entity Bean with Container-managed Persistence in the Enterprise.

Fully Scoped name

EDOC::EJB::ContainerManagedEntity

The keyFeatures  relationship also 
determ ines  the primkey-field setting.  
If there is  a s ingle key  feature, we will 
deploy  that  us ing primkey-field.  
Conversely , if a descriptor uses  
primkey-field, we will set  a s ingle 
keyFeature.

W e have switched fro m explicitl y  
referring from an Entity  to its  Java 
Fields to deriving that from its  
attributes  and association  ends.  The 
implementat ion should s till support 
lis ting the key  fields  and pers istent 
fields , but not adding or removing 

Field
(f ro m j ava )

CMPAttribute

ContainerManagedEntity

1..*0..*

+/keyFields

1..*

+/ keyFor

0..*

0..*0..1 +/pers is tentF ields 0..*0..1

Cm pToP ers is t ent Fields

0..*

1..1

+pers is tentA tt ributes

0..*

1..1

0..*

1..1

+keyAttributes

0..*

+keyFor

1..1

Entity
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-23



5

Owned by

Package

Properties

Related elements

Entity

ContainerManagedEntity adds the relationships shown in the diagram to it’s superclass 
Entity.

CMPAttribute

The key and persistent attributes of the Container-managed entity.

Field

The key and persistent Java fields of the Container-managed entity, derived from its 
CMPAttributes.

Constraints

N/A

5.3.4 Assembly

Figure 5-10 Assembly

EnterpriseBean

Method

(from java)

MethodElement

name : Stri ng
parms : St ring
type  : MethodElementKind
descri ption : String

1

0..*

1

0..*

MethodPermission

description : String

1..*

0..*

+/methods

1..*

0..*

1..*

1..1

+methodElements

1..*+elementOf
1..1

MethodTransaction

transactionAttribute : TransactionAttributeType
description : String

1..*

0..*
+/methods

1..*

0..*

1..* 1..1

+methodElements

1..*

+transactionContainer

1..1

SecurityRole

description : String
roleName : String

1..*

+roles

1..*

AssemblyDescripto r

1

0..*

+assemblyDescriptor

1

+methodPermissi ons
0..*

1

0..*

+assemblyDescriptor

1

+methodTransact ions
0..*

0..*+securityRoles 0..*
5-24 UML Profile for Enterprise Distributed Object Computing February 2002



5

When the components of an Enterprise JavaBean application are ready to be used, the 
assembly step adds permission and transaction structure to the components based on 
their usage in the application. Roles are authorized to methods based on the 
application’s needs. (AllMethodPermission captures the case where a role is authorized 
to all the methods of a class without having to enumerate those methods.) Based on the 
flow of control and the units of work defined in an application, the transaction 
requirements of methods can be declared. The method permissions and method 
transaction declarations are bundled into an Assembly Descriptor that is then realized 
in the deployed application artifacts.

5.3.4.1 AssemblyDescriptor

Semantics, Properties, Related elements map to the assembly-descriptor element in the 
Enterprise JavaBean specification. 

Fully Scoped name

EDOC::EJB:AssemblyDescriptor

Owned by

Package

5.3.4.2 SecurityRole

Semantics, Properties, Related elements map to the security-role element in the 
Enterprise JavaBean specification. 

Fully Scoped name

EDOC::EJB:SecurityRole

Owned by

AssemblyDescriptor

5.3.4.3 MethodElement

Semantics, Properties, Related elements map to the method element in the Enterprise 
JavaBean specification. 

Fully Scoped name

EDOC::EJB::MethodPermission

Owned by

MethodTransaction
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-25



5

5.3.4.4 MethodPermission

Semantics, Properties, Related elements map to the method-permission element in the 
Enterprise JavaBean specification. 

Fully Scoped name

EDOC::EJB::MethodPermission

Owned by

MethodElement

5.3.4.5 MethodTransaction

Semantics, Properties, Related elements map to the container-transaction element in 
the Enterprise JavaBean specification. 

Fully Scoped name

EDOC::EJB::MethodTransaction

Owned by

AssemblyDescriptor

5.3.5 EJB Implementation

Figure 5-11  EJB Implementation

EJBMeth odCatego ry

Session

Enterpri seBean

JavaClass

isPublic : Boolean
isAbstract :  Boolean
isFinal : Boolean

(fro m  ja va )

11

remoteInterface

11

homeInterface

11

ejb Class

Entity

11

primaryKey
5-26 UML Profile for Enterprise Distributed Object Computing February 2002



5

While users may think of an Enterprise Java Bean at the level of Entity and Session, 
the implementation of one of these constructs is actually a complex collaboration 
among several Java classes and interfaces. The metamodel defines associations which 
relate the more abstract Enterprise Bean constructs to the more concrete 
implementation types. When modeling an application, users should work with the 
home and remote interfaces exposed by the abstract constructs for interactions external 
to the bean, and with the implementation class for interactions internal to the bean. 
This dichotomy is necessary because of the differences between the remote and local 
interfaces to the bean required by the EJB architecture. The home and remote 
interfaces are remote, and contain methods inherited from the predefined interfaces 
EJBHome and EJBObject, respectively, that are not visible to the EJBBeanClass. The 
signatures of the methods defined by the EJBBeanClass are similar but not identical to 
the signatures of the methods defined by the home and remote interfaces. In addition, 
the EJBBeanClass contains methods that are seen only by the container. These are 
inherited from the predefined EntityBean or SessionBean interface, depending on the 
type of the bean. 

RemoteInterface is included here to denote that there is a kind of remote interface 
which is more generic than the EJB usage, but which has a known meaning and 
applicability in other domains, such as RMI or CORBA modeling 

5.3.5.1 EJBMethodCategory

Semantics

EJBMethodCategoryJava defines a mechanism which allows the modeler to group 
EJB-specific method types such as create methods, finder methods, remote methods, 
and home methods.

Fully Scoped name

EDOC::EJB::EJBMethodCategory

Owned by

Package

Properties

Related elements

Constraints

5.3.5.2 EnterpriseBean

EnterpriseBean is described in Section 5.3.1.3, “EnterpriseBean,” on page 5-15.
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-27



5

Related elements

JavaClass

The EjbClass relationship maps to the ejb-class element of the Enterprise JavaBean 
specification.

The remoteInterface relationship points to a  Java interface that represents the remotely 
visible interface to an Enterprise Bean. Maps to the remote element in the Enterprise 
JavaBean specification.

The homeInterface relationship points to a  Java interface which includes the factory 
and finder behavior of an Enterprise Bean. Maps to the home element in the Enterprise 
JavaBean specification.

5.3.5.3 Entity

Entity is described in Section 5.3.1.5, “Entity,” on page 5-17.

Related elements

JavaClass

The primaryKey points to a Java class which implements the key of the Enterprise 
Bean.  Maps to an Entity'’ primary key class in the Enterprise JavaBean specification.

5.3.6 References to Resources

Figure 5-12  References to Resources

The EjbRef is used for the declaration of a reference to an enterprise bean’s home. The 
declaration consists of an optional description; the EJB reference name used in the 
code of the referencing application client; the expected type of the referenced 

EnvE ntry

E jbR ef de legat es  it s  
duplic at e propert ies to 
the EnterpriseB ean if it  
is  link ed  to one.

EnterpriseBeanEjbRef

0. .*

+ /linkedE JB

0..*

Security RoleSecurity Role Re f

0. .1

+ / linkedS ecuri tyRol e

0. .1

J2E ERes ourceFa ctoryResourc eRef

0. .1

+ /link edResourc e

0..1
5-28 UML Profile for Enterprise Distributed Object Computing February 2002



5

enterprise bean; the expected home and remote interfaces of the referenced enterprise 
bean; and an optional ejb link information. The optional link is used to specify the 
referenced enterprise bean. The resource-ref element contains a declaration of the 
enterprise bean’s reference to an external resource. It consists of an optional 
description, the resource factory reference name, the indication of the resource factory 
type expected by the enterprise bean, and the type of authentication (bean or 
container). EnvEntry contains the declaration of an enterprise bean’s entries. The 
declaration consists of an optional description, the name of the environment entry, and 
an optional value.

5.3.6.1 SecurityRole

Semantics, Properties, Related elements map to the security-role element in the 
Enterprise JavaBean specification. 

Fully Scoped name

EDOC::EJB::SecurityRole

Owned by

Package

5.3.6.2 J2EEResourceFactory

Semantics

A resource manager connection factory that exists in the operational environment.

Fully Scoped name

EDOC::EJB::J2EEResourceFactory

Owned by

Package

Properties

Related elements

 ResourceRef

A resource reference bound to this actual resource factory configured in the target 
operational environment.
February 2002 UML Profile for EDOC:  The Enterprise JavaBeans Metamodel 5-29



5

5.3.7 Data Types

Figure 5-13  Data Types

This diagram describes the types used within this metamodel, and is included for 
completeness.

TransactionType

TransactionAttributeType

MethodElementKind

EnvEntryType

EjbRefType

SessionType

Stateful Stateless Home Remote UnspecifiedBean Container

NotSupported Supports Required RequiresNew Mandatory Never

EjbRefSession EjbRefEntity

EnvEntryString

EnvEntryInteger

EnvEntryBoolean

EnEntryDouble

EnvEntryByte

EnvEntryShort

EnvEntryLong

EnvEntryFloat
5-30 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.4 UML Profile

Each metamodel element can be mapped to a profile representation using the patterns 
described in the UML Profile for MOF (see Chapter 6). As the metamodel is 
completed with the constraints spelled out in the Enterprise JavaBeans architecture, 
those can also be projected into the profile. The submitters intend to align the 
metamodel with the UML Profile for EJB now in public draft within the Java 
Community Process under JSR-000026 (see http://jcp.org/jsr/detail/26.jsp) through 
such a mapping.

