DDS for eXtremely Resource
Constrained Environments

Revised Submission
Real-Time Innovations, Inc.
Twin Oaks Computing, Inc.
eProsima, Inc.

Date: March 2018

OMG Document Number: mars/2018-03-03

Associated Files (Normative):
dds-xrce_types.idl (mars/2018-03-08)
dds-xrce_model.xmi (mars/2018-03-05)

Associated Files (Non-normative):
dds-xrce_model.eap (mars/2018-03-06)

IPR mode: Non-Assert

Submission Contacts:

Gerardo Pardo-Castellote, Ph.D. (lead) CTO,
Real-Time Innovations, Inc. gerardo AT rti.com

Clark Tucker,

CEO, TwinOaks Computing, Inc. ctucker AT twinoakscomputing.com

Jaime Martin-Losa

CTO, eProsima. JaimeMartin AT eprosima.com

Copyright © 2018, Real-Time Innovations, Inc.
Copyright © 2018, Twin Oaks Computing, Inc.
Copyright © 2018, eProsima, Inc.

Copyright © 2018, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and
XMI® are registered trademarks of the Object Management Group, Inc., and Object Management Group™,
OMG™ | Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture
Diagram™, CORBA logos™, XMI Logo™, CWM™_ CWM Logo™, [IOP™ MOF™ | OMG Interface
Definition Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.)

Table of Contents

DDS for eXtremely Resource Constrained ENVIFONMENTScooueerieriiiiinieniieiieieeie et 1
TADIE OF COMEEIES. ...ttt et ettt e e e a e sb e et e e bt ea et euee e bt et e e bt emteemtesaeesbeesaeenbeemeeemteeneeeneebeensean 5
o G 1oL PSPPSR 1
0 RESPONSE DETAILScneieieeeiie ettt ettt ettt et b et e b et e st ea e e s heeebe e bt e bt ettt e eateebee bt e beenrean 3
0.1 OMG ReSPONSE DCLAILSveeuiieiiieiieiiieciieeie ettt ettt ebeetesaesetesseesseeseessessnesssesseensaensesnsesnsesnnesses 3

0.2 COPYIIGNE WAIVETeevieiieiieieeie e ste st e sttt et e et estaesseesteesseesseesaesseesseesseenssanseassesssensaensaensennsesnsesnsesnes 3

0.3 COMACES ...ttt ettt ettt ettt b et et et sae e sa e bt et eat e et h e bt et ee e enbe et saeenaee 3

0.4 ProbIem STAtEIMENLeoutiiiiiierieeteet ettt sttt ebt et et st et s bt st et et e b she bt et eateneens 3

0.5 Overview Of thisS SPECITICATIONc.vevtieiiieiieiieie ettt ettt sre et e esreesaeetsesseesseessaessesssesnneses 3

0.6 Statement Of Proof 0f CONCEPLccvevieiieiieiieieeieeteeeete ettt sttt et e ete e te e baesseessesnsesseeses 4

0.7 Mapping to RFP REQUITCIMENLScc.eiiiiiiiiiiieieeieeiieet ettt ettt et et ee et e b e e enteeneesneeseee 4

0.7.1 Mandatory TEQUITCIMEIEScc.eeteeteeuieeieertierteerteeteeteeueesteesteeteeneeeneesseesseenseenseeneesneesseanseensens 4

0.7.2 Non-Mandatory reqQUITSIMENLS.ccueruueriereierieeieeteeeieeteesteeteeeeeeesseesseesaeenseeeeeneesseesseenseas 6

0.7.3 Internalization SUPPOTLcc.eeiiieiiieieiie ettt ettt et eeeeeeseeesaeesteeee e e eneesseesseenneas 6

0.8 Responses to the RFP Issues to be diSCuSSedcooiiiuieiiieiiiiiiiiecereeeee e 6

0.8.1 Submissions shall clearly quantify the protocol overhead.............cccooeriiniiniiiiiiiiee. 6

0.8.2 Submissions shall clearly explain supported DDS profilesccoevervierieniieviieciieieneennens 9

LB o703 o T OSSPSR 10
2 COMTOTIIANCE. ..ottt ettt ettt ekt s bt bt a e s e et e b e s bt e bt eb e eae e st et e b e seeeb e e bt ehe e st enten s e st eabesbeebeeneeneenee 11
3 RIEIEIICES. ...ttt ettt e e e bt h e et a et bbbt a et b e bbbt e a e ettt be e he bt eneentenee 12
3.1 NOrmMative REfEIENCESc.eeiiiiiiiitiiiieieieee ettt bbbttt st eb e e 12

3.2 Non-normative REfEIENCESccuiriiiiiiieiiei ettt ettt sttt et et e e s e seeseeeeeas 12

4 Terms and DEfINItIONScc.eeieiuieiieitiet ettt ettt e ste ettt e et e e st e s st et e e te e seenseeneesneesaeesseenseeneeens 13
R 7 111 o T SRR 14
6 Additional INfOIMATIONoouiiitiiiieiieie ettt ettt ettt e et e sttt e et e et e en e sneesse e seenseeneesneeens 15
6.1 Changes to Adopted OMG SPeCifiCatIONS.......ccueruerueiuieiiriiriirieiirtetetertee et 15

6.2 ACKNOWICAZEIMENLS ...c..eouiiiiiniiiiiiitieiteitet ettt ettt ettt b e bbbt et ae st besbe et ennene 15

7T XRCE ODJECE MOEL.....ccuiiiiiieiiieiitecie ettt sttt e st e e sttt e s aeesebeessaeessbeessseessbesasseessseessseessseessseesnseensseenn 16
Tl GOINETAL .ttt ettt ettt b e bt e s bttt et eat e e at e b e b e beebean 16

7.2 XRCE CHENL ...ttt ettt sttt ettt e et ekt e bt et e e st eat e te s e be s bt ebeeseeneense st e besbeebeeneensenes 17

7.3 XROCE AGENE c..uviiiiieiiiecie ettt ettt ettt e stt e e sttt e stbeesabeesabeeasseessseassseesssaeasseessseeasseesnsaensseessseensseens 18

T4 MOACL OVEIVIEW ...ttt ettt ettt ettt s bttt e bt et et s et e s bt e sbeesbe et e enbeenteeabesbeenbeenbeenbeas 20

7.5 XRCE DDS PIOXY ODJECIS. . .cectieiiieeieeiiieiieeiieeeieesteesteesteesaeesseessseessseesssessssessssesssessssesssessssesss 21

7.6 XRCE Object IAentifiCatiONcc.eeveiieiieitieiieit ettt ettt sttt ettt et et esbee b e nbeebeas 21

7.7 Data types used to model operations on XRCE ODbJECLScccueeriiriiiiiiiiiiienieieee e 22
7.7.1 Data and SAMPLESc.oouiiiiiiiiieieee ettt ettt e nae et et ene 22
7.7.2 DataRePIESENIATION.cuieuveeeierieiietieteeteetestesseeseeseesseessessaesseessesssesssesssesseesseesseenseesenns 23
7.7.3 ObjectVariant 25
7.74 Objectld 38
7.7.5 ObjectKind 38

7.7.6 ObjectldPrefix 38
7.7.7 ResultStaus 39
7.7.8 BaseODJECtREGUEST.couiiiuiitietiee ettt ettt sttt e et et ene 40
7.7.9 BaseODJECtREPLY .. .ooueiiieiiieeie e et 41
7.7.10 RelatedObJECtREQUESEccuieieieiieiieieee ettt ettt st 41
7.7.11 CreationMode42
7.7.12 ActiVItyINTOVATIANTooiiieiiiieieeicee ettt ene 42
7.7.13 Objectlnfo 43
7.7.14 ReadSPECITICAtION......ccuiiiieeieeiieiieiieieeie ettt e e et e et e s te e te e e essessaesseessaesseenseenseessenns 43
7.8 XRCE ODJECt OPETALIONSeeuvieerieereeiierireiteesteesteesteeseessesseessaeseesseessesssesssesssesseessesssessseessesssssssesseessens 44
7.8.1 USC Of the CIENtKEYeooviieeiiciieiieiieieeie ettt ettt be e e esaessaessaesseenseenseensenns 44
7.8.2 XRCE Root 44
7.8.3 XRCE PrOXYCIENEicviiiiieeieeiieiieiteteete ettt eteesaeesaessaestaessaesseessesssesssesseesseesseessesssenns 48
7.84 XRCE DAtAWTILET ...cueeuiiuieiiieiiietieieettetetet ettt ettt sttt st ettt et e et et e b eseenteneens 53
7.8.5 XRCE DataReEaderccuieuiieiiiiieiiee ettt ettt st seeesee et neeens 54
LD € 20 D s (o]0 7o) PSR 56
L R € 31 1<) Y USSP 56
LI B 1<) 11114) USSP 56
8.2.1 Message 56
8.2.2 Session 57
8.2.3 Stream 57
8.2.4 Client 57
8.2.5 Agent 57
8.3 IMESSAZE STIUCLUIEvveieieeiieeiteeiteeieeetteeteeeteeeteeesteeesteeesteeeseeenseeassaesnsaeanseesnseeenssesnsseeseesnssesnsnennes 57
8.3.1 General 57
8.3.2 MesSAZE HEAOTcoueiiiiiiiiiiiiec e 57
8.3.3 SubmeSSAZE SIUCTUIE.....c..couirtiriiriiriieiieietesteete sttt ettt ettt st ne 59
8.3.4 Submessage Header.......c..coiiiiiiiiiiiiieie et 59
8.3.5 SUDMESSAZE TYPES .eveeurimiiiiriinierieeiteit ettt ettt ettt 60

Eo I A X <) Lo n (o) o WAY] (Yo 1< KRR RORPRRR 74

8.4.1 General 74

8.4.2 Sending data using a pre-configured DataWTitercccoceerierieriiiienieiieeeeeee e 74
8.4.3 Receiving data using a pre-configured DataReader............cccceevieiiiiiniinienececece 75
8.4.4 DiSCOVEIING AN AGENL....ccveiuieiieriieieeieeieettenteesteesessesressaesseesseasseassesssesseenseessessesssesssesnes 76
8.4.5 CoNNECtING t0 AN AZENLcceeriiereieiieieeieetiestiesteeteeaesaesreesseesseessesssesseesseeseensesnsesssesssesses 77
8.4.6 Creating a complete APPIICALIONccueviereieriieiieieeie ettt eere st et e e eseeaeseeesnas 78
8.4.7 Defining Q0S CONTIZUIALIONSccveevieiieeieriieiietieieeiesteste st esteeseeeaessaessaessaeseessesnsesnnesees 78

8.4.8 Defining Types 79
8.4.9 Creating @ TOPIC ..veeveeieiieiieriieite et ete et eette it eteebessteseaesaaesseesseesseensesssesseenseensesnsennsennsesnes 79
8.4.10 Creating @ DataWTIter......cc.eeiuiiiiiiieie ettt et s 80
8.4.11 Creating a DataReader.........cccooiiiiiiiiiieeee e e 80
8.4.12 Getting Information 0n @ RESOUICE.........oeieiiiiiiieiiiie i 81
8.4.13 Updating @ RESOUICE.ccueiiuiiiiieiieie ettt eeee e eaee 82
8.4.14 Reliable COMMUNICALION .. .eoviitieieeiiieeiestieteete ettt sttt ettt et e eneesse et eeeenteeneesneesaee 82
8.5 XRCE Object Operation Traceabilityccccceeoeriiiierieriere et 84
9 XRCE AZent CONTIGUIATION.ccuieiieieiieiieiieesteeteeteetesttesteeseessesssesssessaesseesseesseessesssesssesssesseessesssessesssesses 85
0.1 GOINETAL ...ttt b b h e a et b bbbt a et be bt bt ente e 85
9.2 Remote configuration using the XRCE Protocol..........c.cccceeieriiiriieiiiiieiiesieseesieeie e 85
9.3 File-based CONfIgUIAtION.........eccvieiieiiiieiieiieeste et ete et e eteeste e teesbeesseesbeseaesseesseesseesseesseessesssesssenseensens 86
9.3.1 Example Configuration Fileccccieeiiriiiiiiiiiieiieiieie et 88
10 XRCE DEPIOYIMENLSeocuviiriiieiiiieeiieeiieeitestteeieesteeeteesteeeseestaesseeesteeeseesnseeassesnseeensseenseeesssesnseeenssesnsees 91
10.1 XRCE Client to DDS COMMUNICAtION.......ccuutiuiertieriieeeeeeeiieeeiesteeieeieeeeseeeseeesseeseeeneeeneeeneeeneesseesens 91
10.2 XRCE Client to Client via DDSoooiiiiiiiieiiee ettt e st e e 91
10.3 Client-to-Client communication brokered by an Agentccceeveeiirieriieiieniereee e 92
10.4 Federated deplOYMENLtc.ooiiiiieiiieii ettt ettt et et e s st e et et e et eeneeeneenseennean 93
10.5 Direct Peer-to-Peer communication between client Applicationscocceeveeveeneereesieeceeieseeeenn 94
10.6 Combined dePIOYIMENLeevireieerieitieiieieeiestesee e eteeteetteeteesse e beesbeessesssessaesseesseesseesseessesssenseenses 95
IT1 TTanSPOIt IMADPINGSvecvriruieiierieeieeteeeteettesteesteesseesseeesessaesseesseesseesseesseassesssesseesseessesssesssesssesssesseesseessesssenns 97
T1.1 TransSport MOGEL......ccuiiuiiiiiiieieeiteieete ettt sttt et ettt e be et e e b e esbessaesaaesseesseesseesseesseessaseensens 97
T1.2 TUDP TTANSPOTL .ecuitieeiiieiiiieetiesiteeiteeeteeeteeeteesteessseeasseesnseesseeensasasseesnsesanssesnsseenssesnsseessseensseensseensees 97
11.2.1 TranSPOTt LOCAIOTS.ccccuieiiieeiieeiieeieeetteeieeeteeeieeeteeeereetaeesaessaeeseesnseeessseenseeensseenses 97
11.2.2 Connection establiShmMent.coeeriiiiiiiiiiiiiieeee e 98
11.2.3 Message ENVEIOPES ...c.coueeuiiiiiiriiniiiieitctetc sttt st ees 98
11.2.4 AGENE DISCOVEIY ..euvitiriiiiiiiiiiitenieeteete ettt sttt ettt ettt st eb ettt st b sbe s eneennen 98
T1.3 TICP TIANSPOTL ...ttt ettt et ettt et et e s st saeesaeesa e ean e eanesuneneennees 98
11.3.1 TransSport LOCALOTS.c..couiiiiiiiiieit ettt et 99

11.3.2 Connection €StabliSHMENTcuvvviiiiiiiiiiiiiie et e e e e 99

11.3.3 MeSSAZE ENVEIOPES ...eeeviieiiiieiieiiieeiee ettt ette et ere et e e taeetaeesaeentaeesaeensaeennseennnes 99

11.3.4 AQENE DISCOVEIY . .tiiuiiiiiiitietieit ettt ettt sttt ettt et et eebe et e bt et e enteemeeseeenaee 100

11,4 Other TrAnSPOIES. .. .ceiuietieteete ettt et et ettt et e bt e s bt e bt e bt e et e st e eseesae et e e beemteembesmeesaeesbeenaeenseeneeans 100
AL TD L TYPCS ctteiiteeitteeitt ettt et ettt e e st e st e s et e e abeesab e e s abeesabeesabeesab e e s abeesab e e eabeesabeeeabeesabeeeabeeeabeeenbeeebaeeneeeane 101
B Example Messages (NON-NOITNATIVE)ccveruieriirrieeieeiiesiesseesseeseetesssesseesseessesssesssesseesssessesssesssesssesssessaessens 119
B.1. CREATE CLIENT meSSaAZE CXAMPIEC....cc.eertieiririerieiieriieiieieeteeetesteesseeseessesssessessnessaesseenseensenns 119
B.2. CREATE MESSAZE CXAMPIESvieevieeieiieiieiieieeiestesitesteeteenaeeseesssessaeseenseessesssesssesssesseenseeseensenns 121
B.2.1. Create a DomainParticipant using REPRESENTATION BY REFERENCE............... 121

B.2.2. Create a DomainParticipant using REPRESENTATION IN BINARY.....ccccccocevienene 123

B.2.3. Create a DataWriter using REPRESENTATION IN BINARYcccooiiiiiiniiniee 125

B.2.4. Create a DataWriter with Qos using REPRESENTATION IN BINARYcccccceee. 127

B.2.5. Create a DataWriter using REPRESENTATION _AS XML STRING........cccceevurneenee. 130

B.2.6. Create a DataReader using REPRESENTATION IN BINARYcccoooiiiiiiiniienieicene 132

B.2.7. Create a DataReader with Qos using REPRESENTATION_IN BINARY 134

B.3. WRITE DATA mMeSSaZE CXAMPLESeveerieuiieiieeiieiiieitiesieete et eeeeteestce e teeteeneesnaesseesneesaeeneeeneeens 137
B.3.1. Writing a single data SAMPIe..........ccieciieiirieiieiicie e e e e 137

B.3.2. Writing a sequence of data samples with no sample information............c.ccoceecevcreennene 139

B.3.3. Writing a single data sample with timestamp metadataccoceevveeienieneenieeieenene. 141

B.3.4. Writing a disposed data SAMPIEcceevieriieriieiiieie ettt 144

B.4. READ DATA MESSAZE CXAMPLES....ueeruiirieiieiieieiieiiesitesteeteetesstesseesseesseessesssesssesseesseessesssessenns 146
B.4.1. Reading a single data SAMPIe.........cc.eovieiirieniieiicie ettt 146

B.4.2. Reading a sequence of data samples with a content filter.............ccooceeieiieiinienienne. 148

B.5. DATA MESSAZE CXAMPLES....cuieeieiiietietietietiete ettt sttt ettt et e et e st e st e bt entesneesseesseesseesaeeneenseans 151
B.5.1. Receiving a single data Sample..........ccoeierieiiieiiiie e 151

B.5.2. Receiving a sequence of samples without SampleInfoccoocveiiiiiiiiiiininee 152

B.5.3. Receiving a single sample that includes Samplelnfo............ccocceeiiniiiiiiiiie 154

B.5.4. Receiving a sequence of samples that includes SampleInfoccccovevvevieciiiiennnne. 156

B.5.5. Receiving a sequence of packed samples..........cccoecviieiiierieniieniieieeieeeeseee e 158

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http.//www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
*« CORBAI/IIOP
* Data Distribution Services
* Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
* UML, MOF, CWM, XMI
* UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
* CORBAServices
* CORBAFacilities

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

DDS-XRCE, Revised Submission 1

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

2 DDS XRCE Revised Submission

http://www.omg.org/report_issue.htm

0 Response Details
0.1 OMG Response Details

This specification is a response to the OMG RFP “eXtremely Resource Constrained Environments DDS (DDS-XRCE)”
(mars/2016-03-21).

0.2 Copyright Waiver

“Each of the entities listed above: (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty- free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version, and (ii) grants to each member of the OMG a nonexclusive, royalty-free, paid up, worldwide license to
make up to fifty (50) copies of this document for internal review purposes only and not for distribution, and (iii) has
agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used any OMG specification that may be based hereon or having conformed any computer
software to such specification.”

0.3 Contacts
e Gerardo Pardo-Castellote, Ph.D. (lead) CTO, Real-Time Innovations, Inc. gerardo AT rti.com

e Clark Tucker, CEO, TwinOaks Computing, Inc. ctucker AT twinoakscomputing.com

e Jaime Martin-Losa, CTO, eProsima. JaimeMartin AT eprosima.com

0.4 Problem Statement

DDS offers a rich set of API and QoS policies to develop distributed applications for highly complex, mission critical
systems; however, these features come at relatively high cost in terms of memory, CPU and bandwidth usage. A large
number of devices on the edge of the network, such as actuators and sensors, do not need these types of features. Being
at the edge of the network, it is sufficient enough for these devices to be able to publish and subscribe to data while at the
same time appearing as first-class participants in the DDS Global Data Space.

While the DDS programming API can be avoided by an application, it is still necessary to implement the DDS-RTPS
wire protocol to be able to participate in DDS communication. However, the RTPS protocol, whilst featuring a wire
efficiency comparable to that of MQTT and other IoT standards, is designed for situations where:

- The underlying network transport has reasonably large MTUs exceeding those available in LoOWPANSs, such as
802.15.4 and ZigBee.

- The protocol endpoints are assumed to have continuous and simultaneous presence on the network, rather than
operating on independent sleep/wake cycles.

This peer-to-peer and broker-less nature of DDS has significant advantages in many situations, but it also has drawbacks
in extremely resource-constrained environments (XRCEs). Specifically, the complexity of a DDS peer and the discovery
and presence traffic are generally greater in DDS than in client-broker-based technologies, making it harder for DDS
implementations to be extremely small.

The purpose of this specification is to enable resource-constrained devices to participate in DDS communication, while
at the same time allowing those devices to be disconnected for long periods of time but still be discoverable by other
DDS applications.

0.5 Overview of this Specification

This specification defines a protocol (the XRCE Protocol) that allows resource-constrained devices (XRCE Clients) to
participate as first-class DDS participants in the DDS Global Data Space.

The XRCE Client uses the XRCE Protocol to interact with a service (the XRCE Agent). The XRCE Agent acts on behalf
of the device and makes the device discoverable in the larger DDS network while isolating the device from the
complexity of DDS itself

DDS-XRCE, Revised Submission 3

http://www.omg.org/cgi-bin/doc.cgi?mars/2016-3-21

The behavior of the XRCE Agent is described in terms of an XRCE Object Model and a set of operations to manipulate
the object model. The XRCE Agent operations are triggered by messages sent from the XRCE Client to the Agent using
the XRCE Protocol. As a result of these operations the XRCE Agent can also send messages back to the client.

The XRCE Object Model acts as a fagade to the Standard DDS Object model. Each XRCE Object is associated with one
or more DDS Objects in that operations on XRCE Objects cause operations to be executed in related DDS Objects and
vice versa. The operations on DDS Objects behave as specified by the DDS (and DDS-RTPS) specifications. In this way
the interaction of XRCE Clients with regular DDS DomainParticipants is fully specified.

The specification is organized into the following sections:

o XRCE Object Model (clause 7). Specifies the XRCE Object models. The operations on each object and how
they related to the corresponding DDS objects.

e XRCE Protocol (clause 8). Specifies the structure and content of the messages used by the XRCE protocol
(8.3), their protocol interactions (8.4) and how they relate to the operations on the XRCE Objects (8.5).

e XRCE Agent Configuration (clause 9). Specifies a portable way to configure the XRCE Agent.
e XRCE Deployments (clause 10). Specifies deployment scenarios and typical use-cases:

o XRCE Client to DDS DomainParticipant communication

o XRCE Client to Client communication brokered by the XRCE Agent

o XRCE Client to Client direct (peer-to-peer) communication
e Transport Mappings (clause 11). Maps the protocol to various transports such as UCP and TCP.
o DL Types (annex A). Defines all the types used in the specification using IDL.

e Example Messages (Non-Normative) (annex B). Provides examples for all XRCE message types with
explanations.

0.6 Statement of Proof of Concept

The submitters have created a working implementation of the protocol. There is a canned demonstration of the
implementation available to interested parties. This demo has been delivered to the MARS task force at the New Orleans
Meeting (September 2017).

This implementation proved the following points.

e The implementations is very simple can be executed in very resource constrained targets. It has been
demonstrated on a microcontroller with 256 KB of RAM using the NuttX operating system and we saw no
reason it could not scale to much smaller environments.

e It took one engineer less than 1 months and it uses less than 2000 line of code.

e The implementation fully interoperates with multiple DDS implementations and tools. These perceive the
XRCE client as a regular DDS DomainParticipant.

e The implementation is robust to sleeping cycles and transport-level disconnects.

0.7 Mapping to RFP Requirements

0.7.1 Mandatory requirements

Table 1 lists the Mandatory Requirements in the RFP and how the submission addresses all of them.

4 DDS XRCE Revised Submission

Table 1 — Mandatory Requirements

Requirement

Number

Description

How is the requirement addressed

6.5.1 Submitters shall | The submission meets this requirement.
define a DDS- .
XRCE protocol Defined in clause 8 (XRCE Protocol).
between a Client
and an Agent.
6.5.2 The DDS-XRCE | The submission meets this requirement.
protocol shall))
allow DDS- Defined in clause 7 (XRCE Object Model), clause 8 (XRCE Protocol), and clause
XRCE clients to | 10 (XRCE Deployments).
be perceived by | Ty, pDS-XRCE Client is associated with XRCE Client within the agent which
DDS " contains one or more XRCE DomainParticipant (see Figure 5) each XRCE
Particip a;?ts. as DomainParticipant has an associated DDS::DomainParticipant that is instantiated
at least minimum | .
in the Agent.
profile DDS
Participants. Other DDS Participants perceive the client as the DDS::DomainParticipant(s)
instantiated in the Agent on behalf of that client.
DDS::DomainParticipant(s) instantiated in the Agent may use a full DDS
implementation so it can appear as a DDS Participants that meets the minimum
profile of any other DDS profile.
6.5.3 DDS-XRCE The submission meets this requirement. Typical overhead is 12 bytes and 16 bytes
protocol as worst case. See discussion in 0.8.1
overhead, when
sending or
receiving user
data, shall not
exceed 24 bytes
per packet.
6.5.4 Submissions The submission meets this requirement.
shall address)))
clients operating The use of proxy objects in the Agept (section 7:5) protocol lets the Agent kee.p the
with state of the DDS-XRCE Client and its presence in the network even if it goes into
sleep/wakeup sleep cycles.
periods; The use of a protocol where the client can send its sessionld and clientKey on each
message (section 8.3.2) allows the logical “connection/session” between the client
and the Agent to survive network-level disconnects/timeouts that may occur while
the client is in long sleep cycle.
6.5.5 Submissions The submission meets the requirement.
shall define the) ;
DDS-XRCE Defined in clause 11 (Transport Mappings).
protocol for the
UDP/IP
transport.

DDS-XRCE, Revised Submission

6.5.6

Submissions
shall define the
DDS-XRCE
protocol for the
TCP/IP
transport.

The submission meets the requirement.

Defined in clause 11 (Transport Mappings).

0.7.2 Non-Mandatory requirements

Table 2 lists the Non-Mandatory Requirements in the RFP and how the submission addresses all of them.

Table 2 — Non-Mandatory Requirements

Requirement

Number

Description

How is the requirement addressed

6.6.1 Submitters may This can be done by the application by compressing the data before sending to the
consider defining | DDS-XRCE and after receiving it from the DDS-XRCE.
support for . o
transparent user Since the DDS-XRCE standard does not define an application API, a vendor can
payload easily offer this or a user may wrap the vendor API to do it.
compression

6.6.2 Submitters may The protocol transport model (section 11.1) makes the DDS-XRCE protocol
consider defining | independent of the transport.
a custom . o .
mapping to IEEE While the submlsglon does npt deﬁne a custom Protocol to mapping to IEEE
802.15.4 that 802.15.4 nothing in the specification precludes it.
does not rely on
IP.

6.6.3 Submissions may | Similar to 6.6.2. The submission does not explicitly define this but there is nothing

define the use of
the TCP/IP
transport
mapping over
HTMLS5
WebSockets.

that precludes such a deployment.

0.7.3 Internalization Support

This specification is not affected by internalization issues. The DDS-XRCE protocol does not use strings, and the strings
that may appear in the object and data representations leverage the existing XCDR and XML mechanisms to handle

character sets.

0.8 Responses to the RFP Issues to be discussed

0.8.1 Submissions shall clearly quantify the protocol overhead

There are multiple possible definitions of “protocol overhead”. In our opinion, the most relevant one for DDS-XRCE
deployments is the number of non application-payload bytes that are required by the protocol to send and receive each
individual data message above and beyond what the underlying network transport (e.g. TCP or Bluetooth) requires.

DDS XRCE Revised Submission

For example, if the client is a temperature sensor that wants to send its temperature to DDS, the data-payload may be a 2-
byte integer representing the temperature in Celsius. To send these two bytes, the protocol needs to place additional bytes
onto the transport (e.g. TCP or Bluetooth) message.

For messages that contain a single data element the overhead of the XRCE protocol is defined as any bytes added beyond
the serialized application data. Overhead includes sequence numbers or any other session or object identifiers.

As described in sections 8.3.2, 8.3.3, 8.3.4, and 8.3.5 the overhead consists of the MessageHeader, the
SubmessageHeader and any additional bytes added to the payload beyond the ones that contain the serialized application
data. The resulting overhead is from 12 to 16 bytes:

e The MessageHeader can be 4 or 8 Bytes (section 8.3.2). The extra 4 bytes are needed to include the clientKey
used for authentication.

e The SubmessageHeader is 4 Bytes (section 8.3.3).

e The submessages that carry application data (WRITE DATA, DATA) define a payload that adds 4 bytes
(BaseObjectRequest).

For example B.3.1 and B.5.1 show the 12-byte overhead on the messages used to send and receive data, respectively.

XRCE messages can also contain meta-data such as a timestamp or application sequence number. This can add 12 extra
bytes but it is not considered overhead because they are optional and only added if the XRCE Client desire the
information to be there.

The overhead of a single data element is not necessarily the only or most relevant metric. XRCE Clients often need to
send or receive multiple data values and the XRCE protocol has messages that can include multiple data values. In these
cases the “overhead bytes” are shared across multiple data elements and the overhead per data element is much reduced.

For example B.5.2 shows that it is possible to receive a sequence of data samples in a single message that has a 16-byte
overhead. If this were used to receive 4 samples the overhead would be 4 bytes per sample. If it were 16 samples then it
would be 1 byte per sample.

Finally it is important to note that often what is most relevant is the overhead relative to the overall message size, which
includes the overhead of the underlying transport layers.

Using this “relative” definition and TCP as an example, the minimum overhead is 12 bytes. See the DATA example in
B.5. As an absolute number compared to the very small 2-byte payload, the 12-byte overhead may seem like a lot. But
when considering that TCP/IP adds 40 bytes of overhead (20 for IP and 20 for TCP), the extra 12 represent only 20% of
the total packet. If the data payload was a more realistic size (e.g. 16 bytes), then the 12-byte XRCE overhead would be
even less in relative terms.

While there are things that could be done to lower this overhead, it would have significant cost in terms of flexibility,
overhead, and robustness. This is further discussed below. Reducing from 12 bytes to 6 bytes would take the worst-case
relative overhead down from 20% to 12%. This best-case saving of 8% does not seem to warrant the aforementioned
costs.

0.8.1.1 Use of 8-bit submessageld, 8-bit flags, and 16-bit sequence number
These 4 bytes could be reduced by using fewer bits for each of these fields.

Reducing the bits in the submessageld would limit the future evolution of the protocol. Likewise, reducing the bits in
the flags would also limit the future evolution of the protocol.

Currently, there are 14 message types used and 8 bits used, leaving room for 256 messages. Reducing to 4 bits would
only allow 16 messages, which are too close to the current number and moreover would not leave any range for vendor-
specific messages. So at least 5 bits would be required. If that was done, the 3 remaining bits could be used for flags.
Some messages, however, already use 4 bits of flags, so they would need to be re-designed. All in all, this optimization
would only save 1 byte, which does not appear to be a worthwhile tradeoff.

DDS-XRCE, Revised Submission 7

Reducing the bits in the sequence number would limit the number of outstanding messages that can be “in flight,” which
limits the speed at which messages are sent, especially in situations with large round-trip times. Reducing the bits would
also affect the number of messages that could be cached when the client is disconnected, so it may cause message loss in
deep-sleep cycle scenarios. Alternatively, variable-length encoding could be used for the sequence number, although this
introduces additional complexities. Also, variable-length encoding uses 8 bits for small value integers (less than 127), 16
bits for integers smaller than 16129, and 24 bits for integers between 16130 and 65535. So when averaging over all
possible ranges of a 16-bit integer, the variable-length encoding uses more bytes (2.7 on average) than the straight 2-byte
encoding.

0.8.1.2 Representing object as a String Name
Most DDS-XRCE Objects may be represented using a string Name, XML string, and binary XCDR. See 7.7.3.

The use of a String name provides an extremely simple and compact representation that can be used to represent very
large objects. It is typically used to represent QoS profiles, DDS data-types, or even entire DDS applications. The idea is
that the definition of these objects is provided to the Agent via a configuration (e.g., reading a file or using an external
tool). Then a client can represent this object by just sending the (small) Object Name. That way, a few bytes sent over
the wire allow a DS-XRCE Client to request a complex QoS to be used or to instantiate a DataReader or DataWriter of a
very complex data-type.

This mechanism lets the DDS-XRCE client have full access to the DDS QoS settings and the full type system without
significant resource use.

