
DDS Security, v1.12 i

 An OMG® DDS Security™ Publication

DDS Security

Version 1.2

OMG Document Number: ptc/2024-02-36

Release Date: March 2024

Standard Document URL: https://www.omg.org/spec/DDS-SECURITY/1.2

IPR mode: Non-Assert

Style Definition: IssueNumber

Style Definition: Heading 5

Style Definition: Heading 4

Style Definition: Heading 3

Deleted: 1

Deleted: smsc

Deleted: 2018

Deleted: 05

Deleted: 01

Deleted: May

Deleted: 2018

Deleted: 1

ii DDS Security, v1.12

Copyright © 2018, Object Management Group, Inc.

Copyright © 2014-2017, PrismTech Group Ltd.

Copyright © 2014-2017, Real-Time Innovations, Inc.

Copyright © 2017, Twin Oaks Computing, Inc.

Copyright © 2017, THALES

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions

and notices set forth below. This document does not represent a commitment to implement any portion of this specification

in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid

up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the

modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed

the copyright in the included material of any such copyright holder by reason of having used the specification set forth

herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-

paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this

specification to create and distribute software and special purpose specifications that are based upon this specification, and

to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright

notice identified above and this permission notice appear on any copies of this specification; (2) the use of the

specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any

media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this

specification. This limited permission automatically terminates without notice if you breach any of these terms or

conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require

use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may

be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that

are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for

protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations

and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this

work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of

the copyright owner.

DDS Security, v1.12 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT

SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR

ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,

RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY

ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF

THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of

The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of

the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-

7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition

Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be

contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL

IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,

SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are

registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names

mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)

is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use

certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and

only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.

Software developed only partially matching the applicable compliance points may claim only that the software was based

on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites

are implemented or approved by Object Management Group, Inc., software developed using this specification may claim

compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

iv DDS Security, v1.12

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the

main web page http://www.omg.org, under Documents, Report a Bug/Issue.

DDS Security, v1.12 v

Table of Contents

Preface .. xi

1 Scope .. 1
1.1 General .. 1
1.2 Overview of this Specification ... 1

2 Conformance ... 3
2.1 Conformance points ... 3
2.2 Builtin plugin interoperability (mandatory) ... 3
2.3 Plugin framework (mandatory) ... 3
2.4 Plugin Language APIs (optional) .. 3
2.5 Logging and Tagging profile (optional) ... 4

3 Normative References ... 5

4 Terms and Definitions .. 6

5 Symbols... 10

6 Additional Information .. 11
6.1 Changes to Adopted OMG Specifications ... 11
6.2 Acknowledgments .. 11

7 Support for DDS Security ... 14
7.1 Security Model ... 14

7.1.1 Threats .. 14
7.2 Cryptographic Algorithm Classes ... 17
7.3 Types used by DDS Security ... 18

7.3.1 Use of IDL and XTYPES notation .. 18
7.3.2 Property_t ... 19
7.3.3 BinaryProperty_t ... 20
7.3.4 DataHolder .. 21
7.3.5 Token ... 21
7.3.6 CryptoAlgorithmName .. 23
7.3.7 CryptoAlgorithmId... 23
7.3.8 CryptoAlgorithmBit ... 24
7.3.9 CryptoAlgorithmSet .. 24
7.3.10 CryptoAlgorithmRequirements ... 25
7.3.11 ParticipantSecurityDigitalSignatureAlgorithmInfo .. 26
7.3.12 ParticipantSecurityKeyEstablishmentAlgorithmInfo ... 27
7.3.13 ParticipantSecuritySymmetricCipherAlgorithmInfo ... 28
7.3.14 ParticipantSecurityAlgorithmInfo ... 29
7.3.15 EndpointSecuritySymmetricCipherAlgorithmInfo .. 30
7.3.16 EndpointSecurityAlgorithmInfo .. 31
7.3.17 CryptoTransformKind .. 31
7.3.18 CryptoTransformKeyId .. 32
7.3.19 CryptoTransformIdentifier .. 32
7.3.20 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos 33
7.3.21 ParticipantGenericMessage .. 35
7.3.22 ParticipantSecurityProtectionInfo .. 35
7.3.23 EndpointSecurityProtectionInfo ... 36
7.3.24 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY .. 37

Deleted: xixixiv

Deleted: 91010

Deleted: 101111

Deleted: 101111

Deleted: 101111

Deleted: 131414

Deleted: 131414

Formatted: Tab stops: Not at 0.83"

Deleted: 131414

Deleted: 161717

Deleted: 171818

Formatted: Tab stops: Not at 0.83"

Deleted: 171818

Deleted: 181919

Deleted: 192020

Deleted: 202121

Deleted: 202122

Deleted: 222323

Deleted: 222324

Deleted: 222424

Deleted: 232425

Deleted: 232525

Deleted: 242626

Deleted: 262727

Deleted: 262828

Deleted: 282929

Deleted: 283029

Deleted: 293130

Deleted: 303131

Deleted: 303231

Deleted: 313231

Deleted: 313332

Deleted: 333533

Deleted: 333534

Deleted: 343634

Deleted: 353735

vi DDS Security, v1.12

7.4 Securing DDS Messages on the Wire .. 37
7.4.1 RTPS Background (Non-Normative) .. 37
7.4.2 Secure RTPS Messages .. 39
7.4.3 Constraints of the DomainParticipant GUID_t (GUID) .. 40
7.4.4 Mandatory use of the KeyHash for encrypted messages ... 40
7.4.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind 41
7.4.6 Platform Independent Description ... 41
7.4.7 Mapping to UDP/IP PSM ... 48

7.5 DDS Support for Security Plugin Information Exchange .. 52
7.5.1 Secure builtin Discovery Topics... 53
7.5.2 New DCPSParticipantMessageSecure builtin Topic .. 60
7.5.3 New DCPSParticipantStatelessMessage builtin Topic ... 61
7.5.4 New DCPSParticipantVolatileMessageSecure builtin Topic .. 64
7.5.5 Definition of the “Builtin Secure Endpoints” .. 69
7.5.6 Definition of the “Builtin Secure Discovery Endpoints” .. 70
7.5.7 Definition of the “Builtin Secure Liveliness Endpoints” .. 70
7.5.8 Securing the “Builtin Secure Endpoints” ... 70

8 Common Cryptographic Algorithms ... 72
8.1.1 Symmetric Cipher AEAD and MAC Algorithms .. 72
8.1.2 Digital Signature Algorithms ... 75
8.1.3 Key Establishment Algorithms .. 76

9 Plugin Architecture .. 78
9.1 Introduction ... 78

9.1.1 Service Plugin Interface Overview .. 78
9.1.2 Plugin Instantiation ... 79

9.2 Common Types ... 79
9.2.1 Security Exception ... 79

9.3 Authentication Plugin ... 80
9.3.1 Background (Non-Normative) ... 80
9.3.2 Authentication Plugin Model .. 80

9.4 Access Control Plugin ... 100
9.4.1 Background (Non-Normative) ... 100
9.4.2 AccessControl Plugin Model ... 100

9.5 Cryptographic Plugin .. 126
9.5.1 Cryptographic Plugin Model ... 126

9.6 The Logging Plugin ... 160
9.6.1 Background (Non-Normative) ... 160
9.6.2 Logging Plugin Model .. 161

9.7 Data Tagging .. 165
9.7.1 Background (Non-Normative) ... 165
9.7.2 DataTagging Model ... 165

9.8 Security Plugins Behavior ... 165
9.8.1 Authentication and AccessControl behavior with local DomainParticipant 165
9.8.2 Compatibility of Participant Security Plugins .. 168
9.8.3 Authentication behavior with discovered DomainParticipant ... 168
9.8.4 DDS Entities impacted by the AccessControl operations ... 172
9.8.5 AccessControl behavior with local participant creation ... 175
9.8.6 AccessControl behavior with local domain entity creation .. 175
9.8.7 AccessControl behavior with remote participant discovery ... 177
9.8.8 AccessControl behavior with remote domain entity discovery .. 179
9.8.9 Cryptographic Plugin key generation behavior ... 182

Deleted: 353735

Formatted ...

Deleted: 353736

Deleted: 373937

Deleted: 384038

Deleted: 384038

Deleted: 394139

Deleted: 394139

Formatted ...

Deleted: 464847

Deleted: 505251

Formatted ...

Deleted: 505352

Deleted: 586059

Deleted: 596160

Deleted: 626463

Deleted: 676967

Formatted ...

Deleted: 687067

Deleted: 687067

Deleted: 687067

Deleted: 707269

Formatted ...

Deleted: 707269

Deleted: 737572

Deleted: 747673

Deleted: 767874

Deleted: 767874

Formatted ...

Deleted: 767874

Deleted: 777976

Deleted: 777976

Formatted ...

Deleted: 777976

Deleted: 788077

Formatted ...

Deleted: 788077

Deleted: 798078

Deleted: 9810097

Formatted ...

Deleted: 9810097

Deleted: 9910098

Deleted: 123126122

Formatted ...

Deleted: 123126122

Deleted: 155160156

Deleted: 155160156

Deleted: 155161156

Formatted ...

Formatted ...