5.4.1 Java Profile

The convention used in this profile is that the classes from the Java metamodel are 
expressed as stereotypes in a Java model for use primarily in UML class diagrams.  
The attributes of the Java metamodel classes are tags to be applied on elements bearing 
the class stereotypes.  The tag names are qualified by the stereotype they are applied 
with, since it is possible for a UML element to bear more than one stereotype.

The UML name of the element serves as the Java name unless the 
NamedElement.name tag is applied to override the name with a Java-specific name.  
This can be useful in cases where the UML name is not a valid Java name.

Table 5-1 Mapping Java Metamodel concepts to profile elements

Metamodel element name Stereotype name UML base 
Class

Tags Constraints

JavaClass << JavaClass >> Class JavaClass.isPublic boolean
JavaClass.isAbstract boolean
JavaClass.isFinal boolean

None

JavaPackage << JavaPackage >> Class None

ArrayType << ArrayType >> Class ArrayType.arrayDimensions 
Integer

None

Field << Field > Class Field.isFinal,type Boolean
Field.isStatic,type Boolean

None

JavaParameter << JavaParameter >> Class JavaParameter.isFina Boolean None

Method << Method >> Class Method.isAbstract Boolean 
Method.isNative Boolean
Method.isSynchronized Boolean
Method.isFinal Boolean
Method.isConstructor Boolean
Method.isStatic Boolean

None

NamedElement <<NamedElement>> Class NamedElement.name String

{public, private, protected, package}, 
type Enumeration

<<Visibility.kind>>
February 2002 UML Profile for EDOC:  UML Profile 5-31



5

5.4.2 EJB Profile

This is provided by the UML Profile for EJB now in public draft within the Java 
Community Process under JSR-000026 (see http://jcp.org/jsr/detail/26.jsp).

Section II - Flow Composition Model

5.5 Introduction

The FCM is a Flow Composition Model (FCM) that can describe the interactions and 
flows of information between application components in a way that:

Enables complex actions to be broken down into simple 'flow components' or, 
alternatively, enables simple entities to be composed into higher level 'flow models'.

Can be deployed into a variety of runtime environments; in other words, the model 
treats its components as functional entities which are independent of any specific 
attributes of a particular deployment, whether that be a workflow, messaging service, 
etc.

Business applications are commonly made up of interrelated programs. These often run 
in multiple and different environments. The problem is: how to enable these disparate 
entities (which may not be directly connected nor running concurrently) to 
communicate with one another. It can be addressed through the concept of 'messaging' 
using, for example, MQSeries products. This method of Application Integration 
enables two (or several) programs to communicate in a relatively simple, static way. 
The programs, while isolated from each other in a 'time-independent' (asynchronous) 
fashion, mostly still need to know how to 'speak' to each other.

Each program needs to understand the other's message format; they need to speak the 
same 'language'. But with a little more sophistication, this need can be removed. A 
scenario can be created, usually known as Enterprise Application Integration (EAI), 
whereby messages are transformed into different formats so that programs need know 
nothing about the eventual recipient of a message. The added sophistication is a 
mediator between the programs provided by a message 'repository' and a message 
'broker' to enable such transforms. Of course, there are other capabilities in brokers 
beyond transformation but this is probably the most important function.

As the applications become more isolated, the idea of 'routing' can be introduced. Now, 
another application can observe the content being shared through the broker and 
choose to modify the information flow. The process handling the information may be 
relatively long lived - typically the case where human intervention is involved. Also, 
the information being processed may be stateful (in other words, it persists beyond the 
scope of the process handling it). Workflow applications provide this sort of 
functionality and introduces the facility of 'multi-step sequencing'. By using various 
connectors, these different technologies can, and often are, used together.
5-32 UML Profile for Enterprise Distributed Object Computing February 2002



5

The Flow Composition Model is a metamodel for composing complex flows based on 
invoking operations on components.  It is a low-level metamodel focused on the 
middleware machinery for executing message flows.  Higher levels of abstraction can 
be built upon the FCM for integrating a whole range of technologies and runtime 
environments:

• Messaging and Message Brokering provide for transformation and routing of 
information.

• Workflows provide application structuring and resource co-ordination.

• Connectors provide inter-operability with existing applications.

• Application Servers, Business Components, Databases and all the other programs 
which the flow model is there to drive but which, strictly speaking, are not actually 
part of the model.

Section 5.9, “Example,” on page 5-42 provides an example to illustrate the use of 
FCM.

5.6 FCMCore Package

The FCMCore package is described using two diagrams:

• Figure 5-14 – Main diagram gives an overall view of the classes required to define 
flow compositions.

• Figure 5-15 on page 5-34 – FCMComponent diagram provides more detail about 
FCMComponents, including how they can be used for hierarchical composition.

Figure 5-14 FCMCore Package, Main Diagram

FCM Command

FCM SinkFCM Source

0..*1

+sink

0..*

+source

1

FCM Operation

name : String

+i mp lem ents

FCM Functi on

+invokes

FCMComp on en t

1+perform edBy 1

FCM Annotation

nameInComposition : String

1 +annotates1
FCMConnection

FCM Composition

0..*

+components

0..*

0..*
+connections
0..*

0..*

+annotations

0..*

FCM Node

1+sourceNode 1

+outbound 1+ta rg et No de 1

+i nbound
0..*+nodes 0..*

FCMTerminalToNodeLink

FCMTerminalToTerminalLink

FCM Term inal

0..*+interface 0..*

<<derived>>

1
+target

1

1
+source

1

February 2002 UML Profile for EDOC:  FCMCore Package 5-33



5

Figure 5-15   FCMCore Package, FCMComponent Diagram

5.6.1 FCMComposition

An FCMComposition defines the following:

• A set of FCMComponents that define the objects of the FCMComposition.

• A set of FCMNodes and FCMConnections that together define the implementations 
of the behaviors of the FCMComposition.

• A set of objects that define the public interface that can be derived from the 
FCMComposition.  Specifically, the FCMSources and FCMSinks of an 
FCMComposition define the external operations that are derived from the 
FCMComposition.

An FCMComposition can be thought of as being analogous to the definition of the 
implementation of a Java or C++ class, in the sense that it defines interface, state and 
behaviors.

5.6.2 FCMComponent

The purpose of FCMComponents is to define the objects that hold the state of the 
FCMComposition, and which provide primitive behaviors that can be invoked within 
the implementations of behaviors defined by the FCMComposition. 

FCMCompositionBinding

FCMComposition

TDLangElemen t

(from TDLang)

FCMComponent

0..1 +composition0..1

FCMPara meter

1+la nguageElement 1

FCMType

0..1 +instanceOf0..1

1 +type1

FCMOperation

name : String
0..*+faults 0..*

0..*+outputs 0..*

0..*+inputs 0..*

0.. *

+operations

0.. *
5-34 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.6.3 FCMNode

An FCMNode represents a fragment of flow logic. It can be thought of as being 
analogous to a statement or contiguous sequence of statements in a programming 
language. FCMNodes are used to define the implementations of behaviors of the 
FCMComposition. FCMNodes are connected together in a graph using 
FCMConnections to build up more complex behaviors of the FCMComposition.

FCMNodes are represented as “nodes” or icons in flow diagrams.

5.6.4 FCMConnection

An FCMConnection is an object that specifies a relationship between two FCMNodes. 
Examples of FCMConnections are FCMControlLinks and FCMDataLinks (see the 
FCM Package, FCMConnections diagram). FCMConnections provide directed links 
between FCMNodes in a graph to specify more complex behaviors. The number and 
type of FCMConnections is extensible – the Flow Composition Model puts no 
constraints on this.

FCMConnections are represented in flow diagrams as lines that connect the icons 
representing FCMNodes.

5.6.5 FCMOperation

An FCMOperation defines the interface to an FCMNode, including its signature. An 
example specialization of FCMOperation is a WSDL (Web Services Definition 
Language) Operation, which defines an optional input message, an optional output 
message and optional fault messages. 

5.6.6 FCMParameter

FCMParameters identify the signature of an FCMOperation, which can include inputs, 
outputs and faults.  For a WSDL Operation, an FCMParameter provides the abstract 
definition of a message. FCMParameter has an association to TDLangElement, which 
provides the linkage to the language specific and physical representations of the data 
that an FCMParameter represents.

5.6.7 FCMCommand

An FCMCommand is a special kind of FCMNode that represents the invocation of a 
particular FCMOperation on an FCMComponent. An FCMCommand can be thought of 
as being analogous to a programming language statement that invokes a method on an 
object.
February 2002 UML Profile for EDOC:  FCMCore Package 5-35



5

5.6.8 FCMFunction

An FCMFunction is a special kind of FCMNode.  It’s similar to an FCMCommand in 
that it represents the invocation of a particular FCMOperation.  However, in this case 
the FCMOperation does not have an FCMComponent associated with it. An 
FCMFunction can be thought of as being analogous to a programming language 
statement that makes a procedural call or invokes a transaction.

5.6.9 FCMTerminal

FCMTerminals provide a mechanism for identifying the interfaces to an FCMNode.  
They are derived, with the derivation based on the type of FCMNode they are 
associated with.  For example, an FCMNode that represents the invocation of a WSDL 
operation will have FCMTerminals that are derived one for one from the parameters of 
the operation. An FCMMappingNode (in the FCM package) will have one input 
terminal for each piece of input data, and one output terminal for each output (typically 
one, formed by combining the inputs in some way).  FCMJoinNodes and 
FCMBranchNodes (in the FCM package) have no terminals.

5.6.10 FCMTerminalToNodeLink and FCMTerminalToTerminalLink

These are abstract specializations of FCMConnection.  