The CDR representation of a string encodes the length of the string as a 32-bit unsigned integer followed by the string
characters, including the terminating NUL. For short (less than 255 length) strings, this encoding can have significant
overhead. For example, an 8-chracter string would utilize at least 13 bytes (4 for the length, 8 for the characters, and 1
for the NUL). This encoding can be worse because the encoding of the length needs to be 4-byte aligned. In the worst
case, it could introduce 3 additional bytes of padding. So overall, the serialized string could take 13 to 16 bytes—an
overhead of 60% to 100%.

To reduce this overhead, the specification could add a more compact encoding for short strings, defined as those whose
maximum length is less than 255. This encoding would use only 1 byte for the length and not include the trailing NUL.
With this optimization, the same 8-character string would take 9 bytes. So the overhead would be reduced to 12.5%.

0.8.1.3 Representing object as a String Name, XML string

The use of an XML string provides a complete representation of any QoS, Type, or DDS-Entity. The advantage of this
representation over the String Name is that it allows the client to define new QoS and Types that were not pre-configured
in the Agent.

The XML string representation reuses the existing DDS-XML standard formats.

While the use of XML may appear verbose, it is only used to configure or initialize the system (e.g., define the QoS or
data types), so this “one-time” cost may be worth it in many deployments in order to have the full flexibility of
dynamically defining the objects. Moreover, the XML representation may not be so verbose if all it does is modify an
existing definition. For example, the following XML (145 bytes) can be used to define a custom profile by extending an
existing profile called “ExistingProfile” and modifying the history depth:
<gos_profile name="MyProf" base name="ExistingProfile " >
<datawriter gos>
<history>
<depth>10</depth>
</history>
</datawriter gos>
</qos_profile>

While this could be made more compact by using a different “string” representation (e.g., JSON), XML has the
advantage that we can reuse the existing DDS-XML specification. Also, JSON still lacks a standard way to represent
schemas. We believe that use of JSON would be a worthwhile future extension to this specification that would become

8 DDS XRCE Revised Submission

possible when the previous two issues (standard for JSON representation of DDS resources and standard JSON schema
language) are addressed. Note that there are planned or existing standardization efforts both at the IETF and the OMG to
address these issues.

0.8.1.4 Use of XCDR (binary) representation of resources

The use of XCDR binary representation affords a very compact way to represent objects. This representation reuses the
same IDL and XCDR serialization formats already supported by DDS implementations. While it would have been
possible to define even smaller binary representations of objects, doing so would have required defining custom binary
formats that are currently not supported in the DDS ecosystem. Defining these custom binary formats may increase the
complexity and cost of the implementation, and limit its adoption. So the reuse of existing IDL and XCDR appears to be
the best tradeoff.

0.8.2 Submissions shall clearly explain supported DDS profiles
All the DDS profiles—minimum, content, ownership, and durability—are supported.

The submission provides complete access to all the DDS QoS and data-types. Stated differently, the other DDS
participants will observe the DDS-XRCE Client as the DDS DomainParticipant proxy managed by the Agent. The
DomainParticipant proxy can be configured with any QoS, and publish and subscribe any Data type.

Furthermore, the DataReader representation (see struct OBJK DataReader Binary in A) allows the DataReader to
specify time- and content-based filters.

Consequently, the rest of the system will perceive the DDS-XRCE Client as a full DDS implementation.

DDS-XRCE, Revised Submission 9

1 Scope

This specification defines a XRCE Protocol between a resource constrained, low-powered device (client) and an Agent
(the server). The XRCE Protocol enables the device to communicate with a DDS network and publish and subscribe to
topics in a DDS domain via an intermediate service (the XRCE Agent). The specification’s purpose and scope are to
ensure that applications based on different vendors’ implementations of the XRCE Protocol and XRCE Agent are
compatible and interoperable.

(1)
|
1001100

ANALYTICS

ARCHIVAL

Figure 1— Scope of XRCE Protocol

The XRCE protocol is a client-server protocol between resource-constrained devices (clients) and an XRCE Agent
(server). The protocol allows the resource contrained devices with sleep/wake cycles to have access to the DDS
Global Data Space over limited-bandwith networks.

10 DDS XRCE Revised Submission

2 Conformance

This specification defines ten profiles. Each constitutes a separate conformance point:

Read Access profile. Provides the clients the ability to read data on pre-configured Topics with pre-configured
QoS policies. Requires implementation of all submessage types except for CREATE, INFO, WRITE DATA,
and DELETE, including the associated behaviors.

Write Access profile. Provides the clients the ability to write data on pre-configured Topics with pre-
configured QoS policies. Requires implementation of all submessage types except for CREATE, INFO,
READ DATA, DATA, and DELETE, including the associated behaviors.

Configure Entities profile. Provides the clients the ability define DomainParticipant, Topic, Publisher,
Subscriber, DataWriter, and DataReader entities using pre-configured QoS policies and data-types. Requires
implementation of the CREATE CLIENT, DELETE CLIENT, CREATE, and DELETE submessage and the
associated behaviors.

Configure QoS profile. Provides client the ability to define QoS profiles to be used by DDS entities. Requires
implementation of the CREATE submessage and the associated behaviors for object kind
OBJK_QOSPROFILE.

Configure types profile. Provides client the ability to explicitly define data types to be used for DDS Topics.
Requires implementation of the CREATE submessage and the associated behaviors for object kind
OBJK TYPE.

Discovery access profile. Provides the clients the ability to discover the Topics and Types available on the
DDS Global Data Space. Requires implementation of the GET INFO and INFO submessage and the associated
behaviors.

File based configuration profile. Provides a standard way to configure the Agent using XML files. Requires
implementation of the file-based configuration mechanism described in clause 9.3

UDP Transport profile. Implements the mapping of the protocol to the UDP transport. Requires implementing
the mechanisms described in clause 11.2 (UDP Transport).

TCP Transport profile. Implements the mapping of the protocol to the UDP transport. Requires implementing
the mechanisms described in clause 11.3 (TCP Transport).

Complete profile. Requires implementation of the complete specification.

DDS-XRCE, Revised Submission 11

3 References

3.1 Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[IETF RFC-1982] Serial Number Arithmetic. https://tools.ietf.org/html/rfc1982
[IDL] Interface Definition Language (IDL), version 4.2, http://www.omg.org/spec/IDL/

[DDS] Data Distribution Service for Real-Time Systems Specification, version 1.4
http://www.omg.org/spec/DDS/

[DDS-XML] DDS Consolidated XML Syntax, version 1.0, http://www.omg.org/spec/DDS-XML/
[DDS-XTYPES] Extensible And Dynamic Topic Types for DDS, version 1.2, http://www.omg.org/spec/DDS-
XTypes/

[UML] Unified Modeling Language, version 2.5, http://www.omg.org/spec/UML/2.5

[UDP] User Datagram Protocol, IETF RFC 768, https://tools.ietf.org/html/rfc768.

[TCP] Transmission Control Protocol, STD 7, IETF RFC 793, https://tools.ietf.org/html/rfc793.

[DTLS] Datagram Transport Layer Security, version 1.2, IETF RFC 6347, https://tools.ietf.org/html/rfc6347
[TLS] The Transport Layer Security (TLS) Protocol, version 1.2, IETF RFC 5246,
https://tools.ietf.org/html/rfc5246

3.2 Non-normative References

12

[SMART] Smart Transducers Specification, version 1.0, https://www.omg.org/spec/SMART/

DDS XRCE Revised Submission

https://tools.ietf.org/html/rfc1982
http://www.omg.org/spec/IDL/
http://www.omg.org/spec/DDS/
http://www.omg.org/spec/DDS-XML/
http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/UML/2.5
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.
Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data
timeliness and reliability. It is independent of implementation languages.

DDS Domain

Represents a global data space. It is a logical scope (or “address space”) for Topic and Type definitions. Each Domain is
uniquely identified by an integer Domain ID. Domains are completely independent from each other. For two DDS
applications to communicate with each other they must join the same DDS Domain.

DDS DomainParticipant

A DomainParticipant is the DDS Entity used by an application to join a DDS Domain. It is the first DDS Entity created
by an application and serves as a factory for other DDS Entities. A DomainParticipant can join a single DDS Domain. If
an application wants to join multiple DDS Domains, then it must create corresponding DDS DomainParticipant entities,
one per domain.

DDS Global Data Space

The “DDS Global Data Space” consists of a collection of peers communicating over the Data Distribution Service and
the collection of data observable by those peers.

GUID
Globally Unique Identifier

DDS-XRCE, Revised Submission 13

5 Symbols

Acronyms Meaning

DDS Data Distribution Service

IDL Interface Definition Language
RTPS Real-Time Publish-Subscribe
XRCE Extremely Resource Constrained

Environments

14

DDS XRCE Revised Submission

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not change any adopted OMG specification.

6.2 Acknowledgements
The following companies submitted this specification:

e Real-Time Innovations, Inc.
e cProsima
e TwinOaks Computing

DDS-XRCE, Revised Submission

15

7 XRCE Object Model

7.1 General

This specification defines a wire protocol, the DDS-XRCE protocol, to be used between an XRCE Client and XRCE
Agent. The XRCE Agent is a DDS Participant in the DDS Global Data Space. The DDS-XRCE protocol allows the
client to use the XRCE Agent as a proxy in order to produce and consume data in the DDS Global Data Space.

3
g_\&}_o ﬁor 00
o/

PROCESSING ANALYTICS

ARCHIVAL

Figure 2— Scope of XRCE Protocol

The XRCE protocol is a client-server protocol between resource-constrained devices (clients) and an XRCE Agent
(server). The protocol allows the resource contrained devices with sleep/wake cycles to have access to the DDS
Global Data Space over limited-bandwith networks.

To model the interaction between the XRCE Client and XRCE Agent, this specification defines a UML model for the
XRCE Agent. This model, called the DDS-XRCE Object Model, defines the objects, interfaces, and operations to be
implemented by the agent. It also defines how they relate to operations on the Standard DDS Object Model as defined in
the OMG Data-Distribution Service Specification [DDS].

Because the target environment is a resource-constrained device, the goal with the DDS-XRCE object model is not to
expose the complete Standard DDS object model. It is understood that much of the configuration can be performed
directly on the Agent and therefore does not require explicit interaction from the client. Instead, the focus is on the core
set of features required to enable DDS-XRCE clients to participate in a meaningful way in the DDS data-space. In
addition to the exposed object from the Standard DDS Object model, the DDS-XRCE object model defines new objects
needed to manage disconnected clients, as well as to enable access control and access rights.

The DDS-XRCE protocol is defined as a set of logical messages exchanged between the XRCE Client and the DDS-
XRCE Agent. These messages perform logical actions on the DDS-XRCE Object Model that result in corresponding
actions on the Standard DDS Object Model. The specification of these logical actions fully describes the observable
behavior of the XRCE Agent and its interactions both with the Client and the DDS Global Data Space.

The DDS-XRCE Object Model is similar to the Standard DDS Object Model. Compared to the DDS Object Model it is
simpler having a reduced number of objects and operations. This makes the model suitable for resource-constrained,
low-power clients. However it also it includes additional features that support remote clients, such as, an access control
model and application management model. Despite being simpler, the DDS-XRCE Object Model provides XRCE clients
complete access to the DDS Global Data space. Any DDS Topic may be published or subscribed to on any DDS with

16 DDS XRCE Revised Submission

any QoS. This is illustrated in Figure 3.

pkg PIM Overview

XRCE Client

«use»

DDSXRCE

+AccessController
+Application
+DataReader
+DataWriter
+DomainParticipant
+EntityName
+ProxyClient
+Publisher

+Qos

+QoslLibrary
+QosProfile
+RegisteredType
+ReturnStatus
+Root

+Sessionld
+Status
+Submessage
+Subscriber

=] +Topic

£ +Type
o +Entity
El +Submessages

«wuse»

«use»

+
o
o
o
O
=
]
I
-8
o
Ie)
<]
@

+DataWriterQos
+DomainParticipantQos
+PublisherQos
+SubscriberQos
+TopicQos

DDS

(from DDS)

&b

+Condition
+ContentFilteredTopic
+DataReader
+DataReaderListener
+DataWriter

+DataWriterListener
+DomainEntity
+DomainParticipant
+DomainParticipantFactory
+DomainParticipantListener
+Entity

+GuardCondition

+Listener

+Publisher
+PublisherListener
+QosPolicy

+QueryCondition
+ReadCondition
+Samplelnfo
+Status

+StatusCondition
+Subscriber
+SubscriberListener
+Topic
+TopicDescription
+TopiclListener
+TypeSupport
+WaitSet

+Qos

(P o))T) 5)))

Figure 3— DDS-XRCE Object Model Overview

The DDS-XRCE Object Model is contained in the package DDS-XRCE. It acts as a fagade to the Standard DDS
Object Model (defined in the DDS specification. The Standard DDS Objects are shown contained in the DDS

package.

7.2 XRCE Client

The DDS-XRCE Client (XRCE Client) is exposed to the DDS-XRCE Object Model and the fagade object. Logically,
one can think of this as equivalent to the “DDS Object Model”. However, a client never interacts directly with objects in
the Standard Object Model, and there is not a one-to-one mapping between the operations on the DDS-XRCE Object
Model and the “DDS Object Model”. This specification does not simply reuse the standard “DDS Object Model” and
operations for three reasons:

1. The DDS Object Model is intended for use with a local programming API. For this reason, the DDS Object

Model contains many objects and methods with strongly typed parameters, as well as a direct callback interface
by means of listener objects that the application registers with the middleware. Such an API is not suitable for

resource-constrained, low-power clients that typically prefer more “resource-oriented interfaces.” These clients
expect a simplified interface with no callbacks, and use parameters encoded in text.

2. The XRCE Client connectivity is assumed to be inherently intermittent due to potentially aggressive use of low-

power mode and deep sleep to conserve battery or loss of radio connectivity. The DDS-XRCE DDS Object
Model must overcome intermittent connectivity by introducing a “session,” which can exist across repeated
sleep-wakeup cycles by a device.

3. The XRCE Client can access a DDS Service from any location. Therefore, it is desirable to have an access

control model that authenticates each client application/principal, controls whether the principal can access the
DDS Global Data Space, and controls which operations each principal can perform (e.g., which DDS Topics it
can publish and subscribe).

DDS-XRCE, Revised Submission

17

This specification recognizes that XRCE Client entities may have very different needs. Therefore, it supports clients with
a wide range of requirements:

e Simple devices may not need to perform any discovery interaction with the XRCE Agent other then (a) having
their presence detected by the agent, (b) establishing a presence in the DDS data-space, and (c) being able to
publish data of a well-known DDS Topic using a DDS QoS policy. Such a client does not need any of the QoS
configuration and dynamic entity creation capabilities of DDS.

e More capable devices may need to publish and subscribe to well-known Topics; however, an XRCE Client may
not want the data to be pushed by the XRCE Agent at an arbitrary time, for example due to network constraints.
Thus, the DDS model of “pushing” data from Writers to Readers may not work well. This specification
addresses this constraint by enabling a device to activate/deactivate “data push” from the Agent.

e Advanced clients may choose to utilize DDS concepts and create their own XRCE Agent resources that map to
DDS Objects. These clients may also want to control the Qos of the DDS Objects. This specification enables
these types of Clients by exposing a set of operations to dynamically create/update/delete Agent objects. This
handling of agents/clients stands in contrast to the first two cases, in which all resources are known in advance
and pre-configured on the Agent.

¢ Finally, complex clients may need to be aware of advanced concepts, such as sequence-numbers (or sample
IDs), timestamps, and DDS sources.

As shown by this list, this specification enables simple devices with little to no configuration ability to communicate
with fully capable DDS devices.

7.3 XRCE Agent

The purpose of the DDS-XRCE Agent (XRCE Agent) is to establish and maintain the presence of the XRCE Client in
the DDS data-space. This specification does not dictate any particular implementation; instead the required behavior is
described as a set of logical operations on the DDS-XRCE Object Model.

An important feature of this specification is the simplified interaction with the XRCE Agent. The agent presents an
Object Model that describes resources. At a high-level, a resource is an object that can be accessed with a name and has
properties and behavior. Resources may be preconfigured with well-known names, or dynamically created by an XRCE
Client.

Examples of named resources in the XRCE Agent are:
e XRCE Type
e XRCE DataWriter
e XRCE DataReader

Any XRCE Client that is allowed to communicate with the XRCE Agent and has the required access rights can refer to
these resources by name. Thus, if an XRCE Agent is preconfigured with a resource named “MySquareWriter” that can
publish a type “ShapeDemoTypes::ShapeType”, a Client that has access to this resource can write data using this
resource simply by referring to the existing “MySquareWriter”. The Client does not have to create a resource.

Some resource implementation details are outside the scope of this specification. For example, a resource
“MySquareWriter” may be associated with a DDS DataWriter shared by many DDS-XRCE clients, or an XRCE Client
may have its own dedicated “MySquareWriter”, as long as the DDS DataWriter supports the client’s required QoS
policies.

An important feature of the DDS-XRCE Object Model is a Client’s ability to query the Model, as opposed to the typical
behavior in the Standard DDS Object Model, in which changes are updated and pushed in real-time. That model is likely
not suitable for target environments where disconnected devices are expected to be common. This specification enables
Clients to be in charge of when data is received, and to request the XRCE Agent to return data that matches a set of

18 DDS XRCE Revised Submission

constraints. Thus, an XRCE Client that is disconnected will not be woken up by an XRCE Agent (it may not be
possible); instead, an XRCE Client queries the XRCE Agent when it wakes up.

It is important to distinguish between the operations on the DDS-XRCE Object Model and the Standard DDS Object
Model. There is not a 1-to-1 mapping between the operations. Specifically, any reference to the Standard DDS Object
Model refers to the behavior and semantics defined in the DDS specification. The DDS operations on the Standard DDS
Object Model are not necessarily exposed to, or have an equivalent in, the DDS-XRCE Object Model. The XRCE Agent
is not required to expose any programming APIs; the standard interactions occurring with the XRCE Client use the
DDS-XRCE protocol, while interactions with other DDS domain participants use the DDS-RTPS protocol.

DDS-XRCE, Revised Submission 19

7.4 Model Overview

At the highest level, the DDS-XRCE Object Model consists of 5 classes: The Root singleton, ProxyClient,
Application, AccessController, and DomainParticipant.

class Overview

«value»
DDSXRCE::Type |

DDSXRCE::QosLibrary |
- name:string

‘ - name:string ’

. e

DDSXRCE::ProxyClient [~~_ «singleton»
0.. DDSXRCE::Root DDSXRCE::AccessController

-~

1 _ - - /7

- s
- - V2 g
- s
0 % - «usen «wuse» Z
. /
e
s
P s
DDSXRCE::Application DDSXRCE:: Y

DomainParticipant /

Figure 4 — DDS-XRCE Object Model Overview

The Root singleton is the entry point for the service. It functions as a factory for all the Objects managed by the XRCE
Agent.

The ProxyClient class models the XRCE Client application that interacts with the XRCE Agent using the XRCE
protocol. Each Application object is associated with a single XRCE ProxyClient and gets its access rights from
those assigned to the XRCE Client.

The Application class models a software application that connects with the XRCE Client and manages the DDS
objects needed to publish and subscribe data on one or more DDS Domains. An XRCE Application can be
associated with zero of more DomainParticipant objects.

The AccessController is responsible for making decisions regarding the resources and operations a particular
XRCE ProxyClient is allowed to perform. It contains rules that associate a C11ient with privileges, which
determine which DDS domain an application executing on behalf of a client may join, which DDS Topics the
application can read and write, and so on.

The DDS-XRCE DomainParticipant is a proxy for a DDS DomainParticipant and models the association
with a DDS domain and the capability of the Application to publish and subscribe to Topics on that domain.

20 DDS XRCE Revised Submission

7.5 XRCE DDS Proxy Objects

Several of the DDS-XRCE objects act as proxies to corresponding DDS objects. These proxy objects allow the client
application to participate as first-class citizens on the DDS network by delegating the actual DDS behavior and DDS-
RTPS protocol implementation to the proxy DDS objects.

This relationship is shown in Figure 5.

class DDS-Mapping

DDSXRCE::Application DDS::DomainParticipantFactory

_________,________>

«use»

«use» DDSXRCE:: > DDS::DomainParticipant
________ DomainParticipant

DDSXRCE::Subscriber

DDSXRCE:Publisher | _ y_ _ _ _ ___)y _ _ _ _ _ _ _ ______ > DDS::Publisher

«wuse»

«use»

DDS::Subscriber

«wuse»

______________ — —— ——— — — — =>{ DDs::DataReader

«wuse»

DDS::TopicDescription

DDSXRCE::
DataWriter

«use»

«use»

DDS::ContentFilteredTopic
«wuse»

«value» «value» Qos
DDSXRCE:: DDSXRCE::Qos

QosProfile

+DataReaderQos
+DataWriterQos
+DomainParticipantQos
+PublisherQos
+SubscriberQos
+TopicQos

«use; - >

[T} (] T[T o]

(from DDS)

Figure 5 -- XRCE objects that proxy DDS Entities

7.6 XRCE Object Identification

Each XRCE Object managed by the XRCE Agent on behalf of a specific XRCE Client is identified by means of an
ObjectId. This implies that the ObjectId shall be unique within the scope of an Agent and a ClientKey. The
value of the ObjectId for a particular object shall be configured on the XRCE Agent or specified by the XRCE Client
at the time the object is created.

DDS-XRCE, Revised Submission 21

There are two reserved values for ObjectId. The value {0x00, 0x00} is referred as OBJECTID INVALID and
represents an invalid object. The value {OxFF, OxFF} is referred as OBJECTID CLIENT and represents the XRCE
ProxyClient object.

Alternatively, objects may also be identified by a string resourceName. The format of this name depends on the resource
and provides a way to refer to a resource configured on the agent using a configuration file or similar means.

7.7 Data types used to model operations on XRCE Objects

The operations on the XRCE objects accept parameters. The format of these parameters is described as a set of IDL data
types. These IDL descriptions are used in the description of the XRCE Object operations as well as used to define the
wire representation of the messages exchanged between the Client and the Agent.

The IDL definitions for the data types shall be as specified in Annex A IDL Types. When serializing these types into a
binary representation the encoding shall follow the rules defined in in [DDS-XTYPES] for XCDR version 2 encoding.

The following sub clauses provide explanations for some of the key data types specified in Annex A IDL Types.

7.7.1 Data and Samples

When the XRCE Agent sends data to the XRCE Client, it may use one of five possible formats. The formats differ
depending on whether the data is sent by itself or accompanied by meta-data such as timestamp and sequence numbers.
Another difference is whether the message contains a single sample or a sequence of samples.

While it would be possible to combine all of these representations into a single type (e.g. a union), doing so would
introduce additional overhead in the serialization. This overhead is undesirable in bandwidth-constrained environments.

The five possible representation are: SampleData, Sample, SampleDataSeq, SampleSeq, and
SamplePackedData. They respectively correspond to the DataFormat values FORMAT DATA,

FORMAT DATA_SEQ, FORMAT SAMPLE, FORMAT SAMPLE_SEQ, and FORMAT PACKED. Their IDL
definition shall be as specified in Annex A IDL Types.

All of these representations serialize the data using the XCDR representation defined in [DDS-XTYPES]. For example,
the definition of the SampleData is given by the IDL:
@extensibility (FINAL)

struct SampleData {
XCDRSerializedBuffer serialized data;
bi

In this structure the XCDRSerializedBuffer represents the bytes resulting from serializing the application-specific
data type that is being sent using the XCDR version 2 rules defined in clause 7.4 of [DDS-XTYPES].

Other representations include additional information but still rely on a SampleData to hold the serialized application-
specific data. For example, the DataFormat FORMAT SAMPLE uses the IDL type Sample defined below:

@bit bound(8)

bitmask SampleInfoFlags {
@position (0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position (3) SAMPLE STATE READ,

bi

22 DDS XRCE Revised Submission

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
unsigned long sequence number;
unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
}i

The most compact DataFormat that includes sample information is FORMAT PACKED. This format uses the IDL
type PackedSamples defined below:
typedef unsigned short DeciSecond; // 10e-1 seconds

@extensibility (FINAL)
struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState, ViewState
octet seq_number delta;
DeciSecond timestamp delta; // In 1/10 of seconds
}i
@extensibility (FINAL)
struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;
}i
@extensibility (FINAL)
struct PackedSamples {
SampleInfo info base;
sequence<SampleDelta> sample delta seq;

}i

7.7.2 DataRepresentation

The DataRepresentation type is used to hold values of data samples as well as additional sample information,
such as sequence number or timestamps. It is used by the XRCE ProxyClient write operation.

The DataRepresentation is defined as a union discriminated by a DataFormat. Depending on the discriminator
it selects one of the formats defined in clause 7.7.1.

The possible values for the DataFormat and the resulting representation are described in Table 3 below.

DDS-XRCE, Revised Submission 23

Table 3 Interpretation of the DataFormat

DataFormat

Selected DataRepresentation

FORMAT DATA

struct SampleData defined in Annex A IDL Types.

Contains the data for a single sample without additional sample information.

FORMAT DATA SEQ

struct SampleDataSeq defined in Annex A IDL Types.

Contains a sequence of data samples. Each data sample contains only the data without
additional sample information.

FORMAT SAMPLE

struct Sample defined in Annex A IDL Types.

Contains a single sample with both the data and the additional sample information
(SampleInfo).

The SampleInfo holds the DDS InstanceState, SampleState, and
ViewState of the corresponding DDS Sample. It also contains the sample
sequence number and timestamp. The timestamp is represented as an offset relative to
the session timestamp established when the session was created. The session
timestamp corresponds to the client_timestamp attribute in

CLIENT Representation;see7.8.2.1 and Annex A IDL Types.

FORMAT SAMPLE SEQ

struct SampleSeq defined in Annex A IDL Types.

Contains a sequence of samples, each containing both the data and the additional
sample information.

FORMAT PACKED

struct PackedSamples defined in Annex A IDL Types.

Contains a sequence of samples, each containing both the data and the additional
sample information but using a more compact representation than SampleSedq.

This representation is limited to samples that are close in sequence number (no more
than 256 apart) and timestamp (100 minutes). It also uses timestamps with lower
resolution (1/10 sec).

The type PackedSamples contains a common SampleInfo (info_base) and a
sequence of SampleDelta. Each SampleDelta contains a SampleData as
well as an associated SampleInfoDelta (info_delta).

The SampleInfo for each sample shall be computed by combining the common
info_base with the info_delta that corresponds to that sample. The resulting
Samplelnfo (resulting info) is defined as:

resulting_info.state := info_delta.state
resulting_info.sequence_number :=

info_base.sequence_number + info_delta.seq_number_delta
resulting_info. session_time_offset :=

info_base. session_time_offset + info_delta.timestamp _delta

24

DDS XRCE Revised Submission

The DataRepresentation type shall be as specified in Annex A IDL Types:
@extensibility (FINAL)

union DataRepresentation switch (DataFormat) {

case FORMAT DATA:
SampleData data;

case FORMAT SAMPLE:
Sample sample;

case FORMAT DATA SEQ:
SampleDataSeq data_ seq;

case FORMAT SAMPLE SEQ:
SampleSeq sample seq;

case FORMAT PACKED SAMPLES:
PackedSamples packed samples;

}i

7.7.3 ObjectVariant

The ObjectVariant type is used to hold the representation of a XRCE Object. It is used by the XRCE
ProxyClient create, update, and get_info operations.

The ObjectVariant type is defined as a union discriminated by ObjectKind. Each value of the discriminator
selects an appropriate object representation for that kind. See struct ObjectVariant defined in Annex A IDL
Types.

For a given ObjectKind the, ObjectVariant type also supports multiple representation formats. Each format is
identified by a value of the RepresentationFormat. Some formats are optimized for expressiveness and ease of
configuration whereas others minimize the size used to transmit the representation.

The next sub clause defines the three possible formats; subsequent sub clauses provide details of the ObjectVariant
representation for each kind of object and for each format.

7.7.3.1 Object Representation Formats

There are three RepresentationFormat values: REPRESENTATION BY REFERENCE,
REPRESENTATION AS XML STRING, and REPRESENTATION IN BINARY.

Some object kinds support all three formats; in this case the corresponding representation extends the type struct
OBJK Representation3 Base. Other object kinds support only two formats and therefore extend the type
struct OBJK RepresentationRefAndXML Base or the type

OBJK RepresentationBinAndXML Base

These types are defined by the IDL below; see also Annex A, IDL Types.
const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch(RepresentationFormat) {
case REPRESENTATION BY REFERENCE

string<REFERENCE MAX LEN> object reference

DDS-XRCE, Revised Submission 25

26

case REPRESENTATION AS XML STRING
string xml string representation;
case REPRESENTATION IN BINARY
sequence<octet> binary representation;

}i

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat)
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string string representation;

bi

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat)
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {

OBJK RepresentationRefAndXMLFormats representation;
bi

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {
OBJK RepresentationBinAndXMLFormats representation;

}s

@extensibility (FINAL)
struct OBJK Representation3 Base {
OBJK Representation3Formats representation;

}s

DDS XRCE Revised Submission

{

It is expected that additional representations may be added after they are defined in other OMG specifications. For
example, there is ongoing work on a DDS-JSON RFP that would define a JSON format for describing DDS resources
analogous to the XML format defined by the [DDS-XML] specification. This could be added as an additional
REPRESENTATION AS JSON_STRING representation.

7.7.31.1 REPRESENTATION_BY_REFERENCE format

The REPRESENTATION BY REFERENCE represents the object using an object_reference encoded in a string. The
string shall refer by name to a description already known to the XRCE Agent.

This format may be used to represent any object in an extremely compact manner. However it requires pre-configuration
of the XRCE Agent. The pre-configuration may be done off-line prior to starting the XRCE Agent or may be done on-
line using the DDS-XRCE protocol in combination with the REPRESENTATION AS XML STRING.

The object_reference shall be a string formatted as defined by the XSD simpleType elementNameReference
defined in the [DDS-XML] specification file dds-xml_domain_definitions_nonamespace.xsd.

It is expected that most XRCE Clients will use the object_reference to create resources in the XRCE Agent. This is
because client applications are deployed as part of a system, and the system configuration and management process can
configure the XRCE Agent for the intended deployment.

The following string is an example of an object_reference used to represent a XRCE QosProfile:
"MyQosLibrary: :MyQosProfile".

This format is available for the XRCE Object kinds that can be configured as libraries in the XRCE Agent. These are
XRCE Type, QosProfile, Domain, DomainParticipan, and Application.

7.7.3.1.2 REPRESENTATION_AS_XML_STRING format

The REPRESENTATION AS XML STRING represents the object using an xml_string_representation string. The
string shall contain an XML element formatted according to the [DDS-XML] specification. The format of the string is
defined for each Object kind in clauses 7.7.3.2 to 7.7.3.11.

This format may be used to dynamically represent any XRCE Object. The disadvantage of this format is that it is more
verbose due to the use of XML.

This format is intended for remotely configuring the agent. Typically it will not be used by the XRCE Clients except
in deployments where the client-to-agent connection has sufficient bandwidth.

The following XML string is an example of a REPRESENTATION AS XML STRING for the XRCE object
QosProfile:

"<gos library name=’'MyQosLibrary’>
<gos_profile name='MyQosProfile’>
<data reader gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind><reliability>
<time based filter>
<minimum separation><sec>10</sec></minimum separation>
</time based filter>
<data reader gos>
</qos_profile>
<gos_ library>"

7.7.3.1.3 REPRESENTATION_IN_BINARY format

The REPRESENTATION IN BINARY represents objects using a binary_representation octet sequence. The octet
sequence is the result of serializing an IDL-defined data-structure that depends on the kind of object using the XCDR
version 2 format defined in [DDS-XTYPES].

This representation has the advantage of being very compact, but it can only be used to represent a subset of the XRCE
Objects. Moreover not all DDS QoS can be expressed using the binary representation.

DDS-XRCE, Revised Submission 27

For example, the binary_representation for XRCE Topic is obtained by serializing an object of type struct
OBJK Topic Binary defined in Annex A, IDL Types:

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference

@optional DDS:XTypes::Typeldentifier type identifier;
}i

For example, assuming little endian encoding, for a Topic with fopic_name “Square” and type_reference
“MyTypes::ShapeType” the binary_representation octet sequence would contain the 36 bytes:

{ 0x07, 0x00, 0x00, 0x00,
‘S', \qr, ‘U.', \er’
‘v, e’, M\0', 0x01,
0x13, 0x00, 0x00, 0x00,
\MI, \yl, \TI, \yl,
\p’, \e’, \SI, \:I,
\:I, \SI, \hl, \al,
\p’, \e’, \TI, \yI,
‘p’, ‘e’, \0', 0x00 }
In the above note, the length of the two strings is 7 and 19 (in hexadecimal, 0x7 and 0x13), which are encoded in little
endian so the least significant byte appears first.

