
DDS-XTypes, version 1.2 i

OMG
®
 Extensible and Dynamic Topic types for DDS (DDS-XTypes

TM
)

Extensible and Dynamic Topic Types for DDS

Version 1.2

__

OMG Document Number: formal/2017-08-01

Date: August 2017

Standard document URL: http://www.omg.org/spec/DDS-XTypes/1.2/

Normative Machine Consumable File(s):

 http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_model.xmi

http://www.omg.org/spec/DDS_XTypes/20170301/dds-xtypes_type_definition.xsd

 http://www.omg.org/spec/DDS_XTypes/20170301/dds- xtypes_type_definition_nonamespace.xsd

 http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_typeobject.idl

 http://www.omg.org/spec/DDS_XTypes/20170301/dds-xtypes_discovery.idl

__

An OMG
®

Extensible and Dynamic Topic types for DDS (DDS-XTypes
TM

)

Extensible and Dynamic Topic Types for DDS

Version 1.2

__

OMG Document Number: formal/

Date: August 2017

Standard document URL: http://www.omg.org/spec/DDS-XTypes/1.2/

Normative Machine Consumable File(s):

 http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_model.xmi

http://www.omg.org/spec/DDS_XTypes/20170301/dds-xtypes_type_definition.xsd

 http://www.omg.org/spec/DDS_XTypes/20170301/dds- xtypes_type_definition_nonamespace.xsd

http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_typeobject.idl

http://www.omg.org/spec/DDS_XTypes/20170301/dds-xtypes_discovery.idl

__

http://www.omg.org/spec/DDS-XTypes/1.2/
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_model.xmi
http://www.omg.org/spec/DDS_XTypes/20170301/dds-xtypes_type_definition.xsd
http://www.omg.org/spec/DDS_XTypes/20170301/dds-%20xtypes_type_definition_nonamespace.xsd

ii DDS-XTypes, version 1.2

Copyright ©2017, Object Management Group, Inc.

Copyright ©2008-2017, PrismTech Group Ltd.

Copyright ©2008-2017, Real-Time Innovations, Inc.

Copyright ©2008-2017, Twin Oaks Computing, Inc.

Copyright ©2008-2017, Object Computing, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the

terms, conditions and notices set forth below. This document does not represent a commitment to

implement any portion of this specification in any company's products. The information contained in this

document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,

royalty-free, paid up, worldwide license to copy and distribute this document and to modify this

document and distribute copies of the modified version. Each of the copyright holders listed above has

agreed that no person shall be deemed to have infringed the copyright in the included material of any such

copyright holder by reason of having used the specification set forth herein or having conformed any

computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby

grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right

to sublicense), to use this specification to create and distribute software and special purpose specifications

that are based upon this specification, and to use, copy, and distribute this specification as provided under

the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice

appear on any copies of this specification; (2) the use of the specifications is for informational purposes

and will not be copied or posted on any network computer or broadcast in any media and will not be

otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this

specification. This limited permission automatically terminates without notice if you breach any of these

terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in

your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG

specifications may require use of an invention covered by patent rights. OMG shall not be responsible for

identifying patents for which a license may be required by any OMG specification, or for conducting

legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG

specifications are prospective and advisory only. Prospective users are responsible for protecting

themselves against liability for infringement of patents.

DDS-XTypes, version 1.2 iii

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and

communications regulations and statutes. This document contains information which is protected by

copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or

used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,

taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND

MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE

COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE

OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE

FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,

REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne

by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this

specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in

subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS

252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted

Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R.

Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations

and its successors, as applicable. The specification copyright owners are as indicated above and may be

contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL

INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®,

Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified

Modeling Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are registered trademarks of the

Object Management Group, Inc.

iv DDS-XTypes, version 1.2

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or

company names mentioned are used for identification purposes only, and may be trademarks of their

respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or

through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers

and sellers of computer software to use certification marks, trademarks or other special designations to

indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this

specification if and only if the software compliance is of a nature fully matching the applicable

compliance points as stated in the specification. Software developed only partially matching the

applicable compliance points may claim only that the software was based on this specification, but may

not claim compliance or conformance with this specification. In the event that testing suites are

implemented or approved by Object Management Group, Inc., software developed using this specification

may claim compliance or conformance with the specification only if the software satisfactorily completes

the testing suites.

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing

the Issue Reporting Form.

http://www.omg.org/legal/tm_list.htm
http://issues.omg.org/issues/create-new-issue

DDS-XTypes, version 1.2 v

Table of Contents

Table of Contents .. v

Tables .. x

Figures.. xiii

About the Object Management Group ... xv

OMG .. xv

OMG Specifications.. xv

OMG Modeling Specifications .. xv

OMG Middleware Specifications .. xv

Platform Specific Model and Interface Specifications ... xvi

Typographical Conventions ... xvi

Issues .. xvi

1. Scope .. 1

2. Conformance Criteria... 3

2.1 Programming Interface Conformance .. 3

2.2 Network Interoperability Conformance .. 4

2.2.1 Minimal Network Interoperability Profile ... 4

2.2.2 Basic Network Inteoperability Profile.. 4

2.3 Optional XTYPES 1.1 Interoperability Profile .. 4

2.4 Optional XML Data Representation Profile ... 5

3. Normative References .. 7

4. Terms and Definitions.. 9

5. Symbols.. 11

6. Additional Information .. 13

6.1 Data Distribution Service for Real-Time Systems (DDS) .. 13

6.2 Acknowledgments .. 15

7. Extensible and Dynamic Topic Types for DDS .. 17

7.1 Overview .. 17

7.2 Type System ... 19

7.2.1 Background (Non-Normative) ... 19

7.2.1.1 Type Evolution Example ... 20

7.2.1.2 Type Inheritance Example ... 21

vi DDS-XTypes, version 1.2

7.2.1.3 Sparse Types Example ... 22

7.2.2 Type System Model ... 23

7.2.2.1 Namespaces.. 23

7.2.2.2 Primitive Types .. 24

7.2.2.3 String Types ... 30

7.2.2.4 Constructed Types ... 31

7.2.2.5 Nested Types .. 48

7.2.2.6 Annotations .. 48

7.2.2.7 Try Construct behavior .. 49

7.2.3 Type Extensibility and Mutability.. 52

7.2.4 Type Compatibility .. 53

7.2.4.1 Constructing objects of one type from objects of another type 54

7.2.4.2 Concept of Delimited Types .. 55

7.2.4.3 Strong Assignability... 55

7.2.4.4 Assignability Rules .. 55

7.3 Type Representation ... 66

7.3.1 IDL Type Representation ... 68

7.3.1.1 IDL Compatibility .. 68

7.3.1.2 Annotation Language ... 70

7.3.1.3 Constants and Expressions ... 83

7.3.1.4 Primitive Types .. 83

7.3.1.5 Alias Types .. 84

7.3.1.6 Array and Sequence Types .. 84

7.3.1.7 String Types ... 84

7.3.1.8 Enumerated Types ... 84

7.3.1.9 Map Types ... 84

7.3.1.10 Structure Types .. 84

7.3.1.11 Union Types ... 84

7.3.2 XML Type Representation ... 85

7.3.2.1 Type Representation Management .. 85

7.3.2.2 Basic Types .. 86

7.3.2.3 String Types ... 87

7.3.2.4 Collection Types .. 88

DDS-XTypes, version 1.2 vii

7.3.2.5 Aggregated Types .. 90

7.3.2.6 Aliases .. 93

7.3.2.7 Enumerated Types ... 93

7.3.2.8 Modules.. 93

7.3.2.9 Annotations .. 94

7.3.3 XSD Type Representation .. 94

7.3.3.1 Annotations .. 94

7.3.3.2 Structures ... 96

7.3.3.3 Nested Types .. 97

7.3.3.4 Maps ... 97

7.3.4 Representing Types with TypeIdentifier and TypeObject ... 98

7.3.4.1 Plain Types... 98

7.3.4.2 Type Identifier ... 98

7.3.4.3 Complete TypeObject .. 100

7.3.4.4 Minimal TypeObject .. 100

7.3.4.5 TypeObject serialization .. 101

7.3.4.6 Classification of TypeIdentifiers .. 102

7.3.4.7 Type Equivalence... 103

7.3.4.8 Types with mutual dependencies on other types ... 104

7.3.4.9 Computation of Type identifiers for types with mutual dependencies 106

7.4 Data Representation .. 109

7.4.1 Extended CDR Representation (encoding version 1) .. 111

7.4.1.1 PLAIN_CDR Representation... 111

7.4.1.2 Parameterized CDR Representation .. 114

7.4.2 Extended CDR Representation (encoding version 2) .. 119

7.4.3 Extended CDR encoding virtual machine .. 120

7.4.3.1 Encoding version and format ... 120

7.4.3.2 XCDR Stream State ... 120

7.4.3.3 Type and Byte transformations .. 123

7.4.3.4 Functions related to data types and objects.. 125

7.4.3.5 Encoding (serialization) rules .. 128

7.4.4 XML Data Representation ... 141

7.4.4.1 Valid XML Data Representation ... 142

viii DDS-XTypes, version 1.2

7.4.4.2 Well-formed XML Data Representation ... 142

7.5 Language Binding... 143

7.5.1 Plain Language Binding ... 144

7.5.1.1 Primitive Types .. 145

7.5.1.2 Annotations and Built-in Annotations ... 147

7.5.1.3 Map Types ... 158

7.5.1.4 Structure and Union Types .. 166

7.5.2 Dynamic Language Binding... 167

7.5.2.1 UML-to-IDL Mapping Rules ... 168

7.5.2.2 DynamicTypeBuilderFactory .. 170

7.5.2.3 AnnotationDescriptor ... 176

7.5.2.4 TypeDescriptor .. 178

7.5.2.5 MemberId ... 181

7.5.2.6 DynamicTypeMember ... 181

7.5.2.7 MemberDescriptor ... 183

7.5.2.8 DynamicType ... 186

7.5.2.9 DynamicTypeBuilder ... 189

7.5.2.10 DynamicDataFactory ... 192

7.5.2.11 DynamicData ... 193

7.6 Use of the Type System by DDS .. 199

7.6.1 Topic Model ... 199

7.6.2 Discovery and Endpoint Matching ... 200

7.6.2.1 Data Representation QoS Policy .. 200

7.6.2.2 Discovery Built-in Topics .. 206

7.6.2.3 Built-in TypeLookup service ... 209

7.6.2.4 Type Consistency Enforcement QoS Policy .. 216

7.6.3 Local API Extensions ... 219

7.6.3.1 Operation: DomainParticipant::create_topic 219

7.6.3.2 Operation: DomainParticipant::lookup_topicdescription ... 219

7.6.4 Built-in Types ... 220

7.6.4.1 String .. 220

7.6.4.2 KeyedString ... 221

DDS-XTypes, version 1.2 ix

7.6.4.3 Bytes .. 221

7.6.4.4 KeyedBytes .. 221

7.6.5 Use of Dynamic Data and Dynamic Type ... 221

7.6.5.1 Type Support .. 221

7.6.5.2 DynamicDataWriter and DynamicDataReader 224

7.6.6 DCPS Queries and Filters .. 224

7.6.6.1 Member Names .. 224

7.6.6.2 Optional Type Members .. 225

7.6.6.3 Grammar Extensions .. 225

7.6.7 Interoperability of Keyed Topics ... 225

8. Changes or Extensions Required to Adopted OMG Specifications 227

8.1 Extensions ... 227

8.1.1 DDS .. 227

8.2 Changes .. 227

Annex A: XML Type Representation Schema ... 229

Annex B: Representing Types with TypeObject .. 247

Annex C: Dynamic Language Binding ... 277

Annex D: DDS Built-in Topic Data Types ... 291

Annex E: Built-in Types ... 301

Annex F: Characterizing Legacy DDS Implementations ... 307

F.1 Type System .. 307

F.2 Type Representation .. 307

F.3 Data Representation .. 308

F.4 Language Binding ... 308

x DDS-XTypes, version 1.2

Tables

Table 1 – Type-related concerns addressed by this specification ... 14

Table 2 – Main features and mechanisms provided by this Specification to address type-related

concerns .. 14

Table 3 – Primitive Types ... 26

Table 4 – Enumerated types .. 33

Table 5 – Bitmask types .. 34

Table 6 – Alias types... 36

Table 7 – Collection Types ... 38

Table 8 – Aggregated Types ... 40

Table 9 – Default values for non-optional members .. 44

Table 10 – TryConstruct examples ... 50

Table 11 – TryConstruct behavior kinds .. 51

Table 12 – Meaning of marking types as appendable ... 53

Table 13 – Type assignability example .. 54

Table 14 – Definition of the is-assignable-from relationship for alias types 56

Table 15 – Definition of the is-assignable-from relationship for primitive types 56

Table 16 – Definition of the is-assignable-from relationship for string types 57

Table 17 – Definition of the is-assignable-from relationship for collection types 58

Table 18 – Definition of the is-assignable-from relationship for alias, bitmask, and enumerated

types .. 60

Table 19 – Definition of the is-assignable-from relationship for aggregated types 60

Table 20 – Alternative Type Representations ... 67

Table 21 – IDL Built-in Annotations Usage ... 78

Table 22 – Syntax for declaring an annotation type ... 80

Table 23 – Syntax for members of annotation types .. 80

Table 24 – Syntax for applying annotations ... 81

Table 25 – IDL primitive type mapping ... 83

Table 26 – Primitive and string type names in the XML Type Representation 87

Table 27– XSD annotation example ... 95

Table 28 – XSD structure inheritance example .. 97

Table 29 – Formats and interpretation of the TypeIdentifier .. 98

DDS-XTypes, version 1.2 xi

Table 31 – Serialization of primitive types in version 1 encoding ... 112

Table 32 – Serialization of enumeration types ... 113

Table 33 – Serialization of bitmask types ... 113

Table 34 – Reserved parameter ID values .. 116

Table 35 – Serialization format to use. ... 120

Table 36 – State variables and constants in the XCDR stream model .. 121

Table 37 – Stream operations in the XCDR stream model ... 122

Table 38 – Type and Byte transformations used in the serialization virtual machine 124

Table 39 – Functions operating on objects and types ... 125

Table 40 – Symbols and notation used in the serialization virtual machine 129

Table 41 – Kinds of Language Bindings .. 144

Table 42 – Plain Language Binding for Primitive Types in C ... 145

Table 43 – Plain Language Binding for Primitive Types in C++ ... 146

Table 44 – Bit mask integer equivalents ... 148

Table 45 – Configurable behaviors of the copy function when destination is not NULL 150

Table 46 – Behavior of assignment operator .. 154

Table 47 – Operations for map<KeyType, ElementType> .. 158

Table 48 – DynamicTypeBuilderFactory properties and operations .. 170

Table 49 – AnnotationDescriptor properties and operations .. 176

Table 50 – TypeDescriptor properties and operations .. 179

Table 51 – DynamicMember behavior ... 181

Table 52 – DynamicTypeMember properties and operations ... 182

Table 53 – MemberDescriptor properties and operations ... 183

Table 54 – DynamicType properties and operations .. 187

Table 55 – DynamicType::member_by_name behavior ... 188

Table 56 – DynamicTypeBuilder properties and operations .. 190

Table 57 – DynamicDataFactory properties and operations... 192

Table 58 – DynamicData properties and operations ... 194

Table 59 – Compatibility matrix for the DataRepresentationQosPolicy 203

Table 60 – RTPS encapsulation identifier .. 204

Table 61 – Built-in Endpoints added by the XTYPES specification .. 211

Table 62 – Mapping of the built-in endpoints added by this specification to the

availableBuiltinEndpoints ... 214

xii DDS-XTypes, version 1.2

Table 63 – New TypeSupport operations ... 222

Table 64 – New FooTypeSupport operations ... 222

Table 65 – DynamicTypeSupport properties and operations ... 223

DDS-XTypes, version 1.2 xiii

Figures

Figure 1 – Packages .. 1

Figure 2 – Relationships between Type System, Type Representation, Language Binding, and

Data Representation .. 17

Figure 3 – Example Type Representation, Language Binding, and Data Representation 19

Figure 4 – Type System Model ... 23

Figure 5 – Namespaces ... 24

Figure 6 – Primitive Types: Integral Types .. 25

Figure 7 – Primitive Types: Floating Point Types .. 25

Figure 8 – Primitive Types: Booleans, Bytes, and Characters ... 26

Figure 9 - String Types ... 30

Figure 10 – Constructed Types ... 31

Figure 11 – Enumerated Types ... 32

Figure 12 – Enumeration Types .. 33

Figure 13 – Bitmask Types ... 34

Figure 14 – Alias Types .. 36

Figure 15 – Collection Types .. 37

Figure 16 – Aggregated Types .. 40

Figure 17 – Structure Types .. 41

Figure 18 – Union Types .. 42

Figure 19 – Annotation Types .. 49

Figure 20 – Type Representation .. 66

Figure 21 – Directed graph, Strongly Connected Components, and Kernel DAG 106

Figure 22 – Dependency graph derived from a set of type definitions 106

Figure 23 – Data Representation—conceptual model .. 110

Figure 24 – Usage of PID_EXTENDED within the CDR Buffer .. 118

Figure 25 – Language Bindings—conceptual model.. 143

Figure 26 – Dynamic Data and Dynamic Type .. 168

Figure 27 – Annotation Descriptor ... 176

Figure 28 – Type Descriptor ... 178

Figure 29 – Dynamic Type Members ... 182

Figure 30 – Dynamic Type ... 187

xiv DDS-XTypes, version 1.2

Figure 31 – Dynamic Data and Dynamic Data Factory .. 194

Figure 32 – Dynamic Type Support.. 223

DDS-XTypes, version 1.2 xv

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-

profit computer industry standards consortium that produces and maintains computer industry

specifications for interoperable, portable and reusable enterprise applications in distributed,

heterogeneous environments. Membership includes Information Technology vendors, end users,

government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open

process. OMG's specifications implement the Model Driven Architecture® (MDA®),

maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple

operating systems, programming languages, middleware and networking infrastructures, and

software development environments. OMG's specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common

Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks.

A catalog of all OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

 UML

 MOF

 XMI

 CWM

 OMG SysML™

 Other Profile specifications

OMG Middleware Specifications

 CORBA/IIOP

 DDS and the DDS Interoperability Protocol, RTPS

 IDL/Language Mappings

 Specialized CORBA specifications

xvi DDS-XTypes, version 1.2

 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

 CORBA services

 CORBA facilities

 OMG Domain specifications

 OMG Embedded Intelligence specifications

 OMG Security specifications

All of the OMG’s formal specifications may be downloaded without charge from our website.

(Products implementing OMG specifications are available from individual suppliers.) Copies of

specifications, available in PostScript and PDF format, may be obtained from the Specifications

Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494, USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult

http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements

from ordinary English. However, these conventions are not used in tables or section headings

where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and
syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a

document, specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this

specification to http://issues.omg.org/issues/create-new-issue.

http://www.iso.org/

DDS-XTypes, version 1.2 1

1. Scope

The Specification addresses four related concerns summarized in Figure 1 below.

Figure 1 – Packages

The specification addresses four related concerns: the type system, the

representation of types, the representation of data, and the language bindings

used to access types and data. Each of these concerns is modeled as a collection

of classes belonging to a corresponding package.

This specification provides the following additional facilities to DDS [DDS] implementations

and users:

 Type System. The specification defines a model of the data types that can be used for

DDS Topics. The type system is formally defined using UML. The Type System is

defined in Clause 7.2 and its sub clauses. The structural model of this system is defined in

the Type System Model in Clause 7.2.2. The framework under which types can be

modified over time is summarized in Clause 7.2.3, “Type Extensibility and Mutability.”

The concrete rules under which the concepts from 7.2.2 and 7.2.3 come together to define

compatibility in the face of such modifications are defined in Clause 7.2.4, “Type

Compatibility.”

 Type Representations. The specification defines the ways in which types described by

the Type System may be externalized such that they can be stored in a file or

communicated over a network. The specification adds additional Type Representations

pkg Package Overview

DataRepresentation LanguageBindingTypeRepresentation

Defines a type system
for describing extensible
structured data

Defines programming
language interfaces for
the use of types and
objects of those types

Defines externalized
formats for objects
suitable for network
transmission and/or
persistent storage

Defines externalized
formats for type
definitions suitable for
network transmission
and/or persistent
storage

TypeSystem

2 DDS-XTypes, version 1.2

beyond the one (IDL [IDL41]) already implied by the DDS specification. Several Type

Representations are specified in the sub clauses of Clause 7.3. These include IDL (7.3.1),

XML (7.3.2), XML Schema (XSD) (7.3.3), and TypeObject (7.3.4).

 Data Representation. The specification defines multiple ways in which objects of the

types defined by the Type System may be externalized such that they can be stored in a

file or communicated over a network. (This is also commonly referred as “data

serialization” or “data marshaling.”) The specification extends and generalizes the

mechanisms already defined by the DDS Interoperability specification [RTPS]. The

specification includes Data Representations that support data type evolution, that is,

allow a data type to change in certain well-defined ways without breaking

communication. Two Data Representations are specified in the sub clauses of Clause 7.4.

These are Extended CDR (7.4.1, 7.4.2, and 7.4.3) and XML (7.4.4).

 Language Binding. The specification defines multiple ways in which applications can

access the state of objects defined by the Type System. The specification extends and

generalizes the mechanism currently implied by the DDS specification (“Plain Language

Binding”) and adds a Dynamic Language Binding that allows application to access data

without compile-time knowledge of its type. The specification also defines an API to

define and manipulate data types programmatically. Two Language Bindings are

specified in the sub clauses of Clause 7.5. These are the Plain Language Binding and the

Dynamic Language Binding.

DDS-XTypes, version 1.2 3

2. Conformance Criteria

This specification recognizes two areas of conformance: (1) conformance with respect to

programming interfaces—that is, at the level of the DDS API—and (2) conformance with respect

to network interoperability—that is, at the level of the RTPS protocol.

Additionally, it defines two optional profiles: XTYPES 1.1 Interoperability and XML Data

Representation.

There are three conformance levels:

 Minimal conformance with XTYPES version 1.2 requires conformance to the

Programming Interface and the Minimal Network Interoperability Profile.

 Basic conformance with XTYPES version 1.2 requires conformance to the Programming

Interface and the Basic Network Interoperability Profile.

 Complete conformance with XTYPES version 1.2 requires Basic conformance as well as

conformance to the two optional profiles.

2.1 Programming Interface Conformance

This specification extends the Data Distribution Service for Real-Time Systems specification

[DDS] with an additional optional conformance profile: the “Extensible and Dynamic Types

Profile.” Conformance to this specification with respect to programming interfaces shall be

equivalent to conformance to the DDS specification with respect to at least the existing

Minimum Profile and the new Extensible and Dynamic Types Profile. Implementations may

conform to additional DDS profiles.

The new Extensible and Dynamic Types profile of DDS shall consist of the following clauses of

this specification:

 “Extensible and Dynamic Topic Types for DDS” (Clause 7) up to and including “Type

Representation” (Clause 7.3)

 “Language Binding” (Clause 7.5)

 “Use of the Type System by DDS” (Clause 7.6) excluding “Interoperability of Keyed

Topics” (Clause 7.6.7)

 Annex B: Representing Types with TypeObject

 Annex C: Dynamic Language Binding

 Annex E: Built-in Types

4 DDS-XTypes, version 1.2

2.2 Network Interoperability Conformance

There are two Network Interoperability conformance profiles. An implementation may claim

conformance to the Minimal profile or to the Basic profile, which extends the Minimal.

Regardless of profile, conformance with respect to network interoperability requires

conformance to the Real-Time Publish-Subscribe Wire Protocol specification [RTPS].

2.2.1 Minimal Network Interoperability Profile

Conformance with the Minimal Network Interoperability profile requires conformance with the

following clauses of this specification:

 “Representing Types with TypeIdentifier and TypeObject” (Clause 7.3.4)

 From “Use of the Type System by DDS" (Clause 7.6)

o “Topic Model” (Clause 7.6.1)

o “Discovery and Endpoint Matching” (Clause 7.6.2) excluding “Built-in

TypeLookup service” (Clause 7.6.2.3)

 Clause 7.6.2.1.1 “DataRepresentationQosPolicy: Conceptual Model”,

with support limited to version 2 encoding.

o “Interoperability of Keyed Topics” (Clause 7.6.7)

 “Extended CDR Representation (encoding version 2)” (Clause 7.4.2)

 “Extended CDR encoding virtual machine” (Clause 7.4.3)

 Annex B: Representing Types with TypeObject

 Annex D: DDS Built-in Topic Data Types

2.2.2 Basic Network Inteoperability Profile

This profile adds type safety to the Minimal profile. It enables checking type compatibility

between published and subscribed types as a precondition for matching the endpoints.

Conformance with the Basic Network Interoperability Profile requires conformance with the

Minimal Network Interoperability profile and the following clauses:

 “Built-in TypeLookup service” (Clause 7.6.2.3)

2.3 Optional XTYPES 1.1 Interoperability Profile

This profile adds interoperability with implementations that conform with version 1.1 of the

XTYPES specification.

Conformance with the XTYPES 1.1 Interoperability Profile requires conformance with the Basic

Network Interoperability profile and support of version 1 encoding in Clause 7.6.2.1.1

“DataRepresentationQosPolicy: Conceptual Model.”

DDS-XTypes, version 1.2 5

2.4 Optional XML Data Representation Profile

This profile adds support for the XML Data Representation format.

Conformance to this profile requires conformance to the following clauses of this specification:

 “XML Type Representation” (Clause 7.3.2)

 “XSD Type Representation” (Clause 7.3.3)

 “XML Data Representation” (Clause 7.4.4)

 The XML schemas defined by Annex A: XML Type Representation Schema

6 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 7

3. Normative References

The following normative documents contain provisions that, through reference in this text,

constitute provisions of this specification.

 [DDS] Data Distribution Service for Real-Time Systems Specification, Version 1.2 (OMG document

formal/2007-01-01)

 [RTPS] Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification,

Version 2.22 (OMG document formal/2014-09-01)

 [DDS-XTYPES11] Extensible and Dynamic Topic Types for DDS Specification, Version .1.1 (OMG

document formal/2014-11-03)

 [IDL41] Interface Definition Language, Version 4.1 (OMG document ptc/16-11-11)

 [CDR] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 2 (OMG

document formal/2008-01-07), clause 9.3: “CDR Transfer Syntax”

 [C-LANG] Programming languages -- C (ISO/IEC document 9899:1990)

 [C++-LANG] Programming languages -- C++ (ISO/IEC document 14882:2003)

 [JAVA-LANG] The Java Language Specification, Second Edition (by Sun Microsystems,

http://java.sun.com/docs/books/jls/)

 [C-MAP] C Language Mapping Specification, Version 1.0 (OMG document formal/1999-07-35)

 [C++-MAP] C++ Language Mapping Specification, Version 1.2 (OMG document formal/2008-01-09)

 [JAVA-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document formal/2008-01-11)

 [DDS-PSM-CXX] ISO/IEC C++ 2003 Language DDS PSM™, Version 1.0 (OMG document

formal/2013-11-01)

 [IDL-XSD] CORBA to WSDL/SOAP Interworking Specification, Version 1.2.1 (OMG document

formal/2008-08-03)

 [LATIN] Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin

alphabet No. 1 (ISO/IEC document 8859-1:1998)

 [UCS] Information technology -- Universal Multiple-Octet Coded Character Set (UCS) (ISO/IEC

document 10646:2003)

 [FNMATCH] POSIX fnmatch function (IEEE 1003.2-1992 clause B.6)

 [ISO-8601:2004] ISO 8601:2004 1988 (E), "Data elements and interchange formats - Information

interchange - Representation of dates and times".

 [IETF RFC 3339] IETF RFC 3339, "Date and Time on the Internet: Timestamps".

https://tools.ietf.org/html/rfc3339.

http://java.sun.com/docs/books/jls/
https://tools.ietf.org/html/rfc3339

8 DDS-XTypes, version 1.2

 [UNICODE] The Unicode Standard, Version 9.0.0. (Mountain View, CA: The Unicode Consortium, 2016.

ISBN 978-1-936213-13-9). http://www.unicode.org/versions/Unicode9.0.0/.

 [IEEE-754] IEEE Standard for Binary Floating-Point Arithmetic, 754-2008 - IEEE Standard for Floating-

Point Arithmetic

http://www.unicode.org/versions/Unicode9.0.0/

DDS-XTypes, version 1.2 9

4. Terms and Definitions

Data Centric Publish-Subscribe (DCPS) – The mandatory portion of the DDS specification

used to provide the functionality required for an application to publish and subscribe to the

values of data objects.

Data Distribution Service (DDS) – An OMG distributed data communications specification that

allows Quality of Service policies to be specified for data timeliness and reliability. It is

independent of implementation languages.

10 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 11

5. Symbols

No additional symbols are used in this specification.

12 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 13

6. Additional Information

6.1 Data Distribution Service for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is the Object Management Group

(OMG) standard for data-centric publish-subscribe communication. This standard has

experienced a record-pace adoption within the Aerospace and Defense domain and is swiftly

expanding to new domains, such as Transportation, Financial Services, and SCADA. To sustain

and further propel its adoption, it is essential to extend the DDS standard to effectively support a

broad set of use cases.

The OMG DDS specification has been designed to effectively support statically defined data

models. This assumption requires that the data types used by DDS Topics are known at compile

time and that every member of the DDS global data space agrees precisely on the same topic-

type association. This model allows for good properties such as static type checking and very

efficient, low-overhead, implementation of the standard. However it also suffers a few

drawbacks:

 It is hard to cope with data models evolving over time unless all the elements of the

system affected by that change are upgraded consistently. For example, the addition or

removal of a field in the data type would not possible unless all the components in the

system that use that data type are upgraded simultaneously.

 Applications using a data type must know the details of the data type at compile time,

preventing use cases that would require dynamic discovery of the data types and their

manipulation without compile-time knowledge. For example, a data-visualization tool

cannot discover dynamically the type of a particular topic and extract the data for

presentation in an interface.

With the increasing adoption of DDS for the integration of large distributed systems, it is

desirable to provide a mechanism that supports evolving the data types without requiring all

components using that type to be upgraded simultaneously. Moreover it is also desirable to

provide a “dynamic” API that allows type definition, as well as publication and subscription data

types without compile-time knowledge of the schema.

Most of the concerns outlined in Scope above (Type System, Type Representation, etc.) are

already addressed in the DDS specification and/or in the DDS Interoperability Protocol

specification. However, these specifications sometimes are not sufficiently explicit, complete, or

flexible with regards to the above concerns of large dynamic systems. This specification

addresses those limitations.

The current mechanisms used by the existing specifications are shown in Table 1 below.

14 DDS-XTypes, version 1.2

Table 1 – Type-related concerns addressed by this specification

Concern Mechanism currently in use by DDS and the Interoperability

Protocol

Type System The set of “basic” IDL types: primitive types, structures, unions,

sequences, and arrays. This set is only implicitly defined.

Type Representation Uses OMG Interface Definition language (IDL). This format is used to

describe types on a file. There is no representation provided for

communication of types over the network.

Data Representation The DDS Interoperability Protocol uses the OMG Common Data

Representation (CDR) based on the corresponding IDL type.

It also uses a “parameterized” CDR representation for the built-in

Topics, which supports schema evolution.

Language Binding Plain Language objects as defined by the IDL language mapping.

This specification formally addresses each of the aforementioned concerns and specifies multiple

mechanisms to address each concern. Multiple mechanisms are required to accommodate a broad

range of application requirements and balance tradeoffs such as efficiency, evolvability, ease of

integration with other technologies (such as Web Services), as well as compatibility with

deployed systems. Care has been taken such that the introduction of multiple mechanisms does

not break existing systems nor make it harder to develop future interoperable systems.

Table 2 summarizes the main features and mechanisms provided by the specification to address

each of the above concerns.

Table 2 – Main features and mechanisms provided to address type-related concerns

Concern Features and mechanisms introduced by the Extensible Topics

specification

Type System Defined in UML, independent of any programming language. Supports:

 Most of the IDL data types

 Specification of additional DDS-specific concepts, such as keys

 Single Inheritance

 Type versioning and evolution

 Sparse types (types, the samples of which may omit values for

certain fields; see below for a formal treatment)

DDS-XTypes, version 1.2 15

Type

Representation

Several specified:

 IDL – Supports existing IDL-defined types.

 XSD – Allows reuse of schemas defined for other purposes (e.g., in

WSDL files).

 XML – Provides a compact, XML-based representation suitable for

human input and tool use.

 TypeObject – The most compact representation (typically binary).

Optimized for network propagation of types.

Data

Representation

Several specified:

 CDR – Most compact representation. Binary. Interoperates with

existing systems. Does not support evolution.

 Parameterized CDR – Binary representation that supports

evolution. It is the most compact representation that can support

type evolution.

 XML – Human-readable representation that supports evolution.

Language Binding Several Specified:

 Plain Language Binding – Equivalent to the type definitions

generated by existing standard IDL language mappings. Convenient.

Requires compile-type knowledge of the type.

 Dynamic Language Binding – Allows dynamic type definition and

introspection. Allows manipulation of data without compile-time

knowledge.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:

 Real-Time Innovations

 PrismTech Corp

 THALES

 Twin Oaks Computing, Inc.

 Object Computing, Inc.

16 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 17

7. Extensible and Dynamic Topic Types for DDS

7.1 Overview

A running DDS [DDS] application that publishes and subscribes data must deal directly or

indirectly with data types and data samples of those types and the various representations of

those objects. The application and middleware perspectives related to data and data types are

shown in Figure 2 below.

Figure 2 – Relationships between Type System, Type Representation, Language Binding, and Data
Representation

DDS data objects have an associated data type (in the common programming

language sense of the word) that defines a common structure for all objects of

the type. From a programming perspective, an object is manipulated using a

Language Binding suitable for the programming language in use (e.g., Java).

From a network communications and file storage perspective, an object must

have a representation (encoding) that is platform neutral and maps into a

contiguous set of bytes, whether textual or binary.

Similarly, from a programming perspective a data type is manipulated using a

Language Binding to the programming language of choice (sometimes known as

a reflection API) and must have a representation (encoding) that is platform

neutral and maps into a contiguous set of bytes (e.g., XSD or IDL).

The following example is based on a hypothetical “Alarm” data use case can be used to explain

Figure 2 above.

An application concerned with alarms might use a type called “AlarmType” to indicate the nature

of the alarm, point of origin, time when it occurred, severity, etc. Applications publishing and

subscribing to AlarmType must therefore understand to some extent the logical or semantic

contents of that type. This is what is represented by the TypeSystem::Type class in Figure 2

above.

class Classifier Overview

TypeRepresentation::
TypeRepresentation

DataRepresentation::
DataRepresentation

LanguageBinding::
DataLanguageBinding

LanguageBinding::
TypeLanguageBinding

TypeSystem::Type data: Type

(from TypeSystem)

*

+type

1
{frozen}

*

+data
1
{frozen}

*

+data
1
{frozen}

*

+type

1
{frozen}

*

+type

1
{frozen}

18 DDS-XTypes, version 1.2

If this type is to be communicated in a design document or electronically to a tool, it must be

represented in some “external” format suitable for storing in a file or on a network packet. This

aspect is represented by the TypeRepresentation::TypeRepresentation class in Figure 2

above. A realization of the TypeRepresentation class may use XML, XSD, or IDL to

represent the type.

An application wishing to understand the structure of the Type, or the middleware attempting to

check type-compatibility between writers and readers, must use some programming language

construct to examine the type. This is represented by the

LanguageBinding::TypeLanguageBinding class. As an example of this concept, the class

java.lang.Class plays this role within the Java platform.

An application publishing Alarms or receiving Alarms must use some programming language

construct to set the value of the alarm or access those values when it receives the data. This

programming language construct may be a plain language object (such as the one generated from

an IDL description of the type) or a dynamic container that allows setting and getting named

fields, or some other programming language object. This is represented by the

LanguageBinding::DataLanguageBinding class.

An application wishing to store Alarms on a file or the middleware wishing to send Alarms on a

network packet or create Alarm objects from data received on the network must use some

mechanism to “serialize” the Alarm into bytes in a platform-neutral fashion. This is represented

by the DataRepresentation::DataRepresentation class. An example of this would be to use

the CDR Representation derived from the IDL Type Representation.

The classes in Figure 2 above represent each of the independent concerns that both application

and middleware need to address. The non-normative Figure 3 below indicates their relationships

to one another in a less formal way.

DDS-XTypes, version 1.2 19

Figure 3 – Example Type Representation, Language Binding, and Data Representation

Type Representation is concerned with expressing the type in a manner suitable

for human input and output, file storage, or network communications. IDL is an

example of a standard type representation. Language Binding is concerned with

the programming language constructs used to interact with data of a type or to

introspect the type. Plain language objects as obtained from the IDL language

mappings of the IDL representation of the type are one possible Language

Binding. Data Representation is concerned with expressing the data in a way

that can be stored in a file or communicated over a network or manipulated by a

human. The Common Data Representation is a Data Representation optimized

for network communications; XML is another representation more suitable for

human manipulation.

7.2 Type System

The Type System defines the data types that can be used for DDS Topics and therefore the type

of the data that can be published and subscribed via DDS.

7.2.1 Background (Non-Normative)

The specified type system is designed to be sufficiently rich to encompass the needs of modern

distributed applications and cover the basic data types available both in common programming

languages such as C/C++, Java, and C#, as well as in distributed computing data-definition

languages such as IDL or XDR.

The specified type system supports the following primitive types:

Type

Representation

Language

Binding

Data

Representation

IDL:

Foo.idl

struct Foo {

string name;

long ssn;

};

IDL to Language Mapping:

Foo.h

Foo.c

FooTypeSupport.c

struct Foo {

char *name;

int ssn;

};

Foo f = {"hello", 2};

IDL to CDR:

00000006

68656C6C

6F000000

00000002

20 DDS-XTypes, version 1.2

 Boolean type

 Byte type

 Integral types of various bit lengths (16, 32, 64), both signed and unsigned

 Floating point types of various precisions: single precision, double precision, and quad

precision

 Single-byte and wide character types

In addition the specified type system covers the following non-basic types constructed as

collections or aggregations of other types:

 Structures, which can singly inherit from other structures

 Unions

 Single- and multi-dimensional arrays

 Variable-length sequences of a parameterized element type

 Strings of single-byte and wide characters

 Variable-length maps of parameterized key and value types

The specified type-system supports type evolution, type inheritance, and sparse types. These

concepts are described informally in Clauses 7.2.1.1, 7.2.1.2, and 7.2.1.3 below and formally in

Clause 7.2.2.

7.2.1.1 Type Evolution Example

Assume a DDS-based distributed application has been developed that uses the Topic “Vehicle

Location” of type VehicleLocationType. The type VehiclePositionType itself was defined

using the following IDL:

// Initial Version

struct VehicleLocationType {

 float latitude;

 float longitude;

};

As the system evolves it is deemed useful to add additional information to the

VehicleLocationType such as the estimated error latitude and longitude errors as well as the

direction and speed resulting in:

// New version

struct VehicleLocationType {

 float latitude;

 float longitude;

 float latitude_error_estimate; // added field

 float longitude_error_estimate; // added field

DDS-XTypes, version 1.2 21

 float direction; // added field

 float speed; // added field

};

This additional information can be used by the components that understand it to implement more

elaborate algorithms that estimate the position of the vehicle between updates. However, not all

components that publish or subscribe data of this type will be upgraded to this new definition of

VehicleLocationType (or if they will not be upgraded, they will not be upgraded at the same

time) so the system needs to function even if different components use different versions of

VehicleLocationType.

The Type System supports type evolution so that it is possible to “evolve the type” as described

above and retain interoperability between components that use different versions of the type such

that:

 A publisher writing the “initial version” of VehicleLocationType will be able to

communicate with a subscriber expecting the “new version” of the

VehicleLocationType. In practice what this means is that the subscriber expecting the

“new version” of the VehicleLocationType will, depending on the details of how the

type was defined, either be supplied some default values for the added fields or else be

told that those fields were not present.

 A publisher writing the “new version” of VehicleLocationType will be able to

communicate with a subscriber reading the “initial version” of the

VehicleLocationType. In practice this means the subscriber expecting the “initial

version” of the VehicleLocationType will receive data that strips out the added fields.

Evolving a type requires that the designer of the new type explicitly tags the new type as

equivalent to, or an extension of, the original type and limits the modifications of the type to the

supported set. The addition of new fields is one way in which a type can be evolved. The

complete list of allowed transformations is described in Clause7.2.4.

7.2.1.2 Type Inheritance Example

Building upon the same example in Clause 7.2.1.1, assume that the system that was originally

intended to only monitor location of land/sea-surface vehicles is now extended to also monitor

air vehicles. The location of an air vehicle requires knowing the altitude as well. Therefore the

type is extended with this field.

// Extended Location

struct VehicleLocation3DType : VehicleLocationType {

 float altitude;

 float vertical_speed;

};

VehicleLocation3DType is an extension of VehicleLocationType, not an evolution.

VehicleLocation3DType represents a new type that extends VehicleLocationType in the

object-oriented programming sense (IS-A relationship).

22 DDS-XTypes, version 1.2

The Type System supports type inheritance so that it is possible to “extend the type” as described

above and retain interoperability between components that use different versions of the type. So

that:

 An application subscribing to Topic “Vehicle Position” and expecting to read

VehicleLocationType CAN receive data from a Publisher that is writing a

VehicleLocation3DType. In other words applications can write extended types and read

base types.

 An application subscribing to Topic “Vehicle Position” and expecting to read

VehicleLocation3DType CAN receive data from a Publisher that is writing a

VehicleLocationType. Applications expecting the derived (extended) type can accept

the base type; additional members in the derived type will take no value or a default

value, depending on their definitions.

This behavior matches the behavior of the “IS-A” relationship in Object-Oriented Languages,

Intuitively this means that a VehicleLocation3DType is a new type that happens to extend the

previous type. It can be substituted in places that expect a VehiclePosition but it is not fully

equivalent. The substitution only works one way: An application expecting a

VehicleLocation3DType cannot accept a VehiclePosition in place because it cannot “just”

assume some default value for the additional fields. Rather it wants to just read those

VehiclePosition that corresponds to Air vehicles.

7.2.1.3 Sparse Types Example

Suppose that an application publishes a stream of events. There are many kinds of events that

could occur in the system, but they share a good deal of data, they must all be propagated with

the same QoS, and the relative order among them must be preserved—it is therefore desirable to

publish all kinds of events on a single topic. However, there are fields that only make sense for

certain kinds of event. In its local programming language (say, C++ or Java), the application can

assign a pointer to null to omit a value for these fields. It is desirable to extend this concept to the

network and allow the application to omit irrelevant data in order to preserve the correct

semantics of the data.

Alternatively, suppose that an application subscribes to data of a type containing many fields,

most of which often take a pre-specified “default value” but may, on occasion, deviate from that

default. In this situation it would be inefficient to send every field along with every sample.

Rather it would be better to just send the fields that take a non-default value and fill the missing

fields on the receiving side, or even let the receiving application do that job. This situation occurs,

for example, in the DDS Built-in Topic Data. It also occurs in financial applications that use the

FIX encoding for the data.

The type system supports sparse types whereby a type can have fields marked “optional” so that

a Data Representation may omit those fields. Values for non-optional fields may also be omitted

to save network bandwidth, in which case the Service will automatically fill in default values on

behalf of the application.

DDS-XTypes, version 1.2 23

7.2.2 Type System Model

Figure 4 – Type System Model

The definition of a type in the Type System can either be primitive or it can be

constructed from the definitions of other types.

The Type System model is shown in Figure 4. This model has the following characteristics:

 A type has a non-empty name that is unique within its namespace (see Clause 7.2.2.1).

The set of valid names is the set of valid identifiers defined by the OMG IDL

specification [IDL41].

 A type has a kind that identifies which primitive type it is or, if it is a constructed type,

whether it is a structure, union, sequence, etc.

 The type system supports Primitive Types (i.e., their definitions do not depend on those

of any other types) whose names are predefined. The Primitive Types are described in

7.2.2.2.

 The type system supports Constructed Types whose names are explicitly provided as part

of the type-definition process. Constructed Types include enumerations, collections,

structure, etc. Constructed types are described in Clause 7.2.2.4.

7.2.2.1 Namespaces

A namespace defines the scope within which a given name must be unique. That is, it is an error

for different elements within the same namespace to have the same name. However, it is legal for

different elements within different namespaces to have the same name.

class Type System

Type

+ nested: Boolean {readOnly}

PrimitiveType

«enumeration»
TypeKind

CollectionAggregatedType

Module

Alias

ConstructedType

«enumeration»
ExtensibilityKind

 FINAL_EXTENSIBILITY {readOnly}
 APPEND_EXTENSIBILITY {readOnly}
 MUTABLE_EXTENSIBILITY {readOnly}

StringType

EnumeratedType

AnnotationType

+base_type

1

+extensibility_kind

1
{frozen}

+module 1
{frozen}

+element_type

1
{frozen}

+/module

1
{frozen}

+kind

1
{frozen}

24 DDS-XTypes, version 1.2

Figure 5 – Namespaces

Namespaces fall into one of two categories:

 Modules are namespaces whose contained named elements are types. The concatenation

of module names with the name of a type inside of those modules is referred to as the

type’s “fully qualified name.”

 Certain kinds of types are themselves namespaces with respect to the elements inside of

them.

7.2.2.2 Primitive Types

The primitive types in the Type System have parallels in most computer programming languages

and are the building blocks for more complex types built recursively as collections or

aggregations of more basic types.

class Namespaces

Module

Namespace

AggregatedType

ScopedIdentifier

+ name: StringType {readOnly}

Type

ConstructedType

AppliedAnnotation

EnumeratedType

AnnotationType

+annotation

0..*

+type 1

+/module

1
{frozen}

+/container
0..1
{frozen}

+/containedModule *
{addOnly}

1
{frozen}

+container

0..1
{frozen}

+containedElement

*
{addOnly}

0..1

+module

1
{frozen}

1

DDS-XTypes, version 1.2 25

Figure 6 – Primitive Types: Integral Types

Figure 7 – Primitive Types: Floating Point Types

class Integral Types

Type

PrimitiveType

constraints
{nested = true}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 INT_16_TYPE {readOnly}
 INT_32_TYPE {readOnly}
 INT_64_TYPE {readOnly}
 UINT_16_TYPE {readOnly}
 UINT_32_TYPE {readOnly}
 UINT_64_TYPE {readOnly}

Int32

constraints
{name = "Int32"}
{kind = TypeKind::INT_32_TYPE}

Int64

constraints
{name = "Int64"}
{kind = TypeKind::INT_64_TYPE}

UInt32

constraints
{name = "UInt32"}
{kind = TypeKind::UINT_32_TYPE}

UInt64

constraints
{name = "UInt64"}
{kind = TypeKind::UINT_64_TYPE}

UInt16

constraints
{name = "UInt16"}
{kind = TypeKind::UINT_16_TYPE}

Int16

constraints
{name = "Int16"}
{kind = TypeKind::INT_16_TYPE}

+kind

1
{frozen}

class Floating Point Types

Type

PrimitiveType

constraints
{nested = true}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 FLOAT_32_TYPE {readOnly}
 FLOAT_64_TYPE {readOnly}
 FLOAT_128_TYPE {readOnly}

Float32

constraints
{name = "Float32"}
{kind = TypeKind::FLOAT_32_TYPE}

Float64

constraints
{name = "Float64"}
{kind = TypeKind::FLOAT_64_TYPE}

Float128

constraints
{name = "Float128"}
{kind = TypeKind::FLOAT_128_TYPE}

+kind

1
{frozen}

26 DDS-XTypes, version 1.2

Figure 8 – Primitive Types: Booleans, Bytes, and Characters

Primitive Types include the primitive types present in most programming

languages, including Boolean, integer, floating point, and character.

Table 3 below enumerates and describes the available primitive types. Note that value ranges are

in this package specified only in terms of upper and lower bounds; data sizes and encodings are

the domain of the Type Representation and Data Representation packages.

Table 3 – Primitive Types

Type Kind Type

Name

Description

BOOLEAN_TYPE Boolean Boolean type. Data of this type can only take two values: true

and false.

BYTE_TYPE Byte Single opaque byte. A Byte value has no numeric value.

INT_16_TYPE Int16 Signed integer minimally capable of representing values in the

range -32738 to +32737.

UINT_16_TYPE UInt16 Unsigned integer minimally capable of representing values in

the range 0 to +65535.

INT_32_TYPE Int32 Signed integer minimally capable of representing values in the

range -2147483648 to +2147483647.

UINT_32_TYPE UInt32 Unsigned integer minimally capable of representing values in

the range 0 to +4294967295.

INT_64_TYPE Int64 Signed integer minimally capable of supporting values in the

range -9223372036854775808 to +9223372036854775807.

class Boolean, Byte, and Character Types

Type

PrimitiveType

constraints
{nested = true}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 BYTE_TYPE {readOnly}
 BOOLEAN_TYPE {readOnly}
 CHAR_8_TYPE {readOnly}
 CHAR_16_TYPE {readOnly}

Boolean

constraints
{name = "Boolean"}
{kind = TypeKind::BOOLEAN_TYPE}

Char8

constraints
{name = "Char8"}
{kind = TypeKind::CHAR_8_TYPE}

Char16

constraints
{name = "Char16"}
{kind = TypeKind::CHAR_16_TYPE}

Byte

constraints
{name = "Byte"}
{kind = TypeKind::BYTE_TYPE}

+kind

1
{frozen}

DDS-XTypes, version 1.2 27

UINT_64_TYPE UInt64 Unsigned integer minimally capable of supporting values in the

range 0 to +18446744073709551617.

FLOAT_32_TYPE Float32 Floating point number minimally capable of supporting the

range and precision of an IEEE 754 single-precision floating

point value.

FLOAT_64_TYPE Float64 Floating point number minimally capable of supporting the

range and precision of an IEEE 754 double-precision floating

point value.

FLOAT_128_TYPE Float128 Floating point number minimally capable of supporting the

range and precision of an IEEE 754 quadruple-precision floating

point value.

CHAR_8_TYPE Char8 8-bit character type. There is no encoding specified, it may be

ASCII, ISO-8859-1, or used to hold a byte of a multi-byte-

encoded character set.

CHAR_16_TYPE Char16 16-bit character type capable of supporting the Basic

Multilingual Plane (BMP) encoded in UTF-16.

The primitive types do not exist within any module; their names are top-level names.

7.2.2.2.1 Character Data

The character types identified above require further definition, provided here.

7.2.2.2.1.1 Design Rationale (Non-Normative)

Because the Unicode character set is a superset of the US-ASCII character set, some readers may

question why this specification provides two types for character data: Char8 and Char16. These

types are differentiated to facilitate the efficient representation and navigation of character data

as well as to more accurately describe the designs of existing systems.

Existing languages for type definition—including C, C++, and IDL—distinguish between

regular and wide characters (C/C++ char vs. wchar_t; IDL char vs. wchar). While other

commonly used typing systems do not make such a distinction—in particular Java and the

ECMA Common Type System, of which Microsoft’s .Net is an implementation—it is more

straightforward to map two platform-independent types to a single platform-specific type than it

is to map objects of a single platform-independent type into different platform-specific types

based on their values.

7.2.2.2.1.2 Character Sets and Encoding

7.2.2.2.1.2.1 Use of Unicode

This specification uses the Unicode Standard (version 9.0, June 2016) as the means to represent

characters and strings.

28 DDS-XTypes, version 1.2

Unicode defines a codespace of 1,114,112 code points in the range 0x000000 to 0x10FFFF. A

Unicode code point is referred to by writing "U+" followed by its hexadecimal number (e.g.

U+0000F1).

In the Unicode standard, a plane is a continuous group of 2^16 code points. There are 17 planes,

identified by the numbers 0 to 16, which corresponds with the possible values 0x00-0x10 of the

first two positions in six position format (hhhhhh).

Plane 0 is called the Basic Multilingual Plane (BMP). It contains nearly all commonly used

writing systems and symbols. It contains characters U+0000 to U+FFFF. Planes 1–16, are called

“supplementary planes”. As of Unicode version 9.0, six of the planes have assigned code points

(characters), and four are named.

Unicode can be implemented by different character encodings. The most commonly used

encodings are UTF-8, UTF-16, and UTF-32 (in that order). The Unicode code point is shared

across all these encodings.

The UTF-8 encoding is backward compatible with the ASCII character set and is the default one

used by most C and C++ compilers. The UTF-8 representation of ASCII characters uses one 8-

bit code unit. The UTF-8 representation ISO-8859-1 characters that are not in the ASCII subset

uses two 8-bit code units. Any character in the Basic Multilingual Plane is encoded using one to

three UTF-8 code units.

The UTF-16 encoding represents the code points in the Basic Multilingual Plane using one 16-bit

code unit. The remaining Unicode characters use two 16-bit code units. The representation is

numerically equal to the corresponding code points using the selected endianness.

7.2.2.2.1.2.2 CHAR_8_TYPE

This specification does not define an encoding for the CHAR_8_TYPE. The only constraint is that it

shall be representable using 8 bits.

Rationale

By not specifying an encoding for CHAR_8_TYPE it is possible to use the 8-bit code-unit to either

store a single ISO-8859-1 character or alternatively a code-unit of a UTF-8 encoded string.

7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE

This specification does not define an encoding for the CHAR_8_TYPE that appears as an element

of an array or sequence of CHAR_8_TYPE.

Rationale

By not specifying an encoding for the elements of an Array or Sequence of CHAR_8_TYPE it

becomes possible to store the characters of a String type into an Array or Sequence of

CHAR_8_TYPE regardless of the encoding used in the String.

7.2.2.2.1.2.4 String<Char8> type

The default encoding for String<Char8> shall be UTF-8. This encoded shall be used for the

externalized Data Representation (see clause 7.4). Language bindings (see Clause 7.5) may use

DDS-XTypes, version 1.2 29

the representation that is most natural in that particular language. If this is different from UTF-8

the language binding shall manage the transformation to/from UTF-8 external Data

Representation.

7.2.2.2.1.2.5 CHAR_16_TYPE

The CHAR_16_TYPE shall be restricted to representing Unicode codepoints in the Basic

Multilingual Plane. That is Unicode codepoints from 0x0000 to U+FFFF.

The CHAR_16_TYPE encoding shall be UTF-16.

Rationale

UTF-16 is more space efficient than UTF-32. UTF-16 also maps directly to the Java and C#

languages, which makes serialization and deserialization simple in those languages.

The BMP captures nearly all commonly used writing systems and symbols. Restricting to the

BMP ensures that each coodepoint is represented using a single UTF-16 code unit (16 bits)

7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE

The representation of each CHAR_16_TYPE element of an array or sequence of CHAR_16_TYPE

shall be UTF-16 and shall be restricted to being in the Basic Multilingual Plane (Unicode

codepoints from 0x0000 to U+FFFF).

7.2.2.2.1.2.7 String<Char16> type

The encoding for String<Char16> shall be UTF-16. This encoded shall be used for the

externalized Data Representation (see Clause 7.4). Language bindings (see Clause 7.5) may use

the representation that is most natural in that particular language. If this is different from UTF-8

the language binding shall manage the transformation to/from UTF-16 external Data

Representation.

30 DDS-XTypes, version 1.2

7.2.2.3 String Types

StringTypes are ordered one-dimensional collections of characters. StringTypes are variable-

sized; objects of a given string type can have different numbers of elements (i.e., the string

object’s “length”). Furthermore, the length of a given string object may change between zero and

the string type’s “bound” (see below) over the course of its lifetime.

A string is logically very similar to a sequence. However, the element type of a string must be

either Char8 or Char16 (or an alias to one of these); other element types are undefined. These

two collections have been distinguished in order to preserve the fidelity present in common

implementation programming languages and platforms.

Figure 9 - String Types

class String Types

Type«enumeration»
TypeKind

 STRING8_TYPE {readOnly}
 STRING16_TYPE {readOnly}

String8

constraints
{name = "String8"}
{element_type = Char8}

StringType

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{external = false}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

String16

constraints
{name = "String16"}
{element_type = Char16}

+kind

1
{frozen}

DDS-XTypes, version 1.2 31

7.2.2.4 Constructed Types

The definitions of these types are constructed from—that is, based upon—the definitions of other

types. These other types may be either primitive types or other constructed types: type

definitions may be recursive to an arbitrary depth. Constructed types are explicitly defined by a

user of an implementation of this specification and are assigned a name when they are defined.

Figure 10 – Constructed Types

There are several kinds of Constructed Types: Collections, Aggregated types,

Aliases, and Enumerated types. Collections are homogeneous in that all

elements of the collection have the same type. Aggregated types are

heterogeneous; members of the aggregated types may have different types.

Aliases introduce a new name for another type. Enumerated types define a finite

set of possible integer values for the data.

class Constructed Types

Type

Collection

Sequence ArrayMap

Structure

Union

AggregatedType

EnumerationBitmask

Alias

ConstructedType
VerbatimText

+ language: StringType {readOnly}
+ placement: StringType {readOnly}
+ text: StringType {readOnly}

ScopedIdentifier

+ name: StringType {readOnly}

EnumeratedType

0..1

+element_type

1
{frozen}

+base_type

1

+base_type
0..1
{frozen}

+verbatim

*
{ordered}

+key_type

1
{frozen}

32 DDS-XTypes, version 1.2

7.2.2.4.1 Enumerated Types

Figure 11 – Enumerated Types

class Enumerated Types

Type«enumeration»
TypeKind

 ENUMERATION_TYPE {readOnly}
 BITMASK_TYPE {readOnly}

EnumeratedType

+ bit_bound: Int32

constraints
{root = false}

Enumeration

constraints
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

Bitmask

constraints
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

ConstructedTypeScopedIdentifier

AppliedAnnotation

0..1

+annotation 0..*

+kind

1
{frozen}

DDS-XTypes, version 1.2 33

7.2.2.4.1.1 Enumeration Types

Figure 12 – Enumeration Types

Table 4 – Enumerated types

Type Kind Type Name Description

ENUMERATION_TYPE Assigned

when type is

defined

Set of literals.

An enumerated type defines a closed set of one or more

literal objects of that type. Each object of a given

enumerated type has a name and an Int32 value that are

each unique within that type.

The order in which the literals of an enumerated type are

defined is significant to the definition of that type. For

example, some type representations may base the numeric

values of the literals on their order of definition.

class Enumeration Type

Type
«enumeration»

TypeKind

 ENUMERATION_TYPE {readOnly}

Enumeration

constraints
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

EnumeratedLiteral

+ value: Int32 {readOnly}

ConstructedType

ScopedIdentifier

+ name: StringType {readOnly}

Namespace

EnumeratedType

+ bit_bound: Int32

constraints
{root = false}

AppliedAnnotation

+container

0..1
{frozen}

+containedElement

*
{addOnly}

+annotation 0..*

+/container

1
{frozen}

+/constant

1..*
{ordered}
{frozen}

1
{frozen}

+kind

1
{frozen}

0..1

34 DDS-XTypes, version 1.2

7.2.2.4.1.2 Bitmask Types

Bitmasks, as in the C++ standard library (and not unlike the EnumSet class of the Java standard

library), represent a collection of Boolean flags, each of which can be inspected and/or set

individually.

Figure 13 – Bitmask Types

Table 5 – Bitmask types

Type Kind Type Name Description

BITMASK_TYPE Assigned when

type is defined
Ordered set of named Boolean flags.

A bitmask defines a bound—the maximum number of bits in

the set—and identifies by name certain bits within the set. The

bound must be greater than zero and no greater than 64.