An FCMTerminalToNodeLink represents an FCMConnection from a particular 
outcome of a source FCMNode to a target FCMNode.  The “source” association 
identifies which outcome to use as the source of the FCMTerminalToNodeLink.  
FCMControlLinks (in the FCM package) are concrete examples of 
FCMTerminalToNodeLinks.

FCMTerminalToTerminalLink is a specialization of FCMTerminalToNodeLink that in 
addition specifies the particular input of the target FCMNode to connect to.  This is 
indentified by the “target” association.  FCMDataLinks (in the FCM package) are 
concrete examples of FCMTerminalToTerminalLinks.

5.6.11 FCMAnnotation

An important design goal of the Flow Composition Model is the ability to be able to 
work with FCMComponents of pre-defined types that were not designed with the 
specific needs of the Flow Composition Model in mind. This means that the Flow 
Composition Model cannot require FCMComponents to support special attributes or 
behaviors in order to participate in Flow Compositions. In order to satisfy this 
requirement, the Flow Composition Model allows an FCMAnnotation object to be 
associated with each FCMComponent. An FCMAnnotation is an object that is used to 
carry information about an FCMComponent that is useful or necessary in the context 
of a Flow, but which is not a property of the FCMComponent itself. A common 
example is that every FCMComponent must have a name associated with it to identify 
it within the FCMComposition, even though not all FCMComponents have a name 
property. 
5-36 UML Profile for Enterprise Distributed Object Computing February 2002



5

5.6.12 FCMSource and FCMSink

FCMSources and FCMSinks are special FCMNodes that are used to define the 
FCMOperations available on the public interface that can be derived from an 
FCMComposition. An FCMSource represents an entry point into the behaviors defined 
by an FCMComposition. An FCMSource within an FCMComposition corresponds to a 
One-way or Request-Response operation defined on the external interface defined by 
the FCMComposition. An FCMSource can act only as a sourceNode for an 
FCMConnection.  The source FCMTerminal for the FCMConnection is derived from 
the input FCMParameter of the FCMOperation that the FCMSource implements. 

An FCMSource may have associated with it a corresponding FCMSink. An FCMSink 
is an FCMNode that defines the output and fault FCMParameters of the FCMOperation 
associated with an FCMSource. An FCMSink can act only as a targetNode for an 
FCMConnection; the target FCMTerminal for the FCMConnection is derived from the 
output or fault FCMParameters of the FCMOperation.

5.6.13 FCMCompositionBinding

An FCMComponent can be implemented as an FCMComposition. In this case, the 
FCMSources and FCMSinks of the FCMComposition define the external operations 
that are derived from the FCMComposition.  FCMCompositionBinding provides the 
mechanism for linking an FCMComponent to its implementation as an 
FCMComposition.  This is how hierarchical composition – the ability to use flow 
compositions to create new flow compositions – is achieved.

5.6.14 TDLangElement

TDLangElement is a class in the Common Application Metamodel, which is part of the 
Enterprise Application Integration submission due to finalize in August. It is used in 
the model to tie FCMParameter into the data typing and type composition structure 
that the metamodel provides.

5.6.15 FCMType

An FCMType can be thought of as analogous to the definition of a Java or C++ class, 
in the sense that it defines the interface (operations and their inputs, outputs, and 
faults) for a type that can be instantiated.  An FCMComponent is an instance of an 
FCMType.  FCMTypes can be created based on FCMCompositions;  in this case,  the 
FCMComposition defines the implementation of the FCMType.  FCMTypes can also 
be types created outside of the flow composition domain, enabling instances of outside 
types to be incorporated as FCMComponents in compositions.
February 2002 UML Profile for EDOC:  FCMCore Package 5-37



5

5.7 FCM Package

The FCM package provides a set of specializations of the FCMCore package. The 
FCM package consists largely of definitions of particular subtypes of FCMNode and 
FCMConnection that are designed to provide a common set of design abstractions 
across a variety of flow model types used in, e.g., message brokering, workflow or 
application component scripting. 

The FCM package is described using two diagrams:

• Figure 5-16 – FCMConnections diagram.

• Figure 5-17 on page 5-39 – FCMNodes diagram.

Figure 5-16   FCM Package, FCMConnections Diagram

FCMConnection
(from FCMCore)

FCMTerminalToNodeLink
(from FCMCore)

FCMTerminalToTerminalLink
(from FCMCore)

FCMMapping

FCMMappingDataLink

1+mapping 1
FCMCondition

FCMConditionalControlLink

1+condition 1

FCMDataLink FCMControlLink
5-38 UML Profile for Enterprise Distributed Object Computing February 2002



5

Figure 5-17   FCM Package, FCMNodes Diagram

5.7.1 FCMControlLink

An FCMControlLink is an FCMConnection between FCMNodes that controls the 
sequencing of execution of the FCMNodes. An FCMControlLink is activated when its 
source FCMNode is completed and it defines a trigger for activation of the target 
FCMNode of the link.

5.7.2 FCMDataLink

An FCMDataLink is an FCMConnection that specifies the flow of data between 
FCMNodes.

5.7.3 FCMDecisionNode

An FCMDecisionNode is an FCMNode used to determine control flow based on a set 
of Boolean expressions; essentially it represents a ‘switch’ in the control flow. A 
DecisionNode has one input and two or more outputs that represent the ‘cases’ of the 
switch. Each output is associated with a Boolean expression. The representation of a 
decision node in a flow diagram is shown below.

FCMNode

(from FCMCore)

FCMJoinNodeFCMBranchNode

FCMMapping

FCMMappingNode

0..*0..*

FCMCondition

FCMDecisionNode

1..*+condition 1..*

FCMCommand

FCMJoinCommand

joinCondition : String

FCMFunction

(from FCMCore)
February 2002 UML Profile for EDOC:  FCM Package 5-39



5

The little diamond on its side represents an FCMDecisionNode and a control 
connection from the output of the icon on the left to the input of the 
FCMDecisionNode. 

5.7.4 FCMConditionalControlLink

An FCMConditionalControlLink offers an alternative design to the use of an 
FCMDecisionNode. In this design, a Boolean expression is associated with the 
FCMConditionalControlLink, removing the need for a separate FCMDecisionNode. 

5.7.5 FCMJoinNode

An FCMJoinNode is a specialized FCMNode used to force the synchronization of 
control flow. An FCMJoinNode has two inputs and one output. Because the usage of a 
decision node is very common, there is a specialized visual representation for an 
FCMJoinNode, as shown below. In flow diagram notation, the little T on its side 
represents an FCMJoinNode and a control connection from the output of the 
FCMJoinNode to the input of the FCMDecisionNode on the right.

5.7.6 FCMJoinCommand

An FCMJoinCommand is an alternative to an FCMJoinNode. It has a Boolean 
expression associated with it, removing the need for a separate FCMJoinNode. 

5.7.7 FCMMappingNode
5-40 UML Profile for Enterprise Distributed Object Computing February 2002



5

An FCMMappingNode is a specialized FCMNode used to specify a transformation of 
input message formats to an output message format. Because the usage of a 
FCMMappingNode is very common, FCMMappingNodes have a special graphical 
representation, as shown. In flow diagram notation, the circle with the cross represents 
the FCMMappingNode. 

5.7.8 FCMMappingDataLink

An FCMMappingDataLink is an alternative design to the use of an 
FCMMappingNode. In this design, a mapping is associated with the link removing the 
need for a separate FCMMappingNode. 

5.7.9 FCMMapping

An FCMMapping is an object that specifies a transformation of one message format 
into another.

5.7.10 FCMCondition

FCMConditions are the boolean expressions used by FCMDecisionNodes and 
FCMConditionalControlLinks to determine control flow.

5.7.11 FCMBranchNode

An FCMBranchNode provides a way to branch control flow in one or more directions.  
An FCMBranchNode can specify that all of its outbound connections are given control, 
or only one (based on a condition) is given control.

5.8 FCM Profile

Table 5-2 summarizes the UML Profile for the FCM.

Table 5-2 Mapping Flow Composition  Model concepts to profile elements

Metamodel element 
name

Stereotype name UML 
base 
Class

Tags Constraints

FCMComposition << FCMComposition >> Class None

FCMNode << FCMNode >> Class None

FCMAnnotation <<FCMAnnotation >> Class FCMAnnotation.nameInComposition 
String

None

FCMTerminal << FCMTerminal>> Class FCMTerminal.terminalKind 
TerminalKind

None

FCMFunction << FCMFunction >> Class JavaParameter.isFinal Boolean None

FCMCommand << FCMCommand>> Class None

FCMSource <<FCMSource>> Class
February 2002 UML Profile for EDOC:  FCM Profile 5-41



5

5.9 Example

Figure 5-18 is the graphical representation of an FCMComposition to transfer and 
refund money.

FCMSink <<FCMSink>> Class None

FCMOperation <<FCMOperation>> Class None

FCMType <<FCMType>> Class None

FCMCompositionBinding <<FCMCompositionBinding>> Class None

FCMParameter <<FCMParameter>> Class None

FCMJoinCommand <<FCMJoinCommand>> Class FCMJoinCommand.joinCondition 
String

None

FCMDecisionNode <<FCMDecisionNode>> Class None

FCMCondition <<FCMCondition>> Class None

FCMMappingNode <<FCMMappingNode>> Class None

FCMMapping <<FCMMapping>> Class None

FCMBranchNode <<FCMBranchNode>> Class None

FCMJoinNode <<FCMJoinNode>> Class None

FCMDataLink <<FCMDataLink>> Class None

FCMMappingDataLink <<FCMMappingDataLink>> Class None

FCMControlLink <<FCMControlLink>> Class None

FCMConditionalControlLink <<FCMConditionalControlLink>> Class None

Table 5-2 Mapping Flow Composition  Model concepts to profile elements
5-42 UML Profile for Enterprise Distributed Object Computing February 2002



5

Figure 5-18   Transfer/Refund Money FCMComposition

The FCMComponents that define the objects within the FCMComposition are 
checkingAccount and riskAssessor. checkingAccount is an instance of Account;  
riskAssessor is an instance of RiskAssessor.