DDS Security, v1.12 vii

9.8.10 Cryptographic Plugin key exchange behavior ... 186
9.8.11 Cryptographic Plugins encoding/decoding behavior .. 190

10 Builtin Plugins .. 199
10.1 Introduction .. 199
10.2 Requirements and Priorities (Non-Normative) .. 199

10.2.1 Performance and Scalability ... 200
10.2.2 Robustness and Availability .. 200
10.2.3 Fitness to the DDS Data-Centric Model .. 200
10.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies 201
10.2.5 Ease-of-Use while Supporting Common Application Requirements .. 201

10.3 Builtin Authentication: DDS:Auth:PKI-DH ... 201
10.3.1 Configuration .. 202
10.3.2 DDS:Auth:PKI-DH Types .. 204
10.3.3 DDS:Auth:PKI-DH plugin behavior .. 210
10.3.4 DDS:Auth:PKI-DH plugin authentication protocol .. 215

10.4 Builtin Access Control: DDS:Access:Permissions .. 218
10.4.1 Configuration .. 218
10.4.2 DDS:Access:Permissions Types ... 255
10.4.3 DDS:Access:Permissions plugin behavior.. 262

10.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC ... 268
10.5.1 Configuration .. 268
10.5.2 DDS:Crypto:AES-GCM-GMAC Types .. 271
10.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior .. 279

10.6 Builtin Logging Plugin ... 299
10.6.1 DDS:Logging:DDS_LogTopic plugin behavior .. 301

11 Plugin Language Bindings ... 315
11.1 Introduction .. 315
11.2 IDL representation of the plugin interfaces ... 316
11.3 C language representation of the plugin interfaces ... 316
11.4 C++ classic representation of the plugin interfaces .. 316
11.5 Java classic .. 316
11.6 C++11 representation of the plugin interfaces .. 316
11.7 Java modern aligned with the DDS-JAVA5+ PSM ... 317

Annex A - References .. 318

Deleted: 179186181

Deleted: 184190185

Deleted: 193199194

Deleted: 193199194

Deleted: 193199194

Deleted: 194200195

Deleted: 194200195

Deleted: 194200196

Deleted: 195201196

Deleted: 195201196

Deleted: 195201196

Deleted: 196202198

Deleted: 198204200

Deleted: 203210206

Deleted: 209215212

Deleted: 212218215

Deleted: 212218215

Deleted: 248255251

Deleted: 254262259

Deleted: 260268265

Deleted: 260268265

Deleted: 263271266

Deleted: 270279270

Deleted: 290299286

Deleted: 292301288

Deleted: 305315288

Deleted: 305315288

Deleted: 306316289

Deleted: 306316289

Deleted: 306316289

Deleted: 306316289

Deleted: 306316289

Deleted: 307317290

Deleted: 308318291

viii DDS Security, v1.12

Tables

Table 1 – Property_t class ... 19
Table 2 – BinaryProperty_t class .. 20
Table 3 – DataHolder class ... 21
Table 4 – SecureBodySubMsg class ... 43
Table 5 – SecurePrefixSubMsg class ... 44
Table 6 – SecurePostfixSubMsg class .. 46
Table 7 – SecureRTPSPrefixSubMsg class .. 47
Table 8 – SecurePostfixSubMsg class .. 48
Table 9 – EntityId values for secure builtin data writers and data readers ... 49
Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData ... 54
Table 11 – Mapping of the additional builtin endpoints added by DDS security to the

availableBuiltinEndpoints ... 56
Table 12 – Additional parameter IDs in PublicationBuiltinTopicData .. 57
Table 13 – Additional parameter IDs in ParticipantBuiltinTopicDataSecure .. 58
Table 14 – Additional parameter IDs in PublicationBuiltinTopicDataSecure 59
Table 15 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure 60
Table 16 – ParticipantVolatileMessageSecure Topic Security Attributes ... 65
Table 17 – ParticipantVolatileMessageSecure Endpoint Security Attributes (Reader and Writer) 65
Table 18 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter 65
Table 19 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader 65
Table 20 – EndpointSecurityAttributes for all "Builtin Security Endpoints" ... 71
Table 21 – Purpose of each Security Plugin ... 79
Table 22 – SecurityException class .. 80
Table 23 – Authentication plugin interface .. 86
Table 24 – Values for ValidationResult_t .. 89
Table 25 – Authentication listener class ... 98
Table 26 – Description of the AuthStatusKind values ... 99
Table 27 – Description of the ParticipantSecurityAttributes .. 102
Table 28 – Mapping of fields ParticipantSecurityAttributes to bits in

ParticipantSecurityAttributesMask ... 105
Table 29 – Description of the TopicSecurityConfig ... 106
Table 30 – Description of the EndpointSecurityAttributes .. 108
Table 31 – Mapping of fields EndpointSecurityAttributes to bits in EndpointSecurityAttributesMask

 .. 109
Table 32 – AccessControl Interface ... 109
Table 34 – CryptoTransformIdentifier class ... Error! Bookmark not defined.
Table 35 – SecureSubmessageCategory_t .. 129
Table 36 – CryptoKeyFactory Interface ... 129
Table 37 – CryptoKeyExchange Interface ... 139
Table 38 – CryptoTransform interface ... 145
Table 39 – LogOptions values .. 162
Table 40 – Logging Interface ... 162
Table 41 – Logger structured_data entries ... 163
Table 42 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities

 .. 173
Table 43 – Summary of the Builtin Plugins ... 199
Table 44 – Properties used to configure the builtin Authentication plugin .. 202
Table 45 – IdentityToken class for the builtin Authentication plugin .. 204

Deleted: 181920

Deleted: 192021

Deleted: 202121

Deleted: 414342

Deleted: 424443

Deleted: 444645

Deleted: 454746

Deleted: 464847

Deleted: 474948

Deleted: 535454

Deleted: 545655

Deleted: 555756

Deleted: 565857

Deleted: 575958

Deleted: 586059

Deleted: 626563

Deleted: 636564

Deleted: 636564

Deleted: 636564

Deleted: 697168

Deleted: 777976

Deleted: 788077

Deleted: 848683

Deleted: 878986

Deleted: 969896

Deleted: 979997

Deleted: 10010299

Deleted: 103105102

Deleted: 104106103

Deleted: 105108104

Deleted: 106109105

Deleted: 107109106

Deleted: Error! Bookmark not defined.Error! ...

Deleted: 125129125

Deleted: 125129125

Deleted: 135139134

Deleted: 141145141

Deleted: 156162158

Deleted: 156162158

Deleted: 157163159

Deleted: 167173169

Deleted: 193199194

Deleted: 196202198

Deleted: 198204200

DDS Security, v1.12 ix

Table 46 – IdentityStatusToken class for the builtin Authentication plugin .. 205
Table 47 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin 205
Table 48 – AuthRequestMessageToken class for the builtin Authentication plugin 206
Table 49 – HandshakeRequestMessageToken for the builtin Authentication plugin 207
Table 50 – HandshakeReplyMessageToken for the builtin Authentication plugin 207
Table 51 – HandshakeFinalMessageToken for the builtin Authentication plugin 209
Table 52 – Actions undertaken by the operations of the builtin Authentication plugin 210
Table 53 – Terms used in the description of the builtin authentication protocol 215
Table 54 – Notation of the operations/transformations used in the description of the builtin

authentication protocol ... 216
Table 55 – Description of built-in authentication protocol .. 217
Table 56 – Properties used to configure the builtin AccessControl plugin .. 218
Table 57 – PermissionsCredentialToken class for the builtin AccessControl plugin 255
Table 58 – PermissionsToken class for the builtin AccessControl plugin ... 255
Table 59 – Description of the PluginParticipantSecurityAttributes ... 257
Table 60 – Mapping of PluginParticipantSecurityAttributes to the

PluginParticipantSecurityAttributesMask .. 260
Table 61 – Description of the PluginEndpointSecurityAttributes .. 261
Table 62 – Mapping of fields PluginEndpointSecurityAttributes to the

PluginEndpointSecurityAttributesMask ... 262
Table 63 – Actions undertaken by the operations of the bulitin AccessControl plugin 263
Table 64 – AES-GCM transformation inputs ... 268
Table 65 – AES-GCM trasnsformation outputs ... 268
Table 66 – CryptoToken class for the builtin Cryptographic plugin .. 271
Table 67 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader ... 272
Table 68 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic

plugin .. 272
Table 69 – CryptoTransformIdentifier class for the builtin Cryptographic plugin 276
Table 70 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory

plugin .. 279
Table 71 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange

plugin .. 283
Table 72 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform

plugin .. 284
Table 73 – Terms used in Key Computation and cryptographic transformations formulas for the builtin

cryptographic plugin ... 290
Table 74 – Actions undertaken by the operations of the builtin Logging plugin 301

Deleted: 199205201

Deleted: 199205201

Deleted: 200206202

Deleted: 201207203

Deleted: 201207204

Deleted: 203209205

Deleted: 204210206

Deleted: 209215212

Deleted: 210216213

Deleted: 211217214

Deleted: 212218216

Deleted: 248255252

Deleted: 248255252

Deleted: 249257253

Deleted: 252260256

Deleted: 253261257

Deleted: 254262259

Deleted: 255263259

Deleted: 260268265

Deleted: 260268265

Deleted: 263271266

Deleted: 264272267

Deleted: 264272267

Deleted: 268276267

Deleted: 270279270

Deleted: 274283274

Deleted: 275284274

Deleted: 281290279

Deleted: 292301288

x DDS Security, v1.12

Figures

Figure 1 – Overall architecture for DDS Security .. 1
Figure 2 – Threat actors .. 15
Figure 3 – Token Model ... 22
Figure 4 – RTPS message structure .. 38
Figure 5 – Secure Submessage and Secured Payload Model ... 43
Figure 6 – RTPS message transformations ... 45
Figure 7 – Plugin Architecture Model .. 78
Figure 8 – Authentication plugin model ... 81
Figure 9 – Authentication plugin interaction state machine ... 84
Figure 10 – AccessControl Plugin Model .. 101
Figure 11 – Cryptographic Plugin Model ... 127
Figure 12 – Effect of encode_serialized_payload within an RTPS message 148
Figure 13 – Effect of encode_datawriter_submessage within an RTPS message 150
Figure 14 – Effect of encode_datareader_submessage within an RTPS message 152
Figure 15 – Possible effect of encode_rtps within an RTPS message .. 154
Figure 16 – Possible effect of decode_rtps within an RTPS message .. 155
Figure 17 – Effect of decode_datawriter_submessage within an RTPS message 157
Figure 18 – Effect of decode_datawriter_submessage within an RTPS message 158
Figure 19 – Effect of decode_serialized_payload within an RTPS message 160
Figure 20 – Logging Plugin Model .. 161
Figure 21 – Authentication and AccessControl sequence diagram with local DomainParticipant 166
Figure 22 – Authentication sequence diagram with discovered DomainParticipant 170
Figure 23 – AccessControl sequence diagram with local entities .. 176
Figure 24 – AccessControl sequence diagram with discovered DomainParticipant 178
Figure 25 – AccessControl sequence diagram with discovered entities when is_read_protected and

is_write_protected are both FALSE ... 180
Figure 26 – AccessControl sequence diagram with discovered entities when

is_read_protected==TRUE and is_write_protected==TRUE .. 181
Figure 27 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant

 .. 186
Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader 188
Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter 189
Figure 30 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single

DataWriter submessage .. 191
Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataWriter submessages ... 193
Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataReader submessages .. 194
Figure 33 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataWriter and DataReader submessages .. 196

Deleted: 141515

Deleted: 212222

Deleted: 363836

Deleted: 414341

Deleted: 434544

Deleted: 767875

Deleted: 798178

Deleted: 828481

Deleted: 9910198

Deleted: 123127124

Deleted: 143148144

Deleted: 145150146

Deleted: 147152148

Deleted: 149154149

Deleted: 150155151

Deleted: 152157153

Deleted: 153158154

Deleted: 154160155

Deleted: 155161157

Deleted: 160166162

Deleted: 164170166

Deleted: 170176172

Deleted: 172178174

Deleted: 174180176

Deleted: 175181177

Deleted: 180186182

Deleted: 182188183

Deleted: 183189185

Deleted: 185191186

Deleted: 187193188

Deleted: 188194189

Deleted: 190196191

DDS Security, v1.12 xi

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A listing of all OMG

Specifications is available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF

format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,

Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the

main web page http://www.omg.org, under OMG Specifications, Report an Issue.