A bitmask type reserves a number of “bits” (Boolean flags); this is referred to as its bound. (The

bound of a bitmask is logically similar to the bound of an array, except that the “elements” in a

bitmask are single bits.) It then identifies some subset of those bits. Each bit in this subset is

class Bitmask Type

Type

Bitmask

constraints
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

Bitflag

+ position: Integer {readOnly}

«enumeration»
TypeKind

 BITMASK_TYPE {readOnly}

ConstructedType

ScopedIdentifier

+ name: StringType {readOnly}

Namespace

EnumeratedType

+ bit_bound: Int32

constraints
{root = false}

AppliedAnnotation

+annotation 0..*

+/container

1
{frozen}

+/bit

0..@bit_bound
{frozen}

0..1 1

+kind

1
{frozen}

+container

0..1
{frozen}

+containedElement

*
{addOnly}

DDS-XTypes, version 1.2 35

identified by name and by an index, numbered from 0 to (bound – 1). The bitmask need not

identify every bit it reserves. Furthermore, the bits it does identify need not be contiguous.

Note that this type exists for the sake of semantic clarity and to enable more efficient data

representations. It does not actually constrain such representations to represent each “bit” in the

set as a single memory bit or to align the bitmask in any particular way.

7.2.2.4.1.2.1 Design Rationale (Non-Normative)

It is commonly the case that complex data types need to represent a number of Boolean flags.

For example, in the DDS specification, status kinds are represented as StatusKind bits that are

combined into a StatusMask. A bitmask (also referred to as a bit mask) allows these flags to be

represented very compactly—typically as a single bit per flag. Without such a concept in the type

system, type designers must choose one of two alternatives:

 Idiomatically define enumerated “kind” bits and a “mask” type. Pack and unpack the

former into the latter using bitwise operators. As previously noted, this is the approach

taken by the DDS specification in the case of statuses, because it predated this enhanced

type model. There are several weaknesses to this approach:

o It is verbose, both in terms of the type definition and in terms of the code that uses

the bitmask; this verbosity slows understanding and can lead to programming

errors.

o It is not explicitly tied to the semantics of the data being represented. This

weakness can lead to a lack of user understanding and type safety, which in turn

can lead to programming errors. It furthermore hampers the development of

supporting tooling, which cannot interpret the “bitmask” otherwise than as a

numeric quantity.

 Represent the flags as individual Boolean values. This approach simplifies programming

and provides semantic clarity. However, it is extremely verbose: a structure of Boolean

members wastes at least 7/8 of the network bandwidth it uses (assuming no additional

alignment and that each flag requires one bit but occupies one byte) and possible up to

31/32 of the memory it uses (on platforms such as Microsoft Windows that

conventionally align Boolean values to 32-bit boundaries).

36 DDS-XTypes, version 1.2

7.2.2.4.2 Alias Types

Alias types introduce an additional name for another type.

Figure 14 – Alias Types

Table 6 – Alias types

Type Kind Type Name Description

ALIAS_TYPE Assigned

when type is

defined

Alternative name for another type.

An alias type—also referred to as a typedef from its representation

in IDL, C, and elsewhere—applies an additional name to an

already-existing type. Such an alternative name can be helpful for

suggesting particular uses and semantics to human readers, making

it easier to repeat complex type names for human writers, and

simplifying certain language bindings.

As in the C and C++ programming languages, an alias/typedef does

not introduce a distinct type. It merely provides an alternative name

by which to refer to the same type.

class Alias Types

Type«enumeration»
TypeKind

 ALIAS_TYPE {readOnly}

Alias

constraints
{kind = TypeKind::ALIAS_TYPE}
{nested = base_type.nested}

ConstructedTypeScopedIdentifier

AppliedAnnotation

+base_type

1

+kind

1
{frozen}

0..1

+base_annotation

*

+annotation 0..*

DDS-XTypes, version 1.2 37

7.2.2.4.3 Collection Types

Collections are containers for elements of a homogeneous type. The type of the element might be

any other type, primitive or constructed (although some limitations apply; see below) and must

be specified when the collection type is defined.

Figure 15 – Collection Types

class Collection Types

«enumeration»
TypeKind

 ARRAY_TYPE {readOnly}
 SEQUENCE_TYPE {readOnly}
 MAP_TYPE {readOnly}

Type

Collection

+ external: Boolean = false {readOnly}

constraints
{nested = true}

Sequence

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind = TypeKind::SEQUENCE_TYPE}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

Array

+ bounds: UInt32 [1..*] {readOnly,ordered}

constraints
{kind = TypeKind::ARRAY_TYPE}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

Map

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind = TypeKind::MAP_TYPE}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

ConstructedType

AppliedAnnotation

ScopedIdentifier

+kind

1
{frozen}

+element_type

1
{frozen}

+annotation0..*

0..1

+key_type

1
{frozen}

+element_annotation

*

+key_annotation *

38 DDS-XTypes, version 1.2

There are three kinds of Collection Types: ARRAY, SEQUENCE, and MAP. These kinds are described

in Table 7.

Table 7 – Collection Types

Type Kind Type

Name

Description

ARRAY_TYPE Assigned

implicitly
Fixed-size multi-dimensional collection.

Arrays are of a fixed size in that all objects of a given array type

will have the same number of elements. Elements are addressed

by a sequence of indices (one per dimension).

Semantically, array types of higher dimensionality are distinct

from arrays of arrays of lower dimensionality. (For example, a

two-dimensional array is not just an array of one-dimensional

arrays.) However, certain type representations may be unable to

capture this distinction. (For example, IDL provides no syntax to

describe an array of arrays
1
, and in Java, all “multi-dimensional”

arrays are arrays of arrays necessarily.) Such limitations in a

given type representation should not be construed as a limitation

on the type system itself.

SEQUENCE_TYPE Assigned

implicitly
Variable-size single-dimensional collection.

Sequences are variably sized in that objects of a given sequence

type can have different numbers of elements (the sequence

object’s “length”); furthermore, the length of a given sequence

object may change between zero and the sequence type’s

“bound” (see below) over the course of its lifetime. Elements are

addressed by a single index.

MAP_TYPE Assigned

implicitly
Variable-size associative collection.

Maps are variably sized in that objects of a given map type can

have different numbers of elements (the map object’s “length”);

furthermore, the length of a given map object may change

between zero and the map type’s “bound” (see below) over the

course of its lifetime.

“Map value” elements are addressed by a “map key” object, the

value of which must be unique within a given map object. The

types of both of these are homogeneous within a given map type

and must be specified when the map type is defined.

1 An intermediate alias can help circumvent this limitation; see below for a more formal treatment of aliases.

DDS-XTypes, version 1.2 39

Collection types are defined implicitly as they are used. Their definitions are based on three

attributes:

 Collection kind: The supported kinds of collections are identified in Table 7 above.

 Element type: The concrete type to which all elements conform. (Collection elements

that are of a subtype of the element type rather than the element type itself may be

truncated when they are serialized into a Data Representation.)

In the case of a map type, this attribute corresponds to the type of the value elements.

Map types have an additional attribute, the key element type, that indicates the type of the

key elements. Implementers of this specification need only support key elements of

signed and unsigned integer types and of narrow and wide string types; the behavior of

maps with other key element types is undefined and may not be portable. (Design

rationale, non-normative: Support for arbitrary key element types would require

implementers to provide uniform sorting and/or hashing operations, which would be

impractical on many platforms. In contrast, these operations have straightforward

implementations for integer and string types.)

 Bound: The maximum number of elements the collection may contain (inclusively); it

must be greater than zero.

In the cases of sequences, strings, and maps, the bound parameter may be omitted. If it is

omitted, the bound is not specified; such a collection is referred to as “unbounded.” (All

arrays must be bounded.) In that case, the type may have no upper bound—meaning that

the collection may contain any number of elements—or it may have an implicit upper

bound imposed by a given type representation (which might, for example, provide only a

certain number of bits in which to store the bound) or implementation (which might, for

example, impose a smaller default bound than the maximum allowed by the type

representation for resource management purposes). Because of this ambiguity, type

designers are encouraged to choose an explicit upper bound whenever possible.

In the cases of sequences, strings, and maps, the bound is a single value. Arrays have

independent bounds on each of their dimensions; they can also be said to have an overall

bound, which is the product of all of their dimensions’ bounds.

For example, a one-dimensional array of 10 integers, a one-dimensional array of 10 short

integers, a sequence of at most 10 integers, and a sequence of an unspecified number of integers

are all of different types. However, all one-dimensional arrays of 10 integers are of the same

type.

7.2.2.4.4 Aggregated Types

Aggregations are containers for elements—“members”—of (potentially) heterogeneous types.

Each member is identified by a string name and an integer ID. Each must be unique within a

given type. Each member also has a type; this type may be the same as or different than the types

of other members of the same aggregated type.

The relative order in which an aggregated type’s members are defined is significant, and may be

relied upon by certain Data Representations.

40 DDS-XTypes, version 1.2

Figure 16 – Aggregated Types

There are three kinds of Aggregated Types: structures, unions, and annotations. These kinds are

described in Table 8.

Table 8 – Aggregated Types

Type Kind Type Name Description

UNION_TYPE Assigned

when type is

defined

Discriminated exclusive aggregation of members.

Unions define a well-known discriminator member and a set

of type-specific members.

STRUCTURE_TYPE Assigned

when type is

defined

Non-exclusive aggregation of members.

A type designer may declare any number of members within

a structure. Unlike in a union, there are no implicit members

in a structure, and values for multiple members may coexist.

class Aggregated Types

Type
«enumeration»

TypeKind

 STRUCTURE_TYPE {readOnly}
 UNION_TYPE {readOnly}
 BITSET_TYPE {readOnly}

AggregatedTypeMember

+ id: UInt32 {readOnly}
+ key: Boolean = false {readOnly}
+ member_index: UInt32
+ must_understand: Boolean = false {readOnly}
+ optional: Boolean = false {readOnly}
+ shared: Boolean = false {readOnly}

ConstructedType

ScopedIdentifier Namespace

AppliedAnnotation

name

id

+container

0..1
{frozen}

+containedElement

*
{addOnly}

+member

* {ordered}
{addOnly}

+name 1

+/member_by_name

0..1
{addOnly}

+type

1
{frozen}

+/member_by_id

0..1
{addOnly}

+kind

1
{frozen}

0..1

+annotation

0..*

DDS-XTypes, version 1.2 41

7.2.2.4.4.1 Structure Types

A type designer may declare any number of members within a structure. Unlike in a union, there

are no implicit members in a structure, and values for multiple members may coexist.

A structure can optionally extend one other structure, its “base_type.” In the event that there is a

name or ID collision between a structure and its base type, the definition of the derived structure

is ill-formed.

Figure 17 – Structure Types

7.2.2.4.4.2 Union Types

Unions define a well-known discriminator member and a set of type-specific members. The

name of the discriminator member is always “discriminator”; that name is reserved for union

types and is not permitted for type-specific union members. The discriminator member is always

considered to be the first member of a union.

class Structure Types

AggregatedTypeMember

AppliedAnnotation

Structure
ScopedIdentifier

name

id
+/member_by_id

0..1
{addOnly}

+name 1

+annotation 0..*

+base_type 0..1
{frozen}

+member

* {ordered}
{addOnly}

+/member_by_name

0..1
{addOnly}

42 DDS-XTypes, version 1.2

Figure 18 – Union Types

Each type-specific member is associated with one or more values of the discriminator. These

values are identified in one of two ways: (1) They may be identified explicitly; it is not allowed

for multiple members to explicitly identify the same discriminator value. (2) At most one

member of the union may be identified as the “default” member; any discriminator value that

does not explicitly identify another member is considered to identify the default member. These

two mechanisms together guarantee that any given discriminator value identifies at most one

member of the union. (Note that it is not required for every potential discriminator value to be

associated with a member.) These mappings from discriminator values to members are defined

by a union type and do not differ from object to object.

The value of the member associated with the current value of the discriminator is the only

member value considered to exist in a given object of a union type at a given moment in time.

However, the value of the discriminator field may change over the lifetime of a given object,

thereby changing which union member’s value is observed. When such a change occurs, the

initial value of the newly observed member is undefined by the type system (though it may be

defined by a particular language binding). In particular, it is not defined whether, upon switching

from a discriminator value x to a different value y and then immediately back to x, the previous

value of the x member will be preserved.

The discriminator of a union must be of one of the following types:

 Boolean

 Byte

class Union Types

AggregatedTypeMember

Union

UnionCase

+ case: Int64 [1..*]
+ default: Boolean {readOnly}

AppliedAnnotation

UnionDiscriminator

name

id

+member

* {ordered}
{addOnly}

+/case_member

*
{ordered,
addOnly,
optional = true,
key = false}

+/member_by_id

0..1
{addOnly}

+/disc

1
{frozen,
name = "disc", optional =
false, must_understand
= true}

+/member_by_name

0..1
{addOnly}

+discriminator_annotation
*

DDS-XTypes, version 1.2 43

 Char8, Char16

 Int16, UInt16, Int32, UInt32, Int64, UInt64

 Any enumerated type

 Any alias type that resolves, directly or indirectly, to one of the aforementioned types.

7.2.2.4.4.3 Member IDs

As noted above, each member of an aggregated type is uniquely identified within that type by an

integer “member ID.” Member IDs are unsigned and have a range that can be represented in 28

bits: from zero to 268,435,455 (0x0FFFFFFF). (The full range of a 32-bit unsigned integer is not

used in order to allow binary Data Representations the freedom to embed a small amount of

meta-data into a single 32-bit field if they so desire.)

The upper end of the range, from 268,419,072 (0x0FFFC000) to 268,435,455 (0x0FFFFFFF)

inclusive, is reserved for use by the OMG, either by this specification—including future versions

of it—or by future related specifications (16,384 values). The largest value in this range—

0x0FFFFFFF—shall be used as a sentinel to indicate an invalid member ID. This sentinel is

referred to by the name MEMBER_ID_INVALID.

The remaining part of the member ID range—from 0 to 268,402,687 (0x0FFFBFFF)—is

available for use by application-defined types compliant with this specification.

7.2.2.4.4.4 Members That Must Be Understood by Consumers

A consumer of data may not have the same definition for a type as did the producer of that data.

Such a situation may come about as a result of the independent, decoupled definition of the

respective types or as a result of a single type’s evolution over time. A consumer, upon observing

a member value it does not understand, must be able to determine whether it is acceptable to

ignore the member and continue processing other members, or whether the entire data sample

must be discarded.

Each member of an aggregated type has a Boolean attribute “must understand” that satisfies this

requirement. If the attribute is true, a data consumer, upon identifying a member it does not

recognize, must discard the entire data sample to which the member belongs. If the attribute is

false, the consumer is permitted to process the sample, omitting the value of the unrecognized

member.

In a structure type, each member may have the “must understand” attribute set to true or false

independently.

In a union type, the discriminator member shall always have the “must understand” attribute set

to true.

The ability of a consumer to detect the presence of an unrecognized member depends on the Data

Representation. Each representation shall therefore define the means by which such detection

occurs.

44 DDS-XTypes, version 1.2

7.2.2.4.4.5 Optional Members

Each member of an aggregated type has a Boolean attribute that indicates whether it is optional.

Every object of a given type shall be considered to contain a value for every non-optional

member defined by that type. In the event that no explicit value for such a member is ever

provided in a Data Representation of that object, that member is considered to nevertheless have

the default “zero” value defined in Table 9 below.

Table 9 – Default values for non-optional members

Type Kind Default Value

BYTE 0x00

BOOLEAN False

INT_16_TYPE,

UINT_16_TYPE,

INT_32_TYPE,

UINT_32_TYPE,

INT_64_TYPE,

UINT_64_TYPE,

FLOAT_32_TYPE,

FLOAT_64_TYPE,
FLOAT_128_TYPE

0

CHAR_8_TYPE,
CHAR_16_TYPE

‘\0’

STRING_TYPE “”

ARRAY_TYPE An array of the same dimensions and same element type whose elements take

the default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYPE The first value in the enumeration.

UNION_TYPE A union with the discriminator set to select the default element, if one is

defined, or otherwise to the lowest value associated with any member. The

value of that member set to the default value for its corresponding type.

STRUCTURE_TYPE A structure without any of the optional members and with other members set

to their default values based on their corresponding types.

An object may omit a value for any optional member(s) defined by its type. Omitting a value is

semantically similar to assigning a null value to a pointer in a programming language: it

DDS-XTypes, version 1.2 45

indicates that no value exists or is relevant. Implementations shall not provide a default value in

such a case.

Union members, including the discriminator, shall never be optional.

Structure members may be optional. The designer of a structure can choose which members are

optional on a member-by-member basis.

The value of a member’s “optional” attribute is unrelated to the value of its “must understand”

attribute. For example, it is legal to define a type in which a non-optional member can be safely

skipped or one in which an optional member, if present and not understood, must lead to the

entire sample being discarded.

7.2.2.4.4.6 Key Members

A given member of an aggregated type may be designated as part of that type’s key. The type’s

key will become the key of any DDS Topic that is constructed using the aforementioned

aggregated type as the Topic’s type. If a given type has no members designated as key members,

then the type—and any DDS Topic that is constructed using it as its type it—has no key.

Key members shall never be optional, and they shall always have their “must understand”

attribute set to true.

A type's key can only include members of the following types: primitive, aggregation,

enumeration, bitmask, array, and sequence. Aliases to one of the previous types can also be used

as key members. Members of type map cannot be included as part of the key.

Which members may together constitute a type’s key depends on that type’s kind.

In a structure type, the key designation can be applied to any member and to any number of

members.

In a union type, only the discriminator is permitted to be a key member. The union discriminator

is marked as a key by annotating the discriminator itself with the @key annotation as shown in

the example below:

enum CommandKind {

 START,

 STOP,

 GO_LEFT,

 GO_RIGHT

};

union MyCommand switch (@key CommandKind) {

case START:

 float delay; /* delay until start in seconds */

case STOP:

 float distance; /* distance to stop in meters */

46 DDS-XTypes, version 1.2

case GO_LEFT:

case GO_RIGHT:

 float angle; /* Angle to change direction in radians */

};

If a member of type array or sequence is marked as a key member of an aggregated type T, all

the elements in the array or sequence shall be considered part of the key of T. In the case of a

sequence, the length of the sequence is also considered as part of the key ahead of the sequence

elements.

In the event that the type K of a key member of a given type T itself defines key members, only

the key of K, and not any other of its members, shall be considered part of the key of T. This

relationship is recursive: the key members of K may themselves have nested key members.

For example, suppose the key of a medical record is a structure describing the individual whose

record it is. Suppose also that the nested structure (the one describing the individual) has a key

member that is the social security number of that individual. The key of the medical record is

therefore the social security number of the person whose medical record it is.

7.2.2.4.5 Verbatim Text

System developers frequently require the ability to inject their own text into the code produced

by a Type Representation compiler. Such output typically depends on the target programming

language, not on the Type Representation. Furthermore, it is desirable to be able to preserve

information about such output across translations of the Type Representation. Therefore, it is

appropriate to manage user-specified content within the Type System for use by all Type

Representations and therefore by Type Representation compilers. The VerbatimText class

serves this purpose; each constructed type may refer to one or more instances of this class.

A VerbatimText object defines three properties; each is a string:

 language: The target programming language for which the output text applies.

 placement: The location within the generated output at which the output text should be

inserted.

 text: The literal output text to be copied into the output by the Type Representation

compiler.

7.2.2.4.5.1 Property: Language

When a Type Representation compiler generates code for the programming language named

(case-insensitively) by this property, it shall copy the string contained in the text property into

its output.

 The string “c” shall indicate the C programming language [C-LANG].

 The string “c++” shall indicate the C++ programming language [C++-LANG].

 The string “java” shall indicate the Java programming language [JAVA-LANG].

DDS-XTypes, version 1.2 47

 The string “*” (an asterisk) shall indicate that text applies to all programming languages.

7.2.2.4.5.2 Property: Placement

This string identifies where, relative to its other output, the Type Representation compiler shall

copy the text string. It shall be interpreted in a case-insensitive manner. All Type

Representation compilers shall recognize the following placement strings; individual compiler

implementations may recognize others in addition.

 begin-declaration-file: The text string shall be copied at the beginning of the file

containing the declaration of the associated type before any type declarations.

For example, a system implementer may use such a VerbatimText instance to inject

import statements into Java output that are required by literal code inserted by other

VerbatimText instances.

 before-declaration: The text string shall be copied immediately before the

declaration of the associated type.

For example, a system implementer may use such a VerbatimText instance to inject

documentation comments into the output.

 begin-declaration: The text string shall be copied into the body of the declaration of

the associated type before any members or constants.

For example, a system implementer may use such a VerbatimText instance to inject

additional declarations or implementation into the output.

 end-declaration: The text string shall be copied into the body of the declaration of the

associated type after all members or constants.

 after-declaration: The text string shall be copied immediately after the declaration

of the associated type.

 end-declaration-file: The text string shall be copied at the end of the file containing

the declaration of the associated type after all type declarations.

7.2.2.4.5.3 Property: Text

The Type Representation compiler shall copy the string contained in this property into its output

as described above.

7.2.2.4.6 External Data

In some cases, it is necessary and/or desirable to provide information to a language binding that a

certain member’s data should be stored, not inline within its containing type, but external to it

(e.g., using a pointer).

 For example, the data may be very large, such that it is impractical to copy it into a

sample object before sending it on the network. Instead, it is desirable to manage the

storage outside of the middleware and assign a reference in the sample object to this

external storage.

48 DDS-XTypes, version 1.2

 For example, the type of the member may be the type of a containing type (directly or

indirectly). This will be the case when defining linked lists or any of a number of more

complex data structures.

Type Representations shall therefore allow the following type relationships in the case of

external members, which would typically cause errors in the case of non-external members:

 An external member of an aggregated type shall be permitted to refer to a type whose

definition is incomplete (i.e. is identified only by a forward declaration) at the time of the

member’s declaration.

 An external member of an aggregated type shall be permitted to refer to the member’s

containing type.

Each member of an aggregated type—with the exception of the discriminator of a union type—

may be optionally marked as external. Likewise, the elements of a collection type may be

optionally marked as external.

Note that this attribute does not provide a means for modeling object graphs.

7.2.2.5 Nested Types

Not every type in a user’s application will be used to type DDS Topics; some types appear only

as the types of members within other types. It is desirable to distinguish these two cases for the

same of efficiency; for example, an IDL compiler need not generate typed DataWriter,

DataReader, and TypeSupport classes for types that are not intended to type topics. Types that

are not intended to describe topic data are referred to as nested types.

7.2.2.6 Annotations

An annotation describes a piece of metadata attached to a type or an element/member/literal of

an aggregated/collection/enumerated type. Annotations can also be attached to the related_type

of an alias type. An AnnotationType defines the structure of the metadata as a set of

AnnotationParameters that can be assigned values when the annotation is applied. The

AnnotationParameters are given values when the annotation is applied to an element of that other

type.

The definition of an AnnotationType can specify the default value of each AnnotationParameter.

AnnotationParameters are restricted to certain types. This allows the compiler of a Type

Representation to be able to efficiently interpret an annotation instantiation; it also simplifies

expressing the parameter values as object literals in a variety of Type Representations.

The types permitted for an AnnotationParameter are:

 Primitive types

 String types of Char8 or Char16 elements

 Enumerated types

DDS-XTypes, version 1.2 49

Figure 19 – Annotation Types

7.2.2.7 Try Construct behavior

Type evolution can result in a DDS DataReader built using type “T1” to be matched with a

DataWriter built using a different but compatible version of the type “T2”. When the

DataReader receives an object O2 sent by the DataWriter it needs to construct some object of

type T1 to hold the data in O2. The expectation is that the constructed object “O1” of type T1

will faithfully capture all the information from O2 that is relevant to the application that was

expecting to read objects of type T1.

There are situations where no “obviously reasonable” object of type T1 can be constructed to

hold the value of a specific object “O2” of type “T2”. A type system could declare types T1 and

T2 where this situation may occur to be “incompatible” thus ensuring the situation is never

encountered when a DataWriter sends data to a matching DataReader. However doing so

would be too restrictive for the kinds of distributed systems where DDS is deployed.

For example, a system may be deployed with DataReader entities reading an Aggregated type

(e.g. a structure) called “STRUCT1024” with a member of type string with a maximum length of

1024 characters, see Table 10. Once the system is deployed new applications are added and the

deployment extends to resource-constrained environments where the 1024 character strings can

be problematic. Moreover as it turned out the value of 1024 was overly generous and in the

deployed system the strings never exceed 80 characters. In this situation it becomes desirable to

re-define the type as “STRUCT128”. STRUCT128 differs from STRUCT1024 in that the string

member has maximum length 128, see Table 10. With these definitions there exist objects of

type STRUCT1024 that cannot construct any object of type STRUCT128, namely those objects a

string member of length greater than 128 characters. This is true even if the application never

uses these objects. If the existence of such objects would prevent STRUCT128 from being

compatible with STRUCT1024 we would not be able to adjust the type without modifying the

already deployed systems, which may not be feasible.

class Annotation Types

AppliedAnnotation AppliedAnnotationParameter

+ name_hash: String

«enumeration»
TypeKind

 INT_16_TYPE {readOnly}
 INT_32_TYPE {readOnly}
 INT_64_TYPE {readOnly}
 UINT_16_TYPE {readOnly}
 UINT_32_TYPE {readOnly}
 UINT_64_TYPE {readOnly}
 FLOAT_32_TYPE {readOnly}
 FLOAT_64_TYPE {readOnly}
 FLOAT_128_TYPE {readOnly}
 BYTE_TYPE {readOnly}
 BOOLEAN_TYPE {readOnly}
 CHAR_8_TYPE {readOnly}
 CHAR_16_TYPE {readOnly}
 ENUMERATION_TYPE {readOnly}
 STRING8_TYPE {readOnly}
 STRING16_TYPE {readOnly}

AnnotationType

AnnotationParameter

+ member_index: UInt32

AnnotationParameterValue

ScopedIdentifier

+paramter_seq *

1

+type

1

+type 1

+default_value

1

+value 1

+parameter_seq

*

+annotation
0..*

50 DDS-XTypes, version 1.2

Similar situations can occur for Collection types. For example a type “SEQ1024” that is defined

as a sequence whose elements have type string with maximum length 1024 and an evolution of

that type “SEQ128” that differs from SEQ1024 in that the element type is string with maximum

length 128, see Table 10. Similar to the structure examples there exist be objects of type

SEQ1024 that cannot construct any object of type SEQ128 and yet in many cases we do not want

to consider these types as incompatible.

Table 10 – TryConstruct examples

Example Type IDL definition Explanation of the Type

struct STRUCT1024 {

 string<1024> member;

};

Structure Aggregated type with a member of

type string with maximum length 1024

characters.

struct STRUCT128 {

 string<128> member;

};

Structure Aggregated type with a member of

type string with maximum length 128

characters.

typedef

sequence< string<1024> > SEQ1024;

Sequence Collection type with element of type

string with maximum length 1024 characters.

typedef

sequence< string<128> > SEQ128;

Sequence Collection type with element of type

string with maximum length 128 characters.

To avoid the situation described above the type compatibility relationship defined by this type

system (see Clause7.2.4) does not require that all objects of a type “T2” can faithfully construct

some object of some other type “T1”, as a pre-requisite for compatibility. The type system only

requires that a reasonable subset of T2 object can construct some object of type T1 and that the

situations where this is not possible are detected and gracefully handled. The rules for this are

formally defined in Clause 7.2.4.

Therefore even when two types T1 and T2 are compatible it may be possible to encounter an

object sent by a DataWriter of type T2 that cannot be used to construct any object of the T1

type expected by the DataReader without losing some potentially critical information. For

example, depending on the application truncating a 20-character string sent by the DataWriter

into a 10-character string that may be the maximum allowed by the DataReader could result in

misinterpretation and application malfunction. The same could be said for trimming a received

sequence to a shorter length.

If no “reasonable” T1 object can be constructed from a given object O2 of type T2, we say that

“O2 cannot construct any object of type T1”.

Object construction for collection and aggregated types is done recursively. To construct the

collection/aggregated object it is necessary to construct all nested elements/members. For this

reason failure to construct a nested element/member can prevent the construction of the

collection/aggregated type.

DDS-XTypes, version 1.2 51

There are situations when it is not desirable to fail the construction of a collection or aggregated

object of type T1 just because some nested element/member cannot be constructed. The failure

to construct the element/member would cause all other nested elements/members to be “lost” and

not just the problematic one. In some situations it may be more desirable to trim the problematic

member or set it to some well-known default value. To support these scenarios Collection and

Aggregated types may explicitly declare the TryConstruct behavior of each of their elements or

members.

 Array and Sequence collection types may explicitly declare that their element has one of

three kinds of TryConstruct behavior, see Table 11.

 Map collection types may explicitly declare that their “key” and or “value” element has

one of three kinds of TryConstruct behavior, see Table 11.

 Structure and Union types may explicitly declare member has one of three kinds of

TryConstruct behavior, see Table 11. In the case of Unions this extends to the

discriminator member.

The TryConstruct behavior kinds are described in Table 11 below. The default behavior unless

otherwise specified using the TryConstruct annotation is DISCARD.

Table 11 – TryConstruct behavior kinds

TryConstruct

kind

Description

DISCARD Failure to construct an element or member propagates to the collection or

aggregated type that contains it.

If an element or member cannot be constructed, then the collection or

aggregated object that contains the element or member cannot be constructed

either.

USE_DEFAULT Failure to construct an element or member is contained—element or

member is set to its default value.

If an element or member cannot be constructed, the element/member shall be

set to its default value (according to its type as described in Table 9) and does

not cause the collection/aggregated object to fail its construction.

52 DDS-XTypes, version 1.2

TRIM Failure to construct an element or member is contained—element or

member is trimmed.

This option only applies to elements or members of type string, wide string,

sequence, or map. The behavior when applied to other element/member types

is unspecified and may be treated as an error.

The option affects the situation where failure to construct is due to the length of

the collection sent exceeding what can be accommodated on the receiving

member collection type.

In this situation the element or member is constructed trimming the received

object to the length that can be accommodated by the receiving member type.

The order of the characters in the string or elements in the sequence or map is

preserved.

7.2.3 Type Extensibility and Mutability

In some cases, it is desirable for types to evolve without breaking interoperability with deployed

components already using those types. For example:

 A new set of applications to be integrated into an existing system may want to introduce

additional fields into a structure. These new fields can be safely ignored by already

deployed applications, but applications that do understand the new fields can benefit from

their presence.

 A new set of applications to be integrated into an existing system may want to increase

the maximum size of some sequence or string in a Type. Existing applications can

receive data samples from these new applications as long as the actual number of

elements (or length of the strings) in the received data sample does not exceed what the

receiving applications expects. If a received data sample exceeds the limits expected by

the receiving application, then the sample can be safely ignored (filtered out) by the

receiver.

In order to support use cases such as these, the type system introduces the concept of appendable

and mutable types.

 A type may be FINAL, indicating that the range of its possible data values is strictly

defined. In particular, it is not possible to add elements to members of collection or

aggregated types while maintaining type assignability.

 A type may be APPENDABLE, indicating that two types, where one contains all of the

elements/members of the other plus additional elements/members appended to the end,

may remain assignable. Note that this was called EXTENSIBLE in xtypes version 1.1 and

prior.

 A type may be MUTABLE, indicating that two types may differ from one another in the

additional, removal, and/or transposition of elements/members while remaining

assignable.

DDS-XTypes, version 1.2 53

This attribute may be used by the Data Representations to modify the encoding of the type in

order to support its extensibility.

The meaning of these extensibility kinds is formally defined with respect to type compatibility in

Clause 7.2.4, “Type Compatibility.” It is summarized more generally in Table 12.

Table 12 – Meaning of marking types as appendable

Type Kind Meaning of marking type as appendable

Aggregated Types:

STRUCTURE_TYPE,
UNION_TYPE

Aggregated types may be final, appendable, or mutable on a type-by-

type basis. However, the extensibility kind of a structure type with a

base type must match that of the base type. It shall not be permitted

for a subtype to change the extensibility kind of its base type.

Any members marked as keys must be present in all variants of the

type.

Collection Types:

ARRAY_TYPE,

SEQUENCE_TYPE,
MAP_TYPE

Sequence and map types are always mutable. Array types are always

final.

Variations of a mutable collection type may change the maximum

number of elements in the collection.

Enumerated Types:

ENUMERATION_TYPE,

BITMASK_TYPE

Enumerated types may be final, appendable, or mutable on a type-

by-type basis.

Bitmask types are always final.

String Types:

STRING8_TYPE,

STRING16_TYPE

String types are always mutable.

ALIAS_TYPE Since aliases are semantically equivalent to their base types, the

extensibility kind of an alias is always equal to that of its base type.

Primitive types Primitive types are always final.

7.2.4 Type Compatibility

In order to maintain the loose coupling between data producers and consumers, especially as

systems change over time, it is desirable that the two be permitted to use slightly different

versions of a type, and that the infrastructure perform any necessary translation. To support type

evolution and inheritance the type system defines the “is-assignable-from” directed binary

relationship between every pair of types in the Type System.

Given two types T1 and T2, we will write:

T1 is-assignable-from T2

…if and only T1 is related to T2 by this relationship. The rules to determine whether two types

have this relationship are given in the following subclauses.

54 DDS-XTypes, version 1.2

Intuitively, if T1 is-assignable-from T2, it means that in general it is possible, in a structured

way, to set the contents of an object of type T1 to the contents of an object of T2 (or perhaps a

subset of those contents, as defined below) without leading to incorrect interpretations of that

information.

7.2.4.1 Constructing objects of one type from objects of another type

The fact that T1 is-assignable-from T2, does not mean that all objects of T2 can be used to

construct an object of type T1 (for example, a collection may have too many elements).

What the is-assignable-from indicates is that the difference between T2 and T1 is such that (a) a

meaningful subset of T2 objects can construct T1 objects without misinterpretation and that (b)

the remaining objects of T2—which cannot construct T1 objects—can be detected as such so that

misinterpretations can be prevented. For the sake of run-time efficiency, these per-object “can-

construct” rules are designed such that their enforcement does not require any inspection of a

data producer’s type definition. Per-object enforcement can potentially be avoided altogether—

depending on the implementation—by declaring a type to be final
2
, forcing producer and

consumer types to match exactly; see Clause 7.2.3.

In the case T1 is-assignable-from T2 but an object O2 of type T2 is encountered that cannot

construct any object of type T1, the default behavior is to discard the O2 object to avoid

misinterpretation. This behavior can be altered when the object O2 is a member of an

Aggregated type (e.g. a structure). In this case the behavior is determined by the

TryConstruct behavior specified for the member. See Clause 7.2.2.7.

Therefore, for each pair of types T1 and T2 this specification defines the rules for T1 to be

assignable-from T2. Assuming T1 is-assignable-from T2 the specification also defines which

objects of type T2 can be used to construct an object of type T1.

For example:

Table 13 – Type assignability example

T1 T2 Type compatibility Object construction

Sequence

of 10

integers

Sequence

of 5

integers

T1 is assignable from T2:

All objects of type T2 can be used to

initialize T1 objects.

T2 is assignable from T1:

All objects of type T1 can either be used to

construct an object of type T1 or reliably

detected that that cannot initialize T1.

Any object O2 of

type T2 can construct

an object of type T1.

Only T1 objects

containing at most 5

elements can

construct T2 objects.

2 DDS-based systems have an additional tool to enforce stricter static type consistency enforcement: the

TypeConsistencyEnforcementQosPolicy. See Clause 7.6.2.3.

DDS-XTypes, version 1.2 55

7.2.4.2 Concept of Delimited Types

Delimited types are those types “T” whose serialized object representation is such that the

receivers of an object of that type “T” who only know a type T1 assignable-from type “T” are

able to reliably delimit the object within the serialized representation. This means that where

appropriate the receiver may “skip” that object and proceed to process other objects that are

serialized after.

Primitive and Enumerated types (Enumeration and Bitmask) are delimited types as their

serialized size is fixed.

Strings and wide strings are delimited types because the serialization starts with a size from

which it is possible to derive the overall serialized length of the string.

Collection types (arrays, sequences, maps) are delimited if the collection element type is

delimited. In the case of a map collection the key type must also be delimited. Otherwise the

collection is not delimited. The reason is that the receiver of a compatible collection type always

knows the length of the collection: Either it is encoded in the serialized representation (sequences

and maps) or it is the same as the receiver type in the case of arrays.

Other than the types mentioned above all other types with extensibility kind FINAL are not

delimited.

Types with extensibility kind APPENDABLE are delimited if serialized with encoding version 2

(DELIMITED_CDR). See Clause 7.4.2. They are not delimited if serialized with encoding

version 1.

Mutable types are also delimited with both encoding version 1 and encoding version 2.

 The serialized representation used for version 1 encoding (PL_CDR) is a list of length-

encoded elements ended by a sentinel, which delimits the serialized object. See Clause

7.4.1.2.

 The serialized representation used for version 2 encoding (PL_CDR2) starts with a

delimiter header similar to the one used for DELIMITED_CDR, which delimits the

serialized object.

7.2.4.3 Strong Assignability

If types T1 and T2 are equivalent using the MINIMAL relation (see Clause 7.3.4.7), or

alternatively if T1 is assignable-from T2 and T2 is a delimited type, then T1 is said to be

“strongly” assignable from T2.

7.2.4.4 Assignability Rules

7.2.4.4.1 Assignability of Equivalent Types

If two types T1 and T2 are equivalent according to the MINIMAL relation (see Clause 7.3.4.7),

then they are mutually assignable, that is, T1 is-assignable-from T2 and T2 is-assignable-from

T1.

56 DDS-XTypes, version 1.2

The reverse is not always true. The type system contains mutually assignable types that are not

equivalent according to the MINIMAL relation.

7.2.4.4.2 Non-serialized Members

Members that are marked as non-serialized, see Sub Clause 7.3.1.2.1.13, shall be ignored during

type compatibility checking.

7.2.4.4.3 Alias Types

Table 14 – Definition of the is-assignable-from relationship for alias types

T1 Type Kind Type assignability Object construction

ALIAS_TYPE Any non ALIAS_TYPE type kind
T2 if and only if T1.base_type is-

assignable-from T2

Construct according to the rules for

constructing T1.base_type objects

from T2 objects

Any non

ALIAS_TYPE type

kind

ALIAS_TYPE T2 if and only if T1

is-assignable-from T2.base_type

Construct T1 objects according to

the rules for constructing T1 from

objects of type T2.base_type

ALIAS_TYPE ALIAS_TYPE if and only if

T1.base_type is-assignable-from

T2.base_type

Construct according to the rules for

constructing T1.base_type objects

from T2.base_type objects

For the purpose of evaluating the is-assignable-from relationship, aliases are considered to be

fully resolved to their ultimate base types. For this reason, alias types are not discussed explicitly

in the subsequent clauses. Instead, if T is an alias type, then it shall be treated as if T ==

T.base_type.

7.2.4.4.4 Primitive Types

Table 15 below defines the is-assignable-from relationship for Primitive Types. These

conversions are designed to preserve the data during translation. Furthermore, in order to

preserve high performance, they are designed to enable the preservation of data representation,

such that a DataReader is not required to parse incoming samples differently based on the

DataWriter from which they originate. (For example, although a short integer could be

promoted to a long integer without destroying information, a binary Data Representation is likely

to use different amounts of space to represent these two data types. If, upon receiving each

sample from the network, a DataReader does not consult the type definition of the DataWriter

that sent that sample, it would not know how many bytes to read. The runtime expense of this

kind of type introspection on the critical path is undesirable.)

Table 15 – Definition of the is-assignable-from relationship for primitive types

T1 Type Kind T2 Type Kinds for which T1 is-

assignable-from T2 Is True

Object construction

Any Primitive Type The same Primitive Type Copy the primitive object.

DDS-XTypes, version 1.2 57

BYTE_TYPE BITMASK_TYPE if and only if

T2.bound is between 1 and 8,

inclusive.

For each bitflag that is set

in the bitmask construct

the integer value (1 <<

position) using the

position of that bitflag.

Add all those integer

values to obtain the

resulting object O1 of type

T1

UINT16_TYPE BITMASK_TYPE if and only if

T2.bound is between 9 and 16,

inclusive.

UINT32_TYPE BITMASK_TYPE if and only if

T2.bound is between 17 and 32,

inclusive.

UINT64_TYPE BITMASK_TYPE if and only if

T2.bound is between 33 and 64,

inclusive.

7.2.4.4.5 String Types

The is-assignable-from relationship for string types is described in Table 16.

Table 16 – Definition of the is-assignable-from relationship for string types

T1 Type Kind T2 Type Kinds for which T1 is-

assignable-from T2 Is True

Object construction

(assuming type assignability)

STRING_TYPE

STRING_TYPE if and only if

T1.element_type is-assignable-from

T2.element_type

An object O2 of type T2 can-construct

an object of type T1 if and only if

O2.length <= T1.length

Copy each character. O1.length is set to

O2.length.

7.2.4.4.5.1 Example: Strings

According to the above rules, any string type of narrow characters is assignable from any other

string type of narrow characters. Any string type of wide characters is assignable from any other

string type of wide characters. However, string types of narrow characters are not assignable

from string types of wide characters, because of the possibility of data misinterpretation. For

example, suppose a string of wide characters is encoded using the CDR Representation. If a

consumer of strings of narrow characters were to attempt to consume that string, it might read

consider the first byte of the first character to be a character onto itself, the second byte of the

first character to be a second character, and so on. The result would be a string of narrow

characters having “junk” contents.

Furthermore, any T2 string object containing more characters than the bound of the T1 string

type cannot construct any object of type T1 in order to prevent data misinterpretations resulting

from truncations. For example, consider two versions of a shopping list application. The list of

purchases is represented by a sequence of strings. Version 2.0 of the application increased the

bounds of these strings. Supposing that the list items “cat food” and “catsup” were too long to be

58 DDS-XTypes, version 1.2

understood by a version 1.0 consumer, it would be better to come home from the store without

either item than to come home with two cats instead.

7.2.4.4.6 Collection Types

The is-assignable-from relationship for collection types is based in part on the same relationship

as applied to their element types.

Table 17 – Definition of the is-assignable-from relationship for collection types

T1 Type Kind T2 Type Kinds for which T1 is-

assignable-from T2 Is True

Object construction

(assuming type assignability)

ARRAY_TYPE ARRAY_TYPE if and only if
3
:

 T1.bounds[] == T2.bounds[]

 T1.element_type is strongly

assignable from

T2.element_type

To construct an object of type T1 from

an object O2 of type T2:

Each element of the T1 array shall be

constructed from the corresponding

element of the O2 array.

If an element of T1 cannot be constructed

from the O2 element, the result depends

on the TryConstruct behavior associated

with T1 element type.

 If DISCARD, O2 cannot

construct any object of type T1.

 If USE_DEFAULT or TRIM, the

element is constructed

accordingly and the array of type

T1 is successfully constructed.

3 Design rationale: This specification allows sequence, map, and string bounds to change but not array bounds. This is because of

the desire to avoid requiring the consultation of per-DataWriter type definitions during sample deserialization. Without such

consultation, a reader of a compact data representation (such as CDR) will have no way of knowing what the intended bound is.

Such is not the case for other collection types, which in CDR are prefixed with their length.

DDS-XTypes, version 1.2 59

SEQUENCE_TYPE SEQUENCE_TYPE if and only if

T1.element_type is strongly

assignable from

T2.element_type

An object O2 of type T2 can construct

T1 if and only if O2.length <= T1.length

O1.length is set to O2.length.

Construct each in O1 from the

corresponding O2 element.

If an element of O2 cannot construct

T1.element_type, the result depends on

the TryConstruct behavior associated

with T1 element type.

 If DISCARD, O2 cannot

construct any object of type T1.

 If USE_DEFAULT or TRIM, the

element is constructed

accordingly and the O1 sequence

is successfully constructed.

MAP_TYPE MAP_TYPE if and only if:

 T1.key_element_type is

strongly assignable from

T2.key_element_type

 T1.element_type is strongly

assignable from

T2.element_type.

An object O2 of type T2 can construct

T1 if and only if O2.length <= T1.length

The constructed object O1 shall be as if

the O1 map were cleared of all elements

and subsequently all T2 map entries were

added to it. The entries are not logically

ordered.

If a key element of O2 cannot construct

the corresponding key type of T1 the

entire map O2 cannot construct any

object of type T1.

If a value element of O2 cannot construct

T1.element_type, the result depends on

the TryConstruct behavior associated

with T1 element type.

 If DISCARD, O2 cannot

construct any object of type T1.

 If USE_DEFAULT or TRIM, the

element is constructed

accordingly and the O1 object is

successfully constructed.

60 DDS-XTypes, version 1.2

7.2.4.4.7 Enumerated Types

Conversions of bitmask, and enumerated types are designed to preserve the data during

translation.

Table 18 – Definition of the is-assignable-from relationship for bitmask, and enumerated types

T1 Type Kind T2 Type Kinds for which T1 is-assignable-

from T2 Is True

Object construction

BITMASK_TYPE BITMASK_TYPE if and only if T1.bound ==

T2.bound

Preserve bit values by

index for all bits

identified in both T1 and

T2. UINT_32_TYPE if and only if T1.bound is

between 17 and 32, inclusive.

UINT_16_TYPE if and only if T1.bound is

between 9 and 16, inclusive.

UINT_64_TYPE if and only if T1.bound is

between 33 and 64, inclusive.

BYTE if and only if T1.bound is between 1

and 8, inclusive.

ENUMERATION_TYPE ENUMERATION_TYPE if an only if:

 T1.extensibility == T2.extensibility

 Any literals that have the same name

in T1 and T2 also have the same

value, and any literals that have the

same value in T1 and T2 also have

the same name.

 The default literal has the same

value.

 If extensibility is final the set of

literals should be identical.

Otherwise the two types should have

at least one other literal (in addition

to the default one) in common.

Choose the

corresponding T1 literal

if it exists.

If the name or value of

the T2 object does not

exist in T1, the object

cannot construct any

object of type T1.

7.2.4.4.8 Aggregated Types

For aggregated types, is-assignable-from is based on the same relationship between the types’

members. The correspondence between members in the two types is established based on their

respective member IDs and on their respective member names.

Table 19 – Definition of the is-assignable-from relationship for aggregated types

DDS-XTypes, version 1.2 61

T1 Type Kind T2 Type Kinds for which T1 is-assignable-

from T2 Is True

Object construction

UNION_TYPE UNION_TYPE if and only if it is possible to

unambiguously select the appropriate T1

member based on the T2 discriminator

value and to transform both the

discriminator and the selected member

correctly. Specifically:

 T1.extensibility == T2.extensibility.

 T1.discriminator.type is-strongly-

assignable-from

T2.discriminator.type.

 Either the discriminators of both T1

and T2 are keys or neither are keys.

 Any members in T1 and T2 that

have the same name also have the

same ID and any members with the

same ID also have the same name.

 For all non-default labels in T2 that

select some member in T1

(including selecting the member in

T1’s default label), the type of the

selected member in T1 is assignable

from the type of the T2 member.

 If any non-default labels in T1 that

select the default member in T2, the

type of the member in T1 is

assignable from the type of the T2

default member.

 If T1 and T2 both have default

labels, the type associated with T1

default member is assignable from

the type associated with T2 default

member.

 If T1 (and therefore T2)

extensibility is final then the set of

labels are identical. Otherwise, they

have at least one common label

other than the default label.

A union object O2 of type

T2 can construct an object of

type T1 if and only if:

 Either the value of

O2.discriminator can

construct the type of

T1’s discriminator. Or

else the discriminator

has TryConstruct

behavior set to

DEFAULT.

AND

 Either the selected

member “m2” in O2, if

any, can construct the

selected member “m1”

of T1, if any (where m1

and/or m2 may be the

default member). Or

else the selected

member (if any) has

TryConstruct behavior

set to DEFAULT or

TRIM.

Assuming O2 can construct

an object of type T1, then:

 The constructed object

O1 discriminator is

constructed from the

object O2’s

discriminator or if that

is not possible it is set

according to its

TryConstruct behavior.

If the discriminator value

selects a member m2 in O2

(which may be the default

value), then:

62 DDS-XTypes, version 1.2

 If the discriminator

value also selects a

member m1 in O1

(which may be the

default value), then m1

is constructed from m2

or if that is not possible

it is set according to its

TryConstruct behavior.

 If the discriminator

value does not select

any member in O1,

then there is no value

assigned from m2 (i.e.

m2 is “truncated”).

If the discriminator value

does not select any member

in O2, then:

 If the discriminator

value selects a member

m1 in O1, then m1 is

set to its default value

according to its type.

 If the discriminator

value does not select

any member in T1, then

there is nothing else to

assign or set on T1.

STRUCTURE_TYPE STRUCTURE_TYPE if and only if:

 T1 and T2 have the same number of

members in their respective keys.

 For each member “m1” that forms

part of the key of T1 (directly or

indirectly), there is a corresponding

member “m2” that forms part of the

key of T2 (directly or indirectly)

with the same member id (m1.id ==

m2.id) where m1.type is-

assignable-from m2.type.

Each member “m1” of the

T1 object takes the value of

the T2 member with the

same ID or name, if such a

member exists.

Each non-optional member

in a T1 object that is not

present in the T2 object takes

its default value.

Each optional member in a

T1 object that is not present

in the T2 object takes no

value.

DDS-XTypes, version 1.2 63

(The previous two rules assure that the key

of T2 can be transformed faithfully into the

key of T1 without aliasing or loss of

information.)

 Any members in T1 and T2 that

have the same name also have the

same ID and any members with the

same ID also have the same name.

 For each member “m1” in T1, if

there is a member m2 in T2 with the

same member ID, then m1.type is-

assignable-from m2.type.

 Members for which both optional

is false and must_understand is

true in either T1 or T2 appear in

both T1 and T2.

 Empty type intersections prevent

assignability: There is at least one

member “m1” of T1 and one

corresponding member “m2” of T2

such that m1.id == m2.id.

 T1.extensibility == T2.extensibility

AND if T1 is appendable, then any

members whose member ID appears both

in T1 and T2 have the same setting for the

‘optional’ attribute and the T1 member type

is strongly assignable from the T2 member

type.

AND if T1 is final, then they meet the same

condition as for T1 being appendable and in

addition T1 and T2 have the same set of

member IDs.

For the purposes of the above conditions,

members belonging to base types of T1 or

T2 shall be considered “expanded” inside

T1 or T2 respectively, as if they had been

directly defined as part of the sub-type.

If a “must understand”

member in the T2 object is

present, then T1 must have a

member with the same

member ID. Otherwise the

object cannot construct T1.

This behavior is not affected

by the TryConstruct setting.

If a member cannot construct

the corresponding member in

T1, then the behavior is

determined by the

TryConstruct setting of the

member.

7.2.4.4.8.1 Example: Type Truncation

Consider the following type for representing two-dimensional Cartesian coordinates:

64 DDS-XTypes, version 1.2

struct Coordinate2D {

 long x;

 long y;

};

(This example uses the IDL Type Representation. However, the same principles apply to any

other type representation.)

Now suppose that another subsystem is to be integrated. That subsystem is capable of

representing three-dimensional coordinates:

struct Coordinate3D {

 long x;

 long y;

 long z;

};

(The type Coordinate3D may represent a new version of the Coordinate2D type, or the two

coordinate types may have been developed concurrently and independently. In either case, the

same rules apply.)

Coordinate2D is assignable from Coordinate3D, because that subset of Coordinate3D that is

meaningful to consumers of Coordinate2D can be extracted unambiguously. In this case,

consumers of Coordinate2D will observe the two-dimensional projection of a Coordinate3D:

they will observe the x and y members and ignore the z member.

7.2.4.4.8.2 Example: Type Inheritance

Type inheritance is a special case of type truncation, which allows objects of subtypes to be

substituted in place of objects of supertypes in the conventional object-oriented fashion.

Consider the following type hierarchy:

<struct name="Vehicle">

 <member name="km_per_hour" type="int32"/>

</struct>

<struct name="LandVehicle" baseType="Vehicle">

 <member name="num_wheels" type="int32"/>

</struct>

(This example uses the XML Type Representation. However, the same principles apply to any

other type representation.)

LandVehicle is assignable from Vehicle. Any consumer of the latter that receives an instance

of the former will observe the value of the member km_per_hour and ignore the member

num_wheels.

DDS-XTypes, version 1.2 65

7.2.4.4.8.3 Example: Type Refactoring

As systems evolve, it is sometimes desirable to refactor data from place in a type hierarchy to

another place. For example, consider the following representation of a giraffe:

struct Animal {

 long body_length;

 long num_legs;

};

struct Giraffe : Animal {

 long neck_length;

};

(This example uses the IDL Type Representation. However, the same principles apply to any

other type representation.)

Now suppose that a later version of the system needs to model snakes in addition to giraffes.

Snakes are also animals, but they don’t have legs. We could just say that they have zero legs, but

then should we add num_scales to Animal and set that to zero for giraffes? It would be better to

refactor the model to capture the fact that legs are irrelevant to snakes:

struct Animal {

 long body_length;

};

struct Mammal : Animal {

 long num_legs;

};

struct Giraffe : Mammal {

 long neck_length;

};

struct Snake : Animal {

 long num_scales;

};

Because the is-assignable-from relationship is evaluated as if all member definitions were

flattened into the types under evaluation, both versions of the Giraffe type are assignable to one

another. Producers of one can communicate seamlessly with consumers of the other and

correctly observe values for all fields.

66 DDS-XTypes, version 1.2

7.3 Type Representation

Figure 20 – Type Representation

The Type Representation module specifies the ways in which a type can be externalized so that it

may be stored in a file or communicated over the network. Type Representations serve multiple

purposes such as:

 Allow a user to describe and document the data type.

 Provide an input to tools that generate code and language-specific constructs to program

and manipulate objects of that type.

 Provide an input to tools that want to “parse” and interpret data objects dynamically,

without compile-time knowledge of the schema.

 Communicate data types via network messages so that applications can dynamically

discover each other’s types or evaluate whether relationships such as is-assignable-from

are true or false.

This specification introduces multiple equivalent Type Representations. The reason for defining

multiple type representations is that each of these is better suited or optimized for a particular

purpose. These representations are all equivalent because they describe the same Type System.

Consequently, other than convenience or performance, there is no particular reason to use one

versus the other.

class Type Representation

TypeRepresentation

IdlTypeRepresentation XmlSchemaTypeRepresentationXmlTypeRepresentation

TypeObjectTypeRepresentation

TypeSystem::Type

TypeObject

«instantiate» *

*

+type

1
{frozen}

DDS-XTypes, version 1.2 67

The alternative representations are summarized in Table 20.

Table 20 – Alternative Type Representations

Type

Representation

Reasons for using it Disadvantages

IDL Compact Language. Easy to read and

write by humans.

Familiar to programmers. Uses

constructs close to those in

programming languages.

Has standard language bindings to

most programming languages.

Perceived as a legacy language by

users who prefer XML-based

languages.

Not as many tools available

(parsers, transformations, syntax-

aware editors) as XML-languages.

Parsing is complex.

Requires extensions to support all

concepts in the Type System, e.g.

keys, optional members, map

types, and member IDs.

TypeObject Can provide most compact binary

representation.

Best suited for communication over a

network or as an internal

representation of a type.

Not human readable or writable.

XML Compact XML language. Easy to read

and write by humans.

Defined to precisely fit the Type

System so all concepts (including

keys, optional member, etc.) map

well.

Syntax can be described using XSD

allowing the use of editors that assist

and verify the syntax of the type.

Well-suited for run-time processing

due to availability of packages that

parse XML.

New language. Based on XML but

with a schema that is previously

unknown to users.

XSD Popular standard. Familiar to many

users. Human readable.

Allows reusing of types defined for

other purposes (e.g. web-services).

Cumbersome syntax. XSD was

conceived as a way to define the

syntax of XML documents, not as

a way to define data types.

68 DDS-XTypes, version 1.2

Availability of tools to do syntax

checking and editors that assist with

auto-completion.

No direct support for many of the

contructs (e.g keys) or the types in

the type model (e.g. arrays,

unions, enums), resulting in

having to use specific patterns that

are hard to remember and error-

prone.

Very verbose. Hard to read by a

programmer.

7.3.1 IDL Type Representation

The type system defined by this specification is designed to allow types to be easily represented

using IDL [IDL41] with minimal extensions.

7.3.1.1 IDL Compatibility

This specification considers two aspects of IDL compatibility:

 Backward compatibility with respect to type definitions: Existing IDL type definitions for

use with DDS remain compatible to the extent that those definitions were standards-

compliant and based on implementation-independent best practices.

 Forward compatibility with respect to IDL compilers: With a few exceptions, IDL type

definitions formulated according to this specification will be accepted by IDL compilers

that do not conform to this specification.

7.3.1.1.1 Backward Compatibility with Respect to Type Definitions

This specification uses a subset of the IDL type definition syntax defined in [IDL41]. In

particular, it uses the Extensible DDS Profile (Sub Clause 9.3.2 [IDL41]), which is composed of

the following elements:

 Building Blocks

o Core Data Types (Sub Clause 7.4.1 [IDL41])

o Extended Data Types (Sub Clause 7.4.13 [IDL41])

o Anonymous Types (Sub Clause 7.4.14 [IDL41])

o Annotations (Sub Clause 7.4.15 [IDL41])

 Group of Annotations

o General Purpose (Sub Clause 8.3.1 [IDL41])

o Data Modeling (Sub Clause 8.3.2 [IDL41])

o Data Implementation (Sub Clause 8.3.4 [IDL41])

DDS-XTypes, version 1.2 69

o Code Generation (Sub Clause 8.3.5 [IDL41]).

This specification retains well-established IDL type definition syntax, such as enumeration,

structure, union, and sequence definitions.

Some DDS users may be using constructs for implementation-specific purposes outside the

building blocks and group of annotations listed above. These constructs remain legal for use in

IDL files provided to IDL compilers compliant with this specification. However, their meanings

are undefined with respect to this specification. Compilers that do not support them shall ignore

them or issue a warning rather than halting with an error.

7.3.1.1.2 Forward Compatibility with Respect to Compilers

This specification retains well-established IDL type definition syntax, such as enumeration,

structure, union, and sequence definitions. This degree of backward compatibility also provides

forward compatibility with respect to IDL compilers.

However, this specification also defines new Type System concepts that necessarily had no

defined IDL representation, such as maps and annotations. In some cases, such as with

annotations, a syntax exists that does not harm compatibility; see Clause 7.3.1.2.6. In other cases,

incompatibility is unavoidable.

The following pragma declarations allow IDL type designers to indicate to their tools and to

human readers that their IDL file (or a portion of it) makes use of constructs defined by this

specification:

#pragma dds_xtopics begin [<version_number>]

// IDL definitions

#pragma dds_xtopics end [<version_number>]

The optional version number indicates the OMG version number of this specification document.

It shall be interpreted without respect to case, and any spaces (for example, in “1.0 Beta 1”) shall

be replaced with underscores.

In the event that such pragma declarations are nested within one another, the innermost version

number specified, if any, shall be in effect. If version numbers are used with “end” declarations,

those version numbers should be the same as those used with the matching “begin” declarations.

In the event that such a pragma “begin” declaration is not matched with a subsequent closing

“end” declaration, the “begin” declaration shall be considered to continue until the end of the

IDL input.

For example:

#pragma dds_xtopics begin 1.0_Beta_1

struct Base {

 @key long id;

};

70 DDS-XTypes, version 1.2

#pragma dds_xtopics begin 1.1

struct Sub : Base {

 long another_member;

};

#pragma dds_xtopics end 1.1

#pragma dds_xtopics end 1.0_Beta_1

The above declarations are informative only. The behavior of an IDL compiler upon

encountering them is unspecified but may include:

 Silently ignoring them.

 Issuing a warning, perhaps because it does not recognize them, or because it recognizes

the pragmas but not the indicated version number.