The FCMComposition has two points of entry into it: TransferSource and 
RefundSource, each providing a different behavior. To an external user, the 
FCMComposition simply provides the two operations of transferring or refunding 
money.  The internal composition of the flow is implementation detail that the external 
user does not need to be aware of.

An  FCMComposition defines the flow of control (FCMControlLinks) and the flow of 
data (FCMDataLinks) between FCMNodes. The solid lines in the flow diagram 
represent FCMControlLinks, and the dot-dash lines represent FCMDataLinks.  Both 
are specialized FCMConnections.

The dotted lines in the flow diagram identify the “performedBy” relationship between 
FCMCommands and FCMComponents.

if 
balance 

> 
amount 

Risk Assessor
do 
Assessment

Transfer
Input CheckAccount

Send 
Money

Transfer
Output

checkingAccount
riskAssessor

if 
balance 

> 
amount 

Account
getBalance()
removeMoney()
addMoney()

Risk Assessor
do 
Assessment

Transfer
Source CheckAccount

AssessRisk

Debit 
Account

checkingAccount
riskAssessor

Transfer
Input CheckAccount

Refund
Sink

Credit 
Account

Refund
Source ReturnMoney
February 2002 UML Profile for EDOC:  Example 5-43



5

The rest of this example looks at the transfer money path through the flow.

Figure 5-19   FCMSource and FCMSink for the Transfer Money FCMFlow

TransferSource, an FCMSource, acts as a public entry point into the composition.  It 
defines the input for the operation of transferring money from an account, such as an 
account number and the amount to be transferred.  TransferSink is the corresponding 
FCMSink and defines the results of the operation.  A composition can have more than 
one FCMSource, each acting as another public entry point into it.

FCMSources and FCMSinks are specialized FCMNodes.

Figure 5-20   FCMControlLink and FCMDataLink from TransferSource to CheckAccount

SendMoney and ReturnMoney are both FCMFunctions – FCMNodes that do not have 
associated FCMComponents.  They represent procedural or transaction logic that does 
not involve interacting with any FCMComponents in the composition.

void transferMoney(TransferMoneyData input, TransferMoneyEndBalanceData output)

int AccountNO
int PIN
int amount

TransferMoneyData

int AccountNO
int balance

TransferMoneyEndBalanceData

Transfer
Source

Transfer
Sink.........

int AccountNO
int PIN
int amount

TransferMoneyData

Transfer
Source CheckAccount
5-44 UML Profile for Enterprise Distributed Object Computing February 2002



5

An FCMControlLink (solid line) connects the TransferSource node to the 
CheckAccount node.  TransferSource is the sourceNode for the connection and 
CheckAccount is the targetNode.  This connection triggers the activation of 
CheckAccount.  

An FCMDataLink (dotted arrow) also connects the TransferSource node to the 
CheckAccount node.  This indicates that data, as well as execution control, flow 
between these two nodes. The data that flows is TransferMoneyData.  This is the 
signature (input FCMParameter) of the operation that TransferSource implements.  The 
interface defined by the source FCMTerminal for the connection  is derived from it.  

CheckAccount, AssessRisk, and DebitAccount, are all FCMCommands, a kind of 
specialized FCMNode.  Each represents the invocation of a particular FCMOperation 
on an FCMComponent.  For example, CheckAccount represents the invocation of 
checkingAccount’s getBalance operation.  

Figure 5-21   FCMCommand with associated FCMConnections and FCMComponent

CheckAccount has an FCMTerminal for the inbound FCMDataLink. The data flowing 
across the FCMDataLink is TransferMoneyData. This FCMTerminal defines the input 
interface to CheckAccount and is derived from getBalance’s input FCMParameter.   
CheckAccount also has an FCMTerminal representing a successful outcome from its 
execution.  This FCMTerminal acts as the source for the FCMControlLink to the 
FCMDecisionNode that follows it.  It is also the source for the FCMDataLink  that 
connects to FCMCommand DebitAccount.

Account
int getBalance(int AccountNO, int PIN)
int removeMoney(in AccountNO,  int 
PIN, int amount)

CheckAccount

checkingAccount

int AccountNO
int PIN
int amount

TransferMoneyData

int balance
int amount

AmountAndBalanceData
February 2002 UML Profile for EDOC:  Example 5-45



5

The diamond in the flow diagram represents an FCMDecisionNode.  In this example, 
the FCMDecisionNode has a single Boolean expression associated with it (if balance 
> amount).  The value of the expression determines whether control flows to 
DebitAccount or to AssessRisk.  FCMDecisionNodes can have a more complex case 
structure with control flowing to a different FCMNode for each case. 

Other kinds of FCMNodes can have multiple outbound control flows as well.  
FCMCommand AssessRisk has one inbound and two outbound FCMTerminals:  

• The inbound FCMTerminal represents the input to the associated doAssessment 
operation.  

• The white outbound FCMTerminal represents a successful result, and transfers 
control to DebitAccount.  

• The dark outbound FCMTerminal represents an exception (“bad risk”), and transfers 
control to TransferSink to end the flow.  

If doAssessment had other types of exceptions (for instance “credit history not 
found”), AssessRisk would have other outbound FCMTerminals to support them.

Hierarchical composition – the ability to use flow compositions to create new flow 
compositions – is a key feature of the Flow Composition Model.  In this example, 
FCMComponent riskAssessor could be bound to a previously defined 
FCMComposition as its implementation.  Similarly, through the same binding 
mechanism, the entire TransferMoney FCMComposition could be bound as the 
implementation of an FCMComponent in a more complex Billing flow.
5-46 UML Profile for Enterprise Distributed Object Computing February 2002



UML Profile for MOF 6
Contents

This chapter includes the following topics. 

Topic Page

Section I - Introduction 6-2

Section II - UML to MOF Mapping Table 6-2

Section III - Mapping Details 6-3

“ModelElement” 6-4

“Package” 6-4

“Import” 6-6

“Class” 6-6

“Attribute” 6-7

“Reference” 6-8

“Operation” 6-10

“Parameter” 6-11

“Exception” 6-11

“Exception Parameter” 6-12

“Association” 6-13

“AssociationEnd” 6-13

“DataType” 6-14

“Constant” 6-16
February 2002 UML Profile for Enterprise Distributed Object Computing 6-1



6

Section I - Introduction

This chapter describes a mapping between the Unified Modeling Language (UML) and 
the Metaobject Facility (MOF).  The two-way mapping supports both designing 
metamodels with UML (UML to MOF) and viewing metamodels with UML (MOF to 
UML).  The sections in this chapter provide a table showing the mapping of element 
types, detailed mapping descriptions for individual element types, and guidelines for 
designing metamodels using UML. 

The mapping is a UML profile.  Per the definition of a UML profile, this chapter 
contains the following information.

“Constraint” 6-16

“Generalizes” 6-17

“Tag” 6-17

Section IV - Guidelines 6-19

“Modularity” 6-19

“Associations” 6-19

“References” 6-20

“DataTypes” 6-20

“Names” 6-20

UML Profile Requirements Where Requirements are Satisfied 
in this Chapter

UML metamodel elements supported 
by the profile

All metamodel elements are listed in the UML-to-
MOF Mapping Table below

Features defined by the profile as new 
metamodel elements

This profile defines no new metamodel elements

Common model elements predefined 
by the profile

Stereotypes are listed in the UML-to-MOF Mapping 
Table below.  There are no other predefined elements

Features defined by the profile using 
standard extension mechanisms

UML stereotypes are listed in the UML-to-MOF 
Mapping Table below.  A mapping section for each 
element type includes a subsection identifying UML 
tags used by the profile.

Natural language prose that informally 
defines the semantics of the profile

The body of this chapter explains the UML-to-MOF 
mapping — separate sections explain each element 
type

Well-formedness rules that formally 
define the semantics of the profile

A mapping section for each element type below 
includes a subsection expressing precisely how 
properties are mapped and a subsection listing 
constraints 

Topic Page
6-2 UML Profile for Enterprise Distributed Object Computing February 2002



6

The profile has limitations.  Some MOF details cannot be rendered in UML using this 
profile.  The mapping section for each element type includes a subsection listing 
specific limitations.

Section II - UML-to-MOF Mapping Table

The following UML elements and stereotypes are supported by the profile.  Each maps 
to a specific MOF element as shown in the table below

.

Section III - Mapping Details

The profile applies to an entire UML Model stereotyped as a <<metamodel>>.  The 
profile applies to all elements contained directly or indirectly by the Model through 
composite associations.  Hence, stereotypes are not generally needed for contained 
elements.  All contained elements must be supported by the profile.

Separate sections below explain the mappings for each element type. Each section 
contains subsections covering these topics: tags, mapping properties, constraints, and 
limitations.

Tags are used for MOF properties not directly supported by UML. Except for the 
standard UML tag “documentation,” all tags used by the profile are prefixed with 
“org.omg.uml2mof” to mark them as belonging to this profile.  All tags are optional 
unless specified as required.

UML Element Stereotype MOF Element

Model <<metamodel>> Package

ElementImport Import

Class Class

Attribute Attribute

Attribute <<reference>> Reference

Operation Operation

Parameter Parameter

Exception Exception

Attribute (within an Exception) Parameter

Association Association

AssociationEnd AssociationEnd

DataType DataType

DataValue Constant

Constraint Constraint

Generalization Generalizes

TaggedValue Tag
February 2002 UML Profile for EDOC:  6-3



6

6.1 ModelElement

In both UML and MOF, ModelElement is an abstract class. General tags and 
constraints on ModelElements are described below.  The property map described below 
applies to the general cases where a UML ModelElement maps to a MOF 
ModelElement.  In some cases the general map for a property is overridden for specific 
subclasses of MOF ModelElement.