DDS Security, v1.12 1

1 Scope

1.1 General

This specification adds several new “DDS Security Support” compliance points (“profile”) to the DDS

Specification. See the compliance levels within the Conformance Clause below.

1.2 Overview of this Specification

This specification defines the Security Model and Service Plugin Interface (SPI) architecture for

compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs

by the DDS implementation. This specification also defines a set of builtin implementations of these

SPIs.

• The specified builtin SPI implementations enable out-of-the box security and interoperability

between compliant DDS applications.

• The use of SPIs allows DDS users to customize the behavior and technologies that the DDS

implementations use for Information Assurance, specifically customization of Authentication,

Access Control, Encryption, Message Authentication, Digital Signing, Logging and Data

Tagging.

Figure 1 – Overall architecture for DDS Security

This specification defines five SPIs that when combined together provide Information Assurance to

DDS systems:

App.

Other
DDS
System

Secure DDS
middleware

Authentication
Plugin

Access Control
Plugin Cryptographic

Plugin

Secure Kernel

Crypto
Module
(e.g. TPM)

Transport (e.g. UDP)

application componentcertificates

?

Data
cache

Protocol
Engine

Kernel
Policies

DDS Entities

Network
Driver

?

Network

Encrypted DataTAG

Other
DDS
System

Other
DDS
System

App.App.

Logging
Plugin

DataTagging
Plugin

MAC

2 DDS Security, v1.12

• Authentication Service Plugin. Provides the means to verify the identity of the application

and/or user that invokes operations on DDS. Includes facilities to perform mutual

authentication between participants and establish a shared secret.

• AccessControl Service Plugin. Provides the means to enforce policy decisions on what DDS

related operations an authenticated user can perform. For example, which domains it can join,

which Topics it can publish or subscribe to, etc.

• Cryptographic Service Plugin. Implements (or interfaces with libraries that implement) all

cryptographic operations including encryption, decryption, hashing, digital signatures, etc. This

includes the means to derive keys from a shared secret.

• Logging Service Plugin. Supports auditing of all DDS security-relevant events.

• Data Tagging Service Plugin. Provides a way to add tags to data samples.

DDS Security, v1.12 3

2 Conformance

2.1 Conformance points

This specification defines the following conformance points:

(1) Builtin plugin interoperability (mandatory)

(2) Plugin framework (mandatory)

(3) Plugin language APIs (optional)

(4) Logging and Tagging (optional)

Conformance with the “DDS Security” specification requires conformance with all the mandatory

conformance points.

2.2 Builtin plugin interoperability (mandatory)

This point provides interoperability with all the builtin plugins with the exception of the Logging

plugin. Conformance to this point requires conformance to:

• Clause 7 (the security model and the support for interoperability between DDS Security

implementations).

• The configuration of the plugins and the observable wire-protocol behavior specified in Clause 10

(the builtin-plugins), except for sub clause 10.6. This conformance point does not require

implementation of the APIs between the DDS implementation and the plugins.

2.3 Plugin framework (mandatory)

This point provides the architectural framework and abstract APIs needed to develop new security

plugins and “plug them” into a DDS middleware implementation. Plugins developed using this

framework are portable between conforming DDS implementations. However portability for a specific

programming language also requires conformance to the specific language API (see 2.4).

Conformance to this point requires conformance to:

• Clause 7 (the security model and the support for interoperability between DDS Security

implementations).

• Clause 9 (the plugin model) with the exception of 9.6 and 9.7 (Logging and Data Tagging plugins).

The conformance to the plugin model is at the UML level; it does not mandate a particular language

mapping.

• Clause 10, the builtin-plugins, except for 10.6 (Builtin Logging Plugin).

In addition it requires the conforming DDS implementation to provide a public API to insert the

plugins that conform to the aforementioned sections.

2.4 Plugin Language APIs (optional)

These conformance points provide portability across compliant DDS implementations of the security

plugins developed using a specific programming language.

Conformance to any of the language portability points requires conformance to the (mandatory) plugin

architecture framework point.

There are 5 “plugin language API” points, each corresponding to a different programming language

used to implement the plugins.

Each language point is a separate independent conformance point. Conformance with the “plugin

language API” point requires conformance with at least one of the 5 language APIs enumerated below:

• C Plugin APIs. Conformance to sub clauses 11.2 and 11.3

4 DDS Security, v1.12

• C++ classic Plugin APIs. Conformance to sub clauses 11.2 and 11.4

• Java classic Plugin APIs. Conformance to sub clauses 11.2 and 11.5

• C++11 Plugin APIs. Conformance to sub clauses 11.2 and 11.6

• Java5+ Plugin APIs. Conformance to sub clauses 11.2 and 11.7

2.5 Logging and Tagging profile (optional)

This point adds support for logging and tagging. Conformance to this point requires conformance to

sub clauses 9.6, 9.7, and 10.6.

DDS Security, v1.12 5

3 Normative References

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

• DDS: Data-Distribution Service for Real-Time Systems version 1.4.

http://www.omg.org/spec/DDS/1.4

• DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.5,

http://www.omg.org/spec/DDS-RTPS/2.5/

• DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.3,

http://www.omg.org/spec/DDS-XTypes/1.3/

• OMG-IDL: Interface Definition Language (IDL) version 4.2, http://www.omg.org/spec/IDL/4.2

• HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R.Canetti,

IETF RFC 2104, http://tools.ietf.org/html/rfc2104

• Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms,

IETF RFC 6151 https://tools.ietf.org/html/rfc6151

• PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.

http://tools.ietf.org/html/rfc2315

• Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.2.

IETF RFC 8017. https://tools.ietf.org/html/rfc8017

• XSD: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes,

https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405

Deleted: 2

Field Code Changed

Deleted: http://www.omg.org/spec/DDS-RTPS/2.2/

Deleted: 2

Field Code Changed

Deleted: http://www.omg.org/spec/DDS-XTypes/1.2/

Deleted: 1

Field Code Changed

Deleted: http://www.omg.org/spec/IDL/4.1

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDS-RTPS/2.5/
http://www.omg.org/spec/DDS-RTPS/2.5/
http://www.omg.org/spec/DDS-XTypes/1.3/
http://www.omg.org/spec/DDS-XTypes/1.3/
http://www.omg.org/spec/IDL/4.2
http://www.omg.org/spec/IDL/4.2
http://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6151
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc8017
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405

6 DDS Security, v1.12

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply:

Access Control

Mechanism that enables an authority to control access to areas and resources in a given physical

facility or computer-based information system.

Authentication

Security measure(s) designed to establish the identity of a transmission, message, or originator.

Authorization

Access privileges that are granted to an entity; conveying an “official” sanction to perform a security

function or activity.

Ciphertext

Data in its encrypted or signed form.

Certification authority

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing certificates, and exacting

compliance to a PKI policy.

Confidentiality

Assurance that information is not disclosed to unauthorized individuals, processes, or devices.

Cryptographic algorithm

A well-defined computational procedure that takes variable inputs, including a cryptographic key and

produces an output.

Cryptographic key

A parameter used in conjunction with a cryptographic algorithm that operates in such a way that

another agent with knowledge of the key can reproduce or reverse the operation, while an agent

without knowledge of the key cannot.

Examples include:

1. The transformation of plaintext data into ciphertext.

2. The transformation of ciphertext data into plaintext.

3. The computation of a digital signature from data.

4. The verification of a digital signature.

5. The computation of a message authentication code from data.

6. The verification of a message authentication code from data and a received authentication

code.

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an

application to publish and subscribe to the values of data objects.

DDS Security, v1.12 7

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be

specified for data timeliness and reliability. It is independent of the implementation language.

Data Integrity

Assurance that data has not been altered since creation time.

Data-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of specified data (it

includes data integrity). In this specification it is used to indicate assurance of the DataWriter or

DataReader that originated a message.

Digital signature

The result of a cryptographic transformation of data that, when properly implemented with supporting

infrastructure and policy, provides the services of:

1. origin authentication

2. data integrity

3. signer non-repudiation

Extended IDL

Extended Interface Definition Language (IDL) used to describe data types in a way that can be

represented in a machine neutral format for network communications. This syntax was introduced as

part of the DDS-XTYPES specification [3].

Hashing algorithm

A one-way algorithm that maps an input byte buffer of arbitrary length to an output fixed-length byte

array in such a way that:

(a) Given the output it is computationally infeasible to determine the input.

(b) It is computationally infeasible to find any two distinct inputs that map to the same output.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

IETF

The Internet Engineering Task Force (IETF) is a standards organization for the Internet and is

responsible for the technical standards that make up the Internet protocol suite.

Information Assurance

The practice of managing risks related to the use, processing, storage, and transmission of information

or data and the systems and processes used for those purposes.

Integrity

Protection against unauthorized modification or destruction of information.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Key derivation function (KDF)

A class of functions that use pseudo-random functions (PRFs) and a pre-shared cryptographic key (the

key-derivation key) to generate additional keys [50].

8 DDS Security, v1.12

Key establishment

The process by which cryptographic keys are securely established among cryptographic modules [50].

Key agreement

A Key Establishment procedure where the resultant keying material is a function of information

contributed by two or more participants, so that no party can predetermine the value of the keying

material independently of the other party’s contribution used to establish secret keying material [50].

Key agreement typically involves two steps: the use of an appropriate “primitive” to generate an

agreed shared secret, and the use of a key derivation function (KDF) to generate one or more keys

from the shared secret.

Key management

The handling of cryptographic material (e.g., keys, Initialization Vectors) during their entire life cycle

of from creation to destruction.

Message authentication code (MAC)

A cryptographic hashing algorithm on data that uses a symmetric key to detect both accidental and

intentional modifications of data.

Message-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of a specified message. In

this specification it is used to indicate assurance of the DomainParticipant that originated the

message.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

NIST

National Institute of Standards and Technology (NIST) is a US government agency that among other

things defines standards relevant to science, engineering, and information technology.

Non-Repudiation

Assurance that the sender of data is provided with proof of delivery and the recipient is provided with

proof of the sender's identity, so neither can later deny having received or processed the data.

Public key

A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with

an entity and that may be made public. The public key is associated with a private key. The public key

may be known by anyone and, depending on the algorithm, may be used to:

1. Verify a digital signature that is signed by the corresponding private key,

2. Encrypt data that can be decrypted by the corresponding private key, or

3. Compute a piece of shared data.

Public key certificate

A set of data that uniquely identifies an entity, contains the entity's public key and possibly other

information, and is digitally signed by a trusted party, thereby binding the public key to the entity.