 Halting with an error, perhaps because it recognized the pragmas and knows that it is not

compliant with this specification, or because it detected a version mismatch between

matching “begin” and “end” declarations.

7.3.1.2 Annotation Language

This specification makes use of different standard annotation groups defined in [IDL41]. It also

proposes an alternative annotation syntax for pre-existing IDL compilers.

7.3.1.2.1 Built-in Annotations

This specification uses the following IDL annotations to model certain properties of the type

system model defined in Clause 7.2.2.

In IDL an annotation may be applied to any construct or sub-construct (see Sub Clause 7.4.15.2,

[IDL41]). This specification restricts the applicability of annotations to constructed types,

bitmask constants, enumerated type literals, and members of aggregated types.

7.3.1.2.1.1 Member IDs

All members of aggregated types have an integral member ID that uniquely identifies them

within their defining type. By default, member IDs are set automatically following a progression

that starts from the most-recently specified ID (using the @id annotation defined in

Sub Clause 8.3.1.2 in [IDL41]) or an implicit value of zero for the first constant—if there is no

previous specified value—adding one with each successive member.

This behavior may be altered by two additional annotations. The @autoid annotation (defined in

Sub Clause 8.3.1.2 in [IDL41]), which if set to HASH indicates that all member IDs shall be

computed with a hashing algorithm, regardless of the order in which they are declared. And the

@hashid member annotation, which provides the value to hash to generate the member ID; its

definition is as follows:

DDS-XTypes, version 1.2 71

@annotation hashid {

 string value default ””;

};

The @hashid annotation is useful when one type is using the @autoid annotation and a new

version of the type changes a member's name. The value for this annotation can be set to the old

member's name, resulting in both members getting assigned the same hash value for their IDs.

If the annotation is used without any parameter or with the empty string as a value, then the

Member ID shall be the hash of the member name.

7.3.1.2.1.2 Optional Members

By default, a member declared in IDL is not optional. To declare a member optional, users shall

apply the @optional annotation, which is defined in Sub Clause 8.3.1.3 of [IDL41].

It is an error to declare the same member as both optional and as a key.

7.3.1.2.1.3 Key Members

By default, members declared in IDL are not considered part of their containing type’s key. To

declare a member as part of the key, users shall apply the @key annotation defined in Sub

Clause 8.3.2.1 of [IDL41].

It is an error to declare the same member as both optional and as a key.

7.3.1.2.1.4 External Data

A member declared as external within an aggregated type indicates that it is desirable for the

implementation to store the member in storage external to the enclosing aggregated type object.

A suitable implementation in common programming languages may be a pointer to the member.

Unless also annotated as Optional, external members shall always be present and therefore the

pointer (if that is the representation used) to non-optional external members cannot be NULL.

Non-optional external members can be annotated as Key.

The purpose of external data (annotated as @external) is not to facilitate graph modeling or

graph (de-) serialization. If a conforming implementation encounters a graph (case #2 and #3

below), it is not required to maintain the graph structure through serialization/deserialization.

Non-normative note: Three main cases arise when using external data (1) tree structure—it is

(de-) serializable (2) Diamond case—it is serializable but the bottom-most shared object may be

serialized twice turning the graph into a tree. The diamond case is expected to work with some

overhead. (3) Cycles—it is not serializable. However a conforming implementation is not

required to warn or detect such cases.

To declare a member of an aggregated type external, apply the built-in “external” annotation to

that member like this:

@external long my_aggregation_member;

or:

long my_aggregation_member; //@external

72 DDS-XTypes, version 1.2

To declare the elements of a collection type external, apply the annotation to the collection

declaration like this:

Sequences:

sequence<@external Foo, 42> sequence_of_foo;

Arrays:

Foo array_of_foo @external [42];

Maps:

map<string, @external Foo, 42> map_of_string_to_foo;

7.3.1.2.1.5 Enumerated Literal Values

Prior to this specification, it was impossible to indicate that objects of enumerated types could be

stored using an integer size other than 32 bits. This specification uses the @bit_bound annotation

defined in Sub Clause 8.3.4.1 of [IDL41] for this purpose.

It is important to note that the value member of the annotation may take any value from 1 to 32,

inclusive, when this annotation is applied to an enumerated type.

Furthermore, prior to this specification, it was impossible to provide an explicit value for an

enumerated literal. The value was always inferred based on the definition order of the literals.

That behavior is still supported. However, additionally, this specification allows enumerated

literals to be given explicit custom values, just as they can be in the C and C++ programming

languages. This can be done by means of the @value annotation defined in Sub Clause 8.3.1.5 of

[IDL41], which may be applied to individual literals.

It is permitted for some literals in an enumerated type to bear the @value annotation while others

do not. In such cases, as in C and C++ enumerations, implicit values are assigned in a

progression starting from the most-recently specified value (or an implicit value of zero for the

first literal, if there is no previous specified value) and adding one with each successive literal.

7.3.1.2.1.6 Bitmask Positions

By default, the size of a bit mask is 32-bit. This behavior may be amended with the use of the

@bit_bound annotation, which may set the size of the whole bit mask to a value lower or equal

to 64 as specified in Sub Clause 7.4.13.4.3.3 of [IDL41].

Likewise, a bit value may be set explicitly by means of the @position annotation, which is

defined in Sub Clause 8.3.1.4 of [IDL41].

7.3.1.2.1.7 Nested Types

By default, aggregated types and aliases to aggregated types defined in IDL are not considered to

be nested types. This designation may be changed by applying the IDL @nested annotation to a

type definition. The @nested annotation is defined in Sub Clause 8.3.4.3 of [IDL41].

7.3.1.2.1.8 Type Extensibility and Mutability

The extensibility kind of a type may be defined by means of a @extensibility annotation

defined in Sub Clause 8.3.1.6 of [IDL41].

DDS-XTypes, version 1.2 73

This annotation may be applied to the definitions of aggregated types. It shall be considered an

error for it to be applied to the same type multiple times.

In the event that the representation of a given type does not indicate the type’s extensibility kind,

the type shall be considered appendable. Implementations may provide a mechanism to override

this default behavior; for example, IDL compilers may provide configuration options to allow

users to specify whether types of unspecified extensibility are to be considered final, appendable,

or mutable.

IDL compilers shall also implement the shortcut annotations for the different extensibility kinds.

That is, @final and @mutable, which defined in Sub Clauses 8.3.1.7 and 8.3.1.8 of [IDL41], as

well as @appendable, which shall be defined as follows:

@annotation appendable {};

7.3.1.2.1.9 Must Understand Members

By default, the assignment from an object of type T2 into an object of type T1 where T1 and T2

are non-final types will ignore any members in T2 that are not present in T1. This behavior may

be changed by applying the @must_understand annotation to a member within a type definition.

The @must_understand annotation is defined in Sub Clause 8.3.2.2 of [IDL41].

If the @must_understand annotation is set to true in particular member M2 of a type T2, then

the assignment to an object of type T1 shall fail if the type T1 does not define such a member.

7.3.1.2.1.10 Default Literal for Enumeration

Normally the default value for an object of a type is pre-defined based on the generic rules based

on the characteristics of the type. For example, for an integer it would be the value zero and for

an enumeration it is the literal with the lowest member ID.

This generic rule is not desirable in some situations. The annotation @default_literal allows

this behavior to be changed.

@annotation default_literal {};

The application to enumerated types is illustrated in the example below:

enum MyEnum {

 ENUM1,

 ENUM2,

 @default_literal ENUM3,

 ENUM4

};

7.3.1.2.1.11 TryConstruct Elements and Members

The construction of an object of a collection or aggregated type operates recursively; it requires

constructing objects of the nested element/member types. Therefore failure to construct any

object of the nested element/member type failure may impact the ability to construct the whole

collection/aggregated type:

74 DDS-XTypes, version 1.2

 In some cases the consequence will be that there is no object of the collection/aggregated

type that can be constructed.

 In other cases the failure in the nested element/member will be mitigated and the

collection/aggregated object successfully created.

The specific behavior depends on the TryConstruct behavior associated with the element or

member of the type being constructed as described in 7.2.2.7.

The @try_construct annotation is used to explicitly set the TryConstruct behavior of element

of a collection type and/or member of an aggregated type.

The IDL definition of the @try_construct annotation is:

enum TryConstructFailAction {

 DISCARD,

 USE_DEFAULT,

 TRIM

};

@annotation try_construct {

 TryConstructFailAction value default USE_DEFAULT;

};

As specified in 7.2.2.7 the default behavior is DISCARD. Therefore if the @try_construct

annotation is not used it is the same as if it had been explicitly set to DISCARD. For example:

struct T1 {

 long important_member;

 @try_construct(DISCARD) string<4> m1;

};

Is the same as:

struct T1 {

 long important_member;

 string<4> m1;

};

If the annotation is specified without a value, or if the value is set to USE_DEFAULT, then the

behavior is set to DEFAULT as specified in 7.2.2.7. This means the element or member will be

constructed to have its default value (according to its type as described in Table 9) and does not

cause the aggregated container to fail the construction.

As specified in 7.2.2.7, the TryConstruct annotation may be used in structure and union members,

the union discriminator, the elements of arrays and sequences, and the key and/or values of map

types.

DDS-XTypes, version 1.2 75

7.3.1.2.1.11.1 TryConstruct Example 1

Assume T1 is defined:

struct T1 {

 long a_long;

 @try_construct(USE_DEFAULT) string<5> member;

};

Or alternatively T1 is defined:

struct T1 {

 long a_long;

 @try_construct string<5> member;

};

Assume further that T2 is defined as:

struct T2 {

 long a_long;

 string<32> member;

};

In this situation if O2 is an object of type T2, and the value of the nested member object

O2.member is the string “Hello World!”, then O2.member cannot construct any object of type

String4 (string<5>). However since the TryConstruct behavior associated with the T1 member

“member” is USE_DEFAULT, then the failure is mitigated and an O1 object of type T1 can be

successfully constructed. The constructed object would have O1.member set to the empty string.

7.3.1.2.1.11.2 TryConstruct Example 2

Assume T1 and T2 are defined as:

struct T1 {

 long a_long;

 @try_construct(TRIM) string<5> member;

};

struct T2 {

 long a_long;

 string<32> member;

};

In this situation if O2 is an object of type T2, and the value of the nested member object

O2.member is the string “Hello World!”, then the object O2.member cannot construct any object

of the type of the corresponding member of T1 (string<5>). However, since the TryConstruct

behavior associated with the member is TRIM, then the failure is mitigated and an object O1 of

76 DDS-XTypes, version 1.2

type T1 can be successfully constructed. The constructed object would have O1.member contain

the characters of O2.member that can fit on its string<5> type, that is, the string “Hello”.

7.3.1.2.1.11.3 TryConstruct Example 3

Assume T1 and T2 are defined as:

struct T1 {

 long a_long;

 @try_construct(TRIM) sequence<long,4> member;

};

struct T2 {

 long a_long;

 sequence<long,32> member;

};

In this situation if O2 is an object of type T2, and the value of the nested member object

O2.member is the sequence of longs [1, 2, 3, 4, 5, 6, 7, 8], then the object O2.member cannot

construct any object of the type of the corresponding member of T1 (sequence<long,4>).

However since the TryConstruct behavior associated with the member is TRIM, then the failure

is mitigated and an object O1 of type T1 can be successfully constructed. The constructed object

would have O1.member as a sequence of 4 longs containing the first four elements of

O2.member.

7.3.1.2.1.11.4 TryConstruct Example 4

Assume T1 and T2 are defined as:

typedef string<5> String5;

struct T1 {

 long a_long;

 sequence<@try_construct(TRIM) String5, 10> member;

};

typedef string<16> String16;

struct T2 {

 long a_long;

 sequence<String16, 10> member;

};

In this situation if O2 is an object of type T2, and the value of the nested member object

O2.member is a sequence of String16 where the first element (O2.member[0]) is “Hello World” ,

then the object O2.member [0] cannot construct any object of the type of the corresponding

element of T1 (String5). However since the TryConstruct behavior associated with the element

of the sequence is TRIM, then the failure is mitigated and an object O1 of type T1 can be

DDS-XTypes, version 1.2 77

successfully constructed. The constructed object would have O1.member[0] as the string “Hello”

(i.e. the result of trimming “Hello World!” to the length that can fit into the String5 element

type).

7.3.1.2.1.11.5 TryConstruct Example 5

Assume T1 and T2 are defined as:

enum T1Enum {

 ENUM1,

 @default_literal ENUM2

};

union T1 switch (T1Enum) {

case ENUM1:

 long e1_value;

case ENUM2:

 long e2_value;

};

enum T2Enum {

 ENUM1,

 @default_literal ENUM2,

 ENUM3

};

union T2 switch (T2Enum) {

 case ENUM1:

 long e1_value;

 case ENUM2:

 long e2_value;

 case ENUM3:

 long e3_value;

};

In this situation if O2 is an object of type T2, and the value of the discriminator is ENUM3, then

O2.discriminator cannot construct an object of type T1Enum and as a consequence O2 cannot

construct any object of type T1.

However if T1 and T2 had been defined to have USE_DEFAULT TryConstruct behavior for the

discriminator as in:

union T1 switch (@try_construct T1Enum) {

 case ENUM1:

78 DDS-XTypes, version 1.2

 long e1_value;

 case ENUM2:

 long e2_value;

};

union T2 switch (T2Enum) {

 case ENUM1:

 long e1_value;

 case ENUM2:

 long e2_value;

 case ENUM3:

 long e3_value;

};

Then in this situation the failure to construct a T1Enum from O2.discriminator would be

mitigated and O1.discriminator would be set to its default value (ENUM2) and O1.e1_value

would be constructed from O2.e3_value. This would allow the successful construction of an O1

object of type T1.

7.3.1.2.1.12 Verbatim Text

Verbatim Text objects associated with a constructed type declaration shall be indicated using the

following @verbatim annotation defined in Sub Clause 8.3.5.1 of [IDL41].

7.3.1.2.1.13 Non-serialized Members

By default, all members declared in IDL are serialized. To declare that a member should be

omitted from serialization, apply the @non_serialized annotation. The equivalent definition of

this type follows:

@annotation non_serialized {

 boolean value default TRUE;

};

It is an error to declare the same member as both non_serialized and as a key.

7.3.1.2.2 Using Built-in Annotations

The application of the annotations listed above is restricted to the elements of specified in Table

21.

Table 21 – IDL Built-in Annotations Usage

Annotation Applicable

@id, @optional, @must_understand,

@non_serialized
Structure Members

@external, @try_construct Structure Members, Union members (except

DDS-XTypes, version 1.2 79

union discriminator)

@key Structure Members, Union discriminator

@bit_bound Enumerated Types, Bit Mask Types

@extensibility, @mutable, @appendable,

@final, @nested
Type declarations

@default_literal, @value Enumerated Literals

@position Bitmask Values

@autoid Module declarations, Structure declarations,

Union declarations

@verbatim All elements

7.3.1.2.3 Alternative Annotation Syntax

It is anticipated that it will take vendors some amount of time to implement the syntax defined in

[IDL41]. During this time, existing customers may have the need to share IDL files between

products that do support this specification and those that do not. In such a case, the extended

annotation syntax defined here could be problematic. Therefore, this specification defines an

alternative syntax for annotations that will not cause problems for pre-existing IDL compilers.

This alternative syntax uses special comments containing at-signs (‘@’), much like the way

JavaDoc used “at” comments to attach metadata to declarations prior to the introduction of an

annotation to the Java language. (For example, the conventional way to deprecate a method prior

Java 5 was to place @deprecated in the documentation. In Java 5 and above, the preferred way

is to use @deprecated in the source code itself, but the JavaDoc-based mechanism is still

supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the

declaration with a single-line comment containing the annotation string. To distinguish such

comments from regular comments, there must be no space in between the double slash (“//”) and

the at-sign (‘@’). For example:

struct Gadget {

 long my_integer; //@my_member_annotation("Hello")

}; //@my_type_annotation

If multiple annotations are to be applied to the same element, the at-sign of each shall be

preceded by a double slash and no white space. For example:

struct Gadget {

 long my_integer; //@my_annotation1(greeting="Hello")

//@my_annotation2

}; //@my_type_annotation

80 DDS-XTypes, version 1.2

7.3.1.2.4 Defining Annotations

Annotation types shall be represented as described in this clause. An annotation type is defined

using the new token @annotation, as in the following example:

@annotation MyAnnotation {

 // ...

};

Annotation identifiers are orthogonal to any other kind of type and therefore do not conflict with

other types that may use the same identifier name even when defined in the same module. This is

because the application of an annotation prefixes the annotation identifier with the “@” character,

see Sub Clause 7.3.1.2.5.

Recall from the Type System Model that annotation types are a form of aggregated type similar

to a structure. The members of these types shall be represented using IDL members, as shown in

the following example:

@annotation MyAnnotation {

 long my_annotation_member_1;

 double my_annotation_member_2;

};

Annotation members have additional constraints that are described above in the Type System

Model.

Table 22 – Syntax for declaring an annotation type

@annotation

<ann_identifier> “{”

<ann_members>

“};”

Declares an annotation type containing the members

<ann_members>.

struct <ann_identifier>

“{”

 <ann_members>

“};” //@annotation

The “struct” <ann_identifier> is actually an annotation type

containing the members <ann_members>.

The Alternative annotation syntax has been defined for backward

compatibility with legacy IDL compilers.

Annotation members can take default values; these are expressed by using the keyword

“default” in between the attribute name and the semicolon, followed by the default value. This

value must be a valid IDL literal that is type compatible with the type of the member.

Table 23 – Syntax for members of annotation types

[<pre_annotations>] <member_type>

<member_name> [default

<member_value>];

[<post_annotations>]

The enclosing annotation has a member

<member_name> of type <member_type>. That

member may have other annotations applied to it,

either before or (equivalently) after.

DDS-XTypes, version 1.2 81

Consider the following example
4
. The RequestForEnhancement annotation indicates that a

given feature should be implemented in a hypothetical system, and it provides some additional

information about the requested enhancement.

@annotation RequestForEnhancement {

 long id; // identify the RFE

 string synopsis; // describe the RFE

 string engineer default "[unassigned]"; // engineer to implement

 string date default "[unimplemented]"; // date to implement

};

The specified default value may be any legal IDL literal compatible with the declared member

type.

7.3.1.2.5 Applying Annotations

Annotations may be applied to any type definition or type member definition. The syntax for

doing so is to prefix the definition with an at-sign (‘@’) and the name of the desired annotation

interface. For example:

struct Delorean {

 Wheel wheels[4];

 float miles_per_gallon;

 @RequestForEnhancement boolean can_travel_through_time;

};

More than one annotation may be applied to the same element, and multiple instances of the

same annotation may be applied to the same element.

Table 24 – Syntax for applying annotations

{ “@” <annotation_type_name> [“(”

<arguments> “)”] }*

Apply an annotation to a type or type member by

prefixing it with an at sign (‘@’) and the name of the

annotation type to apply. To specify the values of any

members of the annotation type, include them in

name=value syntax between parentheses.

{ “//@”<annotation_type_name>

[“(” <arguments> “)”] }*

Alternately and equivalently, apply an annotation to a

type or type member by suffixing it with an annotation

type name using slash-slash-at (“//@”) instead of the at

sign by itself.

Annotations can be applied to the implicit discriminator member of a union type by applying

them to the discriminator type declaration in the header of the union type’s definition:

union MyUnion switch (@MyAnnotation long) {

4 The example annotation type shown is based on one used in the Java annotation tutorial from Sun Microsystems:

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

82 DDS-XTypes, version 1.2

 case 0:

 string member_0;

 default:

 long default_member;

};

As with any IDL identifier, the name of an annotation and its members are not case-sensitive. To

specify multiple annotations, place them one after another, separated by white space.

To specify values for any or all of the annotation type’s members, follow the name of the

annotation with a parenthesis, and place the member values in a comma-delimited list in between

them, where each list item is of the form “member_name = member_value.” Each value must be

a compile-time constant. For example:

struct Delorean {

 @RequestForEnhancement(

 id = 10,

 synopsis = "Enable time travel",

 engineer = "Mr. Peabody",

 date = "4/1/3007"

)

 boolean can_travel_through_time;

};

An annotation with an empty list of member values is equivalent to a member list that is omitted

altogether.

Any member of the annotation interface may be omitted when the annotation is applied. If a

value for a given member is omitted, and that member has a defined default value, it will take

that value. If an omitted member does not have a specified default, it will take the default value

specified for its type in Clause 7.2.2.4.4.5.

If an annotation interface has only a single member, the type designer is recommended to name

that member “value.” In such a case, the member name may be omitted when applying the

annotation. For example:

@annotation Widget {

 long value;

};

@Widget(5)

struct Gadget {

 // ...

};

DDS-XTypes, version 1.2 83

7.3.1.2.6 Alternative Syntax

It is anticipated that it will take vendors some amount of time to implement this specification.

During this time, existing customers may have the need to share IDL files between products that

do support this specification and those that do not. In such a case, the extended annotation syntax

defined here could be problematic. Therefore, this specification defines an alternative syntax for

annotations that will not cause problems for pre-existing IDL compilers.

This alternative syntax uses special comments containing at-signs (‘@’), much like the way

JavaDoc used “at” comments to attach meta-data to declarations prior to the introduction of an

annotation to the Java language. (For example, the conventional way to deprecate a method prior

to Java 5 was to place @deprecated in the documentation. In Java 5 and above, the preferred

way is to use @Deprecated in the source code itself, but the JavaDoc-based mechanism is still

supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the declaration

with a single-line comment containing the annotation string. To distinguish such comments from

regular comments, there must be no space in between the double slash (“//”) and the at-sign

(‘@’). For example:

struct Gadget {

 long my_integer; //@MyMemberAnnotation("Hello")

}; //@MyTypeAnnotation

If multiple annotations are to be applied to the same element, the at-sign of each shall be

preceded by a double slash and no white space. For example:

struct Gadget {

 long my_integer; //@MyAnnotation1(greeting="Hello")

 //@MyAnnotation2

}; //@MyTypeAnnotation

7.3.1.3 Constants and Expressions

IDL allows the declaration of global and namespace-level constant values. It also allows the use

of compile-time mathematical expressions, which may include constants, enumeration values,

and numeric literals. Such declarations and expressions remain legal IDL. However, they are not

reflected directly in the Type System specified here, which assumes that all compile-time-

constant values have already been evaluated.

7.3.1.4 Primitive Types

The primitive types specified here directly correlate to the primitive types that already exist in

IDL.

Table 25 – IDL primitive type mapping

Type System Model

Type

IDL Type Type System

Model Type

IDL Type

Int16 short Float64 double

84 DDS-XTypes, version 1.2

UInt16 unsigned short Float128 long double

Int32 long Char8 char

UInt32 unsigned long Char16 wchar

Int64 long long Boolean boolean

UInt64 unsigned long long Byte octet

Float32 float

7.3.1.5 Alias Types

Aliases as described in this specification are fully compatible with the IDL typedef construct.

7.3.1.6 Array and Sequence Types

Arrays and sequences as described in this specification are fully compatible with the IDL

constructs of the same names.

7.3.1.7 String Types

The string container defined by this specification has two element types for which the behavior is

defined: Char8 and Char16. Strings of Char8 shall be represented by the IDL type string.

Strings of Char16 shall be represented by the IDL type wstring. In either case, any bound shall

be retained.

7.3.1.8 Enumerated Types

Enumerations and bitmasks as described in this specification are fully compatible with the IDL

constructs of the same name.

7.3.1.9 Map Types

Map types as described in this specification are fully compatible with the IDL constructs of the

same name defined in the Extended Data-Types Building Block of [IDL41].

Structures as defined by this specification are fully compatible with the IDL constructs of the

same name.

7.3.1.10 Structure Types

Structures as described in this specification are in this specification are fully compatible with the

IDL constructs of the same name.

7.3.1.11 Union Types

Unions as described in this specification are fully compatible with the IDL constructs of the

same name. Compliant IDL parsers shall implement the Building Block Extended Data-Types of

[IDL41], which adds support for Byte (octet) and Char16 (wchar) type discriminators.

DDS-XTypes, version 1.2 85

7.3.2 XML Type Representation

Types may be defined in an easy-to-read, easy-to-process XML format. This format is defined by

an XML schema document (XSD) and a set of semantic rules, which are discussed below.

The XML namespace of the XML Type Representation shall be http://www.omg.org/dds.

Design Rationale (non-normative)

The XML Type Representation very much resembles a translation of the grammar of the IDL

Type Representation directly into XML. The largest change from such a straightforward

translation is that the “built-in annotations” from the IDL Type Representation are here

represented as first-class XML constructs—a luxury that is feasible here because this

Representation does not predate the definition of the corresponding modeling concepts.

7.3.2.1 Type Representation Management

This Type Representation provides several features that do not directly impact or reflect the Type

System. However, they provide capabilities that are necessary or convenient for the organization

and management of type declarations. These features are described in this clause.

7.3.2.1.1 File Inclusion

As in IDL, files may include other files. Such inclusions shall not be considered semantically

meaningful with respect to the Type System Model, but they can be useful as a code

maintenance tool.

A file inclusion specified as in this Type Representation shall be considered equivalent to an IDL

#include of the same file. A formal definition is in “Annex A: XML Type Representation

Schema.” The following is a non-normative example:

<dds:types xmlns:dds="http://www.omg.org/dds">

 <dds:include file="my_other_types.xml"/>

</dds:types>

Conformant Type Representation compilers need not support the inclusion of files of other Type

Representations from within an XML Type Representation document. For example, conformant

Type Representation compilers need not support the inclusion of IDL files from XML files.

Design Rationale (non-normative)

XML provides other mechanisms to include one file within another—for example, by defining

custom entities. However, these mechanisms cannot provide functionality equivalent to the

#include of IDL because of when they are interpreted during the XML parsing process.

For example, suppose a type X defined in X.xml and a type Y defined in Y.xml both depend on a

type Z defined in Z.xml. Suppose further that an application wishes to use these three types using

their Plain Language Bindings in the C programming language. If X.xml and Y.xml include

Z.xml using an XML entity definition, this definition will be expanded by the XML parser (upon

which the code generator is presumably implemented), and the code generator will never know

of the existence of Z.xml. It will instead encounter two definitions of Z, and the application will

fail to build because of multiply defined symbols.

86 DDS-XTypes, version 1.2

As an alternative, the mechanism described here allows the code generator to observe the

intention to include Z.xml and generate #include <Z.h>, avoiding the multiple definition

problem.

7.3.2.1.2 Forward Declarations

As in IDL, C, and C++, a usage of a type must be preceded by a declaration of that type.

Therefore, as those languages do, this Type Representation provides for forward declarations of

types. These declarations are provided for the convenience of code generator implementations;

they shall have no representation in the Type Representation Model.

A forward declaration as described in this Type Representation shall be considered semantically

equivalent to an IDL forward declaration. A formal definition is in “Annex A: XML Type

Representation Schema.” The following is a non-normative example:

<dds:types xmlns:dds="http://www.omg.org/dds">

 <dds:forward_dcl kind="struct" name="MyStructure"/>

</dds:types>

7.3.2.1.3 Constants

As in the IDL Type Representation, the XML Type Representation supports declaration of

compile-time constant values. Specifically, the string specified in the value attribute described

below shall have the same syntax as the <const_exp> production in the IDL grammar [IDL41].

Constants can appear at the top level of a Type Representation file, within a module, or—as in an

IDL valuetype—within a structure declaration.

Constants are not reflected directly in the Type System. Instead, mathematical expressions shall

be considered to be evaluated at compile time.

The following is a non-normative example:

<dds:types

xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type_Representation">

 <dds:const name="MY_CONSTANT" type="int32" value="2 + 3"/>

</dds:types>

7.3.2.2 Basic Types

This Type Representation represents type names with a combination of XML attributes, defined

according to the following pattern:

 A “type” attribute, typed by an enumeration allTypeKind, indicates whether the type is

“basic” (i.e., is a primitive or string)—and if so, which one—or if it is “non-basic” (i.e.,

any other type).

Design rationale: As even basic types have identifier names, the use of the allTypeKind

enumeration does not add to the expressiveness of this Type Representation. However,

since primitive types are used frequently, the enumeration allows XML editors to provide

context-sensitive completions, improving the user experience.

DDS-XTypes, version 1.2 87

 A “non-basic type name” attribute indicates the name of the type if it is a non-basic type.

It is an error to include this attribute if the type attribute does not indicate a non-basic

type.

 If the type is a collection type, additional attributes describe its bound(s); see below.

The names of the basic types in this Type Representation have been chosen to resemble terse

versions of the corresponding names in the Type System Model.

Table 26 – Primitive and string type names in the XML Type Representation

Type System Model Name XML Type Representation

Name

Boolean boolean

Byte byte

Char8 char8

Char16 char16

Int32 int32

UInt32 uint32

Int16 int16

UInt16 uint16

Int64 int64

UInt64 uint64

Float32 float32

Float64 float64

Float128 float128

String<Char8, …> string

String<Char16, …> wstring

7.3.2.3 String Types

As described above, strings (whether of narrow or wide characters) are considered to be basic

types in this Type Representation. Nevertheless, the description of their bounds requires

additional attributes.

The stringMaxLength attribute, if present, indicates the string’s bound. If the attribute is

omitted, the string shall be considered unbounded.

The presence of this attribute is legal only when a member’s type is a string, a wide string, or an

alias to string or wide string. The following examples are non-normative:

<struct name="MyStructure">

 <member name="unbounded_string_1" type="string"/>

88 DDS-XTypes, version 1.2

 <member name="unbounded_string_2" type="string" stringMaxLength="-1"/>

 <member name="bounded_string" type="string"

 stringMaxLength="2 + MY_CONSTANT"/>

</struct>

7.3.2.4 Collection Types

The element type identified by the type and nonBasicTypeName attributes correspond to the

type of a member itself when the member identifies a single value, to the element type when the

member is of a sequence or array collection, or to the “value” type of map collection if the

member is of a map type. This clause and its sub clauses summarize these rules; the formal

grammar can be found in “Annex A: XML Type Representation Schema.”

Collection bounds are indicated by attributes named according to the convention

<collection>MaxLength: stringMaxLength, sequenceMaxLength, and mapMaxLength. The

types of these attributes are strings, not integers: the values of these attributes may be any

constant expression as defined by the <const_exp> production in the IDL grammar [IDL41].

The literal expression “-1” shall indicate an unbounded collection; no other “negative” value is

permitted.

The element_external property of the Type System Model shall be represented by an attribute

external.

7.3.2.4.1 Array Types

The presence of the arrayDimensions attribute shall indicate that given member is an array.

Array dimensions are represented as a comma-delimited list of dimension bounds in the same

order in which those bounds would be given in IDL. Whitespace is allowed around each bound

and is not significant.

Compile-time-constant mathematical expressions are also permitted; their syntax shall be defined

by the <const_exp> production in the IDL grammar [IDL41]. As in the IDL Type

Representation, such expressions are not expressed directly in the Type System Model but are

evaluated first. For example, the following are all valid:

 arrayDimensions="1"

 arrayDimensions="2, MY_CONSTANT + 3"

 arrayDimensions=" 6,2, 3 "

For example:

<struct name="MyStructure">

 <member name="my_array_of_42_integers" type="int32" arrayDimensions="42"/>

</struct>

7.3.2.4.2 Sequence Types

The sequenceMaxLength attribute, if present, shall indicate that the member is of a sequence

type.

DDS-XTypes, version 1.2 89

The following is a non-normative example:

<struct name="MyStructure">

 <member name="my_unbounded_sequence_of_integers" type="int32"

 sequenceMaxLength="-1"/>

 <member name="my_bounded_sequence_of_structures" type="nonBasic"

 nonBasicTypeName="MyOtherStructure"

 sequenceMaxLength="6 * 3"/>

</struct>

7.3.2.4.3 Map Types

Map types must include the following additional information:

 The map’s bound, if any, shall be indicated by the mapMaxLength attribute. This attribute

is required for all map types.

 The type of the map’s “key” elements shall be indicated by the mapKeyType attribute.

This attribute is required for all map types. This attribute is exactly parallel to the type

attribute (which describes the type of the map’s “value” elements): it indicates whether

the “key” elements of the map are of a basic or non-basic type and, if basic, which basic

type. If the type is non-basic, the mapKeyNonBasicTypeName attribute is also required and

is parallel to the nonBasicTypeName attribute. If the “key” type is basic, the

mapKeyNonBasicTypeName attribute is not allowed.

 Only if the map’s “key” type is a string type, the attribute mapKeyStringMaxLength, if

present, shall indicate the bound of that string type. If the “key” type is a string type, and

this attribute is omitted, the string shall be considered unbounded. If the “key” type is not

a string type, this attribute is not allowed.

The following is a non-normative example:

<struct name="MyStructure">

 <member name="my_unbounded_maps_of_integers_to_floats" type="int32"

 mapKeyType="float32"

 mapMaxLength="-1"/>

 <member name="my_bounded_map_of_strings_to_structures"

 mapKeyType="string"

 mapKeyStringMaxLength="128"

 type="nonBasic"

 nonBasicTypeName="MyOtherStructure"

 mapMaxLength="6 * 3"/>

</struct>

90 DDS-XTypes, version 1.2

7.3.2.4.4 Combinations of Collection Types

A type may be a sequence of arrays, a map of strings to sequences, or some other complex

combination of collection types. It’s therefore important to understand, if some combination of

sequenceMaxLength and mapMaxLength are present, which takes precedence. The following list

is ordered from most-tightly-binding to least-tightly-binding:

 Sequence designations, including sequenceMaxLength

 Array designations, including arrayDimensions

 Map designations, including mapMaxLength.

To indicate a type composed in a different order (for example, a sequence of arrays), it is

necessary to interpose an alias definition.

For example, a member specifying all of these would define a map whose values are arrays of

sequences of strings. Further examples follow:

<struct name="MyStructure">

 <member name="my_array_of_strings"

 type="string"

 stringMaxLength="-1"

 arrayDimensions="20"/>

 <member name="my_array_of_sequences_of_integers"

 type="int32"

 sequenceMaxLength="6 * 3"

 arrayDimensions="20"/>

</struct>

7.3.2.5 Aggregated Types

Aggregated types include those types that define internal named members taking per-instance

values: annotations, structures, and unions.

The Type System defines a number of properties for aggregated types and their members:

 extensibility_kind

 nested

 key

 optional

 must_understand, etc.

The IDL Type Representation is based on IDL, which provides no syntax to provide values for

these attributes; therefore, that Type Representation makes use of built-in annotations for this

purpose. In contrast, the XML Type Definition is able to express these properties directly.

DDS-XTypes, version 1.2 91

For example, structures and unions may indicate whether they are appendable/mutable and/or

nested types:

<struct name="MyStructure" extensibility="mutable" nested="true">

 …

</struct>

In the event that the representation of a given type does not indicate the type’s extensibility kind,

an implementation may make its own determination. In particular, type representation compilers

shall provide configuration options to allow users to specify whether types of unspecified

extensibility will be considered final, appendable, or mutable.

7.3.2.5.1 Structures

Structures contain four kinds of declarations:

 Applied annotations

 Verbatim text

 Members

 Constants

Constants and applied annotations are described above. The other elements are described in the

sections below.

7.3.2.5.1.1 Verbatim Text

As described in Clause 7.2.2.4.5, types may store blocks of text to be used by Type

Representation compilers. These are represented within a structure’s declaration as shown in the

following non-normative example:

<struct name="MyStructure">

 <verbatim language="Java" placement="before-declaration">

 /**

 * This is a JavaDoc comment.

 */

 </verbatim>

 ...

</struct>

7.3.2.5.1.2 Members

Each structure type shall include one or more members. Each member of a structure type can

indicate individually whether or not it is a key member and whether or not it is an optional

member.

<struct name="structMemberDecl">

 <member name="my_key_field" type="int32" key="true" optional="false"/>

</struct>

92 DDS-XTypes, version 1.2

7.3.2.5.1.3 Inheritance

A structure declaration’s baseType attribute indicates the name of the structure’s base type, if

any; if it is omitted, then the structure has no base type. For example:

<struct name="MyStructure" baseType="MyOtherStructure">

 ...

</struct>

7.3.2.5.2 Unions

In addition to the annotate and verbatim elements they share with other aggregated types (see

above), unions contain two kinds of members: exactly one discriminator member (identified by a

discriminator element) and one or more cases (identified by case members). The

discriminator member must be declared before the others.

Each case of a union contains one or more discriminator values (caseDiscriminator elements)

and one data member. A case discriminator is a string expression, the syntax of which shall be

defined by the <const_exp> production in the IDL grammar [IDL41]. The literal “default” is

also allowed; it indicates that the corresponding case is the default case—there can only be one

such within a given union declaration.

For example:

<union name="MyUnion">

 <discriminator type="int32"/>

 <case>

 <caseDiscriminator value="1"/>

 <caseDiscriminator value="2"/>

 <member name="small_value" type="float32"/>

 </case>

 <case>

 <caseDiscriminator value="default"/>

 <member name="large_value" type="float64"/>

 </case>

</union>

The example above is equivalent to the following IDL type:

union MyUnion switch (long) {

 case 1:

 case 2:

 float small_value;

 default:

 double large_value;

};

DDS-XTypes, version 1.2 93

7.3.2.6 Aliases

Alias definitions are defined in typedef elements. They have syntax very similar to that of

structure members.

For example:

<typedef name="MyAliasToSequenceOfStructures"

 type="nonBasic"

 nonBasicTypeName="MyStructure"

 sequenceMaxLength="16"/>

7.3.2.7 Enumerated Types

7.3.2.7.1 Enumerations

Enumerations consist of a list of enumeration literals, each of which has a name and a value. The

syntax of the value shall be defined by the <const_exp> production in the IDL grammar

[IDL41]. If the value is omitted, it shall be assigned automatically.

For example:

<enum name="MyEnumeration" bitBound="16">

 <enumerator name="LITERAL_1" value="0"/>

 <enumerator name="LITERAL_2" value="0+1"/>

 <enumerator name="LITERAL_3"/>

</enum>

7.3.2.7.2 Bitmasks

A bitmask type defines a sequence of flags, each of which shall identify one of the bits in the

bitmask.

For example:

<bitmask name="MyBitmask" bitBound="64">

 <flag name="FIRST_BIT" position="0"/>

 <flag name="SECOND_BIT" position="1"/>

</bitmask>

7.3.2.8 Modules

A module groups type declarations and serves as a namespace for those definitions.

<module name="MyModule1">

 <struct name="MyStructure">

 <member name="my_member" type="int64"/>

 </struct>

</module>

94 DDS-XTypes, version 1.2

<module name="MyModule2">

 <struct name="MyStructure">

 <member name="my_member" type="nonBasic"

 nonBasicTypeName="MyModule1::MyStructure"/>

 </struct>

</module>

7.3.2.9 Annotations

There are two primary declarations pertaining to annotations: annotation types and the

applications of them to types and type members, specifying values for the annotation’s own

members.

The following is a non-normative example:

<annotation name="MyAnnotation">

 <member name="widgets" type="int32"/>

</annotation>

<struct name="MyStructure">

 <annotate name="MyAnnotation">

 <member name="widgets" value="5"/>

 </annotate>

 ...

</struct>

7.3.3 XSD Type Representation

Types can be defined using an XML schema document (XSD). The format is based on the

standard IDL mapping to XSD [IDL-XSD]. An XSD Representation of a given type shall be as if

the OMG-standard IDL mapping to XSD were applied to the IDL Representation of the type as

defined in Clause 7.3.1. That mapping is augmented as follows to address IDL extensions

defined by this specification. The resulting XSD representation may be embedded within a

WSDL file or may occur as an independent XSD document.

XML Schema documents intended for use with DDS, like any XML Schema documents, may

declare a target namespace for the elements and attributes they define. Valid documents

conforming to such schemas (i.e. serialized DDS samples; see Clause 7.4.4, “XML Data

Representation”) must respect such namespaces, if any.

7.3.3.1 Annotations

It is possible to both define and apply annotations using the XSD Type Representation; these

tasks shall be accomplished using XSD Annotations. (To avoid confusion, for the remainder of

this clause, an annotation as defined by the Type System Model in this document will be referred

to as an “OMG Annotation.” An annotation as defined by the XML Schema specification shall

be referred to as an “XSD Annotation.”)

DDS-XTypes, version 1.2 95

7.3.3.1.1 Defining Annotation Types

OMG Annotation types shall be defined using XSD-standard complexType definitions. Any

complexType definition immediately containing an XSD Annotation with an appInfo element

having a source attribute value of http://www.omg.org/Type/Annotation/Definition shall

be considered to be an OMG Annotation. Such complexType definitions, henceforth referred to

as “Annotation complexType Definitions” shall conform to the structure defined in this clause.

Each attribute of an Annotation complexType Definition shall define a member of the

corresponding OMG Annotation type:

 The name of the attribute shall specify the name of the OMG Annotation type member.

 The type of the attribute shall specify the name of the type of the OMG Annotation type

member.

 A default value, if present, shall specify the default value of the OMG Annotation type

member.

The meanings of any sub-elements defined for an Annotation complexType Definition are

unspecified. The following example provides equivalent definitions for an OMG Annotation type

in both IDL and XSD.

Table 27– XSD annotation example

IDL XSD

@annotation

my_annotation {

 long widgets;

 double gadgets

 default 42.0;

};

<xsd:complexType name="my_annotation">

 <xsd:annotation>

 <xsd:appInfo

source="http://www.omg.org/Type/Annotation/Definition"/>

 </xsd:annotation>

 <xsd:attribute name="widgets"

 type="xsd:int"/>

 <xsd:attribute name="gadgets"

 type="xsd:double"

 default="42.0"/>

</xsd:complexType>

7.3.3.1.2 Applying Annotations

OMG Annotations shall be applied to a definition by declaring, immediately within that

definition’s XML element, an XSD Annotation containing an appInfo with its source attribute

set to http://www.omg.org/Type/Annotation/Usage. The structure of such an appInfo

element shall conform to that defined in this clause.

The appInfo element shall contain an element annotate for each OMG Annotation to be

applied. For syntactic validation purposes, the definition of the annotate element shall be as

follows:

96 DDS-XTypes, version 1.2

<xsd:schema targetNamespace="http://www.omg.org/Type"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="annotate">

 <xsd:attribute name="type" type="xs:string" use="required"/>

 <xsd:anyAttribute processContents="skip"/>

 </xsd:complexType>

 …

</xsd:schema>

However, for semantic validation purposes, the annotate element shall contain attribute values

corresponding to any subset of the attributes defined by the OMG Annotation type indicated by

its required type attribute.

In the following example, the OMG Annotation MyAnnotation defined in the previous example

is applied to a structure definition:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:omg="http://www.omg.org/Type"

 xmlns:tns="http://www.omg.org/IDL-Mapped/"

 targetNamespace="http://www.omg.org/IDL-Mapped/">

 <xsd:complexType name="MyStructure">

 <xsd:annotation>

 <xsd:appInfo source="http://www.omg.org/Type/Annotation/Usage">

 <omg:annotate omg:type="MyAnnotation" widgets="12"

 gadgets="75.0"/>

 </xsd:appInfo>

 </xsd:annotation>

 </xsd:complexType>

</xsd:schema>

7.3.3.1.3 Built-in Annotations

Unless otherwise noted, those Type System concepts represented with built-in annotations in the

IDL Type Representation shall be represented by equivalent built-in annotations in this Type

Representation.

7.3.3.2 Structures

The representations of structures and their members shall be augmented as described below.

7.3.3.2.1 Inheritance

The subtype shall extend its base type using an XSD complexContent element. For example, the

following types in the IDL Type Representation and XSD Type Representation are equivalent:

DDS-XTypes, version 1.2 97

Table 28 – XSD structure inheritance example

IDL XSD

struct MyBaseType {

 long inherited_member;

};

struct MyExtendedType :

MyBaseType {

 long new_member;

};

<xs:complexType name="MyBaseType">

 <xs:sequence>

 <xs:element name="inherited_member"

 type="xs:int"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="MyExtendedType">

 <xs:complexContent>

 <xs:extension base="MyBaseType">

 <xs:sequence>

 <xs:element name="new_member"

 type="xs:int"/>

 </xs:sequence>

 </extension>

 </xs:complexContent>

</xs:complexType>

7.3.3.2.2 Optional Members

Optional members of an aggregated type shall be indicated with a minOccurs attribute value of 0

instead of 1. For example:

<xsd:complexType name="MyType">

 <xsd:sequence>

 <xsd:element name="my_int" minOccurs="0" maxOccurs="1" type="xsd:int"/>

 </xsd:sequence>

</xsd:complexType>

7.3.3.3 Nested Types

For each type T that is not a nested type, the schema shall define an XML element of that type

suitable for use as a document root. The name of this element shall be the fully qualified name of

T.

For example, for the structure “MyStructure” in the module “MyModule” (named

“MyModule.MyStructure” in this Type Representation) the schema shall include a declaration

like the following:

<xs:element name="MyModule.MyStructure" type="MyModule.MyStructure"/>

7.3.3.4 Maps

A map declaration is superficially like a structure declaration; however, the XSD sequence

declaration specifies a maxOccurs multiplicity equal to the bound of the map (or unbounded if

98 DDS-XTypes, version 1.2

the map is unbounded). The map elements are represented by elements named key and value,

each of which must occur exactly once for each iteration of the sequence.

For example, the following is a map of integers to floating-point numbers with a bound of 32:

<xsd:complexType name="MyMap">

 <xsd:sequence maxOccurs="32">

 <xsd:element name="key" minOccurs="1" maxOccurs="1" type="xsd:int"/>

 <xsd:element name="value" minOccurs="1" maxOccurs="1"

 type="xsd:double"/>

 </xsd:sequence>

</xsd:complexType>

7.3.4 Representing Types with TypeIdentifier and TypeObject

Any possible type within the XTYPES type system is uniquely identified by a TypeIdentifier.

In the case of simple types such as primitive types, string, or certain sequences of primitive types,

the TypeIdentifier completely describes the Type. For more complex types, the

TypeIdentifier only identifies the type and its full description uses a TypeObject.

See “Annex B: Representing Types with TypeObject” for the formal definition of the

TypeIdentifier and TypeObject types.

7.3.4.1 Plain Types

This specification uses the term Plain Collection type to refer to anonymous collection types

(array, sequence, and map) that have no annotations beyond @external and @try_construct.

This specification uses the term Plain type to refer to primitive types and plain collection types.

The remaining types are called Non-Plain types.

Plain types only have a TypeIdentifier. Non-plain types have both a TypeIdentifier and a

TypeObject.

7.3.4.2 Type Identifier

The type identifier provides a unique way to identify each type within the XTYPES type system.

More precisely it identifies each equivalence class of types, see Clause 7.3.4.6.

The definition of the type identifier uses the structure TypeIdentifier declared in IDL; see

“Annex B: Representing Types with TypeObject”.

TypeIdentifier is a discriminated union allowing the format of the identifier to vary depending

on the type. Table 21 below lists the TypeIdentifier discriminator values and their use.

Table 29 – Formats and interpretation of the TypeIdentifier

TypeIdentifier

discriminator value

Types Notes

TK_NONE N/A Invalid identifier

DDS-XTypes, version 1.2 99

TK_BOOLEAN, TK_BYTE,

TK_INT16, TK_INT32, TK_INT64,

TK_UINT16, TK_UINT32,

TK_UINT64, TK_FLOAT32,

TK_FLOAT64, TK_FLOAT128,

TK_CHAR8, TK_CHAR16

Primitive Types Plain Type. No TypeObject

Fully described by the discriminator.

No further information in

TypeIdentifier.

TI_STRING8_SMALL,

TI_STRING8_LARGE

String Types Plain Type. No TypeObject

Fully described by the discriminator

and the bound of the string.

The SMALL discriminators have a

bound represented as an octet. It is

used for unbounded strings or strings

with bounds smaller than 256.

The LARGE discriminators are used

for the remaining strings

TI_STRING16_SMALL,

TI_STRING16_LARGE

Wide String types Plain Type. No TypeObject

Fully described by the discriminator

and the bound of the string.

SMALL and LARGE indicate

representation of bound.

TI_PLAIN_SEQUENCE_SMALL,

TI_PLAIN_SEQUENCE_LARGE

Plain sequence

Collection

Plain Type. No TypeObject

TypeIdentifier contains maximum

length of sequence and the

TypeIdentifier of element.

SMALL and LARGE indicate

representation of maximum length.

TI_PLAIN_ARRAY_SMALL,

TI_PLAIN_ARRAY_LARGE

Plain array

Collection

Plain Type. No TypeObject

TypeIdentifier contains array

dimensions and the TypeIdentifier of

element.

SMALL and LARGE indicate

representation of dimensions.

TI_PLAIN_MAP_SMALL,

TI_PLAIN_MAP_LARGE

Plain map

Collection

Plain Type. No TypeObject

TypeIdentifier contains length of map

and the TypeIdentifier of key and

element.

SMALL and LARGE indicate

100 DDS-XTypes, version 1.2

representation of maximum length.

TI_STRONGLY_CONNECTED_COMPONE

NT

Types with

mutual

dependencies on

other types

Not plain type. Has TypeObject.

Uses a Hash computed on the

TypeObjects of the set of mutually-

dependent types. See clause 7.3.4.8.

EK_COMPLETE Not mutually

dependent on

other types

Not plain type. Has TypeObject.

Uses a Hash of the Complete

TypeObject that describes the type.

See 7.3.4.3

EK_MINIMAL Not mutually

dependent on

other types

Not plain type. Has TypeObject.

Uses a Hash of the Minimal

TypeObject that describes the type.

See 7.3.4.4.

TK_ANNOTATION

Annotation

Declaration

Not plain type. Has TypeObject.

Uses Hash of the TypeObject

representation of the Annotation

declaration

TI_EXTENDED Reserved for future extensions

7.3.4.3 Complete TypeObject

The Complete TypeObject is a type representation with the same expressive power as the IDL

(7.3.1, XML (7.3.2), and XSD (7.3.3) representations. Any non-plain type represented in IDL

can be converted to the Complete TypeObject representation and back to IDL with no

information loss, other than formatting (e.g. presence of whitespace).

The Complete TypeObject provides an alternative representation of types suitable for

programming and tooling.

The complete TypeObject is defined by its IDL representation; see the declaration of structure

CompleteTypeObject in “Annex B: Representing Types with TypeObject”.

7.3.4.4 Minimal TypeObject

The Minimal TypeObject provides a compact way to represent the type information relevant for

a remote application to determine type assignability. This representation does not include

information on the type that would not impact type assignability. For example user-defined

annotations or the order of members for types with extensibility kind MUTABLE.

The Minimal TypeObject reduces the amount of information that applications need to send on

the network in order to check type assignability between DataWriters and DataReaders.

The complete TypeObject is defined by its IDL representation; see the declaration of structure

MinimalTypeObject in “Annex B: Representing Types with TypeObject”.

DDS-XTypes, version 1.2 101

7.3.4.5 TypeObject serialization

The serialization of a TypeObject shall happen in accordance to its IDL declaration and the

general serialization rules defined in this specification (see Clause 7.4) for XCDR encoding

version 2. Additional restrictions are placed such that the serialized result is bitwise identical

independently of the vendor or platform where the serialization occurs. Specifically:

 The serialization shall use Little Endian encoding.

 The elements in AnnotationParameterSeq shall be ordered in increasing values of their

paramname_hash _typeid.

 The elements in AppliedAnnotationSeq shall be ordered in increasing values of their

annotation_typeid.

 The elements in CompleteStructMemberSeq shall be ordered in increasing values of the

member_index.

 The elements in MinimalStructMemberSeq shall be ordered in increasing values of the

member_index.

 The elements in CompleteUnionMember shall be ordered in increasing values of the

member_index.

 The elements in MinimalUnionMember shall be ordered in increasing values of the

member_index.

 The elements in CompleteAnnotationMemberSeq shall be ordered in increasing values

of the member_index.

 The elements in MinimalAnnotationMemberSeq shall be ordered in increasing values of

the member_name hash.

 The elements in CompleteEnumeratedLiteralSeq shall be ordered in increasing values

of their numeric value.

 The elements in MinimalEnumeratedLiteralSeq shall be ordered in increasing values

of their numeric value.

 The elements in CompleteBitflagSeq shall be ordered in increasing values of their

position.

 The elements in MinimalBitflagSeq shall be ordered in increasing values of their

position.

 The elements in CompleteBitfieldSeq shall be ordered in increasing values of their

position.

 The elements in MinimalBitfieldSeq shall be ordered in increasing values of their

position.

102 DDS-XTypes, version 1.2

7.3.4.6 Classification of TypeIdentifiers

7.3.4.6.1 Fully-descriptive TypeIdentifiers

Some TypeIdentifiers do not involve computing the hash of any TypeObject. These are called

Fully-descriptive TypeIdentifiers because they fully describe the Type. These are:

 The TypeIdentifiers for Primitive and String types.

 The TypeIdentifiers of plain collections where the element (and key) TypeIdentifer a

fully descriptive TypeIdentifier. They are recognized by the contained

PlainCollectionHeader having EquivalenceKind set to EK_BOTH.

7.3.4.6.2 Hash TypeIdentifiers

Some TypeIdentifiers include within (directly or indirectly) hashes of one of mre

TypeObjects. These are called HASH TypeIdentifiers. These are:

 Those with discriminator EK_MINIMAL, EK_COMPLETE, or

TI_STRONG_COMPONENT

 Those with discriminator TI_PLAIN_SEQUENCE_SMALL,

TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL,

TI_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or

TI_PLAIN_MAP_LARGE where the contained PlainCollectionHeader has

EquivalenceKind EK_MINIMAL or EK_COMPLETE.

In contrast to the Fully-descriptive Identifiers HASH identifiers only identify a Type but do not

provide a compete description of the type without the auxiliary TypeObjects whose hashes are

included in the TypeIdentifier.

HASH TypeIdentifiers are further classified along two orthogonal dimensions:

 Direct vs. Indirect. This classification looks at the nature of their dependency on the

TypeObjects.

 Minimal vs Complete. This classification looks at the kind of TypeObjects involved.

7.3.4.6.3 Direct Hash TypeIdentifiers

These are the HASH TypeIdentifiers with discriminator EK_MINIMAL, EK_COMPLETE,

or TI_STRONG_COMPONENT.

7.3.4.6.4 Indirect Hash TypeIdentifiers

These are the HASH for plain collections that have elements identified using a hash

TypeIdentifiers. They are distinghished by:

1. Having discriminator TI_PLAIN_SEQUENCE_SMALL,

TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL,

TI_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or

TI_PLAIN_MAP_LARGE.

DDS-XTypes, version 1.2 103

2. Having the contained PlainCollectionHeader with EquivalenceKind EK_MINIMAL or

EK_COMPLETE.

7.3.4.6.5 Minimal Hash TypeIdentifiers

These are HASH TypeIdentifiers that involve hashing serialized MINIMAL TypeObjects.

They consist of:

 those with discriminator EK_MINIMAL

 those with discriminator TI_STRONG_COMPONENT where the contained

TypeObjectHashId has discriminator EK_MINIMAL.

 those for plain collections where the contained PlainCollectionHeader EquivalenceKind

is EK_MINIMAL

7.3.4.6.6 Complete Hash TypeIdentifiers

These are HASH TypeIdentifiers that involve hashing serialized COMPLETE TypeObjects.

They consist of:

 those with discriminator EK_COMPLETE

 those with discriminator TI_STRONG_COMPONENT where the contained

TypeObjectHashId has discriminator EK_COMPLETE.

 those for plain collections where the contained PlainCollectionHeader EquivalenceKind

is EK_COMPLETE

7.3.4.7 Type Equivalence

A distributed type system where types can be defined at different locations using different

representations leads to the need of defining equivalence relations between types.

In set theory an “equivalence” relation is one satisfying the reflexive, symmetric, and transitive

properties. Using the “~” sign to represent the relation, the three properties can be expressed as:

 Reflexive: T ~ T for every type “T” in the set of possible types.

 Symmetric: T1 ~ T2 implies T2 ~ T1

 Transitive: T1 ~ T2 and T2 ~ T3 implies T1 ~ T3

An equivalence relation partitions a set into disjoint subsets (equivalence classes) where each

contains all the elements that are equivalent to each other. Being a “partition” each element

belongs to exactly one of the equivalence classes.

An equivalence relation between types captures the intuitive notion that the related types

“behave the same way” under a certain set of operations or use cases> because of this they can

be considered to be “the same” from the perspective of those operations/use-cases.

104 DDS-XTypes, version 1.2

When defining two equivalence relations R1 and R2 on the same set it may be the case that all

elements that are equivalent under (R1) are also equivalent under the other (R2). In this case it is

said that R1 is finer than R2, or alternatively that R2 is coarser than R1.

When this happens the finer relationship (R1) further partitions each equivalence class of the

coarser (R2) in its own finer R1-equivalence classes. Said differently elements considered

equivalent according to R2 may be differentiated by the R1 relation.

This specification defines two equivalence relations between types: Complete and Minimal.

 Complete equivalence relates types that can be considered the same for all practical uses

of the type system, including code generation or displaying type information to the user.

 Minimal equivalence relates types that can be considered the same with regards to the

type compatibility/assignability between a DataWriter and a DataReader as well as with

regards to the data objects published by the DataWriter and received by the DataReader.

The formal definition of these equivalence relations is done in terms of TypeIdentifiers and

TypeObjects.

 Two types are equivalent according to the Complete equivalence relation if and only if

either they have equal Fully-Descriptive TypeIdentifiers, or else they have equal

Complete TypeIdentifiers.

 Two types are equivalent according to the Minimal equivalence relation if and only if

either they have equal Fully-Descriptive TypeIdentifiers, or else they have equal Minimal

TypeIdentifiers.

From the definition of the Complete and Minimal TypeIdentifier it is clear that two types that are

equivalent according to the complete relation are also equivalent according to the Minimal

relation.

7.3.4.8 Types with mutual dependencies on other types

The XTYPES type system includes types that have mutual dependencies on other types. These

types are used to express “recursive” data structures such as trees. For example:

struct NodeData {

 long l_data;

};

struct TreeNode;

struct TreeNode {

 NodeData data;

 sequence<@external TreeNode> children;

};

More complex dependency cycles are possible where one type depends on another, which

depends on another forming a dependency chain that eventually points back to the original type.

DDS-XTypes, version 1.2 105

The “simple” algorithm to compute the TypeIdentifier of a type based on a hash of its

TypeObject fails when types have mutual dependencies on each other because the construction

of the TypeObject requires knowledge of the TypeIdentifier of all the dependent types,

creating a circular dependency.

7.3.4.8.1 Background: Basic graph theory

The problem of types with mutual dependencies can be formulated in terms of directed graphs

(digraphs). Given a set of types we define the “Type Dependency” digraph for those types as

follows:

 The vertices in the graph are the types.

 The edges in the graph represent the direct dependencies between types, that is, if type T1

directly references type T2 (e.g. T1 is a structure and T2 is the type of a member, or T1 is

a collection, and T2 is the type of the collection element).

A ‘directed path” in a digraph is a sequence of vertices where each vertex is connected to the

next by a directed edge.

A “directed cycle” is a directed path that starts and ends on the same vertex.

Reachability relation: A vertex V1 is reachable from vertex V2 in the digraph if and only if

there is a directed path from V2 to V1.

Strong connectivity relation: Two vertices V1 and V2 are strongly connected if and only they

are mutually reachable, that is, V1 is reachable from V2 and V2 is also reachable from V1.

Strong connectivity is an equivalence relation. The resulting partitions are called Strongly

Connected Components.

The kernel DAG is defined as the digraph created by “combining” strongly connected

components into a single vertex:

 Kernel DAG vertices: The strongly connected components

 Kernel DAG edges: There is an edge from a strongly connected component SCC1 to a

strongly connected component SCC2 if and only the original digraph contains some

vertex belonging to SCC1 with an edge to a vertex belonging to SCC2.