6.1.1 Tags on UML ModelElement

6.1.2 ModelElement Property Map

6.1.3 ModelElement Constraints

All constraints imposed by the MOF Specification are implicitly imposed based on the 
mapping to MOF defined herein.

Every UML ModelElement that maps to an MOF ModelElement must have a name.

6.1.4 ModelElement Limitations

None.

6.2 Package

A UML Model stereotyped as a <<metamodel>> maps to a MOF Package.  Within a 
UML Model that maps to a MOF Package, any nested Model also maps to a MOF 
Package.

Tag Value

documentation an annotation for the ModelElement

MOF Property UML Property or Value

name name

annotation value of taggedValue with tag = “documentation”; otherwise “”

container namespace

constraints constraint
6-4 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.2.1 Tags on UML Model with Stereotype <<metamodel>>

6.2.2 Model-to-Package Property Map

* See section on MOF Tag about which tags are mapped to MOF Package contents

6.2.3 Model-to-Package Constraints

All UML elements contained by the Model through composite associations transitively 
are limited to the types and stereotypes named in this profile.

All constraints imposed by the MOF Specification are implicitly imposed, based on the 
mapping to MOF defined herein, on the UML Model and all of its contents.

All names listed for a tag of “org.omg.uml2mof.clusteredImport” must match names of 
MOF Import objects in the contents of the MOF Package.

A UML Model representing a nested MOF Package must not have a tag of 
“org.omg.uml2mof.hasImplicitReferences”.

UML ownedElement must be ordered.

UML taggedValue must be ordered.

6.2.4 Model-to-Package Limitations

The order of MOF Package.contents are not fully preserved when rendered using the 
profile because UML has separate associations for ownedElement and taggedValue.

Tag Value

org.omg.uml2mof.clusteredImport Comma-separated list of names of MOF Import 
objects that are clustered.

org.omg.uml2mof.hasImplicitReferences “false” to prevent MOF References from being 
implied by AssociationEnds; “true” or no tag to 
imply a MOF Reference for each navigable 
AssociationEnd whose association and opposite 
end’s type are owned by the same package.

MOF Property UML Property or Value

container If namespace is a UML Model that is mapped to a MOF Package by this 
profile, then the package.  If namespace is null or is not mapped to a MOF 
Package, then null.

contents ownedElement, taggedValue*

isAbstract isAbstract

isRoot isRoot

isLeaf isLeaf

supertypes generalization.parent
February 2002 UML Profile for EDOC:  Package 6-5



6

6.3 Import

A UML ElementImport maps directly to a MOF Import.

6.3.1 Tags on UML ElementImport

None.  Tags are not supported because UML ElementImport is not a ModelElement.

6.3.2 ElementImport-to-Import Property Map

6.3.3 ElementImport-to-Import Constraints

The importedElement must be either a UML Model stereotyped as a <<metamodel>> 
or a Class owned directly or indirectly within such a Model.

6.3.4 ElementImport-to-Import Limitations

The profile does not support annotation of an Import.

6.4 Class

A UML Class maps directly to a MOF Class.

6.4.1 Tags on UML Class

MOF Property UML Property or Value

name alias if given, otherwise importedElement.name

annotation none

container package

visibility visibility

isClustered If package has a taggedValue with tag = 
“org.omg.uml2mof.clusteredImport” and the value includes the name of 
the MOF Import, then true; otherwise false

imported importedElement

Tag Value

org.omg.uml2mof.isSingleton “true” or “false” indicating a value for isSingleton
6-6 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.4.2 Class Property Map

6.4.3 Class Constraints

UML ownedElement must be ordered.

6.4.4 Class Limitations

The order of MOF Class.contents are not fully preserved when rendered using the 
profile because UML has separate associations for ownedElement and feature.

6.5 Attribute

A UML Attribute with no stereotype maps to a MOF Attribute.

6.5.1 Tags on UML Attribute with No Stereotype

MOF Property UML Property or Value

contents ownedElement followed by feature (in order)

visibility visibility

isAbstract isAbstract

isRoot isRoot

isLeaf isLeaf

supertypes generalization.parent

isSingleton value of taggedValue with tag = “org.omg.uml2mof.isSingleton”; 
otherwise false

Tag Value

org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique

org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered

org.omg.uml2mof.isDerived “true” or “false” indicating a value for isDerived
February 2002 UML Profile for EDOC:  Attribute 6-7



6

6.5.2 Attribute Property Map

6.5.3 Attribute Constraints

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

6.5.4 Attribute Limitations

None.

6.6 Reference

A UML Attribute stereotyped as a <<reference>> maps to a MOF Reference.

Also, if the UML Model representing the outermost containing MOF Package does not 
have a tag of “org.omg.uml2mof.hasImplicitReferences” with a value of “false”, then a 
MOF Reference is implied by each eligible UML AssociationEnd.  An end is 
considered eligible if it is navigable, there is no explicit MOF Reference for that end 
within the same outermost MOF Package, and the end's association is owned by the 
same package that owns its opposite end's type (so as to not create circular package 
dependencies)..

MOF Property UML Property or Value

container owner

visibility visibility

scope ownerScope

type type

multiplicity multiplicty.range; isUnique and isOrdered are false unless specified with 
tags shown above

isChangeable changeability = changeable

isDerived value of taggedValue with tag = “org.omg.uml2mof.isDerived”; otherwise 
false
6-8 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.6.1 Tags on UML Attribute with Stereotype <<reference>>

6.6.2 Explicit Reference Property Map

6.6.3 Implicit Reference Property Map

6.6.4 Reference Constraints

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

Tag Value

org.omg.uml2mof.referencedEnd the name of an opposite AssociationEnd which is the 
referencedEnd

MOF Property UML Property or Value

container owner

visibility visibility

scope ownerScope

type type

multiplicity multiplicty.range; isUnique and isOrdered are taken from the 
referencedEnd

isChangeable changeability = changeable

referencedEnd the one AssociationEnd of owner.allOppositeAssociationEnds which is 
identified by a taggedValue on the UML Attribute with tag = 
“org.omg.uml2mof.referencedEnd”, or lacking a taggedValue, the UML 
Attribute’s name 

MOF Property UML Property or Value

name referencedEnd’s name

annotation “”

container the type of the AssociationEnd opposite to the referencedEnd

constraints none

visibility referencedEnd’s visibility

scope instance_level

type referencedEnd’s type

multiplicity referencedEnd’s multiplicity

isChangeable referencedEnd’s isChangeable

referencedEnd the AssociationEnd that implies the Reference 
February 2002 UML Profile for EDOC:  Reference 6-9



6

For a UML Attribute with a <<reference>> stereotype, if there is a UML taggedValue 
with tag = “org.omg.uml2mof.referencedEnd”, it must identify a visible 
AssociationEnd from among the Attribute’s owner.allOppositeAssociationEnds.  If no 
such taggedValue is present, the UML Attribute name must identify a visible 
AssociationEnd from among the Attribute’s owner.allOppositeAssociationEnds.

For a UML Attribute with a <<reference>> stereotype, if the Attribute’s name is also 
the name of an AssociationEnd from among the Attribute’s 
owner.allOppositeAssociationEnds, then the Attribute makes explicit the pseudo-
attribute implied by the name of the AssociationEnd.  The Attribute’s name does not 
conflict with the pseudo-attribute name.  Rather, the Attribute makes the pseudo-
attribute explicit in the class.  In this case, the Attribute must not have a taggedValue 
identifying a different AssociationEnd than the one identified by the Attribute’s name.

6.6.5 Reference Limitations

None.

6.7 Operation

A UML Operation maps to a MOF Operation.

6.7.1 Tags on UML Operation

None.

6.7.2 Operation Property Map

6.7.3 Operation Constraints

UML raisedSignal must be ordered.

Each UML raisedSignal must be an Exception mapped by the profile.

6.7.4 Operation Limitations

Unlike a MOF Operation, a UML Operation cannot contain a Constraint.  Therefore 
the profile does not support an Operation containing a Constraint.

MOF Property UML Property or Value

container owner

contents parameter

visibility visibility

scope ownerScope

isQuery isQuery

exceptions raisedSignal
6-10 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.8 Parameter

A UML Parameter maps to a MOF Parameter.

6.8.1 Tags on UML Parameter

6.8.2 Parameter Property Map

6.8.3 Parameter Constraints

UML changeability must be either changeable or frozen.

A multiplicity specified by a taggedValue with tag = “org.omg.uml2mof.multiplicity” 
must represent a single valid multiplicity range.

6.8.4 Parameter Limitations

None.

6.9 Exception

A UML Exception maps to a MOF Exception.  A UML Exception is a Signal, which is 
a Classifier, whereas MOF Exception is BehavioralFeature.  For this reason, UML 
Attributes of an Exception, rather than UML Parameters, represent MOF Exception 
Parameters in the profile.

6.9.1 Tags on UML Exception

None.

Tag Value

org.omg.uml2mof.multiplicity a multiplicity range such as “0..1”, “*” or “1..*”

org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered

org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique

MOF Property UML Property or Value

container behavioralFeature

type type

direction kind

multiplicity lower and upper are 1, and isOrdered and isUnique are false, unless 
specified with tags shown above
February 2002 UML Profile for EDOC:  Parameter 6-11



6

6.9.2 Exception Property Map

6.9.3 Exception Constraints

Each feature of the UML Exception must be an Attribute.

6.9.4 Exception Limitations

The profile does not support an Exception having instance-level scope.

6.10 Exception Parameter

An Attribute of a UML Exception maps to a Parameter of a MOF Exception.