Note also that the boolean value true (0x01) appears before the serialization of the fype_reference indicating the
presence of the optional member. The boolean value false (0x00) at the end indicates that the optional member
type_identifier is not present.

7.7.3.2 XRCE QosProfile

The OBJK_QOSPROFILE Representation supports the REPRESENTATION_BY_ REFERENCE and
REPRESENTATION_AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)
struct OBJK QOSPROFILE Representation : OBJK RepresentationRefAndXML Base {
}i

7.7.3.21 Representation by reference

When using the REPRESENTATION BY REFERENCE the object_reference field shall contain the fully qualified
name of a QosProfile known to the XRCE Agent. The fully qualified name is composed of the name of the Qos
library and the name of the QosProfile within the library. For example: "MyLibrary: :MyProfile".

7.7.3.2.2 XML string representation

When using the REPRESENTATION_ AS XML STRING the string representation field shall contain a single
<gos_library> top-level XML element with the syntax defined by the XSD complexType qosLibrary defined in
the [DDS-XML] machine-readable file dds-xml_qos_definitions.xsd. The <gos library> element shall contain a
single <gos profile> child element.

The REPRESENTATION AS XML STRING representation may reference other QoS profiles already known to the
Agent. This feature also allows a compact way to represent a QosProfile that differs slightly from an existing one.

28 DDS XRCE Revised Submission

For example, the following XML defines a profile QosProfile called "MyQosLib: :ModifiedProfile" thatis
based on an already defined profile "MyQosLib: :MyQosProfile":

<gos library name="MyQosLib'">
<gos profile name="ModifiedProfile" base name="MyQosLib:MyQosProfile'>
<data_ reader gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind></reliability>
</data reader gos>
</qgos_profile>
</gos_library>

The string_representation may reference other Qos Profiles already known to the XRCE Agent.

7.7.3.3 XRCE Type

The OBJK_TYPE Representation supports the REPRESENTATION_BY_ REFERENCE and
REPRESENTATION AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base {
}i

7.7.3.31 Representation by reference

When using the REPRESENTATION BY REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE Type known to the XRCE Agent. The fully qualified name is composed of the name of the type
prepended by the names of the enclosing modules. For example: "MyModule: : ShapeType".

7.7.3.3.2 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain a single
<types> top-level XML element representation with the syntax defined by the XSD complexType typeLibrary
defined in the [DDS-XML] machine-readable file dds-xml_type_definitions nonamespace.xsd.

Within the <types> element there may be multiple types defined. In this case only one type shall have the nested
annotation (see [DDS-XTYPES]) set to false. This corresponds to the XRCE Type being created. Any types with
nested annotation set to true, if present, may be used to represent the dependent types.

For example, the following XML defines a structure data-type "ShapeType" inside a module named "MyModule"
referenceable as “MyModule: : ShapeType™:

<types>
<module name="MyModule'">
<struct name="ShapeType'>
<member name="color" key="true" type="string" stringMaxLength="32"/>
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>
</module>
</types>

The string representation may reference other Types already known to the Agent.

7.7.3.4 XRCE Domain

The OBJK_DOMAIN Representation supports the REPRESENTATION_BY_ REFERENCE and
REPRESENTATION AS XML STRING formats. It is defined in Annex A, IDL Types as:

DDS-XRCE, Revised Submission 29

@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

}i
7.7.3.41 Representation by reference

When using the REPRESENTATION BY REFERENCE, the object reference field shall contain the fully qualified
name of a XRCE Domain definition known to the Agent. The fully qualified name is composed of the name of the
Domain library and the name of the Domain within the library. For example: "MyDomainLib: : ShapesDomain".

7.7.3.42 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain the XML
representation of a Domain as defined in [DDS-XML]. The XML shall contain a single <domain library> top-
level XML element with the syntax defined by the XSD complexType gosDomain defined in the [DDS-XML]
machine-readable file dds-xml_domain_definitions_nonamespace.xsd. The <domain library> element shall
contain a single <domain> child element.

For example, the following XML defines a domain referenceable as "MyDomainLib: : ShapesDomain".

<domain library name="MyDomainLib">
<domain name="ShapesDomain'" domain id="0">
<register type name="ShapeType" type ref="ShapeType" />
<topic name="Square" register type ref="ShapeType" />
</domain>
</domain library>

The string_representation may reference Types already known to the XRCE Agent.

7.7.3.5 XRCE Application

The OBJK_TYPE Representation supports the REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)
struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {
}i

7.7.3.51 Representation by reference

When using the REPRESENTATION _BY_ REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE Application definition known to the Agent. The fully qualified name is composed of the name of the
Application library and the name of the Application within the library. For example:

"MyAppLibrary: :ShapePublisherApp".

7.7.3.5.2 XML string representation

When using the REPRESENTATION AS XML STRING, the string representation field shall contain the XML
representation of an Application as defined in [DDS-XML]. The XML shall contain a single
<application library> top-level XML element with the syntax defined by the XSD complexType
applicationLibrary defined in the [DDS-XML] machine-readable file
dds-xml_application_definitions_nonamespace.xsd. This element shall contain a single <application> child
element.

For example, the following XML defines an application referencable as “MyAppLibrary::ShapePublisherApp”:

30 DDS XRCE Revised Submission

<application library name="MyAppLibrary'>
<application name="ShapePublisherApp'>
<domain participant name="MyParticipantl" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher'™>
<data writer name="MyWriter" topic ref="Square" />
</publisher>
</domain participant>
<domain participant name="MyParticipant2" domain_ id="0">
<register type name="ShapeType'" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<subscriber name="MySubscriber'>
<data writer name="MyReader" topic ref="Circle" />
</subscriber>
</domain participant>
</application>
</application library>

The string_representation may reference XRCE Types, Qos Profiles, Domains, or DomainParticipants already known to
the XRCE Agent.

7.7.3.6 XRCE DomainParticipant

The OBJK PARTICIPANT Representation supports three representation formats. It is defined in Annex A, IDL
Types as:

@extensibility (FINAL)
struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
}i

7.7.3.6.1 Representation by reference

When using the REPRESENTATION BY REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE DomainParticipant definition known to the Agent. The fully qualified name is composed of the
name of the DomainParticipant library and the name of the DomainParticipant within the library. For example:
"MyParticipantLibrary: :ShapePublisherApp".

7.7.3.6.2 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain a single
<domain participant library> top-level XML element with the syntax defined by the XSD complexType
domainParticipantLibrary defined in the [DDS-XML] machine-readable file
dds-xml_domain_participant_definitions nonamespace.xsd. This element shall contain a single

<domain participant> child element.

For example, the following XML string defines a DDS-XML DomainParticipant referenceable as
"MyParticipantLibrary: :MyParticipant".

<domain participant library name="MyParticipantLibrary">
<domain participant name="MyParticipant" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher'>
<data writer name="MyWriter" topic ref="Square" />
</publisher>
</domain participant>
</domain participant library>

DDS-XRCE, Revised Submission 31

The string_representation may reference XRCE Types, Qos Profiles, Domains, or DomainParticipants already known to
the XRCE Agent.

7.7.3.6.3 Binary representation

When using the REPRESENTATION IN BINARY, the binary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK_DomainParticipant Binary defined
in Annex A IDL Types.

@extensibility (FINAL)
struct OBJK DomainParticipant Binary {
long domain_ id;
@optional string<128> domain reference;
@optional string<128> gos profile reference;
}i

The optional domain_reference field may be used to reference a XRCE Domain definition known to the Agent. It shall
the representation by reference of the domain as defined in 7.7.3.4.1. For example:
“MyDomainLib: :ShapesDomain”.

Any XRCE Topic and Type definitions contained in the referenced domain are considered defined within the scope of
the XRCE DomainParticipant and become available as references to construct XRCE objects contained by the
DomainParticipant.

The optional qos_profile_reference ficld may be used to reference a XRCE QosProfile definition known to the
Agent. It shall contain the representation by reference of the QosProfile defined in 7.7.3.2.1. For example:
"MyQosLib:MyQosProfile". If specified, the corresponding DDS DomainPaticipant shall be created using
that Qos. Otherwise, the DomainPaticipant shall be created using the DDS default Qos.

7.7.3.7 XRCE Topic

The OBJK TOPIC Representation supports three representation formats. It is defined in Annex A, IDL Types as:
@extensibility (FINAL)
struct OBJK TOPIC Representation : OBJK Representation3 Base {
ObjectId participant id;
bi
Independent of the representation format, the field participant id shall contain the ObjectId of a XRCE

DomainParticipant object. The referenced or created Topic will belong to the specified
DomainParticipant.

7.7.3.71 Representation by reference

When using the REPRESENTATION BY REFERENCE, the object_reference field shall contain the bare name of a
XRCE Topic defined in XRCE DomainParticipant identified by the participant id. The Topic could be
defined directly on the XRCE DomainParticipant, or else in the XRCE Domain associated with the
DomainParticipant.

For example, if the DomainParticipant had been defined with a reference to the XRCE Domain
"MyDomainLib: : ShapesDomain" shown as an example in 7.7.3.4.2, then the object_reference "Square" could be
used to reference the namesake Topic of type "ShapeType" defined there.

32 DDS XRCE Revised Submission

7.7.3.7.2 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain a single
<topic> top-level XML element with the syntax defined by the XSD complexType topic defined in the [DDS-
XML] machine-readable file dds-xml_domain_definitions_nonamespace.xsd.

For example, the following XML string defines a DDS-XML Topic with name "Square".
<topic name="Square" register type ref="ShapeType" />

The string_representation may reference XRCE Types or QosProfiles already known to the XRCE Agent.

7.7.3.7.3 Binary representation

When using the REPRESENTATION IN BINARY, the binary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK_Topic Binary defined in Annex A IDL
Types:

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;
bi

Either type_reference or type_identifier may be used to identify the XRCE Type associated with the Topic. Either
member may be omitted, but not both. If both are present the #ype_identifier shall take precedence.

The type_identifier, if present, shall contain the DDS-XTYPES TypeIdentifier for the data-type. See clause 7.3.2
of [DDS-XTYPES].

The type_reference, if present, shall contain the fully qualified name of the type, including containing modules as
specified in 7.7.3.3.1. The referenced type shall be known to the XRCE Agent either via pre-configuration, or as a result
of a prior create operation executed on the XRCE ProxyClient; see 7.8.3.1.

7.7.3.8 XRCE Publisher

The OBJK_PUBLISHER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION_AS XML _ STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

bi

Independent of the representation format, the member participant_id shall contain the ObjectId of a XRCE
DomainParticipant object. The referenced or created Publisher shall belong to the specified
DomainParticipant.

7.7.3.8.1 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain a single
<publisher> top-level XML element with the syntax defined by the XSD complexType publisher defined in the
[DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines a XML Pub1lisher referenceable within the XRCE
DomainParticipant as "MyPublisher".

DDS-XRCE, Revised Submission 33

<publisher name="MyPublisher"/>

Note that the XML representation of a Publisher allows specifying Qos policies and including nested DataWriter
objects. These additional definitions may reference other XRCE objects (Qos profiles or topics). Any referenced object
must have been previously created or configured on the XRCE Agent. For example, the following XML string defines
a XRCE Publisher with a Qos and a contained DataWriter:

<publisher name="MyPublisher"/>

<publisher gos base name=”MyQosLib:MyProfile” />

<data writer name="MySquareWriter" topic ref="Square" />
</publisher>

7.7.3.8.2 Binary representation

When using the REPRESENTATION IN BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK_Publisher Binary defined in A IDL Types:

@extensibility (FINAL)
struct OBJK_PUBLISHER_QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;
}i
@extensibility (FINAL)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK PUBLISHER QosBinary qos;
}i

7.7.3.9 XRCE Subscriber

The OBJK_SUBSCRIBER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

Independent of the representation format, the member participant_id shall contain the ObjectId of a XRCE

DomainParticipant object. The referenced or created Subscriber shall belong to the specified

DomainParticipant.

7.7.3.9.1 XML string representation

When using the REPRESENTATION AS XML STRING, the string representation field shall contain a single
<subscriber> top-level XML element with the syntax defined by the XSD complexType subscriber defined in
the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions nonamespace.xsd.

For example, the following XML string defines a XRCE Subscriber referenceable within the DomainParticipant
as "MySubscriber":

<subscriber name="MySubscriber"/>

34 DDS XRCE Revised Submission

Note that the XML representation of a Subscriber allows specifying Qos policies and including nested
DataReader objects. These additional definitions may reference other XRCE objects (Qos profiles or topics). Any
referenced object must have been previously created or configured on the XRCE Agent. For example, the following
XML string defines a XRCE Subscriber with a Qos and a contained DataReader:

<subscriber name="MySubscriber"/>

<subscriber qos base name="MyQosLib:MyProfile” />

<data reader name="MySquareReader" topic ref="Square" />
</subscriber>

7.7.3.9.2 Binary representation

When using the REPRESENTATION IN BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK_Subscriber Binary defined in Annex A IDL
Types.

@extensibility (FINAL)
struct OBJK_SUBSCRIBER_QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group data;
bi
@extensibility (FINAL)
struct OBJK Subscriber Binary {
@optional string subscriber name;

@optional OBJK SUBSCRIBER QosBinary dos;
bi

7.7.3.10 XRCE DataWriter

The DATAWRITER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

}i

Independent of the representation format, the member publisher _id shall contain the ObjectId ofa XRCE

Publisher object. The referenced or created DataWriter shall belong to the specified Publisher

7.7.3.10.1 XML string representation

When using the REPRESENTATION AS XML STRING, the string_representation field shall contain a single
<data_ writer> top-level XML element with the syntax defined by the XSD complexType dataWriter defined
in the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines a XRCE DataWriter for Topic "Square" referenceable within the
XRCE Susbcriber as "MySquareWriter":

<data writer name="MySquareWriter" topic ref="Square"/>

The referenced Topic must have been previously created or configured on the XRCE DomainParticipant to
which the Publisher and DataWriter belong.

DDS-XRCE, Revised Submission 35

The XML representation of a DataWriter allows specifying Qos policies. These may reference other XRCE (Qos

profiles. Any referenced object must have been previously created or configured on the XRCE Agent. For example, the
following XML string defines a XRCE DataWriter with a Qos that extends the profile "MyQosLib:MyProfile"
additionally setting the DEADLINE Qos policy.

<data writer name="MySquareWriter" topic_ ref="Square'">
<data writer gos base name="MyQosLib::MyProfile'>

<deadline>
<period><sec>120</sec></period>
</deadline>
</data writer gos>

</data writer>

7.7.3.10.2 Binary representation

When using the REPRESENTATION IN BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK_DataWriter Binary defined in Annex A IDL
Types:

36

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is reliable,
@position(l) is_history keep last,

@position(2) is ownership exclusive,

@position(3) is durability transient local,

@position(4) is durability transient,
@position(5) is durability persistent,
bi
@extensibility (FINAL)

struct OBJK Endpoint QosBinary {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
}i
@extensibility (FINAL)

struct OBJK DataWriter Binary {

string topic name;
OBJK Endpoint QosBinary endpoint gos;
@optional unsigned long ownership strength;

DDS XRCE Revised Submission

7.7.3.11 XRCE DataReader

The DATAREADER Representation supports the REPRESENTATION_IN_BINARY and

REPRESENTATION AS XML STRING formats. It is defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {
ObjectId subscriber id;

}i

Independent of the representation format, the member subscriber_id shall contain the ObjectId of a XRCE
Subscriber object. The referenced or created DataReader will belong to the specified Subscriber.

7.7.3.11.1 XML string representation

When using the REPRESENTATION AS XML STRING, the string representation field shall contain a single
<data_reader> top-level XML element with the syntax defined by the XSD complexType dataReader defined
in the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines a XRCE DataReader for Topic "Square" referenceable within the
XRCE Publisher as "MySquareReader":

<data reader name="MySquareReader" topic ref="Square"/>

The referenced Topic must have been previously created or configured on the XRCE DomainParticipant to
which the Subscriber and DataReader belong.

The XML representation of a DataReader allows specifying Qos policies. These may reference other XRCE Qos
profiles. Any referenced objects must have been previously created or configured on the XRCE Agent.

The XML representation of a DataReader may also contain time-based and content-based filters.

For example, the following XML string defines a XRCE DataReader with a Qos that extends the profile
"MyQosLib:MyProfile" assing/setting the DEADLINE Qos policy and sets a content filter.

<data reader name="MySquareReader" topic ref="Square">
<data reader gos base name="MyQosLib:MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data reader gos>
<content filter name="MyFilter'">
<expression> x > 5 </expression>
</content filter>
</data_ reader>

7.7.3.11.2 Binary representation

When using the REPRESENTATION _IN BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK_DataReader Binary defined in A IDL Types. See
also Binary representation of the DataWriter in 7.7.3.10.2 for the definition of OBJK Endpoint QosBinary.

@extensibility (FINAL)

struct OBJK DataReader Binary {

string topic name;
OBJK Endpoint QosBinary endpoint gos;
@optional unsigned long timebasedfilter msec;

DDS-XRCE, Revised Submission 37

@optional string contentbased filter;

}i

7.7.4 Objectld

The XRCE ObjectId is used to hold the unique identification of an XRCE Object. Each ObjectId is scoped to an
XRCE Client and Agent pair. Consequently, the ObjectId values managed by an Agent need to be unique only
for each XRCE Client. An XRCE Client normally connects to a single XRCE Agent. In this situation, the XRCE
Client can treat the ObjectId as globally unique.

The ObjectId is defined in A IDL Types as:
typedef octet ObjectId (21,

7.7.5 ObjectKind

The XRCE ObjectKind is used to enumerate and identify the kind of XRCE Object. XRCE objects are classified into
14 kinds. The possible kinds are defined in A IDL Types as:

typedef octet ObjectKind;

const ObjectKind OBJK INVALID = 0x00;
const ObjectKind OBJK PARTICIPANT = 0x01;
const ObjectKind OBJK TOPIC = 0x02;
const ObjectKind OBJK PUBLISHER = 0x03;
const ObjectKind OBJK SUBSCRIBER = 0x04;
const ObjectKind OBJK DATAWRITER = 0x05;
const ObjectKind OBJK DATAREADER = 0x06;
const ObjectKind OBJK TYPE = 0x0A;
const ObjectKind OBJK QOSPROFILE = 0x0B;

const ObjectKind OBJK_APPLICATION = 0x0C;
const ObjectKind OBJK AGENT = 0xO0D;

const ObjectKind OBJK CLIENT = 0x0E;

7.7.6 ObjectldPrefix

The ObjectIdPrefix isused to hold the unique identification of an XRCE object of a specific ObjectKind. The
ObjectId of an object is composed combining 12 bits from the ObjectIdPrefix and four bits from the
ObjectKind.

The ObjectIdPrefix is defined in A IDL Types as:
typedef octet ObjectIdPrefix [2];

Assuming an XRCE object has ObjectldPrefix objectid_prefix, ObjectKind object kind, and ObjectId object id
the following relationships shall hold:

object_id[0] = objectid_prefix[0]
object_id[1] = (objectid_prefix[1]&0xF0) + object_kind

38 DDS XRCE Revised Submission

7.7.7 ResultStaus

The ResultStatus is used to hold the return value of the operations on the XCRE objects. It contains a
StatusValue that encodes whether the operation succeeded or failed as well as the reason for the failure. It also
contains a specialized implementation-specific status, which is used to return vendor or implementation-specific
information.

The StatusValue and ResultStatus are defined in defined in Annex A IDL Types as:

@bit bound(8)
enum StatusValue ({
@value (0x00) STATUS OK,
@value (0x01) STATUS OK MATCHED,
@value (0x80) STATUS ERR DDS ERROR,
@value (0x81) STATUS ERR MISMATCH,
@value (0x82) STATUS ERR ALREADY EXISTS,
@value (0x83) STATUS ERR DENIED,
@value (0x84) STATUS ERR UNKNOWN REFERENCE,
@value (0x85) STATUS ERR INVALID DATA,
@value (0x86) STATUS ERR INCOMPATIBLE,
@value (0x87) STATUS ERR RESOURCES
}i
struct ResultStatus {
StatusValue status;
octet implementation status;

b

The interpretation of the StatusValue is specified in below.

DDS-XRCE, Revised Submission

39

Table 4—Interpretation of StatusValue

StatusValue

Interpretation

STATUS_OK

Indicates a successful execution of the operation

STATUS OK MATCHED

Indicates a successful execution of a create or update operation on a
resource when the resource already existed on the Agent and the
resource state already matched the one requested by the operation. As a
consequence, no actual change was made to the resource.

STATUS_ERR_DDS_ERROR

Indicates a failure in the execution of the operation caused by an error
when creating or operating on the DDS resource related to the operation.

STATUS_ERR_MISMATCH

Indicates a failure in the execution of a create or update operation on a
resource when the resource already existed on the Agent, the state did
not match the one requested by the operation, and it was not possible to
change the state of the resource.

STATUS_ERR_ALREADY_ EXISTS

Indicates a failure in the execution of a create operation due to the fact
that the resource already existed.

STATUS_ERR DENIED

Indicates a failure in the execution of an operation due to lack of
permissions.

STATUS _ERR UNKNOWN_ REFERENCE

Indicates a failure in the execution of an operation due to the fact that the
referenced resource is not known to the Agent.

STATUS_ERR_INVALID DATA

Indicates a failure in the execution due to wrong on invalid input
parameter data.

STATUS ERR INCOMPATIBLE

Indicates a failure in the execution of an operation due to an
incompatibility between the Client and the Agent.

STATUS_ERR RESOURCES

Indicates a failure in the execution of an operation due to a resource
error on the Agent.

7.7.8 BaseObjectRequest

The BaseObjectRequest type is used to hold the common parameters of the requests sent from the XRCE Client
to the Agent. It is defined in Annex A IDL Types as:

@extensibility (FINAL)

struct BaseObjectRequest {
RequestId request id;

ObjectId object id;

}s

The interpretation of the members of this type (i.e. parameters sent as part of the requests) shall be:

o request_id (Requestld) identifies each request. It is used to correlate a reply with the related request. It is scoped
to each XRCE Client and Agent pair. Note that it is possible to reuse a value of the request_id for future

40

DDS XRCE Revised Submission

requests as long as the previous request with that value is known by Client and Agent to no longer be
active.

e object_id (Objectld) the ObjectId that is the target of the request. For requests that create objects, the
object_id conveys the ObjectIdPrefix for the created object. See 7.7.6.

7.7.9 BaseObjectReply

The BaseObjectReply type is used to hold the common parameters of the replies sent from the XRCE Agent back
to the Client. It is defined in defined in Annex A IDL Types as:

struct ResultStatus {
StatusValue status;
octet implementation status;

}s

@extensibility (FINAL)
struct BaseObjectReply {

BaseObjectRequest related request;

ResultStatus result;
bi
The interpretation of the members of these types (i.e. parameters sent as part of the requests) shall be:

o related_request contains the request_id and object_id of the request that caused the reply to be sent:
o The request_id (Requestld) identifies the request. It is used to correlate a reply with the request.

o The object_id (Objectld) is the target of the request. For requests that create objects, the object id
conveys the desired ObjectId for the created object. In this case the object_id is interpreted as a
prefix to be combined with the ObjectKind to obtain the final ObjectId.

o status (ResultStatus). Enumerated value indicating whether the related request operation succeeded or failed. If
the operation succeeded the StatusValue shall be set to STATUS OK or STATUS OK MATCHED. If it
failed it shall be set to the value that corresponds to the type of error encountered.

e implementation_status (octet) provides an implementation-specific (vendor-specific) return status. The value is
scoped by the XrceVendorId of the Agent. It shall only be interpreted by clients that understand the
implementation status values of the XrceVendorId of the Agent that returned it.

7.7.10 RelatedObjectRequest

The RelatedObjectRequest type is used to hold the common parameters of the messages sent from the XRCE
Agent back to the Client that are indirectly related to a prior request from the C1ient. For example, DATA
messages that related to a previous read operation, see 7.8.5.1.

It is defined in Annex A IDL Types as:
typedef RelatedObjectRequest BaseObjectRequest;

The interpretation is the same as for the related request that appears in the BaseObjectReply, see 7.7.9.

DDS-XRCE, Revised Submission 41

7.7.11 CreationMode

The CreationMode type is used to control the behavior of the ProxyClient create operation. See clause 7.8.3.1. It
is defined in Annex A IDL Types as:

struct CreationMode {
boolean reuse;
boolean replace;

}i

7.7.12 ActivitylnfoVariant

The ActivityInfoVariant type is used to hold information on the activity of a XRCE object. It is used by the
ProxyClient get_info operation. See clause 7.8.3.3. It is defined in Annex A IDL Types as:

bitmask InfoMask {
@position(0) INFO_CONFIGURATION,
@position(1l) INFO ACTIVITY

bi

@extensibility (APPENDABLE)

struct AGENT ActivityInfo ({
short availability;
TransportLocatorSeq address seq;

b

@extensibility (APPENDARLE)
struct DATAREADER ActivityInfo {
short highest acked num;

b

@extensibility (APPENDARLE)
struct DATAWRITER ActivityInfo {
unsigned long long sample seq num;

short stream seq num;
}i
@extensibility (FINAL)

union ActivityInfoVariant (ObjectKind) {

case OBJK DATAWRITER

42 DDS XRCE Revised Submission

DATAWRITER ActivityInfo data writer;
case OBJK DATAREADER
DATAREADER ActivityInfo data reader;

7.7.13 Objectinfo

The ObjectInfo type is used to hold information on the configuration and activity of a XRCE object. It I used by the
ProxyClient get_info operation. See clause 7.8.3.3. It is defined in Annex A IDL Types. See also clause 7.7.3 for a
description of ObjectVariant and 7.7.12 for a description of ActivitylnfoVariant.

@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;

@optional ObjectVariant config;

}i

7.7.14 ReadSpecification

The ReadSpecification type is used to control the information returned by the ProxyClient read operation.
See clause 7.8.5.1. It is defined in Annex A IDL Types as:

@extensibility (APPENDABLE)

struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;

unsigned short min pace period; // milliseconds

b

@extensibility (FINAL)
struct ReadSpecification {
DataFormat data format;
@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}i

DDS-XRCE, Revised Submission 43

7.8 XRCE Object operations

7.8.1 Use of the ClientKey

All operations are performed within the context of a C1 ientKey, which is used both to authenticate and identify the
client:

e The ClientKey is assigned to each client. The C1ientKey uniquely identifies the client to a particular
agent. The ClientKey is associated with a set of permissions for the client within the agent.

e The ClientKey shall be considered secret. It must be configured both on the C1lient and in the Agent. The
creation and configuration are outside the scope of this specification.

e The ClientKey shall not be interpreted.

With the exception of the operations create_client and get_info on the XRCE Root, all other operations expect that the
ClientKey references an already exiting XRCE ProxyClient. If this is not the case, the operation shall fail.

To avoid information leakage that could compromise security, the failure to locate a C1ientKey may in some cases
result in a returnValue having STATUS ERR NOCLIENT while in others it may silently drop the connection to the
client.

The Agent shall maintain a counter on the number of times the STATUS _ERR NOCLIENT was sent on an established
connection, and once a certain threshold is crossed it shall close the connection. The Agent may subsequently refuse or
throttle new connections originating from the same client transport endpoint that was previously closed. The specific
details of this behavior are implementation-specific and left outside the scope of this specification.

7.8.2 XRCE Root
The XRCE Root object represents the Agent. An XRCE Agent is a singleton object that all agents shall instantiate.

The XRCE Root is responsible for authenticating client applications and creating the XRCE ProxyClient object
associated with each client.

The logical operations on the XRCE Root are shown in Table 5.

44 DDS XRCE Revised Submission

Table 5-- XRCE Root operations

create client ResultStatus
object_representation CLIENT_ Representation
out: agent_info AGENT _Representation
get info ResultStatus
info_mask InfoMask
client_info ObjectInfo
out: agent_info ObjectInfo
delete_client ResultStatus

7.8.2.1

Inputs

create_client

client_representation (CLIENT Representation): a representation of the Client.

Outputs

returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE
ProxyClient object.

agent_info (AGENT_Representation): a representation of the Agent.

The client_representation shall contain a CLIENT Representation which is used to initialize the XRCE
ProxyClient. This type is defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct CLIENT Representation {

}s

XrceCookie

XrceVersion

xrce cookie; // XRCE _COOKIE

xrce version;

XrceVendorId xrce vendor id;

Time t
ClientKey
SessionId

@optional

client timestamp;
client key;
session_id;

PropertySeq properties;

The agent_representation shall contain an AGENT Representation which informs the Client about the
configuration of the Agent. This type is defined in Annex A, IDL Types as:

DDS-XRCE, Revised Submission

45

@extensibility (FINAL)
struct AGENT_Representation {
XrceCookie xrce cookie; // XRCE COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
Time t agent timestamp;
@optional PropertySeq properties;
}i

The XRCE Agent shall perform the following checks and actions based on the information found within the
client_representation:

o Check the xrce_cookie to ensure it matches the predefined XRCE COOKIE constant. If it does not match the
creation shall fail and set the returnValue StatusValue to STATUS ERR INVALID DATA.

e Check that the major version (xrce_version[0]) matches the XRCE VERSION MAIJOR. If it does not match,
the creation shall fail and set the returnValue StatusValue to STATUS ERR _INCOMPATIBLE.

e Check that the Client identified by the client key is authorized to connect to the XRCE Agent. If this check
fails the operation shall fail and set the refurnValue StatusValue to STATUS ERR _DENIED.

e Check the Client properties, if present. These may contain vendor-specific information that may prevent the
Agent from accepting the connection from the C1ient. The properties field may include extra authentication
tokens (e.g. username and password) or other configuration information. If this check fails the operation shall
fail and set the returnValue StatusValue to the appropriate value.

e Check if there is an existing XRCE ProxyClient object associated with the same client_key and, if so,
compare the session_id of the existing ProxyClient with the one in the client representation:

o IfaProxyClient exists and has the same session_id, then the operation shall not perform any
action and shall set the returnValue StatusValue to STATUS OK.

o IfaProxyClient exists and has a different session_id then the operation shall delete the existing
XRCE ProxyClient object and subsequently take the same actions as if there had not been a
ProxyClient associated with the client key.

o Check that there are sufficient internal resources to complete the create operation. If there are not, then the
operation shall fail and set the refurnValue StatusValue to STATUS _ERR _RESOURCES.

The communication state between an XRCE Client and an XRCE Agent is managed by the associated
ProxyClient. Therefore deletion of an existing ProxyClient resets any prior communication state between the
client and the agent. Any messages that were cached pending acknowledgments shall be discarded.

If the Agent creates a ProxyClient object it shall:

Initialize its state to have the specified session_id.

Initialize the built-in streams with sequence number 0.

Set the returnValue StatusValue to STATUS OK.

Return a representation of the XRCE Agent in the agent_info.

The Agent and Client may use the client_timestamp and agent timestamp to detect time-synchronization differences
between the XRCE Client and the XRCE Agent. The use of this information is left outside the scope of this
specification.

The Agent and Client may use the XrceVersion and XrceVendorId to further configure their protocol.

7.8.2.2 get_info
Inputs

e info_mask (InfoMask): selects the kind of information to retrieve.

46 DDS XRCE Revised Submission

e client_info (ObjectInfo): a representation of the Client.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE
ProxyClient object.

e agent info (Objectlnfo): a representation of the Agent.
Both client_info and agent_info use the type ObjectInfo defined in Annex A, IDL Types as:
@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;

@optional ObjectVariant config;

bi

The operation get_info returns information on the XRCE Agent and may be used prior to establishing a Session with
the XRCE Agent—that is, before calling the operation create_client on the XRCE Root.

The operation get_info may be used over a different transport or connection, allowing a Client to search and discover
the presence of XRCE Agent objects and select one (or more) with a suitable configuration and availability.

The ObjectVariant member within client info shall contain a CLIENT Representation, which provides
information on the XRCE C1ient that makes the request. This type is defined in Annex A, IDL Types and also shown
in 7.8.2.1.

The client_key field of CLIENT Representation shall be set to the value CLIENTKEY INVALID (see Annex A,
IDL Types) in order to not unnecessarily disclose the ClientKey.

The ObjectVariant member within agent info shall contain an AGENT ActivityInfo which contains activity
information on the XRCE Agent. This type is defined in Annex A, IDL Types and also shown in 7.8.2.1.

The ActivityInfoVariant member within agent info shall contain an AGENT Representation, which
contains information on the XRCE Agent. This type is defined in Annex A, IDL Types

ActivityInfoVariant member address_seq shall be used to inform the XRCE Client of the transport addresses
over which it can be reached and can receive calls to create_client.