A basic theorem in graph theory proves that Kernel DAG is acyclic, hence the name DAG which

stands for Directed Acyclic Graph.

Figure 21 below shows an example digraph, its strongly connected components, and the

corresponding Kernel DAG.

106 DDS-XTypes, version 1.2

Figure 21 – Directed graph, Strongly Connected Components, and Kernel DAG

The strongly connectivity relation partitions the vertices in a digraph into

subsets called strongly connected components. This is shown on the left part of

the figure. The right side shows the Kernel DAG constructed using the strongly

connected components as vertices. It is always a directed acyclic graph (DAG).

7.3.4.9 Computation of Type identifiers for types with mutual dependencies

7.3.4.9.1 Introduction

Mutual dependencies between types appear as directed cycles in the type dependency digraph.

For example, the type dependency graph for the “tree” types declared above has a directed cycle

involving the vertices “TreeNode” and “sequence<TreeNode>”. This is shown in Figure 22

below.

Figure 22 – Dependency graph derived from a set of type definitions

Type representation and type dependencies operate on the equivalence classes defined by the

COMPLETE and MINIMAL type relations defined in Clause 7.3.4.7. Types belonging to the

same equivalence class have the same TypeObject so they are treated as “the same type”.

Depending on the relation (MINIMAL or COMPLETE) selected we will end up with a different

set of types and type dependencies.

The algorithm to generate the TypeObjects and TypeIdentifiers is the same regardless of the

equivalence relation chosen. To generate both the algorithm will be run two times, one for each

equivalence relation.

1

10

0 8

4

2

9

7
6

5
1211

3

SC1
SC5

SC4

SC2

SC3

1

10

0 8

4

2

9

7
6

5
1211

3

SC1
SC5

SC4

SC2

SC3

SC1

SC5

SC4

SC2

SC3

TreeNode

NodeData long

sequence<TreeNode>TreeNode

NodeData long

sequence<TreeNode>

DDS-XTypes, version 1.2 107

The “basic” algorithm to compute Hash TypeIdentifier consists of hashing the serialized

TypeObject. The construction of a TypeObject requires having the TypeIdentifiers of all the

types the TypeObject depends on. Therefore this “basic” algorithm can handle only situations

where the dependency graph does not have cycles, that it, it is a DAG.

The following clause defines a more general algorithm to construct TypeIdentifiers and

TypeObjects that can also handle cycles in the dependency graph.

7.3.4.9.2 Algorithm

Let EK be the desired equivalence kind. Either EK_COMPLETE or EK_MINIMAL, which

selects whether we are constructing the TypeObjects and TypeIdentifiers according to the

MINIMAL or the COMPLETE equivalence relation.

Let Types(EK) a self-contained set of types (i.e. type equivalence classes) for the selected

equivalence relation EK. By self-contained we mean a set of types that does not depend on any

type outside the set.

Let T be an element of Types(EK) whose TypeObject and TypeIdentifier we wish to

compute. The algorithm will construct the TypeObject and TypeIdentifier for all types in

Types(EK) but it can be started with any type as an entry point.

1. Let TypeDependencyDG(T) be the dependency digraph that contains only the types that

are reachable from T. If this graph has no cycles, then T is not affected by mutual

dependencies and the TypeIdentifier can use the regular algorithm of hashing the

serialized TypeObjects, which can be constructed recursively. Otherwise proceed to step

2.

2. Let ReducedDependencyDG(T) be the subdigraph of TypeDependencyDG(T) where

all the vertices that have no outgoing edges are removed. These represent types that do

not depend on any other types so their TypeIdentifier (and TypeObject) can be

computed directly.

3. Identify the Strongly Connected Components of the ReducedDependencyDG(T). Let

DependencyKernelDAG(T) be the Kernel DAG of ReducedDependencyDG(T).

4. Use a depth-first algorithm to compute the TypeIdentifier of the types on each

Strongly Connected Component in DependencyKernelDAG(T):

a. If the Strongly Connected Component (SCC) has a single type, then use the

regular algorithm to compute its TypeIdentifier based on the type identifiers of

all types it depends on. The depth first order ensures that those identifiers have

already been computed.

b. If the Strongly Connected Component (SCC) has multiple types, then sort them

using the lexicographic order of their fully qualified type name. Let

SCCIndex(U) be the sort index of each type U belonging to the SCC starting

with index 1 for the first type. For anonymous types concatenate the fully-

qualified name of the containing type with the member name using “.” as the

separator, for example “MyModule::MyStruct.myMember”.

108 DDS-XTypes, version 1.2

i. Temporarily set the TypeIdentifier of each U belonging to the SC to:

 discriminator = TI_STRONGLY_CONNECTED_COMPONENT

 sc_component_id = {discriminator=EK, hash= 0}

 scc_length = Number of types in SCC

 scc_index = SCCIndex(U) . Note that 1 <= scc_index <= scc_length

ii. Construct the TypeObject of all the types in the SC using the temporary

TypeIdentifier for references to other types in the SCC. The depth first

order ensures that TypeIdentifier for other types that the SCC depends

on have already been computed.

c. Place computed TypeObjects from step 4.b into a sequence TypeObjectSeq in

the order of their scc_index.

d. Serialize the TypeObjectSeq using the XCDR serialization for sequences with

encoding version 2 and little endian.

e. Compute the MD5 hash of the serialized buffer. Let EquivalenceHash(SC) be

the first 14 bytes. Construct StronglyConnectedComponentId(SC) as:

i. sc_component_id = { discriminator = EK, hash= EquivalenceHash(SC) }

ii. scc_length = Number of types in SCC

f. Set the TypeIdentifier of each of the types in SC to:

 discriminator = TI_STRONGLY_CONNECTED_COMPONENT

 strong_component_id = StronglyConnectedComponentId(SC)

 scc_index = SCCIndex(U)

Implementation notes: (non-normative):

 The strongly connected component of a vertex V can be constructed as the set of vertices

W reachable from V both by backwards and forwards traversal. If we define Forward(V)

as the vertices reachable from V and Backward(V) as the set of vertices from which it is

possible to reach V. Then:

o StronglyConnectedComponent(V) = Forward (V) ∩ Backward (V).

o Forward (V) can be computed using depth first search (DFS) from V.

o Backward (V) can be computed using DFS on the transpose graph obtained by

inverting every edge.

 There are simple linear time algorithms (e.g. Kosaraju-Sharir) that compute the strongly

connected components of a graph.

DDS-XTypes, version 1.2 109

7.3.4.9.3 Strongly Connected Components Identifier (SCCIdentifier)

Each Strongly Connected Component (SCC) is uniquely identified by a

StronglyConnectedComponentId. The StronglyConnectedComponentId is constructed using

the algorithm specified in 7.3.4.9.2.

The StronglyConnectedComponentId contains the number of types in the strongly connected

component (field scc_length) and a hash of all the corresponding TypeObjects (field

sc_component_id).

From the StronglyConnectedComponentId it is possible to derive the TypeIdentifiers of all

the types in the SCC. The TypeIdentifiers of all the types belonging to the same SCConly

differ on the scc_index field, which always takes values from 1 to scc_length.

There are situations where an SCC needs to be identified without referencing a concrete type

inside the SCC. In this situation a TypeIdentifier is constructed the same way as for any of the

types in the SCC except the scc_index field is set to 0. We refer to this special TypeIdentifier

recognizable by its discriminator being equal to

TI_STRONGLY_CONNECTED_COMPONENT and scc_index = 0 AS the SCCIdentifier.

The TypeIdentifier of any type in the SCC contains the information needed to construct the

SCCIdentifier.

7.4 Data Representation

The Data Representation module specifies the ways in which a data object of a given type can be

externalized so that it can be stored in a file or communicated over the network. This is also

commonly referred as “data serialization” or “data marshaling.”

Data Representations serve multiple purposes such as:

 Represent data in a “byte stream” so it can be sent over the network

 Represent data in a “byte stream” so it can be stored in a file

 Represent data in a human-readable form so it can be displayed to the user

 Provide a language for the user to enter data-values to a tool or specify them in a file

110 DDS-XTypes, version 1.2

Figure 23 – Data Representation—conceptual model

This specification introduces multiple Data Representations. The reason for defining multiple

type representations is that each of these is better suited or optimized for a particular purpose.

These representations are all mostly equivalent. Consequently, other than convenience or

performance, there is little reason to use one versus the other.

The alternative representations are summarized in Table 30.

class Data Representation

DataRepresentation

ExtendedCdrDataRepresentationVersion1

constraints
{kind = DataRepresentationId_t::XCDR_DATA_REPRESENTATION}

XmlDataRepresentation

constraints
{kind = DataRepresentationId_t::XML_DATA_REPRESENTATION}

«enumeration»
DataRepresentationId_t

 XCDR_DATA_REPRESENTATION = 0 {readOnly}
 XML_DATA_REPRESENTATION = 1 {readOnly}
 XCDR2_DATA_REPRESENTATION = 2 {readOnly}

TypeSystem::Type data: Type

(from TypeSystem)

ExtendedCdrDataRepresentationVersion2

constraints
{kind = DataRepresentationId_t::XCDR2_DATA_REPRESENTATION}

*

+type

1
{frozen}

*

+data

1
{frozen}

+kind

1

DDS-XTypes, version 1.2 111

Table 30 – Alternative Data Representations

Data

Representation

Reasons for using it Disadvantages

Extended CDR,

encompassing

both

“traditional” CDR

and parameterized

CDR

Compact and efficient binary

representation. Minimizes CPU and

Bandwidth used.

Supports type evolution.

Existing international OMG Standard.

(Traditional CDR from CORBA

[CDR]; parameterized CDR from

RTPS [RTPS].)

Already in used in the DDS

Interoperability Protocol.

Not human readable.

XML Human Readable

Easily parsed and transformed with

standard tools

CPU Intensive

Uses 10 or 20 times more space

than CDR

7.4.1 Extended CDR Representation (encoding version 1)

This specification defines extensions of the OMG CDR representation [CDR] able to

accommodate both optional members and appendable/mutable types. These extensions result in

two encoding formats: PLAIN_CDR and PL_CDR.

Both encoding formats leverage the OMG CDR representation for all primitive types and non-

mutable constructed types where the (traditional) CDR representation is well defined:

 PLAIN_CDR introduces extensions to CDR in order to handle optional members,

bitmasks, and maps.

 PL_CDR leverages the RTPS Parameter List representation to handle mutable types.

7.4.1.1 PLAIN_CDR Representation

The PLAIN_CDR representation shall be used for final and appendable types, including

(trivially) primitive types. It shall also be used for all string, sequence, and map types.

Aggregated types declared as mutable shall use the PL_CDR representation described in

Clause 7.4.1.2.

The PLAIN_CDR representation is based on the traditional CDR representation format [CDR]

with the minimal extensions described below needed to handle the new types and concepts

introduced by this specification.

The [RTPS] specification states that following the serialized data submessage element, padding

bytes shall be added so that the next submessage starts at a 4-byte offset relative to the beginning

of the RTPS message. This XTYPES specification further requires that any padding bytes added

at the end of the serialized data shall be set to zero.

112 DDS-XTypes, version 1.2

7.4.1.1.1 Primitive types

The PLAIN_CDR representation for primitive types shall be the same as in “traditional” CDR

[CDR]. Specifically:

 The serialized data shall be encoded at an offset that aligned to the size of the primitive

type.

 An endianness byte swap shall be performed in case the native system endianness is

different from the one currently configured in the XCDR stream (XCDR.cendien).

Table 31 below summarizes the serialization of various primitive types.

Table 31 – Serialization of primitive types in version 1 encoding

Primitive

Type

Encoded

Size

Alignment

(version 1)

Byte representation

Byte 1 1 The byte value

Boolean 1 1 0 for false, 1 for true

Char8 1 1 The character value encoded as described in

7.2.2.2.1.2

Char16 2 2 The character value encoded as described in

7.2.2.2.1.2

Int16

UInt16

2 2 The integer value using two’s complement

notation

Int32

UInt32

4 4 The integer value using two’s complement

notation

Int64

UInt64

8 8 The integer value using two’s complement

notation

Float32 4 4 IEEE standard for normalized single-precision

floating-point numbers [IEEE-748]

Float64 8 8 IEEE standard for normalized double-

precision floating-point numbers [IEEE-748]

Float128 16 8 IEEE standard for normalized quadruple-

precision floating-point numbers [IEEE-748]

7.4.1.1.2 Character Data

Objects of Char8 type shall not be interpreted to have a specific encoding and shall be serialized

as-is in the same way as the Byte primitive type.

Objects of String<Char8> type shall be represented using the UTF-8 character encoding. The

serialized length of an object of type String<Char8> shall be the number of bytes in the CDR

buffer taken by the String<Char8> characters, including the terminating NUL character. The

serialized length may not be the same as the number of Unicode characters because a single

Unicode character encoded using the UTF-8 encoding may take one to four bytes.

DDS-XTypes, version 1.2 113

Objects of String<Char16> type shall be represented using the UTF-16 character encoding. The

serialized length of an object of type String<Char16> shall be the number of bytes in the CDR

buffer taken by the String<Char16> characters. This is twice the number of characters in the

string because a single character (in the Basic Multilingual Plane) encoded using UTF-16 takes 2

bytes to serialize.

The UTF-16 representation of object of type String<Char16> shall not include a Byte Order

Mark (BOM). The representation shall also not include any terminating NUL character(s).

Rationale: By setting the serialized length equal to the number of bytes the representation could

support sending UTF-16 encoded Unicode characters outside the BMP (which map to two UTF-

16 units). In this case, the serialized length would still indicate the number of bytes until the end

of the string. The byte order used by the UTF-16 representation can be inferred from the one

already available in the RTPS Encapsulation Identifier (see Clause 7.6.2.1.2), therefore the BOM

is not needed. Finally terminating UTF-16 encoded strings with NUL characters is not

considered best practice and the latest versions of OMG CDR do not do it.

7.4.1.1.3 Enumerated Types

7.4.1.1.3.1 Enumeration Types

Objects of enumerated types shall be serialized as integers, the sizes of which shall depend on

the “bit bound” of their associated type.

Table 32 – Serialization of enumeration types

Corresponding

Primitive Type

Bit Bound

Byte 1-8

Int16 9-16

Int32 17-32 (32 bits is the default size, and corresponds to all enumerated

types prior to this specification)

7.4.1.1.3.2 Bitmask Types

Objects of bitmask types shall be serialized in the same way as the following primitive types,

depending on the bitmask’s bound:

Table 33 – Serialization of bitmask types

Bound Corresponding Primitive

Type

[1..8] Byte

[9..16] UInt16

[17..32] UInt32

[33..64] UInt64

114 DDS-XTypes, version 1.2

Bit indexes are counted from zero starting at the least-significant bit of the full byte size of the

bitmask. In the case where the bound of the bitmask is less than the number of bits in the

corresponding primitive type, the states of the remaining serialized bits are not specified, and

those bits are not considered to be part of the bitmask.

7.4.1.1.4 Map Types

Objects of map types shall be represented according to the following equivalent IDL:

struct MapEntry_<key_type>_<value_type>[_<bound>] {

 <key_type> key;

 <value_type> value;

};

typedef sequence<MapEntry_<key_type>_<value_type>[_<bound>][, <bound>]>

Map_<key_type>_<value_type>[_<bound>];

The <key_type> and <value_type> names are as defined the Type System. See also

Clause 7.2.2.4.3, which defines the implicit names of collection types.

For example, objects of the following IDL map type:

map<long, float>

…shall be serialized as if they were of the following IDL sequence type:

struct MapEntry_Int32_Float32 {

 long key;

 float value;

};

typedef sequence<MapEntry_Int32_Float32> Map_Int32_Float32;

7.4.1.1.5 Structures

Objects of structure type shall be represented as defined by the CDR specification [CDR],

augmented as described below.

7.4.1.1.5.1 Inheritance

The members defined by the base type, if any, shall be serialized before the members of their

derived types. The representation shall be exactly as if all of the members had been defined, in

the same order, in the most-derived type.

7.4.1.1.5.2 Optional Members

Structure members marked as optional shall be preceded by a parameter header as described in

Clause 7.4.1.2, “Parameterized CDR Representation”, below.

7.4.1.2 Parameterized CDR Representation

The parameterized CDR representation is based on the RTPS Parameter List CDR representation

defined in [RTPS].

DDS-XTypes, version 1.2 115

Each element, or parameter, within a parameter list data structure is simply a CDR-encapsulated

block of data. Preceding each one is a parameter header consisting of a two-byte parameter ID

followed by a two-byte parameter length. One parameter follows another until a list-terminating

sentinel is reached.

Unlike it is stated in [RTPS] Sub Clause 9.4.2.11 “ParameterList”, the value of the parameter

length is the exact length of the serialized member. It does not account for any padding bytes that

may follow the serialized member. Padding bytes may be added in order to start the next

parameterID at a 4 byte offset relative to the previous parameterID.

This data representation uses elements of the parameter list data structure for two purposes:

 Any object of a mutable aggregated type shall be serialized as a parameter list. Each of its

members shall correspond to a single parameter within that list.

 Any optional member of a final or appendable structure shall be preceded by a parameter

header describing that member. If the member takes no value within that particular object,

the data length indicated by the header shall be zero. This reuse of the parameter header

data structure does not constitute a complete parameter list: the optional member shall not

be followed by list-terminating sentinel.

7.4.1.2.1 Interpretation of Parameter ID Values

As described in Clause 9.6.2.2.1, ParameterId space, of the RTPS Specification, the 16-bit-wide

parameter ID range may be interpreted as a two-bit-wide bitmask followed by a 14-bit wide

unsigned integer.

 The first bit of the bitmask—the most-significant bit of 16-bit-wide the parameter ID as a

whole—indicates whether the parameter has an implementation-specific interpretation.

This specification refers to this bit as FLAG_IMPL_EXTENSION.

 The second bit of the bitmask indicates whether the parameter, if its ID is not recognized

by the consuming implementation, may be simply ignored or whether it causes the entire

data sample to be discarded. This specification refers to this bit as

FLAG_MUST_UNDERSTAND. This bit shall be set if and only if the must_understand

property of the member being encapsulated is set to true.

Within the 14-bit-wide integer region of the parameter ID, this specification further reserves the

largest 255 values—from 16,129 (0x3F01) to 16,383 (0x3FFF)—for use by the OMG in this

specification and future specifications. Table 34 below identifies the reserved parameter ID values.

For a parameter to be recognized as one of the well-known values in Table 34, the

FLAG_IMPL_EXTENSION bit must be set to zero. Refer to Table 34 for the value of the

FLAG_MUST_UNDERSTAND bit.

116 DDS-XTypes, version 1.2

Table 34 – Reserved parameter ID values

Name

14-Bit

Hex

Value(s)

FLAG_

MUST_UNDERSTAND

set? Description

PID_EXTENDED 0x3F01 Yes Allows the specification of large

member ID and/or data length values;

see below

PID_LIST_END 0x3F02 Yes Indicates the end of the parameter list

data structure.

RTPS specifies that the PID value 1

shall be used to terminate parameter

lists within the DDS built-in topic data

types. Rather than reserving this

parameter ID for all types, thereby

complicating the member ID-to-

parameter ID mapping rules for all

producers and consumers of this Data

Representation, Simple Discovery types

shall be subject to a special limitation:

member ID 1 shall not be used and

parameter ID 1 shall terminate the

parameter list to provide backwards

compatibility. Implementations shall be

robust to receiving parameter ID

0x3F02 to indicate the end of a list as

well. These types consist of the built-in

topic data types, and those other types

that contain them as members, as

defined by [RTPS].

PID_IGNORE
5
 0x3F03 No All consumers of this Data

Representation shall ignore parameters

with this ID.

Reserved for

OMG

0x3F04-

0x3FFF

N/A Reserved for OMG

When writing data, implementations of this specification shall set the FLAG_MUST_UNDERSTAND

bit as described in Table 34. When reading data, implementations of this specification shall be

robust to any setting of the FLAG_MUST_UNDERSTAND bit and accept the parameter nevertheless.

5 Design rationale (non-normative): RTPS uses PID 0 (“PID_PAD”), corresponding to member ID 0, as a padding field.

PID_IGNORE applies this concept to all data types using this Data Representation. The additional reservation of PID 0 is not

necessary: because the types defined by RTPS do not use member ID 0, consumers of those types will naturally ignore any

incidence of its corresponding PID that they encounter.

DDS-XTypes, version 1.2 117

This specification extends the parameter list data structure to permit 32-bit parameter IDs and

data lengths up to 4 Giga-Bytes. This extension uses the reserved must-understand 16-bit

parameter ID PID_EXTENDED to indicate that a member's parameter ID and/or length require 32-

bits. The member ID (long member ID) and member length (long member length) follow in the 8

bytes directly after the PID_EXTENDED parameter ID and accompanying 16-bit length.

The value of the PID_EXTENDED with the must understand flag set is 0x7F01 (that is 0x4000 +

0x3F01).

The four bytes following the PID_EXTENDED and length shall be a serialized UINT32 value

"eMemberHeader" that is constructed by combining four 1-bit flags with by the 28-bit member

ID. The flags occupy the 4 most significant bits of the UINT32 value. The flags are combined

with the memberId as shown below:

FLAG_1 = 0x80000000

FLAG_2 = 0x40000000

FLAG_3 = 0x20000000

FLAG_4 = 0x10000000

eMemberHeader = FLAG_1 + FLAG_2 + FLAG_3 + FLAG_4 + memberId

The second four bytes following the PID_EXTENDED and length shall be interpreted as a 32-bit

unsigned integer (llength) that contains the length of the serialized member. Note that llength is

the exact length of the serialized member and does not account for any padding that may follow

the member.

The value of the 16-bit length associated with the PID_EXTENDED (slength) shall be equal to

eight.

The serialized member shall start immediately after the long member length (llength). That is

exactly 12 bytes from the beginning of the PID_EXTENDED parameter.

See Figure 24 for an example of the layout of the CDR buffer where PID_EXTENDED is used.

Big Endian Representation

0...2...4.......8...............16..............24..............32

+-+

| 0x7F | 0x01 | 0x00 | 0x08 |

+---------------+---------------+---------------+---------------+ <--------

| unsigned long eMemberHeader | |

+---------------+---------------+---------------+---------------+ | slength=8

| unsigned long llength | |

+---------------+---------------+---------------+---------------+ <--------

| | |

~ Serialized Member ~ | llength

| | |

+---------------+---------------+---------------+---------------+ <-------

118 DDS-XTypes, version 1.2

Little Endian Representation

0...2...4.......8...............16..............24..............32

+-+

| 0x01 | 0x7F | 0x08 | 0x00 |

+---------------+---------------+---------------+---------------+ <--------

| unsigned long eMemberHeader | |

+---------------+---------------+---------------+---------------+ | slength=8

| unsigned long llength | |

+---------------+---------------+---------------+---------------+ <--------

| | |

~ Serialized Member ~ | llength

| | |

+---------------+---------------+---------------+---------------+ <-------

Figure 24 – Usage of PID_EXTENDED within the CDR Buffer

The setting of the FLAG_IMPL_EXTENSION and FLAG_MUST_UNDERSTAND bits in the 16-bit

parameter ID shall not be interpreted to apply to the extended parameter as well. Instead, the first

most-significant bit of the four-bitmask of flags within the extended parameter header shall

represent the value of FLAG_IMPL_EXTENSION for the data member. The second most-significant

bit shall represent the FLAG_MUST_UNDERSTAND value of the data member. The remaining two

bits, unless specified by some other OMG specification, should be set to zero.

These extended parameter headers, based on PID_EXTENDED, shall be legal within the parameter

list data structures used to serialize objects of mutable aggregated types. They shall also be legal

when preceding optional members of final or appendable structures, as described above.

The alignment rules for extended parameters shall be the same as those for non-extended

parameters, which are defined in [RTPS] Clause 9.4.2.11.

7.4.1.2.2 Member ID-to-Parameter ID Mapping

The mapping from member IDs to parameters shall be as follows:

 Member IDs from 0 to 16,128 (0x3F00) inclusive shall be represented exactly in the

lower 14 bits of the parameter ID.

 All other member IDs must be expressed using the extended parameter header format.

 Almost any parameter can legally be expressed using extended parameter headers. There

is no requirement that parameters that could be described with the shorter header defined

by the RTPS Specification must be described that way; if a parameter could be described

using a short parameter header or an extended header, the short and extended expressions

of that header shall be considered totally equivalent. This mapping ensures that members

of user-defined data types will never set the FLAG_IMPL_EXTENSION bit. Currently, the

DDS-XTypes, version 1.2 119

FLAG_IMPL_EXTENSION bit is used only for RTPS discovery-defined data types, which

may or may not have the bitmask as defined by the RTPS Specification itself.

7.4.1.2.3 Omission and Reordering of Members of Aggregated Types

Because each parameter (type member, in this case) is explicitly identified, and identification of

mutable structure members occurs based on the IDs of those parameters, members of mutable

structures may appear in any order. Furthermore, any mutable structure member’s value may be

omitted. In such a case, if the member is not optional, it logically takes its default value. If the

member is optional, it takes no value at all.

Objects of final or appendable structures are not serialized as full parameter lists, even if some

members are optional. Therefore, the members of these types may not be omitted or reordered.

Because union members are identified based on a discriminator value, the value of the

discriminator member must be serialized before the value of the current non-discriminator

member. Neither member value may be omitted.

7.4.1.2.4 Nested Objects

In the case where an object of an aggregated mutable type contains another object of an

aggregated mutable type, one parameter list will contain another. In that case, parameter IDs are

interpreted relative to the innermost type definition. (For instance, a type Foo may contain an

instance of type Bar. Both Foo and Bar may define a member with ID 5. Inside the parameter

list corresponding to the Bar object, an occurrence of parameter ID 5 shall be considered to refer

to Bar’s member 5, not to Foo’s member 5.)

Likewise, an occurrence of PID_LIST_END indicates the conclusion of the innermost parameter

list.

7.4.2 Extended CDR Representation (encoding version 2)

This specification defines three encoding formats used with encoding version 2: PLAIN_CDR2,

DELIMITED_CDR, and PL_CDR2.

The three encoding formats leverage the PLAIN_CDR representation. They enhance the

encodings used in version 1 to improve type assignability and reduce the size of serialized data.

 PLAIN_CDR2 shall be used for all primitive, strings, and enumerated types. It is also

used for any type with extensibility kind FINAL. The encoding is similar to

PLAIN_CDR except that INT64, UINT64, FLOAT64, and FLOAT128 are serialized into

the CDR buffer at offsets that are aligned to 4 rather than 8 as was the case in

PLAIN_CDR.

 DELIMITED_CDR shall be used for types with extensibility kind APPENDABLE. It

serializes a UINT32 delimiter header (DHEADER) before serializing the object using

PLAIN_CDR2. The delimiter encodes the endianness and the length of the serialized

object that follows.

 PL_CDR2 shall be used for aggregated types with extensibility kind MUTABLE.

Similar to DELIMITED_CDR it also serializes a DHEADER before serializing the

120 DDS-XTypes, version 1.2

object. In addition it serializes a member header (EMHEADER) ahead each serialized

member. The member header encodes the member ID, the must-understand flag, and

length of the serialized member that follows.

7.4.3 Extended CDR encoding virtual machine

The encoding formats are specified using a virtual machine that acts on an XCDR stream object.

The XCDR stream holds the bytes resulting from the incremental serialization of data objects

into the stream.

The XCDR stream model consists of:

 A linear byte buffer where the serialized objects are placed.

 A set of internal state variables that may affect the serialization of future objects

serialized into the stream. See Table 36.

 A set of operations on the stream that modify the state variables. See Table 37.

 A “stream insertion” operation that serializes objects onto the stream with a format that

depends on the object type, its composition, and the value of the state variables. The

append operation is represented using the operator symbol “<<”. See Table 37.

7.4.3.1 Encoding version and format

The encoding format is determined by the encoding version and the extensibility kind of the

object being serialized. Table 35 specifies the format that shall be used in each case.

 Table 35 – Serialization format to use.

Extensibility Kind Encoding Version Encoding format on the wire

FINAL 1 PLAIN_CDR

FINAL 2 PLAIN_CDR2

APPENDABLE 1 PLAIN_CDR

APPENDABLE 2 DELIMITED_CDR

MUTABLE 1 PL_CDR

MUTABLE 2 PL_CDR2

7.4.3.2 XCDR Stream State

7.4.3.2.1 XCDR stream state variables

The state of the XCDR stream is described by the value of the variables (the XCDR state

variables) defined in Table 36.

DDS-XTypes, version 1.2 121

Table 36 – State variables and constants in the XCDR stream model

XCDR state

variable

meaning

NENDIAN Constant that represents the native endianness used by the system. It is dependent

on the processor architecture, compiler, and operating system.

There are two possible values: LITTLE_ENDIAN and BIG_ENDIAN

cendian Choice variable representing the current endianness. This is the endianness that

will be used to serialize subsequent objects into the stream. It affects integer

types, floating-point types, enumerated types, and the Char16 type.

offset Integer variable representing the offset into the byte stream where the next

serialized byte will be placed.

XCDR.offset is computed relative to the beginning of the stream so that

XCDR.offset counts the number of bytes currently serialized into the stream.

Each byte serialized into the stream causes XCDR.offset to be incremented.

origin Integer state variable representing the offset into the stream used as the “logical

beginning of the stream” for alignment operations.

Each Type “T” has a default alignment (T.dalignment). This is the alignment

used by default when an object of that type is serialized into a stream.

An object O of type T shall be serialized at an offset that verifies:

((XCDR.offset - XCDR.origin) % T.dalignment) == 0

If the current XCDR.offset does not satisfy the above condition, the serialization

shall insert the minimum “padding bytes” needed to advance XCDR.offset so that

the condition is met.

eversion Octet state variable used to identify the version of the encoding rules used to

serialize the stream.

The pre-defined values are:

{0x00} -- VERSION_NONE

{0x01} -- VERSION1

{0x02} -- VERSION2

122 DDS-XTypes, version 1.2

maxalign Integer state variable representing the maximum value for the alignment that will

be used for future objects serialized into the stream. This value overrides the

required alignment for the object being serialized, so the alignment condition for

any object O of type O.type becomes:

((XCDR.offset - XCDR.origin)% MALIGN(O))== 0

Where

MALIGN(O) = MIN(O.type.alignment, XCDR.maxalign)

This value is automatically set from the XCDR.eversion.

XCDR.maxalign == MAXALIGN(XCDR.eversion)

7.4.3.2.2 Operations that change the XCDR stream state

The XCDR stream state is modified as a result of the serialization of data objects into the stream.

It can also be modified as a result of performing the operations shown in Table 37.

Table 37 – Stream operations in the XCDR stream model

XCDR stream operation meaning

INIT(V1=<nv1>, V2=<nv2>,…) Initializes (constructs) the XCDR stream and sets the state

variables V1, V2, … as specified.

The notation <?> indicates that the value can be chosen by

the implementation.

PUSH(VARIABLE=<newvalue>) Pushes the specified XCDR stream variable VARIABLE

into the stack and sets the current value to <newvalue>.

The notation <?> indicates that the new value can be chosen

by the implementation.

This action is reverted by the POP() operation.

PUSH(V1=<nv1>,V2=<nv2>,…) A shortcut for calling PUSH() multiple times with the listed

variables and new values.

POP(VARIABLE) Replaces the XCDR stream variable VARIABLE with the

value for that variable that was pushed on the last PUSH()

operation, removing it from the stack.

POP(V1, V2,…) A shortcut for calling POP() multiple times with the listed

variables.

DDS-XTypes, version 1.2 123

MAXALIGN(<eversion>) This operation returns the maximum alignment used for a

given version of the encoding:

MAXALIGN(VERSION2) = 4

MAXALIGN(VERSION1) = 8

MAXALIGN(VERSION_NONE) = 8

ALIGN(N) This operation is used to advance the XCDR stream to

achieve a desired alignment of the XCDR.offset.

Advancing the XCDR.offset is done by inserting “padding

bytes” into the stream. The value of the padded bytes is left

unspecified.

The actual number of bytes advanced depends not only on

“N” but also on the value of the XCDR.maxalign.

Specifically the stream is aligned to neededalign:

neededalign = MIN(N, XCDR.maxalign)

After the operation is performed the following condition

shall be true:

(XCDR.offset - XCDR.origin) % neededalign == 0

XCDR << { O : T } The “append” stream operation.

Serializes (using the Extended CDR representation) an

object “O” of type “T” onto the XCDR stream starting at

offset XCDR.offset.

7.4.3.2.3 XCDR Stream Initialization

The XCDR stream shall be initialized with an empty buffer.

The endianness shall be set as desired by the implementation, although a common setting for best

performance is the native system endianness (NENDIAN).

The encoding version (eversion) shall be set as configured on the DataWriter. In this version of

the DDS-XTypes specification it may be set to 1 or 2.

The first 2 octets in the XCDR stream shall be the Encapsulation Header (ENC_HEADER)

indicating the endianness, encoding version, and encoding algorithm of the top-level type. See

Table 39. This is the type associated with the DataWriter.

7.4.3.3 Type and Byte transformations

The operation of the serialization virtual machine uses a set of helper type and byte-buffer

transformations.

124 DDS-XTypes, version 1.2

The type transformations transform a type into another type, typically modifying its extensibility

kind.

The byte-buffer transformations perform byte swaps in arrays of bytes or allow reinterpreting an

object of a primitive type as an array of bytes.

These transformations are used to decompose the serialization of one type as a set of

serializations of other types which have already been described.

Table 38 defines the type and byte transformations.

Table 38 – Type and Byte transformations used in the serialization virtual machine

Type or Object

transformation

meaning

AsFinal(T) for any type T This transformation only affects Aggregated types. For other

types AsFinal(T) returns T.

For the affected types AsFinal(T) is a new type which is declared

the same as T except that its extensibility kind is FINAL.

AsNested(T) for any type T This transformation treats the type as a Nested type for

serialization purposes.

AsBytes(O) for any object O

of a PRIMITIVE_TYPE

This transformation reinterprets the primitive object as an array

of bytes.

The resulting bytes are ordered as they appear in the processor

memory according to the native Endianness (NENDIAN) used

by the system.

ESWAP(B, <doit>)

where B is a stream of 1, 2,

4, or 8 bytes

Conditionally swaps the bytes on the input stream B based on

whether the current XCDR endianness (XCDR.cendian) matches

the native Endianess (NENDIAN).

This operation returns the same input stream if the input is a

single byte or if XCDR.cendian == NENDIAN.

Otherwise the operation produces a new stream of bytes with the

same length as the input performing an (endianness) byte

swapping according to the length of the input stream:

For length 2: { B[1], B[0] }

For length 4: { B[3], B[2], B[1], B[0] }

For length 8: { B[7], B[6], B[5], B[4], B[3], B[2], B[1], B[0] }

DDS-XTypes, version 1.2 125

7.4.3.4 Functions related to data types and objects

The operation of the serialization virtual machine uses a set of helper functions that return bytes

or data to append to the XCDR stream. The notation and meaning is defined in Table 39.

Table 39 – Functions operating on objects and types

function meaning

ENC_HEADER(

<E>, <eversion>, T)

for any type “T”

ENC_HEADER is an array of 2 octets used to identify the type

of encoding (serialization), version of the encoding

(<eversion>) and the endianness used by the stream (<E>):

{0x00, 0x00} -- PLAIN_CDR, BIG_ENDIAN,

{0x00, 0x01} -- PLAIN_CDR, LITTLE_ENDIAN

{0x00, 0x02} -- PL_CDR, BIG_ENDIAN,

{0x00, 0x03} -- PL_CDR, LITTLE_ENDIAN,

{0x00, 0x10} -- PLAIN_CDR2, BIG_ENDIAN,

{0x00, 0x11} -- PLAIN_CDR2, LITTLE_ENDIAN

{0x00, 0x12} -- PL_CDR2, BIG_ENDIAN

{0x00, 0x13} -- PL_CDR2, LITTLE_ENDIAN

{0x00, 0x14} -- DELIMIT_CDR, BIG_ENDIAN

{0x00, 0x15} -- DELIMIT_CDR, LITTLE_ENDIAN

{0x01, 0x00} -- XML

EVERSION(T) for any type

“T”

EVERSION is an octet used to identify the version of the

encoding rules used to serialize the stream.

The values are:

0x00 -- unspecified version (understood as version 1)

0x01 -- version 1

0x02 -- version 2

126 DDS-XTypes, version 1.2

DHEADER(O, E) for any

object O of type T

A UInt32 header value computed as the sum:

DHEADER(O) = (E_FLAG<< 31) + O.ssize

Where E is set as desired by the implementation:

E = 1 indicates that following the header XCDR stream

endianness shall be changed to LITTLE_ENDIAN.

E = 0 indicates that following the header XCDR stream

endianness shall be changed to BIG_ENDIAN.

O.ssize is the number of bytes following the header that are

required to hold the serialized representation of O.

EMHEADER1(M)

Where M is a member of a

structure

EMHEADER1 is the first 4 bytes of the Enhanced Mutable

Header (EMHEADER) is used by the PL_CDR2 encoding

format. It is a UINT32 value computed as:

EMHEADER1 = (M_FLAG<<31) + (LC<<28) + M.id

Where:

M_FLAG is the value of the Must Understand option for the

member

LC is the value of the Length Code for the member.

LC(M)

Where M is a member of a

structure

LC is a 3-bit length code used to construct the EMHEADER1.

It determines whether EMHEADER header has an additional 4

bytes (the NEXTINT) and is also used to encode the serialized

size of the member that follows.

NEXTINT(M)

Where M is a member of a

structure

NEXTINT is the second 4 bytes of the Enhanced Mutable

Header (EMHEADER). It is a UInt32 value.

NEXTINT is only present if LC(M)>=4.

NEXTINT is used in combination with LC to encode the

serialized size of the member that follows.

7.4.3.4.1 Delimiter Header (DHEADER)

The DELIMITED_CDR and PL_CDR encoding formats prepend a UInt32 delimiter header

(DHEADER) ahead of the serialization of the object content.

The DHEADER encodes the endianness used to serialize the object as well as the serialized size

of the object that follows (not including the DHEADER itself). It is computed with the formula:

DHEADER(O) = (E_FLAG << 31) + (O.ssize & 0x8fffffff)

In this expression, O.ssize is constrained to being smaller than 2 Giga Bytes (2^31 Bytes) and

E_FLAG is set to 0 if the object will be serialized using big endian serialization and 1 if it will

use little endian.

DDS-XTypes, version 1.2 127

The serialization of the DHEADER being a Uint32 type forces a 4-byte alignment relative to

XCDR.origin, this may insert into the stream up to 3 padding bytes prior to the DHEADER.

The serialization of the DHEADER uses the endianness active in the XCDR stream at the time it

is serialized (XCDR.cendian). Following the serialization of DHEADER the value of the

endianness encoded into the header (E_FLAG) shall be pushed into the XCDR stream.

7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

The PL_CDR2 encoding format serializes aggregated types using a member-by-member Type-

Length encoding.

A member header precedes the serialization of each member. The member header can be either 4

or 8 bytes.

The first four bytes are the serialized representation of a UInt32 integer called EMHEADER1.

EMHEADER1 shall be serialized using the XCDR stream endianness current at the place the

serialization occurs (XCDR.cendian).

The second 4 bytes, if present, are the serialized representation of a UINT32 integer called

NEXTINT. It shall be serialized with the same endianness as EMHEADER1.

EMHEADER1 is constructed from three parts: The must understand flag (M_FLAG), the length

code (LC) and the member ID.

EMHEADER1 = (M_FLAG << 31) + (LC << 28) + (MemberId & 0x0fffffff)

The must understand flag (M_FLAG) shall be set to 1 if the corresponding member must be

understood by the receiver, see Clause 7.2.2.4.4.4. Otherwise it shall be set to zero.

The length code provides the means to determine the serialized size of the member. There are

eight possible values from 0 to 7 both included (0b000 to 0b111 in binary). These are interpreted

as follows:

 LC values between 0 and 3 indicate that the member header is 4 bytes. That is, there is no

NEXTINT. The value of LC encodes the length of the serialized member directly:

o LC = 0 = 0b000 indicates serialized member length is 1 Byte

o LC = 1 = 0b001 indicates serialized member length is 2 Bytes

o LC = 2 = 0b010 indicates serialized member length is 4 Bytes

o LC = 3 = 0b011 indicates serialized member length is 8 Bytes

128 DDS-XTypes, version 1.2

 LC values between 4 and 7 indicate that the member header is 8 bytes. That is, a second

integer (NEXTINT) immediately follows EMHEADER1. The value of LC combined

with the value NEXTINT encode the length of the serialized member:

o LC = 4 = 0b100 indicates serialized member length is NEXTINT

o LC = 5 = 0b101 indicates serialized member length is also NEXTINT

o LC = 6 = 0b110 indicates serialized member length is 2*NEXTINT

o LC = 7 = 0b111 indicates serialized member length is 4*NEXTINT

EMHEADER1 with LC values 5 to 7 also affect the serialization/deserialization virtual machine

in that they cause NEXTINT to be reused also as part of the serialized member. This is useful

because the serialization of certain members also starts with an integer length, which would take

exactly the same value as NEXTINT. Therefore the use of length codes 5 to 7 saves 4 bytes in

the serialization.

7.4.3.5 Encoding (serialization) rules

The logic of the virtual machine is expressed as a collection of rules. Each rule has the form:

XCDR[vv] “<<” <match criteria> “=” XCDR “<<” <serialization action1>

 “<<” <serialization action2>

 “<<” ...

XCDR represents the stream containing the serialization of an object. It has a state represented

by its state variables (see Clause 7.4.3.1) and it also holds the bytes from previously serialized

objects. The [vv] indicates the encoding version that the DataWriter uses. This is configured on

each DataWriter. A stream has its encoding version set when it is initialized and it cannot be

modified.

A rule with left hand side XCDR[vv] only applies if the XCDR stream is using encoding version

vv. A rule with left hand side XCDR applies for all xtypes encoding versions.

The <match criteria> represents the object that is being serialized into the XCDR stream.

When serializing an object each rule is evaluated in sequence and the first one that has a

matching version and criteria is applied.

The application of a rule consists of executing each one of the serialization actions. Each action

may change state variables of the stream or indicate that new objects (or modifications to

existing objects) shall be serialized. This may recursively trigger the application of new rules.

The rules shall be applied until completion. Once completed, the XCDR stream contains the

serialized representation of the object that initiated the serialization.

The rules are written from the point of view of a writer that is constructing the RTPS

SerializedData buffer to send. Therefore the entrypoint is a so-called “Top Level” type which

indicates a non-nested type that can be published by a DDS DataWriter. This entry point ensures

the XCDR stream includes the SerializedData encapsulation header required by the DDS-RTPS

DDS-XTypes, version 1.2 129

protocol. Other entry points are possible if the intent is to simply serialize an object and not

embed it within an RTPS SerializedData.

7.4.3.5.1 Notation used for the match criteria

Table 40 shows the symbols and notation used by the serialization virtual machine.

Table 40 – Symbols and notation used in the serialization virtual machine

notation meaning

O : T An object “O” of type “T”

 O.type is another way to refer to the object type “T”

 O.ssize is the size in bytes required to hold the serialized

representation of O in an XCDR stream that has

XCDR.offset aligned to the T.dalignment.

O : TOP_LEVEL_TYPE An object O being serialized as the top-level Topic-Type. That

is as the object written directly by a data-writer and not a nested

object.

O : PRIMITIVE_TYPE An object O of a primitive type as defined in 7.2.2.2.

O : STRING_TYPE An object O of a string type which Char8 elements as defined in

7.2.2.4.3

O : WSTRING_TYPE An object O of a string type with Char16 elements as defined in

7.2.2.4.3

O : ENUM_TYPE An object “O” of an Enumerated type as defined in 7.2.2.4.1

 O.holder_type is either Byte, Int16 or Int32 depending

on the value of the @bit_bound annotation.

 O.value is the (integer) value of the enumeration.

O : BITMASK_TYPE An object O of a BitMask type as defined in 7.2.2.4.1.2

 O.holder_type is UInt16, UInt32, or UInt64 depending

on the value of the @bit_bound annotation.

 O.value is the (integer) value of the bitmask.

O : ALIAS_TYPE An object O of an Alias type as defined in 7.2.2.4.2

 O.base_type is the equivalent (aliased) type.

130 DDS-XTypes, version 1.2

O : ARRAY_TYPE An object “O” of an Array type as defined in 7.2.2.4.3

 O.element_type is the element type

 O.length is the total number of elements in the array

(accounting for all the dimensions)

For single- dimensional arrays O[i] is the “ith” element in the

array.

Multi-dimensional arrays are treated for serialization purposes

as a single dimensional array containing all the elements

ordered such that the index of the first dimension varies most

slowly, and the index of the last dimension varies most quickly.

O: FARRAY_TYPE Same as ARRAY_TYPE except that its extensibility kind is

FINAL.

O: PARRAY_TYPE An ARRAY_TYPE whose element type is primitive.

O : SEQUENCE_TYPE An object “O” of a Sequence type as defined in 7.2.2.4.3

 O.element_type is the element type

 O.length is the number of elements in the sequence.

Empty sequences have O.length==0

For non empty sequences O[i] is the “ith” element in the

sequence.

Sequence indices are zero-based so O[0] is the first element in

the sequence and O[O.length-1] is the last element in the

sequence.

O : PSEQUENCE_TYPE Same as SEQUENCE_TYPE except that O.element_type is a

primitive type.

These sequences are intrinsically delimited in the sense that the

CDR representation allows determining the serialized size of

the entire sequence without iterating over each element.

O: FSEQUENCE_TYPE Same as SEQUENCE_TYPE except that its extensibility kind is

FINAL.

DDS-XTypes, version 1.2 131

O : MAP_TYPE An object “O” of a Map type as defined in 7.2.2.4.3

 O.key_type is the key type

 O.element_type is the element type

 O.length is the number of keys in the map, which is also

the number of elements in the map.

For non empty maps O[i].key is the “ith” key in the map,

O[i].element is the (value) element that corresponds to that key.

Map indices are zero-based so O[0].key is the first key in the

map and O.key[O.length-1] is the last key in the map.

O : FMAP_TYPE A MAP_TYPE whose extensibility kind is FINAL.

O : PMAP_TYPE A MAP_TYPE whose element and key are primitive types.

O : UNION_TYPE An object “O” of a Union type as defined in 7.2.2.4.4.2

 O.disc is the discriminator member.

 O.disc.value is the value of the discriminator member.

 O.disc.type is the type of the discriminator member.

 O.selected_member is the member of the union selected

based on the value of the discriminator. Note that certain

discriminator values may select no member.

 O.selected_member.value is the value of the selected

member, if any.

 O.selected_member.type is the type of the selected

member.

O: FUNION_TYPE Same as UNION_TYPE except that its extensibility kind is

FINAL.

132 DDS-XTypes, version 1.2

O : STRUCT_TYPE An object “O” of a Struct type as defined in 7.2.2.4.4.1

 O.base_type is the type of the base Structure in case

O.type inherits from another structure.

 O.member_count is the number of members.

For non empty structures:

 O.member[i] is the “ith” member in the structure. It is a

holder for the object that contains the value of the

member and contains additional information.

 Member indices are zero-based so O[0] is the first

member.

See definition of MEMBER.

O : FSTRUCT_TYPE Same as STRUCT_TYPE except that its extensibility kind is

FINAL.

O : MSTRUCT_TYPE Same as STRUCT_TYPE except that its extensibility kind is

MUTABLE.

Unlike FSTRUCT_TYPE, O.member[i].id is the MemberId of

O.member[i] as defined in 7.2.2.4.4.3 which may be different

from “i”.

M : MEMBER A member of an Aggregated type, 7.2.2.4.4.

 M.id is the member ID.

 M.value is the object holding the value of the member.

 M.value.type is the type of the object.

 M.value.ssize is the serialized size of the object holding

the value of the member.

M : FMEMBER A member (see MEMBER) of an Aggregated type that has

extensibility kind FINAL.

M : OPT_FMEMBER A optional member (see Clause 7.2.2.4.4.5) of an Aggregated

type with extensibility kind final (FMEMBER).

M : NOPT_FMEMBER A non-optional member (see Clause 7.2.2.4.4.5) of an

Aggregated type with extensibility kind final (FMEMBER).

M : MMEMBER A member (see MEMBER) of an Aggregated type that has

extensibility kind MUTABLE.

O : FINAL_TYPE An object O of a type with extensibility kind FINAL.

O : APPENDABLE_TYPE An object O of a type with extensibility kind APPENDABLE.

This is the default for collection types and structured types.

DDS-XTypes, version 1.2 133

7.4.3.5.2 Encoding of Optional Members

PLAIN_CDR serializes optional members by prepending either a ShortMemberHeader or a 12

byte LongMemberHeader. See Clause 7.4.1.1.5.2. The associated size is set to zero if the

optional member is not present or to the actual serialized size if the member is present. These

headers are serialized at a 4-byte offset relative to the current stream origin (XCDR.origin) and

adjust the alignment origin to zero for the serialization of the member itself.

PLAIN_CDR2 and DELIMITED_CDR serialize optional members by first serializing a boolean

(<is_present>) that indicates whether the member is present or not. The serialized boolean shall

be set to 0 if the member is not present and to 1 if it is. If the member present (<is_present> = 1)

it shall be serialized following the <is_present> boolean. If it is not present, the member shall be

omitted from the serialization.

PL_CDR and PL_CDR2 serialize optional members as it would with regular members except

that if the optional member is not present, then the corresponding member header and serialized

member are omitted from the serialized stream.

7.4.3.5.3 Complete Serialization Rules

(1) XCDR << {O : TOP_LEVEL_TYPE} =

 XCDR

 << INIT(OFFSET=0, ORIGIN=0,

 CENDIAN=<E>, EVERSION=<eversion>)

 << { ENC_HEADER(<E>, <eversion>, O.type) : Byte[2] }

 << PUSH(EVERSION = <eversion>)

 << PUSH(MAXALIGN = MAXALIGN(<eversion>))

 << { <OPTIONS> : Byte[2] }

 << { O : AsNested(O.type) }

(2) XCDR << {O : PRIMITIVE_TYPE} =

 XCDR

 << ALIGN(O.ssize)

 << ESWAP(AsBytes(O))

134 DDS-XTypes, version 1.2

(3) XCDR << {O : STRING_TYPE} =

 XCDR

 << { O.ssize : UInt32 } // includes NUL

 << { O[i] : Byte }* // includes NUL

(4) XCDR << {O : WSTRING_TYPE} =

 XCDR

 << { O.ssize : UInt32 } // No NUL

 << { O[i] : Char16 }* // No NUL

(5) XCDR << {O : ENUM_TYPE} =

 XCDR

 << { O.value : O.holder_type }

(6) XCDR << {O : BITMASK_TYPE} =

 XCDR

 << { O.value : O.holder_type }

(7) XCDR << {O : ALIAS_TYPE} =

 XCDR

 << { O : O.base_type }

// Arrays of primitive element type (version 1 and 2 encoding)

(8) XCDR << {O : PARRAY_TYPE} =

 XCDR

 << { O[i] : O.element_type }*

DDS-XTypes, version 1.2 135

// Arrays (any extensibility) using version 2 encoding

(9) XCDR[2] << {O : ARRAY_TYPE} =

 XCDR

 << { DHEADER(O, <E>) : UINT32 }

 << PUSH (CENDIAN = <E>)

 << { O[i] : O.element_type }*

// Arrays (any extensibility) using version 1 encoding

(10) XCDR[1] << {O : ARRAY_TYPE} =

 XCDR

 << { O[i] : O.element_type }*

// Arrays with extensibility APPENDABLE use common APPENDABLE rules:

// (29)-(30)

// Arrays with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

// Sequences of primitive element type (version 1 and 2 encoding)

(11) XCDR << { O : PSEQUENCE_TYPE } =

 XCDR

 << { O.length : UInt32 }

 << { O[i] : O.element_type }*

// Sequences (any extensibility) using version 2 encoding

(12) XCDR[2] << {O : SEQUENCE_TYPE} =

 XCDR

 << { DHEADER(O, <E>) : UINT32 }

 << PUSH (CENDIAN = <E>)

 << { O.length : UINT32 }

 << { O[i] : O.element_type }*

136 DDS-XTypes, version 1.2

// Sequences (any extensibility) using version 1 encoding

(13) XCDR[1] << {O : SEQUENCE_TYPE} =

 XCDR

 << { O.length : UInt32 }

 << { O[i] : O.element_type }*

// Sequences with extensibility APPENDABLE use common APPENDABLE rules:

// (29)-(30)

// Sequences with extensibility MUTABLE are not allowed. Treated as

// APPENDABLE.

// Maps of primitive key and element type (version 1 and 2 encoding)

(14) XCDR << {O : PMAP_TYPE} =

 XCDR

 << { O.length : UInt32 }

 << { (O[i].key : O.key_type),

 (O[i].element : O.element_type) }*

// Maps (any extensibility) using version 2 encoding

(15) XCDR[2] << { O : MAP_TYPE } =

 XCDR

 << { DHEADER(O, <E>) : UINT32 }

 << { O.length : UINT32 }

 << { (O[i].key : O.key_type),

 (O[i].element : O.element_type) }*

 << POP (CENDIAN)

DDS-XTypes, version 1.2 137

// Maps (any extensibility) using version 1 encoding

(16) XCDR[1] << {O : MAP_TYPE} =

 XCDR

 << { O.length : UInt32 }

 << { (O[i].key : O.key_type),

 (O[i].element : O.element_type) }*

// Maps with extensibility APPENDABLE use common APPENDABLE rules:

// (29)-(30)

// Maps with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

// Structures with extensibility FINAL (version 1 and 2 encoding)

// FMMEBER can be NOPT_FMEMBER (18) or OPT_FMEMBER (19)

(17) XCDR << {O : FSTRUCT_TYPE} =

 XCDR

 << { O.member[i] : FMEMBER }*

// Non-optional member of final Aggregated type (structure, union)

(18) XCDR << {M : NOPT_FMEMBER} =

 XCDR

 << { M.value : M.value.type }

// Optional member of final Aggregated type (structure, union), version 1

// see (26) and (27) for MMEMBER serialization

(19) XCDR[1] << {M : OPT_FMEMBER} =

 XCDR

 << { M : MMEMBER }

138 DDS-XTypes, version 1.2

// Optional member of final aggregated type (structure, union), version 2

(20) XCDR[2] << {M : OPT_FMEMBER} =

 XCDR

 << { <is_present> : BOOLEAN }

 << IF (<is_present>) { M.value : M.value.type }

// Structures extensibility APPENDABLE handled by generic APPENDABLE rules:

// (29)-(30)

// Structures with extensibility MUTABLE, version 2 encoding

(21) XCDR[2] << {O : MSTRUCT_TYPE} =

 XCDR

 << { DHEADER(O, <E>) : UInt32 }

 << PUSH (CENDIAN = <E>)

 << { O.member[i] : MMEMBER }*

 << POP (CENDIAN)

// Member of mutable aggregated type (structure, union), version 2 encoding

(22) XCDR[2] << {M : MMEMBER} =

 XCDR

 << { EMHEADER1(M) : UInt32 }

 << IF (LC(M)>=4) { NEXTINT(M) : UInt32 }

 << IF (LC(M)>=5) XCDR.offset = XCDR.offset-4

 << { M.value : M.value.type }

DDS-XTypes, version 1.2 139

// Structures with extensibility MUTABLE, version 1 encoding

(23) XCDR[1] << {O : MSTRUCT_TYPE} =

 XCDR

 << { O.member[i] : MMEMBER }*

 << { PID_SENTINEL : UInt16 }

 << { length = 0 : UInt16 }

// Member of mutable aggregated type (structure, union), version 1 encoding

// using short PL encoding when both M.id <= 2^14 and M.value.ssize <= 2^16

(24) XCDR[1] << {M : MMEMBER} =

 XCDR

 << ALIGN(4)

 << { FLAG_I + FLAG_M + M.id : UInt16 }

 << { M.value.ssize : UInt16 }

 << PUSH(ORIGIN=0)

 << { M.value : M.value.type }

// Member of mutable aggregated type (structure, union), version 1 encoding

// using long PL encoding

(25) XCDR[1] << {M : MMEMBER} =

 XCDR

 << ALIGN(4)

 << { FLAG_I + FLAG_M + PID_EXTENDED : UInt16 }

 << { slength=8 : UInt16 }

 << { M.id : UInt32 }

 << { M.value.ssize : UInt32 }

 << PUSH(ORIGIN=0)

 << { M.value : M.value.type }

140 DDS-XTypes, version 1.2

// Unions with extensibility FINAL (version 1 and 2 encoding)

// see (18) to (20) for NOPT_FMEMBER and FMEMBER serialization

(26) XCDR << {O : FUNION_TYPE} =

 XCDR

 << { O.disc : NOPT_FMEMBER }

 << { O.selected_member : FMEMBER }?

// Unions extensibility APPENDABLE handled by generic APPENDABLE rules:

// (29)-(30)

// Unions with extensibility MUTABLE, version 2 encoding

// see (22) for serialization of MMEMBER using version 2 encoding

(27) XCDR[2] << {O : MUNION_TYPE} =

 XCDR

 << { DHEADER(O, <E>) : UInt32 }

 << PUSH (CENDIAN = <E>)

 << { O.disc : MMEMBER }

 << { O.selected_member : MMEMBER }?

 << POP (CENDIAN)

// Unions with extensibility MUTABLE, version 1 encoding

// see (25)-(26) for serialization of MMEMBER using version 1 encoding

(28) XCDR[1] << {O : MUNION_TYPE} =

 XCDR

 << { O.disc : MMEMBER }

 << { O.selected_member : MMEMBER }?

 << { PID_SENTINEL : UInt16 }

 << { length = 0 : UInt16 }

DDS-XTypes, version 1.2 141

// Extensibility APPENDABLE (Collection or Aggregated types), version 1

// encoding

(29) XCDR[1] << {O : APPENDABLE_TYPE} =

 XCDR

 << { O : AsFinal(O.type) }

// Extensibility APPENDABLE (Collection or Aggregated types), version 2

// encoding

(30) XCDR[2] << {O : APPENDABLE_TYPE} =

 XCDR

 << { DHEADER(O, <E>) : UInt32 }

 << PUSH (CENDIAN = <E>)

 << { O : AsFinal(O.type) }

 << POP (CENDIAN)

7.4.4 XML Data Representation

The XML Data Representation provides for the serialization of individual data samples in XML.

Each data sample shall constitute a separate XML document. The structure of that document

shall conform to the XML Schema Type Representation for the sample’s corresponding type

definition.

(Note that, unlike in the CDR Representation, samples of mutable types are serialized no

differently than samples of final or appendable types.)

The XML Data Representation has two variants: the Valid XML Data Representation and the

Well-formed XML Data Representation. Their specifications follow. They both make use of the

following non-normative example type definitions:

module MyModule1 { module MyModule2 {

 @nested

 struct MyInnerStructure {

 long my_integer;

 };

 struct MyStructure {

 MyInnerStructure inner;

 sequence<double> my_sequence_of_doubles;

 };

}}

142 DDS-XTypes, version 1.2

7.4.4.1 Valid XML Data Representation

The XML document shall declare the namespace(s) against which it may be validated. In the

event that the XSD Type Representation of the sample’s type does not specify an explicit target

namespace, the modules that scope that type shall imply the namespace for the document. This

implied namespace shall take the form ddstype://www.omg.org/<module path>, where

<module path> is a list of enclosing modules, separated by forward slashes, from outermost to

innermost. The namespace prefix is not specified.