Public key cryptographic algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys

have the property that determining the private key from the public key is computationally infeasible.

DDS Security, v1.12 9

Public Key Infrastructure

A framework that is established to issue, maintain, and revoke public key certificates.

10 DDS Security, v1.12

5 Symbols

This specification does not define any symbols or abbreviations.

DDS Security, v1.12 11

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not modify any existing adopted OMG specifications. It reuses and/or adds

functionality on top of the current set of OMG specifications.

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

• DDS: This specification does not modify or invalidate any existing DDS profiles or compliance

levels. It extends some of the DDS builtin Topics to carry additional information in a

compatible way with existing implementations of DDS.

• DDS-RTPS: This specification does not require any modifications to RTPS; however, it may

impact interoperability with existing DDS-RTPS implementations. In particular, DDS-RTPS

implementations that do not implement the DDS Security specification will have limited

interoperability with implementations that do implement the mechanisms introduced by this

specification. Interoperability is limited to systems configured to allow “unauthorized”

DomainParticipant entities and within those systems, only to Topics configured to be

“unprotected.”

• DDS-XTYPES: This specification depends on the IDL syntax introduced by and the Extended

CDR encoding defined in the DDS-XTYPES specification. It does not require any

modifications of DDS-XTYPES. Implementations of both this specification and DDS-XTYPES

(Basic Network Interoperability Profile) shall include the Builtin Secure TypeLookup

Endpoints (see section 7.5.11).

• OMG IDL: This specification does not modify any existing IDL-related compliance levels.

6.2 Acknowledgments

The following individuals and companies submitted content that was incorporated into this

specification:

Submitting contributors:

• (lead) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

• Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

• Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Supporting contributors:

• Char Wales, MITRE charwing AT mitre.org

• Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

Finalization Task Force members and participants:

• (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

• Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

• Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

• Virginie Watine, THALES, virginie.watine AT thalesgroup.com

• Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

• Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

• Julien Enoch, PrismTech, julien.enoch AT prismtech.com

• Ricardo Gonzalez, eProsima, RicardoGonzalez AT eprosima.com

• Gilles Bessens, Kongsberg Gallium, gilles.bessens AT kongsberggallium.com

• Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

• Ron Townsen, General Dynamics AIS, Ronald.Townsen AT gd-ais.com

Deleted: 7.5.117.5.117.5.9

mailto:julien.enoch@prismtech.com

12 DDS Security, v1.12

Revision Task Force members and participants:

• (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

• Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

• Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

• Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

• Julien Enoch, PrismTech, julien.enoch AT prismtech.com

• Jose Maria Lopez-Vega, Ph.D., Real-Time Innovations. jose AT rti.com

• Yusheng Yang, Real-Time Innovations. yusheng AT rti.com

• Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

• Ron Townsen, General Dynamics AIS, Ronald.Townsen AT gd-ais.com

mailto:julien.enoch@prismtech.com

DDS Security, v1.12 13

This page intentionally left blank.

14 DDS Security, v1.12

7 Support for DDS Security

7.1 Security Model

The Security Model for DDS defines the security principals (users of the system), the objects that are

being secured, and the operations on the objects that are to be restricted. DDS applications share

information on DDS Global Data Spaces (called DDS Domains) where the information is organized

into Topics and accessed by means of read and write operations on data-instances of those Topics.

Ultimately what is being secured is a specific DDS Global Data Space (domain) and, within the

domain, the ability to access (read or write) information (specific Topic or even data-object instances

within the Topic) in the DDS Global Data Space.

Securing DDS means providing:

• Confidentiality of the data samples

• Integrity of the data samples and the messages that contain them

• Authentication of DDS writers and readers

• Authorization of DDS writers and readers

• Message-origin authentication

• Data-origin authentication

• (Optional) Non-repudiation of data

To provide secure access to the DDS Global Data Space, applications that use DDS must first be

authenticated, so that the identity of the application (and potentially the user that interacts with it) can

be established. Once authentication has been obtained, the next step is to enforce access control

decisions that determine whether the application is allowed to perform specific actions. Examples of

actions are: joining a DDS Domain, defining a new Topic, reading or writing a specific DDS Topic,

and even reading or writing specific Topic instances (as identified by the values of key fields in the

data). Enforcement of access control shall be supported by cryptographic techniques so that

information confidentiality and integrity can be maintained, which in turn requires an infrastructure to

manage and distribute the necessary cryptographic keys.

7.1.1 Threats

In order to understand the decisions made in the design of the plugins, it is important to understand

some of the specific threats impacting applications that use DDS and DDS Interoperability Wire

Protocol (RTPS).

Most relevant are four categories of threats:

1. Unauthorized subscription

2. Unauthorized publication

3. Tampering and replay

4. Unauthorized access to data

These threats are described in the context of a hypothetical communication scenario with six actors all

attached to the same network:

• Alice. A DDS DomainParticipant who is authorized to publish data on a Topic T.

• Bob. A DDS DomainParticipant who is authorized to subscribe to data on a Topic T.

• Eve. An eavesdropper. Someone who is not authorized to subscribe to data on Topic T.

However Eve uses the fact that she is connected to the same network to try to see the data.

• Trudy. An intruder. A DomainParticipant who is not authorized to publish on Topic T.

However, Trudy uses the fact that she is connected to the same network to try to send data.

• Mallory. A malicious DDS DomainParticipant. Mallory is authorized to subscribe to data on

Topic T but she is not authorized to publish on Topic T. However, Mallory will try to use

DDS Security, v1.12 15

information gained by subscribing to the data to publish in the network and try to convince Bob

that she is a legitimate publisher.

• Trent. A trusted service who needs to receive and send information on Topic T. For example,

Trent can be a persistence service or a relay service. He is trusted to relay information without

having malicious intent. However he is not trusted to see the content of the information.

Figure 2 – Threat actors

7.1.1.1 Unauthorized Subscription

The DomainParticipant Eve is connected to the same network infrastructure as the rest of the agents

and is able to observe the network packets despite the fact that the messages are not intended to be sent

to Eve. Many scenarios can lead to this situation. Eve could tap into a network switch or observe the

communication channels. Alternatively, in situations where Alice and Bob are communicating over

multicast, Eve could simply subscribe to the same multicast address.

Protecting against Eve is reasonably simple. All that is required is for Alice to encrypt the data she

writes using a secret key that is only shared with authorized receivers such as Bob, Trent, and Mallory.

7.1.1.2 Unauthorized Publication

The DomainParticipant Trudy is connected to the same network infrastructure as the rest of the agents

and is able to inject network packets with any data contents, headers and destination she wishes (e.g.,

Bob). The network infrastructure will route those packets to the indicated destination.

To protect against Trudy, Bob, Trent and Mallory need to realize that the data is not originating from

Alice. They need to realize that the data is coming from someone not authorized to send data on Topic

T and therefore reject (i.e., not process) the packet.

Protecting against Trudy is also reasonably simple. All that is required is for the protocol to require

that the messages include either a hash-based message authentication code (HMAC) or digital

signature.

• An HMAC creates a message authentication code using a secret key that is shared with the

intended recipients. Alice would only share the secret key with Bob, Mallory and Trent so that

they can recognize messages that originate from Alice. Since Trudy is not authorized to publish

Topic T, Bob and the others will not recognize any HMACs Trudy produces (i.e., they will not

recognize Trudy’s key).

16 DDS Security, v1.12

• A digital signature is based on public key cryptography. To create a digital signature, Alice

encrypts a digest of the message using Alice’s private key. Everybody (including Bob, Mallory

and Trent) has access to Alice’s public key. Similar to the HMAC above, the recipients can

identify messages from Alice, as they are the only ones whose digital signature can be

interpreted with Alice’s public key. Any digital signatures Trudy may use will be rejected by

the recipients, as Trudy is not authorized to write Topic T.

The use of HMACs versus digital signatures presents tradeoffs that will be discussed further in

subsequent sections. Suffice it to say that in many situations the use of HMACs is preferred because

the performance to compute and verify them is about 1000 times faster than the performance of

computing/verifying digital signatures.

7.1.1.3 Tampering and Replay

Mallory is authorized to subscribe to Topic T. Therefore Alice has shared with Mallory the secret key

to encrypt the topic and also, if an HMAC is used, the secret key used for the HMAC.

Assume Alice used HMACs instead of digital signatures. Then Mallory can use her knowledge of the

secret keys used for data encryption and the HMACs to create a message on the network and pretend it

came from Alice. Mallory can fake all the TCP/UDP/IP headers and any necessary RTPS identifiers

(e.g., Alice’s RTPS DomainParticipant and DataWriter GUIDs). Mallory has the secret key that was

used to encrypt the data so she can create encrypted data payloads with any contents she wants. She

has the secret key used to compute HMACs so she can also create a valid HMAC for the new message.

Bob and the others will have no way to see that the message came from Mallory and will accept it,

thinking it came from Alice.

So if Alice used an HMAC, the only solution to the problem is that the secret key used for the HMAC

when sending the message to Mallory cannot be the same as the key used for the HMAC when sending

messages to Bob. In other words, Alice must share a different secret key for the HMAC with each

recipient. Then Mallory will not have the HMAC key that Bob expects from Alice and the messages

from Mallory to Bob will not be misinterpreted as coming from Alice.

Recall that Alice needs to be able to use multicast to communicate efficiently with multiple receivers.

Therefore, if Alice wants to send an HMAC with a different key for every receiver, the only solution is

to append multiple HMACs to the multicast message with some key-id that allows the recipient to

select the correct HMAC to verify.

If Alice uses digital signatures to protect the integrity of the message, then this ‘masquerading’

problem does not arise and Alice can send the same digital signature to all recipients. This makes using

multicast simpler. However, the performance penalty of using digital signatures is so high that in many

situations it will be better to compute and send multiple HMACs as described earlier.

7.1.1.4 Unauthorized Access to Data by Infrastructure Services

Infrastructure services, such as the DDS Persistence Service or relay services need to be able to receive

messages, verify their integrity, store them, and send them to other participants on behalf of the

original application.

These services can be trusted not to be malicious; however, often it is not desirable to grant them the

privileges they would need to understand the contents of the data. They are allowed to store and

forward the data, but not to see inside the data.

Trent is an example of such a service. To support deployment of these types of services, the security

model needs to support the concept of having a participant, such as Trent, who is allowed to receive,

process, and relay RTPS messages, but is not allowed to see the contents of the data within the

message. In other words, he can see the headers and sample information (writer GUID, sequence

numbers, keyhash and such) but not the message contents.

DDS Security, v1.12 17

To support services like Trent, Alice needs to accept Trent as a valid destination for her messages on

topic T and share with Trent only the secret key used to compute the HMAC for Trent, but not the

secret key used to encrypt the data itself. In addition, Bob, Mallory and others need to accept Trent as

someone who is able to write on Topic T and relay messages from Alice. This means two things: (1)

accept and interpret messages encrypted with Alice’s secret key and (2) allow Trent to include in his

sample information, the information he got from Alice (writer GUID, sequence number and anything

else needed to properly process the relayed message).