The properties field of type PropertySeq available both in the CLIENT Representation and the
AGENT Representation may be used to implement an authentication protocol for the XRCE Agent. The specific
mechanism is outside the scope of this specification.

7.8.2.3 delete_client
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

The XRCE Agent shall check the C1ientKey to locate an existing XRCE: ProxyClient. If the object is not
found the operation shall fail and returnValue StatusValue shall be set to STATUS ERR_UNKNOWN_REFERENCE.
If the object is found it shall be delete and returnValue StatusValue shall be set to STATUS OK.

DDS-XRCE, Revised Submission 47

7.8.3 XRCE ProxyClient

The XRCE ProxyClient object represents a specific XRCE Client inside a concrete XRCE Agent. The
ProxyClient object is identified by the ClientKey.

The logical operations on the ProxyClient are shown in Table 6.

Table 6 XRCE ProxyClient operations

create ResultStatus
creation_mode CreationMode
objectid_prefix ObjectldPrefix
object_representation ObjectVariant
update ResultStatus
objectid_prefix ObjectldPrefix
object_representation ObjectVariant
get_info ResultStatus
out: object_info Objectinfo
info_mask InfoMask
object_id Objectld
delete ResultStatus
object_id Objectld

7.8.3.1 create
Inputs

e creation_mode (CreationMode): controls the behavior of the operation when there is an existing object that
partially matches the description of the object that the client wants to create.

o objectid_prefix (ObjectldPrefix): configures the desired ObjectId for the created object.
e object representation (ObjectVariant): a representation of the object that the client wants to create.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object. The
object_id in the returnValue shall be derived from the object_prefix input parameter.

This operation attempts to create a XRCE object according to the specification provided in the object representation
parameter. The ObjectVariant is a union discriminated by the ObjectKind that is used to define the kind of
XRCE object being created, see 7.7.3. We will refer to this ObjectKind as the “input_objectkind”.

48 DDS XRCE Revised Submission

The object _prefix parameter contains the ObjectIdPrefix used to determine the ObjectId for the object. See
7.7.6. The combination of the objectid_prefix and the ObjectKind contained in the object_representation
discriminator shall be used to construct the “input” Object Id. We shall refer to this ObjectId as the
“input_objectid”.

The selected member of the ObjectVariant contains the information required to construct an object of
ObjectKind input_objectkind.

The creation_mode affects the behavior of the create operation as specified in Table 7.

Table 7 -- CreationMode influence on create operation

creation | creation | input Result

mode mode objectid

reuse replace exists

Don’t Don’t NO Create object according to Table 8.

care care

FALSE FALSE YES No action taken. Set the StatusValue within returnValue to:

STATUS_ERR_ALREADY_ EXISTS.

FALSE TRUE YES Delete existing object as specified by the delete operation.

Create object according to Table 8.
Set the StatusValue within returnValue to: STATUS OK.

TRUE FALSE YES Check if object_representation matches the existing Object:

If it matches no action is taken. Set the StatusValue within returnValue to:
STATUS _OK _MATCHES.

If it does not match no action is taken. Set the StatusValue within returnValue to:
STATUS_ERR_MISMATCH.

TRUE TRUE YES Check if object_representation matches the existing Object:

If it matches, no action is taken. Set the StatusValue within returnValue to:
STATUS_OK_MATCHES

If it does not match, delete existing object as specified by the delete operation and

then create a new object according to Table 8. Set the StatusValue within
returnValue to: STATUS_OK.

DDS-XRCE, Revised Submission 49

As described in 7.7.3 the ObjectVariant type used for the object_representation is a union type discriminated by the
ObjectKind. However the representations for the different kinds of objects all derive from either

OBJK Representation2 Base or OBJK Representation3 Base. Therefore they all have at least the
REPRESENTATION BY REFERENCE and the REPRESENTATION AS XML STRING. Object representations
deriving OBJK_Representation3 Base also have a REPRESENTATION_IN_BINARY.

Certain representations support the representation of nested objects. For example, as seen in 7.7.3.6.2, the XML
representation of a XRCE DomainParticipant may contain representations of nested Topic, Publisher,
Subscriber, DataWriter, and DataReader objects. In this case, the creation of the XRCE object shall also
create the nested objects and the failure to create any nested entity shall be considered a failure to create the contained
entity as well.

Some of the XRCE objects may be defined by this specification as proxies for DDS entities. In this case the creation of
the XRCE Object will automatically trigger the creation of the proxy DDS Entity. Failure to create a DDS Entity
shall be considered a failure to create the proxy XRCE object as well.

If the creation of the XRCE object fails then there should be no associated DDS-RTPS discovery traffic generated by the
Agent. This means that all DDS entities shall be created disabled, such that the creation does not result in DDS-RTPS
discovery traffic, and enabled (if so configured by their QoS) only after it has been determined that the creation has
succeeded.

If the creation succeeds the Agent shall set the StatusValue within returnStatus to STATUS OK..

The creation of XRCE objects is done in accordance to the object _representation parameter. The specific behavior
depends on the ObjectKind. See Table 8.

50 DDS XRCE Revised Submission

Table 8 Behavior of the create operation according to the ObjectKind

ObjectKind

Create behavior

OBJK QOSPROFILE

The ObjectVariant isa OBJK QOSPROFILE Representation which references
or contains a QosProfile definition.

The agent shall use that definition to create a XRCE QosProfile in accordance to the
representation defined in 7.7.3.2.

OBJK _TYPE

The ObjectVariant isa OBJK TYPE Representation which references or
contains a Type definition.

The agent shall use that definition to create a XRCE Type in accordance to the
representation defined in 7.7.3.3.

OBJK_ APPLICATION

The ObjectVariant isa OBJK APPLICATION Representation which
references or contains XRCE Application definition.

The agent shall use that definition to create a XRCE Application with all the contained
entities found within the definition in accordance to the representation defined in 7.7.3.5.

OBJK PARTICIPANT

The ObjectVariant isa OBJK PARTICIPANT Representation which
references or contains a DomainParticipant definition.

The agent shall use that definition to create a XRCE DomainParticipant and an
associated DDS DomainParticipant with all the contained entities found within the
definition in accordance to the representation defined in 7.7.3.6.

OBJK _TOPIC

The ObjectVariant isa OBJK TOPIC Representation which references or
contains a Topic definition.

The agent shall locate the XRCE DomainParticipant identified by the participant id.
If this object is not found the operation shall fail and return STATUS _
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition to create a XRCE Topic in accordance with the
representation defined in 7.7.3.7 and an associated DDS Topic. The DDS Topic shall be
created using the DomainParticipant identified by the participant id.

OBJK PUBLISHER

The ObjectVariant isa OBJK PUBLISHER Representation which references
or contains a Publisher definition.

The agent shall locate the XRCE DomainParticipant identified by the participant id.
If this object is not found the operation shall fail and return STATUS
ERR_UNKNOWN_ REFERENCE.

The agent shall use the definition to create a XRCE Publisher in accordance with the
representation defined in 7.7.3.8 and an associated DDS Publisher. The DDS
Publisher shall be created using the DomainParticipant identified by the
participant id.

OBJK_SUBSCRIBER

The ObjectVariant isa OBJK SUBSCRIBER Representation which references
or contains a Subscriber definition.

The agent shall locate the XRCE DomainParticipant identified by the participant id.
If this object is not found the operation shall fail and return STATUS
ERR UNKNOWN REFERENCE.

The agent shall use the definition to create a XRCE Subscriber in accordance with the
representation defined in 7.7.3.9 and an associated DDS Subscriber. The DDS
Subscriber shall be created using the DomainParticipant identified by the

DDS-XRCE, Revised Submission 51

participant id.

OBJK_DATAWRITER The ObjectVariant isa DATAWRITER Representation which references or
contains a DataWriter definition.

The agent shall locate the XRCE Publisher identified by the publisher_id. If this object
is not found the operation shall fail and return STATUS
ERR UNKNOWN REFERENCE.

The agent shall use the definition to create a XRCE DataWriter in accordance with the
representation defined in 7.7.3.10 and an associated DDS DataWriter. The DDS
DataWriter shall be created using the Publisher identified by the publisher _id.

OBJK DATEREADER The ObjectVariant isa DATAWRITER Representation which references or
contains a DataReader definition.

The agent shall locate the XRCE Subscriber identified by the subscriber_id. 1f this
object is not found the operation shall fail and return STATUS
ERR_UNKNOWN REFERENCE.

The agent shall use the definition to create a XRCE DataReader in accordance with the
representation defined in 7.7.3.11 and an associated DDS DataReader. The DDS
DataReader shall be created using the Subscriber identified by the subscriber_id.

7.8.3.2 update
Inputs

e object_id (Objectld): the object being updated.

e object _representation (ObjectVariant): of the updated object.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

This operation shall attempt to update an existing object in the XRCE Agent. If the object exists and the update is
successful STATUS_OK shall be returned, otherwise a status indicating an error shall be returned:

e Ifthe object does not already exist STATUS _ERR_UNKNOWN_REFERENCE shall be returned.

o If the update was unsuccessful due to invalid parameters, STATUS_ERR INVALID DATA shall be returned.
If an update is unsuccessful the referenced object shall return to its previous configuration.

e Ifthe object cannot be updated due to permission restrictions, STATUS_ERR DENIED shall be returned.

7.8.3.3 get_info
Inputs

o objectid _id (Objectld): the object queried.

e info_mask (InfoMask): selects the kind of information to retrieve.
Outputs

o returnValue (ResultStatus): indicates whether the operation succeeded.

e object_info (ObjectInfo): contains the current activity and configuration of the specified object.
This operation returns the configuration and activity data for an existing object.

e If'the object does not already exist STATUS ERR UNKNOWN REFERENCE shall be returned.

52 DDS XRCE Revised Submission

e Ifthe object cannot be accessed due to permission restrictions STATUS ERR_DENIED shall be returned.

7.8.3.4 delete
Inputs

e object_id (ObjectldPrefix): the object being deleted.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded.
This operation deletes an existing object. If the object is successfully deleted STATUS OK shall be returned.

e If'the object does not exist STATUS ERR_UNKNOWN REFERENCE shall be returned.
o If'the object cannot be deleted due to permission restrictions, STATUS ERR_DENIED shall be returned.

7.8.4 XRCE DataWriter

The operations are defined in Table 9.

Table 9 XRCE DataWriter operations

write ResultStatus
object_id Objectld
data DataRepresentation
7.8.41 write
Inputs

e object_id (Objectld): the object that shall publish the data.
e data (DataRepresentation): data to be written.
Outputs

o returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object. The
object_id in the returnValue shall be set to match the object_id input parameter.

This operation writes one or more samples using the XRCE DataWriter identified by the object id.

e Ifthe data is successfully written STATUS OK shall be returned.

o If the XRCE DataWriter object identified by the object_id does not exist, the ResultStatus
STATUS_ERR_UNKNOWN_REFERENCE shall be returned.

e Ifthe client is not allowed to write data using the referenced object_id due to permission restrictions, the
ResultStatus STATUS ERR DENIED shall be returned.

e Ifthe data could not be written successfully due, for example invalid data format, the ResultStatus
STATUS ERR INVALID DATA shall be returned.

The DataRepresentation type (see 7.7.2) supports multiple DataFormats. This allows sending single data items
(FORMAT _DATA) as well as sequences (batches) of data items (FORMAT _SAMPLE SEQ).

The DataRepresentation type also supports sending sample information in addition to the data. This is encoded in
the SampleInfo type (see 7.7.1) allowing sending timestamps and also notifications of dispose and unregister.

DDS-XRCE, Revised Submission 53

If the DataRepresentation contains a Sample where the SampleInfo has the “dispose” flag set, the XRCE
Agent shall call the dispose operation on the corresponding DDS DataWriter for the instance identified in the
associated data. Similarly there is a Sample where the SampleInfo has the “unregister” flag set, the XRCE Agent
shall call the unregister operation on the corresponding DDS DataWriter for the instance identified in the associated
data.

7.8.5 XRCE DataReader

The operations are defined in Table 10 .

Table 10 XRCE DataReader operations

read ResultStatus
out: read_data DataRepresentation
object_id Objectld
read_specification ReadSpecification

7.8.5.1 read

Inputs

e object id (Objectld): the object to read data from.

o read _specification (ReadSpecification): the operation will only return data that matches the constraint.
Outputs

o returnValue (ResultStatus): indicates whether the operation succeeded.

e data_read (DataRepresentation): data matching the read spec or nil if there was an error.

This operation reads one or more samples from the XRCE DataReader identified by the object_id. 1f the data is
successfully read STATUS_OK shall be returned.

o Ifthe object does not exist STATUS _ERR_UNKNOWN_REFERENCE shall be returned.
o Ifthe client is not allowed to read data using the referenced object_id due to permission restrictions,
STATUS_ERR_DENIED shall be returned.

The read_spec parameter controls the data returned by this operation. The fields of this structure shall be interpreted as
described in Table 11.

Table 11 Interpretation of the ReadSpecification

field type interpretation
data_format DataFormat Selects one the data formats. See 7.7.1
content filter expression string A content filter expression selecting which data to read. The syntax

shall be as specified in Annex B (Syntax for Queries and Filters) of
the DDS specification [DDS].

max_samples unsigned short | Maximum number of samples to return as a result of the read.

(DataDeliveryControl) The special value MAX_SAMPLES ZERO =0 is used to cancel any

54 DDS XRCE Revised Submission

prior read operation that may still be active.

The special value MAX SAMPLES UNLIMITED =0xftff is used to
indicate that there is limit on the number of samples returned.

max_elapsed time unsigned short | Maximum amount of time in seconds that may be spent delivering

) the samples from the read operation.
(DataDeliveryControl)

The units are seconds from the time the call is made.

The special value MAX ELAPSED TIME UNLIMITED =0
indicates there is no maximum and the operation shall continue until
some other condition is met or the operation is explicitly cancelled.

max_bytes per sec unsigned short | Maximum rate in bytes per second at which the data may be returned
) to the read operation.

(DataDeliveryControl)

min_pace_period unsigned short | Minimum separation between data messages returned from the read

operation in milliseconds.

(DataDeliveryControl)

The setting of the data_format controls whether the read operation returns a single sample per message or a collection of
samples. It also determines whether the data or it includes the additional information that appears in the SampleInfo
(see Annex A IDL Types). The additional information contains sequence numbers and time stamps.

The setting of the content filter expression configures a content filter that is applied to the samples in the DataReader
cache. Only samples for which the filter evaluates to TRUE shall be returned to the XRCE Client.

The setting of the max_samples configures the read operation to terminate after the specified number of samples has
been returned. The value MAX _SAMPLES ZERO can be used to cancel the currently active read operation without
sending any more samples. The value MAX _SAMPLES UNLIMITED indicates there is no limit to the number of
samples returned.

The setting of the max_elapsed_time configures the read operation to terminate after the specified time has elapsed from
the moment the read operation was made. The value MAX _ELAPSED TIME UNLIMITED indicates that there is no
termination condition based on the elapsed time.

The setting of the max_bytes _per_sec configures the maximum rate in bytes per second at which samples may be
returned.

The setting of the min_pace_period configures the minimum interval in milliseconds between the sample messages sent
from the Agent to the Client. This period makes it possible for the client to go into a sleep cycle between messages.

DDS-XRCE, Revised Submission 55

8 XRCE Protocol

8.1 General

The XRCE Agent implements the operations specified in the DDS-XRCE Object Model that are driven by messages
between the XRCE Client and XRCE Agent. The DDS-XRCE message protocol is designed specifically to address
the limited CPU, power, and network bandwidth found in many types of low-powered devices and to enable the device
to be discoverable in the larger DDS network. Specifically, it is designed to meet the unique challenges posed by these
types of devices. The main features include:

e Operate over networks with bandwidth limited to 40-100Kbps.

e Work with devices that undergo sleep cycles. These devices may be active once every few minutes, days,
months, or even years.

e Be simple and programming-language independent, supporting devices that are programmed in a highly
specialized language or frameworks.

e Support a minimal discovery protocol, allowing plug-and-play deployments where the Agent location is
dynamically discovered.

e Support accessing the full capabilities of DDS. Any data type can be published or subscribed to with any DDS
QoS.

e Support sending updates to multiple data-times on the same or multiple DDS Topics efficiently.

e Support receiving information both reliably and in a best effort manner, even if the information was sent while
the Client was undergoing a sleep cycle.

e Support secure communication at the transport level.

e Provide full read/write access to any data in the DDS Global Data Space (subject to access control limits).

e Provide a full implementation requiring less than 100KB of code.

In contrast to applications that use the DDS API directly, XRCE Clients:

e Do not have a standard API, so they are not portable across vendor implementations.

e Cannot operate without infrastructure support. They need a XRCE Agent to be reachable to them. This is a
necessary consequence of the need for XRCE Clients to undergo deep sleep cycles.

e Do not communicate directly peer-to-peer. All communications are brokered (relayed) by one or more DDS-
XRCE Agents. This is also a necessary consequence of the need for Clients to undergo deep sleep cycles.

8.2 Definitions

XRCE Clients and XRCE Agents exchange messages to execute operations on the XRCE Agent and return results.
The DDS-XRCE Protocol uses the terms client, agent, session, and message defined in the subclauses below.

At a high level, a client communicates with an agent using the DDS-XRCE protocol, exchanging messages on a stream
belonging to a session.

8.2.1 Message

A message is the unit of information sent via the transport and is a structured sequence of bytes sent on a DDS-XRCE
transport. A message has a sequence number that is used for ordering of messages, or for identifying messages that have
been dropped by the transport.

The underlying XRCE Transport shall transfer each message as a unit. A single XRCE Transport “message” shall
transport a single XRCE message.

XRCE messages shall be encoded assuming the first byte has a 16-byte alignment. Therefore the encoding is
independent of any transport heading or prefix that may precede it.

56 DDS XRCE Revised Submission

8.2.2 Session

A session defines a bi-directional connection between a client and an agent that has been established with a handshake.
The session is needed to exchange messages with the XRCE agent. An XRCE client may send messages over multiple
sessions, for example if it communicates with multiple XRCE agents.

A session can contain independent, reliable, and best-effort message streams. Each session may have up to 256 streams.

There can be at most one active session between an XRCE client and an XRCE agent. Creation of a new session closes
any previous sessions.

8.2.3 Stream

A stream represents an independent ordered flow of messages within a session. Messages are ordered within a stream
by means of a sequence number. The sequence numbers used by different streams are independent of each other.

Streams can be reliable or best efforts. Each stream uses a constant endianness to encode the data in the
message/submessage headers and payload.

8.2.4 Client

An XRCE client is the entity that initiates the establishment of a session with an XRCE agent. An XRCE client may
send and receive messages to the agent on streams belonging to an established XRCE session.

8.2.5 Agent

An XRCE agent is the entity that listens to and accepts requests to establish sessions from XRCE clients. An XRCE
agent may send and receive messages to a client on streams belonging to an established session.

8.3 Message Structure

8.3.1 General

An XRCE message is composed of a message Header followed by one or more Submessages and shall be
transferred as a unit by the underlying XRCE Transport.

Message

A
(A

Header | Submessage Submessage Submessage

Figure 6 — Message structure

8.3.2 Message Header

The header is structured as follows:

DDS-XRCE, Revised Submission 57

o
+
H
o
N
1NN
w
-

- e - —_— +
| sessionId | streamId | sequenceNr |
- f—_—_— —— ——_— +
| clientKey (if sessionId <= 127) |
o o Fo——— fom e —— o +

8.3.2.1 Sessions and the sessionld

An XRCE session is established between the XRCE Client and XRCE Agent to establish an initial context for the
communications. This includes the exchange of protocol versions, vendor identification, and other information needed to
correctly process messages.

A session is identified by an 8-bit sessionld. The sessionld is unique to an XRCE Agent for a given XRCE Client.
The sessionld also determines whether the Header includes a clientKey or not.

o Ifthe sessionld is between 0 and 127 (0x00 to 0x7f), both included, then the Header shall include the
clientKey and the sessionld is scoped by the clientKey.

o Ifthe sessionld is between 128 and 255 (0x80 to 0xff), both included, then the Header shall not include the
clientKey and the sessionld is scoped by the source address of the message.

If the clientKey does not appear explicitly in the message header, the XRCE Agent must be able to locate it from the
source address of the message (see clause 8.3.2.4).

The following two values of the sessionld are reserved:

e The value 0 (0x00) shall be used to indicate the lack of a session within a Header containing a clientKey. This
value is referred to as SESSION ID NONE WITH CLIENT_KEY.

e The value 128 (0x80) shall be used to indicate the lack of a session within a Header that does not contain a
clientKey. This value is referred to as SESSION _ID NONE WITHOUT CLIENT KEY.

8.3.2.2 Streams and the streamid

An XRCE stream represents an independent flow of information between a XRCE Client and a XRCE Agent. Each
XRCE message belongs to a single stream. Messages belonging to the same stream must be delivered in the order they
are sent. Messages belonging to different streams are not ordered relative to each other.

Streams are scoped by the session they belong to.

The streamId with value 0 (0x00) is referred as STREAMID NONE. This stream is used for messages exclusively
containing submessages that do not belong to any stream.

The streams with streamlId between 1 (0x01) and 127 (0x7F), both included, shall be best-effort streams.
The streams with streamld between 128 (0x80) and 255 (0xFF), both included, shall be reliable streams.

Based on the rules above if the streamld is not STREAMID NONE, then the leading bit of the streamld can be
interpreted as a flag that indicates the reliability of the stream.

There are two built-in streams that are created whenever a session is created:

e A built-in best-effort stream identified by a streamld with value 1 (0x01). This is referred to as
STREAMID BUILTIN BEST EFFORTS.

58 DDS XRCE Revised Submission

e A built-in reliable stream identified by a streamld with value 128 (0x80). This is referred to as
STREAMID BUILTIN RELIABLE.

8.3.2.3 sequenceNr

The sequenceNr is used to order messages within a stream and it is scoped to the stream. Messages belonging to
different streams are unordered relative to each other:

e For the stream with streamld STREAMID NONE, the sequenceNr does not impose any order; however it still
may be used to discard duplicate messages.

e For the stream with streamId different from STREAMID NONE, the sequenceNr imposes an order. Messages
within a stream shall not be delivered out of order. In addition duplicate messages shall be discarded.

Addition and comparison of sequence numbers shall use Serial Number Arithmetic as defined by [IETF RFC-1982] with
SERIAL BITS set to 16. This implies that the maximum number of outstanding (unacknowledged) messages for a
specific client session stream is limited to 2'°—that is, 32768.

The sequenceNr shall be encoded using little endian format.

8.3.2.4 clientKey
The clientKey uniquely identifies and authenticates an XRCE Client to the XRCE Agent.
The clientKey shall be present on the Header if the sessionld is between 0 and 127. See clause 8.3.2.1:

o If'the clientKey is present, it shall contain the C1ientKey associated with the XRCE Client.

o If'the clientKey is not present, the XRCE Agent shall be able to derive the C1ientKey associated with the
XRCE Client from the source address of the message. This means that the C1ientKey has either been pre-
configured on the XRCE Agent for that particular source address, or it has been exchanged as part of the session
establishment. See clause 7.8.2.1.

Any exchange of the clientKey is protected by the security mechanisms provided by the XRCE transport. These security
mechanisms are transport-specific and may involve a pairing of each device with the agent or some initial handshake
used to establish a secure transport connection. The specific transport security mechanisms are outside the scope of this
specification.

8.3.3 Submessage Structure

Following the message header there shall be one or more submessages. A Submessage shall be composed of a
SubmessageHeader and a payload.

0 4 8 16 24 31
e e e e —— o — +
| submessageHeader (4 Bytes) |
e ———————— o ———————— o —_———————— e —_—_—_——————— +
~ payload (up to to 64 KB) ~
e B e e —_———————— tm——_—_——————— +

The ability to place multiple Submessages within a single message reduces bandwidth by enabling multiple resources to
be operated on with a single message.

Submessages shall start at an offset that is a multiple of 4 relative to the beginning of the Message. This means that
additional padding may be added between the end of a submessage and the beginning of the next submessage.

8.3.4 Submessage Header

Every Submessage shall start with a SubmessageHeader. The SubmessageHeader shall be structured as
follows:

DDS-XRCE, Revised Submission 59

- - e ——_———————— t———_——_————_———— - t———————————————— +
| submessageld | flags | submessageLength |
- t—————— tm—————————— e —_——_————_—— t————_—_———————— - +

8.3.4.1 submessageld

The submessageld identifies the kind of submessage. The kinds of submessages are defined in 8.3.5.

8.3.4.2 flags
The flags field contains information about the content of the Submessage.

Bit 0, the ‘Endianness’ bit, shall indicate the endianness used to encode the submessage header and payload. If the
Endianness bit is set to 0, the encoding shall be big endian and otherwise little endian.

The flags field for all submessage kinds shall have the Endianness bit. Specific submessage kinds may define additional
flag bits.

8.3.4.3 submessagelLength
The submessageLength indicates the length of the Submessage (excluding the Submessage header).

The submessageLength shall be encoded using little endian format, independent of the value of the flags.

8.3.4.4 payload

The payload contains information specific to the submessage whose format depends on the kind of submessage
identified by the submessageld.

The definition of the payload shall use the data types defined in clause 7.7. See clause 8.3.5 and its subclauses.

8.3.5 Submessage Types
DDS-XRCE defines the 13 kinds of Submessages shown in the figure below:

class Submessages /
DDSXRCE::Submessage::
SubmessageHeader DDSXRCE::Submessage
submessageld: byte 1 <}
flags: byte
submessagelength: short] ?
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Sub ag Sub 8B Sub B Submessage::
CREATE GET_INFO WRITE_DATA DATA RESET FRAGMENT
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Sub g Sub B Sub g Sub! :INFO| Sub ge:: Sub B Subr ge::
CREATE_CLIENT DELETE READ_DATA STATUS ACKNACK HEARTBEAT

Figure 7 — DDS-XRCE submessages

60 DDS XRCE Revised Submission

Each submessage is identified by the submessageld. Some submessages may only be sent in one direction (e.g. only
XRCE Client to XRCE Agent or only XRCE Agent to XRCE Client) whereas others are bi-directional.

Table 12 — List of Submesageld values and their purpose

Submessageld

CREATE_CLIENT

Value

0

Purpose

Client to Agent. Initiates the connection between Client and Agent. Creates a
ProxyClient on the Agent.

Causes the Agent to call the Root::create_client operation.

CREATE

Client to Agent. Creates an XRCE Object.

Causes the Agent to call the ProxyClient::create operation.

GET_INFO

Client to Agent. Requests information on an XRCE Object.

Causes the Agent to call the operation Root::get info or ProxyClient::get info.

DELETE

Client to Agent. Deletes an object or set of XRCE Objects.

Causes the Agent to call the ProxyClient::delete operation or the
Root::delete_client operation.

STATUS_AGENT

Agent to Client. Sent in response to CREATE CLIENT. Contains information about
the Agent.

Carries the return value of the Root::create_client operation.

STATUS

Agent to Client; typically in response to CREATE, UPDATE or DELETE. Contains
information about the status of an Xrce object.

Carries the return value of the ProxyClient::create, update, or delete operations.

INFO

Agent to Client. Typically sent in response to a GET INFO. Contains detailed
information about an Xrce: Object or the XRCE Agent.

Carries the return value of the operation Root::get_info or ProxyClient::get info

WRITE_DATA

Client to Agent. Used to write data using a XRCE DataWriter.

Causes the Agent to call the ProxyClient::write operation.

READ DATA

Client to Agent. Used to read data using a XRCE DataReader.

Causes the Agent to call the ProxyClient::read operation.

DATA

Agent to Client in response to a READ DATA provides data received by a XRCE
DataReader.

Carries the return value of the ProxyClient::read operation.

ACKNACK

10

Bi-directional. Sends a positive and/or negative acknowledgment to a range of
sequence numbers.

DDS-XRCE, Revised Submission

61

HEARTBEAT 11 Bi-directional. Informs of the available sequence number ranges.

RESET 12 Bi-directional. Resets a session.

FRAGMENT 13 Bi-directional. Communicates a data fragment. Used to send messages of size larger
than what is supported by the underlying transport.

8.3.5.1 CREATE_CLIENT
The CREATE_CLIENT submessage shall be sent by the XRCE Client to create a XRCE ProxyClient.

Reception of this submessage shall result in the XRCE Agent calling the create_client operation on the XRCE Root
object, see 7.8.2.1. The parameters to this operation are obtained from the payload.

The XRCE Agent shall send a STATUS_AGENT message in response, see 0.

8.3.5.1.1 flags

The CREATE_CLIENT submessage does not define any additional flag bits beyond the common ones specified in
8.3.4.2.

8.3.5.1.2 payload

The payload shall contain the XCDR representation of the CREATE _CLIENT Payload object defined in Annex A
IDL Types as:

@extensibility (FINAL)

struct CLIENT_Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;

XrceVendorId xrce vendor id;

Time t client timestamp;
ClientKey client key;
SessionId session_id;

@optional PropertySeq properties;
}i

@extensibility (FINAL)
struct CREATE CLIENT Payload : BaseObjectRequest {

CLIENT Representation client representation;

b

The payload contains the client_representation input parameter to the create_client call.

8.3.5.2 CREATE

The CREATE submessage shall be sent by the XRCE Client to create a XRCE Object. An example is creating an
XRCE:DataWriter with a QoS profile.

62 DDS XRCE Revised Submission

Reception of this submessage shall result in the XRCE Agent calling the create operation on the XRCE ProxyClient
object, see 7.8.3.1. The parameters to this operation shall be obtained from the SubmessageHeader flags and
payload.

The XRCE Agent shall send a STATUS submessage in response, see 8.3.5.6.

8.3.5.21 flags

The CREATE submessage defines two additional flag bits that encode the creation_mode input parameter to the create
call:

Bit 1, the ‘Reuse’ bit, encodes the value of the CreationMode reuse field.
Bit 2, the ‘Replace’ bit, encodes the value of the CreationMode replace field.

These flag bits modify the behavior of the XRCE Agent receiving the CREATE message. See clause 7.8.3.1.

8.3.5.2.2 payload

The payload shall contain the XCDR representation of the CREATE Payload object defined in Annex A IDL Types
and also shown below. See also 7.7.3 for the definition and interpretation of the ObjectVariant:

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest {
ObjectVariant object representation;
bi
The payload derives from BaseObjectRequest, which contains the object_id parameter to the create call.

The payload contains the object_representation input parameter to the create call.

8.3.5.3 GET_INFO

The GET_INFO submessage shall be sent by the XRCE Client to get information about a resource identified by its
object id.

Reception of this submessage shall result in the XRCE Agent calling the get_info. The targeted XRCE Object shall
depend on the ObjectKind encoded in the last 4 bits of the object id.

o Ifthe ObjectKind is set to OBJK AGENT, then it shall result in the XRCE Agent calling the get_info
operation on the XRCE Root object (see 7.8.3.3).

e Ifthe ObjectKind is set to one of OBJK PARTICIPANT, OBJK, OBJK PUBLISHER,
OBJK_SUBSCRIBER, OBJK DATAWRITER, OBJK DATAREADER, OBJK TYPE,
OBJK_QOSPROFILE, or OBJK APPLICATION. That is to a value between 0x01 and 0x0Oc (both included),
then it shall result in the XRCE Agent calling the get_info operation on the XRCE ProxyClient object (see
7.8.3.3).

The parameters to this operation shall be obtained from the payload.

The XRCE Agent shall send an INFO submessage in response to this message, see 8.3.5.6.

8.3.5.3.1 flags

The GET_INFO submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.
8.3.5.3.2 payload

The payload shall contain the XCDR representation of the GET INFO Payload object defined in Annex A IDL Types
as:

DDS-XRCE, Revised Submission 63

bitmask InfoMask {
@position(0) INFO CONFIGURATION,
@position(l) INFO ACTIVITY
}i
@extensibility (FINAL)
struct GET_ INFO_ Payload : BaseObjectRequest {
InfoMask info mask;
}i
The payload derives from BaseObjectRequest, which contains the object_id parameter to the get_info call.

The payload also contains the info_mask input parameter to the get_info call.

8.3.5.4 DELETE

The DELETE submessage shall be sent by the XRCE Client to delete the XRCE:ProxyClient or any other XRCE
Object (e.g. XRCE:DataWriter).

Reception of this submessage shall result in the XRCE Agent calling either the delete client operation on the
XRCE Root (see 7.8.2.3), or else the delete operation on the XRCE ProxyClient object (see 7.8.3.4).

The related XRCE Object is identified by the object id field in the payload.

If the ObjectVariant contained within the payload has ObjectKind set to OBJK CLIENT, then the XRCE Agent
shall call the delete client operation. Otherwise it shall call the delete operation.