For example, the Valid XML Data Representation of an object of the example type defined

above would be as follows:

<my:MyStructure xmlns:my="ddstype://www.omg.org/MyModule1/MyModule2">

 <my:inner>

 <my:my_integer>5<my:my_integer>

 </my:inner>

 <my:my_sequence_of_doubles>

 <my:item>10.0</my:item>

 <my:item>20.0</my:item>

 <my:item>30.0</my:item>

 </my:my_sequence_of_doubles>

</my:MyStructure>

7.4.4.2 Well-formed XML Data Representation

The XML document shall not declare the namespace(s) against which it may be validated,

regardless of whether a target namespace was specified in the XSD Type Representation of the

corresponding sample’s type. In other words, the document shall be well-formed but not valid.

This limitation allows the document to be more compact in cases where the namespace is not

needed or can be inferred by the recipient.

For example, the Well-formed XML Data Representation of an object of the example type

defined above would be as follows:

<MyStructure>

 <inner>

 <my_integer>5<my_integer>

 </inner>

 <my_sequence_of_doubles>

 <item>10.0</item>

 <item>20.0</item>

 <item>30.0</item>

 </my_sequence_of_doubles>

</MyStructure>

DDS-XTypes, version 1.2 143

Non-normative note: Valid XML data representation can be nearly as compact as the well-

formed XML data presentation by using a default namespace. The syntax to select the default

namespace is xmlns=”ddstype://www.omg.org/…”. No prefix is necessary at every element

name as they now default to the default namespace. For really small datatypes (e.g., a 2d point)

even the overhead of including the default namespace may be non-trivial. In such cases, well-

formed XML data presentation may be preferred.

7.5 Language Binding

The Language Binding Module specifies the alternative programming-language mechanisms an

application can use to construct and introspect types as well as objects of those types. These

mechanisms include a Dynamic API that allows an application to interact with types and data

without compile-time knowledge of the type. Note that language-specific PSMs might overrule

some or all of the language binding rules specified below.

Figure 25 – Language Bindings—conceptual model

The specification defines two language bindings: Plain Language Objects and Dynamic Data.

The main characteristics and motivation for each of these bindings are described in Table 41.

The Type Language Binding provides an API to manipulate types. This includes constructing

new types as well as introspecting existing types. The API is the same regardless of the type,

allowing applications to manipulate types that were not known at compile time. This API is

similar in purpose to the java.lang.Class class in Java.

The principal mechanism to interact with a Type is the DynamicType interface. This interface is

described in Clause 7.5.

class Language Binding Overview

DataLanguageBinding

DynamicData

PlainLanguageBinding

DynamicType

TypeLanguageBinding

DynamicDataLanguageBinding DynamicTypeLanguageBinding

+type

1
{frozen}

«use» «use»

144 DDS-XTypes, version 1.2

Table 41 – Kinds of Language Bindings

Data Representation Description Reasons and drawbacks

Plain Language

Binding

Each data type is mapped into

the most natural “native”

construct in the programming

language of choice.

For example a STRUCT type

is mapped into a class in Java

where each member of the

STRUCT appears as a field in

the class.

Advantages:

 Natural - Well integrated in the

programming language

 Very compact notation

 Very efficient

Disadvantages

 Requires compile-time

knowledge of the data type

 Changes require recompilation

 Support for type evolution and

sparse data can be

cumbersome

Dynamic Language

Binding

All data types are mapped into

a single Language “Dynamic

Data” construct which

contains operations to do

introspection and access the

data within.

Advantages:

 Does not require compile-time

knowledge of the data type

 Does not require code-

generation

 Well suited for type evolution

and sparse data

Disadvantages

 No compile-time checking

 More cumbersome to use than

plain data objects

 May be lower performance to

use than plain data objects

7.5.1 Plain Language Binding

This mapping reuses the OMG-standard IDL language mappings [C-MAP, C++-MAP, JAVA-

MAP]. It extends the most commonly used of these bindings in order to express the extended

IDL constructs defined in this specification.

The following steps define this language binding in all supported programming language for a

particular type.

DDS-XTypes, version 1.2 145

1. First, express the type in IDL as specified in Clause 7.3.1.

2. Then, apply the OMG Standard IDL to Language Mapping to the IDL in step 2.

3. Finally, apply any programming language-specific transformations to the generated code,

if applicable. These transformations are defined below.

Note that any of the following language bindings may be overridden in a language-specific PSM,

such as [DDS-PSM-CXX].

7.5.1.1 Primitive Types

7.5.1.1.1 C

The Service shall provide typedefs with the following names to types available on the

underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in

Table 42 below. However, some may feel that using these types impairs readability. Therefore,

compliant implementations have the following degrees of freedom:

 On platforms where a native C type (e.g. int) is guaranteed to be identical to a DDS type,

the implementation may generate the equivalent native C type.

 On platforms compliant with the C99 specification, the implementation may generate

equivalent C99-compatible types.

These degrees of freedom are not expected to impact code portability, as all of these typedefs

will map to the same underlying native C types.

Table 42 – Plain Language Binding for Primitive Types in C

DDS Type Plain Language Binding Type Equivalent C99 Type

Int32 DDS_Int32 int32_t

UInt32 DDS_UInt32 uint32_t

Int16 DDS_Int16 int16_t

UInt16 DDS_UInt16 uint16_t

Int64 DDS_Int64 int64_t

UInt64 DDS_UInt64 uint64_t

Float32 DDS_Float32 (unspecified)

Float64 DDS_Float64 (unspecified)

Float128 DDS_Float128 (unspecified)

Char8 DDS_Char8 (unspecified)

Char16 DDS_Char16 (unspecified)

146 DDS-XTypes, version 1.2

Boolean DDS_Boolean _Bool

Byte DDS_Byte (unspecified)

With respect to DDS::Boolean, only the values 0 and 1 are defined. Other values result in

unspecified behavior.

With respect to DDS::Char16, compliant implementations may consider wchar_t to be an

equivalent C type if the platform supports it and it is of sufficient size. Otherwise, they may map

Char16 to an equivalent integer type.

7.5.1.1.2 C++

The Service shall provide typedefs with the following names to types available on the

underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in

Table 43 below. However, some may feel that using these types impairs readability. Therefore,

compliant implementations have the following degrees of freedom:

 On platforms where a native C++ type (e.g. int) is guaranteed to be identical to a DDS

type, the implementation may generate the equivalent native C++ type.

 On platforms compliant with the C99 specification, the implementation may generate

equivalent C99-compatible types.

Table 43 – Plain Language Binding for Primitive Types in C++

DDS Type Plain Language Binding Type Equivalent C99 Type

Int32 DDS::Int32 [std::]int32_t

UInt32 DDS::UInt32 [std::]uint32_t

Int16 DDS::Int16 [std::]int16_t

UInt16 DDS::UInt16 [std::]uint16_t

Int64 DDS::Int64 [std::]int64_t

UInt64 DDS::UInt64 [std::]uint64_t

Float32 DDS::Float32 (unspecified)

Float64 DDS::Float64 (unspecified)

Float128 DDS::Float128 (unspecified)

Char8 DDS::Char8 (unspecified)

Char16 DDS::Char16 (unspecified)

Boolean DDS::Boolean bool or _Bool

DDS-XTypes, version 1.2 147

Byte DDS::Byte (unspecified)

With respect to DDS::Boolean, only the values 0 and 1 are defined. Alternatively, the C++

keywords true and false may be used. Other values result in unspecified behavior.

With respect to DDS::Char16, compliant implementations may consider wchar_t to be an

equivalent C++ type if the platform supports it and it is of sufficient size. Otherwise, they may

map Char16 to an equivalent integer type. This means that DDS::Char16 may not be

distinguishable from integer types for purposes of overloading.

Types DDS::Boolean, DDS::Char8, and DDS::Byte may all map to the same underlying C++

type. This means that these types may not be distinguishable for the purposes of overloading.

All other mappings for basic types shall be distinguishable for the purposes of overloading. That

is, one can safely write overloaded C++ functions for DDS::Int16, DDS::UInt16, DDS::Int32,

and so on.

7.5.1.2 Annotations and Built-in Annotations

IDL annotations, including the built-in annotations, impact the language binding as defined

below.

7.5.1.2.1 Enumerated Literal Values

Literals in an enumerated type may be given explicit values, as defined in Clause 7.2.2.4.1. This

addition to the language impacts the bindings for C, C++, and Java in the following ways.

7.5.1.2.1.1 C

The OMG-standard IDL mapping to C language [C-MAP] transforms an IDL enumeration into a

series of #define directives, each corresponding to one of the literals in the enumeration. The

values to which these definitions correspond shall be the actual values of the enumerated literals

on which the definitions are based, whether implicitly or explicitly defined.

7.5.1.2.1.2 C++

The OMG-standard IDL mapping to C++ mapping [C++-MAP] transforms an IDL enumeration

into a C++ enumeration. The C++ programming language supports custom values for

enumerated literals. Therefore, for any enumerated literal in IDL that bears the Value annotation,

the corresponding C++ enumerated literal definition shall be followed by an equals sign (‘=’)

and the value of the data member of the annotation.

7.5.1.2.1.3 Java

The OMG-standard IDL mapping to Java [JAVA-MAP] uses the pre-Java 5 “type-safe

enumeration” design pattern. The value of each IDL enumerated literal is given in a Java integer

constant of the following form:

public static final int _<label> = <value>;

148 DDS-XTypes, version 1.2

…where <label> is the name of the IDL constant and <value> is its numeric value. As per this

specification, that numeric value shall be set according to the explicit or implicit value assigned

according to the operative Type Representation.

7.5.1.2.2 Bitmask Types

The language binding for bitmask types is defined based on the language binding for

enumerations.

For each bitmask type defining flags FLAG_0 through FLAG_n, the language binding shall be

as if there was an enumeration definition like the following:

@bit_bound(<bit_bound_value>)

enum <TypeName>Bits {

 @value(1 << <flag_value_0>)

 FLAG_0,

 …

 @value(1 << <flag_value_n>)

 FLAG_n,

};

Furthermore, the language binding shall be as if there was a typedef like the following, used to

represent collections of flags from the previously defined enumeration:

typedef <unsigned_integer_equivalent> <TypeName>;

…where the type <unsigned_integer_equivalent> is chosen based on the bound of the bitmask

type as defined in Table 44 below.

Table 44 – Bit mask integer equivalents

Bitmask Bound Unsigned Integer Equivalent

1–8 octet

9–16 unsigned short

17–32 unsigned long

33–64 unsigned long long

For example, consider the following IDL definition:

@bit_bound(19)

bitmask MyFlags {

 FIRST_FLAG,

 @position(14)

 SECOND_FLAG,

 THIRD_FLAG,

};

DDS-XTypes, version 1.2 149

The language binding shall be as if the previous definition were replaced by the following:

enum MyFlagsBits {

 @value(1 << 0)

 FIRST_FLAG,

 @value(1 << 14)

 SECOND_FLAG,

 @value(1 << 15)

 THIRD_FLAG,

};

typedef unsigned long MyFlags;

7.5.1.2.3 External Members

The storage for a member of an aggregated type may be declared to be external to the storage of

the enclosing object of that type. This is desirable, for instance, when the memory for a member

may already exist somewhere and an application wants to combine it with other members and

publish it as a unit without making additional copies. Another use case is sharing the data

associated with the member among members in different objects.

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are

provided in the following sub clauses.

7.5.1.2.3.1 C

External members shall be represented using pointers. Specifically:

 String and wide string members are already represented using pointers, so the mappings

for these members do not change. The same applies to aliases to string and wide string

types.

 Other external members are mapped like non-external members except that a member of

type X shall instead be mapped as type pointer-to-X. For example, short shall be

replaced by short*.

The constructor/initializer of the enclosing object shall set the external member pointers to

NULL.

The destructor of the enclosing object shall delete the objects referenced by non-NULL external

member pointers. It is the responsibility of the application to set the external member pointers to

NULL before destroying the enclosing object if they do not want to delete specific referenced

objects.

The copy function of the enclosing object shall do a deep copy of the external members. If the

destination external member is NULL it shall be allocated. If the destination external member is

not NULL it shall be filled with a copy of the source member (i.e. perform logically a recursive

call to copy(destination->pointer-to-X, source->pointer-to-X)). If the (recursive call

to the) copy operation of the external member fails, then the copy function of the containing

150 DDS-XTypes, version 1.2

object shall fail as well. This may happen when the destination member is not large enough to

hold a copy of the source.

There may be an additional copy function that takes in arguments which allow the user to control

the behavior of the copy operation. This additional copy function shall allow the user to choose

whether a shallow or deep copy is made as well as whether any existing memory pointed by the

member is reused, released, or replaced during the copy.

In the case that a shallow copy is made and the destination member is NULL then the destination

member pointer will be set to the source member pointer.

In the case that a deep copy is made and the destination member pointer is NULL, memory for

the destination member will be allocated and then copied into.

For the behaviors supported by the additional copy function when the destination member is not

NULL, see Table 45.

Table 45 – Configurable behaviors of the copy function when destination is not NULL

 Copy Type Action when destination

member is not NULL

Description

Shallow Copy Replace Destination will now point to

the same memory address as

source. The existing memory

pointed to by destination is

released before making the

assignment.

Release Destination will now point to

the same memory address as

source. The existing memory

pointed to by destination is

released before making the

assignment.

DDS-XTypes, version 1.2 151

Deep Copy Reuse (Default) Try to reuse the

existing memory to copy into.

If the existing member is not

large enough, this operation

shall fail.

Replace Replace the destination

member. Allocate new

memory to copy into and

replace the existing memory

without releasing it. It is the

application’s responsibility to

release the replaced memory.

Release Release the existing memory

before allocating new memory

to copy into.

7.5.1.2.3.1.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The

difference is that it is valid for the member to be NULL when writing a sample containing this

member. If the member is only external but not optional, then it is not allowed for the member to

be NULL at the time of a write.

7.5.1.2.3.2 Traditional C++

This mapping extends the IDL to C++ language mapping defined in [C++-MAP].

External members shall be represented by any type that behaves similarly to a pointer (e.g., a

plain pointer or a _var type). The chosen type must support the concept of being “unset.” For

example, a plain pointer is considered unset if its value is NULL.

 In cases where the non-external mapping already uses a type similar to a pointer, it shall

remain unchanged.

 In cases where the non-external mapping uses a member of type X, X shall be replaced by

pointer-to-X. For example, if plain pointers are used, short shall be replaced by

short*.

The behavior of the constructor, destructor, and copy functions shall be the same as specified for

C.

7.5.1.2.3.2.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The

difference is that it is valid for the member to be unset when writing a sample containing this

member. If the member is only external but not optional, then it is not allowed for the member to

be unset at the time of a write.

152 DDS-XTypes, version 1.2

7.5.1.2.3.3 Modern C++

This mapping extends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

External members shall be represented as an instantiation of a template class external<T>,

where T is the type of the external member. This is a “smart pointer” class that wraps a shared

pointer, ptr_ for automatic reference counting and a boolean locked_ that controls the

assignment behavior. The destruction of the object referenced by an external member is always

managed by the underlying shared pointer.

The value of the locked_ attribute dictates whether copying an external member performs a deep

copy or shallow copy of the referenced member. It can also be used to prevent sharing of the

referenced object. This control is useful in some situations, for example, to prevent sharing a

reference to memory that belongs to a DataReader in a DDS application. See Sub Clauses

7.5.1.2.3.3.4 and 7.5.1.2.3.3.5 for details about the copy constructor and assignment operator.

The locked_ attribute is set at the time the external member is constructed and cannot be

modified. The locked_ attribute can only be set to true when the shared pointer is set to a non-

NULL value.

The external<T> class shall be generated inside of an appropriate namespace. In the case of

[DDS-PSM-CXX], this namespace is dds::core.

namespace dds { namespace core {

template <typename T>

class external {

public:

 external();

 external(T* p, bool locked = false);

 external(shared_ptr<T> p);

 external(const external& other);

 ~external();

 external& operator=(const external& other);

 T& operator*();

 const T& operator*() const;

 T* get();

 const T* get() const;

 shared_ptr<T> get_shared_ptr();

 T* operator->();

 const T* operator->() const;

 bool operator==(const external<T>& other) const;

 bool operator!=(const external<T>& other) const;

 operator bool() const;

 bool is_locked() const;

DDS-XTypes, version 1.2 153

 void lock();

private:

 shared_ptr<T> ptr_;

 bool locked_;

};

}} // namespace dds::core

7.5.1.2.3.3.1 Operation: Default Constructor

Create an empty external<T> object with an empty ptr_ and locked_ initialized to false.

7.5.1.2.3.3.2 Operation: Constructor from a T*

Create a new external<T> object referencing the provided managed object. The attribute

locked_ is set to false and ptr_ is initialized with p.

Parameter p - The object for ptr_ to manage.

Parameter locked - Whether or not the constructed external<T> should be locked. This is an

optional parameter with a default value of false.

7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object

Create a new external<T> object that references the same object managed by the specified

shared pointer p. The attribute locked_ is set to false and ptr_ is initialized with p.

Parameter p - The shared_ptr<T> holding the T* reference that will be shared with the new

external<T> object.

7.5.1.2.3.3.4 Operation: Copy Constructor

Creates an external object from an existing external object (other). The behavior of this operation

depends on the value of the locked_ attribute of the existing external object (other).

 If other.is_locked() is false, then the new external<T> object shares the reference

with other. In other words this operation will not create a T object, instead it will perform

a shallow copy of T* pointer.

 If other.is_locked() is true, then a new T object is created and ptr_ is initialized with

a reference to the newly created T object. The contents of newly-allocated object are

initialized with a copy from the contents of other. In other words this operation will

create a new T object and do a deep copy.

Either way, the newly constructed external<T> object will have locked_ set to false.

Parameter other - The external object used to initialize the new constructed external<T>

object.

154 DDS-XTypes, version 1.2

7.5.1.2.3.3.5 Operation: Assignment Operator

Assigns an external object to another.

The behavior of this operation depends on the value of the locked_ attribute both on the source

of the copy as well as on the destination.

The behavior specified in Table 46 below shall be applied when assigning an external<T>

object source to another external<T> object destination:

Table 46 – Behavior of assignment operator

Destination Destination Source Source Behavior of assignment operator

locked_ ptr_ locked_ ptr_

TRUE <any> <any> <any> Error. Operation cannot be called when
destination.is_locked() == TRUE

FALSE <any> <any> EMPTY The destination is reset. Result is

destination.ptr_ is EMPTY.

FALSE EMPTY TRUE Not EMPTY Create new object for

destination.ptr_ Perform deep copy

from source.ptr_ to

destination.ptr_.

FALSE Not EMPTY TRUE Not EMPTY Reuse existing destination.ptr_

Perform deep copy from source.ptr_

into the existing destination.ptr_.

FALSE <any> FALSE Not EMPTY Perform shallow copy. The
destination.ptr_ == source.ptr_

Destination will reference same object

as source

Parameter other - The external object whose contents are assigned to this external object.

7.5.1.2.3.3.6 Operation: Destructor

Destroy the external object. If ptr_ is the last reference to the managed object, then the managed

object will be released, otherwise the reference count will simply be decreased.

7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)

Get a reference to the underlying managed object that ptr_ points at.

7.5.1.2.3.3.8 Operation: get (const and non-const versions)

Obtains a pointer to the managed object.

7.5.1.2.3.3.9 Operation: get_shared_ptr

Obtains a shared pointer to the managed object.

DDS-XTypes, version 1.2 155

7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)

Allows accessing members of the managed object.

7.5.1.2.3.3.11 Operation: operator==

Returns whether two external objects manage the same object or are both empty.

7.5.1.2.3.3.12 Operation: operator!=

Returns whether two external objects do not manage the same object.

7.5.1.2.3.3.13 Operation: operator bool

Checks if there is a managed object (is not NULL) or not (is NULL).

7.5.1.2.3.3.14 Operation: is_locked

Indicates whether this object is locked or not.

7.5.1.2.3.3.15 Operation: lock

Sets the locked_ attribute to true. This prevents of the external<T> object from modifying the

referenced T object. This means that future assignment operations to the external<T> object

will fail and any copies from external<T> will be deep copies (i.e., not share a reference to the

same underlying T object).

7.5.1.2.3.3.16 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The

difference is that it is valid for ptr_ to be empty when writing a sample containing this

member. If the member is only external but not optional, then it is not allowed for ptr_ to be

empty at the time of a write.

7.5.1.2.3.4 Java

This mapping extends the IDL to Java language mapping defined in [JAVA-MAP].

External members shall be represented using object references. Since all objects are referred to

by reference in Java, the mappings for external members of non-primitive types are identical to

those of non-external members. For IDL types that map to Java primitive types, those Java

primitive types shall be replaced by the corresponding object box types from the java.lang

package. For example, short shall be replaced by java.lang.Short.

7.5.1.2.4 Optional Members

A member of an aggregated type may be declared to be optional, meaning that its value may be

omitted from sample to sample of that type. This concept impacts the language bindings for C,

C++, and Java in the following ways.

156 DDS-XTypes, version 1.2

7.5.1.2.4.1 C

Optional members shall be represented using pointers. Specifically:

 String and wide string members are already represented using pointers, so the mappings

for these members shall not change. The same shall apply to aliases to string and wide

string types.

 Other optional members are mapped like non-optional members except that a member of

type X shall instead be mapped as type pointer-to-X. For example, short shall be

replaced by short*.

A NULL pointer shall indicate an omitted value.

7.5.1.2.4.2 C++

Optional members shall be represented using plain pointers rather than automatic values or smart

pointers.

 In cases where the mapping of non-optional members already uses a plain pointer, it shall

remain unchanged.

 In cases where the mapping of non-optional members uses a “_var” smart pointer, the

_var type shall be replaced by the corresponding plain pointer type. For example,

MyType_var is replaced by MyType*.

 In cases where the mapping of non-optional members uses an automatic member of type

X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short*.

A NULL pointer shall indicate an omitted value.

7.5.1.2.4.3 Java

Optional members shall be represented using object references. Since all objects are referred to

by reference in Java, the mappings for optional members of non-primitive types are identical to

those of non-optional members. For IDL types that map to Java primitive types, those Java

primitive types shall be replaced by the corresponding object box types. For example, short

shall be replaced by java.lang.Short.

A null pointer shall indicate an omitted value.

7.5.1.2.4.4 Optional Arrays in C and C++

Optional arrays having element type "T" shall be mapped to type pointer-to-array-of-type-T

rather than to type array-of-pointers-to-type-T.

For example, the structure MyStruct containing an optional array of ten integers defined by the

IDL:

// IDL declaration

struct MyStruct {

 @optional long array_member[10];

};

DDS-XTypes, version 1.2 157

Should be mapped in C and C++ to the type:

// Mapping to C/C++

struct MyStruct {

 int32_t (*array_member)[10];

}

Without the parentheses, array_member is an array of ten int32_t pointers, rather than a pointer

to an array of ten int32_t values.

7.5.1.2.5 Nested Types

An IDL compiler need not (although it may) generate TypeSupport, DataReader, or

DataWriter classes for any nested type.

7.5.1.2.6 User-Defined Annotation Types

A type designer may define his or her own annotation types. The language bindings for these

shall be as follows in Java. In programming languages that lack the concept of annotations, an

implementation of this specification may choose to ignore user-defined annotations with respect

to this language binding.

7.5.1.2.6.1 Java

Each user-defined IDL annotation type shall be represented by a corresponding Java annotation

type. An IDL annotation type defining operations op_1 through op_n shall be represented by the

following Java annotation types:

public @interface <TypeName> {

 <op_1_type> <op_1_name>() [default <default>];

 ...

 <op_n_type> <op_n_name>() [default <default>];

}

public @interface <TypeName>Group {

 <TypeName>[] value();

}

The <op_type> shall be the Java type corresponding to the return type of the IDL operation. If a

default value is specified for a given member, it shall be reflected in the Java definition.

Otherwise, the Java definition shall have no default value.

A Java annotation type may itself be annotated (for example, by annotation types in the

java.lang.annotation package). The presence or absence of any such annotations is

undefined.

For each IDL element to which a single instance user-defined annotation is applied, the

corresponding Java element shall be annotated with the Java annotation of the same name. For

each IDL element to which multiple instances of the annotation are applied, the corresponding

158 DDS-XTypes, version 1.2

Java element shall be annotated with the generated annotation bearing the “Group” suffix; each

application of the user-defined annotation shall correspond to a member of the array in the group.

7.5.1.3 Map Types

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are

provided in the following sub clauses.

Implementations are only required to support keys of types UInt32, UInt64, and

String<Char8>. Implementations may choose to support other key types; however, to reduce

complexity, maps declared to use any other key type may not be declared as an anonymous type

in the IDL. If a Type Representation compiler encounters an anonymous map with key type that

it does not support, it shall fail with an error.

7.5.1.3.1 Operations

Map types support operations to create, delete, and manipulate their contents. These operations

are described in Table 47 below. Each of the language bindings support logically equivalent

operations which are further described below if they are not supported natively by the language.

Table 47 – Operations for map<KeyType, ElementType>

map<KeyType, elementType>

Operations

new map<KeyType, ElementType>

delete void

initialize void

finalize void

copy ReturnCode_t

 source map<KeyType, ElementType>

 autogrow Boolean

get_size unsigned int

get_max_size unsigned int

set_max_size ReturnCode_t

 max_size unsigned int

clear void

insert ReturnCode_t

 key KeyType

 element ElementType

insert_or_assign ReturnCode_t

 key KeyType

 element ElementType

DDS-XTypes, version 1.2 159

erase ReturnCode_t

 key KeyType

get_first ReturnCode_t

get_next ReturnCode_t

 inout: entry MapEntry

find_element ElementType

 key KeyType

find_entry MapEntry

 key KeyType

get_pair Boolean

 entry MapEntry

 out: key KeyType

 out: element ElementType

7.5.1.3.2 C

This mapping extends the IDL to C language mapping defined in [C-MAP].

Map types shall be represented as a collection of structures that contain a member of the key type

followed by a member of the element type. A set of methods which create, delete and manipulate

objects of the map type shall also be generated. The name of the map type is specified in this

language binding.

7.5.1.3.2.1 Map Type Name

For maps whose key type is a Primitive Type the name of the map type shall be constructed by

combining the key type name with the element type name. The combination shall follow the

schema below:

[key_type][fully_qualified_element_type]Map

For example, the names of the maps with element type Foo for each of the three mandatory key

types would be:

StringFooMap

UInt32FooMap

UInt64FooMap

The concrete language binding is not specified, implementers may choose any language binding

(e.g., a structure or a sequence) as long as its name and operations comply with what is specified

here.

For any type T, the declaration and implementation of the map types having element type T and

key types UInt32, UInt64, and String shall be generated alongside the implementation code for

element type T.

160 DDS-XTypes, version 1.2

Note: each of the following operations except for new take the map to be operated on as the first

parameter.

7.5.1.3.2.2 Operation: new

Allocate a new map. If this operation fails in an implementation-specific way, this operation

shall return NULL.

7.5.1.3.2.3 Operation: delete

Delete the map and all of its contents.

7.5.1.3.2.4 Operation: initialize

Initialize the map. The initial size and capacity of the map shall be 0.

7.5.1.3.2.5 Operation: finalize

Finalize the map. The entries in the map will be deleted, and both the size and maximum size set

to 0.

This is equivalent to calling clear() followed by set_max(0).

7.5.1.3.2.6 Operation: copy

Overwrite the contents of this (destination) map with the contents of another (source) map. Any

entries that are not present in the source map are erased from the destination map. The source

map shall not be modified by this operation.

If the size of the source map is greater than the maximum size of the destination map, the

behavior depends on the autogrow parameter. If autogrow is TRUE, the operation shall grow the

maximum size of the destination map as needed. If autogrow is FALSE, the operation shall fail

and return DDS_RETCODE_PRECONDITION_NOT_MET. In this case the destination map shall remain

unchanged.

If the size of the source is less than the maximum size of the destination, then it is left to the

implementation to decide whether the maximum size of the destination map is trimmed to match

the source or left unchanged.

If this operation fails in an implementation-specific way, the operation shall return

DDS_RETCODE_ERROR.

Parameter source – The map whose contents are to be copied. If this argument is NULL, the

operation shall fail with DDS_RETCODE_BAD_PARAMETER.

Parameter autogrow – Controls the behavior in case the destination map max_size is

insufficient to hold the source map.

7.5.1.3.2.7 Operation: get_size

Get the current size of the map. The size of the map is how many entries are currently present in

the map.

DDS-XTypes, version 1.2 161

7.5.1.3.2.8 Operation: get_max_size

Get the current maximum size of the map. The maximum size limits the number of entries the

map may contain.

7.5.1.3.2.9 Operation: set_max_size

Set the maximum size of the map.

This operation shall fail with DDS_RETCODE_ERROR if it fails for any implementation-specific

reason.

Parameter max_size – The new maximum size of the map. If the new max_size is less than the

current size of the map, the operation shall fail and return DDS_RETCODE_BAD_PARAMETER.

7.5.1.3.2.10 Operation: clear

Clear all of the entries from the map. The size of the map is set to 0 and the maximum size does

not change.

7.5.1.3.2.11 Operation: insert

Insert a new entry into the map with the given key and element values. If the key already exists

in the map, the operation shall fail and return DDS_RETCODE_BAD_PARAMETER. If successful, the

size shall be increased by 1. If inserting a new entry into the map would increase the size past the

current maximum size, then this operation shall fail with DDS_RETCODE_PRECONDITION_NOT_MET.

This operation shall fail with DDS_RETCODE_ERROR if it fails for any implementation-specific

reason.

Parameter key – The key value of the entry to insert. If this argument is NULL, this operation

shall fail and return DDS_RETCODE_BAD_PARAMETER. For keys with primitive types, this argument

shall be generated as the type and not as a pointer to the primitive type.

Parameter element – The element value of the entry to insert. If this argument is NULL, this

operation shall fail and return DDS_RETCODE_BAD_PARAMETER. For elements with primitive types,

this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.12 Operation: insert_or_assign

Insert an entry into the map with the given key and element values. If the key already exists in

the map, then the corresponding element shall be replaced. If the key value did not already exist

in the map, then the entry shall be inserted with the same behavior specified for the insert

operation.

This operation shall fail with DDS_RETCODE_ERROR if it fails for any implementation-specific

reason.

Parameter key – The key value of the entry to insert. If this argument is NULL, this operation

shall fail and return DDS_RETCODE_BAD_PARAMETER. For keys with primitive types, this argument

shall be generated as the type and not as a pointer to the primitive type.

162 DDS-XTypes, version 1.2

Parameter element – The element value of the entry to insert. If this argument is NULL, this

operation shall fail and return DDS_RETCODE_BAD_PARAMETER. For elements with primitive types,

this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.13 Operation: erase

Remove the entry with the given key from the map. If successful, the size of the map shall be

decreased by 1.

Parameter key – The key value of the entry to erase. If this argument is NULL, this operation

shall fail and return DDS_RETCODE_BAD_PARAMETER. For keys with primitive types, this argument

shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.14 Operation: get_first

Retrieves a MapEntry referencing the first entry in the map. The returned MapEntry may be a

sentinel if the map is empty.

7.5.1.3.2.15 Operation: get_next

Advance the MapEntry to the next entry in the Map. If the MapEntry was referencing the last

entry, the MapCursor will be advanced to a sentinel and the operation will return FALSE,

otherwise it will return TRUE.

7.5.1.3.2.16 Operation: find_element

Retrieve the element whose key matches the specified one from the map. If the key exists, then

return the element corresponding to the key, otherwise return NULL.

Parameter key – The key value of the element to search for. If this argument is NULL, this

operation shall fail and return DDS_RETCODE_BAD_PARAMETER. For keys with primitive types, this

argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.17 Operation: find_entry

Retrieve the MapEntry whose key matches the specified one from the map. If the key exists, then

return a MapEntry referencing the entry (key and element), otherwise return a sentinel.

Parameter key – The key value of the element to search for. If this argument is NULL, this

operation shall fail and return DDS_RETCODE_BAD_PARAMETER. For keys with primitive types, this

argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.18 Operation: get_pair

Retrieve the key and element associated with the MapEntry. If the MapEntry was a sentinel the

operation will return FALSE, otherwise it will return TRUE and fill the output parameters with

references to the key and element.

Parameter entry – The MapEntry whose key and element we wish to retrieve. If this

argument is NULL, this operation shall fail and return DDS_RETCODE_BAD_PARAMETER.

Parameter key (output) – The key value associated with the MapEntry. If this argument is

NULL, this operation shall fail and return DDS_RETCODE_BAD_PARAMETER.

DDS-XTypes, version 1.2 163

Parameter element – The element value associated with the MapEntry. If this argument is

NULL, this operation shall fail and return DDS_RETCODE_BAD_PARAMETER.

7.5.1.3.2.19 Example (Non-Normative)

For a struct MyElementType defined by the IDL:

// IDL definition

module MyModule {

 struct MyElementType {

 // ...members

 };

};

The following structures and operations should be generated for map<unsigned long,

MyElementType>:

struct UInt32MyModule_MyElementTypeMapElement {

 uint32_t key;

 MyModule_MyElementType element;

};

typedef sequence<UInt32MyModule_MyElementTypeMapElement>

UInt32MyModule_MyElementTypeMap;

// Operations on UInt32MyModule_MyElementTypeMap

UInt32MyModule_MyElementTypeMap* UInt32BarMap_new();

void UInt32MyModule_MyElementTypeMap_delete(

 UInt32MyModule_MyElementTypeMap *map);

void UInt32MyModule_MyElementTypeMap_initialize(

 UInt32MyModule_MyElementTypeMap *map);

void UInt32MyModule_MyElementTypeMap_finalize(

 UInt32MyModule_MyElementTypeMap *map);

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_copy(

 UInt32MyModule_MyElementTypeMap *map,

 UInt32MyModule_MyElementTypeMap *other,

 bool autogrow);

uint32_t UInt32MyModule_MyElementTypeMap_get_size(

 UInt32MyModule_MyElementTypeMap *map);

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_set_size(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t size);

164 DDS-XTypes, version 1.2

uint32_t UInt32MyModule_MyElementTypeMap_get_max_size();

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_set_max_size(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t max_size);

void UInt32MyModule_MyElementTypeMap_clear();

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_insert(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t key,

 MyModule_MyElementType *element);

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_insert_or_assign(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t key,

 MyModule_MyElementType *element);

DDS_ReturnCode_t UInt32MyModule_MyElementTypeMap_erase(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t key);

MapEntry UInt32MyModule_MyElementTypeMap_get_first(

 UInt32MyModule_MyElementTypeMap *map);

bool UInt32MyModule_MyElementTypeMap_get_next(

 UInt32MyModule_MyElementTypeMap *map,

 MapEntry *entry);

MyElementType* UInt32MyModule_MyElementTypeMap_find_element(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t key);

MapEntry UInt32MyModule_MyElementTypeMap_find_entry(

 UInt32MyModule_MyElementTypeMap *map,

 uint32_t key);

bool UInt32MyModule_MyElementTypeMap_get_pair(

 UInt32MyModule_MyElementTypeMap *map,

 MapEntry *entry,

 uint32_t *key,

 MyElementType **element);

7.5.1.3.3 Traditional C++

This mapping extends the IDL to C++ language mapping defined in [C++-MAP].

This C++ language binding differs only slightly from the C language binding. Instead of a C

structure with accompanying functions, C++ defines a class with methods.

DDS-XTypes, version 1.2 165

7.5.1.3.3.1 Map Class Name and operations

The map class shall be named the same as the C structure, see Sub Clause 7.5.1.3.2, except that it

is placed in the same namespace as the element type declaration.

For example, the XTYPES map with key of type UInt32 and element type MyElementType

belonging to module MyModule would be bound to the class:

namespace MyModule {

class UInt32MyElementTypeMap {

public:

 UInt32MyElementTypeMap();

 ~UInt32MyElementTypeMap();

 ReturnCode_t copy(

 const UInt32MyElementTypeMap &other,

 bool autogrow = true);

 uint32_t get_size() const;

 ReturnCode_t set_size(uint32_t size);

 uint32_t get_max_size() const;

 ReturnCode_t set_max_size(uint32_t max_size);

 void clear();

 ReturnCode_t insert(

 uint32_t key,

 const MyElementType &element,

 bool replace = true);

 ReturnCode_t erase(uint32_t key);

 MapEntry get_first();

 bool get_next(MapEntry &entry);

 MyElementType* find_element(uint32_t key);

 MapEntry find_entry(uint32_t key);

 bool get_pair(

 const MapEntry &entry,

 uint32_t *key,

 MyElementType **element);

};

}

Refer to the C language binding for the behavior of each of the above methods, with the

exceptions described below.

The C++ operation insert behaves as the C insert() if the replace() parameter is false and it

behaves as the C insert_or_assign() if replace parameter is true.

166 DDS-XTypes, version 1.2

7.5.1.3.4 Modern C++

This mapping extends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

The Map type shall be bound to an instantiation of the std::map template. The C++ Standard

[C++-LANG] defines the std::map container as follows:

namespace std {

 template<class Key,

 class T,

 class Compare = less<Key>,

 class Allocator = allocator<pair<const Key,T> >

 > class map;

}

The std::map template shall be instantiated with the K class parameter being the C++ type

corresponding to the key type and the T parameter is the C++ type corresponding to the element

type.

When a map has keys of a string type, the Compare function shall operate on the character

contents of the strings; it shall not operate on the strings’ pointer values (as std::less does).

The instantiations for the Compare and Allocator parameters are otherwise undefined and may or

may not take their default values.

For example, the XTYPES map with key of type UInt32 and element type MyElementType

belonging to module MyModule would be bound to the following template instantiation:

std::map<uint32_t, MyModule::MyElementType *>

7.5.1.3.5 Java

An IDL map type shall be represented in Java by an implementation of the standard

java.util.Map interface. The implementation class to be used is not defined, nor is it defined

whether Java 5+ generic syntax should be used. (The OMG-standard IDL mapping to Java

[JAVA-MAP] predates Java 5, and implementations of it may retain compatibility with earlier

versions of Java.)

The key objects for such maps shall be of the Java type corresponding to the IDL key element

type. The value objects shall be of the Java type corresponding to the IDL value element type. If

either of these Java types is a primitive type, then the corresponding object box type (e.g.,

java.lang.Integer for int) shall be used in its place.

7.5.1.3.6 Other Programming Languages

In all languages for which no language-specific mapping is specified, the language binding for

map types shall be based on the equivalent IDL definition given in 7.4.1.1.4.

7.5.1.4 Structure and Union Types

The Plain Language Binding for structure and union types shall correspond to the IDL language

mappings for IDL structures and unions as amended below.

DDS-XTypes, version 1.2 167

7.5.1.4.1 Inheritance

A structure type that inherits from another shall be represented as follows.

7.5.1.4.1.1 C++

The C++ struct corresponding to the subtype shall publicly inherit from the C++ struct

corresponding to the supertype.

7.5.1.4.1.2 Java

The Java class corresponding to the subtype shall extend the Java class corresponding to the

supertype.

7.5.1.4.1.3 Other Programming Languages

The language binding shall be generated as if an instance of the base type were the first member

of the subtype with the name “parent,” as in the following equivalent IDL definition:

struct <struct_name> {

 <base_type_name> parent;

 // ... other members

};

7.5.2 Dynamic Language Binding

The Dynamic Type Language Binding provides an API to manipulate types. This includes

constructing new types as well as introspecting existing types. The API is the same regardless of

the Type, allowing applications to manipulate types that were not known at compile time. This

API is similar in purpose to the java.lang.Class class in Java.

The Dynamic Data Language Binding provides an API to manipulate objects of any Type. This

includes creating data objects, setting fields and getting fields, as well as accessing the Type

associated with the data object. The API is the same regardless of the type of the object, allowing

applications to manipulate data objects of types not known at compile time.

168 DDS-XTypes, version 1.2

Figure 26 – Dynamic Data and Dynamic Type

There are a small number of fundamental classes to understand in this model, as well as a few

helper classes:

 DynamicType: Objects of this class represent a type’s schema: its physical name, type

kind, member definitions (if any), and so on.

 DynamicTypeBuilderFactory: This type is logically a singleton. Its instance is

responsible for creating DynamicType and DynamicTypeSupport objects.

 DynamicData: A DynamicData object represents an individual data sample. It provides

reflective getters and setters for the members of that sample.

 DynamicDataFactory: This type is logically a singleton. Its instance is responsible for

creating DynamicData objects.

7.5.2.1 UML-to-IDL Mapping Rules

Each type in this Language Binding has an equivalent IDL API. These APIs are specified using

the IDL Type Representation defined in this document with the addition of other standard IDL

syntax. These latter parts of IDL are used to describe portions of the UML model that have

requirements that go beyond those addressed by the IDL Type Representation (for example, local

operations).

Specifically, UML constructs shall be mapped to IDL as described below.

 UML enumerations are mapped to IDL enumerations.

class Dynamic Language Binding

DynamicData

+ clear_value(MemberId): ReturnCode_t
+ get_member_id_by_index(UInt32): MemberId {query}
+ get_member_id_by_name(StringType): MemberId {query}
+ loan_value(MemberId): DynamicData {query}
+ return_loaned_value(DynamicData): ReturnCode_t

DynamicDataFactory

+ create_data(DynamicType): DynamicData
+ delete_data(DynamicData)
+ delete_instance(): ReturnCode_t
+ get_instance(): DynamicDataFactory {query}

DynamicType

+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

DynamicTypeBuilderFactory

+ create_type(TypeDescriptor): DynamicTypeBuilder
+ create_type_copy(DynamicType): DynamicTypeBuilder
+ create_type_w_document(StringType, StringType, StringType): DynamicTypeBuilder
+ create_type_w_type_object(TypeObject): DynamicTypeBuilder
+ create_type_w_uri(StringType, StringType, StringType): DynamicTypeBuilder
+ delete_instance(): ReturnCode_t
+ delete_type(DynamicType): ReturnCode_t
+ get_instance(): DynamicTypeBuilderFactory {query}

DynamicTypeBuilder

+ add_member(MemberDescriptor): ReturnCode_t
+ apply_annotation(AnnotationDescriptor): ReturnCode_t
+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

TypeSystem::Type

id: MemberId

«instantiate»

+value

«instantiate»

+type

1
{frozen}

«instantiate»

DDS-XTypes, version 1.2 169

 UML classifiers with value semantics are represented as IDL valuetypes. Classifiers with

reference semantics are represented as local interfaces.

 UML structural properties in most cases are represented as IDL fields or attributes.

o Properties of classifiers mapped as valuetypes are represented as plain fields.

Properties of classifiers mapped as interfaces are represented as attributes; if the

property value is read-only, so is the attribute.

o Properties with multiplicity [1] (the default if not otherwise noted) are mapped as-

is.

o Properties with multiplicity [0..1] are defined as @optional.

o Properties with multiplicity [*] (equivalent to [0..*]) or [1..*] may be mapped

either simply as sequences (in cases where the number of objects is expected to be

small and the required level of abstraction low) or—in more complex scenarios—

a set of methods:

unsigned long get_<property_name>_count();

DDS::ReturnCode_t get_<property_name>(

 inout <property_type> value,

 in unsigned long idx);

In addition, if and only if the property value can be modified:

DDS::ReturnCode_t set_<property_name>(

 in unsigned long idx,

 in <property_type> value);

The “get” operation shall fail with RETCODE_BAD_PARAMETER if the given index is

outside of the current range. The “set” operation shall do the same with one

exception: it shall allow an index one past the end (i.e., equal to the current

count); setting with this index shall have the effect of appending a new value to

the end of the collection. Either operation shall fail with

RETCODE_BAD_PARAMETER if either argument is nil.

Each type mapping below indicates which of these two mappings it uses in which

cases.

o Qualified association ends (representing mappings from one value to another) are

mapped to a set of operations:

DDS::ReturnCode_t get_<property_name>(

 inout <property_type> value,

 in <qualifier_type> key);

DDS::ReturnCode_t get_all_<property_name>(

 inout map< <qualifier_type>, <property_type> > value);

In addition, if and only if the property value can be modified:

170 DDS-XTypes, version 1.2

DDS::ReturnCode_t set_<property_name>(

 in <qualifier_type> key,

 in <property_type> value);

The “get” operation shall return with RETCODE_NO_DATA if no value exists for the

given key. Either operation shall return with RETCODE_BAD_PARAMETER if either

argument is nil.

 UML operations are represented as IDL operations.

o Static operations are commented, as IDL does not formally support static

operations. It is up to the implementer to reflect these operations properly in each

programming language to which the IDL may be transformed.

These rules may be qualified or overridden below on a case-by-case basis.

The complete IDL API can be found in “Annex C: Dynamic Language Binding.”

7.5.2.2 DynamicTypeBuilderFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its

“only” instance is the starting point for creating and deleting DynamicTypeBuilder objects.

Table 48 – DynamicTypeBuilderFactory properties and operations

DynamicTypeBuilderFactory

Operations

static get_instance DynamicTypeBuilderFactory

static delete_instance ReturnCode_t

get_primitive_type DynamicType

kind TypeKind

create_type DynamicTypeBuilder

descriptor TypeDescriptor

create_type_copy DynamicTypeBuilder

 type DynamicType

create_type_w_type_object DynamicTypeBuilder

type_object TypeObject

create_string_type DynamicTypeBuilder

bound UInt32

create_wstring_type DynamicTypeBuilder

bound UInt32

DDS-XTypes, version 1.2 171

create_sequence_type DynamicTypeBuilder

element_type DynamicType

bound UInt32

create_array_type DynamicTypeBuilder

element_type DynamicType

bound UInt32 [1..*]

create_map_type DynamicTypeBuilder

key_element_type DynamicType

element_type DynamicType

bound UInt32

create_bitmask_type DynamicTypeBuilder

bound UInt32

create_type_w_uri DynamicTypeBuilder

document_url string<Char8>

type_name string<Char8>

include_paths string<Char8> [*]

create_type_w_document DynamicTypeBuilder

document string<Char8>

type_name string<Char8>

include_paths string<Char8> [*]

delete_type ReturnCode_t

type DynamicType

7.5.2.2.1 Operation: create_array_type

Create and return a new DynamicTypeBuilder object representing an array type. All objects

returned by this operation should eventually be deleted by calling delete_type.

All array types having equal element types, an equal number of dimensions, and equal bounds in

each dimension shall be considered equal. An implementation may therefore elect whether to

always return a new object from this method or whether to pool objects and to return previously

created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element_type – The type of all objects that can be stored in an array of the new

type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

172 DDS-XTypes, version 1.2

Parameter bound - A collection of unsigned integers, the length of which is equal to the number

of dimensions in the new array type, and the values of which are the bounds of each dimension.

(For example, a three-by-two array would be described by a collection of length two, where the

first element had a value of three and the second a value of two.) If this argument is nil, the

operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.2.2 Operation: create_bitmask_type

Create and return a new DynamicTypeBuilder object representing a bitmask type. All objects

returned by this operation should eventually be deleted by calling delete_type.

If an error occurs, this method shall return a nil value.

Parameter bound - The number of reserved bits in the bitmask. If this value is out of range, the

operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.2.3 Operation: create_map_type

Create and return a new DynamicTypeBuilder object representing a map type. All objects

returned by this operation should eventually be deleted by calling delete_type.

All map types having equal key and value element types and equal bounds shall be considered

equal. An implementation may therefore elect whether to always return a new object from this

method or whether to pool objects and to return previously created type objects consistent with

these rules.

If an error occurs, this method shall return a nil value.

Parameter key_element_type – The type of all objects that can be stored as keys in a map of

the new type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Parameter element_type – The type of all objects that can be stored as values in a map of the

new type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Parameter bound – The maximum number of key-value pairs that may be stored in a map of the

new type. If this argument is equal to LENGTH_UNLIMITED, the map type shall be considered to be

unbounded.

7.5.2.2.4 Operation: create_sequence_type

Create and return a new DynamicTypeBuilder object representing a sequence type. All objects

returned by this operation should eventually be deleted by calling delete_type.

All sequence types having equal element types and equal bounds shall be considered equal. An

implementation may therefore elect whether to always return a new object from this method or

whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element_type – The type of all objects that can be stored in a sequence of the new

type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

DDS-XTypes, version 1.2 173

Parameter bound – The maximum number of elements that may be stored in a map of the new

type. If this argument is equal to LENGTH_UNLIMITED, the sequence type shall be considered to be

unbounded.

7.5.2.2.5 Operations: create_string_type, create_wstring_type

Create and return a new DynamicTypeBuilder object representing a string type. The element

type of the result returned by create_string_type shall be Char8. The element type of the

result returned by create_wstring_type shall be Char16.

All string types having equal element types and equal bounds shall be considered equal. An

implementation may therefore elect whether to always return a new object from this method or

whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter bound – The maximum number of elements that may be stored in a string of the new

type. If this argument is equal to LENGTH_UNLIMITED, the string type shall be considered to be

unbounded.

7.5.2.2.6 Operation: create_type

Create and return a new DynamicTypeBuilder object as described by the given type descriptor.

This method is the conventional mechanism for creating structured, enumerated, and alias types,

although it can also be used to create types of other kinds. All objects returned by this operation

should eventually be deleted by calling delete_type.

Parameter descriptor – The properties of the new type to create. If this argument is nil or

inconsistent (as indicated by its is_consistent operation), this operation shall fail and return a

nil value.

7.5.2.2.7 Operation: create_type_copy

Create and return a new DynamicTypeBuilder object with a copy of the state of the given type.

All objects returned by this operation should eventually be deleted by calling delete_type.

Parameter type – The initial state of the new type to create. If this argument is nil, this

operation shall fail and return a nil value.

7.5.2.2.8 Operation: create_type_w_type_object

Create and return a new DynamicTypeBuilder object that describes a type identical to that

described by the given TypeObject object. Subsequent changes to the new

DynamicTypeBuilder object shall not be reflected in the input TypeObject object. All objects

returned by this operation should eventually be deleted by calling delete_type.

Parameter type_object – The initial state of the new type to create.

174 DDS-XTypes, version 1.2

7.5.2.2.9 Operation: delete_instance

Reclaim any resources associated with any object(s) previously returned from get_instance.

Any references to these objects held by previous callers of this operation may become invalid at

the discretion of the implementation.

This operation shall fail with RETCODE_ERROR if it fails for any implementation-specific reason.

7.5.2.2.10 Operation: delete_type

Delete the given DynamicType object, which was previously created by this factory.

Some “deletions” shall always succeed but shall have no observable effect:

 Deletions of nil

 Deletions of objects returned by get_primitive_type

Parameter type – The type to delete. If this argument is an object that was already deleted, and

the implementation is able to detect that fact (which is not required), this operation shall fail with

RETCODE_ALREADY_DELETED. If an implementation-specific error occurs, this method shall fail

with RETCODE_ERROR.

7.5.2.2.11 Operation: get_instance

Return a DynamicTypeBuilderFactory instance that behaves like a singleton, although the

caller cannot assume pointer equality for the results of multiple calls. The implementation may

return the same object every time or different objects at its discretion. However, if it returns

different objects, it shall ensure that they behave equivalently with respect to all programming

interfaces specified in this document.

Calling this operation is legal even after delete_instance has been called. In such a case, the

implementation shall recreate or restore the state of the “singleton” as necessary in order to

return a valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.2.12 Operation: get_primitive_type

Retrieve a DynamicType object corresponding to the indicated primitive type kind.

The memory management regime underlying this method is unspecified. Implementations may

return references to pre-created objects, they may return new objects with every invocation, or

they may take an intermediate approach (for example, lazily creating but then caching objects).

Whatever the implementation, the following invariants shall hold:

If an error occurs, this method shall return a nil value.

Parameter kind – The kind of the primitive type whose representation is to be returned. If the

given kind does not correspond to a primitive type, the operation shall fail and return a nil value.

DDS-XTypes, version 1.2 175

7.5.2.2.13 Operation: create_type_w_uri

Create and return a new DynamicType object by parsing the type description at the given URL.

Applications shall be able to reclaim resources associated with the type returned by this method

by calling delete_type, just as if the resultant type was created by one of the create methods

of this class.

If an error occurs, this method shall return a nil value.

Parameter document_url – A URL that indicates a type description document, which shall be

parsed to create the DynamicType object. Implementations shall minimally support the file://

URL scheme and may support additional schemes. Implementations shall minimally support the

XML Type Description format for loaded documents and may support additional Type

Descriptions. (Implementations are recommended to provide a tool or other means of translating

among their supported Type Representations.)

Parameter type_name – The fully qualified name of the type to be loaded from the document

that is the target of the URL. If no type exists of this name in the document (which will trivially

be the case if the name is nil or the empty string), the operation shall fail and return a nil result.

Parameter include_paths – A collection of URLs to directories to be searched for additional

type description documents that may be included, directly or indirectly, by the document that is

the target of document_url. The directory in which the target of document_url resides shall be

considered on the inclusion search path implicitly and need not be included in this collection.

Implementations shall minimally support the file: URL scheme and may support additional

schemes.

7.5.2.2.14 Operation: create_type_w_document

Create and return a new DynamicType object by parsing the type description contained in the

given string.

Applications shall be able to reclaim resources associated with the type returned by this method

by calling delete_type, just as if the resultant type was created by one of the create methods

of this class.

If an error occurs, this method shall return a nil value.

Parameter document – A type description document, which shall be parsed to create the

DynamicType object. Implementations shall minimally support the XML Type Description

format for loaded documents and may support additional Type Descriptions. (Implementations

are recommended to provide a tool or other means of translating among their supported Type

Representations.)

Parameter type_name – The fully qualified name of the type to be loaded from the document. If

no type exists of this name in the document (which will trivially be the case if the name is nil or

the empty string), the operation shall fail and return a nil result.

Parameter include_paths – A collection of URLs to directories to be searched for additional

type description documents that may be included, directly or indirectly, by the document

176 DDS-XTypes, version 1.2

argument. Implementations shall minimally support the file:// URL scheme and may support

additional schemes.

7.5.2.3 AnnotationDescriptor

An AnnotationDescriptor packages together the state of an annotation as it is applied to some

element (not an annotation type). AnnotationDescriptor objects have value semantics,

allowing them to be deeply copied and compared.

Figure 27 – Annotation Descriptor

Table 49 – AnnotationDescriptor properties and operations

AnnotationDescriptor

Properties

type DynamicType

value Map<String<Char8,256>, String<Char8,256>>

Operations

copy_from ReturnCode_t

other AnnotationDescriptor

equals Boolean

other AnnotationDescriptor

is_consistent Boolean

class Annotation Descriptor

AnnotationDescriptor

+ value: Map {readOnly}

+ copy_from(AnnotationDescriptor): ReturnCode_t
+ equals(AnnotationDescriptor): Boolean {query}
+ is_consistent(): Boolean {query}

constraints
{value.element_type = String}
{value.key_element_type = String}

DynamicType

DynamicTypeMember

An AnnotationDescriptor represents the
application of an annotation type to a type or type
member.

id: MemberId

+annotation

*
{frozen}

+type

1

+annotation

*
{frozen}

+member

0..1
{frozen}

DDS-XTypes, version 1.2 177

7.5.2.3.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent

calls to equals, passing the same argument as to this method, return true. The other descriptor

shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return

RETCODE_ERROR.

Parameter other – The descriptor whose contents are to be copied. If this argument is nil, the

operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.3.2 Operation: equals

Two annotation descriptors ad1 and ad2 are considered equal if and only if all of the following

apply:

 Their type properties refer to equal types.

 For every string s1 for which ad1.value[s1] does not exist, ad2.value[s1] also does

not exist.

 For every string s1 for which ad2.value[s1] does not exist, ad1.value[s1] also does

not exist.

 For every string s1 for which ad1.value[s1] is a non-nil string ad1-s2, ad2.value[s1]

is a non-nil string ad2-s2 such that ad1-s2 equals ad2-s2.

 For every string s1 for which ad2.value[s1] is a non-nil string ad2-s2, ad1.value[s1]

is a non-nil string ad1-s2 such that ad1-s2 equals ad2-s2.

Parameter other – Another descriptor to compare to this descriptor. If this argument is nil, this

operation shall return false.

7.5.2.3.3 Operation: is_consistent

Indicate whether this descriptor describes a valid annotation type instantiation. An annotation

descriptor is considered consistent if and only if all of the following qualities apply:

 The type property refers to a non-nil type of kind ANNOTATION_TYPE.

 For every pair of strings s1 and s2 such that value[s1] equals value[s2]:

o String s1 is the name of an attribute defined by the annotation type referred to by

the type property.

o String s2 is a well-formed string representation of an object of the type of the

attribute named by s1.

7.5.2.3.4 Property: type

The type property contains a reference to the annotation type, of which this descriptor describes

an instantiation.

178 DDS-XTypes, version 1.2

When an annotation descriptor is newly created, this reference shall be nil.

7.5.2.3.5 Property: value

This property contains a mapping from the names of attributes defined by type to valid values of

that type. Any attribute defined by type but for which no name appears in this property shall be

considered to have its default value.

Every attribute value in this property is represented as a string although annotation type members

can have other types as well. A string representation of a data value is considered well-formed if

it would be a valid IDL literal of the corresponding type with the following qualifications:

 String and character literals shall not be surrounded by quotation characters (‘"’ or ‘'’).

 All expressions shall be fully evaluated such that no operators or other non-literal

characters occur in the value. For example, “5” shall be considered a well-formed string

representation of the integer quantity five, but “2 + ENUM_VALUE_THREE” shall not be.

7.5.2.4 TypeDescriptor

A TypeDescriptor packages together the state of a type. TypeDescriptor objects have value

semantics, allowing them to be deeply copied and compared.

Figure 28 – Type Descriptor

class Type Descriptor

TypeDescriptor

+ bound: UInt32 [*]
+ name: StringType

+ copy_from(TypeDescriptor): ReturnCode_t
+ equals(TypeDescriptor): Boolean {query}
+ is_consistent(): Boolean {query}

DynamicType

«enumeration»
TypeSystem::TypeKind

+discriminator_type

0..*

+key_element_type

0..1

+descriptor

1
{frozen}

+base_type

0..1

+element_type

0..*

+kind

1

DDS-XTypes, version 1.2 179

Table 50 – TypeDescriptor properties and operations

TypeDescriptor

Properties

kind TypeKind

name string<Char8,256>

base_type DynamicType [0..1]

discriminator_type DynamicType [0..1]

bound UInt32 [*]

element_type DynamicType [0..1]

key_element_type DynamicType [0..1]

Operations

copy_from ReturnCode_t

other TypeDescriptor

equals Boolean

other TypeDescriptor

is_consistent Boolean

7.5.2.4.1 Property: base_type

Another type definition, on which the type described by this descriptor is based. Specifically:

 If this descriptor represents a structure type, base_type indicates the supertype of that

type. A nil value of this property indicates that the structure type has no supertype.

 If this descriptor represents an alias type, base_type indicates the type being aliased. A

nil value for this property is not considered consistent.

In all other cases, a consistent descriptor shall have a nil value for this property.

7.5.2.4.2 Property: bound

The bound property indicates the bound of collection and similar types.

 If this descriptor represents an array type, the length of the property value indicates the

number of dimensions in the array, and each value indicates the bound of the

corresponding dimension.

 If this descriptor represents a sequence, map, bitmask, or string type, the length of the

property value is one and the integral value in that property indicates the bound of the

collection.

In all other cases, a consistent descriptor shall have a nil value for this property.

180 DDS-XTypes, version 1.2

7.5.2.4.3 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent

calls to equals, passing the same argument as to this method, return true. The other descriptor

shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return

RETCODE_ERROR.

Parameter other – The descriptor whose contents are to be copied. If this argument is nil, the

operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.4.4 Property: discriminator_type

If this descriptor represents a union type, discriminator_type indicates the type of the

discriminator of the union. It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for this descriptor to

be consistent.