Assume Alice used an HMAC in the message sent to Trent. Trent will have received from Alice the

secret key needed to verify the HMAC properly. Trent will be able to store the messages, but lacking

the secret key used for its encryption, will be unable to see the data. When he relays the message to

Bob, he will include the information that indicates the message originated from Alice and produce an

HMAC with its own secret HMAC key that was shared with Bob. Bob will receive the message, verify

the HMAC and see it is a relayed message from Alice. Bob recognizes Trent is authorized to relay

messages, so Bob will accept the sample information that relates to Alice and process the message as if

it had originated with Alice. In particular, he will use Alice’s secret key to decrypt the data.

If Alice had used digital signatures, Trent would have two choices. If the digital signature only covered

the data and the sample information he needs to relay from Alice, Trent could simply relay the digital

signature as well. Otherwise, Trent could strip out the digital signature and put in his own HMAC.

Similar to before, Bob recognizes that Trent is allowed to relay messages from Alice and will be able

to properly verify and process the message.

7.2 Cryptographic Algorithm Classes

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The term Cryptographic Algorithm is used to refer to well-defined computational procedures that

take variable inputs, possibly including a cryptographic key, and produce an output. In the context of

this specification, this term refers to any of the cryptographic algorithms used by the SPIs.

Implementations of DDS-Security SPIs rely on cryptographic algorithms to implement authentication,

access control, confidentiality, and integrity functionality. The concrete algorithms and how they are

used depend on the implementation of the SPIs. However, since the SPIs use well-known algorithms

specified by other standard organizations such as NIST and IETF, it is advantageous for DDS-Security

to define a common (SPI-independent) mechanism that facilitates reuse of the algorithms across SPI

implementations, including the builtin SPIs as well as custom ones.

Following the NIST classification of Cryptographic Algorithms [50], this specification groups the

algorithms into the following classes:

• Digital Signature: This class of operations are used to prove/verify the integrity and

authenticity of a message or a document. In the context of this specification, digital signatures

may be used by the SPIs to establish an identity trust chain that validates certificates and to

authenticate messages exchanged between two Endpoints.

• Key Establishment and KeyAgreement: This class of operations are used to securely

establish cryptographic keys among cryptographic modules or communicating endpoints. Key

Agreement is a special type of key establishment where the resulting key material is a function

of information contributed by two or more participants, so that no party can predetermine the

value of the key material independently of the other party’s contributions. In the context of this

specification, key agreement may be used by the SPIs to generate a shared secret key between

two Participants allowing them to exchange information securely.

• Symmetric Cipher: This class of operations use a shared secret key for (authenticated)

encryption/decryption or to generate/validate Message Authentication Codes (MACs). In the

context of this specification, symmetric ciphers may be used by the SPIs to protect the data and

18 DDS Security, v1.12

metadata exchanged between two Endpoints. In the NIST classification this group is separated

into two: Block-cipher encryption/decryption and message authentication codes. This

differentiation is not needed for DDS-Security.

The classes above are intentionally a subset of the ones defined by NIST. It is limited to the types of

cryptographic algorithms that the SPIs are expected to be able to configure independently and impact

the interoperability between Participants. Other classes of algorithms, such as, Hashing, Random

Number Generators, etc. are used but not separately configurable so it is not needed to manage them

separately. Future revisions of the specification may separate these as well.

The common set of predefined cryptographic algorithms available for use by the SPIs are defined in

Clause 8.

7.3 Types used by DDS Security

The DDS security specification includes extensions to the DDS Interoperability Wire Protocol (DDS-

RTPS), as well as, new API-level functions in the form of Security Plugins. The types described in this

sub clause are used in these extensions.

7.3.1 Use of IDL and XTYPES notation

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

This specification uses the OMG IDL, including IDL annotations, as a way to define datatypes.

Likewise, it uses DDS-XTYPES to define the serialized representation of those data types. See section

3Normative References.

The use of OMG IDL notation and DDS-XTYPES data representation does not imply that

implementations of this specification need to also conform to the full OMG IDL or DDS-XTYPES

specifications. Rather, the requirement is that the serialized data for types defined/used in the DDS-

Security specification the corresponding DDS-XTYPES data representations for those same concrete

data types.

7.3.1.1 Type Extensibility

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

DDS-Security leverages the concept of type extensibility as defined in DDS-XTYPES, including the

IDL @extensibility annotation, to indicate the possible evolution of the defined data types in future

revisions of the specification.

This is done according to the following conventions:

• Types that extend or mimic pre-exiting types in DDS, DDS-XTYPES, or DDS-RTPS use the

same extensibility kind as the corresponding base-type.

o Types representing builtin Topics used for discovery (or secure discovery) of DDS

Entities are defined with extensibility MUTABLE.

o Types representing the Qos of a DDS Entity are defined with extensibility kind

MUTABLE.

o Types representing a Qos Policy of a DDS Entity are defined with extensibility kind

APPENDABLE.

o Other top-level types are defined with extensibility kind APPENDABLE.

• Types used as top-level data types sent for a DDS Topics are defined with either extensibility

kind MUTABLE or APPENDABLE.

• Types that appear in sequences or embedded in non-mutable types are defined with

extensibility kind FINAL.

DDS Security, v1.12 19

7.3.1.2 Data Representation (Serialization)

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

DDS-Security only uses the Extended CDR representation with encoded version 1. Specifically, this

means that the serialization of a type with extensibility kind APPENDABLE is the same as if it had

been declared to have extensibility kind FINAL. The difference is the expected future evolution of the

data type, see 7.3.1.3.

7.3.1.3 Type changes that may appear in future revision of the specification

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

Types defined with extensibility kind FINALare not expected to be modified in future revisions of the

DDS-Security specification. If they are, the resulting change will likely not be interoperable with this

version of the specification.

Types defined with extensibility kind APPENDABLE may be modified in future revisions of the DDS-

Security specification. If they are, the resulting change should be interoperable with this version of the

specification.

Vendors may only create vendor-specific extensions to the Types representing builtin Topics used for

discovery (or secure discovery) of DDS. These types are all structure types with extensibility kind

MULTABLE. The only vendor-specific extension allowed to these types is the addition of new

members to these structures. If new members are added:

• The member IDs of these vendor-specific members shall be in the Vendor-specific ParameterId

space, defined in DDS-RTPS vesion 2.5, clause 9.4.2.11.2.

The Ignore/Must Understand bit of the memberID/ParameterId must also be set according with the

meaning of table 9.6 in that same clause.

7.3.2 Property_t

Section 9.3.2 of the DDS-RTPS specification defines Property_t as a data type that holds a pair of

strings. One string is considered the property “name” and the other is the property “value” associated

with that name.

The DDS Security specification extends the DDS-RTPS definition of Property_t to contain the

additional boolean attribute “propagate” used to indicate whether a property is intended for local use

only or should be propagated by DDS discovery.

The DDS-Security specification uses Property_t sequences as a generic data type to configure the

security plugins, pass metadata and provide an extensible mechanism for vendors to configure the

behavior of their plugins without breaking portability or interoperability.

Property_t objects with names that start with the prefix “dds.sec.” are reserved by this

specification, including future versions of this specification. Plugin implementers can also use this

mechanism to pass metadata and configure the behavior of their plugins. In order to avoid collisions

with the value of the “name” attribute, implementers shall use property names that start with a prefix to

an ICANN domain name they own, in reverse order. For example, the prefix would be “com.acme.”

for plugins developed by a hypothetical vendor that owns the domain “acme.com”.

The names and interpretation of the expected properties shall be specified by each plugin

implementation.

Table 1 – Property_t class

Property_t

Attributes
name String

20 DDS Security, v1.12

value String

propagate Boolean

7.3.2.1 IDL Representation for Property_t

The Property_t type may be used for information exchange over the network. When a

Property_t is sent over the network it shall be serialized using Extended CDR format according to

the Extended IDL representation [3] below.

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

@extensibility(FINAL)

struct Property_t {

 string name;

 string value;

 @non-serialized boolean propagate;

};

typedef sequence< Property_t > PropertySeq;

7.3.3 BinaryProperty_t

BinaryProperty_t is a data type that holds a string and an octet sequence. The string is

considered the property “name” and the octet sequence the property “value” associated with that name.

Sequences of BinaryProperty_t are used as a generic data type to configure the plugins, pass

metadata and provide an extensible mechanism for vendors to configure the behavior of their plugins

without breaking portability or interoperability.

BinaryProperty_t also contains the boolean attribute “propagate”. Similar to Property_t

this attribute is used to indicate whether the corresponding binary property is intended for local use

only or shall be propagated by DDS discovery.

BinaryProperty_t objects with a “name” attribute that start with the prefix “dds.sec.” are

reserved by this specification, including future versions of this specification.

Plugin implementers may use this mechanism to pass metadata and configure the behavior of their

plugins. In order to avoid collisions with the value of the “name”, attribute implementers shall use

property names that start with a prefix to an ICANN domain name they own, in reverse order. For

example, the prefix would be “com.acme.” for plugins developed by a hypothetical vendor that owns

the domain “acme.com”.

The valid values of the “name” attribute and the interpretation of the associated “value” shall be

specified by each plugin implementation.

Table 2 – BinaryProperty_t class

BinaryProperty_t

Attributes
name String

value OctetSeq

propagate Boolean

7.3.3.1 IDL Representation for BinaryProperty_t

The BinaryProperty_t type may be used for information exchange over the network. When a

BinaryProperty_t is sent over the network, it shall be serialized using Extended CDR format

according to the Extended IDL representation [3] below.

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

Deleted: APPENDABLE

DDS Security, v1.12 21

@extensibility(FINAL)

struct BinaryProperty_t {

 string name;

 OctetSeq value;

 @non-serialized boolean propagate;

};

typedef sequence< BinaryProperty_t > BinaryPropertySeq;

DDSSEC12-90 - Meeting CNSSP-15 security requirements

When setting the BinaryProperty_t value octet sequence from an ASCII string, the length of

the sequence shall be set to the number of characters in the string, counting the NUL terminating

character, and each octet in the sequence shall be set to the ASCII value of the corresponding character

in the string, including the NUL terminating character.

For example, if an object the string “ECDSA-SHA256” shall result in an octet sequence value with

length 13 where the first octet is 0x45 (ASCII code for ‘E’) and the last octet is 0x00.

7.3.4 DataHolder

DataHolder is a data type used to hold generic data. It contains various attributes used to store data

of different types and formats. DataHolder appears as a building block for other types, such as

Token and GenericMessageData.