The parameters to the delete client or the delete operation shall be obtained from the payload.

The XRCE Agent shall send a STATUS submessage in response, see 8.3.5.6.

8.3.5.4.1 flags

The DELETE submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.54.2 payload

The payload shall contain the XCDR representation of the DELETE_Payload object defined in Annex A IDL Types
as:

@extensibility (FINAL)

struct DELETE Payload : BaseObjectRequest {

}i

The payload derives from BaseObjectRequest which contains the object id that identifies the XRCE Object to
delete.

8.3.5.5 STATUS_AGENT

The STATUS_AGENT submessage shall be sent by the XRCE Agent in response to a CREATE_CLIENT
submessage.

The submessage shall contain the returnStatus to the create_client operation invocation that was triggered by the
reception of the corresponding CREATE_CLIENT message.

64 DDS XRCE Revised Submission

8.3.5.5.1 flags

The STATUS_AGENT submessage does not define any additional flag bits beyond the common ones specified in
8.3.4.2.

8.3.5.5.2 payload

The payload shall contain the XCDR representation of the STATUS AGENT Payload object defined in Annex A IDL
Types as:

@extensibility (FINAL)

struct AGENT_Representation {
xrce_cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
Time t agent timestamp;
@optional PropertySeq properties;

}i

@extensibility (FINAL)

struct STATUS AGENT Payload : BaseObjectReply {
AGENT Representation agent info;

}i

If the operation fails, the STATUS AGENT Payload shall have the ResultStatus within the

BaseObjectReply setto with the StatusValue that corresponds to the type of error encountered. Otherwise, it
shall have it set to STATUS_OK.

The request_id and object_id within the BaseObjectReply shall match the namesake fields in the
BaseObjectRequest ofthe corresponding CREATE_ CLIENT message.

The xrce_cookie shall be set to the four bytes {‘X’, ‘R’, ‘C’, ‘E’}.

The xrce_version shall be set to the version of the XRCE protocol that the Agent will implement in its connection to
the Client.

8.3.5.6 STATUS
The STATUS submessage shall be sent by the XRCE Agent in response to a CREATE or DELETE.

The STATUS submessage shall also be sent by the XRCE Agent in response to a READ_DATA submessage when the
returnStatus to the read_data operation is anything other than STATUS OK.

The STATUS submessage shall contain the returnStatus to the operation that was triggered by the corresponding
request message. For example, if the request message was a CREATE, the STATUS payload shall contain the
returnStatus to the create operation.

8.3.5.6.1 flags

The STATUS submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

DDS-XRCE, Revised Submission 65

8.3.5.6.2 payload

The payload shall contain the XCDR representation of the STATUS Payload object defined in Annex A IDL Types
as:

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
};

If the operation fails, the ResultStatus within the BaseObjectReply shall be set to the StatusValue that
corresponds to the type of error encountered. Otherwise, it shall have it set to STATUS OK.

The request _id and object_id within the BaseObjectReply shall match the namesake fields in the corresponding
request message.

8.3.5.7 INFO
The INFO submessage shall be sent by the XRCE Agent to the XRCE Client inresponse to a GET_INFO message.

The submessage contains the refurnStatus and output parameters of the get info operation that was triggered by the
corresponding request message.

8.3.5.7.1 flags

The INFO submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.7.2 payload

The payload shall contain the XCDR representation of the INFO _Payload object defined in Annex A IDL Types. See
also clause 7.7.13 for a description of the ObjectInfo contained in the payload.

@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;
}i

@extensibility (FINAL)

struct INFO Payload : BaseObjectReply {
ObjectInfo object info;

}i

If the operation fails the ResultStatus within the BaseObjectReply shall be set to the StatusValue that
corresponds to the type of error encountered. Otherwise it shall have it set to STATUS OK.

The request _id and object_id within the BaseObjectReply shall match the identically named fields in the
BaseObjectRequest ofthe corresponding GET INFO message.

The activity and config within members within the INFO Payload shall contain the value of the identically named
output parameters of the get info operation.

66 DDS XRCE Revised Submission

8.3.5.8 WRITE_DATA

The WRITE_DATA submessage is used by the XRCE Client to write data using a XRCE DataWriter object
within the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the write operation on a XRCE DataWriter
object (see 7.8.4.1). The XRCE Agent shall respond with a STATUS submessage.

The data parameter to the write operation shall be obtained from the payload.
The related XRCE DataWriter is identified by the object_id field in the payload.

Upon reception of this message the XRCE Agent shall located the XRCE DataWriter identified by the object_id
and use it to write the data to the DDS domain.

8.3.5.8.1 flags
The WRITE_DATA sub-message uses the lowest order 4 bits of the flags:
e Bit 0 indicates the ‘Endianness’ as specified in 8.3.4.2.

e Bits 1, 2, and 3 shall be set to indicate the DataFormat used for the payload. The possible values are as
indicated in Table 13 below.

Table 13 — Flag bits used by the WRITE_DATA and DATA submessages

Lowest order 4 bits of flags. Bit 0 encodes the Endianness
DataFormat
Big Endian Little Endian
FORMAT DATA 0000 = 0x0 0001 = Ox1
FORMAT SAMPLE 0010 = 0x2 0011 = 0x3
FORMAT DATA SEQ 1000 = 0x8 1001 = 0x9
FORMAT SAMPLE_ SEQ 1010 = 0xA 1011 = 0xB
FORMAT PACKED SAMPLES 1110 = OxE 1111 = OxF

For example, if the payload of the WRITE_DATA message uses FORMAT DATA SEQ and is encoded as Little Endian,
the corresponding 8-bit options would be set to binary 00001001, hexadecimal 0x09. The lowest order bit (bit 0) is set
to 1 to indicate Little Endian encoding, and bits 1-3 are set to 0, 0, and 1, respectively, to indicate FORMAT DATA SEQ.

8.3.5.8.2 payload

The format the payload depends on the DataFormat encoded in the flags (see 8.3.5.8.1). The correspondence shall be
as shown in Table 14 below.

DDS-XRCE, Revised Submission 67

Table 14 — Payload format associated with each DataFormat

DataFormat Contents of payload.
See Annex A IDL Types for the definition
FORMAT DATA struct WRITE DATA Payload Data
FORMAT SAMPLE struct WRITE DATA Payload Sample
FORMAT DATA SEQ struct WRITE DATA Payload DataSeq
FORMAT SAMPLE SEQ struct WRITE DATA Payload SampleSeq
FORMAT PACKED SAMPLES struct WRITE DATA Payload PackedSamples

The types referenced shall be as defined in Annex A IDL Types. All the WRITE_DATA payload representations extend
BaseObjectRequest

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
}i

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest {
SampleData data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest ({
Sample sample;

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {
sequence<SampleData> data seq;

}i

68 DDS XRCE Revised Submission

@extensibility (FINAL)
struct WRITE DATA Payload SampleSeq : BaseObjectRequest {
sequence<Sample> sample seq;

i

@extensibility (FINAL)
struct WRITE DATA Payload PackedSamples : BaseObjectRequest {
PackedSamples packed samples;

i

8.3.5.9 READ_DATA

The READ_DATA submessage is used by the XRCE Client to initiate a reception (read) of data from a XRCE
DataReader object within the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the read operation on a XRCE DataReader
object (see 7.8.5.1) one or more times. Depending on the returnStatus, the XRCE Agent may respond with a DATA
submessages or a STATUS submessage.

The read_specification parameters to the read operation shall be obtained from the payload.

The payload also configures whether there is a single or multiple calls to the read operation.

The XRCE Agent shall send one or more DATA submessages in response to this message, see 8.3.5.10.
The related XRCE DataReader is identified by the object_id field in the payload.

After reception of this message, the XRCE Agent shall continue to send DATA submessages to the client until either the
“end criteria” specified in the payload read_specification and continuous_read_options attained or else a new
READ_DATA message for the same object_id is received from the XRCE Client.

The read operation also allows a XRCE Client to control when data may be sent by the XRCE Agent so that the Agent
does not unnecessarily wake up the Client during its sleep cycle.

8.3.5.9.1 flags

The READ_DATA submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.9.2 payload

The payload shall contain the XCDR representation of the READ DATA Payload object defined in Annex A IDL
Types as:

@extensibility (APPENDABLE)

struct DataDeliveryControl ({
unsigned short max samples;
unsigned short max elapsed time;

unsigned short max bytes per second;

DDS-XRCE, Revised Submission 69

unsigned short min pace period; // milliseconds
}i
@extensibility (FINAL)
struct ReadSpecification ({
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

}s

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest {
ReadSpecification read specification;
}i
The payload derives from BaseObjectRequest which contains the object id parameter to the read call.

The payload also contains the read_specification input parameter to the read call.
The max_samples may take two special values:

e The value MAX SAMPLES ZERO shall be used to cancel the currently active read operation without sending
any more samples.

e The value MAX SAMPLES UNLIMITED indicates there is no limit in the number of samples returned from a
single call to the read operation.

The setting of the max_bytes per_sec configures the maximum rate at which DATA messages may be returned.
The optional member continuous_read_options configures whether the Agent will perform one or multiple read calls:

o If'the continuous_read_options member is not present, then the Agent shall call the read operation just once.
As a result the only data returned will be the one already in the DDS DataReader cache.

o If'the continuous_read_options member is present, then the Agent shall call the read operation multiple
times. The period of calling shall be no faster than the pace period. As a result the data returned may contain
data that arrives to the DDS DataReader in the future. The Agent shall stop calling the read operation once
either max_total_samples have been returned, or else max_total_elapsed time has elapsed.

The member max_total_samples may take the special value MAX ELAPSED TIME UNLIMITED. This value shall
indicate that there is no termination condition based on the elapsed time.

The member min_pace_period may take the special value MIN PACE_PERIOD NONE. This value shall indicate that
there is no minimum time interval between samples.

8.3.5.10 DATA

The DATA submessage shall be sent by the XRCE Agent to the XRCE Client in response to a READ DATA message
when the read operation performed by the XRCE Agent returns STATUS OK. If the read operation returns any other
status the XRCE Agent shall send a STATUS message, not a DATA message.

The submessage contains output parameters of the read operation on the XRCE DataReader that was triggered by the
READ_DATA message. The refurnStatus is implied to be STATUS OK.

70 DDS XRCE Revised Submission

A single READ_DATA message may result on multiple, possible an open-ended sequence, of DATA submessages sent
as a response by the XRCE Agent. The DATA messages will continue to be sent until the one of the terminating
conditions on the READ_DATA operation is reached, or until it is explicitly cancelled.

The request _id and object_id within the DATA payload shall match the namesake fields in the corresponding
READ_DATA message.

8.3.5.10.1 flags

The DATA submessage uses the lowest order 4 bits of the flags. The flags shall be interpreted the same way as the flags
of the WRITE DATA submessage. See 8.3.5.8.1.

8.3.5.10.2 payload

The format the payload shall match the one requested in the READ_DATA message having the matching request _id. It
shall also match the DataFormat encoded in the flags as shown in Table 13 — Flag bits used by the WRITE DATA
and DATA submessages. The correspondence shall be as shown in Table 15 below.

Table 15 — Payload format associated with each DataFormat

DataFormat Contents of payload.

See Annex A IDL Types for the definition

struct DATA Payload Data
FORMAT DATA - -

struct DATA Payload Sample
FORMAT SAMPLE

struct DATA Payload DataSeq
FORMAT DATA SEQ - -

struct DATA Payload SampleSeq
FORMAT SAMPLE SEQ - -

struct DATA_Payload PackedSamples

FORMAT_PACKED SAMPLES

The types referenced in Table 15 shall be as defined in Annex A IDL Types:
@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
bi
@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
bi

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest {
SampleData data;

}i

DDS-XRCE, Revised Submission 71

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {

Sample sample;

@extensibility (FINAL)
struct DATA Payload DataSeqg : RelatedObjectRequest {
sequence<SampleData> data seq;

}s

@extensibility (FINAL)
struct DATA Payload SampleSeqg : RelatedObjectRequest {
sequence<Sample> sample seq;

}i

@extensibility (FINAL)
struct DATA Payload PackedSamples : RelatedObjectRequest {
PackedSamples packed samples;

}i

All the DATA payload representations extend RelatedObjectRequest. The request id and object _id within the
RelatedObjectRequest shall match the namesake fields in the corresponding READ_DATA message

8.3.5.11 ACKNACK

The ACKNACK submessage is used to enable a transport independent reliability protocol to be implemented. If the
transport used for a session is able to reliably send messages in case of disconnection or a wakeup/sleep cycle then these
messages may not be required.

This specification does not dictate whether ACKNACK messages shall be sent only in response to HEARTBEAT.
messages or can also be sent whenever one side detects message loss. However, in general it is expected that it is the
XRCE Client that initiates any synchronization and therefore the XRCE Agent will only send ACKNACK messages
in response to HEARTBEAT messages. This is because a XRCE C1lient may not be continually available as it goes
on sleep cycles.

The ACKNACK message is directed to the same session and stream indicated in the MessageHeader (see 8.3.2). For
this reason, it does not contain an ObjectId.

The sequenceNr present in the MessageHeader (see 8.3.2) shall not be interpreted as a sequence number belonging to
the session. Rather it is interpreted as an epoch that mat be used to discard old or duplicate ACKNACK messages.

8.3.5.11.1 flags

The ACKNACK submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

72 DDS XRCE Revised Submission

8.3.5.11.2 payload

The ACKNACK submessage payload shall contain information about the state of the Session and Stream. The
payload shall contain the XCDR representation of the ACKNACK _Payload object defined in Annex A IDL Types:

struct ACKNACK Payload {
short first unacked seq num;
octet[2] nack bitmap;

}i

The first unacked_seq num shall indicate that all sequence numbers up to but not including it have been received.

The nack_bitmap shall indicate missing sequence numbers, starting from first_unacked seq num.

For example, an ACKNACK _Payload having first unacked_seq_num set to 100 and nack_bitmap set to 0x4009 (in
binary 0100 0000 0000 1001) would indicate that all sequence numbers up to and including 99 have been received.
Furthermore it would also indicate that sequence numbers 100, 103, and 114 are missing.

8.3.5.12 HEARTBEAT
The HEARTBEAT submessage is used to enable a transport independent reliability protocol to be implemented.

This specification does not limit a session to use a particular type of transport. If a session transport is able to reliably
send messages in case of disconnection or a wakeup/sleep cycle then these messages may not be required.

This specification does not dictate the timing of HEARTBEAT messages. However, in general it is expected that it is
the XRCE Agent will only send HEARTBEAT messages when it has some indication that the XRCE Client is
active and not in a sleep cycle. This is to avoid awakening the XRCE Client unnecessarily.

The HEARTBEAT message is directed to the same Session and Stream indicated in the MessageHeader. For
this reason it does not contain an ObjectId.

The sequenceNr present in the MessageHeader (see 8.3.2) shall not be interpreted as a sequence number belonging to
the session. Rather it is interpreted as an epoch that mat be used to discard old or duplicate ACKNACK messages.

8.3.5.12.1 flags
The HEARTBEAT submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.12.2 payload

The HEARTBEAT submessage payload shall contain information about the state of the Session and Stream. The
payload shall contain the XCDR representation of the HEARTBEAT Payload object defined in Annex A IDL Types:

@extensibility (FINAL)
struct HEARTBEAT Payload ({
short first unacked seq nr;
short last unacked seq nr;
}i
The first unacked _seq nr indicates the first available message sequence number on the sending side.

The last unacked seq nr indicates the first available message sequence number on the sending side.

DDS-XRCE, Revised Submission 73

8.3.5.13 RESET

The RESET submessage shall be used to reset and re-establish a session. It contains no payload. It shall cause the XRCE
Agent to reset all state associated with the session_id indicated in the submessage header.

8.3.5.13.1 flags

The RESET submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.13.2 payload

The RESET submessage shall have an empty payload.

8.3.5.14 FRAGMENT

This FRAGMENT submessage is used to enable sending of other submessages whose length exceeds the transport
MTU.

The FRAGMENT message shall only be sent within reliable streams.

When a message is broken into fragments all FRAGMENT submessage except for the last shall have the ‘Last
Fragment’ bit in the flags set to 0. The last FRAGMENT submessage shall have the ‘Last Fragment’ flag set 1.

Upon reception of the last fragment submessage the Agent shall concatenate the payload bytes of all FRAGMENT
messages for that St ream in the order of the stream sequence number without sequence number gaps. The concatenated
payloads shall be interpreted as XRCE submessages as if they had been received following the HEADER that came with
the last fragment.

8.3.5.14.1 flags
The FRAGMENT submessage uses the lowest order 2 bits of the flags:
e Bit 0 indicates the ‘Endianness’ as specified in 8.3.4.2.

e Bit 1, the ‘Last Fragment’ bit, indicates the last fragment in the sequence.

8.3.5.14.2 payload

The payload of the FRAGMENT submessage is opaque. The Agent shall cache the payload bytes of all FRAGMENT
submessages for a St ream in the order of the stream sequence number until the last FRAGMENT submessage is
received.

8.4 Interaction Model

8.4.1 General

This section describes typical message flows.

The XRCE protocol is defined such that it is possible to implement clients that minimize discovery and setup traffic. For
this reason some of the message flows are optional and may be replaced by out-of-band configuration of the XRCE
Client and Agent.

8.4.2 Sending data using a pre-configured DataWriter

The message flow below illustrates the complete set of messages used by an XRCE Client to write data using the
XRCE Agent. The XRCE Agent has been pre-configured to create a XRCE Application containing a
DomainParticipant, Publisher and DataWriter. The DataWriter pre-configured object _id is known to

74 DDS XRCE Revised Submission

the XRCE Client.

sd MinimaI_Puinsher/

X X

XRCE Client XRCE Agent
' CREATE_CLIENT(reuse = 1) '

[

P sws) J
WRITE_DATA() '

WRITE_DATA() >d|J

WRITE_DATA() 2

|

DELETE() |

k

Figure 8— Message flow to send data using a pre-configured DataWriter

An XRCE Agent has been pre-configured for a Client (identified by the ClientKey) such that it recognizes the
application_object_id present in the CREATE _CLIENT message. The reception of the CREATE _CLIENT triggers
the creation or reuse of the corresponding XRCE objects. These include XRCE DataWriters with their corresponding
DDS DataWriters. Subsequent WRITE _DATA messages reference the Objectld of those DataWriters in order to
publish data using DDS.

8.4.3 Receiving data using a pre-configured DataReader

The message flow below illustrates the complete set of messages used by an XRCE Client to receive data via the
XRCE Agent. The XRCE Agent has been pre-configured to create a XRCE Application containing a
DomainParticipant, Subscriber and DataReader. The DataReader pre-configured object id is known to
the XRCE Client.

DDS-XRCE, Revised Submission 75

sd MinimaI_Subscriber/

X X

XRCE Client XRCE Agent
| |
| CREATE_CLIENT(reuse=1) >'L
e o ___SWUS)_____________________]
-
READ() >
DATA()

S
< DATA()
< DATA()
.
|
DELETE()
|

|
k

Figure 9— Message flow to receive data using a pre-configured DataReader

An Agent has been pre-configured for a Client (identified by the ClientKey) such that it recognizes the
application_object_id present in the CREATE _CLIENT message. The reception of the CREATE CLIENT triggers
the creation or reuse of the corresponding XRCE objects. These include XRCE DataReaders with their
corresponding DDS DataReaders. A subsequent READ message references the Objectld of those DataReaders in
order to receive data from the DDS domain.

8.4.4 Discovering an Agent

The message flow below illustrates the messages needed for an XRCE Client to discover XRCE Agents. This flow
is only required when the C1ient is not pre-configured with the TransportLocator of the XRCE Agent. It
allows an XRCE Client to be configured to content one or more TransportLocators (which may include
multicast addresses) in order to dynamically discover the presence and actual Address of the Agents.

As a result of this process, the XRCE C1ient may discover more than one XRCE Agent. In that case it may use the
information received about the XRCE Agent configuration (e.g. the fields version, vendor_id, or properties found
within the AGENT Representation) and the XRCE Agent activity (e.g. the availability field within the
ActivityInfo) to select the most appropriate XRCE Agent and even connect to more than one XRCE Agents.

76 DDS XRCE Revised Submission

sd Discover_Agent

X XX

XRCE Client XRCE Agent XRCE Agent2 XRCE Client2
|

|
| GET_INFO(OBJECTID_AGENT, CLIENT Representation)

I I I

I I I

I I I

/L'r] I I

GET_INFO(OBJECTID_AGENT, CLIENT_Representation) I : :

I (@] I

GET_INFO(OBJECTID_AGENT, CLIENT_Representation) : : :

I I -0

INFO(AGENT_Representation): STATUS_OK I I I

q)< ———————————————————————————— —qj I I
| INFO(AGENT_Representation): STATUS_OK | : :
o~s"~"""""""7"7 7/ /T TmTmmTm T T 0 |
I I I
| INFO(): STATUS_ERR_INCOMPATIBLE | |
O~ ~TTTTTTTTTTT T T T TTTT T AT T O

CREATE_CLIENT(CLIENT_Representation)

STATUS_CLIENT(AGENT_Representation)

Figure 10— Message flow for a Client to connect to an Agent

An XRCE Client connects to an Agent using the CREATE _CLIENT message. The Agent responds with a
STATUS AGENT indicating whether the connection succeeded and the ClientProxy was created on behalf of the
XRCE Client.

8.4.5 Connecting to an Agent

The message flow below illustrates the messages needed for an XRCE Client to connect to XRCE Agent. After the
Client is connected it may create resources or invoke operations on existing resources.

sd Create_CIientProxy/

X X

XRCE Client XRCE Agent
| |

CREATE_CLIENT(ClientKey)

STATUS_AGENT()

Figure 11— Message flow for a Client to connect to an Agent

DDS-XRCE, Revised Submission 77

An XRCE Client connects to an Agent using the CREATE CLIENT message. The Agent responds with a
STATUS AGENT indicating whether the connection succeeded and the ClientProxy was created on behalf of the
XRCE Client.

8.4.6 Creating a complete Application

The message flow below illustrates the messages needed for an already connected XRCE Client to create a complete
XRCE Application.

sd Create_Application /

X X

XRCE flient XRCE Agent

: : oo |
" CREATE(ObjectVariant for Application)

STATUS()

Figure 12— Message flow for a Client to create an Application

An XRCE Client uses the CREATE message to create an XRCE Application. The CREATE message carries a
CREATE Payload containing an ObjectVariant with ObjectKind set to OBJK_APPLICATION. The corresponding
OBJK APPLICATION Representation may use the REPRESENTATION BY REFERENCE to refer to an
Application pre-configured in the Agent or it may use the REPRESENTATION AS XML STRING to fully describe
the Application including any necessary Types, Qos, and DDS Entities.

8.4.7 Defining Qos configurations

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically define
XRCE QosProfiles which may later be used to create other XRCE Objects.

sd Define_Qos

X X

XRCE IAgen'c XRCE IClient

L CREATE(ObjectVariant for QosProfile) I

STATUS()

Figure 13— Message flow for a Client to define Qos Profiles

An XRCE Client uses the CREATE message to define Qos Profile. The CREATE message carries a

CREATE Payload containing an ObjectVariant with ObjectKind set to OBJK_QOSPROFILE. The corresponding
OBJK_QOSPROFILE Representation may use the REPRESENTATION _AS XML STRING to fully describe the Qos
Profile.

78 DDS XRCE Revised Submission

8.4.8 Defining Types

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically define
XRCE Types which may later be used to create XRCE Topic objects.

sd Define_Type

X X

XRCE ICIient XRCEIAgent

: : |
o CREATE(ObjectVariant for Type)

STATUS()

Figure 14— Message flow for a Client to define Types

An XRCE Client uses the CREATE message to create an XRCE Type. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_TYPE. The corresponding
OBJK _TYPE Representation may use the REPRESENTATION AS XML STRING to fully describe the DDS-
XTYPES Type including any referenced types.

8.4.9 Creating a Topic

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE Topic, which may later be used to create XRCE DataWriter and DataReader objects.

sd Create_Topic ~

X X

XRCE Client XRCE Agent
| |

. . . |
o CREATE(ObjectVariant for Topic)

STATUS()

Figure 15— Message flow for a Client to define a Topic

An XRCE Client uses the CREATE message to create an XRCE Topic. The CREATE message carries a
CREATE Payload containing an ObjectVariant with ObjectKind set to OBJK_TOPIC. The corresponding
OBJK_TOPIC Representation may use the REPRESENTATION IN BINARY or the

REPRESENTATION AS XML STRING to fully define the Topic.

DDS-XRCE, Revised Submission 79

8.4.10 Creating a DataWriter

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE DataWriter with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to refer to those by
name rather than explicitly define them. Alternatively the XRCE Client may include them as part definition of the
XRCE DataWriter resource.

sd Create_DataWriter/

X X

XRCE Client XRCE Agent
| |
| CREATE(ObjectVariant for DataWriter)

|
STATUS

<—————————————————————————0 ————————————————————— *H

|

WRITE_DATA(DataWriter) !

WRITE_DATA(DataWriter) |
O

WRITE_DATA(DataWriter) I

|

|

DELETE_RESOURCE(DataWriter, Session) |

- |

|

Figure 16— Message flow for a Client to create a DataWriter

An XRCE Client uses the CREATE message to create an XRCE DataWriter. The CREATE message carries a
CREATE Payload containing an ObjectVariant with ObjectKind set to OBJK_DATAWRITER. The corresponding
DATAREADER Representation may use the REPRESENTATION IN _BINARY or the

REPRESENTATION AS XML STRING to fully define the DataWriter. Both these representations allow
specification of the DataWriter Qos. The DATAREADER Representation may also use the

REPRESENTATION BY REFERNCE to refer to a DataWriter definition known to the Agent.

8.4.11 Creating a DataReader

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE DataReader with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to refer to those by
name rather than explicitly define them. Alternatively the XRCE Client may include them as part definition of the
XRCE DataReader resource.

80 DDS XRCE Revised Submission

sd Create_DataReader/

X X

XRCEClient XRCE Agent
|

CREATE(ObjectVariant for DataReader)

[

[

|
-

L STATUS() |
|
READ() -
< DATA()
< DATA()
< DATA()
.

Figure 17— Message flow for a Client to create a DataReader

An XRCE Client uses the CREATE message to create an XRCE DataReader. The CREATE message carries a
CREATE Payload containing an ObjectVariant with ObjectKind set to OBJK_DATAREADER. The corresponding
OBJK _DATAREADER Representation may use the REPRESENTATION IN BINARY or the

REPRESENTATION AS XML STRING to fully define the DataReader. Both these representations allow
specification of the DataReader Qos. The OBJK_DATAREADER Representation may also use the
REPRESENTATION BY REFERENCE to refer to a DataReader definition known to the Agent.

8.4.12 Getting Information on a Resource

The message flow below illustrates how an XRCE C1ient may query information on a resource. An XRCE Client
may use this mechanism to determine the QoS of any of the DDS proxy entities that the XRCE Agent manages on
behalf of the XRCE Client. It may also be used to read QoS profiles and type declarations that are known to the
XRCE Agent.

sd Get Information

X X

XRCE Client XRCE Agent
| |

GET_INFO(Objectld) [

INFO(ObjectVariant)

|
@)
|
O
|
|

Figure 18— Message flow for a Client to create a DataReader

An XRCE Client uses the GET INFO message to get information from an XRCE Object identified by its Objectld.
The XRCE Agent responds with an INFO message containing an ObjectVariant. The ObjectKind of the
ObjectVariant is the appropriate for the specified Objectld.

DDS-XRCE, Revised Submission 81

8.4.13 Updating a Resource

The message flow below illustrates how a XRCE C1lient may update an XRCE DataReader. A XRCE Client
may use this mechanism to change the QoS parameters of any of the DDS proxy entities that the XRCE Agent manages
on behalf of the XRCE Client.

sd Update

X X

XRCE Client XRCE Agent
| |

: CREATE(reuse=TRUE, replace=TRUE, Objectld, ObjectVariant for DataReader)

L STATUS()

Figure 19— Message flow for a Client to create a DataReader

An XRCE Client uses the CREATE message with the attribute reuse set to TRUE and the attribute replace set to
TRUE to indicate it wants to update the Object identified by the Objectld. The CREATE message contains an
ObjectVariant with ObjectKind set to the appropriate value for the specified Objectld. The XRCE Agent updates the
Object using the new configuration contained in the ObjectVariant and responds with a STATUS message.

8.4.14 Reliable Communication

Reliability is implemented separately for each St ream, and only for the reliable streams which are identified by the
stream_id value being between 0x80 and OxFF. See clause 8.3.2.2 Streams and the streamld.

A Stream has exactly two endpoints, the sending endpoint and the receiving endpoint. Note that for some streams the
sender is the XRCE Client, e.g. when the XRCE Client uses a stream to write data to the XRCE Agent. Likewise
in other streams the sender may be the XRCE Agent, for example when the XRCE Agent uses a stream to send the
data the XRCE Client requested in a READ operation.

The sender and receiver endpoint on a St ream each execute its own protocol state machine. These are illustrated in the
following subsections.

Sequence number arithmetic and comparisons shall use Serial Number Arithmetic as specified in clause 8.3.2.3
sequenceNr.

8.4.14.1 Reliable sender state machine

The protocol executed by the endpoint that is sending on a stream is shown in Figure 20

82 DDS XRCE Revised Submission

Initi [HiguestReceivedSegNumber ==HiguestSentSequenceNumber] [HeartBeatPeriod]

/Send(HeartBeat, HighestSentSequenceNumber)

AllMessagesAcknowledged MessagesNotFullyAcked ﬁ

write write
/HighestSentSequenceNumber++ /HighestSentSequenceNumber++

receive(ACKNACK)
/save
HigestAcknowledgedSeqNumber
repair SequenceNumber in NACK

Figure 20— Reliable protocol state-machine for the sender on a stream

The sender maintains two state variables associated with the stream. The HighestSentSequenecNumber and the
HighestAcknowledgedSequenceNumber.

Each time a message is sent the HighestSentSequenecNumber is increased. The reception of ACKNACK messages
updates the HiguestAcknowledgedSequenceNumber.

While the HighestAcknowledgedSequenceNumber is less than the HighestSentSequenceNumber the sender sends
HeartBeat messages that announce the HighestSentSequenecNumber to the receiver. These HeartBeat messages may
be periodic or optimized using on vendor specific mechanism. The requirement is that they are sent at some rate until
HighestAcknowledgedSequenceNumber matches the HighestSentSequenceNumber.

8.4.14.2 Reliable receiver state machine

The protocol executed by the endpoint that is receiving on a reliable stream is shown in Figure 21

[XRCEClient && NackPeriod]

/ HiguestReceivedSequenceNumber :=0 /Send(ACKNACK)
Initial
\r ReceivedAllMessages j
missingMessageFromSender

receive(HeartBeat, HigestAnnouncedSequenceNumber)

receive(HeartBeat, HigestAnnouncedSequenceNumber)

Choice

[HiguestAnnouncedSequenceNumber <= HiguestReceivedSequenceNumber] [HiguestAnnouncedSequenceNumber >HiguestReceivedSequenceNumber]

Figure 21— Reliable protocol state-machine for the receiver on a stream

The receiver maintains two state variables associated with the stream. The HighestReceivedSequenceNumber and the
HighestAnnouncedSequenceNumber.

Each time a Message is received the HighestReceivedSequenceNumber may be updated (assuming all previous
messages have been received). The HighestAnnouncedSequenceNumber may also be adjusted.

DDS-XRCE, Revised Submission 83

Each time a HEARTBEAT is received the HighestAnnouncedSequenceNumber may be adjusted.

If the receiver is a XRCE Client, then while the HiguestReceivedSequenceNumber is less than the
HighestAnnouncedSequenceNumber, the received sends ACKNACK messages to request the messages corresponding
to the missing sequence numbers. These ACKNACK messages may be periodic or optimized using on vendor specific
mechanism.

If the receiver is the XRCE Agent, then it only sends ACKNACK messages in response to receiving a HEARTBEAT.
This is done to avoid overwhelming the XRCE Client or waking it up at a non-opportune time.

8.5 XRCE Object Operation Traceability

This clause summarizes the messages used to implement each operation on the XRCE Object model ensuring that all
operations have been covered.