7.5.2.4.5 Property: element_type

If this descriptor represents an array, sequence, or string type, this property indicates the element

type of the collection. It must not be nil for the descriptor to be consistent.

If this descriptor represents a map type, this property indicates the value element type of the map.

It must not be nil for the descriptor to be consistent.

If this descriptor represents a bitmask type, this property must indicate a Boolean type for the

descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to

be consistent.

7.5.2.4.6 Operation: equals

Two type descriptors are considered equal if and only if the values of all of the properties

identified in Table 50 above are equal in each of them.

Parameter other – Another descriptor to compare to this one. If this argument is nil, the

operation shall return false.

7.5.2.4.7 Operation: is_consistent

Indicates whether the states of all of this descriptor’s properties are consistent. The definitions of

consistency for each property are given in the clause corresponding to that property.

7.5.2.4.8 Property: key_element_type

If this descriptor represents a map type, this property indicates the value element type of the map.

It must not be nil for the descriptor to be consistent.

DDS-XTypes, version 1.2 181

If this descriptor represents any other kind of type, this property must be nil for the descriptor to

be consistent.

7.5.2.4.9 Property: kind

An enumerated value that indicates what “kind” of type this descriptor describes: a structure, a

sequence, etc.

7.5.2.4.10 Property: name

The fully qualified name of the type described by this descriptor. To be consistent, this name

must be a valid identifier for the given type kind, as defined elsewhere in this document.

7.5.2.5 MemberId

The type MemberId is an alias to UInt32 and is used for the purpose of representing the ID of a

member of a structured type.

It is also used to type the constant MEMBER_ID_INVALID, which is a sentinel indicating a member

ID that is missing, irrelevant, or otherwise invalid in a given context.

7.5.2.6 DynamicTypeMember

A DynamicTypeMember represents a “member” of a type. A “member” in this sense may be a

member of an aggregated type, a constant within an enumeration, or some other type

substructure. Specifically, the behavior is as described in Table 51 below based on the TypeKind

of the DynamicType to which the member belongs.

Table 51 – DynamicMember behavior

Type Kind Meaning

ANNOTATION_TYPE For these aggregated types, a “member” in this sense has the same

meaning as it does in the definition of aggregated types generally.
STRUCTURE_TYPE

UNION_TYPE

BITMASK_TYPE Each named flag in a bitmask shall be considered to be a “member” of that

bitmask with Boolean type.

ENUMERATION_TYPE Each literal in the enumeration shall be considered a “member” of the

type. These members shall have the type of the enclosing enumeration

itself.

ALIAS_TYPE The behavior is as it would be for the alias’s base type.

No other type kinds are considered to have members.

182 DDS-XTypes, version 1.2

Figure 29 – Dynamic Type Members

DynamicTypeMember objects have reference semantics; however, there is an equals operation to

allow them to be deeply compared.

Table 52 – DynamicTypeMember properties and operations

DynamicTypeMember

Properties

annotation read-only AnnotationDescriptor [*]

Operations

get_descriptor DDS::ReturnCode_t

 inout descriptor MemberDescriptor

equals Boolean

other DynamicTypeMember

get_name string<Char8,256>

get_id MemberId

class Dynamic Type Members

DynamicType

MemberDescriptor

+ default_label: Boolean
+ default_value: StringType
+ index: UInt32 {readOnly}
+ label: Int32 [*]
+ name: StringType

+ copy_from(MemberDescriptor): ReturnCode_t
+ equals(MemberDescriptor): Boolean {query}
+ is_consistent(): Boolean {query}

AnnotationDescriptor

DynamicTypeMember

+ equals(DynamicTypeMember): Boolean {query}
+ get_id(): MemberId {query}
+ get_name(): StringType {query}

MemberId

+ value: UInt32 {readOnly}

id: MemberId
+member

0..1
{frozen}

+type

1
+annotation

*
{frozen}

+annotation

*
{frozen}

+id

1

+descriptor

1
{frozen}

+type

1

DDS-XTypes, version 1.2 183

7.5.2.6.1 Property: annotation

This property provides all annotations previously applied to this member.

7.5.2.6.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an

application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.6.3 Operation: equals

Two members shall be considered equal if and only if they belong to the same type and all of

their respective properties, as identified in Table 52 above, are equal.

7.5.2.6.4 Operation: get_id

This convenience operation provides the member ID of this member. Its result shall be identical

to the ID value that is a member of the descriptor property.

7.5.2.6.5 Operation: get_name

This convenience operation provides the name of this member. Its result shall be identical to the

name string that is a member of the descriptor property.

7.5.2.7 MemberDescriptor

A MemberDescriptor packages together the state of a DynamicTypeMember. MemberDescriptor

objects have value semantics, allowing them to be deeply copied and compared.

Table 53 – MemberDescriptor properties and operations

MemberDescriptor

Properties

name String<Char8,256>

id MemberId

type DynamicType

default_value string

index read-only UInt32

label Int64 [*]

default_label Boolean

184 DDS-XTypes, version 1.2

Operations

copy_from ReturnCode_t

other MemberDescriptor

equals Boolean

other MemberDescriptor

is_consistent Boolean

7.5.2.7.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent

calls to equals, passing the same argument as to this method, return true. The other descriptor

shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return

RETCODE_ERROR.

Parameter other – The descriptor whose contents are to be copied. If this argument is nil, the

operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.7.2 Property: default_label

For this descriptor to be consistent, this property must be true if this descriptor identifies the

default member of a union type or false if not. A default union member may have additional

explicit labels (indicated in the label property), but these are semantically irrelevant, as the

default member would be in effect or not regardless of their presence or absence.

7.5.2.7.3 Property: default_value

This property provides the member’s default value in string form. A string representation of a

data value is considered well-formed if it would be a valid IDL literal of the corresponding type

with the following qualifications:

 String and character literals shall not be surrounded by quotation characters (‘"’ or ‘'’).

 All expressions shall be fully evaluated such that no operators or other non-literal

characters occur in the value. For example, “5” shall be considered a well-formed string

representation of the integer quantity five, but “2 + ENUM_VALUE_THREE” shall not be.

A nil or empty string indicates that the member takes the “default default” value for its type. This

rule shall always be used when the member is of a type for which IDL provides no syntax to

express a literal value (for example, structures or maps) and may be used for any other type.

Design rationale: An instance of DynamicData might have been used here as an alternative.

However, since every default literal can be expressed as a string anyway (i.e., as it is in IDL),

and string objects are expected to be more lightweight that DynamicData implementations, that

representation was preferred.

DDS-XTypes, version 1.2 185

7.5.2.7.4 Operation: equals

Two descriptors are considered equal if and only if the values of all of the properties identified in

Table 53 above are equal in each of them.

Parameter other – Another descriptor to compare to this one. If this argument is nil, the

operation shall return false.

7.5.2.7.5 Property: id

If this member belongs to an aggregated type, this property indicates the member’s ID.

 When a descriptor is used to add a new member to a type, this property may be set to

MEMBER_ID_INVALID; in that case, the implementation shall select an ID for the new

member that is one more than the current maximum member ID in the type. If the value

of this property is not MEMBER_ID_INVALID, it must be set to a value within a legal range.

 When a descriptor is retrieved from an existing member, this property shall reflect the

actual ID of the member. It shall therefore not be MEMBER_ID_INVALID, and it shall fall

within a legal range.

If this member does not belong to an aggregated type, this property must be MEMBER_ID_INVALID,

or the descriptor is not consistent.

7.5.2.7.6 Property: index

This property indicates the order of definition of this member within its type, relative to the

type’s other members. The first member shall have index zero, the next one, and so on.

When a descriptor is used to add a new member to a type, any value greater than the current

largest index value in the type shall be taken to indicate that the new member will become the

last member, whatever the index; member indices within a type shall not be discontiguous.

Alternatively, if this property is set to an index at which a member already exists, that member

and all those after it shall be shifted up by a single index value to make room for the new

member.

When a descriptor is retrieved from an existing member, this property shall always reflect the

actual index at which the member exists.

7.5.2.7.7 Operation: is_consistent

A descriptor shall be considered consistent if and only if all of the values of its properties are

considered consistent. The meaning of consistency for each of these is defined here in the

appropriate clause.

7.5.2.7.8 Property: label

If the type to which the member belongs is a union, this property indicates the case labels that

apply to this member. If default_label is false, it must not be empty. In addition, no two

members of the same union can specify the same label value.

186 DDS-XTypes, version 1.2

If the type to which the member belongs is not a union, this property’s value must be empty to be

consistent.

7.5.2.7.9 Property: name

This property indicates the name of this member. The value must be a well-formed member

name.

7.5.2.7.10 Property: type

This property indicates the type of the member’s value. It must not be nil and must indicate a

type that can legally type a member according to the Type System Model.

7.5.2.8 DynamicType

A DynamicType object represents a particular type defined according to the Type System.

DynamicType objects have reference semantics because of the large number of references to

them that are expected to exist (e.g., in each DynamicData object created from a given

DynamicType). However, the type nevertheless provides operations to allow copying and

comparison by value.

DDS-XTypes, version 1.2 187

Figure 30 – Dynamic Type

Table 54 – DynamicType properties and operations

DynamicType

Properties

member_by_name read-only string<Char8,256>

DynamicTypeMember [0..1]

member read-only MemberId

DynamicTypeMember [0..1]

annotation read-only AnnotationDescriptor [*]

class Dynamic Type

DynamicType

+ equals(DynamicType): Boolean {query}
+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

MemberDescriptor

TypeDescriptor

AnnotationDescriptor

DynamicTypeMember

DynamicTypeBuilder

id: MemberId
+member

0..1
{frozen}

+element_type

0..*

«instantiate»

+type

1

+key_element_type

0..1

+descriptor

1
{frozen}

+descriptor

1
{frozen}

+annotation

*
{frozen}

+base_type

0..1

+discriminator_type

0..*

+type

1
+annotation

*
{frozen}

188 DDS-XTypes, version 1.2

Operations

get_descriptor DDS::ReturnCode_t

 inout descriptor TypeDescriptor

equals Boolean

other DynamicType

get_name string<Char8,256>

get_kind TypeKind

7.5.2.8.1 Property: annotation

This property provides all annotations that have previously been applied to this type.

7.5.2.8.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an

application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.8.3 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified

in Table 54 above, are equal.

7.5.2.8.4 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result

shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.8.5 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to

the name string that is a member of the descriptor property.

7.5.2.8.6 Property: member_by_name

This property contains a mapping from the name of a member of this type to the member itself.

As described in Table 55 below, not only members of aggregated types are considered

“members” here: the constituents of enumerations, bitmasks, and other kinds of types are also

considered to be “members” for the purposes of this property.

Table 55 – DynamicType::member_by_name behavior

 Type Kind Behavior

ANNOTATION_TYPE The member descriptor must describe a consistent annotation type

member. If the descriptor does not satisfy these constraints, the

operation shall fail with RETCODE_BAD_PARAMETER.

DDS-XTypes, version 1.2 189

ALIAS_TYPE The behavior is as it would be for the alias’s base type. If adding a

member is not defined for the alias’s base type, this operation shall fail

with RETCODE_PRECONDITION_NOT_MET.

BITMASK_TYPE The member descriptor must describe a Boolean flag with a value within

the bound of this bitmask type. If the descriptor does not satisfy these

constraints, the operation shall fail with RETCODE_BAD_PARAMETER.

ENUMERATION_TYPE The member descriptor must describe a literal with the type of this

enumeration. If the descriptor does not satisfy these constraints, the

operation shall fail with RETCODE_BAD_PARAMETER.

STRUCTURE_TYPE The member descriptor must describe a consistent structure member. If

the descriptor does not satisfy this constraint, the operation shall fail

with RETCODE_BAD_PARAMETER.

UNION_TYPE The member descriptor must describe a consistent union member. If the

descriptor does not satisfy this constraint, the operation shall fail with

RETCODE_BAD_PARAMETER.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicType that

contains it. The former shall be considered to exist logically from the time the corresponding

member is added to the latter and until such time as the latter is deleted. Implementations may

allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

 Users of the DynamicTypeMember class are not required to explicitly delete objects of that

class.

 Changes to one DynamicTypeMember object representing a given member shall be

reflected in all observable DynamicTypeMember objects representing the same member.

 All DynamicTypeMember objects representing the same member shall compare as equal

according to their equals operations.

7.5.2.8.7 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to

the member itself.

 If this type is an aggregated type, the collection of members available through this

property shall be equal to (element order notwithstanding) that available through the

member_by_name property.

 If this type is not an aggregated type, the collection of members available through this

property shall be empty.

7.5.2.9 DynamicTypeBuilder

A DynamicTypeBuilder object represents a transitional state of a particular type defined

according to the Type System. It is used to instantiate concrete DynamicType objects.

190 DDS-XTypes, version 1.2

Table 56 – DynamicTypeBuilder properties and operations

DynamicTypeBuilder

Properties

member_by_name read-only string<Char8,256> DynamicTypeMember

[0..1]

member read-only MemberId DynamicTypeMember [0..1]

annotation read-only AnnotationDescriptor [*]

Operations

get_descriptor DDS::ReturnCode_t

inout descriptor TypeDescriptor

equals Boolean

other DynamicType

get_name string<Char8,256>

get_kind TypeKind

add_member ReturnCode_t

descriptor MemberDescriptor

apply_annotation ReturnCode_t

descriptor AnnotationDescriptor

apply_annotation_to_member ReturnCode_t

member_id MemberId

descriptor AnnotationDescriptor

build DynamicType

7.5.2.9.1 Operation: add_member

Add a “member” to this type, where the new “member” has the meaning defined in the

specification of the DynamicTypeMember class. Specifically, the behavior shall be as described in

Table 55 in Clause 7.5.2.8.6, “Property: member_by_name”. For type kinds not given in that table,

this operation shall fail with RETCODE_PRECONDITION_NOT_MET.

Following a successful return, the new member shall appear in the member property and possibly

in the member_by_id property, based on the definition of that property.

Parameter descriptor – A descriptor of the new member to be added. If this argument is nil,

the operation shall fail with RETCODE_BAD_PARAMETER.

DDS-XTypes, version 1.2 191

7.5.2.9.2 Property: annotation

This property provides all annotations that have previously been applied to this type with

apply_annotation.

7.5.2.9.3 Operation: apply_annotation

Apply the given annotation to this type. It shall subsequently appear in the annotation property.

Parameter descriptor – A consistent descriptor for the annotation to apply. If this argument is

not consistent, the operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.4 Operation: apply_annotation_to_member

Apply the given annotation to this member. It shall subsequently appear in the annotation

property of the identified member.

Parameter member_id – Identifies the member to which the annotation shall be applied.

Parameter descriptor – A consistent descriptor for the annotation to apply. If this argument is

not consistent, the operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.5 Operation: build

Create an immutable DynamicType object containing a snapshot of this builder’s current state.

Subsequent changes to this builder, if any, shall have no observable effect on the states of any

previously created DynamicTypes.

7.5.2.9.6 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an

application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.7 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified

in Table 56 above, are equal.

7.5.2.9.8 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result

shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.9.9 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to

the name string that is a member of the descriptor property.

7.5.2.9.10 Property: member_by_name

This property contains a mapping from the name of a member of this type to the member itself.

As described in the case of add_member, not only members of aggregated types are considered

192 DDS-XTypes, version 1.2

“members” here: the constituents of enumerations, bitmasks, and other kinds of types are also

considered to be “members” for the purposes of this property.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicTypeBuilder

that contains it. The former shall be considered to exist logically from the time the corresponding

member is added to the latter and until such time as the latter is deleted. Implementations may

allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

 Users of the DynamicTypeMember class are not required to explicitly delete objects of that

class.

 Changes to one DynamicTypeMember object representing a given member shall be

reflected in all observable DynamicTypeMember objects representing the same member.

 All DynamicTypeMember objects representing the same member shall compare as equal

according to their equals operations.

7.5.2.9.11 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to

the member itself.

 If this type is an aggregated type, the collection of members available through this

property shall be equal to (element order notwithstanding) that available through the

member_by_name property.

 If this type is not an aggregated type, the collection of members available through this

property shall be empty.

7.5.2.10 DynamicDataFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its

“only” instance is the starting point for creating and deleting DynamicData and objects, just like

the singleton DomainParticipantFactory is the starting point for creating DomainParticipant

objects.

Table 57 – DynamicDataFactory properties and operations

DynamicDataFactory

Operations

static get_instance DynamicDataFactory

static delete_instance ReturnCode_t

create_data DynamicData

type DynamicType

delete_data ReturnCode_t

data DynamicData

DDS-XTypes, version 1.2 193

7.5.2.10.1 Operation: create_data

Create and return a new data sample. All objects returned by this operation should eventually be

deleted by calling delete_data.

Parameter type - The type of the sample to create.

7.5.2.10.2 Operation: delete_data

Dispose of a data sample, reclaiming any associated resources.

Parameter data - The data sample to delete.

7.5.2.10.3 Operation: delete_instance

Reclaim any resources associated with the object(s) previously returned from get_instance.

Any references to these objects held by previous callers may become invalid at the

implementation’s discretion.

This operation shall return RETCODE_ERROR if it fails for any implementation-specific reason.

7.5.2.10.4 Operation: get_instance

Return a DynamicDataFactory instance that behaves like a singleton, although callers cannot

assume pointer equality across invocations of this operation. The implementation may return the

same object every time or different objects at its discretion. However, if it returns different

objects, it shall ensure that they behave equivalently with respect to all programming interfaces

specified in this document.

It is legal to call this operation even after delete_instance has been called. In such a case, the

implementation shall recreate or restore the “singleton” as necessary to ensure that it can return a

valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.11 DynamicData

Each object of the DynamicData class represents a corresponding object of the type represented

by the DynamicData object’s DynamicType.

DynamicData objects have reference semantics; however, there is an equals operation to allow

them to be deeply compared.

194 DDS-XTypes, version 1.2

Figure 31 – Dynamic Data and Dynamic Data Factory

Table 58 below summarizes the properties and operations supported by DynamicData objects.

Table 58 – DynamicData properties and operations

DynamicData

Properties

value MemberId Type [0..1]

type read-only DynamicType

descriptor MemberId MemberDescriptor

Operations

get_member_id_by_name

 MemberId

name string<Char8,256>

get_member_id_at_index

 MemberId

index UInt32

get_item_count UInt32

equals Boolean

other DynamicData

clear_all_values ReturnCode_t

clear_nonkey_values ReturnCode_t

clear_value ReturnCode_t

id MemberId

class Dynamic Data

DynamicData

+ clear_all_values(): ReturnCode_t
+ clear_nonkey_values(): ReturnCode_t
+ clear_value(MemberId): ReturnCode_t
+ clone(): DynamicData
+ equals(DynamicData): Boolean {query}
+ get_member_id_by_index(UInt32): MemberId {query}
+ get_member_id_by_name(StringType): MemberId {query}
+ loan_value(MemberId): DynamicData {query}
+ return_loaned_value(DynamicData): ReturnCode_t DynamicType

DynamicDataFactory

+ create_data(DynamicType): DynamicData
+ delete_data(DynamicData)
+ delete_instance(): ReturnCode_t
+ get_instance(): DynamicDataFactory {query}

MemberDescriptor

TypeSystem::Typeid: MemberId

id: MemberId

+value

+type

1

+type

1
{frozen}

+descriptor

*

«instantiate»

DDS-XTypes, version 1.2 195

loan_value DynamicData

member_id MemberId

return_loaned_value ReturnCode_t

value DynamicData

clone DynamicData

7.5.2.11.1 Property: value; Operations: get_member_id_by_name and
get_member_id_at_index

Many of the properties and operations defined by this class refer to values within the sample,

which are identified by name, member ID, or index. What constitutes a value within a sample,

and which means of accessing it are valid, depends on the type of this sample.

 If this object is of an aggregated type, values correspond to the type’s members and can

be accessed by name, member ID, or index.

 If this object is of a sequence or string type, values correspond to the elements of the

collection. These elements must be accessed by index; the mapping from index to

member ID is unspecified.

 If this object is of a map type, values correspond to the values of the map. Map keys are

implicitly converted to strings and can thus be used to look up map values by name. Map

values can also be accessed by index, although the order is unspecified.

 If the object is of an array type, values correspond to the elements of the array. These

elements must be accessed by index; the mapping from index to member ID is

unspecified. If the array is multi-dimensional, elements are accessed as if they were

“flattened” into a single-dimensional array in the order specified by the IDL specification.

 If the object is of a bitmask type, values correspond to the flags within the bitmask and

are all of Boolean type. Named flags can be accessed using that name; any bit within the

bound of the bitmask may be accessed by its index. The mappings from name and index

to member ID are unspecified.

 If the object is of an enumeration or primitive type, it has no contained values. However,

the value of the sample itself may be indicated by “name” using a nil or empty string, by

“ID” by passing MEMBER_ID_INVALID, or by “index” by passing index 0.

Note that indices used here are always relative to other values in a particular DynamicData

object. Even though member definitions within aggregated types have a well-defined order, the

same is not true within data samples or across data samples. Specifically, the index at which a

member of an aggregated type appears in a particular data sample may not match that in which it

appears in the corresponding type and may not match the index at which it appears in a different

data sample. There are several reasons for these inconsistencies:

196 DDS-XTypes, version 1.2

 The producer of the sample may be using a slightly different variant of the type than the

consumer, which may add to, or omit elements from, the set of members known to the

consumer.

 An optional member may have no value; in such a case, it will be omitted, thereby

decreasing the index of every subsequent member.

 A non-optional member may likewise be omitted (which semantically is equivalent to it

taking its default value). An implementation may discretionarily omit such members (e.g.,

to save space).

 Preserving member order is not necessary or even desirable (e.g., for performance

reasons) for certain data representations.

7.5.2.11.2 Property: descriptor

This property shall contain a descriptor for each value in this object, identified by the member ID.

The meaning of the member ID shall be as it is described for the value property.

7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and
clear_nonkey_values

The meaning of “clearing” a member depends on the type of data represented by this sample:

 If this sample is of an aggregated type, and the indicated member is optional, remove it.

If the indicated member is not optional, set it to its default value.

 If this sample is of a variable-length collection type, remove the indicated element,

shifting any subsequent elements to the next-lowest index.

 If the sample is of an array type, set the indicated element to its default value.

 If the sample is of a bitmask type, clear the indicated bit.

 If the sample is of an enumerated type, set it to the first value of the enumerated type.

 If the sample is of a primitive type, set it to its default value.

The clear_all_members takes the above action for each value in turn. The

clear_nonkey_value operation has exactly the same effect as clear_all_values with one

exception: the values of key fields of aggregated types retain their values.

7.5.2.11.4 Operation: clone

Create and return a new data sample with the same contents as this one. A comparison of this

object and the clone using equals immediately following this call will return true.

7.5.2.11.5 Operation: equals

Two data samples are considered to be equal if and only if all of the following conditions hold:

 Their respective type definitions are equal.

DDS-XTypes, version 1.2 197

 All contained values are equal and occur in the same order.

 If the samples’ type is an aggregated type, the previous rule shall be amended as follows:

o Members shall be compared without regard to their order.

o One of the samples may omit a non-optional member that is present in the other if

that member takes its default value in the latter sample.

7.5.2.11.6 Operation: get_item_count

The “item count” of the data depends on the type of the object.

 If the object is of a collection type, return the number of elements currently in the

collection. In the case of an array type, this value will always be equal to the product of

the bounds of all array dimensions.

 If the object is of a bitmask type, return the number of named flags that are currently set

in the bitmask.

 If the object is of a structure or annotation type, return the number of members in the

object. This value may be different than the number of members in the corresponding

DynamicType—for example, some optional members may be omitted.

 If the object is of a union type, return the number of members in the object. This value

will always be two: the discriminator and the current member corresponding to it.

 If the object is of a primitive or enumerated type, it is atomic: return one.

 If the object is of an alias type, return the value appropriate for the alias’s base type.

7.5.2.11.7 Operations: loan_value and return_loaned_value

The “loan” operations loan to the application a DynamicData object representing a value within

this sample. These operations allow applications to visit values without allocating additional

DynamicData objects or copying values. This loan shall be returned by the

return_loaned_value operation.

A given DynamicData object may support only a single outstanding loan at a time. That is, after

calling a “loan” operation, an application must subsequently call return_loaned_value before

calling a loan operation again. If an application violates this constraint, the loan operation shall

return a nil value.

A loan operation shall also return a nil value if the indicated value does not exist.

The return_loaned_value operation shall return RETCODE_PRECONDITION_NOT_MET if the

provided sample object does not represent an outstanding loan from the sample on which the

operation is invoked.

7.5.2.11.8 Property: type

This property provides the type that defines the values within this sample. Its value shall not be

nil.

198 DDS-XTypes, version 1.2

7.5.2.11.9 Platform-Specific Model: IDL

The programming language-specific APIs for the Dynamic Type and Dynamic Data classes and

their companion classes shall be based on the following IDL definitions, transformed according

to the IDL language mapping described above, as expanded below.

The conceptual model refers to the type Object, objects of which may be of any concrete type

supported by the Type System defined by this specification. The mapping to IDL below

represents this multiplicity of concrete types by multiplying the methods implied by the

properties, qualifying each method with a concrete type. For example, a qualified association

foo: Int32 Object would expand to get_int32_foo, get_int16_foo, etc. Specifically,

the mapping uses the following type expansions:

 Each primitive type has its own expansion. Primitive types can be implicitly promoted to

larger primitive types as defined below.

 Strings of Char8 and Char16 elements have their own expansions qualified by “string”

and “wstring” respectively.

 Enumerated types shall be implicitly converted to any signed integer type having at least

as many bits as the enumerated type’s @bit_bound. They are thus accessible through

those primitive methods.

 Bitmasks shall be implicitly converted to any unsigned integer type having at least as

many bits as the bitmask’s @bit_bound. They are thus accessible through those primitive

methods.

 Alias types shall be implicitly converted to their ultimate base type and are thus

accessible through the methods appropriate for that type.

 Sequences of primitive types and strings have their own expansions in which the name of

the property has been made plural. Arrays shall also be accessible through these methods.

 Expansions that operate on DynamicData objects, qualified by “complex,” catch the

remaining cases and offer an alternative approach to accessing values of any of the above

types.

If a DynamicData object represents an object of a resizable collection type (string, sequence, or

map), these setters may also be used to append new elements to the collection.

 For a string or sequence type, use get_member_id_at_index to obtain an ID for the

index one greater than the current length.

 For a map type, use get_member_id_by_name to obtain an ID for the new map key.

As mentioned above, it shall be possible to implicitly promote integral types. These shall be

supported during both “get” and “set” operations such that a smaller type promotes to a large

type but not vice versa. For example, it shall be possible to get the value of a short integer field

as if it were a long integer, and it shall be possible to set the value of a long integer as if it were a

short integer. Specifically, the following promotions shall be supported:

DDS-XTypes, version 1.2 199

 Int16 Int32, Int64, Float32, Float64, Float128

 Int32 Int64, Float64, Float128

 Int64 Float128

 UInt16 Int32, Int64, UInt32, UInt64, Float32, Float64, Float128

 UInt32 Int64, UInt64, Float64, Float128

 UInt64 Float128

 Float32 Float64, Float128

 Float64 Float128

 Float128 (none)

 Char8 Char16, Int16, Int32, Int64, Float32, Float64, Float128

 Char16 Int32, Int64, Float32, Float64, Float128

 Byte (any)

 Boolean Int16, Int32, Int64, UInt16, UInt32, UInt64, Float32, Float64,
Float128

The complete IDL representation may be found in “Annex C: Dynamic Language Binding.”

7.6 Use of the Type System by DDS

This clause describes how DDS uses the type system.

7.6.1 Topic Model

A DDS topic exists in two senses of the word:

1. On the network, with respect to interoperability: This is the sense in which we say that a

reader and a writer share the “same” topic, even though they obtain the topic’s definition

independently within their implementations.

2. In application code, with respect to portability: Each component that uses a topic creates

or looks up a local proxy for that topic.

On the network, a given topic is associated with one or more types. A given writer or reader

endpoint belongs to one topic and is associated with one of the types of that topic. If a writer and

a reader share the same topic, it is assumed that they are intended to communicate with one

another. At that point, the Service evaluates the two endpoints to make sure that they specify

consistent types (see Clause 7.6.2.4.2, “Rules for Type Consistency Enforcement”) and

compatible QoS (see [DDS]).

200 DDS-XTypes, version 1.2

Typically, in application code, a topic is associated with a single type (as has always been the

case in the [DDS] API)
6
. Therefore, multiple API topics may correspond to (different views of)

the same network topic. A given reader or writer endpoint is associated with one of them. See

Clause 7.6.3, “Local API Extensions”, for definitions of the programming interfaces that support

this polymorphism.

Generic services (e.g., logger, monitor) may discover a topic associated with one or more types.

Such services may be able to handle all representations of the types, without ever having type

specific knowledge hardcoded into them.

7.6.2 Discovery and Endpoint Matching

The enhanced Type System and the richer set of available Data Representations necessitate

extensions to the discovery and endpoint matching process defined by the DDS specification,

which may be divided into three categories:

 Data Representation: The multiplicity of data representations introduced by this

specification creates the possibility that different DataWriter and DataReader endpoints

in a single system may support different combinations of representations. It is therefore

necessary to define a mechanism whereby endpoints can inform each other of the

representations they support and thereby negotiate communication.

 Discovery-Time Data Typing: The dynamic features of this specification depend on the

ability of components to discover the data types used by their peers.

 Type Consistency Enforcement: One of the criteria for DataWriter-DataReader

matching defined by DDS is that the type names of each must match exactly. In complex

dynamic systems, this restriction can prove overly limiting. Based on the type

compatibility rules defined by this specification, matching endpoints shall be permitted to

declare types that are not identical but nevertheless have well-defined relationships with

one another.

These extensions are defined in the following sections.

7.6.2.1 Data Representation QoS Policy

With multiple standard data Representations available, and vendor-specific extensions possible,

DataWriters and DataReaders must be able to negotiate which data representation(s) to use.

This negotiation shall occur based on a new QoS policy: DataRepresentationQosPolicy.

7.6.2.1.1 DataRepresentationQosPolicy: Conceptual Model

The conceptual model for data representation negotiation consists of several parts:

 The identification of data representations.

6 Design rationale (non-normative): This constraint keeps the programming model the same for both XTypes-supporting and

non-XTypes-supporting implementations, and it keeps the mental model simple for the majority of programmers, who will not be

aware of the presence of multiple types in their topics.

DDS-XTypes, version 1.2 201

 The specification of supported and preferred representations by DataReaders and

DataWriters.

 The algorithm by which a suitable representation is chosen for a particular

DataReader/DataWriter pair, given the supported representations of each.

Each data representation shall be identified by a two-byte signed integer value, the

“representation identifier.” Within the range of such a value, the negative values shall be

reserved for definition by DDS implementations. The remainder of the range shall be reserved

for the OMG for use in future specifications, including this specification.

Within the OMG-reserved range, this specification defines three representation identifiers:

 XCDR, which corresponds to the Extended CDR Representation encoding version 1 and

takes the value 0.

 XML, which corresponds to the XML Data Representation and takes the value 1.

 XCDR2, which corresponds to Extended CDR Representation encoding version 2 and takes

the value 2.

Each Topic, DataReader and DataWriter shall have a QoS policy

DataRepresentationQosPolicy. This policy shall contain a list of representation identifiers.

This policy has request-offer semantics, and its value cannot be changed after the entity in

question has been enabled [DDS].

 Writers offer a single representation. A writer will use its offered policy to communicate

with its matched readers.

(Because the policy structure includes a sequence, it is technically possible for the writer

to offer more than one representation. Implementers of this specification may use this fact

in order to offer extended functionality; however, this specification does not specify any

meaning for the representation identifiers after the first, and implementations may ignore

them.)

o Writers belonging to implementations of XTYPES version 1.1 or earlier shall not

announce the XCDR2 representation identifier.

o Writers belonging to implementations of XTYPES version 1.2 and later:

 Shall generate or include run-code that can serialize using version 2

encodings.

 Optionally may generate or include run-code that can serialize using

version 1 encodings. In this case, they shall offer the means to configure at

run-time the encoding version used by the DataWriter and adjust the

offered representation identifiers in the DataRepresentationQosPolicy

accordingly.

202 DDS-XTypes, version 1.2

 Readers request one or more representations.

o Readers requesting the XML Data Representation shall be prepared to receive

either valid or merely well-formed XML documents. If a received document is

well-formed but does not include any XML namespace declarations, the reader

shall assume that the document could be validated using the XSD Type

Representation of the corresponding sample’s type if it were to include such

namespace declarations.

o Readers belonging to implementations of XTYPES version 1.1 or earlier shall not

announce the XCDR2 representation identifier.

 Shall generate or include run-time code that can deserialize version 2

encodings.

 Shall request XCDR2 encoding.

 Optionally may generate or include run-time code that can deserialize

version 1 encodings. In this case they shall also request XCDR encoding

in addition to XCDR2 encoding.

 When representations are specified in the TopicQos, the first element of the sequence

applies to writers of the Topic, and the whole sequence applies to readers of the Topic.

 If a writer’s offered representation is contained within a reader’s sequence, the offer

satisfies the request and the policies are compatible. Otherwise, they are incompatible.

The default value of the DataRepresentationQosPolicy shall be an empty list of preferences.

An empty list of preferences shall be taken to be equivalent to a list containing the single element

XCDR.

The DataRepresentationQosPolicy shall not be changeable after its corresponding Entity has

been enabled.

The rules defined in this clause result in a compatibility matrix shown in Table 59.

DDS-XTypes, version 1.2 203

Table 59 – Compatibility matrix for the DataRepresentationQosPolicy

DataWriter offered

DataRepresentationId_t

DataReader requested

DataRepresentationId_t

Encoding compatibility check

XCDR

DataWriter will encode

data according to version

1 encoding rules.

Either the DataWriter is a

legacy (xtypes 1.1)

DataWriter or else it has

been configured to use

XCDR VERSION1.

XCDR

DataReader is a legacy

(xtypes 1.1) DataReader

Compatible.

DataWriter finds its encoding

among the ones understood by

DataReader.

DataReader finds its encoding

among the ones understood by

DataWriter.

XCDR and XCDR2

DataReader is a (xtypes

1.2) DataReader

Compatible.

DataWriter finds its encoding

among the ones understood by

DataReader.

DataReader finds its encoding

among the ones understood by

DataWriter.

XCDR2

DataWriter will encode

data according to version

2 encoding rules.

DataWriter is a new

(xtypes 1.2) DataWriter

and it has been

configured to use the

version 2 encoding.

XCDR

DataReader is a legacy

(xtypes 1.1) DataReader

Not Compatible.

DataWriter does not find its

encoding among the ones

understood by DataReader.

DataReader does not find its

encoding among the ones

understood by DataWriter.

XCDR and XCDR2

DataReader is a new

(xtypes 1.2) DataReader

Compatible.

DataWriter finds its encoding

among the ones understood by

DataReader.

DataReader finds its encoding

among the ones understood by

DataWriter.

204 DDS-XTypes, version 1.2

7.6.2.1.2 Use of the RTPS Encapsulation Identifier

As defined in the RTPS specification, a data encapsulation is identified by a two-byte value, the

“encapsulation identifier” [RTPS]. RTPS also defines specific encapsulation identifier values

corresponding to four encapsulations: big-endian CDR (CDR BE), little-endian CDR (CDR LE),

big-endian parameter-list CDR (PL CDR BE), and little-endian parameter-list CDR (CDR PL

LE). These encapsulations correspond to a choice of data representation and a byte-order

encoding.

For the purposes of this specification, encapsulation identifiers where the first byte is in the range

0xC0 to 0xFF (both included) shall be reserved for definition by DDS implementations and shall

be interpreted based on the RTPS vendor ID. The remaining values shall be reserved for the

OMG
7
 for use in future specifications, including revisions of this specification.

Version 1.0 of this specification adds an additional encapsulation identifier corresponding to the

XML Data Representation: XML, with the value {0x00, 0x04}. Since XML is a textual format, no

byte-order differentiation is necessary.

Version 1.2 of this specification adds six additional encapsulation identifiers corresponding to

PLAIN_CDR2, DELIMITED_CDR, and PL_CDR2 each with big endian or little endian

encoding:

 Identifier CDR2_BE shall be used for PLAIN_CDR2 with big endian encoding

 Identifier CDR2_LE shall be used for PLAIN_CDR2 with little endian encoding

 Identifier D_CDR2_BE shall be used for DELIMITED_CDR with big endian encoding

 Identifier D_CDR2_LE shall be used for DELIMITED_CDR with little endian encoding

 Identifier PL_CDR2_BE shall be used for PL_CDR2 with big endian encoding

 Identifier PL_CDR2_LE shall be used for PL_CDR2 with little endian encoding

The encapsulation identifier field in an RTPS data sub-message shall be set such that it

corresponds to the encoding version and the data representation of the outermost object whose

state is represented in the message. The possible combinations are defined in Table 60.

Table 60 – RTPS encapsulation identifier

Repres

entatio

n

Extensibility

Kind

Encodi

ng

Version

Endianess RTPS

Encapsulatio

n Identifier

Identifier value

XCDR FINAL 1 Big Endian CDR_BE {0x00, 0x00}

XCDR FINAL 1 Little Endian CDR_LE {0x00, 0x01}

XCDR APPENDABLE 1 Big Endian CDR_BE {0x00, 0x00}

7 Note that all RTPS-specified encapsulation identifier values fall within the OMG-reserved range.

DDS-XTypes, version 1.2 205

XCDR APPENDABLE 1 Little Endian CDR_LE {0x00, 0x01}

XCDR MUTABLE 1 Big Endian PL_CDR_BE {0x00, 0x02}

XCDR MUTABLE 1 Little Endian PL_CDR_LE {0x00, 0x03}

XCDR FINAL 2 Big Endian CDR2_BE {0x00, 0x06}

XCDR FINAL 2 Little Endian CDR2_LE {0x00, 0x07}

XCDR APPENDABLE 2 Big Endian D_CDR2_BE {0x00, 0x08}

XCDR APPENDABLE 2 Little Endian D_CDR2_LE {0x00, 0x09}

XCDR MUTABLE 2 Big Endian PL_CDR2_BE {0x00, 0x0a}

XCDR MUTABLE 2 Little Endian PL_CDR_LE {0x00, 0x0b}

XML any any any XML {0x00, 0x04}

As defined in Sub Clause 10.2.1.2 titled “OMG CDR” of the RTPS specification, the

Encapsulation Identifier is followed by a 16-bit options field. The options field is then followed

by the data encoded using XCDR.

The XML encapsulation identifier is also followed by a 16-bit options field, which shall precede

the data serialized using the XML data representation described in Sub Clause 7.4.4.

The RTPS specification does not define any settings for the 16-bit options field and further states

that a receiver should not interpret it when it reads the options field. This DDS-XTYPES

specification changes this defining the use of some bits in the options field.

Implementations of this specification shall set the lower order two bits of the 16 bit options field

to a value that encodes the number of padding bytes from the end of the serialized payload to the

4-byte aligned offset that will start the next RTPS submessage. Specifically the last two bits shall

be set to binary 00 if there was no padding, binary 01 if there was one byte of padding, binary 10

if there were two bytes of padding and binary 11 if there were three bytes of padding. This shall

be interpreted by the receiver to determine where the serialized data ended.

For example assume structures TypeA and TypeB defined by the following IDL:

struct TypeA {

 short member1;

};

struct TypeB {

 short member1;

 char member2;

};

206 DDS-XTypes, version 1.2

Furthermore assume an object O1 of type TypeA with value O1.member1 = 0x11 and an object

O2 of type TypeB with value O2.member1= 0x23 and O2.member2 = ‘b’. The CDR big endian

representation of these two objects, including Encapsulation header and options would be:

Object O1 representation:

0...2...4.......8...............16..............24..............32

+-+

| CDR_BE { 0x00, 0x00 } | options { 0x00, 0x02 } |

+---------------+---------------+---------------+---------------+

| O1.member1 = 0x11 | padding (2 bytes) {0x00, 0x00}|

+---------------+---------------+---------------+---------------+

NEXT RTPS SUBMESSAGE...

Object O2 representation:

0...2...4.......8...............16..............24..............32

+-+

| CDR_BE { 0x00, 0x00 } | options { 0x00, 0x01 } |

+---------------+---------------+---------------+---------------+

| O2.member1 = 0x23 |O2.member2 =‘b’| padding {0x00}|

+---------------+---------------+---------------+---------------+

NEXT RTPS SUBMESSAGE...

7.6.2.1.3 DataRepresentationQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions

RepresentationId_t, RepresentationIdSeq, DATA_REPRESENTATION_QOS_POLICY_ID,

DATA_REPRESENTATION_QOS_POLICY_NAME, and DataRepresentationQosPolicy. These

definitions are given in “Annex D: DDS Built-in Topic Data Types.”

The topic, publication, and subscription built-in topic data types shall each indicate the data

representation of the associated entity with a new member:

@id(0x0073) DDS::DataRepresentationQosPolicy representation;

7.6.2.2 Discovery Built-in Topics

7.6.2.2.1 Type Information

A DDS DomainParticipant needs to have type information on remote DomainParticipant

Topics that are also being published or subscribed by the local DomainParticipant. That way the

DomainParticipant can ensure type compatibility with the remote endpoints it matches.

XTYPES 1.1 optionally included the TypeObject information into the Publication and

Subscription discovery built-in topic data. The TypeObject in XTYPES version 1.1

(TypeObjectV1) was defined as a “library” that contained not only the data-type for the Topic-

Type, but also any data-types that were recursively needed to understand the Topic-Type (e.g.

DDS-XTypes, version 1.2 207

the data-types of the members of a structure). That way a DomainParticipant that discovered the

endpoint would have all the type information readily available.

XTYPES 1.2 redefines the structure of the TypeObject (TypeObjectV2) and introduces a

different mechanism that avoids sending TypeObjects to DomainParticipants that are not

interested in it (e.g. they already know the TypeObject, or they are not publishing or subscribing

an affected Topic). The XTYPES 1.2 approach is:

 Send TypeInformation that include TypeIdentifiers (instead of TypeObjects) in the

discovery built-in topics.

 Uses the TypeIdentifiers to determine which types a DomainParticipant is interested

in.

 Uses a new pair of built-in endpoints to request the TypeObjects for those

TypeIdentifiers the DomainParticipant is interested in, and receive the reply.

The content of the type information is defined in the IDL below:

@extensibility(APPENDABLE)

struct TypeIdentfierWithSize {

 TypeIdentifier type_id;

 unsigned long typeobject_serialized_size;

};

@extensibility(APPENDABLE)

struct TypeIdentifierWithDependencies {

 TypeIdentfierWithSize typeid_with_size;

 // The total additional types related to minimal_type

 long dependent_typeid_count;

 sequence<TypeIdentfierWithSize> dependent_typeids;

};

typedef sequence<TypeIdentifierWithDependencies>

 TypeIdentifierWithDependenciesSeq;

@extensibility(MUTABLE)

struct TypeInformation {

 @id(0x1001) TypeIdentifierWithDependencies minimal;

 @id(0x1002) TypeIdentifierWithDependencies complete;

};

typedef sequence<TypeInformation> TypeInformationSeq;

The TypeInformation includes information on the data-type associated with the Endpoint

(DataWriter or DataReader, i.e. the TopicType. It includes two fields, minimal and complete.

208 DDS-XTypes, version 1.2

The field minimal contains the MINIMAL Hash TypeIdentifiers for the TopicType and types

that it depends on:

 The field minimal.typeid_with_size shall contain the MINIMAL Hash TypeIdentifier

of the TopicType and the serialized size of the associated TypeObject.

 The field minimal.dependent_typeid_count shall contain the total number of other

MINIMAL Hash TypeIdentifiers that correspond to data-types the TopicType

depends on. This field may be set to -1 to indicate it is not being provided.

 The field minimal.dependent_typeids may contain some of the MINIMAL Hash

TypeIdentifiers of the types the TopicType depends on, along with the serialized size

of the respective TypeObjects.

The field complete contains the COMPLETE Hash TypeIdentifiers for the TopicType and

types that it depends on:

 The field complete.typeid_with_size shall contain the COMPLETE Hash

TypeIdentifier of the TopicType and the serialized size of the associated TypeObject.

 The field complete.dependent_typeid_count shall contain the total number of other

COMPLETE Hash TypeIdentifiers that correspond to data-types the TopicType

depends on. This field may be set to -1 to indicate it is not being provided.

 The field complete.dependent_typeids may contain some of the COMPLETE Hash

TypeIdentifiers of the types the TopicType depends on, along with the serialized size

of the respective TypeObjects.

As mentioned the field dependent_typeids may be used to optionally announce some of the Hash

TypeIdentifiers the TopicType recursively depends on. The decision of which types to

include in the dependent_typeids is left to the implementation: It may be set to the empty

sequence, or include all the Hash TypeIdentifiers that the TopicType depends on, or

something in between. If dependent_typeid_count is not -1, then length of the dependent_typeids

sequence shall be less or equal to dependent_typeid_count.

The TypeIdentifiers included in the TypeInformation shall include only direct HASH

TypeIdentifiers (see Clause 7.3.4.6.3). In addition it shall not contain individual type identifiers

for types belonging to Strongly Connected Component (i.e. those with discriminator

TI_STRONG_COMPONENT), instead it shall include the identifier of the whole Strongly-

Connected Component (SCCIdentifier, see Clause 7.3.4.9.3).

A DomainParticipant can use the TypeInformation to determine if it already knows the

associated TopicType and determine the type compatibility with local endpoints. In case some of

the TypeIdentifiers announced by a remote endpoint are not known to a DomainParticipant, it

can use the built-in TypeLookup Service to retrieve the TypeObject of the types associated with

those TypeIdentifiers.

7.6.2.2.2 Additional members included in discovery built-in Topics

The topic, publication, and subscription built-in topic data structures shall each indicate the

type(s) used for communication by the associated entity. These declarations shall be as follows:

@id(0x0007) ObjectName type_name;

DDS-XTypes, version 1.2 209

@id(0x0072) @optional TypeObjectV1 type; // XTYPES 1.1

@id(0x0075) @optional XTypes::TypeInformation type_information; // XTYPES 1.2

TypeObjectV1 corresponds to the TypeObject data type specified in "Annex B: Representing

Types with TypeObject" of DDS-XTYPES Version 1.1 [DDS-XTYPES11]. Likewise, the type

member shall be set as specified in Clause 7.3.4 of [DDS-XTYPES11].

Non-normative note: When the TypeObjectV1 and TypeInformation members (called type

and type_information) are omitted from the built-in topic samples, type_name is the only way

to resolve entity matching and as a consequence, it is possible that incompatibility between

topic-types is not recognized.

7.6.2.3 Built-in TypeLookup service

7.6.2.3.1 Introduction

This specification defines two built-in Topics that are used to query DomainParticipant for type

information. This includes getting the TypeObjects associated with TypeIdentifiers as well as

determining the list of types that a given type depends on recursively:

 One built-in topic is used for TypeLookup requests. It has two built-in endpoints, a

DataWriter to send the request and a DataReader to receive that request.

 The second built-in topic is used for TypeLookup replies. It has two built-in endpoints, a

DataWriter to send the reply and a DataReader to receive that reply.

The data types associated with the TypeLookup Request/Reply topics are defined in accordance

with the Basic Service Mapping from the [DDS-RPC] specification. It is not, however, a

requirement to implement the DDS-RPC specification in order to claim compliance with this

specification. The only requirement is to implement the TypeLookup built-in endpoints as

defined in this XTYPES specification.

In order to facilitate the reading of this specification, some type definitions from DDS-RPC

Clause 7.5.1.1.1 have been copied in the next clause.

7.6.2.3.2 Types reused from DDS-RPC

/* END of definitions copied from DDS-RPC */

module dds {

typedef octet GuidPrefix_t[12];

struct EntityId_t {

 octet entityKey[3]; octet entityKind;

};

struct GUID_t {

 GuidPrefix_t guidPrefix;

 EntityId_t entityId;

210 DDS-XTypes, version 1.2

};

struct SequenceNumber_t {

 long high;

 unsigned long low;

};

struct SampleIdentity {

 GUID_t writer_guid;

 SequenceNumber_t sequence_number;

};

} // module dds

// Module dds::rpc

module dds { module rpc {

 typedef octet UnknownOperation;

 typedef octet UnknownException;

 typedef octet UnusedMember;

};

enum RemoteExceptionCode_t {

 REMOTE_EX_OK,

 REMOTE_EX_UNSUPPORTED,

 REMOTE_EX_INVALID_ARGUMENT,

 REMOTE_EX_OUT_OF_RESOURCES,

 REMOTE_EX_UNKNOWN_OPERATION,

 REMOTE_EX_UNKNOWN_EXCEPTION

};

typedef string<255> InstanceName;

struct RequestHeader {

 SampleIndentity_t requestId;

 InstanceName instanceName;

};

DDS-XTypes, version 1.2 211

struct ReplyHeader {

 dds::SampleIdentity relatedRequestId;

 dds::rpc::RemoteExceptionCode_t remoteEx;

};

} } // module dds::rpc

/* END of definitions copied from DDS-RPC */

7.6.2.3.3 TypeLookup Types and Endpoints

Compliant implementations shall include the four built-in service endpoints shown in Table 61

below.

Table 61 – Built-in Endpoints added by the XTYPES specification

Built-in Endpoint RTPS EntityId_t Associated Topic Data

TypeLookupService

RequestDataWriter

ENTITYID_TL_SVC_REQ_WRITER

= {{00, 03, 00}, c3}

TypeLookup_Request

TypeLookupService

RequestDataReader

ENTITYID_TL_SVC_REQ_READER

={{00, 03, 00}, c4}

TypeLookup_Request

TypeLookupService

ReplyDataWriter

ENTITYID_TL_SVC_REPLY_WRITER

= {{00, 03, 01}, c3}

TypeLookup_Reply

TypeLookupService

ReplyDataReader

ENTITYID_TL_SVC_REPLY_READER

= {{00, 03, 01}, c4}

TypeLookup_Reply

The pair TypeLookupServiceRequestDataWriter and TypeLookupServiceReplyDataReader

is used to invoke the built-in TypeLookup Service (send the request and receive the reply).

The pair TypeLookupServiceRequestDataReader and TypeLookupServiceReplyDataWriter

is used to implement the TypeLookup Service (receive the request and send the reply).

The Quality of Service for the four-built-in endpoints shall match the default Qos for service

endpoints defined in Clause 7.10.2 of [DDS-RPC], specifically the RELIABILITY policy shall

be DDS_RELIABLE_RELIABILITY_QOS, the HISTORY policy to

DDS_KEEP_ALL_HISTORY_QOS and the DURABILITY policy to

DDS_VOLATILE_DURABILITY_QOS.

The associated data-types are defined using IDL below.

module dds { module builtin {

const long TypeLookup_getTypes_Hash = 0xd35282d1; // @hashid("getTypes")

const long TypeLookup_getDependencies_Hash = 0x31fbaa35;

//@hashid("getDependencies");

// Query the TypeObjects associated with one or more TypeIdentifiers

212 DDS-XTypes, version 1.2

@extensibility(MUTABLE)

struct TypeLookup_getTypes_In {

 @hashid sequence<TypeIdentifier> type_ids;

};

@extensibility(MUTABLE)

struct TypeLookup_getTypes_Out {

 @hashid sequence<TypeIdentifierTypeObjectPair> types;

 @hashid sequence<TypeIdentifierPair> complete_to_minimal;

};

union TypeLookup_getTypes_Result switch(long) {

 case DDS_RETCODE_OK:

 TypeLookup_getTypes_Out result;

};

// Query TypeIdentifiers that the specified types depend on

@extensibility(MUTABLE)

struct TypeLookup_getTypeDependencies_In {

 @hashid sequence<TypeIdentifier> type_ids;

 @hashid sequence<octet, 32> continuation_point;

};

@extensibility(MUTABLE)

struct TypeLookup_getTypeDependencies_Out {

 @hashid sequence<TypeIdentifierWithSize> dependent_typeids;

 @hashid sequence<octet, 32> continuation_point;

};

union TypeLookup_getTypeDependencies_Result switch(long){

case DDS_RETCODE_OK:

 TypeLookup_getTypeDependencies_Out result;

};

// Service Request

union TypeLookup_Call switch(long) {

 case TypeLookup_getTypes_Hash:

DDS-XTypes, version 1.2 213

 TypeLookup_getTypes_In getTypes;

 case TypeLookup_getDependencies_Hash:

 TypeLookup_getTypeDependencies_In getTypeDependencies;

};

@RPCRequestType

struct TypeLookup_Request {

 dds::rpc::RequestHeader header;

 TypeLookup_Call data;

};

// Service Reply

union TypeLookup_Return switch(long) {

 case TypeLookup_getTypes_Hash:

 TypeLookup_getTypes_Result getType;

 case TypeLookup_getDependencies_Hash:

 TypeLookup_getTypeDependencies_Result getTypeDependencies;

};

@RPCReplyType

struct TypeLookup_Reply {

 dds::rpc::RequestHeader header;

 TypeLookup_Return return;

};

}} // dds::builtin

The “_In” and “_Out” types are used to represent the request and reply parameters to the service.

These types are defined with extensibility kind MUTABLE. Therefore they can be modified

without breaking interoperability.

Implementers may add their own members to these MUTABLE types. If they do they shall use

member IDs obtained using the @hashid annotation with a string value that has an Internet

domain name owned by the implementor prefix. This avoids member ID conflicts with additions

from other implementations. For example:

// Implementation from company acme.com adds parameters

// extra1 and extra2 to the getTypes request.

struct TypeLookup_getTypes_In {

 @hashid sequence<TypeIdentifier> type_ids;

 @hashid(“acme.com/extra1”) long extra1;

214 DDS-XTypes, version 1.2

 @hashid(“acme.com/extra2”) string extra2;

};

7.6.2.3.4 Use of the TypeLookup Service

The DDS Interoperability Wire Protocol [RTPS] specifies that the

ParticipantBuiltinTopicData shall contain the attribute called

availableBuiltinEndpoints that is used to announce the built-in endpoints that are available

in the DomainParticipant. See Clause 8.5.3.2 of [RTPS]. The type for this attribute is an array

of BuiltinEndpointSet_t.

For the UDP/IP PSM the BuiltinEndpointSet is mapped to a bitmap represented as type

UInt32. Each built-in endpoint is represented as a bit in this bitmap with the bit values defined in

Table 9.4 (Clause 9.3.2) of [RTPS].

This DDS XTypes specification reserves additional bits to indicate the presence of the

corresponding built-in end points for the TypeObjectLookup Service. These bits shall be set on

the availableBuiltinEndpoints. The bit that encodes the presence of each individual endpoint

is defined in Table 62 below.

Table 62 – Mapping of the built-in endpoints added by this specification to the availableBuiltinEndpoints

Built-in Endpoint Bit in the ParticipantBuiltinTopicData

availableBuiltinEndpoints

TypeLookupServiceRequestDataWriter (0x00000001 << 12)

TypeLookupServiceRequestDataReader (0x00000001 << 13)

TypeLookupServiceReplyDataWriter (0x00000001 << 14)

TypeLookupServiceReplyDataReader (0x00000001 << 15)

Participants implementing (as a server) the TypeLookup service shall implement the

TypeObjectServiceRequestDataReader and TypeObjectServiceReplyDataWriter.

The Service instanceName that appears in the dds::rpc::RequestHeader shall be set to the

string obtained by concatenating the prefix “dds.builtin.TOS .” With the 16-character string

version of the DomainParticipant GUID encoded using hexadecimal digits with lower case

letters. There shall be no “0x” ahead of the hexadecimal digits. For example,

“dds.builtin.TOS.123456789abcdf0”

Participants using (as a client) the TypeLookup shall implement the

TypeObjectServiceRequestDataWriter and TypeObjectServiceReplyDataReader.

If a participant implements the TypeLookup it shall respond to requests for any TypeIdentifier

that it announced within the TypeInformation included in the PublicationBuiltinTopicData

or SubscriptionBuiltinTopicData.

The dds::rpc::RequestHeader in the TypeLookup_Request and the TypeLookup_Reply shall

be set as specified in the [DDS-RPC] specification.

DDS-XTypes, version 1.2 215

7.6.2.3.4.1 Service operation getTypeDependencies

When a DomainParticipant receives an incomplete list of TypeIdentifiers in a

PublicationBuiltinTopicData or SubscriptionBuiltinTopicData, it may request the

additional type dependencies by invoking the getTypeDependencies operation.

The TypeLookup_getTypeDependencies_In structure shall be filled as follows:

 The field type_ids shall contain the sequence of TypeIdentifiers for which the

Participant wants to get the dependencies.

o The TypeIdentifiers shall be only direct HASH Identifiers.

o The TypeIdentifiers shall be either all MINIMAL hash TypeIdentifiers or

all COMPLETE hash TypeIdentifiers. That is there shall be not be mixed.

o The TypeIdentifiers shall not include identifiers for individual types in

Strongly Connected Components (SCCs). Instead it shall use the identifier for the

whole SCC (SCCIdentifier, see Clause 7.3.4.9.3).

 The field continuation_point shall not be present if the requester wants the response

to include all the types that the specified types in type_ids depend on. Otherwise it shall

be set to the continuation_point of the TypeLookup_getTypeDependencies_Out

received in response to a previous call to getTypeDependencies with the same

type_ids. This mechanism is used when the response of the service to a previous call

to getDependencies did not return all the types and provided a continuation_point.

The TypeLookup_getTypeDependencies_Out structure shall be filled as follows:

 The field dependent_typeids shall exclusively contain of direct HASH

TypeIdentifiers that are recursive dependencies from at least one of the

TypeIdentifiers in the request.

 The field continuation_point shall not be present if the response contains the

complete list of types, otherwise it shall contain an opaque value that the requester shall

use in a subsequent request for type identifiers.

7.6.2.3.4.2 Service operation getTypes

A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects

associated with a list of TypeIdentifiers.

A DomainParticipant may find out about TypeIdentifiers of interest as part of the

information received in a PublicationBuiltinTopicData or

SubscriptionBuiltinTopicData. It may also find out TypeIdentifiers in reply to a

getDependencies request, or it may find them inside TypeObjects received in reply to a

getTypes request. Regardless of the source it can use the getTypes to get the associated

TypeObjects.

The TypeLookup_getTypes_In structure shall be filled as follows:

216 DDS-XTypes, version 1.2

 The field type_ids shall contain the direct HASH TypeIdentifiers for which the

participant is requesting the TypeObjects.

 The field type_ids shall not include individual TypeIdentifiers belonging to a

Strongly Connected Component (SCC). Instead it shall use the identifier for the whole

SCC (SCCIdentifier, see Clause 7.3.4.9.3).

The TypeLookup_getTypes_Out structure shall be filled as follows:

 The field types shall contain TypeObjects that correspond to the TypeIdentifiers in

the request.

o If the request had a COMPLETE TypeIdentifiers, the types shall contain

COMPLETE TypeObjects.

o If the request had MINIMAL TypeIdentifiers the types may contain either

MINIMAL or COMPLETE TypeObjects.

 The field complete_to_minimal shall contain the mapping from

COMPLETE TypeIdentifiers to MINIMAL TypeIdentifiers for any

COMPLETE TypeIdentifiers that appear within COMPLETE

TypeObjects that were sent in response to a query for a MINIMAL

TypeIdentfier.

 The use of the complete_to_minimal field allows an implementation to

only send COMPLETE TypeObjects in response to the getTypes request,

even if the requested TypeIdentifiers are MINIMAL

TypeIdentifiers. The combination of a COMPLETE TypeObject

and the mapping of MINIMAL to COMPLETE TypeIdentifiers makes

it possible for the receiver to reconstruct the MINIMAL TypeObject.