 Table 3 – DataHolder class

DataHolder

Attributes
class_id String

properties PropertySeq

binary_properties BinaryPropertySeq

7.3.4.1 IDL representation for DataHolder

The DataHolder type may be used for information exchange over the network. When a

DataHolder is sent over the network, it shall be serialized using Extended CDR format according to

the Extended IDL representation [3] below.

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

@extensibility(FINAL)

struct DataHolder {

 string class_id;

 PropertySeq properties;

 BinaryPropertySeq binary_properties;

};

typedef sequence<DataHolder> DataHolderSeq;

7.3.5 Token

The Token class provides a generic mechanism to pass information between security plugins using

DDS as the transport. Token objects are meant for transmission over the network using DDS either

embedded within the builtin topics sent via DDS discovery or via special DDS Topic entities defined

in this specification.

Deleted: APPENDABLE

Deleted: APPENDABLE

22 DDS Security, v1.12

The Token class is structurally identical to the DataHolder class and therefore has the same

structure for all plugin implementations. However, the contents and interpretation of the Token

objects shall be specified by each plugin implementation.

There are multiple specializations of the Token class. They all share the same format, but are used for

different purposes. This is modeled by defining specialized classes.

Figure 3 – Token Model

7.3.5.1 Attribute: class_id

When used as a Token class, the class_id attribute in the DataHolder identifies the kind of Token.
Strings with the prefix “dds.sec.” are reserved for this specification, including future versions of

the specification. Implementers of this specification can use this attribute to identify non-standard

tokens. In order to avoid collisions, the class_id they use shall start with a prefix to an ICANN domain

name they own, using the same rules specified in 7.3.1 for property names.

7.3.5.2 IDL Representation for Token and Specialized Classes

The Token class is used to hold information exchanged over the network. When a Token is sent over

the network, it shall be serialized using Extended CDR format according to the Extended IDL

representation below:

typedef DataHolder Token;

typedef Token MessageToken;

typedef MessageToken AuthRequestMessageToken;

typedef MessageToken HandshakeMessageToken;

typedef Token IdentityToken;

typedef Token IdentityStatusToken;

typedef Token PermissionsToken;

typedef Token AuthenticatedPeerCredentialToken;

class To ens

CryptoTo en

To en

 discovery

Iden tyTo en

 discovery

PermissionsTo en
 essageTo enPermissionsCreden alTo en

Data older

 cl ss id String

 proper es roperty

 in ry proper es Bin ry roperty

 discovery

Iden tyStatusTo en

AuthRe uest essageTo en andsha e essageTo en

DDS Security, v1.12 23

typedef Token PermissionsCredentialToken;

typedef Token CryptoToken;

typedef Token ParticipantCryptoToken;

typedef Token DatawriterCryptoToken;

typedef Token DatareaderCryptoToken;

typedef sequence<HandshakeMessageToken> HandshakeMessageTokenSeq;

typedef sequence<CryptoToken> CryptoTokenSeq;

typedef CryptoTokenSeq ParticipantCryptoTokenSeq;

typedef CryptoTokenSeq DatawriterCryptoTokenSeq;

typedef CryptoTokenSeq DatareaderCryptoTokenSeq;

7.3.5.3 TokenNIL

This name refers to the Token object having class_id set to the empty string, and both properties and

binary_properties sequences set to the empty sequence.

The TokenNIL object is used to indicate the absence of a Token.

7.3.6 CryptoAlgorithmName

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoAlgorithmName type provides a common way to identify a Cryptographic Algorithm

in contexts where ease of interpretation is the primary consideration and the set of possible algorithms

is open ended.

Typical use of the is CryptoAlgorithmName is during configuration of the SPIa as well as

handshake-type messages sent by the SPIs.

The representation uses a string identifier. The type for CryptoAlgorithmName is defined by the

IDL below.

typedef string<64> CryptoAlgorithmName;

See clause 8 for the values of the CryptoAlgorithmName used by the SPIs in this specification.

7.3.7 CryptoAlgorithmId

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoAlgorithmId type provides a common way to identify a Cryptographic Algorithm in

contexts where a compact, fixed-size representation is required and the set of possible algorithms is

open ended.

Typical use of the is CryptoAlgorithmId is in message headers that need to identify the type of

encryption or message authentication applied to a message.

The representation uses a 1-byte identifier. The type for CryptoAlgorithmId is defined by the

IDL below.

typedef octet CryptoAlgorithmId;

const CryptoAlgorithmId CRYPTO_ALGORITHM_INVALID ID=0x00;

The value CRYPTO_ALGORITHM_INVALID_ID is reserved to indicate the algorithm is undefined

or invalid.

• The values in the range 0x01 <= value < 0x80 are reserved for the DDS-Security specification,

including future revisions of the specification.

24 DDS Security, v1.12

• The values in the range 0x80 <= value <= 0xFF are reserved for implementation-specific

algorithms and should be interpreted within the context of the RTPS vendor ID that constructed

the object containing that value.

See clause 8 for the values of the CryptoAlgorithmId used by the SPIs in this specification.

7.3.8 CryptoAlgorithmBit

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoAlgorithmBit type provides a common way to identify a Cryptographic Algorithm in

contexts where there is a need to represent one or more algorithms in a very compact manner and the

set of possible algorithms is pre-known and very limited.

Typical use of the is CryptoAlgorithmBit is in discovery messages to announce which kinds of

algorithms are supported or used.

The representation uses an exact power-of-two integer. This integer is used to test and/or set bits in a

CryptoAlgorithmSet bitmask, see 7.3.9. The type for CryptoAlgorithmBit is defined by

the IDL below.

typedef uint32 CryptoAlgorithmBit;

const CryptoAlgorithmBit CRYPTO_ALGORITHM_COMPATIBILITY_MODE=0x80000000;

The range of values for CryptoAlgorithmBit is split into 3 sets in order to support defining

vendor-specific extensions of the builtin SPIs while allowing future revision of the specification to also

define new values:

• The value 0x80000000 is reserved and has a special meaning defined in 7.3.10.1.

• The values in the range 0x00000001 <= value < 0x00010000 are reserved for the DDS-

Security specification, including future revisions of the specification.

• The values in the range 0x00010000 <= value < 0x80000000 are reserved for vendor-specific

definition and shall only be interpreted within the context of the RTPS vendor ID that

constructed the object containing that value.

These rules limit the number of possible algorithms that can be represented in the set to 31, of which

16 are reserved for the DDS-Security specification and future revisions thereof.

See clause 8 for the values of the CryptoAlgorithmBit used by the SPIs in this specification.

7.3.9 CryptoAlgorithmSet

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoAlgorithmSet type provides a compact representation a set of cryptographic

algorithms belonging to the same class, see 7.2 for the definition of the cryptographic algorithm

classes.

The representation uses a bitmask. The inclusion of an algorithm in the set is indicated by setting a

specific bit assigned to that algorithm to “1” in the bitmask. This bit may be set using the integer “OR”

operation with the CryptoAlgorithmBit that represents the algorithm.

The definition of the algorithms and the bit position assigned to each algorithm is defined in clause 8.

The type for CryptoAlgorithmSet is defined by the IDL below.

typedef uint32 CryptoAlgorithmSet;

const CryptoAlgorithmSet CRYPTO_ALGORITHM_SET_ALL = 0xffffffff;

const CryptoAlgorithmSet CRYPTO_ALGORITHM_SET_EMPTY = 0x00000000;

The highest bit of a CryptoAlgorithmSet does not represent an algorithm identifier. Its

interpretation is described in 7.3.10.1.

DDS Security, v1.12 25

7.3.10 CryptoAlgorithmRequirements

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoAlgorithmRequirements type provides information on the cryptographic

algorithms of a single class (e.g. digital signature algorithms) that are supported, required, or used by

the SPIs for a specific purpose.

The type for CryptoAlgorithmRequirements is defined by the extended IDL below:

@extensibility (FINAL)

struct CryptoAlgorithmRequirements {

 CryptoAlgorithmSet supported_mask;

 CryptoAlgorithmSet required_mask;

};

The supported_mask represents the set of algorithms of a particular kind that are supported by the

SPIs. For example, for digital signature algorithms, it may represent the specific algorithms that are

available in the SPIs (e.g., elliptic curve with specific curves and padding, RSA, etc.) so that the SPIs

are able to validate signatures (e.g., sent by another Domain Participant) that use those algorithms.

The required_mask represents the subset of the algorithms in the supported_mask that the SPI uses

when interacting with the corresponding SPIs of another Domain Participant and therefore requires the

other participant SPI to support. The compatibility rules are defined in subclause 7.3.10.1 below.

7.3.10.1 CryptoAlgorithmRequirements compatibility

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDSSEC12-90 – Meeting CNSSP-15 security requirements

In order for two participants to communicate securely they must be configured with compatible sets of

Cryptographic Algorithms.

Define the function CheckCryptoAlgorithmCompatibility() as:

bool CheckCryptoAlgorithmCompatibility (

 CryptoAlgorithmSet supported_mask,

 CryptoAlgorithmSet required_mask)

{

 return

 ((required_mask & supported_mask) == required_mask)

 OR

 (((required_mask & supported_mask) != 0)

 AND ((required_mask & CRYPTO_ALGORITHM_COMPATIBILITY_MODE) != 0))

}

The CryptoAlgorithmRequirements of the SPIs used by a Participant “P1” are considered

compatible with those used by the corresponding SPIs of the other Participant “P2” if and only if the

following Boolean expression evaluates to TRUE:

 CheckCryptoAlgorithmCompatibility (P2.supported_mask, P1.required_mask)

AND

 CheckCryptoAlgorithmCompatibility (P1.supported_mask, P2.required_mask)

The first condition indicates that the algorithms required by P1 are supported by P2. The second

condition indicate the reverse, that is, the algorithms used by P2 are supported by P1.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DomainParticipants with incompatible CryptoAlgorithmRequirements may not be able to

decrypt messages sent by the other DomainParticipants. Likewise they may not be able to validate

the message authentication codes included in messages sent by the other DomainParticipant.

26 DDS Security, v1.12

However, if the encryption/authentication codes do not apply to the whole RTPS message, it may still

be able for the two Participants to communicate in certain “unprotected” Topics.

7.3.11 ParticipantSecurityDigitalSignatureAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

If the SPIs use digital signature algorithms, then for two participants to authenticate they must be

configured with compatible sets.

To support discovering the signature algorithms supported and required by each Participant the

information, this specification defines a new parameter IDs for ParticipantBuiltinTopicData

topic, PID_PARTICIPANT_SECURITY_DIGITAL_SIGNATURE_ALGORITHM_INFO (see Section

7.5.1.4). The type for this Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct ParticipantSecurityDigitalSignatureAlgorithmInfo {

 CryptoAlgorithmRequirements trust_chain;

 CryptoAlgorithmRequirements message_auth;

};

The trust_chain contains information about the digital signature algorithms used for the purpose of

validating a digitally signed document. Note that in general a digitally signed document may contain

one or more digital signatures that “chain” up to a root “authority”.