The messages used trigger each operation and receive the result are summarized in Table 16

Table 16 — Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object Kind Operation Message used for Invocation Message used for Return

XRCE Root create_client CREATE_CLIENT STATUS AGENT

XRCE Root get_info GET _INFO INFO

XRCE Root delete client DELETE STATUS AGENT

XRCE ProxyClient create CREATE (flags for creation) STATUS

XRCE ProxyClient update CREATE (flags for reuse) STATUS

XRCE ProxyClient get_info GET _INFO INFO

XRCE ProxyClient delete DELETE STATUS

XRCE DataWriter write WRITE DATA, FRAGMENT STATUS

XRCE DataReader read READ DATA DATA, FRAGMENT,
STATUS

84 DDS XRCE Revised Submission

9 XRCE Agent Configuration

9.1 General

The XRCE Agent may be configured such that it has a priori knowledge XRCE Objects. This allows XRCE
Clients to reference and create XRCE Objects in a very compact manner using the representation format
REPRESENTATION BY REFERENCE, see clause 7.7.3.3.1 REPRESENTATION BY REFERENCE format.

This specification provides two standard mechanisms to configure the XRCE Agent. Implementations may also provide
additional mechanisms:

e Remote configuration using the XRCE Protocol
e Local file-based configuration

These mechanisms are described in the clauses that follow.

9.2 Remote configuration using the XRCE Protocol

An application may use a XRCE Client with the only purpose of defining and creating XRCE Objects that are
intended for other applications. This type of application is called a XRCE ConfigurationClient.

The protocol used by the XRCE ConfigurationClient is the same used by any other XRCE Client. The only
difference is that an XRCE ConfigurationClient never uses the READ DATA or WRITE messages. It only
uses the messages that create, update, or retrieve information about the XRCE objects.

Any other XRCE Client can reference XRCE Objects created by an XRCE ConfigurationClient.

A typical use of the remote configuration mechanism are tools that may be used to configure an Agent prior to
deployment or to interactively configure the system.

Note that the XRCE ConfigurationClient may be communicating with the Agent using a different network or
transport, which may not have the same constraints as a typical XRCE Client.

DDS-XRCE, Revised Submission 85

sd ConfigurationClient /
XRCEConﬁguIrationCIient CREATE_CLIENT() XRCEIAgent XRCEICIient
- |
STATUS_AGENT |
o _smusase_______ | .
CREATE() T |
>\ |
STATUS
== 0] :
T |
CREATE() L :
o ___ STATUS). _ _______ | |
T T I
| < CREATE_CLIENT() .
|
STATUS_CLIENT
| _____________ —___Q_________>
| U
| |
CREATE(REPRESENTATION_BY_REFERENCE
| e (£)
| STATUS
! o STAWSO_
I e
| | READ_DATA|
| _ < | ()
: DATA()
| § g
| | |

Figure 22— Message flow for a ConfigurationClient

An XRCE ConfiguratioClient uses CREATE messages with representation formats REPRESENTATION IN _BINARY
or REPRESENTATION AS XML STRING to define and create XRCE Objects in the XRCE Agent. These XRCE
Objects are later referenced by a different XRCE Client using the representation formats

REPRESENTATION BY REFERENCE.

9.3 File-based Configuration

The XRCE Agent shall provide a configuration or run-time option to load an XML file formatted according to the
schema defined in the [DDS-XML] machine-readable file dds-xml_system_example.xsd.

The XRCE Agent shall parse the XML file and for each of the elements defined in Table 17, it shall construct the
corresponding XRCE Object specified in Table 17. All the created XRCE Objects shall be made available to XRCE
clients such that they may refer to them using the representation format REPRESENTATION BY REFERENCE.

Table 17 — XRCE Object created from the elements in the configuration XML file

XML Element(s) XRCE Object

REPRESENTATION_BY_REFERENCE

<types> XRCE Type.

The created XRCE Types shall be referenceable using their
fully qualified name, which includes the names of
enclosing modules.

For example:
“MyModule::MyNestedModule::MyStructType”

<qos_profile> XRCE QosProfile.
(Child of <qos_library>)

The created XRCE Types shall be referenceable using their
fully qualified name, which includes the names of
enclosing Qos Profile Library.

For example: “MyProfileLibrary::MyQosProfile”

86

DDS XRCE Revised Submission

<domain> XRCE Domain. The created XRCE Domain shall be referenceable using
. L their fully qualified name, which includes the names of
(Child of <domain_library>) enclosing Domain Library.
For example: “MyDomainLibrary::MyDomain”

XRCE Topic : .
<topic> The created XRCE Topic shall be referenceable using its
. . name from any DomainParticipant that references the

(Child of <domain>) Domain where the Topic is defined.
For example: “ExampleTopic”
<application> XRCE Application. | The created XRCE Application shall be referenceable
. L using their fully qualified name, which includes the names
(Child of <application_library>) of enclosing Application Library.
For example: “MyApplicationLibrary::MyApplication”
XRCE . ..
<domain_participant> DomainParticipant The created XRCE DomainParticipant shall be
. referenceable using their fully qualified name, which
(Child of includes the names of enclosing DomainParticipant
<domain_participant _library>) Library.
For example: “MyParticipantLibrary::MyParticipant”
<topic> XRCE Topic The created XRCE Topic shall be referenceable using its
name from any objects in the same DomainParticipant.
(Child of <domain_participant>)
For example: “ExampleTopic”
<publisher> <subscriber> XRCE Publisher The created XRCE Publisher or Subscriber shall be

(Child of

<domain_participant>)

XRCE Subscriber

referenceable using their name. No qualification is
necessary since these entities are always referenced within
the scope of a DomainParticipant.

For example: “MyPublisher”, “MySubscriber”

<data_writer> <data_reader>
(Child of

<domain_participant>)

XRCE DataWriter
XRCE DataReader

The created XRCE DataWriter or DataReader shall be
referenceable using their name. No qualification is
necessary since these entities are always referenced within
the scope of a Publisher or Subscriber.

For example: “MyWriter”, “MyReader”

The XRCE Objects created from the file-based configuration shall have their ObjectId automatically derived from
the REPRESENTATION BY REFERENCE string. Specifically, the ObjectIdPrefix (see 7.7.6) shall be set to the
first 2 bytes of the MD5 hash computed on the REPRESENTATION BY REFERENCE string. The MDS5 treats each
string character as a byte and does not include the NUL terminating character of the string.

For example assuming the REPRESENTATION BY REFERENCE string is “MyWriter” in that case:

e The MD?5 hash shall be:

0x03e26181adfef529038bf0dce7cab871

e The ObjectIdPrefix shall be the two-byte array: {0x03, Oxe2}.

e The ObjectIdPrefix shall be computed by combining the ObjectIdPrefix with the ObjectKind as

specified in clause 7.7.6.

DDS-XRCE, Revised Submission

87

9.3.1 Example Configuration File

The following XML file could be used to configure a XRCE Agent.

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns="http://www.omg.org/dds"

xsi:schemalocation="http://www.omg.orqg/spec/DDS-XML/20170301/dds~-

xml system example.xsd">

88

<types>

<module name="ShapesDemoTypes" >

<const name="MAX COLOR LEN" type="int32" value="128" />
<struct name="ShapeType'>

<member name="color" key="true" type="string"
stringMaxLength="MAX COLOR LEN" />
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>

</module>

</types>

<gos library name="MyQosLibrary'">
<gos profile name="MyQosProfile'">

<datareader gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>

<history>
<kind>KEEP_LAST HISTORY QOS</kind>
<depth>6</depth>

</history>

</datareader gos>

<datawriter gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>
</durability>
<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<history>
<kind>KEEP_ LAST HISTORY QOS</kind>
<depth>20</depth>
</history>
<lifespan>
<duration>
<sec>10</sec>
<nanosec>0</nanosec>
</duration>
</lifespan>

</datawriter gos>

</qos_profile>

DDS XRCE Revised Submission

</qos_library>

<application library name="MyApplications'>
<application name="ShapesDemoApp'>
<domain participant name="MyParticipant"
domain ref="ShapesDomainLibrary::ShapesDomain'>
<register type name="ShapeType" type ref="ShapeType" />

<topic name="Square" register type ref="ShapeType" />
<topic name="Circle" register type ref="ShapeType" />
<topic name="Triangle" register type ref="ShapeType" />

<publisher name="MyPublisher'>
<data writer name="MySquareWriter" topic_ ref="Square">
<datawriter gos base name="MyQosLibrary::MyQosProfile"/>
</data writer>
<data writer name="MyCircleWriter" topic ref="Circle" />
</publisher> B

<subscriber name="MySubscriber'>

<data reader name="MyTriangleRdr" topic ref="Triangle'>
<datareader qos base name="MyQosLibrary::MyQosProfile"/>

</data_reader>

</subscriber>

</domain participant>
</application>
</application library>
</dds>

DDS-XRCE, Revised Submission 89

An XRCE Agent loading the above configuration file would have the pre-defined XRCE Objects shown in Table 18.
Table 18 — Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object REPRESENTATION_ BY_REFERENCE ObjectPrefix Objectld
Kind

XRCE Type “ShapesDemoTypes.:ShapeType” {0x59, 0x51} {0x59, 0x5a}
XRCE Qos Profile | “MyQosLibrary::MyQosProfile” {0x3a, 0x38} {0x3a, 0x3b}
XRCE Application | “MyApplications::SimpleShapesDemoApplication” | {0x1b, Oxec} {0x1b, Oxec}
XRCE “MyApplications::ShapesDemoApp.:MyParticipant | {0x56, Oxcc} {0x56, Oxcl}
DomainParticipant | ”

XRCE Topic “Square” {Oxce, O0xb4} {Oxce, 0xb2}
XRCE Topic “Circle” {0x30, 0x95} {0x30, 0x92}
XRCE Topic “Triangle” {0x5e, 0x55} {0x5e, 0x52}
XRCE Publisher “MyPublisher” {0x13, Oxe3} {0x13, Oxe3}
XRCE Subscriber “MySubscriber” {Oxae, 0x0d} {Oxae, 0x04}
XRCE DataWriter | “MySquareWriter” {0x1c, Oxc4} {Oxlc, Oxc5}
XRCE DataWriter | “MyCircleWriter” {Oxcf, 0x80} {Oxcf, 0x85}
XRCE DataReader | “MyTriangleReader” {Oxaf, 0x32} {Oxaf, 0x36}

90

DDS XRCE Revised Submission

10 XRCE Deployments

All the operations described in the DDS-XRCE PIM pertain to the interaction of a client application with a single DDS-
XRCE Agent. The scope of all the operations is therefore limited to the interactions with that DDS-XRCE Agent. Yet
client applications may interact with each other despite connecting to different DDS-XRCE Agents. These interactions
would happen as a consequence of the DDS-XRCE Agents creating and performing operations on DDS
DomainParticipant entities, which exchange information in accordance to the DDS specification.

10.1 XRCE Client to DDS communication

The specification defines the protocol used by an XRCE Client to communicate with a XRCE Agent that proxies for
Client in the DDS Domain. The primary consequence of this is that the XRCE Client can now communicate with any
DDS DomainParticipant.

The DDS DomainParticipant will discover the proxy DDS Entities that the XRCE Agent creates on behalf of the Client
and with use the standard DDS-RTPS Interoperability protocol to communicate wit the Agent.

The XRCE Client will communicate with the XRCE Agent using the XRCE Protocol. Using this protocol it can direct
the XRCE Agent to create new DDS entities and use these entities to read and write data on the DDS Global Data Space.

This type of deployment is shown in illustrated in Figure 23 below.

DDS-RTPS bos
XRCE P XRCE —— DomainParticipant
Client Agent ‘Q‘oco

DDS-RTPS
XRCE Protocol P~

Figure 23— XRCE Agent proxying for an XRCE Client on a DDS Domain

The XRCE Client communicates with the XRCE Agent using the XRCE Protocol. The XRCE Agent communicates
with other DDS DomainParticipants in the DDS Domain using the DDS-RTPS Protocol.

10.2XRCE Client to Client via DDS

XRCE Agents appear as DDS DomainParticipants in the DDS Domain. For this reason XRCE Client applications that
are connected to different XRCE Agents will communicate with each other without the need for further configuration.

Each XRCE Agent will perceive other XRCE Agents as DDS DomainParticipants, indistinguishable from any other
DDS DomainParticipant and communicate with them using DDS-RTPS. The XRCE Agents will relay that
communication to their respective XRCE Clients.

This type of scenario is shown in illustrated in Figure 24 below.

DDS-XRCE, Revised Submission 91

DDS-RTPS
Protocol

XRCE

Client

XRCE Protocol

XRCE Protocol

XRCE XRCE DDS-RTPS
Client Agent Protocol

Figure 24— XRCE Agents communicating via DDS-RTPS

The XRCE Clients communicates using the XRCE Protocol with their respective XRCE Agents. Those XRCE Agents
communicate with each other using DDS-RTPS, as each is a DDS DomainParticipant on the DDS Domain.

10.3 Client-to-Client communication brokered by an Agent

Multiple XRCE Client applications may be connected to the same XRCE Agent.

In it up to the implementation of the XRCE Agent whether the DDS Entities it creates are exclusive to each XRCE
Client or alternatively are shared across XRCE Clients. However the behavior observable by the XRCE Client shall be as
if the DDS XRCE Agent creates separate DDS Objects exclusive to each XRCE Client.

If the XRCE Agent creates separate DDS entities on behalf of each XRCE Client, then each will have its own proxy
DDS DomainParticipant. These two DDS DomainParticipants will communicate with each other on the DDS Domain. In
this situation the two XRCE Clients will communicate with each other “brokered” by the XRCE Agent without the need
for additional configuration or logic in the XRCE Agent.

If the XRCE Agent shares DDS entities among different XRCE Clients, then the requirement to behave “as if” each had
its own separate entities requires that the local DDS DataWriter entities discover and match the local DDS DataReader
entities in the same DomainParticipant. This will automatically cause the XRCE Clients to communicate with each other
using the Agent as a “broker” without further configuration.

An implementation of an XRCE Agent may choose to create faster communication path between the local XRCE
DataWriter and DataReader objects so that data from an XRCE DataWriter can go directly to the matched XRCE
DataReader without having to go via the associated DDS Entities. This “shortcut” can be implemented as an
optimization as it does not impact any of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParticipants.

This type of scenario is shown in illustrated in Figure 25 below.

92 DDS XRCE Revised Submission

DDS-RTPS

XRCE
Protocol

Client

XRCE Protocol ,’

XRCE
Client

Figure 25— XRCE Clients communicating using the XRCE Agent as a broker

Multiople XRCE Clients may be connected to the same XRCE Agent. The XRCE Clients communicate with each other
using the XRCE Agent as a “broker”. This “client-to-client” communication may utilize the related DDS Objects, or
may use an optimized path inside the Agent that shortcuts the use of the DDS Objects.

10.4Federated deployment
The specification supports federated deployments where XRCE Agents appear as Clients to other XRCE Agents.

In other to support these deployments the XRCE Agent implementation must implement the client-side of the XRCE
Protocol in addition to the server part.

Supporting this kind of deployment is an implementation decision, as it does not impact any of the protocols nor it
impacts interoperability with other XRCE Clients, Agents, or DDS DomainParticipants.

This type of scenario is shown in illustrated in Figure 26 below.

DDS-XRCE, Revised Submission 93

Client
DDS-RTPS
Protocol

”
A XRCE
Client
Protocol

XRCE > XRCE k

Client Agent

Figure 26— XRCE Agents operating as a federation

The XRCE Agents can communicate with each other using the same DDS-XRCE protocol. The Agents enable
federations and store-and-forward dataflow. This type of deployment is transparent to the XRCE Client applications
and the DDS applications.

10.5Direct Peer-to-Peer communication between client Applications

The specification supports applications having direct communications using only the XRCE Protocol. In order to do this
each application must implement both the XRCE Client and the XRCE Agent part of the protocol.

This deployment requires the application to create a separate XRCE Client to manage the communication with each
XRCE Agent. The application would also create an XRCE Agent to manage communication with all the clients.

This deployment does not impact any of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParticipants.

Compared with the communication brokered by an XRCE Agent, the drawback of the direct peer-to-peer communication
is that the applications need to consume more resources to instantiate the additional XRCE Clients needed to maintain
the separate state with each peer XRCE Agent. Of course implementations could optimize this to nor have to create all
these extra objects. However they will still need to keep separate state, especially for reliable communications.

An additional drawback of the direct peer to peer communication is that the applications cannot easily go into sleep
cycles as the XRCE Agents they contain need to be active in order to process the messages from the XRCE Clients.
Therefore is not suitable for many resource-constrained scenarios.

This type of scenario is shown in illustrated in Figure 27 below.

94 DDS XRCE Revised Submission

XRCE
Client

XRCE XRCE
Client Client

XRCE
Client

XRCE
Client

Figure 27— Direct peer-to-peer communication between XRCE Clients

Applications can communicate directly peer-to-peer without having the communication brokered by a separate
XRCE Agent. To do this each Application must implement both the XRCE Client and the XRCE Agent parts of the
protocol.

10.6 Combined deployment

Figure 28 below illustrates a scenario where the different deployments are combined into a single system.

DDS-XRCE, Revised Submission

95

XRCE

DDS

Client

DomainParticipant

DDS-RTPS
Protocol

XRCE™ " B XRCE
Client
Protocol

7
DDS
.
Global Data Space

DDS

DomainParticipant

XRCE XRCE XRCE

Client Client J L Agent

XRCE XRCE
Agent Client

Figure 28— Combined deployment scenario

Hllustrates interoperability between applications using XRCE abnd applications using DDS-RTPS. XRCE
Applications may communicate via XRCE Agents acting as proxies. They can communicate peer to peer with each
other using XRCE Agents as brokers or directly by implementing both the XRCE Clieant and Agent part of the

protocol.

96 DDS XRCE Revised Submission

11 Transport Mappings
11.1 Transport Model

The XRCE protocol is not limited to any specific transports. It can be mapped to most existing network transports such
as UDP, TCP and low bandwidth transports such as Bluetooth, ZigBee and 6LoWPAN.

To run without additional overhead it is expected that the transport supports the following functionality:

(1) Deliver messages of at least 64 bytes.

(2) Handle the integrity of messages, dropping any messages that are corrupted. This capability does not restrict the
usable transports; it simply requires appending a CRC to messages from transports that do not handle integrity
natively.

(3) Provide the size of the received message as well as the source address. This requirement does not restrict the
usable transports; it simply requires prepending source information and size to messages from transports that do
not include the information natively.

(4) Support bi-directional communication.

(5) Provide transport-level security, specifically the means for the Client to authenticate the Agent and the
means for secure (encrypted and authenticated) message exchange. Alternatively the XRCE Agent and
Client can be deployed on top of a secure network layer (e.g. an encrypted VPN).

The following functionality is explicitly not required from the transport:

(1) It does not need to provide reliability. Messages may be dropped.
(2) It does not need to provide ordering. Messages may arrive out of order.
(3) It does not need to provide notification of dropped messages.

Transports that do not meet some of the above pre-requisites may still be used by adding the missing information as an
envelope around the XRCE message. This would be done as part of the mapping to that specific protocol.

For example is the source address or message size are missing they could be added as a prefix to the XRCE message. If
the transport does not support integrity a CRC suffix could be added to the XRCE message.

11.2UDP Transport

The UDP transport meets all the functionality listed in clause 11.1. Except that it does not provide security.

For applications requiring security there is the “Datagram Transport Layer Security” (DTLS) standard [DTLS] that
provides security in top of UDP/IP. Alternatively UDP mat be deployed on a private network (VPN), which provides
security at the IP layer below UDP.

Since the XRCE protocol does not require for the transport to provide reliability, ordering, or notification of failures it
can be trivially mapped to “datagram” transports such as UDP/IP.

11.2.1 Transport Locators

When XRCE is mapped to the UDP v4, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT MEDIUM. This selects the member medium_locator of type
TransportLocatorMedium defined in Annex A IDL Types as:

struct TransportLocatorMedium {
octet address([4];
unsigned short port;

}i

When XRCE is mapped to the UDP v6, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT LARGE. This selects the member large_locator of type
TransportLocatorLarge defined in Annex A IDL Types as:

DDS-XRCE, Revised Submission 97

struct TransportLocatorLarge {
octet address[1l6];
unsigned long port;
}i
The address field shall contain the IP v6 address and the port field shall contain the UDP/IP v6 port number.

11.2.2 Connection establishment

UDP is a connectionless transport. Communication occurs between a UDP Server and a UDP Client. Each has an
associated UDP/IP address and port.

e The UDP Server listens to a server port, which is known to the client.

e The UDP Client sends UDP datagrams to the UDP Server address and server port.

e The UDP Server receives the message, which includes the UDP address and port of the sending Client.
e The UDP Server sends replies back the Client using the address and port received in the message.

o The UDP Client receives replies from the server coming back to the client’s address and port.

When communicating over UDP the XRCE Agent shall behave as an UDP Server and the XRCE Client as the UDP
Client.

The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the UDP/IP address and port of the XRCE Agent.

11.2.3 Message Envelopes

The mapping of the XRCE Protocol to UDP/IP does not add any additional envelopes around the XRCE message. The
UDP/IP payload shall contain exactly one XRCE message.

11.2.4 Agent Discovery

XRCE Agent discovery may be done using UDP/IP multicast. The XRCE Agents shall be pre-configured with the
multicast address and port number they shall listen to. By default they shall be the address 239.255.0.2 and the port 7400.

To discover Agents via multicast the XRCE Client shall send the GET _INFO message (see 8.3.5.3) periodically to the
configured multicast address and port. This message shall invoke the get_info operation (see 7.8.2.2) on the XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response from an Agent.

XRCE Agent discovery may be done using UDP/IP unicast. The XRCE Clients shall be pre-configured with a list of
candidate UDP addresses and ports where XRCE Agents may be located.

To discover Agents via unicast the XRCE Client shall send the GET INFO message (see 8.3.5.3) periodically to the
configured addresses and ports. This message shall invoke the get info operation (see 7.8.2.2) on the XRCE Agent,
which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message once it
receives a suitable response from an Agent.

11.3TCP Transport

The TCP transport meets all the functionality listed in clause 11.1. except it does not provide security nor information on
the message size.

98 DDS XRCE Revised Submission

For applications requiring security there is the “Transport Layer Security (TLS)” standard [TLS] that provides security in
top of TCP/IP. Alternatively TCP/IP mat be deployed on a private network (VPN), which provides security at the IP
layer below TCP.

The message size shall be added as a prefix ahead of the XRCE message as defined in 11.3.3.

11.3.1 Transport Locators

When XRCE is mapped to the UDP/IP version 4 , the TransportLocator union shall use the
TransportLocatorFormat discriminator ADDRESS FORMAT MEDIUM. This selects the member
medium_locator of type TransportLocatorMedium defined in Annex A IDL Types as:

struct TransportLocatorMedium ({
octet address([4];
unsigned short port;

}i

When XRCE is mapped to the TCP/IP version 6, the TransportLocator union shall use the
TransportLocatorFormat discriminator ADDRESS FORMAT LARGE. This selects the member large_locator of
type TransportLocatorLarge defined in Annex A IDL Types as:

struct TransportLocatorLarge {
octet address[16];
unsigned long port;
bi
The address field shall contain the IP v6 address and the port field shall contain the TCP/IP v6 port number.

11.3.2 Connection establishment

TCP is a connection-oriented transport. Communication occurs between a TCP Client and a TCP Server. Each has an
associated TCP/IP address and port.

e The TCP Server listens to a server port, which is known to the client.
e The TCP Client connects to the Server.

o The TCP Server accepts the connection from the Client. This establishes a bi-directional communication
channel. Both ends can send and receive o that channel.

e The TCP Client can send and receive messages to and from the Server.

e The TCP Server can send and receive messages to and from the Client.

When communicating over TCP the XRCE Agent shall behave as a TCP Server and the XRCE Client as the TCP Client.
The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the TCP/IP address and port of the XRCE Agent.

11.3.3 Message Envelopes

The mapping of the XRCE Protocol to TCP/IP adds a 2-byte prefix as an envelope the XRCE message. The 2-byte
prefix shall contain the length of the XRCE message that follows encoded as little endian.

After the 2-byte envelope the TCP/IP payload shall contain exactly one XRCE message. The alignment of the XRCE
message shall not be changed by the added 2-byte prefix. Stated differently the XRCE message shall consider its first
byte to be aligned to an 8-byte (XCDR maximum alignment) boundary.

DDS-XRCE, Revised Submission 99

11.3.4 Agent Discovery
XRCE Agent discovery may be done using UDP/IP multicast even if the communication will be over TCP.

The XRCE Agents may be pre-configured with the multicast address and port number they shall listen to. By default
they shall be the address 239.255.0.2 and the port 7400.

To discover Agents via multicast the XRCE Client shall send the GET INFO message (see 8.3.5.3) periodically to the
configured multicast address and port. This message shall invoke the get info operation (see 7.8.2.2) on the XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response from an Agent.

XRCE Agent discovery may be done using TCP/IP. The XRCE Clients shall be pre-configured with a list of candidate
TCP addresses and ports where XRCE Agents may be located.

To discover Agents via unicast the XRCE Client shall periodically attempt to establish TCP connections to the
configured addresses and ports. One a connection is established it shall send the CREATE CLIENT message (see
8.3.5.1). This message shall invoke the create client operation (see 7.8.2.1) on the XRCE Agent, which shall either
accept or produce an error. The XRCE Client shall stop making periodic connection attempts once it receives a suitable
response from an Agent.

11.4Other Transports

The XRCE Protocol is well suited to be mapped to other transports, even transport with small bandwidth and MTUs such
as IEEE 802.15.4, Zigbee, Bluetooth, and 6LoWPAN.

The fact that the XRCE Protocol has minimal requirements on the transport (i.e. does not require ordering or reliable
delivery), provides the means for authentication, and can do its own data fragmentation and re-assembly means that most
transports mappings can simply include the XRCE message as a payload without additional envelopes.

However, in order to get transparent interoperability between vendors it is required to define the precise encoding of the
transport locators as well as the means to discover agents and establish initial communicators. Therefore it is expected
that future revisions of this specification will provide additional transport mappings.

100 DDS XRCE Revised Submission

A IDL Types

module dds { module xrce {

typedef octet ClientKey[4];

// IDL does not have a syntax to express array constants

// use #define with is legal in IDL

#define

CLIENTKEY INVALID {0x00,

typedef octet ObjectKind;

const
const
const
const
const
const
const
const
const
const
const
const

const

typedef octet ObjectId
typedef octet ObjectPrefix

ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind
ObjectKind

OBJK_ INVALID
OBJK PARTICIPANT

OBJK TOPIC

0x00,

OBJK PUBLISHER =

OBJK SUBSCRIBER =

OBJK DATAWRITER =

OBJK DATAREADER =

OBJK_TYPE

OBJK QOSPROFILE =

OBJK APPLICATION =

OBJK_ AGENT
OBJK_CLIENT

OBJK_OTHER

[21;
[21;

0x00,

0x00;
0x01;
0x02;
0x03;
0x04;
0x05;
0x06;
0x0A;
0x0B;
0x0C;
0x0D;
0x0E;

0x0F;

0x00}

// There are three predefined values ObjectId

// IDL does not have a syntax to express array constants so we

// use #define with is legal in IDL

#define
#define
#define
#define

OBJECTID INVALID {0x00,0x00}

OBJECTID AGENT

OBJECTID CLIENT

{0xXFF, OxXFD}

{0xXFF, OXFE}

OBJECTID SESSION {OxFF,OxFF}

DDS-XRCE, Revised Submission

SO we

101

typedef octet XrceCookiel[4d];
// Spells ‘X’ ‘R’ ‘C’ ‘E’

#define XRCE COOKIE { 0x58, 0x52, 0x43, 0x45 }

typedef octet XrceVersion[2];

#define XRCE_VERSION MAJOR 0x01

#define XRCE VERSION MINOR 0x00

#define XRCE VERSION

typedef octet XrceVendorId[2];

#define XRCE_VENDOR INVALID1 0x00

#define XRCE VENDOR INVALID1 0x00

102

struct Time t {
long seconds;
unsigned long nanoseconds;

bi

typedef octet SessionId;
const SessionlId SESSIONID NONE WITH CLIENT KEY

const SessionId SESSTIONID NONE WITHOUT CLIENT KEY

typedef octet StreamlId;
const SessionlId STREAMID NONE
const SessionlId STREAMID BUILTIN BEST EFFORTS

const SessionId STREAMID BUILTIN RELIABLE

@bit bound(8)

enum TransportLocatorFormat {
ADDRESS FORMAT SMALL,
ADDRESS FORMAT MEDIUM,
ADDRESS FORMAT LARGE,
ADDRESS FORMAT STRING

}i

struct TransportLocatorSmall {

{ XRCE_VERSION MAJOR, XRCE VERSION MINOR }

0x00;

0x80;

0x00;
0x01;
0x80;

DDS XRCE Revised Submission

octet address[2];
octet locator port;
}i
struct TransportLocatorMedium {
octet address[4];
unsigned short locator port;
}i
struct TransportLocatorLarge {
octet address[l6];
unsigned long locator port;
}i
struct TransportLocatorString {
string value;

bi

union TransportLocator switch (TransportLocatorFormat) {
case ADDRESS FORMAT SMALL:
TransportLocatorSmall small locator;
case ADDRESS FORMAT MEDIUM:
TransportLocatorMedium medium locator;
case ADDRESS FORMAT LARGE:
TransportLocatorLarge medium locator;
case ADDRESS FORMAT STRING:
TransportLocatorString string locator;
}i

typedef sequence<TransportLocator> TransportLocatorSeq;

struct Property {
string name;
string value;
}i
typedef sequence<Property> PropertySeq;

@extensibility (FINAL)

struct CLIENT Representation {
XrceCookie xrce_cookie; // XRCE_COOKIE
XrceVersion xrce version;

XrceVendorId xrce vendor id;

DDS-XRCE, Revised Submission 103

Time t client timestamp;

ClientKey client key;

SessionId session_ id;

@optional PropertySeq properties;
bi

@extensibility (FINAL)
struct AGENT_Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
Time t agent timestamp;
@Qoptional PropertySeq properties;
}i

typedef octet RepresentationFormat;

const RepresentationFormat REPRESENTATION BY REFERENCE = 0x01;
const RepresentationFormat REPRESENTATION AS XML STRING = 0x02;
const RepresentationFormat REPRESENTATION IN BINARY = 0x03;

const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch(RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string xml string representation;
case REPRESENTATION IN BINARY
sequence<octet> binary representation;

}s

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;

case REPRESENTATION AS XML STRING

104 DDS XRCE Revised Submission

string string representation;

}i

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {

OBJK RepresentationRefAndXMLFormats representation;
bi

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {
OBJK RepresentationBinAndXMLFormats representation;

}i

@extensibility (FINAL)
struct OBJK Representation3 Base {
OBJK Representation3Formats representation;

b

/* Objects supporting by Reference and XML formats */

@extensibility (FINAL)
struct OBJK QOSPROFILE Representation : OBJK RepresentationRefAndXML Base {
i

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base {

}s

@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

DDS-XRCE, Revised Submission 105

}i

@extensibility (FINAL)
struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {

}i

/* Objects supporting Binary and XML formats */

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

i

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

i

@extensibility (FINAL)

struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {
ObjectId subscriber id;

}i

/* Objects supporting all 3 representation formats */

@extensibility (FINAL)

struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
short domain_ id;

}i

@extensibility (FINAL)

struct OBJK TOPIC Representation : OBJK Representation3 Base {
ObjectId participant id;

b

106 DDS XRCE Revised Submission

/* Binary representations */

@extensibility (APPENDABLE)

struct OBJK DomainParticipant Binary {
@optional string<128> domain reference;
@optional string<l28> gos profile reference;

}s

@extensibility (APPENDABLE)
struct OBJK Topic Binary {
string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;

}i

@extensibility (FINAL)

struct OBJK Publisher Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group data;

}i

@extensibility (APPENDABLE)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK Publisher Binary Qos gos;
}i

@extensibility (FINAL)

struct OBJK Subscriber Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group data;

}i

@extensibility (APPENDABLE)
struct OBJK Subscriber Binary {
@optional string subscriber name;

@optional OBJK Subscriber Binary Qos qos;

DDS-XRCE, Revised Submission

107

}i

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is_ reliable,
@position(l) is history keep all,
@position(2) is_ ownership exclusive,
@position(3) is durability transient local,
@position(4) is durability transient,
@position(5) is durability persistent,

}i

@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;

}i

@extensibility (FINAL)
struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

b

@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

}s

@extensibility (APPENDABLE)
struct OBJK DataReader Binary {
string topic name;

@optional OBJK DataReader Binary Qos gos;

108 DDS XRCE Revised Submission

@extensibility (APPENDABLE)

struct OBJK DataWriter Binary {
string topic name;
@optonal OBJK DataWriter Binary Qos gos;

i

@extensibility (FINAL)
union ObjectVariant switch (ObjectKind) {

// case OBJK INVALID : indicates default or selected by Agent. No data.
case OBJK AGENT

AGENT Representation client;
case OBJK CLIENT

CLIENT Representation client;
case OBJK APPLICATION

OBJK APPLICATION Representation application;
case OBJK PARTICIPANT

OBJK PARTICIPANT Representation participant;
case OBJK QOSPROFILE

OBJK QOSPROFILE Representation gos profile;
case OBJK TYPE

OBJK TYPE Representation type;
case OBJK TOPIC

OBJK TOPIC Representation topic;
case OBJK PUBLISHER

OBJK PUBLISHER Representation publisher;
case OBJK SUBSCRIBER

OBJK SUBSCRIBER Representation subscriber;
case OBJK DATAWRITER

DATAWRITER Representation data writer;
case OBJK DATAREADER

DATAREADER Representation data reader;
}i

struct CreationMode {
boolean reuse;
boolean replace;

}s

DDS-XRCE, Revised Submission 109

110

typedef octet RequestId[2];

@bit bound(8)

enum StatusValue {

@value (0x00) STATUS OK,

@value (0x01) STATUS OK_MATCHED,

@value (0x80) STATUS ERR DDS_ERROR,

@value (0x81) STATUS ERR MISMATCH,

@value (0x82) STATUS ERR _ALREADY EXISTS,

@value (0x83) STATUS ERR DENIED,

@value (0x84) STATUS ERR UNKNOWN REFERENCE,

@value (0x85) STATUS ERR _INVALID DATA,

@value (0x86) STATUS ERR INCOMPATIBLE,

@value (0x87) STATUS ERR RESOURCES

}i

struct ResultStatus {

StatusValue
octet
}i
const octet
const octet
const octet
const octet
const octet
const octet
const octet

status;

implementation status;

STATUS LAST OP NONE =

STATUS LAST OP CREATE =

~.