 If a TypeIdentifier was a SCCIdentifier (see Clause 7.3.4.9.3), then the response shall

threat the TypeObjects within the Strongly Connected Components atomically. Either

include all in the reply or none.

7.6.2.4 Type Consistency Enforcement QoS Policy

The Type Consistency Enforcement QoS Policy defines the rules for determining whether the

type used to publish a given data stream is consistent with that used to subscribe to it. It applies

to DataReaders.

7.6.2.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model

This policy defines a type consistency kind, which allows applications to select from among a set

of predetermined policies. The following consistency kinds are specified:

 DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same

data type in order for them to communicate. (This is the degree of type consistency

enforcement required by the DDS specification [DDS] prior to this specification.)

DDS-XTypes, version 1.2 217

 ALLOW_TYPE_COERCION: The DataWriter and the DataReader need not support the same

data type in order for them to communicate as long as the reader’s type is assignable from

the writer’s type.

Further details of these policies are provided in Clause 7.6.2.4.2.

This policy applies only to DataReaders; it does not have request-offer (RxO) semantics [DDS].

The value of this policy cannot be changed after the entity in question has been enabled.

The default enforcement kind shall be ALLOW_TYPE_COERCION. However, when the Service is

introspecting the built-in topic data declaration of a remote DataWriter or DataReader in order

to determine whether it can match with a local reader or writer, if it observes that no

TypeConsistencyEnforcementQosPolicy value is provided (as would be the case when

communicating with a Service implementation not in conformance with this specification), it

shall assume a kind of DISALLOW_TYPE_COERCION
8
. This behavior is consistent with the type

member defaulting rules defined in Clause 7.2.2.4.4.5, which state that unspecified values of

enumerated types take the first value defined for their type.

This policy provides a way to control whether a type can be widened or not. A type T2 is said to

widen type T1 when type T2 contains non-optional fields that are not present in T1. For example,

if T2 inherits from T1 then it is said that T2 widens T1. When constructing an object O2 of the

wider type T2 from an object O1 of type T1 any non-optional members in O2 not present in O1

would be set to their default values. Looking at O1 this situation is not distinguishable from the

members being present in O2 and set to those same default values. In some scenarios this

ambiguity may not be desirable.

Note that optional members in T2 that are not present on T1 do not make T2 “wider” than T1

according to the previous definition. This is because for optional members it is possible to tell

whether that member's value was sent or not.

 The prevent_type_widening option controls whether type widening is allowed. If the

option is set to FALSE (the default), type widening is permitted. If the option is set to

TRUE, it shall cause a wider type to not be assignable to a narrower type.

This policy provides ways to ignore or enforce checking of sequence bounds, strings bounds, or

member names during type assignability.

 The ignore_sequence_bounds option controls whether sequence bounds are taken into

consideration for type assignability. If the option is set to TRUE (the default), sequence

bounds (maximum lengths) are not considered as part of the type assignability. This

means that a T2 sequence type with maximum length L2 would be assignable to a T1

sequence type with maximum length L1, even if L2 is greater than L1. If the option is set

to false, then sequence bounds are taken into consideration for type assignability and in

order for T1 to be assignable from T2 it is required that L1>= L2.

8 Design rationale (non-normative): This behavior is critical to ensure that conformant and non-conformant Service

implementations reach the same conclusion regarding whether or not a DataWriter and a given DataReader are using

consistent types.

218 DDS-XTypes, version 1.2

 The ignore_string_bounds option controls whether string bounds are taken into

consideration for type assignability. If the option is set to TRUE (the default), string

bounds (maximum lengths) are not considered as part of the type assignability. This

means that a T2 string type with maximum length L2 would be assignable to a T1 string

type with maximum length L1, even if L2 is greater than L1. If the option is set to false,

then string bounds are taken into consideration for type assignability and in order for T1

to be assignable from T2 it is required that L1>= L2.

 The ignore_member_names option controls whether member names are taken into

consideration for type assignability. If the option is set to TRUE, member names are

considered as part of assignability in addition to member IDs (so that members with the

same ID also have the same name). If the option is set to FALSE (the default), then

member names are not ignored.

The values of prevent_type_widening, ignore_sequence_bounds, ignore_string_bounds,

and ignore_member_names only apply when the type consistency kind is

ALLOW_TYPE_COERCION, otherwise the fields are treated as though prevent_type_widening is

set to true and the others are set to false.

This policy provides a way to declare that type information must be available in order for two

endpoints to match, they cannot match solely on type names. See Sub Clause 7.6.2.4.2 for more

details on how matching between a DataWriter and DataReader occurs in the presence and

absence of type information.

 The force_type_validation option requires type information to be available in order

to complete matching between a DataWriter and DataReader when set to TRUE,

otherwise matching can occur without complete type information when set to FALSE.

The default value is false.

7.6.2.4.2 Rules for Type Consistency Enforcement

Implementations of this specification shall use the type-consistency-enforcement rules defined in

this clause when matching a DataWriter with a DataReader, each associated with a Topic of

the same name. These rules are based on the data types of these entities and on the type

consistency kind of the DataReader.

The type-consistency-enforcement rules consist of two steps.

Step 1. If both the Publication and the Subscription specify a TypeObject, consider it first. If the

Subscription allows type coercion, then the_type indicated there must be assignable from

the_type of the Publication, taking into account the values of prevent_type_widening,

ignore_sequence_bounds, ignore_string_bounds, and ignore_member_names. If the

Subscription does not allow type coercion, then its type must be equivalent to the type of the

Publication.

If the subscription allows type coercion and the ignore_member_names flag is true in

TypeConsistencyEnforcementQoSPolicy, assignability checking shall ignore the member

names in both Subscription and Publication types. I.e., only member IDs will impact

assignability.

DDS-XTypes, version 1.2 219

Step 2. If either the Publication or the Subscription does not provide a TypeObject definition,

then the type names are consulted. The Subscription and Publication type_name fields must

match exactly, as in [DDS] prior to this specification. This step will fail if

force_type_validation is true, regardless of the type names.

If either Step 1 or Step 2 fails, then the Topics associated with the DataWriter and DataReader

are considered to be inconsistent: the DataWriter and DataReader shall not communicate with

each other, and the Service shall trigger an INCONSISTENT_TOPIC status change for both the

DataReader’s Topic and the DataWriter’s Topic.

If both Step 1 and Step 2 succeed, then the Topics are considered to be consistent, and the

matching shall proceed to check other aspects of endpoint matching, such as the compatibility of

the QoS, as defined by the DDS specification.

Note that the DataWriter and the DataReader can each execute the algorithm independently,

having access to its own metadata as well as that of the other endpoint as communicated via

DDS discovery (see Clause 7.6.3). Moreover, the algorithm is such that both sides are guaranteed

to arrive at the same conclusion. That is, either both succeed or both fail.

7.6.2.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions

TypeConsistencyKind, ignore_member_names,

TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_ID,

TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_NAME, and

TypeConsistencyEnforcementQosPolicy. These definitions are given in “Annex D: DDS

Built-in Topic Data Types.”

The subscription built-in topic data type shall indicate the type consistency requirements of the

corresponding reader:

@id(0x0074) DDS::TypeConsistencyEnforcementQosPolicy type_compatibility;

7.6.3 Local API Extensions

The following sub clauses define changes in behavior to existing operations defined by [DDS].

7.6.3.1 Operation: DomainParticipant::create_topic

As defined in [DDS], a local Topic object is uniquely identified by its name. In implementations

conforming to this specification, that restriction shall be removed. The Service may instantiate

multiple objects of the same name, provided that all of them represent type-based subsets of “the

same” network topic; therefore, they must have consistent QoS with one another.

7.6.3.2 Operation: DomainParticipant::lookup_topicdescription

As defined in [DDS], a local TopicDescription object is uniquely identified by its name. In

implementations conforming to this specification, that restriction shall be removed. The

definition of lookup_topicdescription operation shall be modified from the one in the [DDS]

specification as follows.

220 DDS-XTypes, version 1.2

The lookup_topicdescription operation shall accept an optional in unsigned long argument

called index. This shall be the last argument.

When the operation is called with only topic_name. It shall behave as if called with index = 0.

When the operation is called with both a topic_name and an index, the operation shall return

one of the TopicDescription associated with the DomainParticipant with a matching

topic_name. The value of the index parameter shall be treated as an “iterator” over the

sequence of TopicDescription instances that match that topic_name. Each value of the index

shall return a unique (different) TopicDescription. Values of the index from 0 to one less than

the number of different TopicDescriptions match the topic_name shall return a

TopicDescription and values of the index outside the range shall return nil.

7.6.4 Built-in Types

DDS shall provide a few types preregistered “out of the box” to allow users to address certain

simple use cases without the need for code generation, dynamic type definition, or type

registration. These types are:

 DDS::String: A single unbounded string; a data type without a key.

 DDS::KeyedString: A pair of unbounded strings, one representing the payload and a

second representing its key.

 DDS::Bytes: An unbounded sequence of bytes, useful for transmitting opaque or

application-serialized data.

 DDS::KeyedBytes: A payload consisting of an unbounded sequence of bytes plus a key

field, an unbounded string.

The built-in types shall be defined as in the following sections and shall be automatically

registered by the Service under their fully qualified physical names (as above) with each

DomainParticipant at the time it is enabled.

Like all non-nested types used with DDS, the built-in types shall have corresponding type-

specific DataWriter and DataReader classes. These shall instantiate the type-specific

operations defined by the DDS specification as defined in the following sections; they shall also

provide additional overloads.

The built-in types are described briefly below; their complete definitions may be found in

“Annex E: Built-in Types.”

7.6.4.1 String

The DDS::String type is a simple structure wrapper around a single unbounded string. The

wrapper structure exists in order to provide the Service implementation with a non-nested type

definition and as a basis of the TypeObject object propagated with the built-in topics. But the

StringDataWriter and StringDataReader APIs are defined based on the built-in string type

for convenience.

DDS-XTypes, version 1.2 221

7.6.4.2 KeyedString

The DDS::KeyedString type is similar to DDS::String, but it is a keyed type; the key is an

additional unbounded string. DDS::KeyedStringDataWriter provides additional overloads that

“unwrap” this structure, allowing applications to pass the two strings directly.

7.6.4.3 Bytes

The DDS::Bytes type is a simple structure wrapper around a single unbounded sequence of bytes.

The wrapper structure exists in order to provide the Service implementation with a non-nested

type definition and as a basis of the TypeObject object propagated with the built-in topics. The

BytesDataWriter API is defined based on the underlying sequence for convenience; the

BytesDataReader API is based on DDS::Bytes because of the awkwardness of sequences of

sequences.

7.6.4.4 KeyedBytes

The DDS::KeyedBytes type is similar to DDS::Bytes, but it is a keyed type; the key is an

unbounded string. DDS::KeyedBytesDataWriter provides additional overloads that “unwrap”

this structure, allowing applications to pass the string and sequence directly.

7.6.5 Use of Dynamic Data and Dynamic Type

Using the DynamicData and DynamicType APIs applications can publish and subscribe data of

any type without having compile-type knowledge of the type.

The API is still strongly typed; each specific Type must be registered with the

DomainParticipant. The DynamicType interface can be used to construct the Type and register

it with the DomainParticipant. The DynamicData interface can be used to create objects of a

specified Type (expressed by means of a DynamicType) and publish and subscribe data objects

of that type.

In order to for an application to use a type for publication or subscription the type must first be

registered with the corresponding DomainParticipant in the same manner as a type defined at

compile time.

7.6.5.1 Type Support

Application code (i.e. business logic) generally depends statically on particular types and their

members. In contrast, infrastructure code (i.e. logic that is independent of particular applications)

generally must not depend on application-specific types, because such dependencies prevent that

code from being reused. These two kinds of code can exist within a single component.

Therefore, it is desirable to allow conversions among static and dynamic bindings for the same

types and samples. These conversions shall be provided by operations on the generic

TypeSupport interface and its extended interfaces.

7.6.5.1.1 TypeSupport Interface

The following operations shall be added to the TypeSupport interface defined by [DDS]. (The

operations on this interface already defined in [DDS] are unchanged.)

222 DDS-XTypes, version 1.2

Table 63 – New TypeSupport operations

Operations

get_type DynamicType

7.6.5.1.1.1 Operation: get_type

Get a DynamicType object corresponding to the TypeSupport’s data type.

7.6.5.1.2 FooTypeSupport Interface

The following operations shall be added to the FooTypeSupport interface defined by [DDS].

(The operations on this interface already defined in [DDS] are unchanged.)

Table 64 – New FooTypeSupport operations

Operations

create_sample Foo

src DynamicData

create_dynamic_sample DynamicData

src Foo

7.6.5.1.2.1 Operation: create_sample

Create a sample of the TypeSupport’s data type with the contents of an input DynamicData

object.

Parameter src – The source object whose contents are to be reflected in the resulting object.

This method shall fail with a nil return result if this object is nil or if the DynamicType of this

object is not compatible with the TypeSupport’s data type.

7.6.5.1.2.2 Operation: create_dynamic_sample

Create a DynamicData object with the contents of an input sample of the TypeSupport’s data

type.

Parameter src – The source object whose contents are to be reflected in the resulting object.

This method shall fail with a nil return result if this object is nil.

7.6.5.1.3 DynamicTypeSupport

The DynamicTypeSupport interface extends the FooTypeSupport interface defined by the DDS

specification where “Foo” is the type DynamicData.

DDS-XTypes, version 1.2 223

Figure 32 – Dynamic Type Support

Table 65 – DynamicTypeSupport properties and operations

DynamicTypeSupport

Operations

register_type ReturnCode_t

participant DomainParticipant

type_name string<Char8,256>

get_type_name string<Char8,256>

static create_type_support DynamicTypeSupport

type DynamicType

static delete_type_support ReturnCode_t

support DynamicTypeSupport

7.6.5.1.4 Operations: register_type, get_type_name

These operations are defined by, and described in, the DDS specification.

7.6.5.1.5 Operation: create_type_support

Create and return a new DynamicTypeSupport object capable of registering the given type with

DDS DomainParticipants. The implementation shall ensure that the new type support has a

“copy” of the given type object, such that subsequent changes to, or deletions of, the argument

object do not impact the new type support. All objects returned by this operation should

eventually be deleted by calling delete_type_support.

If an error occurs, this method shall return a nil value.

Parameter type - The type for which to create a type support. If this argument is nil or is a

nested type, the operation shall fail and return a nil value.

class DynamicTypeSupport

LanguageBinding::
DynamicType

DDS::DCPS::
DomainParticipant

LanguageBinding::DynamicTypeSupport

+ create_type_support(DynamicType): DynamicTypeSupport
+ delete_type_support(DynamicTypeSupport): ReturnCode_t
+ get_type_name(): StringType
+ register_type(DomainParticipant, StringType): ReturnCode_t

DDS::DCPS::TypeSupport

+ get_type_name(): StringType
+ register_type(DomainParticipant, TypeSignature): ReturnCode_t

«use»

+type

1
{frozen}

224 DDS-XTypes, version 1.2

7.6.5.1.6 Operation: delete_type_support

Delete the given type support object, which was previously created by this factory.

If this argument is nil, the operation shall return successfully without having any observable

effect.

Parameter type_support – The type support object to delete. If this argument is an object that

was already deleted, and the implementation is able to detect that fact (which is not required),

this operation shall fail with RETCODE_ALREADY_DELETED. If an implementation-specific error

occurs, this method shall fail with RETCODE_ERROR.

7.6.5.2 DynamicDataWriter and DynamicDataReader

The DynamicDataWriter interface instantiates the FooDataWriter interface defined by the DDS

specification where “Foo” is the type DynamicData.

The DynamicDataReader interface instantiates the FooDataReader interface defined by the DDS

specification where “Foo” is the type DynamicData.

These types do not define additional properties or operations.

7.6.6 DCPS Queries and Filters

[DDS] defines the syntax for content-based filters, queries, and joins in “Annex A: Syntax for

DCPS Queries and Filters”. This syntax shall be extended as follows.

7.6.6.1 Member Names

[DDS] Clause A.2 defines the syntax for referring to a member of a (potentially nested) data

structure. Such a reference is known as a FIELDNAME. The syntax shall be extended as follows:

 Arrays and sequences: Elements in these ordered collections shall be indicated by a zero-

based subscript enclosed in square brackets, e.g. my_collection[0]. Such an expression

shall be considered to have the type that is the element type of the collection.

 Maps: Value elements in these unordered collections shall be indicated by a string

representation of a corresponding key element, according to the syntax of STRING,

enclosed in square brackets, e.g. my_map['key']. The key shall be expressed as a string

even if the map’s key type is an integer type; this distinguishes a map lookup from an

index into an ordered collection. Such an expression shall be considered to have the type

that is the value element type of the map.

 Bitmasks: A flag in a bitmask shall be indicated by its name, according to the syntax of

ENUMERATEDVALUE, enclosed in square brackets, e.g. my_bitmask['MY_FLAG']. Such an

expression shall be considered to have a Boolean type: true if the bit is set or false if it is

not. Comparisons with the integer literals 1 and 0 shall also be allowed.

DDS-XTypes, version 1.2 225

7.6.6.2 Optional Type Members

A member of an aggregated type may be compared to the special value null. Such comparisons

obey the following rules:

 If the member is optional, and it takes no value in the given object, it shall be considered

equal to null.

 If the member is optional, and it does take a value in the given object, it shall not be

considered equal to null.

 No non-optional member shall ever be considered equal to null.

Inequalities expressed relative to null shall never evaluate to true—no value is greater than or

less than null.

7.6.6.3 Grammar Extensions

The Parameter production in the grammar given in [DDS] Clause A.1 shall be redefined as

follows:

Parameter ::=

 | CHARVALUE

 | FLOATVALUE

 | STRING

 | ENUMERATEDVALUE

 | BOOLEANVALUE

 | NULLVALUE

 | PARAMETER

 .

(New tokens have been highlighted in bold.)

The BOOLEANVALUE token shall be either true or false (case-insensitive).

The NULLVALUE token shall always be null.

7.6.7 Interoperability of Keyed Topics

As described in [RTPS] Clause 9.6.3.3, “KeyHash (PID_KEY_HASH)”, the key hash for a given

object of a keyed type is obtained by first serializing the values of the key members in their

declaration order. The algorithm described in that clause shall be amended such that key member

values shall be serialized in the ascending orders of their member IDs. For calculation of

KeyHash for mutable types, the key members shall be serialized without any parameter

encapsulation.

Design rationale (non-normative): This change ensures that key hash values remain stable in

the face of member order permutations. It is backwards compatible, because this specification

226 DDS-XTypes, version 1.2

interprets all pre-existing type definitions (which lack explicit member IDs) as implying member

IDs in declaration order. Thus all pre-existing key hashing algorithm implementations already

conform to this specification when applied to pre-existing type definitions. Further, ignoring

parameter encapsulation for mutable types avoids ambiguities with respect to using short/long

parameter encapsulation. For mutable types, the key members are serialized as if the top-level

and nested types were declared appendable.

DDS-XTypes, version 1.2 227

8. Changes or Extensions Required to Adopted OMG
Specifications

8.1 Extensions

8.1.1 DDS

This specification extends the DDS specification [DDS] as described in Clause 2.1,

“Programming Interface Conformance,” above. As described in that clause, these extensions

comprise a new, optional conformance level within the DDS specification.

This specification does not modify or invalidate any pre-existing DDS profiles or conformance

levels, including the Minimum Profile. Therefore, previously conformant DDS implementations

remain conformant, and conformance to this additional specification by DDS implementations is

completely optional.

8.2 Changes

This specification does not change any pre-existing programming interface, behavior, or other

facility of any adopted OMG specification.

228 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 229

Annex A: XML Type Representation Schema

The following set of XML Schema Documents (XSD) formally defines the structure of XML

documents conforming to the XML Type Representation.

The first schema file, dds_types.xsd, declares the appropriate targetNamespace for this

specification (i.e., http://www.omg.org/dds), includes a schema containing the types definition

called dds_types_definition.xsd, and defines the root element for XML documents containing

type definitions.

<?xml version="1.0" encoding="UTF-8"?>

<!-- dds_xtypes.xsd -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.omg.org/dds"

 targetNamespace="http://www.omg.org/dds"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:include schemaLocation="dds_types_definition.xsd" />

 <xs:element name="types" type="typeLibrary"/>

</xs:schema>

The types definition schema file does not declare a targetNamespace, which makes it

simpler for other specifications to include the schema file without having to deal with namespace

declarations. This follows the so-called Chameleon Namespace Design, in which the schema

with no targetNameSpace takes the "color" (namely, the targetNamespace) of the XSD

file that includes it.

<?xml version="1.0" encoding="UTF-8"?>

<!-- dds_types_definition.xsd -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <!-- === -->

 <!-- Identifiers -->

 <!-- === -->

 <xs:simpleType name="identifierName">

 <xs:restriction base="xs:string">

 <xs:pattern value="([a-zA-Z]|::)([a-zA-Z_0-9]|::)*"/>

 </xs:restriction>

 </xs:simpleType>

230 DDS-XTypes, version 1.2

 <!-- === -->

 <!-- File Inclusion -->

 <!-- === -->

<xs:simpleType name="fileName">

 <xs:restriction base="xs:string">

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="includeDecl">

 <xs:attribute name="file"

 type="fileName"

 use="required"/>

 </xs:complexType>

 <!-- === -->

 <!-- Forward Declarations -->

 <!-- === -->

 <xs:simpleType name="forwardDeclTypeKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="enum"/>

 <xs:enumeration value="struct"/>

 <xs:enumeration value="union"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="forwardDecl">

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="kind"

 type="forwardDeclTypeKind"

 use="required"/>

 </xs:complexType>

 <!-- === -->

DDS-XTypes, version 1.2 231

 <!-- Basic Types -->

 <!-- === -->

 <xs:simpleType name="allTypeKind">

 <xs:restriction base="xs:string">

 <!-- Primitive Types -->

 <xs:enumeration value="boolean"/>

 <xs:enumeration value="byte"/>

 <xs:enumeration value="char8"/>

 <xs:enumeration value="char16"/>

 <xs:enumeration value="int16"/>

 <xs:enumeration value="uint16"/>

 <xs:enumeration value="int32"/>

 <xs:enumeration value="uint32"/>

 <xs:enumeration value="int64"/>

 <xs:enumeration value="uint64"/>

 <xs:enumeration value="float32"/>

 <xs:enumeration value="float64"/>

 <xs:enumeration value="float128"/>

 <!-- String containers -->

 <xs:enumeration value="string"/>

 <xs:enumeration value="wstring"/>

 <!-- Some other type -->

 <xs:enumeration value="nonBasic"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="arrayDimensionsKind">

 <xs:restriction base="xs:string">

 </xs:restriction>

 </xs:simpleType>

 <!-- === -->

 <!-- Constants -->

232 DDS-XTypes, version 1.2

 <!-- === -->

 <xs:complexType name="constDecl">

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="type"

 type="allTypeKind"

 use="required"/>

 <xs:attribute name="nonBasicTypeName"

 type="identifierName"

 use="optional"/>

 <xs:attribute name="value"

 type="xs:string"

 use="required"/>

 </xs:complexType>

 <!-- === -->

 <!-- Aggregated Types (General) -->

 <!-- === -->

 <xs:simpleType name="memberId">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="268435455"/><!-- 0x0FFFFFFF -->

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="simpleMemberDecl">

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="type"

 type="allTypeKind"

 use="required"/>

 <xs:attribute name="nonBasicTypeName"

DDS-XTypes, version 1.2 233

 type="identifierName"

 use="optional"/>

 </xs:complexType>

 <xs:simpleType name="tryConstructKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="discard"/>

 <xs:enumeration value="use_default"/>

 <xs:enumeration value="trim"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="memberDecl">

 <xs:complexContent>

 <xs:extension base="simpleMemberDecl">

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="external"

 type="xs:boolean"

 use="optional"

 default="true"/>

 <xs:attribute name="tryConstruct"

 type="tryConstructKind"

 use="optional"

 default="use_default"/>

 <xs:attribute name="mapKeyType"

 type="allTypeKind"

 use="optional"/>

 <xs:attribute name="mapKeyNonBasicTypeName"

 type="identifierName"

 use="optional"/>

 <xs:attribute name="stringMaxLength"

234 DDS-XTypes, version 1.2

 type="xs:string"

 use="optional"/>

 <xs:attribute name="mapKeyStringMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="sequenceMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="mapMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="arrayDimensions"

 type="arrayDimensionsKind"

 use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="verbatimDecl">

 <xs:sequence>

 <xs:element name="text"

 type="xs:string"

 minOccurs="1"

 maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="language"

 type="xs:string"

 use="optional"

 default="*"/>

 <xs:attribute name="placement"

 type="xs:string"

 use="optional"

 default="before-declaration"/>

 </xs:complexType>

DDS-XTypes, version 1.2 235

 <xs:simpleType name="extensibilityKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="final"/>

 <xs:enumeration value="appendable"/>

 <xs:enumeration value="mutable"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="autoIdKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="hash"/>

 <xs:enumeration value="sequencial"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="structOrUnionTypeDecl">

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="annotate"

 type="annotationDecl"/>

 <xs:element name="verbatim"

 type="verbatimDecl"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="nested"

 type="xs:boolean"

 use="optional"

 default="false"/>

 <xs:attribute name="extensibility"

 type="extensibilityKind"

 use="optional"

 default="appendable"/>

 <xs:attribute name="autoid"

236 DDS-XTypes, version 1.2

 type="autoIdKind"

 use="optional"

 default="hash"/>

 </xs:complexType>

 <!-- === -->

 <!-- Annotations -->

 <!-- === -->

 <xs:complexType name="annotationTypeDecl">

 <xs:sequence>

 <xs:element name="member"

 type="simpleMemberDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="baseType"

 type="identifierName"

 use="optional"/>

 </xs:complexType>

 <xs:complexType name="annotationMemberValueDecl">

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="value"

 type="xs:string"

 use="optional"/>

 </xs:complexType>

 <xs:complexType name="annotationDecl">

DDS-XTypes, version 1.2 237

 <xs:sequence>

 <xs:element name="member"

 type="annotationMemberValueDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 </xs:complexType>

 <!-- === -->

 <!-- Structures -->

 <!-- === -->

 <xs:complexType name="structMemberDecl">

 <xs:complexContent>

 <xs:extension base="memberDecl">

 <xs:attribute name="id"

 type="memberId"

 use="optional"/>

 <xs:attribute name="optional"

 type="xs:boolean"

 use="optional"

 default="true"/>

 <xs:attribute name="mustUnderstand"

 type="xs:boolean"

 use="optional"

 default="true"/>

 <xs:attribute name="nonSerialized"

 type="xs:boolean"

 use="optional"

 default="true"/>

 <xs:attribute name="key"

 type="xs:boolean"

238 DDS-XTypes, version 1.2

 use="optional"

 default="true"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="structDecl">

 <xs:complexContent>

 <xs:extension base="structOrUnionTypeDecl">

 <xs:sequence>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="member"

 type="structMemberDecl"

 minOccurs="1"/>

 <xs:element name="const"

 type="constDecl"

 minOccurs="0"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="baseType"

 type="identifierName"

 use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- === -->

 <!-- Unions -->

 <!-- === -->

 <xs:complexType name="unionMemberDecl">

 <xs:complexContent>

 <xs:extension base="memberDecl"/>

 </xs:complexContent>

 </xs:complexType>

DDS-XTypes, version 1.2 239

 <xs:complexType name="discriminatorDecl">

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="type"

 type="identifierName"

 use="required"/>

 <xs:attribute name="nonBasicTypeName"

 type="identifierName"

 use="optional"/>

 <xs:attribute name="key"

 type="xs:boolean"

 use="optional"

 default="false"/>

 </xs:complexType>

 <xs:complexType name="caseDiscriminatorDecl">

 <xs:attribute name="value"

 type="xs:string"

 use="required"/>

 </xs:complexType>

 <xs:complexType name="caseDecl">

 <xs:sequence>

 <xs:element name="caseDiscriminator"

 type="caseDiscriminatorDecl"

 minOccurs="1"

 maxOccurs="unbounded"/>

 <xs:element name="member"

 type="unionMemberDecl"

 minOccurs="1"

 maxOccurs="1"/>

240 DDS-XTypes, version 1.2

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="unionDecl">

 <xs:complexContent>

 <xs:extension base="structOrUnionTypeDecl">

 <xs:sequence>

 <xs:element name="discriminator"

 type="discriminatorDecl"

 minOccurs="1"

 maxOccurs="1"/>

 <xs:element name="case"

 type="caseDecl"

 minOccurs="1"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- === -->

 <!-- Aliases -->

 <!-- === -->

 <xs:complexType name="typedefDecl">

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="type"

 type="allTypeKind"

 use="required"/>

 <xs:attribute name="nonBasicTypeName"

 type="identifierName"

 use="optional"/>

DDS-XTypes, version 1.2 241

 <xs:attribute name="mapKeyType"

 type="allTypeKind"

 use="optional"/>

 <xs:attribute name="mapKeyNonBasicTypeName"

 type="identifierName"

 use="optional"/>

 <xs:attribute name="stringMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="mapKeyStringMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="sequenceMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="mapMaxLength"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="arrayDimensions"

 type="arrayDimensionsKind"

 use="optional"/>

 <xs:attribute name="external"

 type="xs:boolean"

 use="optional"/>

 </xs:complexType>

 <!-- === -->

 <!-- Enumerations -->

 <!-- === -->

242 DDS-XTypes, version 1.2

 <xs:simpleType name="enumBitBound">

 <xs:restriction base="xs:unsignedShort">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="32"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="enumeratorDecl">

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="value"

 type="xs:string"

 use="optional"/>

 <xs:attribute name="defaultLiteral"

 type="xs:boolean"

 use="optional"

 default="true"/>

 </xs:complexType>

 <xs:complexType name="enumDecl">

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="verbatim"

DDS-XTypes, version 1.2 243

 type="verbatimDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="enumerator"

 type="enumeratorDecl"

 minOccurs="1"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="bitBound"

 type="enumBitBound"

 use="optional"

 default="32"/>

 </xs:complexType>

 <!-- === -->

 <!-- Bit Masks -->

 <!-- === -->

 <xs:simpleType name="bitmaskBitBound">

 <xs:restriction base="xs:unsignedShort">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="64"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="flagIndex">

 <xs:restriction base="xs:unsignedShort">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="63"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="flagDecl">

244 DDS-XTypes, version 1.2

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="position"

 type="flagIndex"

 use="required"/>

 </xs:complexType>

 <xs:complexType name="bitmaskDecl">

 <xs:sequence>

 <xs:element name="annotate"

 type="annotationDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="flag"

 type="flagDecl"

 minOccurs="0"

 maxOccurs="64"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="bitBound"

 type="bitmaskBitBound"

 use="optional"

 default="32"/>

 </xs:complexType>

DDS-XTypes, version 1.2 245

 <!-- === -->

 <!-- Modules -->

 <!-- === -->

 <xs:group name="moduleElements">

 <xs:sequence>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="include2"

 type="includeDecl"

 minOccurs="0"/>

 <xs:element name="forward_dcl"

 type="forwardDecl"

 minOccurs="0"/>

 <xs:element name="const"

 type="constDecl"

 minOccurs="0"/>

 <xs:element name="module"

 type="moduleDecl"

 minOccurs="0"/>

 <xs:element name="struct"

 type="structDecl"

 minOccurs="0"/>

 <xs:element name="union"

 type="unionDecl"

 minOccurs="0"/>

 <xs:element name="annotation"

 type="annotationTypeDecl"

 minOccurs="0"/>

 <xs:element name="typedef"

 type="typedefDecl"

 minOccurs="0"/>

 <xs:element name="enum"

 type="enumDecl"

 minOccurs="0"/>

 <xs:element name="bitmask"

 type="bitmaskDecl"

246 DDS-XTypes, version 1.2

 minOccurs="0"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <xs:complexType name="moduleDecl">

 <xs:sequence>

 <xs:element name="include"

 type="includeDecl"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:group ref="moduleElements"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name"

 type="identifierName"

 use="required"/>

 <xs:attribute name="autoid"

 type="autoIdKind"

 use="optional"

 default="hash"/>

 </xs:complexType>

 <xs:complexType name="typeLibrary">

 <xs:group ref="moduleElements"/>

 </xs:complexType>

</xs:schema>

DDS-XTypes, version 1.2 247

Annex B: Representing Types with TypeObject

The following IDL formally describes the TypeObject type and those nested types on which it

depends.

/* dds-xtypes_typeobject.idl */

// The types in this file shall be serialized with XCDR encoding version 2

module DDS { module XTypes {

 // ---------- Equivalence Kinds -------------------

 typedef octet EquivalenceKind;

 const octet EK_MINIMAL = 0xF1; // 0x1111 0001

 const octet EK_COMPLETE = 0xF2; // 0x1111 0010

 const octet EK_BOTH = 0xF3; // 0x1111 0011

 // ---------- TypeKinds (begin) -------------------

 typedef octet TypeKind;

 // Primitive TKs

 const octet TK_NONE = 0x00;

 const octet TK_BOOLEAN = 0x01;

 const octet TK_BYTE = 0x02;

 const octet TK_INT16 = 0x03;

 const octet TK_INT32 = 0x04;

 const octet TK_INT64 = 0x05;

 const octet TK_UINT16 = 0x06;

 const octet TK_UINT32 = 0x07;

 const octet TK_UINT64 = 0x08;

 const octet TK_FLOAT32 = 0x09;

 const octet TK_FLOAT64 = 0x0A;

 const octet TK_FLOAT128 = 0x0B;

 const octet TK_CHAR8 = 0x10;

 const octet TK_CHAR16 = 0x11;

 // String TKs

 const octet TK_STRING8 = 0x20;

248 DDS-XTypes, version 1.2

 const octet TK_STRING16 = 0x21;

 // Constructed/Named types

 const octet TK_ALIAS = 0x30;

 // Enumerated TKs

 const octet TK_ENUM = 0x40;

 const octet TK_BITMASK = 0x41;

 // Structured TKs

 const octet TK_ANNOTATION = 0x50;

 const octet TK_STRUCTURE = 0x51;

 const octet TK_UNION = 0x52;

 const octet TK_BITSET = 0x53;

 // Collection TKs

 const octet TK_SEQUENCE = 0x60;

 const octet TK_ARRAY = 0x61;

 const octet TK_MAP = 0x62;

 // ---------- TypeKinds (end) -------------------

 // ---------- Extra TypeIdentifiers (begin) ------------

 typedef octet TypeIdentiferKind;

 const octet TI_STRING8_SMALL = 0x70;

 const octet TI_STRING8_LARGE = 0x71;

 const octet TI_STRING16_SMALL = 0x72;

 const octet TI_STRING16_LARGE = 0x73;

 const octet TI_PLAIN_SEQUENCE_SMALL = 0x80;

 const octet TI_PLAIN_SEQUENCE_LARGE = 0x81;

 const octet TI_PLAIN_ARRAY_SMALL = 0x90;

 const octet TI_PLAIN_ARRAY_LARGE = 0x91;

 const octet TI_PLAIN_MAP_SMALL = 0xA0;

 const octet TI_PLAIN_MAP_LARGE = 0xA1;

DDS-XTypes, version 1.2 249

 const octet TI_STRONGLY_CONNECTED_COMPONENT = 0xB0;

 // ---------- Extra TypeIdentifiers (end) --------------

 // The name of some element (e.g. type, type member, module)

 // Valid characters are alphanumeric plus the "_" cannot start with digit

 const long MEMBER_NAME_MAX_LENGTH = 256;

 typedef string<MEMBER_NAME_MAX_LENGTH> MemberName;

 // Qualified type name includes the name of containing modules

 // using "::" as separator. No leading "::". E.g. "MyModule::MyType"

 const long TYPE_NAME_MAX_LENGTH = 256;

 typedef string<TYPE_NAME_MAX_LENGTH> QualifiedTypeName;

 // Every type has an ID. Those of the primitive types are pre-defined.

 typedef octet PrimitiveTypeId;

 // First 14 bytes of MD5 of the serialized TypeObject using XCDR

 // version 2 with Little Endian encoding

 typedef octet EquivalenceHash[14];

 // First 4 bytes of MD5 of of a member name converted to bytes

 // using UTF-8 encoding and without a 'nul' terminator.

 // Example: the member name "color" has NameHash {0x70, 0xDD, 0xA5, 0xDF}

 typedef octet NameHash[4];

 // Long Bound of a collection type

 typedef unsigned long LBound;

 typedef sequence<LBound> LBoundSeq;

 const LBound INVALID_LBOUND = 0;

 // Short Bound of a collection type

 typedef octet SBound;

 typedef sequence<SBound> SBoundSeq;

 const SBound INVALID_SBOUND = 0;

 @extensibility(FINAL) @nested

 union TypeObjectHashId switch (octet) {

250 DDS-XTypes, version 1.2

 case EK_COMPLETE:

 case EK_MINIMAL:

 EquivalenceHash hash;

 };

 // Flags that apply to struct/union/collection/enum/bitmask/bitset

 // members/elements and DO affect type assignability

 // Depending on the flag it may not apply to members of all types

 // When not all, the applicable member types are listed

 @bit_bound(16)

 bitmask MemberFlag {

 @position(0) TRY_CONSTRUCT1, // T1 | 00 = INVALID, 01 = DISCARD

 @position(1) TRY_CONSTRUCT2, // T2 | 10 = USE_DEFAULT, 11 = TRIM

 @position(2) IS_EXTERNAL, // X StructMember, UnionMember,

 // CollectionElement

 @position(3) IS_OPTIONAL, // O StructMember

 @position(4) IS_MUST_UNDERSTAND, // M StructMember

 @position(5) IS_KEY, // K StructMember, UnionDiscriminator

 @position(6) IS_DEFAULT // D UnionMember, EnumerationLiteral

 };

 typedef MemberFlag CollectionElementFlag; // T1, T2, X

 typedef MemberFlag StructMemberFlag; // T1, T2, O, M, K, X

 typedef MemberFlag UnionMemberFlag; // T1, T2, D, X

 typedef MemberFlag UnionDiscriminatorFlag; // T1, T2, K

 typedef MemberFlag EnumeratedLiteralFlag; // D

 typedef MemberFlag AnnotationParameterFlag; // Unused. No flags apply

 typedef MemberFlag AliasMemberFlag; // Unused. No flags apply

 typedef MemberFlag BitflagFlag; // Unused. No flags apply

 typedef MemberFlag BitsetMemberFlag; // Unused. No flags apply

 // Mask used to remove the flags that do no affect assignability

 // Selects T1, T2, O, M, K, D

 const unsigned short MemberFlagMinimalMask = 0x003f;

 // Flags that apply to type declarationa and DO affect assignability

 // Depending on the flag it may not apply to all types

 // When not all, the applicable types are listed

DDS-XTypes, version 1.2 251

 @bit_bound(16)

 bitmask TypeFlag {

 @position(0) IS_FINAL, // F |

 @position(1) IS_APPENDABLE, // A |- Struct, Union

 @position(2) IS_MUTABLE, // M | (exactly one flag)

 @position(3) IS_NESTED, // N Struct, Union

 @position(4) IS_AUTOID_HASH // H Struct

 };

 typedef TypeFlag StructTypeFlag; // All flags apply

 typedef TypeFlag UnionTypeFlag; // All flags apply

 typedef TypeFlag CollectionTypeFlag; // Unused. No flags apply

 typedef TypeFlag AnnotationTypeFlag; // Unused. No flags apply

 typedef TypeFlag AliasTypeFlag; // Unused. No flags apply

 typedef TypeFlag EnumTypeFlag; // Unused. No flags apply

 typedef TypeFlag BitmaskTypeFlag; // Unused. No flags apply

 typedef TypeFlag BitsetTypeFlag; // Unused. No flags apply

 // Mask used to remove the flags that do no affect assignability

 const unsigned short TypeFlagMinimalMask = 0x0007; // Selects M, A, F

 // Forward declaration

 union TypeIdentifier;

 // 1 Byte

 @extensibility(FINAL) @nested

 struct StringSTypeDefn {

 SBound bound;

 };

 // 4 Bytes

 @extensibility(FINAL) @nested

 struct StringLTypeDefn {

 LBound bound;

 };

 @extensibility(FINAL) @nested

252 DDS-XTypes, version 1.2

 struct PlainCollectionHeader {

 EquivalenceKind equiv_kind;

 CollectionElementFlag element_flags;

 };

 @extensibility(FINAL) @nested

 struct PlainSequenceSElemDefn {

 PlainCollectionHeader header;

 SBound bound;

 @external TypeIdentifier element_identifier;

 };

 @extensibility(FINAL) @nested

 struct PlainSequenceLElemDefn {

 PlainCollectionHeader header;

 LBound bound;

 @external TypeIdentifier element_identifier;

 };

 @extensibility(FINAL) @nested

 struct PlainArraySElemDefn {

 PlainCollectionHeader header;

 SBoundSeq array_bound_seq;

 @external TypeIdentifier element_identifier;

 };

 @extensibility(FINAL) @nested

 struct PlainArrayLElemDefn {

 PlainCollectionHeader header;

 LBoundSeq array_bound_seq;

 @external TypeIdentifier element_identifier;

 };

 @extensibility(FINAL) @nested

 struct PlainMapSTypeDefn {

 PlainCollectionHeader header;

 SBound bound;

DDS-XTypes, version 1.2 253

 @external TypeIdentifier element_identifier;

 CollectionElementFlag key_flags;

 @external TypeIdentifier key_identifier;

 };

 @extensibility(FINAL) @nested

 struct PlainMapLTypeDefn {

 PlainCollectionHeader header;

 LBound bound;

 @external TypeIdentifier element_identifier;

 CollectionElementFlag key_flags;

 @external TypeIdentifier key_identifier;

 };

 // Used for Types that have cyclic depencencies with other types

 @extensibility(APPENDABLE) @nested

 struct StronglyConnectedComponentId {

 TypeObjectHashId sc_component_id; // Hash StronglyConnectedComponent

 long scc_length; // StronglyConnectedComponent.length

 long scc_index ; // identify type in Strongly Connected Comp.

 };

 // Future extensibility

 @extensibility(MUTABLE) @nested

 struct ExtendedTypeDefn {

 // Empty. Available for future extension

 };

 // The TypeIdentifier uniquely identifies a type (a set of equivalent

 // types according to an equivalence relationship: COMPLETE, MNIMAL).

 //

 // In some cases (primitive types, strings, plain types) the identifier

 // is a explicit description of the type.

 // In other cases the Identifier is a Hash of the type description

 //

254 DDS-XTypes, version 1.2

 // In the case of primitive types and strings the implied equivalence

 // relation is the identity.

 //

 // For Plain Types and Hash-defined TypeIdentifiers there are three

 // possibilities: MINIMAL, COMPLETE, and COMMON:

 // - MINIMAL indicates the TypeIdentifier identifies equivalent types

 // according to the MINIMAL equivalence relation

 // - COMPLETE indicates the TypeIdentifier identifies equivalent types

 // according to the COMPLETE equivalence relation

 // - COMMON indicates the TypeIdentifier identifies equivalent types

 // according to both the MINIMAL and the COMMON equivalence relation.

 // This means the TypeIdentifier is the same for both relationships

 //

 @extensibility(FINAL) @nested

 union TypeIdentifier switch (octet) {

 // ============ Primitive types - use TypeKind ====================

 // All primitive types fall here.

 // Commented-out because Unions cannot have cases with no member.

 /*

 case TK_NONE:

 case TK_BOOLEAN:

 case TK_BYTE_TYPE:

 case TK_INT16_TYPE:

 case TK_INT32_TYPE:

 case TK_INT64_TYPE:

 case TK_UINT16_TYPE:

 case TK_UINT32_TYPE:

 case TK_UINT64_TYPE:

 case TK_FLOAT32_TYPE:

 case TK_FLOAT64_TYPE:

 case TK_FLOAT128_TYPE:

 case TK_CHAR8_TYPE:

 case TK_CHAR16_TYPE:

 // No Value

 */

 // ============ Strings - use TypeIdentifierKind ===================

DDS-XTypes, version 1.2 255

 case TI_STRING8_SMALL:

 case TI_STRING16_SMALL:

 StringSTypeDefn string_sdefn;

 case TI_STRING8_LARGE:

 case TI_STRING16_LARGE:

 StringLTypeDefn string_ldefn;

 // ============ Plain collectios - use TypeIdentifierKind =========

 case TI_PLAIN_SEQUENCE_SMALL:

 PlainSequenceSElemDefn seq_sdefn;

 case TI_PLAIN_SEQUENCE_LARGE:

 PlainSequenceLElemDefn seq_ldefn;

 case TI_PLAIN_ARRAY_SMALL:

 PlainArraySElemDefn array_sdefn;

 case TI_PLAIN_ARRAY_LARGE:

 PlainArrayLElemDefn array_ldefn;

 case TI_PLAIN_MAP_SMALL:

 PlainMapSTypeDefn map_sdefn;

 case TI_PLAIN_MAP_LARGE:

 PlainMapLTypeDefn map_ldefn;

 // ============ Types that are mutually dependent on each other ===

 case TI_STRONGLY_CONNECTED_COMPONENT:

 StronglyConnectedComponentId sc_component_id;

 // ============ The remaining cases - use EquivalenceKind =========

 case EK_COMPLETE:

 case EK_MINIMAL:

 EquivalenceHash equivalence_hash;

 // =================== Future extensibility ============

 // Future extensions

 default:

 ExtendedTypeDefn extended_defn;

256 DDS-XTypes, version 1.2

 };

 typedef sequence<TypeIdentifier> TypeIdentifierSeq;

 // --- Annotation usage: ---

 // ID of a type member

 typedef unsigned long MemberId;

 const unsigned long ANNOTATION_STR_VALUE_MAX_LEN = 128;

 const unsigned long ANNOTATION_OCTETSEC_VALUE_MAX_LEN = 128;

 @extensibility(MUTABLE) @nested

 struct ExtendedAnnotationParameterValue {

 // Empty. Available for future extension

 };

 /* Literal value of an annotation member: either the default value in its

 * definition or the value applied in its usage.

 */

 @extensibility(FINAL) @nested

 union AnnotationParameterValue switch (octet) {

 case TK_BOOLEAN:

 boolean boolean_value;

 case TK_BYTE:

 octet byte_value;

 case TK_INT16:

 short int16_value;

 case TK_UINT16:

 unsigned short uint_16_value;

 case TK_INT32:

 long int32_value;

 case TK_UINT32:

 unsigned long uint32_value;

 case TK_INT64:

 long long int64_value;

 case TK_UINT64:

 unsigned long long uint64_value;

DDS-XTypes, version 1.2 257

 case TK_FLOAT32:

 float float32_value;

 case TK_FLOAT64:

 double float64_value;

 case TK_FLOAT128:

 long double float128_value;

 case TK_CHAR8:

 char char_value;

 case TK_CHAR16:

 wchar wchar_value;

 case TK_ENUM:

 long enumerated_value;

 case TK_STRING8:

 string<ANNOTATION_STR_VALUE_MAX_LEN> string8_value;

 case TK_STRING16:

 wstring<ANNOTATION_STR_VALUE_MAX_LEN> string16_value;

 default:

 ExtendedAnnotationParameterValue extended_value;

 };

 // The application of an annotation to some type or type member

 @extensibility(APPENDABLE) @nested

 struct AppliedAnnotationParameter {

 NameHash paramname_hash;

 AnnotationParameterValue value;

 };

 // Sorted by AppliedAnnotationParameter.paramname_hash

 typedef

 sequence<AppliedAnnotationParameter> AppliedAnnotationParameterSeq;

 @extensibility(APPENDABLE) @nested

 struct AppliedAnnotation {

 TypeIdentifier annotation_typeid;

 @optional AppliedAnnotationParameterSeq param_seq;

 };

 // Sorted by AppliedAnnotation.annotation_typeid

 typedef sequence<AppliedAnnotation> AppliedAnnotationSeq;

258 DDS-XTypes, version 1.2

 // @verbatim(placement="<placement>", language="<lang>", text="<text>")

 @extensibility(FINAL) @nested

 struct AppliedVerbatimAnnotation {

 string<32> placement;

 string<32> language;

 string text;

 };

 // --- Aggregate types: --

 @extensibility(APPENDABLE) @nested

 struct AppliedBuiltinMemberAnnotations {

 @optional string unit; // @unit("<unit>")

 @optional AnnotationParameterValue min; // @min , @range

 @optional AnnotationParameterValue max; // @max , @range

 @optional string hash_id; // @hash_id("<membername>")

 };

 @extensibility(FINAL) @nested

 struct CommonStructMember {

 MemberId member_id;

 StructMemberFlag member_flags;

 TypeIdentifier member_type_id;

 };

 // COMPLETE Details for a member of an aggregate type

 @extensibility(FINAL) @nested

 struct CompleteMemberDetail {

 MemberName name;

 @optional AppliedBuiltinMemberAnnotations ann_builtin;

 @optional AppliedAnnotationSeq ann_custom;

 };

 // MINIMAL Details for a member of an aggregate type

 @extensibility(FINAL) @nested

 struct MinimalMemberDetail {

DDS-XTypes, version 1.2 259

 NameHash name_hash;

 };

 // Member of an aggregate type

 @extensibility(APPENDABLE) @nested

 struct CompleteStructMember {

 CommonStructMember common;

 CompleteMemberDetail detail;

 };

 // Ordered by the member_index

 typedef sequence<CompleteStructMember> CompleteStructMemberSeq;

 // Member of an aggregate type

 @extensibility(APPENDABLE) @nested

 struct MinimalStructMember {

 CommonStructMember common;

 MinimalMemberDetail detail;

 };

 // Ordered by common.member_id

 typedef sequence<MinimalStructMember> MinimalStructMemberSeq;

 @extensibility(APPENDABLE) @nested

 struct AppliedBuiltinTypeAnnotations {

 @optional AppliedVerbatimAnnotation verbatim; // @verbatim(...)

 };

 @extensibility(FINAL) @nested

 struct MinimalTypeDetail {

 // Empty. Available for future extension

 };

 @extensibility(FINAL) @nested

 struct CompleteTypeDetail {

 @optional AppliedBuiltinTypeAnnotations ann_builtin;

 @optional AppliedAnnotationSeq ann_custom;

 QualifiedTypeName type_name;

260 DDS-XTypes, version 1.2

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteStructHeader {

 TypeIdentifier base_type;

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalStructHeader {

 TypeIdentifier base_type;

 MinimalTypeDetail detail;

 };

 @extensibility(FINAL) @nested

 struct CompleteStructType {

 StructTypeFlag struct_flags;

 CompleteStructHeader header;

 CompleteStructMemberSeq member_seq;

 };

 @extensibility(FINAL) @nested

 struct MinimalStructType {

 StructTypeFlag struct_flags;

 MinimalStructHeader header;

 MinimalStructMemberSeq member_seq;

 };

 // --- Union: --

 // Case labels that apply to a member of a union type

 // Ordered by their values

 typedef sequence<long> UnionCaseLabelSeq;

 @extensibility(FINAL) @nested

 struct CommonUnionMember {

 MemberId member_id;

DDS-XTypes, version 1.2 261

 UnionMemberFlag member_flags;

 TypeIdentifier type_id;

 UnionCaseLabelSeq label_seq;

 };

 // Member of a union type

 @extensibility(APPENDABLE) @nested

 struct CompleteUnionMember {

 CommonUnionMember common;

 CompleteMemberDetail detail;

 };

 // Ordered by member_index

 typedef sequence<CompleteUnionMember> CompleteUnionMemberSeq;

 // Member of a union type

 @extensibility(APPENDABLE) @nested

 struct MinimalUnionMember {

 CommonUnionMember common;

 MinimalMemberDetail detail;

 };

 // Ordered by MinimalUnionMember.common.member_id

 typedef sequence<MinimalUnionMember> MinimalUnionMemberSeq;

 @extensibility(FINAL) @nested

 struct CommonDiscriminatorMember {

 UnionDiscriminatorFlag member_flags;

 TypeIdentifier type_id;

 };

 // Member of a union type

 @extensibility(APPENDABLE) @nested

 struct CompleteDiscriminatorMember {

 CommonDiscriminatorMember common;

 @optional AppliedBuiltinTypeAnnotations ann_builtin;

 @optional AppliedAnnotationSeq ann_custom;

 };

262 DDS-XTypes, version 1.2

 // Member of a union type

 @extensibility(APPENDABLE) @nested

 struct MinimalDiscriminatorMember {

 CommonDiscriminatorMember common;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteUnionHeader {

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalUnionHeader {

 MinimalTypeDetail detail;

 };

 @extensibility(FINAL) @nested

 struct CompleteUnionType {

 UnionTypeFlag union_flags;

 CompleteUnionHeader header;

 CompleteDiscriminatorMember discriminator;

 CompleteUnionMemberSeq member_seq;

 };

 @extensibility(FINAL) @nested

 struct MinimalUnionType {

 UnionTypeFlag union_flags;

 MinimalUnionHeader header;

 MinimalDiscriminatorMember discriminator;

 MinimalUnionMemberSeq member_seq;

 };

 // --- Annotation: --

 @extensibility(FINAL) @nested

 struct CommonAnnotationParameter {

 AnnotationParameterFlag member_flags;

 TypeIdentifier member_type_id;

DDS-XTypes, version 1.2 263

 };

 // Member of an annotation type

 @extensibility(APPENDABLE) @nested

 struct CompleteAnnotationParameter {

 CommonAnnotationParameter common;

 MemberName name;

 AnnotationParameterValue default_value;

 };

 // Ordered by CompleteAnnotationParameter.name

 typedef

 sequence<CompleteAnnotationParameter> CompleteAnnotationParameterSeq;

 @extensibility(APPENDABLE) @nested

 struct MinimalAnnotationParameter {

 CommonAnnotationParameter common;

 NameHash name_hash;

 AnnotationParameterValue default_value;

 };

 // Ordered by MinimalAnnotationParameter.name_hash

 typedef

 sequence<MinimalAnnotationParameter> MinimalAnnotationParameterSeq;

 @extensibility(APPENDABLE) @nested

 struct CompleteAnnotationHeader {

 QualifiedTypeName annotation_name;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalAnnotationHeader {

 // Empty. Available for future extension

 };

 @extensibility(FINAL) @nested

 struct CompleteAnnotationType {

 AnnotationTypeFlag annotation_flag;

 CompleteAnnotationHeader header;

264 DDS-XTypes, version 1.2

 CompleteAnnotationParameterSeq member_seq;

 };

 @extensibility(FINAL) @nested

 struct MinimalAnnotationType {

 AnnotationTypeFlag annotation_flag;

 MinimalAnnotationHeader header;

 MinimalAnnotationParameterSeq member_seq;

 };

 // --- Alias: --

 @extensibility(FINAL) @nested

 struct CommonAliasBody {

 AliasMemberFlag related_flags;

 TypeIdentifier related_type;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteAliasBody {

 CommonAliasBody common;

 @optional AppliedBuiltinMemberAnnotations ann_builtin;

 @optional AppliedAnnotationSeq ann_custom;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalAliasBody {

 CommonAliasBody common;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteAliasHeader {

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalAliasHeader {

DDS-XTypes, version 1.2 265

 // Empty. Available for future extension

 };

 @extensibility(FINAL) @nested

 struct CompleteAliasType {

 AliasTypeFlag alias_flags;

 CompleteAliasHeader header;

 CompleteAliasBody body;

 };

 @extensibility(FINAL) @nested

 struct MinimalAliasType {

 AliasTypeFlag alias_flags;

 MinimalAliasHeader header;

 MinimalAliasBody body;

 };

 // --- Collections: --

 @extensibility(FINAL) @nested

 struct CompleteElementDetail {

 @optional AppliedBuiltinMemberAnnotations ann_builtin;

 @optional AppliedAnnotationSeq ann_custom;

 };

 @extensibility(FINAL) @nested

 struct CommonCollectionElement {

 CollectionElementFlag element_flags;

 TypeIdentifier type;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteCollectionElement {

 CommonCollectionElement common;

 CompleteElementDetail detail;

 };

 @extensibility(APPENDABLE) @nested

266 DDS-XTypes, version 1.2

 struct MinimalCollectionElement {

 CommonCollectionElement common;

 };

 @extensibility(FINAL) @nested

 struct CommonCollectionHeader {

 LBound bound;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteCollectionHeader {

 CommonCollectionHeader common;

 @optional CompleteTypeDetail detail; // not present for anonymous

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalCollectionHeader {

 CommonCollectionHeader common;

 };

 // --- Sequence: --

 @extensibility(FINAL) @nested

 struct CompleteSequenceType {

 CollectionTypeFlag collection_flag;

 CompleteCollectionHeader header;

 CompleteCollectionElement element;

 };

 @extensibility(FINAL) @nested

 struct MinimalSequenceType {

 CollectionTypeFlag collection_flag;

 MinimalCollectionHeader header;

 MinimalCollectionElement element;

 };

 // --- Array: --

 @extensibility(FINAL) @nested

DDS-XTypes, version 1.2 267

 struct CommonArrayHeader {

 LBoundSeq bound_seq;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteArrayHeader {

 CommonArrayHeader common;

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalArrayHeader {

 CommonArrayHeader common;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteArrayType {

 CollectionTypeFlag collection_flag;

 CompleteArrayHeader header;

 CompleteCollectionElement element;

 };

 @extensibility(FINAL) @nested

 struct MinimalArrayType {

 CollectionTypeFlag collection_flag;

 MinimalArrayHeader header;

 MinimalCollectionElement element;

 };

 // --- Map: --

 @extensibility(FINAL) @nested

 struct CompleteMapType {

 CollectionTypeFlag collection_flag;

 CompleteCollectionHeader header;

 CompleteCollectionElement key;

 CompleteCollectionElement element;

 };

268 DDS-XTypes, version 1.2

 @extensibility(FINAL) @nested

 struct MinimalMapType {

 CollectionTypeFlag collection_flag;

 MinimalCollectionHeader header;

 MinimalCollectionElement key;

 MinimalCollectionElement element;

 };

 // --- Enumeration: --

 typedef unsigned short BitBound;

 // Constant in an enumerated type

 @extensibility(APPENDABLE) @nested

 struct CommonEnumeratedLiteral {

 long value;

 EnumeratedLiteralFlag flags;

 };

 // Constant in an enumerated type

 @extensibility(APPENDABLE) @nested

 struct CompleteEnumeratedLiteral {

 CommonEnumeratedLiteral common;

 CompleteMemberDetail detail;

 };

 // Ordered by EnumeratedLiteral.common.value

 typedef sequence<CompleteEnumeratedLiteral> CompleteEnumeratedLiteralSeq;

 // Constant in an enumerated type

 @extensibility(APPENDABLE) @nested

 struct MinimalEnumeratedLiteral {

 CommonEnumeratedLiteral common;

 MinimalMemberDetail detail;

 };

 // Ordered by EnumeratedLiteral.common.value

 typedef sequence<MinimalEnumeratedLiteral> MinimalEnumeratedLiteralSeq;

DDS-XTypes, version 1.2 269

 @extensibility(FINAL) @nested

 struct CommonEnumeratedHeader {

 BitBound bit_bound;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteEnumeratedHeader {

 CommonEnumeratedHeader common;

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalEnumeratedHeader {

 CommonEnumeratedHeader common;

 };

 // Enumerated type

 @extensibility(FINAL) @nested

 struct CompleteEnumeratedType {

 EnumTypeFlag enum_flags; // unused

 CompleteEnumeratedHeader header;

 CompleteEnumeratedLiteralSeq literal_seq;

 };

 // Enumerated type

 @extensibility(FINAL) @nested

 struct MinimalEnumeratedType {

 EnumTypeFlag enum_flags; // unused

 MinimalEnumeratedHeader header;

 MinimalEnumeratedLiteralSeq literal_seq;

 };

 // --- Bitmask: --

 // Bit in a bit mask

 @extensibility(FINAL) @nested

 struct CommonBitflag {

 unsigned short position;

270 DDS-XTypes, version 1.2

 BitflagFlag flags;

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteBitflag {

 CommonBitflag common;

 CompleteMemberDetail detail;

 };

 // Ordered by Bitflag.position

 typedef sequence<CompleteBitflag> CompleteBitflagSeq;

 @extensibility(APPENDABLE) @nested

 struct MinimalBitflag {

 CommonBitflag common;

 MinimalMemberDetail detail;

 };

 // Ordered by Bitflag.position

 typedef sequence<MinimalBitflag> MinimalBitflagSeq;

 @extensibility(FINAL) @nested

 struct CommonBitmaskHeader {

 BitBound bit_bound;

 };

 typedef CompleteEnumeratedHeader CompleteBitmaskHeader;

 typedef MinimalEnumeratedHeader MinimalBitmaskHeader;

 @extensibility(APPENDABLE) @nested

 struct CompleteBitmaskType {

 BitmaskTypeFlag bitmask_flags; // unused

 CompleteBitmaskHeader header;

 CompleteBitflagSeq flag_seq;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalBitmaskType {

DDS-XTypes, version 1.2 271

 BitmaskTypeFlag bitmask_flags; // unused

 MinimalBitmaskHeader header;

 MinimalBitflagSeq flag_seq;

 };

 // --- Bitset: --

 @extensibility(FINAL) @nested

 struct CommonBitfield {

 unsigned short position;

 BitsetMemberFlag flags;

 octet bitcount;

 TypeKind holder_type; // Must be primitive integer type

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteBitfield {

 CommonBitfield common;

 CompleteMemberDetail detail;

 };

 // Ordered by Bitfield.position

 typedef sequence<CompleteBitfield> CompleteBitfieldSeq;

 @extensibility(APPENDABLE) @nested

 struct MinimalBitfield {

 CommonBitfield common;

 NameHash name_hash;

 };

 // Ordered by Bitfield.position

 typedef sequence<MinimalBitfield> MinimalBitfieldSeq;

 @extensibility(APPENDABLE) @nested

 struct CompleteBitsetHeader {

 CompleteTypeDetail detail;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalBitsetHeader {

272 DDS-XTypes, version 1.2

 // Empty. Available for future extension

 };

 @extensibility(APPENDABLE) @nested

 struct CompleteBitsetType {

 BitsetTypeFlag bitset_flags; // unused

 CompleteBitsetHeader header;

 CompleteBitfieldSeq field_seq;

 };

 @extensibility(APPENDABLE) @nested

 struct MinimalBitsetType {

 BitsetTypeFlag bitset_flags; // unused

 MinimalBitsetHeader header;

 MinimalBitfieldSeq field_seq;

 };

 // --- Type Object: ---

 // The types associated with each case selection must have extensibility

 // kind APPENDABLE or MUTABLE so that they can be extended in the future

 @extensibility(MUTABLE) @nested

 struct CompleteExtendedType {

 // Empty. Available for future extension

 };

 @extensibility(FINAL) @nested

 union CompleteTypeObject switch (octet) {

 case TK_ALIAS:

 CompleteAliasType alias_type;

 case TK_ANNOTATION:

 CompleteAnnotationType annotation_type;

 case TK_STRUCTURE:

 CompleteStructType struct_type;

 case TK_UNION:

 CompleteUnionType union_type;

 case TK_BITSET:

DDS-XTypes, version 1.2 273

 CompleteBitsetType bitset_type;

 case TK_SEQUENCE:

 CompleteSequenceType sequence_type;

 case TK_ARRAY:

 CompleteArrayType array_type;

 case TK_MAP:

 CompleteMapType map_type;

 case TK_ENUM:

 CompleteEnumeratedType enumerated_type;

 case TK_BITMASK:

 CompleteBitmaskType bitmask_type;

 // =================== Future extensibility ============

 default:

 CompleteExtendedType extended_type;

 };

 @extensibility(MUTABLE) @nested

 struct MinimalExtendedType {

 // Empty. Available for future extension

 };

 @extensibility(FINAL) @nested

 union MinimalTypeObject switch (octet) {

 case TK_ALIAS:

 MinimalAliasType alias_type;

 case TK_ANNOTATION:

 MinimalAnnotationType annotation_type;

 case TK_STRUCTURE:

 MinimalStructType struct_type;

 case TK_UNION:

 MinimalUnionType union_type;

 case TK_BITSET:

 MinimalBitsetType bitset_type;

 case TK_SEQUENCE:

 MinimalSequenceType sequence_type;

274 DDS-XTypes, version 1.2

 case TK_ARRAY:

 MinimalArrayType array_type;

 case TK_MAP:

 MinimalMapType map_type;

 case TK_ENUM:

 MinimalEnumeratedType enumerated_type;

 case TK_BITMASK:

 MinimalBitmaskType bitmask_type;

 // =================== Future extensibility ============

 default:

 MinimalExtendedType extended_type;

 };

 @extensibility(APPENDABLE) @nested

 union TypeObject switch (octet) { // EquivalenceKind

 case EK_COMPLETE:

 CompleteTypeObject complete;

 case EK_MINIMAL:

 MinimalTypeObject minimal;

 };

 typedef sequence<TypeObject> TypeObjectSeq;

 // Set of TypeObjects representing a strong component: Equivalence class

 // for the Strong Connectivity relationship (mutual reachability between

 // types).