• The trust_chain.supported_mask shall contain the algorithms the SPIs is able to use to validate

the digital signature of documents.

• The trust_chain.required_mask shall contain all the algorithms that are contained in digitally-

signed documents sent by the SPI, where the digital signatures chain up to some trust authority

recognized by the SPIs of the Participant. So it provides a requirement on what the SPIs of

other participants must support in order to validate the digital signature of those documents.

The message_auth contains information about the digital signature algorithms used directly (i.e. not

chained to a common trust authority) to sign messages or validate message signatures.

• The message_auth.supported_mask shall contain all the algorithms the SPIs is able to use to

validate the digital signature of messages.

• The message_auth.required_mask shall contain all the algorithms the SPIs will use to sign

documents or messages sent to other Participants, so it provides a requirement on what the SPIs

of other participant must support in order to interoperate.

7.3.11.1 Compatibility

DDSSEC12-90 – Meeting CNSSP-15 security requirements

The ParticipantSecurityDigitalSignatureAlgorithmInfo of two participants is

compatible if and only if both the trust_chain and the message_auth are compatible according to the

compatibility rules for CryptoAlgorithmRequirements values defined in subclause 7.3.10.1.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DomainParticipants with incompatible

ParticipantSecurityDigitalSignatureAlgorithmInfo are not able to authenticate with

each other. However, they may still be able to communicate with each other if both plugins and

configuration allow un-authenticated DomainParticipants to communicate.

DDS Security, v1.12 27

7.3.11.2 Default value

If the ParticipantSecurityDigitalSignatureAlgorithmInfo is not present in

ParticipantBuiltinTopicData topic received from another Participant, the result shall be the

same as if the value received had all CryptoAlgorithmRequirements members set to the value:

 trust_chain.supported_mask = CBIT_RSASSA_PSS_MGF1SHA256_2048_SHA256

 | CBIT_RSASSA_PKCS1_V15_2048_SHA256

 | CBIT_ECDSA_P256_SHA256

 trust_chain.required_mask = CBIT_ECDSA_P256_SHA256

 message_auth.supported_mask = CBIT_RSASSA_PSS_MGF1SHA256_2048_SHA256

 | CBIT_ECDSA_P256_SHA256

 message_auth.required_mask = CBIT_ECDSA_P256_SHA256

See subclause 8.2 for the definition of the constants used above.

This default value makes it possible to not send the

ParticipantSecurityDigitalSignatureAlgorithmInfo in a common configuration that

matches previous revisions of the specification.

7.3.12 ParticipantSecurityKeyEstablishmentAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

If the SPIs establish a secret key, then for two participants to communicate securely they must be

configured with compatible sets.

To support discovering the the key establishment algorithm information as part of discovery, this

specification defines a new parameter IDs for ParticipantBuiltinTopicData topic,

PID_PARTICIPANT_KEY_EXCHANGE_ALGORITHM_INFO (see Section 7.5.1.4). The type for this

Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct ParticipantSecurityKeyEstablishmentAlgorithmInfo {

 CryptoAlgorithmRequirements shared_secret;

};

The shared_secret contains information about the key establishment algorithms used and supported.

• The shared_secret.supported_mask shall contain all the algorithms the SPIs is able to use to

establish a shared key

• The shared_secret.required_mask shall contain all the algorithms the SPIs of other participants

must support in order to interoperate.

7.3.12.1 Compatibility

DDSSEC12-90 – Meeting CNSSP-15 security requirements

The ParticipantSecurityKeyEstablishmentAlgorithmInfo of two participants is

compatible if and only if the shared_secret is compatible according to the compatibility rules for

CryptoAlgorithmRequirements values defined in subclause 7.3.10.1.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DomainParticipants with incompatible

ParticipantSecurityKeyEstablishmentAlgorithmInfo are not able to establish a shared

secret using a Key-Agreement protocol. As a consequence, they are also not able to mutually

Deleted: 8.28.28.1.2

Deleted: use

Deleted: digital signature algorithms

28 DDS Security, v1.12

authenticate with each other (most mutual authentication algorithms also include a key agreement

algorithm). However, they may still be able to communicate with each other if both plugins and

configuration allow un-authenticated DomainParticipants to communicate.

7.3.12.2 Default value

DDSSEC12-90 – Meeting CNSSP-15 security requirements

If the ParticipantSecurityKeyEstablishmentAlgorithmInfo is not present in

ParticipantBuiltinTopicData topic received from another Participant, the result shall be the

same as if the value received had all CryptoAlgorithmRequirements members set to the value:

 member.supported_mask = CBIT_DHE_MODP_2048_256

 | CBIT_ECDHE_CEUM_P256

 member.required_mask = CBIT_ECDHE_CEUM_P256

See subclause 8.3 for the definition of the constants used above.

This default value makes it possible to not send the

ParticipantSecurityKeyEstablishmentAlgorithmInfo in a common configuration that

matches previous revisions of the specification.

7.3.13 ParticipantSecuritySymmetricCipherAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

If the SPIs use symmetric ciphers for encryption or message authentication, then for two participants to

communicate securely they must be configured with compatible sets.

To support propagation of this information as part of discovery, this specification defines a new

parameter IDs for ParticipantBuiltinTopicData topic,

PID_PARTICIPANT_SECURITY_SYMMETRIC_CIPHER_ALGORITHM_INFO (see Section 7.5.1.4). The

type for this Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct ParticipantSecuritySymmetricCipherAlgorithmInfo {

 CryptoAlgorithmSet supported_mask;

 CryptoAlgorithmSet builtin_endpoints_required_mask;

 CryptoAlgorithmSet builtin_kx_endpoints_required_mask;

 CryptoAlgorithmSet user_endpoints_default_required_mask;

};

The supported_mask shall contain all the algorithms the SPIs is able to use to decrypt messages or

validate authentication tags.

The builtin_endpoints_required_mask shall contain all the algorithms the the SPIs of other

participants must support in order to interoperate with all the builtin endpoints, except for the

DCPSParticipantVolatileMessageSecure builtin Topic (see 7.5.4).

The builtin_kx_endpoints_required_mask shall contain all the algorithms the SPIs of other

participants must support in order to interoperate with all the DCPSParticipantVolatileMessageSecure

builtin Topic (see 7.5.4). This is the builtin topic used to send cryptographic material.

The user_endpoints_default_required_mask shall contain all the default algorithms that will be used

by user-defined (non-builtin) endpoint. This default applies in case the Endpoint does not directly

specify the algorithms it will use.

7.3.13.1 Compatibility

DDSSEC12-90 – Meeting CNSSP-15 security requirements

Deleted: 8.38.38.1.3

DDS Security, v1.12 29

The ParticipantSecuritySymmetricCipherAlgorithmInfo of two participants P1 and P2 is

compatible if and only if:

 CheckCryptoAlgorithmCompatibility (

 P2.supported_mask, P1.builtin_endpoints_required_mask)

AND CheckCryptoAlgorithmCompatibility (

 P2.supported_mask, P1.builtin_kx_endpoints_required_mask)

AND CheckCryptoAlgorithmCompatibility (

 P1.supported_mask, P2.builtin_endpoints_required_mask)

AND CheckCryptoAlgorithmCompatibility (

 P1. supported_mask, P2.builtin_kx_endpoints_required_mask)

Note that the user_endpoints_default_required_mask is not considered for compatibility as it may be

overridden for specific endpoints.

See subclause 7.3.10.1 for the definition of the CheckCryptoAlgorithmCompatibility function.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DomainParticipants with incompatible

ParticipantSecuritySymmetricCipherAlgorithmInfo may not be able to decrypt messages

sent by the other DomainParticipants. Likewise, they may not be able to validate the message

authentication codes included in messages sent by the other DomainParticipant. However, if the

encryption/authentication codes do not apply to the whole RTPS message, it may stil be able for the

two Participants to communicate in certain “unprotected” Topics.

7.3.13.2 Default value

DDSSEC12-90 – Meeting CNSSP-15 security requirements

If the ParticipantSecuritySymmetricCipherAlgorithmInfo is not present in

ParticipantBuiltinTopicData topic received from another Participant, the result shall be the

same as if the value received had the members set as follows:

 supported_mask = CBIT_AES128_GCM | CBIT_AES256_GCM

 builtin_endpoints_required_mask = CBIT_AES256_GCM

 builtin_kx_endpoints_required_mask = CBIT_AES256_GCM

 user_endpoints_default_required_mask = CBIT_AES256_GCM

See subclause 8.1 8.2 for the definition of the constants used above.

This default value makes it possible to not send the

ParticipantSecuritySymmetricCipherAlgorithmInfo in a common configuration that

matches previous revisions of the specification.

7.3.14 ParticipantSecurityAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

This type aggregates the information about the Cryptographic Algorithms supported and required by

the Participant SPIs.

The type is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct ParticipantSecurityAlgorithmInfo {

 ParticipantSecurityDigitalSignatureAlgorithmInfo digital_signature;

 ParticipantSecurityKeyEstablishmentAlgorithmInfo key_establishment;

 ParticipantSecuritySymmetricCipherAlgorithmInfo symmetric_cipher;

};

Deleted: 8.18.18.1.1

Deleted: 8.28.28.1.2

30 DDS Security, v1.12

7.3.15 EndpointSecuritySymmetricCipherAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

If the SPIs use symmetric ciphers for encryption or message authentication, then for two participants to

communicate on a specific Topic the DataWriter and the DataReader of that Topic must be configured

with compatible sets of algorithms.

To support propagation of this information as part of discovery, this specification defines a new

parameter IDs for PublicationBuiltinTopicData and the SubscriptionBuiltinTopicData

topic, PID_ENDPOINT_SYMMETRIC_CIPHER_ALGORITHM_INFO (see Section 7.5.1.5). The type for

these Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct EndpointSecuritySymmetricCipherAlgorithmInfo {

 CryptoAlgorithmSet required_mask;

 @non_serialized

 CryptoAlgorithmSet supported_mask;

};

The required_mask shall contain the algorithms the SPIs of other participants must support to

interoperate with the Endpoint.

• If the Endpoint is a DataWriter then the required_mask shall contain all the algorithms that

are used for encrypting/authenticating the data payload and submessages as well as the

protocol-level messages sent to matched DataReaders (e.g. HB and GAP). This corresponds to

the algorithms used in the Cryptographic plugin operations encode_serialized_payload and

encode_datawriter_submessage when applied to that DataWriter.