STATUS _LAST OP_UPDATE =
STATUS_LAST OP_DELETE =
STATUS LAST OP_LOOKUP =

STATUS LAST OP READ =

~.

o 0w N RO

STATUS LAST OP WRITE =

bitmask InfoMask {

@position (0)

@position (1)

}i

INFO CONFIGURATION,

INFO_ACTIVITY

@extensibility (APPENDABLE)

struct AGENT ActivityInfo {

short availability;

DDS XRCE Revised Submission

TransportLocatorSeq address seq;

}i

@extensibility (APPENDABLE)
struct DATAREADER ActivityInfo {
short highest acked num;

}i

@extensibility (APPENDABLE)
struct DATAWRITER ActivityInfo {
unsigned long long sample seq num;

short stream seq num;

bi

@extensibility (FINAL)
union ActivityInfoVariant switch (ObjectKind) {
case OBJK DATAWRITER
DATAWRITER ActivityInfo data writer;
case OBJK DATAREADER
DATAREADER ActivityInfo data reader;
}i

@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;

@optional ObjectVariant config;
}i
@extensibility (FINAL)
struct BaseObjectRequest {
RequestId request id;
ObjectId object id;

}s

typedef RelatedObjectRequest BaseObjectRequest;

DDS-XRCE, Revised Submission 111

@extensibility (FINAL)

struct BaseObjectReply {
BaseObjectRequest related request;
ResultStatus result;

}i

typedef octet DataFormat;

const DataFormat FORMAT DATA = 0x00; // 0b0000 0000
const DataFormat FORMAT SAMPLE = 0x02; // 0b0000 0010
const DataFormat FORMAT DATA SEQ = 0x08; // 0b0000 1000
const DataFormat FORMAT SAMPLE SEQ = 0x0A; // 0b0000 1010
const DataFormat FORMAT PACKED SAMPLES = 0xO0E; // 0b0000 1110

const DataFormat FORMAT MASK = 0x0E; // 0b0000 1110

@extensibility (APPENDARBLE)
struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}i

@extensibility (FINAL)

struct ReadSpecification {
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

b

@bit bound(8)

bitmask SampleInfoFlags {
@position (0) INSTANCE STATE UNREGISTERED,
@position (1) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position (3) SAMPLE STATE READ,

bi

typedef octet SampleInfoFormat;

112 DDS XRCE Revised Submission

const SampleInfoFormat FORMAT EMPTY 0x00; // 0b0000O 0000
0x01; // 0b0000 0001
0x02; // 00000 0010

0x03; // 00000 0011

const SampleInfoFormat FORMAT SEQNUM

const SampleInfoFormat FORMAT TIMESTAMP

const SampleInfoFormat FORMAT SEQN TIMS

@extensibility (FINAL)
struct SegNumberAndTimestamp {
unsigned long sequence number;
unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
union SampleInfoDetail switch (SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence_number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n_ timestamp;

}i

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
SampleInfoDetail detail;

}i

typedef unsigned short DeciSecond; // 10e-1 seconds

@extensibility (FINAL)

struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState, ViewState
octet seq_number delta;
DeciSecond timestamp delta; // In 1/10 of seconds

}s

@extensibility (FINAL)

struct SampleData {

DDS-XRCE, Revised Submission 113

114

XCDRSerializedBuffer serialized data;

}i

typedef sequence<SampleData> SampleDataSeq;

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
}i
typedef sequence<Sample> SampleSeq;

@extensibility (FINAL)

struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;

}i

@extensibility (FINAL)
struct PackedSamples {

SampleInfo info base;

sequence<SampleDelta> sample delta seq;

}i

typedef sequence<SamplePacked> SamplePackedSeq;

@extensibility (FINAL)

union DataRepresentation switch (DataFormat)

case FORMAT DATA:
SampleData data;

case FORMAT SAMPLE:
Sample sample;

case FORMAT DATA SEQ:
SampleDataSeq data seq;

case FORMAT SAMPLE SEQ:
SampleSeq sample seq;

case FORMAT PACKED SAMPLES:

PackedSamples packed samples;

DDS XRCE Revised Submission

// Message Payloads

@extensibility (FINAL)

struct CREATE CLIENT Payload : BaseObjectRequest {
CLIENT Representation client representation;

}i

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest ({
ObjectVariant object representation;

}i

@extensibility (FINAL)
struct GET_ INFO_ Payload : BaseObjectRequest {
InfoMask info mask;

}i

@extensibility (FINAL)
struct DELETE Payload : BaseObjectRequest ({
}i

@extensibility (FINAL)

struct STATUS AGENT Payload : BaseObjectReply {
AGENT Representation agent info;

}i

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
}i

@extensibility (FINAL)

struct INFO Payload : BaseObjectReply {
ObjectInfo object info;

}i

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest {
ReadSpecification read specification;

}i

DDS-XRCE, Revised Submission 115

// There are 5 types of DATA and WRITE DATA payloads

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({
SampleData data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest ({
Sample sample;

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {
sequence<SampleData> data_ seq;

}i

@extensibility (FINAL)
struct WRITE DATA Payload SampleSeq : BaseObjectRequest {
sequence<Sample> sample seq;

}i

@extensibility (FINAL)

struct WRITE DATA Payload PackedSamples : BaseObjectRequest {
PackedSamples packed samples;

}i

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest {
SampleData data;

}i

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {
Sample sample;

}s

@extensibility (FINAL)

116 DDS XRCE Revised Submission

struct DATA Payload DataSeqg : RelatedObjectRequest {
sequence<SampleData> data_ seq;

}s

@extensibility (FINAL)
struct DATA Payload SampleSeqg : RelatedObjectRequest ({
sequence<Sample> sample seq;

}s

@extensibility (FINAL)
struct DATA Payload PackedSamples : RelatedObjectRequest {

PackedSamples packed samples;
}i

struct ACKNACK Payload {
short first unacked seq num;
octet nack bitmap[2];

bi

@extensibility (FINAL)

struct HEARTBEAT Payload ({
short first unacked seq nr;
short last unacked seq nr;

b

@bit bound(8)

enum SubmessageId {
@value (0) CREATE CLIENT,
@value (1) CREATE,
@value (2) GET INFO,
@value (3) DELETE,
@value (4) STATUS,
@value (5) INFO,
@value (6) WRITE DATA,
@value (7) READ DATA,
@value (8) DATA,
@value (9) ACKNACK,

@value (10) HEARTBEAT,

DDS-XRCE, Revised Submission 117

@value (12) FRAGMENT,
@value (13) FRAGMENT END

Yoobs

118 DDS XRCE Revised Submission

B Example Messages (Non-Normative)

B.1. CREATE_CLIENT message example

The following message could be used by a XRCE Client request a XRCE ProxyClient to be created.
The Client is from vendor_id {0xOF, 0xOF} and is using xrce_version {0x01, 0x00}.

The request _id is {0xAA, 0x00}, the client _timestamp is {1518905996 , 500000000} (in hexadecimal {0x5A88AASC,
0x1DCD6500}), the client_key is {0x22, 0x33, 0x44, 0x55} and the requested session_id is 0xDD.

0 8 16 24 31
o —— o —— o ——— o —— +

| 0x80 | 0x00 | 0x00 | 4
- - o o o +

| CREATE CLIENT | flags | submessageLength | 8
- - o —— o —— o — +

| request id | object id | 12
- - o —— o —— o — +

| xrce cookie | 16
- - - - - - - f————— +

| Xrce version | xrce vendor id | 20
- - o —— o —— o — +

| client timestamp.seconds | 24
+ +

| client timestamp.nanoseconds | 28
- - o —— o —————— o +

| client key | 32
- - o —— o —————— o +

| session id | properties?

- - - - +

Table 19 describes each of the bytes in the message.
Table 19 Description of the CREATE_CLIENT example bytes

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x80 = SESSION ID NONE WITHOUT CLIENT KEY

Indicates that there is no session and that the client_key does not follow the
Message Header, see 8.3.2.1.

Byte 1 streamld = 0x00 = STREAMID NONE

DDS-XRCE, Revised Submission 119

Indicates there is no stream see 8.3.2.2

Bytes 2-3 sequenceNr =0
4-7 Submessage Header
Byte 4 submessageld = CREATE CLIENT = 0x00
See 8.3.5
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26 = 0x001B
Represented in little endian as {0x1B, 0x00}
8-32 CREATE_CLIENT Payload
Bytes 8-11 used for BaseObjectRequest
Bytes 8-9 request_id = {0xAA , 0x00}
Bytes 10-11 object_id = {OxFF, OxFE}
Set to OBJECTID CLIENT, see 7.6.
Bytes 12-32 used for the CLIENT Representation
Bytes 12-15 xrce_cookie = { ‘X’, ‘R’, ‘C’, ‘E’ }
Bytes 16-17 xrce_version = {0x01, 0x00}
Bytes 18-19 xrce_vendor_id = {0x0F, 0xOF]
Bytes 20-27 client_timestamp = {0x5A88AAS8C, 0x1DCD6500}
Since flags has the Endianness bit set to 1 the timestamp is represented as little
endian as { {0x8C, 0xAA, 0x99, 0x5A}, {0x00, 0x65, 0xCD, 0x1D} }
Bytes 28-31 client_key = {0x22, 0x33, 0x44, 0x55}
Byte 32 The requested session_id = 0xDD
Byte 33 properties? = FALSE
Indicates that the optional field properties is not present.
120 DDS XRCE Revised Submission

B.2. CREATE message examples

B.2.1. Create a DomainParticipant using REPRESENTATION_BY_REFERENCE

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE
DomainParticipant with ObjectID {0xDD, 0xD1} with preconfigured entities and Qos.

The DomainParticipant is represented by a reference to a pre-configured definition known to the XRCE Agent.
Therefore the RepresentationFormat is set to REPRESENTATION BY REFERENCE.

The representation by reference uses a string containing the fully qualified name of DomainParticipant. See 7.7.3.6.1. In
this example the reference is “MyLibrary::MyParticipant”:

The corresponding message is:

0 8 16 24 31
o o o +
| 0x81 | 0x80 | 0x07 | 4
Fo—————= Fo—————= o oo +
| CREATE | flags | submessagelLength | 8
Fo—————= Fo—————= o oo +
| request id | object id | 12
e o o o +
| OBJK_PARTICIPAN| 0x01 | padding padding | 16
e o o o +
| string reference.length = 25 | 24
e o o o +
| "M’ | vy’ | ‘LY Vi | 28
fom— = o= fom - o +
| ‘b’ | ‘r’ | ‘a’ ‘r’ | 32
R e o oo +
| 'y’ | i | i " | 36
R e o oo +
| 'y’ | ‘P’ | ‘a’ ‘r | 40
R e o oo +
| AR oid | i | ‘ef i | 44
fom— = o= fom - o +
| ‘p’ | ‘a’ | ‘n’ Ahoid | 48
fomm e o o +
| “\0’ | padding | domain id | 52
fomm e o et S ittt +

Table 22 describes the bytes in the CREATE message.

DDS-XRCE, Revised Submission

121

Table 20 Description of the CREATE message for the DomainParticipant using a string representation

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0x81
Indicates session 1 with no client key included in the message.
Byte 1 streamld=0x80
Selects the builtin reliable stream, see 8.3.2.2
Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.3.5.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26
Represented in little endian as {0x1A, 0x00}
8-51 CREATE Payload

Bytes 8-11 used

for BaseObjectRequest (base class of CREATE Payload)

Bytes 8-9

BaseObjectRequest request_id = {0xAA , 0x01

Bytes 10-11

BaseObjectRequest object id = {0xDD, 0xD1}

For a description of the ObjectID see 7.6.

Bytes 12-32 use

d for the ObjectVariant

Byte 12

ObjectVariant discriminator = 0x01

Set to OBJK_PARTICIPANT

Bytes 13-32 are

OBJK Representation3 Base (base class of PARTICIPANT Representation)

Byte 13 OBJK Representation3 Base discriminator = 0x01
RepresentationFormat set to REPRESENTATION BY REFERENCE
Bytes 14-15 padding

122

DDS XRCE Revised Submission

Bytes 16-19 string_representation.length = 25 = 0x19
Encodes length of the string represented in little endian as {0x19, 0x00, 0x00, 0x00}

Bytes 24-48 Characters of the string_repreentation, including the terminating NUL. Total of 25 characters

Byte 49 padding

Bytes 50-51 used for the PARTICIPANT Representation beyond its base class

Bytes 50-51 domain_id = {0x00, 0x00}

Little endian representation of domain_id 0.

B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE
DomainParticipant with ObjectID {0xDD, 0xD1} using default Qos.

The DomainParticipant is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION IN BINARY. In this example it will use little endian encoding.

The binary representation of a DomainParticipant uses the XCDR serialized representation of the type
OBJK DomainParticipant Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DomainParticipant Binary {
@optional string<128> domain reference;
@optional string<128> gos profile reference;

}i

The corresponding message is:

DDS-XRCE, Revised Submission 123

- —— - F—_——— +

| 0x81 | 0x80 | 0x07 | 4
- - —_— - Fo———_——— +

| CREATE | flags | submessageLength | 8
F———— e o Fom Fom————— +

| request id | object id | 12
F———— e o Fom Fom————— +
|OBJK PARTICIPAN] 0x03 | padding | padding | 16
F———— e o Fom Fom +

| DHEADER for OBJK DomainParticipant Binary object | 20
- - —_— - Fo—_——_——— +
|domain referen?|gos profile re?| domain id | 24
+———— R ———_ - Fo——_———— +

Table 22 describes the bytes in the CREATE message.

Table 21 Description of the CREATE message for the DomainParticipant using binary representation

Bytes Description

0-8 Message Header. Same as Table 20.

4-7 Submessage Header. Similar to Table 20.

8-23 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload). Same as Table 20.

Bytes 12-32 used for the ObjectVariant

Byte 12 ObjectVariant discriminator = 0x01
Set to OBJK_PARTICIPANT

Bytes 13-32 are OBJK Representation3 Base (base class of PARTICIPANT Representation)

Byte 13 OBJK_Representation3 Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION IN BINARY

Bytes 14-15 padding

124 DDS XRCE Revised Submission

Bytes 16-19 DHEADER of OBJK DomainParticipant Binary (because extensibility is APPENDABLE)
Encodes the endianness and length of the serialized OBJK DomainParticipant Binary object

Since the length is 2 and the desired endianness is little endian the value of DHEADER is:
0x80000002 = {0x02, 0x00, 0x00, 0x80}

Byte 20 Optional field domain_reference = 0x00

Set to 0x00 (FALSE) to indicate the field is not present

Byte 21 Optional field qos_profile reference = 0x00
Set to 0x00 (FALSE) to indicate the field is not present

Bytes 22-23 used for the PARTICIPANT _Representation beyond its base class

Bytes 22-23 domain_id = {0x00, 0x00}

Little endian representation of domain_id 0.

B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataWriter
with ObjectID {0xDD, 0xD5} for topic “Square” using default Qos.

The created XRCE DataWriter should belong to an XRCE Publisher with subscriber_id {0xBB, 0xB3}.

The DataWriter is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DataWriter Binary {
string topic_name;
@optional OBJK DataWriter Binary Qos qos;

}i

The corresponding message is:

DDS-XRCE, Revised Submission 125

- —— - F—_——— +

| 0x81 | 0x80 | 0x07 | 4
- - —_— - Fo———_——— +

| CREATE | flags | submessageLength | 8
F———— e o Fom Fom————— +

| request id | object id | 12
F———— e o Fom Fom————— +
|OBJK DATAWRITER|] 0x03 | padding | padding | 16
F———— e o Fom Fom +

| DHEADER for OBJK DataWriter Binary object | 20
- - —_— - Fo—_——_——— +

| topic _name.length = 0x07 | 24
+———— R ———_ - Fo——_———— +

| ‘s’ | ‘g’ | ‘u’ | ‘a’ | 28
+———— R ———_ - Fo——_———— +

| ‘r’ | ‘e’ | “\0’ | gos? = 0 | 32
- - - f———— f—_—— +

| publisher id | 36
- - - +

Table 22 describes the bytes in the CREATE message.

Table 22 Description of the CREATE message for the DataWriter using binary representation and default Qos

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x81

Indicates session 1 with no client key included in the message.

Byte 1 streamld=0x80

Selects the builtin reliable stream, see 8.3.2.2

Bytes 2-3 sequenceNr = 0x07

4-7 Submessage Header

Byte 4 submessageld = CREATE = 0x01

See 8.3.5.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26

126 DDS XRCE Revised Submission

Represented in little endian as {0x1A, 0x00}

8-33 CREATE Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload)

Bytes 8-9 BaseObjectRequest request_id = {0xAA , 0x01

Bytes 10-11 BaseObjectRequest object id = {0xDD, 0xD5}
For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_ DATAWRITER

Bytes 13-32 are OBJK RepresentationBinAndXML_Base (base class of DATAWRITER Representation)

Byte 13 OBJK RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION IN BINARY

Bytes 14-15 padding

Bytes 16-31 are OBJK DataWriter Binary

Bytes 16-19 DHEADER of OBJK DataWriter Binary (because extensibility is APPENDABLE)
Encodes the endianness and length of the serialized OBJK DataWriter Binary object
Since the length is 12 and the desired endianness is little endian the value of DHEADER is:
0x8000000C encoded in little endian as {0x0C, 0x00, 0x00, 0x80}

Bytes 20-23 topic_name.length = 0x07
Encodes length of the string represented in little endian as {0x07, 0x00, 0x00, 0x00}

Bytes 24-30 Characters of the topic_name string, including the terminating NUL. Total of 7 characters

Byte 31 Optional field qos = 0x00
Set to 0x00 (FALSE) to indicate the qos field is not present

Bytes 32-33 used for the DATAWRITER Representation beyond its base class

Bytes 32-33 publisher_id = {0xBB, 0xB3}

B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY

DDS-XRCE, Revised Submission

127

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataWriter
with ObjectID {0xDD, 0xD5} for topic “Square” specifying the Qos in binary.

The created XRCE DataWriter should belong to an XRCE Publisher with publisher_id {0xBB, 0xB3}.

The desired DataWriter Qos deviates from the DDS default in that it has RELIABILITY policy set to BEST EFFORT,
HISTORY policy set to KEEP ALL and DEADLINE policy set to a period of 2 minutes.

The DataWriter is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION IN BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataWriter Binary {
string topic_name;
@optional OBJK DataWriter Binary Qos qos;
b
Where OBJK_DataWriter Binary Qos is defined in Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;

}i

@extensibility (FINAL)

struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

}i

The corresponding message is:

128 DDS XRCE Revised Submission

0 8 16 24 31
o - o o - Fom - +
| 0x81 | 0x80 | 0x07 |
o= fom— = o o fomm - +
| CREATE | flags | submessageLength |
fom—— fom— o fom e fom e +
| request id | object id |
fom—— fom— o fom e fom e +
|OBJK DATAWRITER|] 0x03 | padding | padding |
fom—— fom— o fom e fom e +
| DHEADER for OBJK DataWriter Binary object |
o= fom— = o o fom - +
| topic _name.length = 0x07 |
e o o o fom - +
| ‘s’ | ‘q’ | ‘u’ | ‘a’ |
e o o o fom - +
| ‘rf | ‘e | *“\O’ | gos? = 1 |
Fo—————= Fo—————= o Fomm - Fom - +
| gos_flags | history depth?| padding |
Fo—————= Fo—————= o Fomm - Fom - +
| deadline = 120000 |
Fo—————= Fo—————= o Fomm - Fom - +
| lifespan msec? | user data? |ownership stre?| padding |
fom— = o= fom - fom - fom - +
| publisher id |

fom— = o= fom - +

Table 23 describes the bytes in the CREATE message.

Table 23 Description of the CREATE message for the DataWriter using binary representation and Qos

12

16

20

24

28

32

36

40

44

48

Bytes Description

0-8 Message Header. Same as Table 22.

4-7 Submessage Header. Similar to Table 22.
8-45 CREATE Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload). Same as Table 22

Bytes 12-32 used for the ObjectVariant

Byte 12 -30 Same as Table 22

DDS-XRCE, Revised Submission

129

Byte 31 qos? Set to 0x01 (TRUE) to indicate the qos field is present

Bytes 32-45: OBJK Endpoint Binary Qos (base class of OBJK DataWriter Binary Qos)

Bytes 32-33 qos_flags = 0x0003

Indicates the flags for is_reliable and is_history keep all are both set.

Byte 34 history depth? Set to 0x00 (FALSE)

Byte 35 padding

Bytes 36-39 deadline = 120000 = 0x1D4C0

Period of 2 minutes in milliseconds. In little endian = {0xCO0, 0xD4, 0x01, 0x00}

Byte 40 lifespan? Set to 0x00 (FALSE)

Byte 41 user_data? Set to 0x00 (FALSE)

Byte 42 ownership_strength? Set to 0x00 (FALSE)
Byte 43 padding

Bytes 44-45 publisher_id = {0xBB, 0xB3}

B.2.5. Create a DataWriter using REPRESENTATION_AS_XML_STRING

The following message would be used by a XRCE Client request a XRCE ProxyClient to create a DataWriter
with ObjectID {0xDD, 0xD5}.

The created XRCE DatalWriter should belong to an XRCE Publisher with publisher_id {0xBB, 0xB3}.

The DataWriter is represented in XML. Therefore the RepresentationFormat is set to
REPRESENTATION AS XML STRING.

The XML representation references a Topic “Square” and QosProfile “MyQosLib:MyProfile” both known to the XRCE
Agent and uses the XML element:

<data writer name="MyWriter" topic ref="Square'">
<data writer gos base name="MyQosLib::MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data writer gos>
</data writer>

The corresponding message is:

130 DDS XRCE Revised Submission

0 8 16 24 31
- —— - F—_——— +
| 0x81 | 0x80 | 0x07 |
- - —_— - Fo———_——— +
| CREATE | flags | submessageLength |
F———— e o Fom Fom————— +
| request id | object id |
F———— e o Fom Fom +
|OBJK DATAWRITER|] 0x01 | padding | padding |
F———— e o Fom Fom +
| xml string representation.length |
- - —_— —— Fo—_——_——— +
~ The 180 characters of the String (extra whitespace removed): ~
~ <data writer name="MyWriter" topic ref="Square"> ~
~ <data writer gos base name="MyQosLib::MyProfile"/> ~
~ <deadline><period><sec>120</sec></period></deadline> ~
~ </data writer gos></data writer> ~
- - - f———— f—_—— +
| *\0’ | publisher id |

- - - f———— +

Table 24 describes the bytes in the CREATE message.
Table 24 Description of the CREATE message for a DataWriter using XML representation

12

16

20

Bytes Description

0-3 Message Header. Same as Table 22.

4-7 Submessage Header. Similar to Table 22.
8202 | CREATE Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload)

Bytes 8-9

BaseObjectRequest request_id = {0xAA , 0x01

Bytes 10-11

BaseObjectRequest object_id = {0xDD, 0xD5}

For a description of the ObjectID see 7.6.

Bytes 12-202 used for the ObjectVariant

Byte 12

ObjectVariant discriminator = 0x05

Set to OBJK_ DATAWRITER

DDS-XRCE, Revised Submission

131

Bytes 13-202 are OBJK RepresentationBinAndXML Base (base class of DATAWRITER Representation)

Byte 13 OBJK RepresentationBinAndXML Base discriminator = 0x02
RepresentationFormat set to REPRESENTATION AS XML STRING

Bytes 14-15 padding

Bytes 16-19 xml_string representation.length = 181 = 0x000000B5

Since flags has the Endianness bit set to 1 it is encoded using little endian as {0xBS5, 0x00,
0x00, 0x00}

Bytes 20-200 Characters of the xml_string_representation string, including the terminating NUL. Total of
181 characters

Bytes 201-202 used for the DATAWRITER _Representation beyond its base class

Bytes 201-202 | publisher id = {0xBB, 0xB3}

B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataReader
with ObjectID {0xDD, 0xD6} for topic “Square” using default Qos.

The created XRCE DataReader should belong to an XRCE Subscriber with subscriber id {0xCC, 0xC4}.

The DataReader is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION_ IN BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DataReader Binary {
string topic name;
@optional OBJK DataReader Binary Qos qos;

}i

The corresponding message is:

132 DDS XRCE Revised Submission

0 8 16 24 31
o o o o +
| 0x81 | 0x80 | 0x07 |
- et o o o +
| CREATE | flags | submessageLength |
- - o e —— e~ +
| request id | object id |
- - o e —— e~ +
| OBJK DATAREADER| 0x03 | padding | padding |
- - o e —— e~ +
| DHEADER for OBJK DataReader Binary object |
- et o o o +
| topic _name.length = 0x07 |
o e o o o —— +
| ‘s’ | ‘q’ | ‘u’ | ‘a’ |
o e o o o —— +
| ‘rf | ‘e | *“\O’ | gos? = 0 |
- - - f——————— f———————— +
| subscriber id |

- - - +

Table 25 describes the bytes in the CREATE message.

12

16

20

24

28

32

36

Table 25 Description of the CREATE message for the DataReader using binary representation and default Qos

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0x81
Indicates session 1 with no client key included in the message.
Byte 1 streamld=0x80
Selects the builtin reliable stream, see 8.3.2.2
Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header

Byte 4 submessageld = CREATE = 0x01

See 8.3.5.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26

DDS-XRCE, Revised Submission

133

Represented in little endian as {0x1A, 0x00}

8-33 CREATE Payload
Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload)
Bytes 8-9 BaseObjectRequest request_id = {0xAA , 0x01
Bytes 10-11 BaseObjectRequest object id = {0xDD, 0xD6}
For a description of the ObjectID see 7.6.
Bytes 12-32 used for the ObjectVariant
Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_ DATAREADER
Bytes 13-32 are OBJK RepresentationBinAndXML Base (base class of DATAREADER Representation)
Byte 13 OBJK RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION IN BINARY
Bytes 14-15 padding
Bytes 16-19 DHEADER of OBJK DaraReader Binary (because extensibility is APPENDABLE)
Encodes the endianness and length of the serialized OBJK DaraReader Binary object
Since the length is and the desired endianness is little endian the value of DHEADER is:
{0xBS5, 0x00, 0x00, 0x00}
Bytes 24-30 topic_name.length = 0x07
Encodes length of the string represented in little endian as {0x07, 0x00, 0x00, 0x00}
Bytes 24-30 Characters of the topic_name string, including the terminating NUL. Total of 7 characters
Byte 31 Optional field qos = 0x00
Set to 0x00 (FALSE) to indicate the qos field is not present
Bytes 32-33 used for the DATAREADER Representation beyond its base class
Bytes 32-33 subscriber_id = {0xCC, 0xC4}
B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY

The following message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataReader
with ObjectID {0xDD, 0xD6} for topic “Square” specifying the Qos in binary.

The created XRCE DataReader should belong to an XRCE Subscriber with subscriber id {0xCC, 0xC4}.

134

DDS XRCE Revised Submission

The desired DataReader Qos deviates from the DDS default in that it has HISTORY policy set to KEEP_ALL and
DEADLINE policy set to a period of 5 minutes.

In addition the DataReader installs a filter with the expression “x>100".

The DataReader is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION IN BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos gos;
i
Where OBJK_DataReader Binary Qos is defined in Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
}i
@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

b

The corresponding message is:

DDS-XRCE, Revised Submission 135

- —— - F—_——— +

| 0x81 | 0x80 | 0x07 | 4
- - —_— - Fo———_——— +

| CREATE | flags | submessageLength | 8
F———— e o Fom Fom————— +

| request id | object id | 12
F———— e o Fom Fom————— +

| OBJK DATAREADER| 0x03 | padding | padding | 16
F———— e o Fom Fom +

| DHEADER for OBJK DataReader Binary object | 20
- - —_— - Fo—_——_——— +

| topic _name.length = 0x07 | 24
+———— R ———_ - Fo——_———— +

| ‘s’ | ‘g’ | ‘u’ | ‘a’ | 28
+———— R ———_ - Fo——_———— +

| ‘r’ | ‘e’ | “\0’ | gos? =1 | 32
- - - f———— f—_—— +

| gos_flags | history depth?| padding | 36
- - - f———— f—_—— +

| deadline = 180000 | 40
- - - f———— f—_—— +

| lifespan msec? | user data? | timebased filt?]|contentbased f£?| 44
e e o o o ——————— +

| contentbased f.length = 0x06 | 48
e e o o o ——————— +

| ‘x! | > | A | ‘0’ | 52
e e o o o ——————— +

| r0’ | “\0’ | publisher id | 56
- - - f———— f—_— +

Table 26 describes the bytes in the CREATE message.
Table 26 Description of the CREATE message for the DataWriter using binary representation and Qos

Bytes Description

0-8 Message Header. Same as Table 25.

4-7 Submessage Header. Similar to Table 25.

8-55 | CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload). Same as Table 25

136 DDS XRCE Revised Submission

Bytes 12-55 used for the ObjectVariant

Byte 12 -30

Same as Table 25

Byte 31

qos? Set to 0x01 (TRUE) to indicate the qos field is present

Bytes 32-43: OBJK Endpoint Binary Qos (base class of OBJK DataWriter Binary Qos)

Bytes 32-33 qos_flags = 0x0002
Only the flags for is_history keep_all is set.
Byte 34 history depth? Set to 0x00 (FALSE)
Byte 35 padding
Bytes 36-39 deadline = 180000 = 0x2BF20
Period of 3 minutes in milliseconds. In little endian = {0x20, 0xBF, 0x02, 0x00}
Byte 40 lifespan? Set to 0x00 (FALSE)
Byte 41 user_data? Set to 0x00 (FALSE)

Bytes 42-53: OBJK DataReader Binary Qos beyond OBJK Endpoint Binary Qos

Byte 42 timebased_filter? Set to 0x00 (FALSE)
Byte 43 contentbased_filter? Set to 0x01 (TRUE)
Byte 44-47 contentbased _filter.length = 0x06
Encodes length of the string represented in little endian as {0x06, 0x00, 0x00, 0x00}
Byte 48-53 Characters of the contentbased _filter string, including the terminating NUL. Total of 6

characters

Bytes 54-55: CREATE_Payload beyond BaseObjectRequest

Bytes 54-55

publisher_id = {0xBB, 0xB3}

B.3. WRITE_DATA message examples

B.3.1. Writing a single data sample

The following message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. It uses an existing session with session_id 0xDD to send the request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

DDS-XRCE, Revised Submission

137

The XRCE Client writes a single sample of data with no

meta-data. See 7.7.1 and 7.7.2 for a description of the different

formats available to write and read data. Therefore the payload of the WRITE DATA message is the XCDR serialized
representation of the WRITE DATA Payload Data type defined in Annex A IDL Types.

@extensibility (FINAL)

struct SampleData {

XCDRSerializedBuffer serialized data;

}s

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({

SampleData data;
}i

In this example we assume the data written corresponds
@extensibility (FINAL)
struct Temperature {
short wvalue;
}i
Furthermore we assume that the value written is 25.