6.10.1 Tags on Attribute of UML Exception

6.10.2 Attribute-to-Parameter Property Map

6.10.3 Attribute-to-Parameter Constraints

None.

6.10.4 Attribute-to-Parameter Limitations

None.

MOF Property UML Property or Value

contents feature

visibility visibility

scope classifier

Tag Value

org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered

org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique

MOF Property UML Property or Value

container owner

type type

direction out

multiplicity multiplicty.range; isOrdered and isUnique are false unless specified with 
tags shown above
6-12 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.11 Association

A UML Association maps directly to a MOF Association.

A UML Association stereotyped as <<implicit>> is ignored by the profile and is not 
mapped to a MOF Association.

6.11.1 Tags on UML Association

None.

6.11.2 Association Property Map

6.11.3 Association Constraints

An Association must have exactly two ends.

6.11.4 Association Limitations

The order of MOF Class.contents are not fully preserved when rendered using the 
profile because UML has separate associations for ownedElement and connection.

6.12 AssociationEnd

A UML AssociationEnd maps directly to a MOF AssociationEnd.

6.12.1 Tags on UML AssociationEnd

None.

MOF Property UML Property or Value

contents ownedElement, connection

visibility visibility

isAbstract isAbstract

isRoot isRoot

isLeaf isLeaf

supertypes generalization.parent
February 2002 UML Profile for EDOC:  Association 6-13



6

6.12.2 AssociationEnd Property Map

6.12.3 AssociationEnd Constraints

An Association must have exactly two ends.

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

6.12.4 AssociationEnd Limitations

None.

6.13 DataType

A UML DataType maps directly to a MOF DataType.

MOF Property UML Property or Value

container association

type type

multiplicity multiplicty.range, isUnique maps to upper > 1,
isOrdered maps to ordering = ordered

aggregation aggregation (UML aggregate matches MOF shared)

isNavigable isNavigable

isChangeable changeability = changeable
6-14 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.13.1 Tags on UML DataType

6.13.2 DataType Property Map

* If a TaggedValue specifies a CORBA type, the value is parsed to determine the typeCode.  If 
the value simply names a type, then it must name a CORBA primitive type.  Otherwise, the 
value must be an IDL type declaration. Wherever the declaration refers by name to a Classifier 
contained in or imported into the metamodel, a MOF TypeAlias is constructed to reference the 
named Classifier. If there is a taggedValue with tag = “org.omg.uml2mof.repositoryId”, then 
its value is used wherever a repository id can be specified within the typeCode.

** If a TaggedValue does not specify a CORBA type, then a CORBA type is determined from the 
name.  The name matching is case-insensitive. If the name matches the name of a standard 
CORBA type, then that type is used. All other names revert to a typedef for the CORBA string 
type.

6.13.3 DataType Constraints

The value of a taggedValue with tag = “org.omg.uml2mof.corbaType” must identify a 
valid CORBA type.

UML ownedElement must be ordered.

6.13.4 DataType Limitations

A CORBA typecode contains information which is not revealed in an IDL rendering of 
a type. Such information is not handled by the profile.

The order of MOF DataType.contents are not fully preserved when rendered using the 
profile because TypeAlias objects are listed via a taggedValue separately from UML 
ownedElement.

Tag Value

org.omg.uml2mof.corbaType CORBA IDL type name or type declaration

org.omg.uml2mof.repositoryId A repository id applicable within a typeCode 
constructed from a CORBA IDL type declaration

MOF Property UML Property or Value

contents TypeAlias objects as required by taggedValue with tag = 
“org.omg.uml2mof.corbaType”*

visibility visibility

isAbstract isAbstract

isRoot isRoot

isLeaf isLeaf

supertypes generalization.parent

typeCode value of taggedValue with tag = “org.omg.uml2mof.corbaType”*;
otherwise, a typeCode based on name**
February 2002 UML Profile for EDOC:  DataType 6-15



6

6.14 Constant

A UML DataValue maps to a MOF Constant.

6.14.1 Tags on UML DataValue

6.14.2 DataValue-to-Constant Property Map

6.14.3 DataValue-to-Constant Constraints

A taggedValue is required to provide the Constant value.  The value of the taggedValue 
must be a string representation of a valid value for the Constant’s type.

6.14.4 DataValue-to-Constant Limitations

None.

6.15 Constraint

A UML Constraint maps directly to a MOF Constraint.

6.15.1 Tags on UML Constraint

Tag Value

org.omg.uml2mof.constantValue the value of the constant

MOF Property UML Property or Value

type classifier

value value of taggedValue with tag = “org.omg.uml2mof.constantValue”

Tag Value

org.omg.uml2mof.evaluationPolicy “immediate” or “deferred” indicating a value for 
evaluationPolicy
6-16 UML Profile for Enterprise Distributed Object Computing February 2002



6

6.15.2 Constraint Property Map

6.15.3 Constraint Constraints

None.

6.15.4 Constraint Limitations

A MOF Constraint’s expression has any type, but a UML Constraint’s expression body 
has string type.  Therefore, the profile can support only an expression rendered as a 
string.

6.16 Generalizes

A UML Generalization maps to a MOF Generalizes link.

6.16.1 Tags on UML Generalization

None.

6.16.2 Generalization-to-Generalizes Property Map

None.  Generalizes is an association, not a class.

6.16.3 Generalization-to-Generalizes Constraints

Each UML Generalization within a Model mapped to a MOF Package must connect 
GeneralizableElements that are also mapped to MOF elements.

6.16.4 Generalization-to-Generalizes Limitations

None.

6.17 Tag

A UML TaggedValue maps to a MOF Tag, except that any UML TaggedValue whose 
tag is used by this profile is not preserved as a MOF Tag.

MOF Property UML Property or Value

expression body.body

language body.language

evaluationPolicy value from taggedValue with tag = 
“org.omg.uml2mof.evaluationPolicy”; otherwise deferred

constrainedElement constrainedElement
February 2002 UML Profile for EDOC:  Generalizes 6-17



6

6.17.1 Tags on UML TaggedValue

None.  A UML TaggedValue cannot be tagged.

6.17.2 TaggedValue-to-Tag Property Map

* if the modelElement is not a Model, then the name is qualified up to but not including the 
Model that most immediately owns the modelElement — each name is separated by a period 
(“.”) character.

6.17.3 TaggedValue-to-Tag Constraints

None.

6.17.4 TaggedValue-to-Tag Limitations

MOF allows a Tag to be contained by an object other than the one it tags.  UML 
requires a tag to be contained by the object it tags.  Therefore, when a MOF Tag is 
rendered in UML, the profile does not retain the relationship to the Tag’s container. 

UML does not give a name to a TaggedValue other than its tag.  Therefore, a MOF Tag 
name is not preserved when rendered in UML using the profile.

MOF supports any type of value for a Tag.  UML supports only a string value.  
Therefore, the profile supports only string values.

MOF supports having multiple values with a single tag.  UML supports only one.  
Therefore, the profile supports only a single value.

A single MOF tag can be attached to multiple model elements.  A UML TaggedValue 
can be attached to only one.  Therefore, the profile supports only a single 
ModelElement attached to a tag.

The profile does not support annotations, constraints or tags on tags.

MOF Property UML Property or Value

name modelElement.name* + “.” + tag

annotation “”

container If modelElement is a Model then that Model, otherwise the Model that 
most immediately owns modelElement

constraints none

tagId tag

values value

elements modelElement
6-18 UML Profile for Enterprise Distributed Object Computing February 2002



6

Section IV - Guidelines

This section gives guidelines for designing metamodels using the UML profile for 
MOF.  These guidelines are drawn from several experiences of using UML to design 
and extend metamodels deployed using MOF.

Refer to the MOF Specification for a comprehensive explanation of MOF.

6.18 Modularity

Separate different modeling areas into different metamodels.  Minimize dependencies 
between metamodels.  Make no circular dependencies between them — otherwise valid 
CORBA IDL interfaces cannot be generated.

The outermost package of a deployed metamodel can thought of as a type.  It is the 
type of each MOF package extent defined by the metamodel.  Avoid nesting 
metamodels as owned elements so that the metamodels can be deployed in various 
combinations rather than only as one enormous metamodel.  A metamodel can import 
rather than own other metamodels.  Importing gives the same organizational advantage 
as nesting without imposing strong composition.  Metamodels can be imported in two 
ways: clustered and unclustered.  If clustered, an imported metamodel is fully deployed 
within an extent of the importing metamodel, just as if the imported metamodel had 
been nested.

Use package inheritance to achieve polymorphism of package extents.  If a MOF 
package inherits from a base package, then an extent of the package can be used 
wherever an extent of the base package can be used.

6.19 Associations

Give meaningful names to associations, even if you do not display the names in 
diagrams.  The association name is used to define interfaces to access and manage 
links.

Generally, put an association in the same package as one of its connected classes.  If 
the connected classes are in separate packages, put the association in the most specific 
package.  

When extending an existing model from the outside, feel free to make associations to 
classes in the existing model.  But use existing associations wherever they are 
appropriate.  If you want to draw an association between specific classes for the 
purpose of showing an existing association between superclasses, then stereotype the 
association as <<implicit>> so that it is ignored in the mapping to MOF.

MOF does not support association classes or associations having more than two 
connections.  In any case where you would use such an association, model the 
conceptual association as a class using separate associations for each connection.
February 2002 UML Profile for EDOC:  Modularity 6-19



6

6.20 References

A MOF reference is like a derived attribute whose derivation is tied to an association.  
The values of a reference for an object are the objects linked to that object.  Modifying 
reference values causes links to be added and/or deleted.

When designing a metamodel that extends another from the outside, define references 
only in the extending metamodel, not in the metamodel it extends.