 // Ordered by fully qualified typename lexicographic order

 typedef TypeObjectSeq StronglyConnectedComponent;

 @extensibility(FINAL) @nested

 struct TypeIdentifierTypeObjectPair {

 TypeIdentifier type_identifier;

 TypeObject type_object;

 };

 typedef

 sequence<TypeIdentifierTypeObjectPair> TypeIdentifierTypeObjectPairSeq;

DDS-XTypes, version 1.2 275

 @extensibility(FINAL) @nested

 struct TypeIdentifierPair {

 TypeIdentifier type_identifier1;

 TypeIdentifier type_identifier2;

 };

 typedef sequence<TypeIdentifierPair> TypeIdentifierPairSeq;

 @extensibility(APPENDABLE) @nested

 struct TypeIdentfierWithSize {

 DDS::Xtypes::TypeIdentifier type_id;

 unsigned long typeobject_serialized_size;

 };

 typedef sequence<TypeIdentfierWithSize> TypeIdentfierWithSizeSeq;

 @extensibility(APPENDABLE) @nested

 struct TypeIdentifierWithDependencies {

 TypeIdentfierWithSize typeid_with_size;

 // The total additional types related to minimal_type

 long dependent_typeid_count;

 sequence<TypeIdentfierWithSize> dependent_typeids;

 };

 typedef

 sequence<TypeIdentifierWithDependencies>

TypeIdentifierWithDependenciesSeq;

 // This appears in the builtin DDS topics PublicationBuiltinTopicData

 // and SubscriptionBuiltinTopicData

 @extensibility(MUTABLE) @nested

 struct TypeInformation {

 @id(0x1001) TypeIdentifierWithDependencies minimal;

 @id(0x1002) TypeIdentifierWithDependencies complete;

 };

 typedef sequence<TypeInformation> TypeInformationSeq;

}; // end of module XTypes

}; // end module DDS

276 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 277

Annex C: Dynamic Language Binding

The following IDL comprises the API for the Dynamic Language Binding.

module DDS {

 local interface DynamicType;

 local interface DynamicTypeBuilder;

 valuetype TypeDescriptor;

 typedef sequence<string> IncludePathSeq;

 local interface DynamicTypeBuilderFactory {

 /*static*/ DynamicTypeBuilderFactory get_instance();

 /*static*/ DDS::ReturnCode_t delete_instance();

 DynamicType get_primitive_type(in TypeKind kind);

 DynamicTypeBuilder create_type(in TypeDescriptor descriptor);

 DynamicTypeBuilder create_type_copy(in DynamicType type);

 DynamicTypeBuilder create_type_w_type_object(

 in TypeObject type_object);

 DynamicTypeBuilder create_string_type(in unsigned long bound);

 DynamicTypeBuilder create_wstring_type(in unsigned long bound);

 DynamicTypeBuilder create_sequence_type(

 in DynamicType element_type,

 in unsigned long bound);

 DynamicTypeBuilder create_array_type(

 in DynamicType element_type,

 in BoundSeq bound);

 DynamicTypeBuilder create_map_type(

 in DynamicType key_element_type,

 in DynamicType element_type,

 in unsigned long bound);

 DynamicTypeBuilder create_bitmask_type(in unsigned long bound);

 DynamicTypeBuilder create_type_w_uri(

 in string document_url,

 in string type_name,

 in IncludePathSeq include_paths);

 DynamicTypeBuilder create_type_w_document(

278 DDS-XTypes, version 1.2

 in string document,

 in string type_name,

 in IncludePathSeq include_paths);

 DDS::ReturnCode_t delete_type(in DynamicType type);

 };

 interface TypeSupport {

 // ReturnCode_t register_type(

 // in DomainParticipant domain,

 // in string type_name);

 // string get_type_name();

 // DynamicType get_type();

 };

 /* Implied IDL for type "Foo":

 interface FooTypeSupport : DDS::TypeSupport {

 DDS::ReturnCode_t register_type(

 in DDS::DomainParticipant participant,

 in string type_name);

 string get_type_name();

 DynamicType get_type();

 Foo create_sample(in DynamicData src);

 DynamicData create_dynamic_sample(in Foo src);

 };

 */

 interface DynamicTypeSupport : TypeSupport {

 /* This interface shall instantiate the type FooTypeSupport

 * defined by the DDS specification where "Foo" is DynamicData.

 */

 /*static*/ DynamicTypeSupport create_type_support(

 in DynamicType type);

 /*static*/ DDS::ReturnCode_t delete_type_support(

DDS-XTypes, version 1.2 279

 in DynamicTypeSupport type_support);

 DDS::ReturnCode_t register_type(

 in DDS::DomainParticipant participant,

 in ObjectName type_name);

 ObjectName get_type_name();

 };

 typedef map<ObjectName, ObjectName> Parameters;

 valuetype AnnotationDescriptor {

 public DynamicType type;

 DDS::ReturnCode_t get_value(

 inout ObjectName value, in ObjectName key);

 DDS::ReturnCode_t get_all_value(

 inout Parameters value);

 DDS::ReturnCode_t set_value(

 in ObjectName key, in ObjectName value);

 DDS::ReturnCode_t copy_from(in AnnotationDescriptor other);

 boolean equals(in AnnotationDescriptor other);

 boolean is_consistent();

 };

 valuetype TypeDescriptor {

 public TypeKind kind;

 public ObjectName name;

 public DynamicType base_type;

 public DynamicType discriminator_type;

 public BoundSeq bound;

 @optional public DynamicType element_type;

 @optional public DynamicType key_element_type;

 DDS::ReturnCode_t copy_from(in TypeDescriptor other);

 boolean equals(in TypeDescriptor other);

 boolean is_consistent();

280 DDS-XTypes, version 1.2

 };

 valuetype MemberDescriptor {

 public ObjectName name;

 public MemberId id;

 public DynamicType type;

 public string default_value;

 public unsigned long index;

 public UnionCaseLabelSeq label;

 public boolean default_label;

 DDS::ReturnCode_t copy_from(in MemberDescriptor descriptor);

 boolean equals(in MemberDescriptor descriptor);

 boolean is_consistent();

 };

 local interface DynamicTypeMember {

 DDS::ReturnCode_t get_descriptor(

 inout MemberDescriptor descriptor);

 unsigned long get_annotation_count();

 DDS::ReturnCode_t get_annotation(

 inout AnnotationDescriptor descriptor,

 in unsigned long idx);

 boolean equals(in DynamicTypeMember other);

 MemberId get_id();

 ObjectName get_name();

 };

 typedef map<ObjectName, DynamicTypeMember> DynamicTypeMembersByName;

 typedef map<MemberId, DynamicTypeMember> DynamicTypeMembersById;

 local interface DynamicTypeBuilder {

 DDS::ReturnCode_t get_descriptor(

 inout TypeDescriptor descriptor);

DDS-XTypes, version 1.2 281

 ObjectName get_name();

 TypeKind get_kind();

 DDS::ReturnCode_t get_member_by_name(

 inout DynamicTypeMember member,

 in ObjectName name);

 DDS::ReturnCode_t get_all_members_by_name(

 inout DynamicTypeMembersByName member);

 DDS::ReturnCode_t get_member(

 inout DynamicTypeMember member,

 in MemberId id);

 DDS::ReturnCode_t get_all_members(

 inout DynamicTypeMembersById member);

 unsigned long get_annotation_count();

 DDS::ReturnCode_t get_annotation(

 inout AnnotationDescriptor descriptor,

 in unsigned long idx);

 boolean equals(in DynamicType other);

 DDS::ReturnCode_t add_member(in MemberDescriptor descriptor);

 DDS::ReturnCode_t apply_annotation(

 in AnnotationDescriptor descriptor);

 DynamicType build();

 };

 local interface DynamicType {

 DDS::ReturnCode_t get_descriptor(

 inout TypeDescriptor descriptor);

 ObjectName get_name();

 TypeKind get_kind();

 DDS::ReturnCode_t get_member_by_name(

282 DDS-XTypes, version 1.2

 inout DynamicTypeMember member,

 in ObjectName name);

 DDS::ReturnCode_t get_all_members_by_name(

 inout DynamicTypeMembersByName member);

 DDS::ReturnCode_t get_member(

 inout DynamicTypeMember member,

 in MemberId id);

 DDS::ReturnCode_t get_all_members(

 inout DynamicTypeMembersById member);

 unsigned long get_annotation_count();

 DDS::ReturnCode_t get_annotation(

 inout AnnotationDescriptor descriptor,

 in unsigned long idx);

 boolean equals(in DynamicType other);

 };

 local interface DynamicData;

 local interface DynamicDataFactory {

 /*static*/ DynamicDataFactory get_instance();

 /*static*/ DDS::ReturnCode_t delete_instance();

 DynamicData create_data();

 DDS::ReturnCode_t delete_data(in DynamicData data);

 };

 typedef sequence<long> Int32Seq;

 typedef sequence<unsigned long> UInt32Seq;

 typedef sequence<short> Int16Seq;

 typedef sequence<unsigned short> UInt16Seq;

 typedef sequence<long long> Int64Seq;

 typedef sequence<unsigned long long> UInt64Seq;

 typedef sequence<float> Float32Seq;

 typedef sequence<double> Float64Seq;

DDS-XTypes, version 1.2 283

 typedef sequence<long double> Float128Seq;

 typedef sequence<char> CharSeq;

 typedef sequence<wchar> WcharSeq;

 typedef sequence<boolean> BooleanSeq;

 typedef sequence<octet> ByteSeq;

 // typedef sequence<string> StringSeq;

 typedef sequence<wstring> WstringSeq;

 local interface DynamicData {

 readonly attribute DynamicType type;

 DDS::ReturnCode_t get_descriptor(

 inout MemberDescriptor value,

 in MemberId id);

 DDS::ReturnCode_t set_descriptor(

 in MemberId id,

 in MemberDescriptor value);

 boolean equals(in DynamicData other);

 MemberId get_member_id_by_name(in ObjectName name);

 MemberId get_member_id_at_index(in unsigned long index);

 unsigned long get_item_count();

 DDS::ReturnCode_t clear_all_values();

 DDS::ReturnCode_t clear_nonkey_values();

 DDS::ReturnCode_t clear_value(in MemberId id);

 DynamicData loan_value(in MemberId id);

 DDS::ReturnCode_t return_loaned_value(in DynamicData value);

 DynamicData clone();

 DDS::ReturnCode_t get_int32_value(

 inout long value,

284 DDS-XTypes, version 1.2

 in MemberId id);

 DDS::ReturnCode_t set_int32_value(

 in MemberId id,

 in long value);

 DDS::ReturnCode_t get_uint32_value(

 inout unsigned long value,

 in MemberId id);

 DDS::ReturnCode_t set_uint32_value(

 in MemberId id,

 in unsigned long value);

 DDS::ReturnCode_t get_int16_value(

 inout short value,

 in MemberId id);

 DDS::ReturnCode_t set_int16_value(

 in MemberId id,

 in short value);

 DDS::ReturnCode_t get_uint16_value(

 inout unsigned short value,

 in MemberId id);

 DDS::ReturnCode_t set_uint16_value(

 in MemberId id,

 in unsigned short value);

 DDS::ReturnCode_t get_int64_value(

 inout long long value,

 in MemberId id);

 DDS::ReturnCode_t set_int64_value(

 in MemberId id,

 in long long value);

 DDS::ReturnCode_t get_uint64_value(

 inout unsigned long long value,

 in MemberId id);

 DDS::ReturnCode_t set_uint64_value(

 in MemberId id,

 in unsigned long long value);

 DDS::ReturnCode_t get_float32_value(

 inout float value,

 in MemberId id);

DDS-XTypes, version 1.2 285

 DDS::ReturnCode_t set_float32_value(

 in MemberId id,

 in float value);

 DDS::ReturnCode_t get_float64_value(

 inout double value,

 in MemberId id);

 DDS::ReturnCode_t set_float64_value(

 in MemberId id,

 in double value);

 DDS::ReturnCode_t get_float128_value(

 inout long double value,

 in MemberId id);

 DDS::ReturnCode_t set_float128_value(

 in MemberId id,

 in long double value);

 DDS::ReturnCode_t get_char8_value(

 inout char value,

 in MemberId id);

 DDS::ReturnCode_t set_char8_value(

 in MemberId id,

 in char value);

 DDS::ReturnCode_t get_char16_value(

 inout wchar value,

 in MemberId id);

 DDS::ReturnCode_t set_char16_value(

 in MemberId id,

 in wchar value);

 DDS::ReturnCode_t get_byte_value(

 inout octet value,

 in MemberId id);

 DDS::ReturnCode_t set_byte_value(

 in MemberId id,

 in octet value);

 DDS::ReturnCode_t get_boolean_value(

 inout boolean value,

 in MemberId id);

 DDS::ReturnCode_t set_boolean_value(

286 DDS-XTypes, version 1.2

 in MemberId id,

 in boolean value);

 DDS::ReturnCode_t get_string_value(

 inout string value,

 in MemberId id);

 DDS::ReturnCode_t set_string_value(

 in MemberId id,

 in string value);

 DDS::ReturnCode_t get_wstring_value(

 inout wstring value,

 in MemberId id);

 DDS::ReturnCode_t set_wstring_value(

 in MemberId id,

 in wstring value);

 DDS::ReturnCode_t get_complex_value(

 inout DynamicData value,

 in MemberId id);

 DDS::ReturnCode_t set_complex_value(

 in MemberId id,

 in DynamicData value);

 DDS::ReturnCode_t get_int32_values(

 inout Int32Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_int32_values(

 in MemberId id,

 in Int32Seq value);

 DDS::ReturnCode_t get_uint32_values(

 inout UInt32Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_uint32_values(

 in MemberId id,

 in UInt32Seq value);

 DDS::ReturnCode_t get_int16_values(

 inout Int16Seq value,

 in MemberId id);

DDS-XTypes, version 1.2 287

 DDS::ReturnCode_t set_int16_values(

 in MemberId id,

 in Int16Seq value);

 DDS::ReturnCode_t get_uint16_values(

 inout UInt16Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_uint16_values(

 in MemberId id,

 in UInt16Seq value);

 DDS::ReturnCode_t get_int64_values(

 inout Int64Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_int64_values(

 in MemberId id,

 in Int64Seq value);

 DDS::ReturnCode_t get_uint64_values(

 inout UInt64Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_uint64_values(

 in MemberId id,

 in UInt64Seq value);

 DDS::ReturnCode_t get_float32_values(

 inout Float32Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_float32_values(

 in MemberId id,

 in Float32Seq value);

 DDS::ReturnCode_t get_float64_values(

 inout Float64Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_float64_values(

 in MemberId id,

 in Float64Seq value);

 DDS::ReturnCode_t get_float128_values(

 inout Float128Seq value,

 in MemberId id);

 DDS::ReturnCode_t set_float128_values(

288 DDS-XTypes, version 1.2

 in MemberId id,

 in Float128Seq value);

 DDS::ReturnCode_t get_char8_values(

 inout CharSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_char8_values(

 in MemberId id,

 in CharSeq value);

 DDS::ReturnCode_t get_char16_values(

 inout WcharSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_char16_values(

 in MemberId id,

 in WcharSeq value);

 DDS::ReturnCode_t get_byte_values(

 inout ByteSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_byte_values(

 in MemberId id,

 in ByteSeq value);

 DDS::ReturnCode_t get_boolean_values(

 inout BooleanSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_boolean_values(

 in MemberId id,

 in BooleanSeq value);

 DDS::ReturnCode_t get_string_values(

 inout StringSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_string_values(

 in MemberId id,

 in StringSeq value);

 DDS::ReturnCode_t get_wstring_values(

 inout WstringSeq value,

 in MemberId id);

 DDS::ReturnCode_t set_wstring_values(

 in MemberId id,

DDS-XTypes, version 1.2 289

 in WstringSeq value);

 }; // local interface DynamicData

}; // end module DDS

290 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 291

Annex D: DDS Built-in Topic Data Types

Previously, the standard DDS type system (based solely on IDL prior to the extensions

introduced by this specification) was insufficiently rich to represent the built-in topic data to the

level specified by DDS [DDS] and RTPS [RTPS]. This specification remedies this situation. The

following are expanded definitions of the built-in topic data types that contain all of the meta-

data necessary to represent them as defined by the existing DDS and RTPS specifications.

/* dds-xtypes_discovery.idl */

// The types in this file shall be serialized with XCDR encoding version 1

module DDS {

 @extensibility(APPENDABLE) @nested

 struct BuiltinTopicKey_t {

 octet value[16];

 };

 @extensibility(FINAL) @nested

 struct Duration_t {

 long sec;

 unsigned long nanosec;

 };

 @extensibility(APPENDABLE) @nested

 struct DeadlineQosPolicy {

 Duration_t period;

 };

 enum DestinationOrderQosPolicyKind {

 BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,

 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct DestinationOrderQosPolicy {

 DestinationOrderQosPolicyKind kind;

 };

292 DDS-XTypes, version 1.2

 enum DurabilityQosPolicyKind {

 VOLATILE_DURABILITY_QOS,

 TRANSIENT_LOCAL_DURABILITY_QOS,

 TRANSIENT_DURABILITY_QOS,

 PERSISTENT_DURABILITY_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct DurabilityQosPolicy {

 DurabilityQosPolicyKind kind;

 };

 enum HistoryQosPolicyKind {

 KEEP_LAST_HISTORY_QOS,

 KEEP_ALL_HISTORY_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct HistoryQosPolicy {

 HistoryQosPolicyKind kind;

 long depth;

 };

 @extensibility(APPENDABLE) @nested

 struct DurabilityServiceQosPolicy {

 Duration_t service_cleanup_delay;

 HistoryQosPolicyKind history_kind;

 long history_depth;

 long max_samples;

 long max_instances;

 long max_samples_per_instance;

 };

 @extensibility(APPENDABLE) @nested

 struct GroupDataQosPolicy {

 ByteSeq value;

DDS-XTypes, version 1.2 293

 };

 @extensibility(APPENDABLE) @nested

 struct LatencyBudgetQosPolicy {

 Duration_t duration;

 };

 @extensibility(APPENDABLE) @nested

 struct LifespanQosPolicy {

 Duration_t duration;

 };

 enum LivelinessQosPolicyKind {

 AUTOMATIC_LIVELINESS_QOS,

 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,

 MANUAL_BY_TOPIC_LIVELINESS_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct LivelinessQosPolicy {

 LivelinessQosPolicyKind kind;

 Duration_t lease_duration;

 };

 enum OwnershipQosPolicyKind {

 SHARED_OWNERSHIP_QOS,

 EXCLUSIVE_OWNERSHIP_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct OwnershipQosPolicy {

 OwnershipQosPolicyKind kind;

 };

 @extensibility(APPENDABLE) @nested

 struct OwnershipStrengthQosPolicy {

 long value;

294 DDS-XTypes, version 1.2

 };

 @extensibility(APPENDABLE) @nested

 struct PartitionQosPolicy {

 StringSeq name;

 };

 enum PresentationQosPolicyAccessScopeKind {

 INSTANCE_PRESENTATION_QOS,

 TOPIC_PRESENTATION_QOS,

 GROUP_PRESENTATION_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct PresentationQosPolicy {

 PresentationQosPolicyAccessScopeKind access_scope;

 boolean coherent_access;

 boolean ordered_access;

 };

 enum ReliabilityQosPolicyKind {

 BEST_EFFORT_RELIABILITY_QOS,

 RELIABLE_RELIABILITY_QOS

 };

 @extensibility(APPENDABLE) @nested

 struct ReliabilityQosPolicy {

 ReliabilityQosPolicyKind kind;

 Duration_t max_blocking_time;

 };

 @extensibility(APPENDABLE) @nested

 struct ResourceLimitsQosPolicy {

 long max_samples;

 long max_instances;

 long max_samples_per_instance;

 };

DDS-XTypes, version 1.2 295

 @extensibility(APPENDABLE) @nested

 struct TimeBasedFilterQosPolicy {

 Duration_t minimum_separation;

 };

 @extensibility(APPENDABLE) @nested

 struct TopicDataQosPolicy {

 ByteSeq value;

 };

 @extensibility(APPENDABLE) @nested

 struct TransportPriorityQosPolicy {

 long value;

 };

 @extensibility(APPENDABLE) @nested

 struct UserDataQosPolicy {

 ByteSeq value;

 };

 @extensibility(MUTABLE)

 struct ParticipantBuiltinTopicData {

 @id(0x0050) @key BuiltinTopicKey_t key;

 @id(0x002C) UserDataQosPolicy user_data;

 };

 typedef short DataRepresentationId_t;

 const DataRepresentationId_t XCDR_DATA_REPRESENTATION = 0;

 const DataRepresentationId_t XML_DATA_REPRESENTATION = 1;

 const DataRepresentationId_t XCDR2_DATA_REPRESENTATION = 2;

 typedef sequence<DataRepresentationId_t> DataRepresentationIdSeq;

 const QosPolicyId_t DATA_REPRESENTATION_QOS_POLICY_ID = 23;

 const string DATA_REPRESENTATION_QOS_POLICY_NAME = "DataRepresentation";

296 DDS-XTypes, version 1.2

 @extensibility(APPENDABLE) @nested

 struct DataRepresentationQosPolicy {

 DataRepresentationIdSeq value;

 };

 @bit_bound(16)

 enum TypeConsistencyKind {

 DISALLOW_TYPE_COERCION,

 ALLOW_TYPE_COERCION

 };

 const QosPolicyId_t TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_ID = 24;

 const string TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_NAME =

 "TypeConsistencyEnforcement";

 @extensibility(APPENDABLE) @nested

 struct TypeConsistencyEnforcementQosPolicy {

 TypeConsistencyKind kind;

 boolean ignore_sequence_bounds;

 boolean ignore_string_bounds;

 boolean ignore_member_names;

 boolean prevent_type_widening;

 boolean force_type_validation;

 };

 @extensibility(MUTABLE)

 struct TopicBuiltinTopicData {

 @id(0x005A) @key BuiltinTopicKey_t key;

 @id(0x0005) ObjectName name;

 @id(0x0007) ObjectName type_name;

 @id(0x0069) @optional TypeIdV1 type_id; // XTYPES 1.1

 @id(0x0072) @optional TypeObjectV1 type; // XTYPES 1.1

 @id(0x0075) @optional XTypes::TypeInformation type_information;

 // XTYPES 1.2

 @id(0x001D) DurabilityQosPolicy durability;

 @id(0x001E) DurabilityServiceQosPolicy durability_service;

 @id(0x0023) DeadlineQosPolicy deadline;

DDS-XTypes, version 1.2 297

 @id(0x0027) LatencyBudgetQosPolicy latency_budget;

 @id(0x001B) LivelinessQosPolicy liveliness;

 @id(0x001A) ReliabilityQosPolicy reliability;

 @id(0x0049) TransportPriorityQosPolicy transport_priority;

 @id(0x002B) LifespanQosPolicy lifespan;

 @id(0x0025) DestinationOrderQosPolicy destination_order;

 @id(0x0040) HistoryQosPolicy history;

 @id(0x0041) ResourceLimitsQosPolicy resource_limits;

 @id(0x001F) OwnershipQosPolicy ownership;

 @id(0x002E) TopicDataQosPolicy topic_data;

 @id(0x0073) DataRepresentationQosPolicy representation;

 };

 @extensibility(MUTABLE)

 struct TopicQos {

 // ...

 DataRepresentationQosPolicy representation;

 };

 @extensibility(MUTABLE)

 struct PublicationBuiltinTopicData {

 @id(0x005A) @key BuiltinTopicKey_t key;

 @id(0x0050) BuiltinTopicKey_t participant_key;

 @id(0x0005) ObjectName topic_name;

 @id(0x0007) ObjectName type_name;

 @id(0x0069) @optional TypeIdV1 type_id; // XTYPES 1.1

 @id(0x0072) @optional TypeObjectV1 type; // XTYPES 1.1

 @id(0x0075) @optional XTypes::TypeInformation type_information;

 // XTYPES 1.2

 @id(0x001D) DurabilityQosPolicy durability;

 @id(0x001E) DurabilityServiceQosPolicy durability_service;

 @id(0x0023) DeadlineQosPolicy deadline;

 @id(0x0027) LatencyBudgetQosPolicy latency_budget;

 @id(0x001B) LivelinessQosPolicy liveliness;

 @id(0x001A) ReliabilityQosPolicy reliability;

 @id(0x002B) LifespanQosPolicy lifespan;

 @id(0x002C) UserDataQosPolicy user_data;

 @id(0x001F) OwnershipQosPolicy ownership;

298 DDS-XTypes, version 1.2

 @id(0x0006) OwnershipStrengthQosPolicy ownership_strength;

 @id(0x0025) DestinationOrderQosPolicy destination_order;

 @id(0x0021) PresentationQosPolicy presentation;

 @id(0x0029) PartitionQosPolicy partition;

 @id(0x002E) TopicDataQosPolicy topic_data;

 @id(0x002D) GroupDataQosPolicy group_data;

 @id(0x0073) DataRepresentationQosPolicy representation;

 };

 @extensibility(MUTABLE)

 struct DataWriterQos {

 // ...

 DataRepresentationQosPolicy representation;

 };

 @extensibility(MUTABLE)

 struct SubscriptionBuiltinTopicData {

 @id(0x005A) @key BuiltinTopicKey_t key;

 @id(0x0050) BuiltinTopicKey_t participant_key;

 @id(0x0005) ObjectName topic_name;

 @id(0x0007) ObjectName type_name;

 @id(0x0069) @optional TypeIdV1 type_id; // XTYPES 1.1

 @id(0x0072) @optional TypeObjectV1 type; // XTYPES 1.1

 @id(0x0075) @optional XTypes::TypeInformation type_information;

 // XTYPES 1.2

 @id(0x001D) DurabilityQosPolicy durability;

 @id(0x0023) DeadlineQosPolicy deadline;

 @id(0x0027) LatencyBudgetQosPolicy latency_budget;

 @id(0x001B) LivelinessQosPolicy liveliness;

 @id(0x001A) ReliabilityQosPolicy reliability;

 @id(0x001F) OwnershipQosPolicy ownership;

 @id(0x0025) DestinationOrderQosPolicy destination_order;

 @id(0x002C) UserDataQosPolicy user_data;

 @id(0x0004) TimeBasedFilterQosPolicy time_based_filter;

 @id(0x0021) PresentationQosPolicy presentation;

 @id(0x0029) PartitionQosPolicy partition;

 @id(0x002E) TopicDataQosPolicy topic_data;

 @id(0x002D) GroupDataQosPolicy group_data;

DDS-XTypes, version 1.2 299

 @id(0x0073) DataRepresentationQosPolicy representation;

 @id(0x0074) TypeConsistencyEnforcementQosPolicy

 type_consistency;

 };

 @extensibility(MUTABLE)

 struct DataReaderQos {

 // ...

 DataRepresentationQosPolicy representation;

 TypeConsistencyEnforcementQosPolicy type_consistency;

 };

}; // end module DDS

300 DDS-XTypes, version 1.2

DDS-XTypes, version 1.2 301

Annex E: Built-in Types

DDS shall provide a few very types preregistered “out of the box” to allow users to address

certain simple use cases without the need for code generation, dynamic type definition, or type

registration. These types are defined below
9
.

module DDS {

 @extensibility(APPENDABLE)

 struct _String {

 string value;

 };

 interface StringDataWriter : DataWriter {

 /* This interface shall instantiate the type FooDataWriter defined by

 * the DDS specification where "Foo" is an unbounded string.

 */

 };

 interface StringDataReader : DataReader {

 /* This interface shall instantiate the type FooDataReader defined by

 * the DDS specification where "Foo" is an unbounded string.

 */

 };

 interface StringTypeSupport : TypeSupport {

 /* This interface shall instantiate the type FooTypeSupport

 * defined by the DDS specification where "Foo" is an unbounded

 * string.

 */

 };

 @extensibility(APPENDABLE)

 struct KeyedString {

 @key string key;

 string value;

9 The leading underscore in the declaration of the String structure is necessary to prevent collision with the IDL keyword

“string.” According to the IDL specification, it is treated as an escaping character and is not considered part of the identifier.

302 DDS-XTypes, version 1.2

 };

 typedef sequence<KeyedString> KeyedStringSeq;

 interface KeyedStringDataWriter : DataWriter {

 /* This interface shall instantiate the type FooDataWriter defined by

 * the DDS specification where "Foo" is KeyedString. It also defines

 * the operations below.

 */

 InstanceHandle_t register_instance_w_key(

 in string key);

 InstanceHandle_t register_instance_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

 ReturnCode_t unregister_instance_w_key(

 in string key);

 ReturnCode_t unregister_instance_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

 ReturnCode_t write_string_w_key(

 in string key,

 in string str,

 in InstanceHandle_t handle);

 ReturnCode_t write_string_w_key_w_timestamp(

 in string key,

 in string str,

 in InstanceHandle_t handle,

 in Time_t source_timestamp);

 ReturnCode_t dispose_w_key(

 in string key);

 ReturnCode_t dispose_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

 ReturnCode_t get_key_value_w_key(

DDS-XTypes, version 1.2 303

 inout string key,

 in InstanceHandle_t handle);

 InstanceHandle_t lookup_instance_w_key(

 in string key);

 };

 interface KeyedStringDataReader : DataReader {

 /* This interface shall instantiate the type FooDataReader defined by

 * the DDS specification where "Foo" is KeyedString.

 */

 };

 interface KeyedStringTypeSupport : TypeSupport {

 /* This interface shall instantiate the type FooTypeSupport

 * defined by the DDS specification where "Foo" is KeyedString.

 */

 };

 @extensibility(APPENDABLE)

 struct Bytes {

 ByteSeq value;

 };

 typedef sequence<Bytes> BytesSeq;

 interface BytesDataWriter : DataWriter {

 /* This interface shall instantiate the type FooDataWriter defined by

 * the DDS specification where "Foo" is an unbounded sequence of

 * bytes (octets). It also defines the operations below.

 */

 ReturnCode_t write_w_bytes(

 in ByteArray bytes,

 in long offset,

 in long length,

 in InstanceHandle_t handle);

 ReturnCode_t write_w_bytes_w_timestamp(

304 DDS-XTypes, version 1.2

 in ByteArray bytes,

 in long offset,

 in long length,

 in InstanceHandle_t handle,

 in Time_t source_timestamp);

 };

 interface BytesDataReader : DataReader {

 /* This interface shall instantiate the type FooDataReader defined by

 * the DDS specification where "Foo" is Bytes.

 */

 };

 interface BytesTypeSupport : TypeSupport {

 /* This interface shall instantiate the type FooTypeSupport

 * defined by the DDS specification where "Foo" is Bytes.

 */

 };

 @extensibility(APPENDABLE)

 struct KeyedBytes {

 @key string key;

 ByteSeq value;

 };

 typedef sequence<KeyedBytes> KeyedBytesSeq;

 interface KeyedBytesDataWriter : DataWriter {

 /* This interface shall instantiate the type FooDataWriter defined by

 * the DDS specification where "Foo" is KeyedBytes. It also defines

 * It also defines the operations below.

 */

 InstanceHandle_t register_instance_w_key(

 in string key);

 InstanceHandle_t register_instance_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

DDS-XTypes, version 1.2 305

 ReturnCode_t unregister_instance_w_key(

 in string key);

 ReturnCode_t unregister_instance_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

 ReturnCode_t write_bytes_w_key(

 in string key,

 in ByteArray bytes,

 in long offset,

 in long length,

 in InstanceHandle_t handle);

 ReturnCode_t write_bytes_w_key_w_timestamp(

 in string key,

 in ByteArray bytes,

 in long offset,

 in long length,

 in InstanceHandle_t handle,

 in Time_t source_timestamp);

 ReturnCode_t dispose_w_key(

 in string key);

 ReturnCode_t dispose_w_key_w_timestamp(

 in string key,

 in Time_t source_timestamp);

 ReturnCode_t get_key_value_w_key(

 inout string key,

 in InstanceHandle_t handle);

 InstanceHandle_t lookup_instance_w_key(

 in string key);

 };

 interface KeyedBytesDataReader : DataReader {

 /* This interface shall instantiate the type FooDataReader defined by

306 DDS-XTypes, version 1.2

 * the DDS specification where "Foo" is KeyedBytes.

 */

 };

 interface KeyedBytesTypeSupport : TypeSupport {

 /* This interface shall instantiate the type FooTypeSupport

 * defined by the DDS specification where "Foo" is KeyedBytes.

 */

 };

}; // end module DDS

DDS-XTypes, version 1.2 307

Annex F: Characterizing Legacy DDS Implementations

Prior to the adoption of this specification, no formal definition existed of the DDS Type System

or of those portions of IDL that corresponded to it. This annex provides a non-normative

description of what is believed to be the consensus Type System, Type Representation, Data

Representation, and Language Binding of DDS implementations that do not conform to this

specification. It is provided for the convenience of implementers and evaluators who may wish

to compare and contrast DDS implementations or to distinguish those parts of this specification

that are novel from those that merely codify previous de-facto-standard practice.

F.1 Type System

The following portions of the Type System are believed to be supported by the majority of DDS

implementations, regardless of their compliance with this specification:

 Namespaces and modules.

 All primitive types, albeit named according to their mappings in the IDL Type

Representation.

 Enumerations of bit bound 32 with automatically assigned enumerator values.

 Aliases, typically referred to as “typedefs” based on their mappings in the IDL Type

Representation.

 Arrays, both single-dimensional and multi-dimensional.

 Sequences, both bounded and unbounded.

 Strings of narrow or wide characters, both bounded and unbounded.

 Structures without inheritance. User-defined structures have FINAL extensibility.

Members are typically non-optional, non-shared, and do not expose member IDs. DDS-

RTPS-compliant implementations support MUTABLE extensibility and the

must_understand attribute with respect to the built-in topic data types. Otherwise, these

attributes are not generally supported. Key members are generally supported.

 Unions with FINAL extensibility and without key members. Discriminators of wide

character and octet types are not generally supported.

F.2 Type Representation

The IDL Type Representations of those portions of the Type System enumerated above are

generally supported.

The XSD Type Representation is based heavily on the “CORBA to WSDL/SOAP Interworking

Specification” and as such may to some extent be said to predate this specification. However,

support for representing types in XSD is not widespread among DDS implementations that do

not comply with this specification.

308 DDS-XTypes, version 1.2

F.3 Data Representation

The Extended CDR Representations of those portions of the Type System enumerated above are

generally supported. The exception is the extended parameter ID and length facility based on

PID_EXTENDED, which is not generally supported.

F.4 Language Binding

The Plain Language Bindings of those portions of the Type System enumerated above are

generally supported.

	1. Scope
	2. Conformance Criteria
	2.1 Programming Interface Conformance
	2.2 Network Interoperability Conformance
	2.2.1 Minimal Network Interoperability Profile
	2.2.2 Basic Network Inteoperability Profile

	2.3 Optional XTYPES 1.1 Interoperability Profile
	2.4 Optional XML Data Representation Profile

	3. Normative References
	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1 Data Distribution Service for Real-Time Systems (DDS)
	6.2 Acknowledgments

	7. Extensible and Dynamic Topic Types for DDS
	7.1 Overview
	7.2 Type System
	7.2.1 Background (Non-Normative)
	7.2.1.1 Type Evolution Example
	7.2.1.2 Type Inheritance Example
	7.2.1.3 Sparse Types Example

	7.2.2 Type System Model
	7.2.2.1 Namespaces
	7.2.2.2 Primitive Types
	7.2.2.2.1 Character Data
	7.2.2.2.1.1 Design Rationale (Non-Normative)
	7.2.2.2.1.2 Character Sets and Encoding
	7.2.2.2.1.2.1 Use of Unicode
	7.2.2.2.1.2.2 CHAR_8_TYPE
	7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE
	7.2.2.2.1.2.4 String<Char8> type
	7.2.2.2.1.2.5 CHAR_16_TYPE
	7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE
	7.2.2.2.1.2.7 String<Char16> type

	7.2.2.3 String Types
	7.2.2.4 Constructed Types
	7.2.2.4.1 Enumerated Types
	7.2.2.4.1.1 Enumeration Types
	7.2.2.4.1.2 Bitmask Types
	7.2.2.4.1.2.1 Design Rationale (Non-Normative)

	7.2.2.4.2 Alias Types
	7.2.2.4.3 Collection Types
	7.2.2.4.4 Aggregated Types
	7.2.2.4.4.1 Structure Types
	7.2.2.4.4.2 Union Types
	7.2.2.4.4.3 Member IDs
	7.2.2.4.4.4 Members That Must Be Understood by Consumers
	7.2.2.4.4.5 Optional Members
	7.2.2.4.4.6 Key Members

	7.2.2.4.5 Verbatim Text
	7.2.2.4.5.1 Property: Language
	7.2.2.4.5.2 Property: Placement
	7.2.2.4.5.3 Property: Text

	7.2.2.4.6 External Data

	7.2.2.5 Nested Types
	7.2.2.6 Annotations
	7.2.2.7 Try Construct behavior

	7.2.3 Type Extensibility and Mutability
	7.2.4 Type Compatibility
	7.2.4.1 Constructing objects of one type from objects of another type
	7.2.4.2 Concept of Delimited Types
	7.2.4.3 Strong Assignability
	7.2.4.4 Assignability Rules
	7.2.4.4.1 Assignability of Equivalent Types
	7.2.4.4.2 Non-serialized Members
	7.2.4.4.3 Alias Types
	7.2.4.4.4 Primitive Types
	7.2.4.4.5 String Types
	7.2.4.4.5.1 Example: Strings

	7.2.4.4.6 Collection Types
	7.2.4.4.7 Enumerated Types
	7.2.4.4.8 Aggregated Types
	7.2.4.4.8.1 Example: Type Truncation
	7.2.4.4.8.2 Example: Type Inheritance
	7.2.4.4.8.3 Example: Type Refactoring

	7.3 Type Representation
	7.3.1 IDL Type Representation
	7.3.1.1 IDL Compatibility
	7.3.1.1.1 Backward Compatibility with Respect to Type Definitions
	7.3.1.1.2 Forward Compatibility with Respect to Compilers

	7.3.1.2 Annotation Language
	7.3.1.2.1 Built-in Annotations
	7.3.1.2.1.1 Member IDs
	7.3.1.2.1.2 Optional Members
	7.3.1.2.1.3 Key Members
	7.3.1.2.1.4 External Data
	7.3.1.2.1.5 Enumerated Literal Values
	7.3.1.2.1.6 Bitmask Positions
	7.3.1.2.1.7 Nested Types
	7.3.1.2.1.8 Type Extensibility and Mutability
	7.3.1.2.1.9 Must Understand Members
	7.3.1.2.1.10 Default Literal for Enumeration
	7.3.1.2.1.11 TryConstruct Elements and Members
	7.3.1.2.1.11.1 TryConstruct Example 1
	7.3.1.2.1.11.2 TryConstruct Example 2
	7.3.1.2.1.11.3 TryConstruct Example 3
	7.3.1.2.1.11.4 TryConstruct Example 4
	7.3.1.2.1.11.5 TryConstruct Example 5

	7.3.1.2.1.12 Verbatim Text
	7.3.1.2.1.13 Non-serialized Members

	7.3.1.2.2 Using Built-in Annotations
	7.3.1.2.3 Alternative Annotation Syntax
	7.3.1.2.4 Defining Annotations
	7.3.1.2.5 Applying Annotations
	7.3.1.2.6 Alternative Syntax

	7.3.1.3 Constants and Expressions
	7.3.1.4 Primitive Types
	7.3.1.5 Alias Types
	7.3.1.6 Array and Sequence Types
	7.3.1.7 String Types
	7.3.1.8 Enumerated Types
	7.3.1.9 Map Types
	7.3.1.10 Structure Types
	7.3.1.11 Union Types

	7.3.2 XML Type Representation
	7.3.2.1 Type Representation Management
	7.3.2.1.1 File Inclusion
	7.3.2.1.2 Forward Declarations
	7.3.2.1.3 Constants

	7.3.2.2 Basic Types
	7.3.2.3 String Types
	7.3.2.4 Collection Types
	7.3.2.4.1 Array Types
	7.3.2.4.2 Sequence Types
	7.3.2.4.3 Map Types
	7.3.2.4.4 Combinations of Collection Types

	7.3.2.5 Aggregated Types
	7.3.2.5.1 Structures
	7.3.2.5.1.1 Verbatim Text
	7.3.2.5.1.2 Members
	7.3.2.5.1.3 Inheritance

	7.3.2.5.2 Unions

	7.3.2.6 Aliases
	7.3.2.7 Enumerated Types
	7.3.2.7.1 Enumerations
	7.3.2.7.2 Bitmasks

	7.3.2.8 Modules
	7.3.2.9 Annotations

	7.3.3 XSD Type Representation
	7.3.3.1 Annotations
	7.3.3.1.1 Defining Annotation Types
	7.3.3.1.2 Applying Annotations
	7.3.3.1.3 Built-in Annotations

	7.3.3.2 Structures
	7.3.3.2.1 Inheritance
	7.3.3.2.2 Optional Members

	7.3.3.3 Nested Types
	7.3.3.4 Maps

	7.3.4 Representing Types with TypeIdentifier and TypeObject
	7.3.4.1 Plain Types
	7.3.4.2 Type Identifier
	7.3.4.3 Complete TypeObject
	7.3.4.4 Minimal TypeObject
	7.3.4.5 TypeObject serialization
	7.3.4.6 Classification of TypeIdentifiers
	7.3.4.6.1 Fully-descriptive TypeIdentifiers
	7.3.4.6.2 Hash TypeIdentifiers
	7.3.4.6.3 Direct Hash TypeIdentifiers
	7.3.4.6.4 Indirect Hash TypeIdentifiers
	7.3.4.6.5 Minimal Hash TypeIdentifiers
	7.3.4.6.6 Complete Hash TypeIdentifiers

	7.3.4.7 Type Equivalence
	7.3.4.8 Types with mutual dependencies on other types
	7.3.4.8.1 Background: Basic graph theory

	7.3.4.9 Computation of Type identifiers for types with mutual dependencies
	7.3.4.9.1 Introduction
	7.3.4.9.2 Algorithm
	7.3.4.9.3 Strongly Connected Components Identifier (SCCIdentifier)

	7.4 Data Representation
	7.4.1 Extended CDR Representation (encoding version 1)
	7.4.1.1 PLAIN_CDR Representation
	7.4.1.1.1 Primitive types
	7.4.1.1.2 Character Data
	7.4.1.1.3 Enumerated Types
	7.4.1.1.3.1 Enumeration Types
	7.4.1.1.3.2 Bitmask Types

	7.4.1.1.4 Map Types
	7.4.1.1.5 Structures
	7.4.1.1.5.1 Inheritance
	7.4.1.1.5.2 Optional Members

	7.4.1.2 Parameterized CDR Representation
	7.4.1.2.1 Interpretation of Parameter ID Values
	7.4.1.2.2 Member ID-to-Parameter ID Mapping
	7.4.1.2.3 Omission and Reordering of Members of Aggregated Types
	7.4.1.2.4 Nested Objects

	7.4.2 Extended CDR Representation (encoding version 2)
	7.4.3 Extended CDR encoding virtual machine
	7.4.3.1 Encoding version and format
	7.4.3.2 XCDR Stream State
	7.4.3.2.1 XCDR stream state variables
	7.4.3.2.2 Operations that change the XCDR stream state
	7.4.3.2.3 XCDR Stream Initialization

	7.4.3.3 Type and Byte transformations
	7.4.3.4 Functions related to data types and objects
	7.4.3.4.1 Delimiter Header (DHEADER)
	7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

	7.4.3.5 Encoding (serialization) rules
	7.4.3.5.1 Notation used for the match criteria
	7.4.3.5.2 Encoding of Optional Members
	7.4.3.5.3 Complete Serialization Rules

	1.1.1
	7.4.4 XML Data Representation
	7.4.4.1 Valid XML Data Representation
	7.4.4.2 Well-formed XML Data Representation

	7.5 Language Binding
	7.5.1 Plain Language Binding
	7.5.1.1 Primitive Types
	7.5.1.1.1 C
	7.5.1.1.2 C++

	7.5.1.2 Annotations and Built-in Annotations
	7.5.1.2.1 Enumerated Literal Values
	7.5.1.2.1.1 C
	7.5.1.2.1.2 C++
	7.5.1.2.1.3 Java

	7.5.1.2.2 Bitmask Types
	7.5.1.2.3 External Members
	7.5.1.2.3.1 C
	7.5.1.2.3.1.1 External Optional Members

	7.5.1.2.3.2 Traditional C++
	7.5.1.2.3.2.1 External Optional Members

	7.5.1.2.3.3 Modern C++
	7.5.1.2.3.3.1 Operation: Default Constructor
	7.5.1.2.3.3.2 Operation: Constructor from a T*
	7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object
	7.5.1.2.3.3.4 Operation: Copy Constructor
	7.5.1.2.3.3.5 Operation: Assignment Operator
	7.5.1.2.3.3.6 Operation: Destructor
	7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)
	7.5.1.2.3.3.8 Operation: get (const and non-const versions)
	7.5.1.2.3.3.9 Operation: get_shared_ptr
	7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)
	7.5.1.2.3.3.11 Operation: operator==
	7.5.1.2.3.3.12 Operation: operator!=
	7.5.1.2.3.3.13 Operation: operator bool
	7.5.1.2.3.3.14 Operation: is_locked
	7.5.1.2.3.3.15 Operation: lock
	7.5.1.2.3.3.16 External Optional Members

	7.5.1.2.3.4 Java

	7.5.1.2.4 Optional Members
	7.5.1.2.4.1 C
	7.5.1.2.4.2 C++
	7.5.1.2.4.3 Java
	7.5.1.2.4.4 Optional Arrays in C and C++

	7.5.1.2.5 Nested Types
	7.5.1.2.6 User-Defined Annotation Types
	7.5.1.2.6.1 Java

	7.5.1.3 Map Types
	7.5.1.3.1 Operations
	7.5.1.3.2 C
	7.5.1.3.2.1 Map Type Name
	7.5.1.3.2.2 Operation: new
	7.5.1.3.2.3 Operation: delete
	7.5.1.3.2.4 Operation: initialize
	7.5.1.3.2.5 Operation: finalize
	7.5.1.3.2.6 Operation: copy
	7.5.1.3.2.7 Operation: get_size
	7.5.1.3.2.8 Operation: get_max_size
	7.5.1.3.2.9 Operation: set_max_size
	7.5.1.3.2.10 Operation: clear
	7.5.1.3.2.11 Operation: insert
	7.5.1.3.2.12 Operation: insert_or_assign
	7.5.1.3.2.13 Operation: erase
	7.5.1.3.2.14 Operation: get_first
	7.5.1.3.2.15 Operation: get_next
	7.5.1.3.2.16 Operation: find_element
	7.5.1.3.2.17 Operation: find_entry
	7.5.1.3.2.18 Operation: get_pair
	7.5.1.3.2.19 Example (Non-Normative)

	7.5.1.3.3 Traditional C++
	7.5.1.3.3.1 Map Class Name and operations

	7.5.1.3.4 Modern C++
	7.5.1.3.5 Java
	7.5.1.3.6 Other Programming Languages

	7.5.1.4 Structure and Union Types
	7.5.1.4.1 Inheritance
	7.5.1.4.1.1 C++
	7.5.1.4.1.2 Java
	7.5.1.4.1.3 Other Programming Languages

	7.5.2 Dynamic Language Binding
	7.5.2.1 UML-to-IDL Mapping Rules
	7.5.2.2 DynamicTypeBuilderFactory
	7.5.2.2.1 Operation: create_array_type
	7.5.2.2.2 Operation: create_bitmask_type
	7.5.2.2.3 Operation: create_map_type
	7.5.2.2.4 Operation: create_sequence_type
	7.5.2.2.5 Operations: create_string_type, create_wstring_type
	7.5.2.2.6 Operation: create_type
	7.5.2.2.7 Operation: create_type_copy
	7.5.2.2.8 Operation: create_type_w_type_object
	7.5.2.2.9 Operation: delete_instance
	7.5.2.2.10 Operation: delete_type
	7.5.2.2.11 Operation: get_instance
	7.5.2.2.12 Operation: get_primitive_type
	7.5.2.2.13 Operation: create_type_w_uri
	7.5.2.2.14 Operation: create_type_w_document

	7.5.2.3 AnnotationDescriptor
	7.5.2.3.1 Operation: copy_from
	7.5.2.3.2 Operation: equals
	7.5.2.3.3 Operation: is_consistent
	7.5.2.3.4 Property: type
	7.5.2.3.5 Property: value

	7.5.2.4 TypeDescriptor
	7.5.2.4.1 Property: base_type
	7.5.2.4.2 Property: bound
	7.5.2.4.3 Operation: copy_from
	7.5.2.4.4 Property: discriminator_type
	7.5.2.4.5 Property: element_type
	7.5.2.4.6 Operation: equals
	7.5.2.4.7 Operation: is_consistent
	7.5.2.4.8 Property: key_element_type
	7.5.2.4.9 Property: kind
	7.5.2.4.10 Property: name

	7.5.2.5 MemberId
	7.5.2.6 DynamicTypeMember
	7.5.2.6.1 Property: annotation
	7.5.2.6.2 Operation: get_descriptor
	7.5.2.6.3 Operation: equals
	7.5.2.6.4 Operation: get_id
	7.5.2.6.5 Operation: get_name

	7.5.2.7 MemberDescriptor
	7.5.2.7.1 Operation: copy_from
	7.5.2.7.2 Property: default_label
	7.5.2.7.3 Property: default_value
	7.5.2.7.4 Operation: equals
	7.5.2.7.5 Property: id
	7.5.2.7.6 Property: index
	7.5.2.7.7 Operation: is_consistent
	7.5.2.7.8 Property: label
	7.5.2.7.9 Property: name
	7.5.2.7.10 Property: type

	7.5.2.8 DynamicType
	7.5.2.8.1 Property: annotation
	7.5.2.8.2 Operation: get_descriptor
	7.5.2.8.3 Operation: equals
	7.5.2.8.4 Operation: get_kind
	7.5.2.8.5 Operation: get_name
	7.5.2.8.6 Property: member_by_name
	7.5.2.8.7 Property: member

	7.5.2.9 DynamicTypeBuilder
	7.5.2.9.1 Operation: add_member
	7.5.2.9.2 Property: annotation
	7.5.2.9.3 Operation: apply_annotation
	7.5.2.9.4 Operation: apply_annotation_to_member
	7.5.2.9.5 Operation: build
	7.5.2.9.6 Operation: get_descriptor
	7.5.2.9.7 Operation: equals
	7.5.2.9.8 Operation: get_kind
	7.5.2.9.9 Operation: get_name
	7.5.2.9.10 Property: member_by_name
	7.5.2.9.11 Property: member

	7.5.2.10 DynamicDataFactory
	7.5.2.10.1 Operation: create_data
	7.5.2.10.2 Operation: delete_data
	7.5.2.10.3 Operation: delete_instance
	7.5.2.10.4 Operation: get_instance

	7.5.2.11 DynamicData
	7.5.2.11.1 Property: value; Operations: get_member_id_by_name and get_member_id_at_index
	7.5.2.11.2 Property: descriptor
	7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and clear_nonkey_values
	7.5.2.11.4 Operation: clone
	7.5.2.11.5 Operation: equals
	7.5.2.11.6 Operation: get_item_count
	7.5.2.11.7 Operations: loan_value and return_loaned_value
	7.5.2.11.8 Property: type
	7.5.2.11.9 Platform-Specific Model: IDL

	7.6 Use of the Type System by DDS
	7.6.1 Topic Model
	7.6.2 Discovery and Endpoint Matching
	7.6.2.1 Data Representation QoS Policy
	7.6.2.1.1 DataRepresentationQosPolicy: Conceptual Model
	7.6.2.1.2 Use of the RTPS Encapsulation Identifier
	7.6.2.1.3 DataRepresentationQosPolicy: Platform-Specific API

	7.6.2.2 Discovery Built-in Topics
	7.6.2.2.1 Type Information
	7.6.2.2.2 Additional members included in discovery built-in Topics

	7.6.2.3 Built-in TypeLookup service
	7.6.2.3.1 Introduction
	7.6.2.3.2 Types reused from DDS-RPC
	7.6.2.3.3 TypeLookup Types and Endpoints
	7.6.2.3.4 Use of the TypeLookup Service
	7.6.2.3.4.1 Service operation getTypeDependencies
	7.6.2.3.4.2 Service operation getTypes

	7.6.2.4 Type Consistency Enforcement QoS Policy
	7.6.2.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model
	7.6.2.4.2 Rules for Type Consistency Enforcement
	7.6.2.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

	7.6.3 Local API Extensions
	7.6.3.1 Operation: DomainParticipant::create_topic
	7.6.3.2 Operation: DomainParticipant::lookup_topicdescription

	7.6.4 Built-in Types
	7.6.4.1 String
	7.6.4.2 KeyedString
	7.6.4.3 Bytes
	7.6.4.4 KeyedBytes

	7.6.5 Use of Dynamic Data and Dynamic Type
	7.6.5.1 Type Support
	7.6.5.1.1 TypeSupport Interface
	7.6.5.1.1.1 Operation: get_type

	7.6.5.1.2 FooTypeSupport Interface
	7.6.5.1.2.1 Operation: create_sample
	7.6.5.1.2.2 Operation: create_dynamic_sample

	7.6.5.1.3 DynamicTypeSupport
	7.6.5.1.4 Operations: register_type, get_type_name
	7.6.5.1.5 Operation: create_type_support
	7.6.5.1.6 Operation: delete_type_support

	7.6.5.2 DynamicDataWriter and DynamicDataReader

	7.6.6 DCPS Queries and Filters
	7.6.6.1 Member Names
	7.6.6.2 Optional Type Members
	7.6.6.3 Grammar Extensions

	7.6.7 Interoperability of Keyed Topics

	8. Changes or Extensions Required to Adopted OMG Specifications
	8.1 Extensions
	8.1.1 DDS

	8.2 Changes

	Annex A: XML Type Representation Schema
	Annex B: Representing Types with TypeObject
	Annex C: Dynamic Language Binding
	Annex D: DDS Built-in Topic Data Types
	Annex E: Built-in Types
	Annex F: Characterizing Legacy DDS Implementations
	F.1 Type System
	F.2 Type Representation
	F.3 Data Representation
	F.4 Language Binding