The corresponding message is:

0 8 16
o ——————— B +
| session id | stream id |
e t——— B +
| WRITE_DATA | flags |
o ——————— B +

Table 27 describes each of the bytes in the message.

to a struct Temparature type described in the following IDL:

24 31
———————————————— Fom————————
sequencelNr | 4
———————————————— Fom————————
submessageLength | 8
———————————————— Fom————————
object id | 12
———————————————— Fom————————

Table 27 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Message Header

138

DDS XRCE Revised Submission

Byte 0 sessionld = 0xDD

Byte 1 streamId=0x80
Selects STREAMID BUILTIN RELIABLE, see 8.3.2.2

Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x01, 0x00}

4-7 Submessage Header
Byte 4 submessageld = WRITE _DATA = 0x07
Byte 5 flags = 0x01

Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 1, 2, 3 set to zero indicate payload DataFormat is FORMAT DATA.
See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006

Represented in little endian (see 8.3.4.3) as {0x06, 0x00}

8-13 WRITE_DATA_Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA Payload)

Bytes 8-9 request_id = {0xAA , 0x01}

Bytes 10-11 object_id = {0x44, 0x05}

Bytes 12-13 are used for SampleData (remaining of WRITE _DATA_Payload after base class)

Byte 12-13 serialized _data = {0x19, 0x00}
Little endian serialized representation of the Temperature value of 25 (in hex
0x0019).
B.3.2. Writing a sequence of data samples with no sample information

The following message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object id {0x44, 0x05}. It uses an existing session with session_id 0xDD to send the request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

The XRCE Client writes a sequence of bare data samples with no meta-data. See 7.7.1 and 7.7.2 for a description of the
different formats available to write and read data. Therefore the payload of the WRITE DATA message is the XCDR
serialized representation of the WRITE DATA Payload DataSeq type defined in Annex A IDL Types.

@extensibility (FINAL)

DDS-XRCE, Revised Submission 139

struct SampleData {

XCDRSerializedBuffer serialized data;

}s

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {

sequence<SampleData> data_ seq;

}s

In this example we assume the data written corresponds to a two values of the struct Temparature type described in

the following IDL:
@extensibility (FINAL)
struct Temperature {
short wvalue;
bi
Furthermore we assume that there are five values written: 20, 17, 26, and 40 .

The corresponding message is:

0 8 16 24
- t————— - F——————
| session id | stream id | sequenceNr

o - o o o
| WRITE DATA | flags | submessageLength
o ——— o o o
| request id | object id
o ——— o o o

o o o o ——————
| data seq[0].serialized data | data seqgll].serialized data
o o o o ——————
| data seqg[2].serialized data | data seqgl[3].serialized data
o o o o ——————

Table 28 describes each of the bytes in the message.
Table 28 Description of the READ_DATA (single sample) example bytes

12

16

20

24

Bytes Description

0-3 Submessage Header similar to Table 27

140 DDS XRCE Revised Submission

4-7 Submessage Header

Byte 4 submessageld = WRITE DATA = 0x07

Byte 5 flags = 0x09
Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively set to 1, 0, 0, indicate payload DataFormat is
FORMAT DATA SEQ See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006

Represented in little endian (see 8.3.4.3) as {0x06, 0x00}

8-23 WRITE DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA Payload)
Same as Table 27

Bytes 12-13 are used for SampleData (remaining of WRITE DATA Payload after base class)

Bytes 12-15 data_seq.length = 4, Encoded in little endian as {0x04, 0x00, 0x00, 0x00}
Bytes 16-23 Little endian serialized representation of the 4 short temperature values 20,
17, 26, and 40:

{{0x14, 0x00}, {0x11, 0x00}, {Ox1A, 0x00} {0x24, 0x00}}

B.3.3. Writing a single data sample with timestamp metadata

The following message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. It uses an existing session with session_id 0xDD to send the request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify
of instance lifecycle changes such as the deletion of an instance. See 7.7.1 and 7.7.2 for a description of the different
formats available to write and read data.

The payload of the WRITE DATA message is the XCDR serialized representation of the
WRITE DATA Payload Sample type defined in Annex A IDL Types.

@bit bound(8)

bitmask SampleInfoFlags {
@position (0) INSTANCE STATE UNREGISTERED,
@position (1) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position (3) SAMPLE STATE READ,

bi

DDS-XRCE, Revised Submission 141

@extensibility (FINAL)
struct SegNumberAndTimestamp {
unsigned long sequence number;

unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
union SampleInfoDetail switch (SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:

SegNumberAndTimestamp segnum n timestamp;

}i

@extensibility (FINAL)
struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState

SampleInfoDetail detail;
}i

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;

bi
@extensibility (FINAL)
struct Sample {

SampleInfo info;

SampleData data;
bi

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest {
Sample sample;

}i

142 DDS XRCE Revised Submission

In this example we assume the data written corresponds to a struct Temparature type described in the following IDL:

@extensibility (FINAL)

struct Temperature {

short wvalue;

}s

Furthermore we assume that the value written is 25.

The corresponding message is:

0 8 16 24 31
fmm fom e Fmmm e Fom e +
| session id | stream id | sequenceNr | 4
fom - fom - fom - fom e +
| WRITE DATA | flags | submessagelLength | 8
et i fom fom o fom e +
| request id | object id | 12
et i fom fom o fom e +
| info.state | FORMAT TIMESTAMP | padding | padding | 16
et i fom fom o fom e +
| info.detail.session time offset | 20
fom - fom - fom - fom e +
| serialized data | 24
fom - fom - +
Table 29 describes each of the bytes in the message.
Table 29 Description of the READ_DATA (single sample) example bytes
Bytes Description
0-3 Submessage Header similar to Table 27
4-7 Submessage Header
Byte 4 submessageld = WRITE _DATA = 0x07
Byte 5 flags = 0x03
Bit 0 (lowest bit) = 1 indicate little endian encoding
Bits 3, 2, 1 respectively set to 0, 0, 1, indicate payload DataFormat is
FORMAT Sample. See 8.3.5.8.1.
Bytes 6-7 submessageLength = 13 = 0x000D
Represented in little endian (see 8.3.4.3) as {0x06, 0x00}
DDS-XRCE, Revised Submission 143

8-21 WRITE_DATA_Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA_ Payload)
Same as Table 27

Bytes 12-21 are used for Sample (remaining of WRITE DATA Payload after base class)

Byte 12 info.state = 0x00

The state bits indicate the instance is ALIVE (the flags for unregistered and
disposed are both zero).

Byte 13 info.detail.discriminator = FORMAT TIMESTAMP

Bytes 14-15 padding

Bytes 16-19 info. Detail.session_time_offset

Bytes 20-21 serialized data. Little endian serialized representation of the short

temperature value 25:

{0x19, 0x00}

B.3.4. Writing a disposed data sample

The following message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. It uses an existing session with session_id 0xDD to send the request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify
of instance lifecycle changes such as the deletion of an instance. See 7.7.1 and 7.7.2 for a description of the different
formats available to write and read data.

The payload of the WRITE DATA message is the XCDR serialized representation of the
WRITE DATA Payload Sample type defined in Annex A IDL Types. See also B.3.3 for the types used in this
message.

In this example we assume the data written corresponds to a keyed data-type. The structure TemparatureSensor
described in the following IDL:

@extensibility (FINAL)
struct TemperatureSensor {
@key octet sensor id[4];
short sensor value;
}i
Furthermore the example assumes that the written data has sensor_id = {Ox11, 0x22, 0x33, 0x64} and sensor_value = 25.

The corresponding message is:

144 DDS XRCE Revised Submission

0 8 16 24 31

o ———— o e e +

| session id | stream id | sequenceNr | 4

t————— t———— o ——— o —— - +

| WRITE DATA | flags | submessagelLength | 8

o — o ——— e - - +

| request id | object id | 12

o — o ——— o —— - +

| info.state | FORMAT EMPTY | serialized data | 16

o ———— o e e +
serialized data | 20

o o - - - +

Table 30 describes each of the bytes in the message.
Table 30 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Submessage Header similar to Table 27

4-7 Submessage Header
Byte 4 submessageld = WRITE _DATA = 0x07
Byte 5 flags = 0x03

Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively set to 0, 0, 1, indicate payload DataFormat is
FORMAT _Sample. See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as {0x06, 0x00}

8-19 WRITE_DATA_Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA Payload)

Same as Table 27

Bytes 12-19 are used for Sample (remaining of WRITE DATA Payload after base class)

Byte 12 info.state = 0x02

The state bits indicate the instance is DISPOSED (the flag for unregistered is
zero but the flag for disposed is one).

DDS-XRCE, Revised Submission 145

Byte 13 Info.detail.discriminator = FORMAT NONE
Indicates no additional information beyond the state.
Bytes 14-19 Serialized data = { {0x11, 0x22, 0x33, 0x64}, {0x19, 0x00} }

Little endian serialized representation of the sensor data. First four bytes are
the sender_id and following two bytes the sensor_value.

B.4. READ_DATA message examples

B.4.1.

Reading a single data sample

The following message could be used by a XRCE Client to read data from an already created XRCE DataReader,
identified by object_id {0x44, 0x06}. It uses an (already created) session with session_id 0xDD to send the request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

The ReadSpecification does not specify a content filter and requests a single data sample with no sample information.

The payload of the READ DATA message is the XCDR serialized representation of the READ DATA Payload type
defined in Annex A IDL Types.

146

@extensibility (APPENDABLE)

struct DataDeliveryControl {

unsigned short
unsigned short
unsigned short
unsigned short

b

max samples;
max elapsed time;
max bytes per second;

min pace period; // milliseconds

@extensibility (FINAL)

struct ReadSpecification {

DataFormat

data format;

@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}s

@extensibility (FINAL)

struct READ DATA Payload : BaseObjectRequest ({

ReadSpecification read specification;

}s

DDS XRCE Revised Submission

The corresponding message is:

0 8 16 24 31

o ————————— o ———_—————— o ——————— o ————————— +

| session_ id | stream id | sequenceNr | 4
t—————— e o ———_—————— o ——————— o ————————— +

| READ DATA | flags | submessagelLength | 8
o ————————— o ———_—————— o ——————— o ————————— +

| request id | object id | 12
e e e e +

| data format | content filter?|delivery contro?| 16
e e e +

Table 31 describes each of the bytes in the message.
Table 31 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x80

Selects STREAMID BUILTIN RELIABLE, see 8.3.2.2

Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x01, 0x00}

4-7 Submessage Header
Byte 4 submessageld = READ DATA = 0x07
Byte 5 flags = 0x01 (little endian)
Bytes 6-7 submessageLength = 7= 0x0007

Represented in little endian (see 8.3.4.3) as {0x07, 0x00}

8-14 READ DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA Payload)

Bytes 8-9 request_id = {OxAA , 0x01}

Bytes 10-11 object_id = {0x44, 0x06}

DDS-XRCE, Revised Submission 147

Bytes 12-14 are used for remaining of READ DATA Payload after base class

Bytes 12-14 are used for the read_specification of type ReadSpecification

Byte 12 read specification.data_format = 0x00.

Encodes the desired DataFormat. In this case selects FORMAT DATA .

Byte 13 content filter expression? = 0x00.

Encodes whether the optional member content filter expression is present.
In this case it is set to FALSE indicating there it is not present.

Byte 14 read_specification.delivery control? = 0x00

Encodes whether the optional member delivery control is present. In this
case it is set to FALSE indicating there is no DataDeliveryControl.

B.4.2. Reading a sequence of data samples with a content filter

The following message could be used by a XRCE Client to request the streaming of data from an already created XRCE
DataReader, identified by object id {0x44, 0x06}. It uses an (already created) session with session_id 0xDD to send the
request.

The XCREClient uses request_id = {0xAA, 0x01} to identify this request.

The ReadSpecification requests a stream of no more than 100 data samples, over a time window not to exceed 30
seconds with bandwidth not to exceed 1024 bytes per second and a minimum pace of 1000 milliseconds. It requests
samples only with no associated sample information.

In addition the Client request data that matches the content filter expression “x>100".

This message uses the same data types as B.4.1. The difference is that it selects the DataFormat FORMAT DATA_SEQ,
the read_specification contains a content filter expression and a DataDeliveryControl.

148 DDS XRCE Revised Submission

0 8 16 24 31
- - f—_— fo———_———— +
| session_ id | stream id | sequenceNr |
-t —_— f—_— Fo————————— +
| READ DATA | flags | submessageLength |
o o o Fom +
| request id | object id |
o o o Fom +
| data format |content filter? | padding |
o o o Fom +
| content filter expression.length |
—_— —_— f—_— Fo————————— +
| 'x | ' | "1 | *0 |
——— t——_— —_— Fom——————— +
| ‘O | “\0’ |delivery contro? | padding |
——— t——_— f—_—— Fom——————— +
| DHEADER for DataDeliveryControl object |
et - —_— f———— +
| max samples | max elapsed time |
- - —_— f———— +
| max rate | min pace period

- - —_— f———— +

Table 32 describes each of the bytes in the message.

Table 32 Description of the READ_DATA (multiple samples) example bytes

12

16

20

24

28

32

36

40

Bytes Description

0-3 Message Header. Same as Table 31.

4-7 Submessage Header. Similar to Table 31.
8-36 READ DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE DATA Payload)

Same as Table 31.

Bytes 12-36 are used for remaining of READ DATA Payload after base class

Bytes 12-36 are used for the read_specification of type ReadSpecification

Byte 12 read_specification.data_format = 0x08

Encodes the desired DataFormat. In this case selects
FORMAT DATA SEQ.

DDS-XRCE, Revised Submission

149

Byte 13-25 is used for the content filter expression

Byte 13 content filter expression? = 0x01.

Encodes whether the optional member content filter expression is present.
In this case it is set to FALSE indicating there it is present.

Bytes 14-15 padding

Bytes 16-19 content filter expression .length = 6 = 0x00000006
Length of the content_filter expression string in little endian
{0x06,0x00,0x00,0x00} .

Byte 20-25 Characters of content filter expression, including terminating NUL
character.

Bytes 26-35 are used for the delivery control of type DataDeliveryControl

Byte 26 read_specification.delivery control? = 0x01

Encodes whether the optional member delivery control is present. In this
case it is set to FALSE indicating there is no DataDeliveryControl.

Bytes 27 padding
Bytes 28-31 DHEADER of DataDeliveryControl (because extensibility is
APPENDABLE)

Encodes the endianness and length of the serialized DataDeliveryControl
object

Since the length is 8 and the desired endianness is little endian the value of
DHEADER is: 0x80000008 = {0x08, 0x00, 0x00, 0x80}

Byte 28-29 max_samples = 100 = 0x64

Represented in little endian (see flags) as {0x64, 0x00,}

Byte 30-31 max_elapsed time = 30000 = 0x7530.

Represented in little endian (see flags) as {0x30, 0x75 }

Byte 32-33 max_rate = 1024 = 0x0400

Represented in little endian (see flags) as {0x00, 0x40}

Byte 34-35 min_pace period = 1000 = 0x03ES8

Represented in little endian (see flags) as {OxES8, 0x03}

150 DDS XRCE Revised Submission

B.5. DATA message examples

B.5.1. Receiving a single data sample

The following message could be used by a XRCE Agent to send a single sample in response to a READ DATA request
from a XRCE Client that used DataFormat FORMAT DATA.

The example illustrates the response to the request_id {0xAA, 0x01} from the XRCE DataReader with object id {0x44,
0x06}. It uses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN BEST EFFORTS.

This example also assumes the data being sent corresponds to an object foo of type FooType defined in the IDL below.
In the example we assume foo.count is set to 19.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31
- e ————— - e —— o — +

| session_ id | stream id | sequenceNr | 4
e e tm——_——_—————— tm——_——_————_—_— t——_—_—_———————— +

| DATA | flags | submessagelLength | 8
tm——_——_—————— tm——_——_—————— tm——_——_————_—_— t——_—_—_———————— +

| request id | object id | 12
e ———————— o ———————— o —_———————— e —_—_—_——————— +

+ XCDR_Serialization (foo) + 16
- e - e —— o — +

Table 33 Description of the DATA (single samples) example bytes

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x01

Selects STREAMID BUILTIN BEST EFFORTS, see 8.3.2.2

Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x01, 0x00}

4-7 Submessage Header

DDS-XRCE, Revised Submission 151

Byte 4 submessageld = DATA = 0x09

Byte 5 flags = 0x00 (big endian)

Bytes 6-7 submessageLength = 8 = 0x0008
Represented in little endian (see 8.3.4.3) as {0x08, 0x00}

8-15 DATA Payload Data (DataFormat was FORMAT DATA)
Bytes 8-9 request_id = {0xAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Byte 12-15 XCDR Serialization of foo of type FooType.

Flags is 0x00 so the representation is Big Endian.

The resulting for foo.count = 19 is {0x00, 0x00, 0x00, 0x13}.

B.5.2. Receiving a sequence of samples without Samplelnfo

The following message could be used by a XRCE Agent to send a sequence of samples in response to a READ DATA
request from a XRCE Client that used DataFormat FORMAT DATA_ SEQ.

The example illustrates the response to the request_id {0xAA, 0x02} from the XRCE DataReader with object id {0x44,
0x06}. It uses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN BEST EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count is set to 1 and foo2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

b

152 DDS XRCE Revised Submission

(@]
(0]
Y
+ o
N
D
w
=

- - —_t fo———_———— +

| session_ id | stream id | sequenceNr | 4
- - —_— f—_— Fo————————— +

| DATA | flags | submessageLength | 8
o o o Fom +

| request id | object id | 12
o o o Fom +

~ XDR Serialization (DATA Payload SampleSeq) ~
F———— e o o Fom +
The serialization of DATA_Payload SampleSeq can be expanded as:

0 8 16 24 31

fom - fomm - fomm fom - fom e +

| data seqg.length = 2 | 4
- - - —_— f———— +

| data seq[0].data (fool.count = 1) | 8
——— t——_— —_— Fom——————— +

| data seqg[l].data (fool.count = 2) | 12
——— t——_— f—_— Fom——————— +

Table 34 Description of the DATA (sample sequence) example bytes

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x01

Selects STREAMID BUILTIN BEST EFFORTS, see 8.3.2.2

Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x0A, 0x00}

4-7 Submessage Header
Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessageLength = 16 = 0x0010

Represented in little endian (see 8.3.4.3) as {0x10, 0x00}

DDS-XRCE, Revised Submission 153

8-23 DATA Payload DataSeq (DataFormat was FORMAT DATA SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Bytes 12-15 data seq.length =2
Bytes 16-19 data_seq[0].data
Bytes 20-23 data_seq[1].data
B.5.3. Receiving a single sample that includes Samplelnfo

The following message could be used by a XRCE Agent to send a sequence of samples in response to a READ DATA
request from a XRCE Client that used DataFormat FORMAT SAMPLE.

The example illustrates the response to the request_id {0xAA, 0x02} from the XRCE DataReader with object id {0x44,
0x06}. It uses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN BEST EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count is set to 1 and foo2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

e ———————— t———_ - o —_———————— e —_—_—_——————— +

| session id | stream id | sequenceNr | 4
t————— t————— o ———————— o —_———————— e —_—_—_——————— +

| DATA | flags | submessagelLength | 8
e ———————— o ———————— o —_———————— e —_—_—_——————— +

| request id | object id | 12
e B e e —_———————— tm——_—_——————— +

~ XDR Serialization (DATA Payload Sample) ~
e e e ——— o ——— o —— +

The serialization of DATA Payload Sample can be expanded as:

@extensibility (FINAL)

union SampleInfoDetail switch (SampleInfoFormat) {

154 DDS XRCE Revised Submission

case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n_ timestamp;

}s

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

bi

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
SampleInfoDetail detail;

}i

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
bi

DDS-XRCE, Revised Submission 155

Fom Fomm————— Fom———— Fom fom e +

| info.state | 4
Fomm Fom Fom fom e +

| info.sequence number | 8
fom - o~ o o +

| info.session time offset | 12
fom - fom o o +

+ XCDR_Serialization(foo) + 16
fom - fom o o +
B.5.4. Receiving a sequence of samples that includes Sampleinfo

The following message could be used by a XRCE Agent to send a sequence of samples in response to a READ DATA
request from a XRCE Client that used DataFormat FORMAT SAMPLE SEQ.

The example illustrates the response to the request_id {0xAA, 0x02} from the XRCE DataReader with object id {0x44,
0x06}. It uses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN BEST EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count is set to 1 and foo2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31
- - - —_— f———— +

| session id | stream id l sequenceNr | 4
e e e e fom e ——— +

| DATA | flags | submessagelLength | 8
o e e fom e ——— +

| request id | object id | 12
o o o Fom +

~ XDR Serialization (DATA Payload SampleSeq) ~
- - - —_— fo———_——— +

The serialization of DATA Payload SampleSeq can be expanded as:

156 DDS XRCE Revised Submission

8 16 24 31
——————————— o
sample seqg.length = 2 |
—_——t o —— o —— o —— +
sample seq[0].info.state |
——————————— ot
sample seq[0].info.sequence number |
——————————— ot
sample seq[0].info.session time offset |
——————————— ot
sample seq[0].data (fool.count = 1) |
—_——t o —— o —— o —— +
sample seq[l].info.state |
——————————— o
sample seq[l].info.sequence number |
——————————— o
sample seqg[l].info.session time offset |
——————————— o
sample seql[l].data (fool.count = 2) |
——————————— o

Table 35 Description of the DATA (sample sequence) example bytes

12

16

20

24

28

32

36

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x01
Selects STREAMID BUILTIN BEST EFFORTS, see 8.3.2.2
Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x0A, 0x00}
4-7 Submessage Header

Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessageLength = 40 = 0x0028

Represented in little endian (see 8.3.4.3) as {0x28, 0x00}

DDS-XRCE, Revised Submission

157

8-47 DATA Payload SampleSeq (DataFormat was FORMAT SAMPLE SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Bytes 12-15 sample seq.length = 2
Bytes 16-27 sample seq[0].info
Bytes 28-31 sample seq[0].data
Bytes 32-43 sample_seq[1].info
Bytes 44-47 sample seq[1].data
B.5.5. Receiving a sequence of packed samples

The following message could be used by a XRCE Agent to send a sequence of samples in response to a READ DATA
request from a XRCE Client that used DataFormat FORMAT PACKED SAMPLES.

The example illustrates the response to the request_id {0xAA, 0x03} from the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id 0xDD to send the data.

The data is sent using a reliable protocol using the builtin stream identified by stream_id
STREAMID_ BUILTIN_ RELIABLE.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count is set to 1 and foo2.count is set to 1.

@extensibility (FINAL)
struct FooType ({

long count;

0 8 16 24 31
o — - - o — o — +

| session id | stream id | sequenceNr | 4
- - o o —— o +

| DATA | flags | submessagelength | 8
o —— o o —— o —— +

| request id | object id | 12
o —— o o —— o —— +

~ XDR Serialization (DATA Payload PackedSamples) ~
- - o o —— o —— +

The serialization of DATA Payload SamplePackedSeq can be expanded as:

158 DDS XRCE Revised Submission

16 24
—————— o
o _base.state
______________ +________________+____________
o0 _base.sequence number
______________ +________________+____________
0 base.session time offset
______________ +________________+____________
ple delta seqg.length = 2
______________ +________________+____________
ple delta seq[0].info delta
______________ +________________+____________
ple delta seq[0].data (fool.count = 1)
______________ +_________________l_____________
ple delta seq[l].info delta
______________ +_________________l_____________
ple delta seq[l].data (fool.count = 2)
______________ +_________________|_____________

Table 36 Description of the DATA (packed samples) example bytes

12

16

20

24

28

32

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x80
Selects STREAMID BUILTIN RELIABLE, see 8.3.2.2
Bytes 2-3 sequenceNr = 1
Represented in little endian (see 8.3.2.3) as {0x0A, 0x00}
4-7 Submessage Header
Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessageLength = 36 = 0x0024
Represented in little endian (see 8.3.4.3) as {0x24, 0x00}
8-47 DATA Payload PackedSample (DataFormat FORMAT PACKED SAMPLES)

Byte 8-19

info_base

DDS-XRCE, Revised Submission

159

Bytes 20-23

sample delta seq.length =2

Bytes 24-27 sample delta seq[0].info_delta
Bytes 28-31 sample delta seq [0].data
Bytes 32-35 sample_delta_seq [1].info_delta
Bytes 36-39 sample delta seq [1].data

160

DDS XRCE Revised Submission

	DDS for eXtremely Resource Constrained Environments
	Table of Contents
	Preface
	0 Response Details
	0.1 OMG Response Details
	0.2 Copyright Waiver
	0.3 Contacts
	0.4 Problem Statement
	0.5 Overview of this Specification
	0.6 Statement of Proof of Concept
	0.7 Mapping to RFP Requirements
	0.7.1 Mandatory requirements
	0.7.2 Non-Mandatory requirements
	0.7.3 Internalization Support

	0.8 Responses to the RFP Issues to be discussed
	0.8.1 Submissions shall clearly quantify the protocol overhead
	0.8.1.1 Use of 8-bit submessageId, 8-bit flags, and 16-bit sequence number
	0.8.1.2 Representing object as a String Name
	0.8.1.3 Representing object as a String Name, XML string
	0.8.1.4 Use of XCDR (binary) representation of resources

	0.8.2 Submissions shall clearly explain supported DDS profiles

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 XRCE Object Model
	7.1 General
	7.2 XRCE Client
	7.3 XRCE Agent
	7.4 Model Overview
	7.5 XRCE DDS Proxy Objects
	7.6 XRCE Object Identification
	7.7 Data types used to model operations on XRCE Objects
	7.7.1 Data and Samples
	7.7.2 DataRepresentation
	7.7.3 ObjectVariant
	7.7.3.1 Object Representation Formats
	7.7.3.1.1 REPRESENTATION_BY_REFERENCE format
	7.7.3.1.2 REPRESENTATION_AS_XML_STRING format
	7.7.3.1.3 REPRESENTATION_IN_BINARY format

	7.7.3.2 XRCE QosProfile
	7.7.3.2.1 Representation by reference
	7.7.3.2.2 XML string representation

	7.7.3.3 XRCE Type
	7.7.3.3.1 Representation by reference
	7.7.3.3.2 XML string representation

	7.7.3.4 XRCE Domain
	7.7.3.4.1 Representation by reference
	7.7.3.4.2 XML string representation

	7.7.3.5 XRCE Application
	7.7.3.5.1 Representation by reference
	7.7.3.5.2 XML string representation

	7.7.3.6 XRCE DomainParticipant
	7.7.3.6.1 Representation by reference
	7.7.3.6.2 XML string representation
	7.7.3.6.3 Binary representation

	7.7.3.7 XRCE Topic
	7.7.3.7.1 Representation by reference
	7.7.3.7.2 XML string representation
	7.7.3.7.3 Binary representation

	7.7.3.8 XRCE Publisher
	7.7.3.8.1 XML string representation
	7.7.3.8.2 Binary representation

	7.7.3.9 XRCE Subscriber
	7.7.3.9.1 XML string representation
	7.7.3.9.2 Binary representation

	7.7.3.10 XRCE DataWriter
	7.7.3.10.1 XML string representation
	7.7.3.10.2 Binary representation

	7.7.3.11 XRCE DataReader
	7.7.3.11.1 XML string representation
	7.7.3.11.2 Binary representation

	7.7.4 ObjectId
	7.7.5 ObjectKind
	7.7.6 ObjectIdPrefix
	7.7.7 ResultStaus
	7.7.8 BaseObjectRequest
	7.7.9 BaseObjectReply
	7.7.10 RelatedObjectRequest
	7.7.11 CreationMode
	7.7.12 ActivityInfoVariant
	7.7.13 ObjectInfo
	7.7.14 ReadSpecification

	7.8 XRCE Object operations
	7.8.1 Use of the ClientKey
	7.8.2 XRCE Root
	7.8.2.1 create_client
	7.8.2.2 get_info
	7.8.2.3 delete_client

	7.8.3 XRCE ProxyClient
	7.8.3.1 create
	7.8.3.2 update
	7.8.3.3 get_info
	7.8.3.4 delete

	7.8.4 XRCE DataWriter
	7.8.4.1 write

	7.8.5 XRCE DataReader
	7.8.5.1 read

	8 XRCE Protocol
	8.1 General
	8.2 Definitions
	8.2.1 Message
	8.2.2 Session
	8.2.3 Stream
	8.2.4 Client
	8.2.5 Agent

	8.3 Message Structure
	8.3.1 General
	8.3.2 Message Header
	8.3.2.1 Sessions and the sessionId
	8.3.2.2 Streams and the streamId
	8.3.2.3 sequenceNr
	8.3.2.4 clientKey

	8.3.3 Submessage Structure
	8.3.4 Submessage Header
	8.3.4.1 submessageId
	8.3.4.2 flags
	8.3.4.3 submessageLength
	8.3.4.4 payload

	8.3.5 Submessage Types
	8.3.5.1 CREATE_CLIENT
	8.3.5.1.1 flags
	8.3.5.1.2 payload

	8.3.5.2 CREATE
	8.3.5.2.1 flags
	8.3.5.2.2 payload

	8.3.5.3 GET_INFO
	8.3.5.3.1 flags
	8.3.5.3.2 payload

	8.3.5.4 DELETE
	8.3.5.4.1 flags
	8.3.5.4.2 payload

	8.3.5.5 STATUS_AGENT
	8.3.5.5.1 flags
	8.3.5.5.2 payload

	8.3.5.6 STATUS
	8.3.5.6.1 flags
	8.3.5.6.2 payload

	8.3.5.7 INFO
	8.3.5.7.1 flags
	8.3.5.7.2 payload

	8.3.5.8 WRITE_DATA
	8.3.5.8.1 flags
	8.3.5.8.2 payload

	8.3.5.9 READ_DATA
	8.3.5.9.1 flags
	8.3.5.9.2 payload

	8.3.5.10 DATA
	8.3.5.10.1 flags
	8.3.5.10.2 payload

	8.3.5.11 ACKNACK
	8.3.5.11.1 flags
	8.3.5.11.2 payload

	8.3.5.12 HEARTBEAT
	8.3.5.12.1 flags
	8.3.5.12.2 payload

	8.3.5.13 RESET
	8.3.5.13.1 flags
	8.3.5.13.2 payload

	8.3.5.14 FRAGMENT
	8.3.5.14.1 flags
	8.3.5.14.2 payload

	8.4 Interaction Model
	8.4.1 General
	8.4.2 Sending data using a pre-configured DataWriter
	8.4.3 Receiving data using a pre-configured DataReader
	8.4.4 Discovering an Agent
	8.4.5 Connecting to an Agent
	8.4.6 Creating a complete Application
	8.4.7 Defining Qos configurations
	8.4.8 Defining Types
	8.4.9 Creating a Topic
	8.4.10 Creating a DataWriter
	8.4.11 Creating a DataReader
	8.4.12 Getting Information on a Resource
	8.4.13 Updating a Resource
	8.4.14 Reliable Communication
	8.4.14.1 Reliable sender state machine
	8.4.14.2 Reliable receiver state machine

	8.5 XRCE Object Operation Traceability

	9 XRCE Agent Configuration
	9.1 General
	9.2 Remote configuration using the XRCE Protocol
	9.3 File-based Configuration
	9.3.1 Example Configuration File

	10 XRCE Deployments
	10.1 XRCE Client to DDS communication
	10.2 XRCE Client to Client via DDS
	10.3 Client-to-Client communication brokered by an Agent
	10.4 Federated deployment
	10.5 Direct Peer-to-Peer communication between client Applications
	10.6 Combined deployment

	11 Transport Mappings
	11.1 Transport Model
	11.2 UDP Transport
	11.2.1 Transport Locators
	11.2.2 Connection establishment
	11.2.3 Message Envelopes
	11.2.4 Agent Discovery

	11.3 TCP Transport
	11.3.1 Transport Locators
	11.3.2 Connection establishment
	11.3.3 Message Envelopes
	11.3.4 Agent Discovery

	11.4 Other Transports

	A IDL Types
	B Example Messages (Non-Normative)
	B.1. CREATE_CLIENT message example
	B.2. CREATE message examples
	B.2.1. Create a DomainParticipant using REPRESENTATION_BY_REFERENCE
	B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY
	B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY
	B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY
	B.2.5. Create a DataWriter using REPRESENTATION_AS_XML_STRING
	B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY
	B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY

	B.3. WRITE_DATA message examples
	B.3.1. Writing a single data sample
	B.3.2. Writing a sequence of data samples with no sample information
	B.3.3. Writing a single data sample with timestamp metadata
	B.3.4. Writing a disposed data sample

	B.4. READ_DATA message examples
	B.4.1. Reading a single data sample
	B.4.2. Reading a sequence of data samples with a content filter

	B.5. DATA message examples
	B.5.1. Receiving a single data sample
	B.5.2. Receiving a sequence of samples without SampleInfo
	B.5.3. Receiving a single sample that includes SampleInfo
	B.5.4. Receiving a sequence of samples that includes SampleInfo
	B.5.5. Receiving a sequence of packed samples