The definition of a MOF reference affects how package extents contain links.  In 
general, an association link and the objects it connects can all belong to different 
package extents.  However, the MOF Specification defines the Reference Closure Rule 
which requires any link tied to a reference to be contained by the same package extent 
as the object having the reference.  If an association has references on both ends, both 
linked objects and the link must all be contained in the same package extent.  Before 
defining a reference, give thought to the Reference Closure Rule so that you do not 
mistakenly prevent links from interrelating objects across different package extents.  
Conversely, use a reference where you want to force links to be in the same package 
extent as the linked objects.

Here is an example.  Suppose a metamodel has a class called GE and an association 
from GE to GE called Generalizes.  One end is called supertype and the other is called 
subtype.  Both ends are navigable.  If a reference is on both ends, then a link can only 
connect GE objects within the same package extent.  If a reference is only on the 
subtype end (referring to supertype) then a link must be in the same package extent as 
its subtype, but it can link to a supertype in the same or a different package extent.

6.21 DataTypes

Avoid defining a complex data type where a class can be used.

Avoid defining enumerations because they limit extensibility.  There is no way to 
extend an enumeration type from an outside metamodel.

6.22 Names

Form multiword names by concatenating words with no intervening spaces, hyphens or 
underscores.  For names of packages, classifiers, and associations upcase the first letter 
of each word.  For names of features and association ends upcase the first letter of each 
word except for the first word in the name.  Do not prefix all of the names in a package 
with the package name — the package name is already part of the fully qualified name.

Using spaces, punctuation or leading numerals in names can cause problems for 
middleware, programming language, and XML bindings.
6-20 UML Profile for Enterprise Distributed Object Computing February 2002



References A
[1] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 1 – Over-
view – ISO/IEC 10746-1 | ITU-T Recommendation X.901

[2] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 2 – Foun-
dations – ISO/IEC 10746-2 | ITU-T Recommendation X.902

[3] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 3 – Ar-
chitecture – ISO/IEC 10746-3 | ITU-T Recommendation X.903 

[4] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Enterprise 
Viewpoint – ITU-T Recommendation X.911 | ISO/IEC 15414

[5] DISGIS Web site: http://www.disgis.com

[6] COMPASS Web site: http://www.compassgl.org

[7] OBOE Web site: http://www.dbis.informatik.uni-frankfurt.de/~oboe/

[8] ISO TC211 Web site: http://www.statkart.no/isotc211/

[9] Open Geodata Consortium Web site: http://www.opengis.org 

[10] ISO/IEC JTC1/SC21, Information Technology. Open Systems Interconnection - Manage-
ment Information Services - Structure of Management Information - Part 7: General Relationship 
Model, 1995. ISO/IEC 10165-7.

[11] T.Gilb, G.Weinberg. Humanized Input. Winthrop Publ., 1977.

[12] H.Kilov, J.Ross. Information modeling. Prentice-Hall, 1994.

[13] H.Kilov, L.Cuthbert. A model for document management. Computer Communications, 
Vol. 18, No. 6 (June 1995), pp. 408-417 

[14]  H.Kilov. Business specifications. Prentice-Hall, 1999.
February 2002 UML Profile for Enterprise Distributed Object Computing A-1



[15]  H.Kilov, A.Ash. How to ask questions: Handling complexity in a business specification. 
In: Proceedings of the OOPSLA’97 Workshop on object-oriented behavioral semantics (Atlanta, 
October 6th, 1997), ed. by H.Kilov, B.Rumpe, I.Simmonds, Munich University of Technology, 
TUM-I9737, pp. 99-114.

[16] H.Kilov, A.Ash. An information management project: what to do when your business spec-
ification is ready. In: Proceedings of the Second ECOOP Workshop on Precise Behavioral Seman-
tics, Brussels, July 24, 1998 (ed. by H.Kilov and B.Rumpe). Technical University of Munich, 
TUM-I9813, pp. 95-104.

[17] H.Kilov, B.Rumpe, I.Simmonds (Eds.). Behavioral specifications of businesses and sys-
tems. Kluwer Academic Publishers, 1999.

[18] B.Potter, J.Sinclair, D.Till. An introduction to formal specification and Z. Prentice-Hall, 
1991.

[19] Sun Java Community Process JSR-26 currently under public review, http://jcp.org/jsr/de-
tail/26.jsp

[20] Sun Java Community Process JSR-40 not yet released for public review, ht-
tp://jcp.org/jsr/detail/40.jsp

[21] MOF 1.3 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-09-05

[22] UML Profile for CORBA 1.1 specification, OMG document http://cgi.omg.org/cgi-
bin/doc? ptc/01-01-06

[23] Unified Modeling Language Specification, Version 1.4, OMG document ht-
tp://cgi.omg.org/cgi-bin/doc?ad/01-02-13

[24] XMI 1.1 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-10-02

[25] Unified Modeling Language Specification, Version 1.3, June, 1999 http://cgi.omg.org/cgi-
bin/doc?ad/99-06-08

[26] Desmond F. D’Souza, Alan Cameron Wills. Objects, Components, and frameworks with 
UML: The Catalysis Approach. Reading, Mass., Addison-Wesley, 1999.

[27]  Martin Fowler. M. Analysis Patterns: Reusable Object Models. Reading, Mass., Addison-
Wesley, 1997.

[28] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements 
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[29] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development Pro-
cess. Addison-Wesley, Reading, Mass., 1999.

[30] OMG, Model Driven Architecture – under development

[31] Trygve Reenskaugh, Per Wold and Odd Arild Lehne. Working with Objects : the OORAM 
Software Engineering Method  1996 Manning Publications Co. 1996

[32] Bran Selic, Garth Gullekson and Paul T. Ward  Real-Time Object-Oriented Modeling. John 
Willey & Sons, Inc.  1994
A-2 UML Profile for Enterprise Distributed Object Computing February 2002



Glossary
The Glossary defines the specialist terms used in this specification.

Term Explanation

b2b Business to Business

b2c Business to Customer

BFOP Business Function Object Pattern

CBOP Common Business Object Patterns Consortium

CCA Component Collaboration Architecture – a profile for specifying components at 
multiple levels of granularity

EAI Enterprise Application Integration

ebXML XML for Electronic Business

ECA Enterprise Collaboration Architecture – a set of profiles for making technology 
independent models of EDOC systems

EDOC Enterprise Distributed Object Computing – what the submission is all about.

EJB Enterprise JavaBeans

FCM Flow Composition Model

RM-ODP Reference Model of Open Distributed Processing

UML Unified Modeling Language

VMM Virtual metamodel: a formal model of a package of extensions to the UML metamodel 
using UML’s own built-in extension mechanisms
February 2002 UML Profile for Enterprise Distributed Object Computing 1



2 UML Profile for Enterprise Distributed Object Computing February 2002


	Contents
	Preface
	About the Object Management Group
	Intended Audience and Use
	Context of OMG Modeling
	Acknowledgments

	Introduction
	1.1 Guide to the Specification
	1.1.1 Overall Structure of the Specification

	1.2 Conformance Issues
	1.2.1 Summary of optional versus mandatory interfaces
	1.2.2 Compliance Points
	1.2.3 Optional Compliance Points

	1.3 Proof of Concept
	1.3.1 CBOP
	1.3.2 Data Access Technologies
	1.3.3 DSTC
	1.3.4 EDS
	1.3.5 Fujitsu
	1.3.6 IBM
	1.3.7 Iona
	1.3.8 Open-IT and SINTEF
	1.3.9 Sun Microsystems
	1.3.10 Unisys
	1.3.11 ebXML


	EDOC Profile: Rationale and Application
	2.1 Overview
	2.2 The Enterprise Collaboration Architecture
	2.2.1 Component Collaboration Architecture
	2.2.2 Entities profile
	2.2.3 Events Profile
	2.2.4 Business Process profile
	2.2.5 Relationships profile

	2.3 Patterns
	2.4 Technology Specific Models and Technology Mappings
	2.5 Separation of Concerns and Viewpoint Specifications
	2.6 Enterprise Specification
	2.6.1 Concepts
	2.6.2 EDOC Enterprise Subprofile

	2.7 Computational Specification
	2.7.1 Concepts
	2.7.2 EDOC Computational Specifications
	2.7.3 Levels of ProcessComponent in a Computational Specification

	2.8 Information Specification
	2.8.1 Concepts
	2.8.2 EDOC Information Specifications

	2.9 Engineering Specification
	2.9.1 Concepts
	2.9.2 EDOC Engineering Specifications

	2.10 Technology Specification
	2.11 Specification Integrity - Interviewpoint Correspondences
	2.11.1 Computational-Enterprise Interrelationships
	2.11.2 Computational-Information Interrelationships
	2.11.3 Computational-Engineering Interrelationships
	2.11.4 Engineering-Technology Interrelationships


	The Enterprise Collaboration Architecture
	3.1 Key Design Features
	3.1.1 Recursive component composition
	3.1.2 Process Specification
	3.1.3 Specification of Event Driven Systems
	3.1.4 Integration of Process and Information Models
	3.1.5 Rigorous relationship specification
	3.1.6 Mappings to Technology - Platform Independence

	3.2 ECA Elements
	3.3 Rationale
	3.3.1 Problems to be solved
	3.3.2 Approach
	3.3.3 Concepts
	3.3.4 Conceptual Framework

	3.4 CCA Metamodel
	3.4.1 Structural Specification
	3.4.2 Choreography
	3.4.3 Composition
	3.4.4 Document Model
	3.4.5 Model Management

	3.5 CCA Notation
	3.5.1 CCA Specification Notation
	3.5.2 Composite Component Notation
	3.5.3 Community Process Notation

	3.6 UML Profile
	3.6.1 Tables mapping concepts to profile elements
	3.6.2 Introduction
	3.6.3 Stereotypes for Structural Specification\
	3.6.4 Stereotypes for Choreography
	3.6.5 Stereotypes for Composition
	3.6.6 DocumentModel «profile» Package
	3.6.7 UML Model_Management Package
	3.6.8 Relationships
	3.6.9 General OCL Definition Constraints

	3.7 Diagramming CCA
	3.7.1 Types of Diagram
	3.7.2 The Buy/Sell Example
	3.7.3 Collaboration diagram shows community process
	3.7.4 Class diagram for protocol structure
	3.7.5 Activity Diagram (Choreography) for a Protocol
	3.7.6 Class Diagram for Component Structure
	3.7.7 Class Diagram for Interface
	3.7.8 Class Diagram for Process Components with multiple ports
	3.7.9 Activity Diagram showing the Choreography of a Process Component
	3.7.10 Collaboration Diagram for Process Component Composition
	3.7.11 Model Management
	3.7.12 Using the CCA Notation for Component & Protocol Structure

	3.8 Introduction
	3.8.1 Normative sections
	3.8.2 Relationship to other parts of ECA
	3.8.3 Design Concepts
	3.8.4 Standard UML Facilities

	3.9 Entity Viewpoints
	3.9.1 Information Viewpoint
	3.9.2 Composition viewpoint

	3.10 Entity Metamodel
	3.10.1 Overview
	3.10.2 Entity Package

	3.11 Entity UML Profile
	3.11.1 Metamodel Mapping to Profile
	3.11.2 Entity Package

	3.12 Rationale
	3.12.1 Introduction
	3.12.2 Overall design rationale
	3.12.3 Concepts
	3.12.4 Key Concepts of event driven business and system models
	3.12.5 Event and Notification based Interaction Models
	3.12.6 Leveraging event based models

	3.13 Metamodel
	3.13.1 Business Process View
	3.13.2 Entity View
	3.13.3 Whole Event Model
	3.13.4 Publish and Subscribe Package
	3.13.5 Event Package

	3.14 UML Profile
	3.14.1 Table mapping concepts to profile elements
	3.14.2 Introduction
	3.14.3 Publish and Subscribe Package
	3.14.4 Event Package 2

	3.15 Relationship to other ECA profiles
	3.15.1 Relationship to Business Process profile and Entities profile
	3.15.2 Relationship to ECA CCA profile

	3.16 Relationship other paradigms
	3.16.1 ebXML

	3.17 Example
	3.18 Introduction
	3.19 Metamodel
	3.19.1 Business Process metamodel

	3.20 UML Profile
	3.20.1 Table mapping concepts to profile elements
	3.20.2 Relationships

	3.21 Notation for Activity and ProcessRole
	3.22 Process Model Patterns
	3.22.1 Timeout
	3.22.2 Terminate
	3.22.3 Activity Preconditions and Activity Postconditions
	3.22.4 Simple Loop
	3.22.5 While and Repeat-Until Loops
	3.22.6 For Loop
	3.22.7 Multi-Task

	3.23 Full Model
	3.24 Requirements
	3.24.1 Introduction
	3.24.2 Non-Binary Relationships
	3.24.3 Example: Mutually Orthogonal Non-Binary Aggregations
	3.24.4 Example: Multiple Subtyping
	3.24.5 Other Relationship Requirements

	3.25 Using UML to Address the Requirements: An Overview
	3.26 Formal Virtual Metamodel of the UML Extensions
	3.26.1 Aggregations
	3.26.2 Reference Relationships

	3.27 Mapping the Relationships to Technical Platforms
	3.27.1 Aggregations
	3.27.2 Reference Relationships

	3.28 Examples Using the UML Extensions
	3.28.1 Example: List and Subordination
	3.28.2 Example: Reference Relationships


	The Patterns Profile
	4.1 Introduction
	4.2 Pattern Principle
	4.3 Notation for Patterns
	4.4 Simple Pattern
	4.5 Pattern Inheritance
	4.6 Pattern Composition
	4.7 Summary of Pattern Formats
	4.8 Applying Patterns
	4.9 EDOC::Pattern Package
	4.9.1 Business Pattern Name
	4.9.2 Business Pattern Package
	4.9.3 Business Pattern Binding

	4.10 Table mapping concepts to profile elements
	4.11 Introduction
	4.12 Pattern Package
	4.12.1 BP Name
	4.12.2 BP Package
	4.12.3 BP Binding


	Technology Specific Models
	5.1 Introduction
	5.2 The Java Metamodel
	5.2.1 Class Contents
	5.2.2 Polymorphism
	5.2.3 JavaType
	5.2.4 TypeDescriptor
	5.2.5 Data Types
	5.2.6 Names

	5.3 The Enterprise JavaBeans Metamodel
	5.3.1 Main
	5.3.2 EJB
	5.3.3 Entity Bean
	5.3.4 Assembly
	5.3.5 EJB Implementation
	5.3.6 References to Resources
	5.3.7 Data Types

	5.4 UML Profile
	5.4.1 Java Profile
	5.4.2 EJB Profile

	5.5 Introduction
	5.6 FCMCore Package
	5.6.1 FCMComposition
	5.6.2 FCMComponent
	5.6.3 FCMNode
	5.6.4 FCMConnection
	5.6.5 FCMOperation
	5.6.6 FCMParameter
	5.6.7 FCMCommand
	5.6.8 FCMFunction
	5.6.9 FCMTerminal
	5.6.10 FCMTerminalToNodeLink and FCMTerminalToTerminalLink
	5.6.11 FCMAnnotation
	5.6.12 FCMSource and FCMSink
	5.6.13 FCMCompositionBinding
	5.6.14 TDLangElement
	5.6.15 FCMType

	5.7 FCM Package
	5.7.1 FCMControlLink
	5.7.2 FCMDataLink
	5.7.3 FCMDecisionNode
	5.7.4 FCMConditionalControlLink
	5.7.5 FCMJoinNode
	5.7.6 FCMJoinCommand
	5.7.7 FCMMappingNode
	5.7.8 FCMMappingDataLink
	5.7.9 FCMMapping
	5.7.10 FCMCondition
	5.7.11 FCMBranchNode

	5.8 FCM Profile
	5.9 Example

	UML Profile for MOF
	6.1 ModelElement
	6.1.1 Tags on UML ModelElement
	6.1.2 ModelElement Property Map
	6.1.3 ModelElement Constraints
	6.1.4 ModelElement Limitations

	6.2 Package
	6.2.1 Tags on UML Model with Stereotype <<metamodel>>
	6.2.2 Model-to-Package Property Map
	6.2.3 Model-to-Package Constraints
	6.2.4 Model-to-Package Limitations

	6.3 Import
	6.3.1 Tags on UML ElementImport
	6.3.2 ElementImport-to-Import Property Map
	6.3.3 ElementImport-to-Import Constraints
	6.3.4 ElementImport-to-Import Limitations

	6.4 Class
	6.4.1 Tags on UML Class
	6.4.2 Class Property Map
	6.4.3 Class Constraints
	6.4.4 Class Limitations

	6.5 Attribute
	6.5.1 Tags on UML Attribute with No Stereotype
	6.5.2 Attribute Property Map
	6.5.3 Attribute Constraints
	6.5.4 Attribute Limitations

	6.6 Reference
	6.6.1 Tags on UML Attribute with Stereotype <<reference>>
	6.6.2 Explicit Reference Property Map
	6.6.3 Implicit Reference Property Map
	6.6.4 Reference Constraints
	6.6.5 Reference Limitations

	6.7 Operation
	6.7.1 Tags on UML Operation
	6.7.2 Operation Property Map
	6.7.3 Operation Constraints
	6.7.4 Operation Limitations

	6.8 Parameter
	6.8.1 Tags on UML Parameter
	6.8.2 Parameter Property Map
	6.8.3 Parameter Constraints
	6.8.4 Parameter Limitations

	6.9 Exception
	6.9.1 Tags on UML Exception
	6.9.2 Exception Property Map
	6.9.3 Exception Constraints
	6.9.4 Exception Limitations

	6.10 Exception Parameter
	6.10.1 Tags on Attribute of UML Exception
	6.10.2 Attribute-to-Parameter Property Map
	6.10.3 Attribute-to-Parameter Constraints
	6.10.4 Attribute-to-Parameter Limitations

	6.11 Association
	6.11.1 Tags on UML Association
	6.11.2 Association Property Map
	6.11.3 Association Constraints
	6.11.4 Association Limitations

	6.12 AssociationEnd
	6.12.1 Tags on UML AssociationEnd
	6.12.2 AssociationEnd Property Map
	6.12.3 AssociationEnd Constraints
	6.12.4 AssociationEnd Limitations

	6.13 DataType
	6.13.1 Tags on UML DataType
	6.13.2 DataType Property Map
	6.13.3 DataType Constraints
	6.13.4 DataType Limitations

	6.14 Constant
	6.14.1 Tags on UML DataValue
	6.14.2 DataValue-to-Constant Property Map
	6.14.3 DataValue-to-Constant Constraints
	6.14.4 DataValue-to-Constant Limitations

	6.15 Constraint
	6.15.1 Tags on UML Constraint
	6.15.2 Constraint Property Map
	6.15.3 Constraint Constraints
	6.15.4 Constraint Limitations

	6.16 Generalizes
	6.16.1 Tags on UML Generalization
	6.16.2 Generalization-to-Generalizes Property Map
	6.16.3 Generalization-to-Generalizes Constraints
	6.16.4 Generalization-to-Generalizes Limitations

	6.17 Tag
	6.17.1 Tags on UML TaggedValue
	6.17.2 TaggedValue-to-Tag Property Map
	6.17.3 TaggedValue-to-Tag Constraints
	6.17.4 TaggedValue-to-Tag Limitations

	6.18 Modularity
	6.19 Associations
	6.20 References
	6.21 DataTypes
	6.22 Names

	References
	Glossary