• If the Endpoint is a DataReader then the required_mask shall contain the algorithms that are

used for encrypting/authenticating the protocol-level messages sent to matched writers (e.g.

ACKNACKs in the case of reliable DataReaders). This corresponds to the algorithms used in

the following Cryptographic plugin encode_datareader_submessage operation when applied to

that DataReader.

The supported_mask is included in the PublicationBuiltinTopicData to make the API more

convenient for the user. The member is not serialized and is not included in the data sent with the

PID_ENDPOINT_SYMMETRIC_CIPHER_ALGORITHM_INFO. The value of this member shall be set by

the SPI implementations to match the supported_mask in the

ParticipantSecuritySymmetricCipherAlgorithmInfo of the DomainParticipant that

contains the Endpoint.

7.3.15.1 Compatibility

The EndpointSecuritySymmetricCipherAlgorithmInfo of endpoint E1 belonging to

DomainParticipant P1 is compatible with that of endpoint E2 belonging to DomainParticipant P2 if and

only if:

 CheckCryptoAlgorithmCompatibility (

 P2.symmetric_cipher.supported_mask, E1.required_mask)

AND CheckCryptoAlgorithmCompatibility (

 P1.symmetric_cipher.supported_mask, E2.required_mask)

See subclause 7.3.10.1 for the definition of the CheckCryptoAlgorithmCompatibility

function.

Formatted: Bulleted + Level: 1 + Aligned at: 0.25" +
Indent at: 0.5"

Formatted: OMG_SPEC_typename, Font: 11 pt

Formatted: OMG_SPEC_typename, Font: 11 pt

DDS Security, v1.12 31

7.3.15.2 Default value

If the EndpointSecuritySymmetricCipherAlgorithmInfo is not present in a

PublicationBuiltinTopicData or a SubscriptionBuiltinTopicData topic received

from another DomainParticipant, the value shall be set to

symmetric_cipher.user_endpoints_default_required_mask of the DomainParticipant that

contains the Endpoint (see 7.3.13.2).

This default value makes it possible to not send the

EndpointSecuritySymmetricCipherAlgorithmInfo if all the user endpoints use the

same symmetric cipher algorithm.

7.3.16 EndpointSecurityAlgorithmInfo

DDSSEC12-90 – Meeting CNSSP-15 security requirements

This type aggregates the information about the Cryptographic Algorithms required by the Endpoint

SPIs.

The type is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct EndpointSecurityAlgorithmInfo {

 EndpointSecuritySymmetricCipherAlgorithmInfo symmetric_cipher;

};

7.3.17 CryptoTransformKeyRevision, CryptoTransformKeyRevisionIntHolder

DDSSEC12-122 – Provide mechanism for changing the session keys

The CryptoTransformKeyRevision provides a way to represent changes to Key Material. It is

meant to be used withib the CryptoTransformKind class.

The generation of CryptoTransformKeyRevision is implementation-specific, but the format is

defined for all implementations as follows:

typedef octet CryptoTransformKeyRevision[3];

#define CRYPTO_TRANSFORM_KEY_REVISION_NONE {0x00, 0x00, 0x00}

The type CryptoTransformKeyRevisionIntHolder provides a normalized way to hold a

CryptoTransformKeyRevision as an int32 value.

typedef int32 CryptoTransformKeyRevisionIntHolder;

The representation of a CryptoTransformKeyRevision key_revision_value using a

CryptoTransformKeyRevisionIntHolder int_holder_value uses the following encoding:

 int_holder_value = 256*256*transformation_key_revision_value[0]

 + 256*key_revision_value[1] + key_revision_value[2]

7.3.18 CryptoTransformKind

DDSSEC12-90 – Meeting CNSSP-15 security requirements

The CryptoTransformKind class provides the means to identify the type of cryptographic

transformation performed on a applied on a message without an indication of the key material used.

The generation and interpretation of CryptoTransformKind is performed by the security plugins

but the format is defined for all Cryptographic plugin implementations as follows:

32 DDS Security, v1.12

DDSSEC12-122 – Provide mechanism for changing the session keys

@extensibility(FINAL)

struct CryptoTransformKind {

 CryptoTransformKeyRevision transformation_key_revision;

 CryptoAlgorithmId transformation_algorithm_id;

};

#define CRYPTO_TRANSFORM_KIND_INVALID {{0x00, 0x00, 0x00}, 0x00}

The value CRYPTO_TRANSFORM_KIND_INVALID is reserved to indicate an undefined or invalid

transformation.

7.3.18.1 Attribute: transformation_key_revision

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

This attribute is used to support the change of the key material used by a DDS Entity. It is meant to be

used in combination with a CryptoTransformKeyId. See.7.3.19 and 7.3.20.

7.3.18.2 Attribute: transformation_algorithm_id

DDSSEC12-90 – Meeting CNSSP-15 security requirements

Identifies the type of cryptographic transformation. That is, the algorithm, mode, padding, etc.

The CryptoAlgorithmId values used for the transformation_algorithm_id shall

correspond to those assigned to Symmetric Cipher and MAC algorithms, see clause 8.

7.3.19 CryptoTransformKeyId

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

The CryptoTransformKeyId class provides a way to identify (lookup) the key material used to

perform a cryptographic transformation. The CryptoTransformKeyId is not the key material

itself, nor it is derived from the key material. It is simply an opaque value that helps create a unique

“lookup” reference that can be associated with the key material that is exchanged by some other

means.

The scope for the CryptoTransformKeyId is the DomainParticipant that generated the

CryptoTransformKeyId.

When used as part of a CryptoTransformIdentifier, the CryptoTransformKeyId must

be combined with the transformation_key_revision of the associated CryptoTransformKind to

uniquely identify the KeyMaterial within the scope of the DomainParticipant GUID that

generated it.

The generation of CryptoTransformKeyId is implementation-specific, but the format is defined

for all implementations as follows:

typedef octet CryptoTransformKeyId[4];

7.3.20 CryptoTransformIdentifier

DDSSEC12-90 – Meeting CNSSP-15 security requirements

The CryptoTransformIdentifier class uniquely identifies the transformation applied on the

sending side (encoding) so that the receiver can locate the necessary key material and use the correct

cryptographic algorithm, to perform the inverse transformation (decoding).

Deleted: octet

Deleted: context

Deleted: [3]

Deleted: context

Deleted: reserved

Deleted: for future revisions of the specification. Senders

should be set to zero and receivers should not interpret it

Deleted: 7.3.197.3.197.3.18

Deleted: 7.3.207.3.207.3.19

Deleted: component

DDS Security, v1.12 33

The generation and interpretation of CryptoTransformIdentifier is performed by the

Cryptographic plugin.

The structure of the CryptoTransformIdentifier is defined for all Cryptographic plugin

implementations as follows:

@extensibility(FINAL)

struct CryptoTransformIdentifier {

 CryptoTransformKind transformation_kind;

 CryptoTransformKeyId transformation_key_id;

};

7.3.20.1 Attribute: transformation_kind

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

Identifies the type of cryptographic transformation. See 7.3.18 and provides key revision
information. In combination with the transformation_key_id it allows the receiver to select the
right cryptographic algorithm and key material to decode or validate a cryptographically
encoded message.
DDSSEC12-122 – Provide mechanism for changing the session keys

The transformation_kind has two fields:

• transformation_algorithm_id

• transformation_key_revision

The transformation_algorithm_id identifies the Crytographic Algorithm used by the transformation.
It shall contain one of the CryptoAlgorithmId values defined in Section 8 (Common

Cryptographic Algorithms).
The transformation_key_revision value (see 7.3.17) shall be combined with the

transformation_key_id attribute to identify the key material within the scope of the DomainParticipant

GUID that generated the CryptoTransformIdentifier.

7.3.20.2 Attribute: transformation_key_id

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

Identifies the key material used to perform a cryptographic transformation.

The 3-tuple (sender_participant_guid, transformation_key_id, transformation_key_revision)

uniquely identifies the Key Material within the scope of all Domain Participants that are

communicating in a common DDS Domain. This allows receivers to be robust to dynamic changes in

keys and key material: The receiver can either identify the correct key material or else detect that it

does not have it.

The 2-tuple (transformation_key_revision, transformation_key_id) uniquely identify the Key

Material within the scope provided by the DDS DomainParticipant that creates the key material.

The values of the transformation_key_id are defined by the Cryptographic plugin

implementation and understood only by that plugin.

7.3.21 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos

This specification also introduces an additional Qos policy called PropertyQosPolicy, which is

defined by the following extended IDL:

@extensibility(APPENDABLE)

Deleted: 7.3.187.3.187.3.17

Deleted: Common Cryptographic AlgorithmsCommon

Cryptographic AlgorithmsCommon Cryptographic

Algorithms…

Deleted:

34 DDS Security, v1.12

struct PropertyQosPolicy {

 PropertySeq value;

 BinaryPropertySeq binary_value;

};

The PropertyQosPolicy applies to the following DDS entities: DomainParticipant,

DataWriter, and DataReader. To allow configuration of this policy from the DDS API the DDS

Security specification extends the definitions of the DDS defined types DomainParticipantQos,

DataWriterQos, and DataReaderQos with the additional member “property” of type

PropertyQosPolicy as indicated in the extended IDL snippets below.

This specification also introduces a Qos policy called DataTagQosPolicy, defined by the

following IDL:

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

@extensibility(FINAL)

struct Tag {

 string name;

 string value;

};

typedef sequence<Tag> TagSeq;

@extensibility(APPENDABLE)

struct DataTags {

 TagSeq tags;

};

typedef DataTags DataTagQosPolicy;

@extensibility(MUTABLE)

struct DomainParticipantQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

};

@extensibility(MUTABLE)

struct DataWriterQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

 DataTagQosPolicy data_tags;

};

@extensibility(MUTABLE)

struct DataReaderQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

 DataTagQosPolicy data_tags;

};

The PropertyQosPolicy shall be propagated via DDS discovery so it appears in the

ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and

SubscriptionBuiltinTopicData (see 7.5.1.3, 7.5.1.7, and 7.5.1.8). This is used by the plugins

to check configuration compatibility. Not all name/value pairs within the underlying PropertySeq

and BinaryPropertySeq are propagated. Specifically only the ones with propagate=TRUE are

propagated via DDS discovery and shall appear in the ParticipantBuiltinTopicData,

PublicationBuiltinTopicData, and SubscriptionBuiltinTopicData.

Deleted: APPENDABLE

DDS Security, v1.12 35

7.3.22 ParticipantGenericMessage

This specification introduces additional builtin DataWriter and DataReader entities used to send

generic messages between the participants. To support these entities, this specification uses a general-

purpose data type called ParticipantGenericMessage, which is defined by the following

extended IDL:

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

typedef octet[16] GUID_t;

@extensibility(FINAL)

struct MessageIdentity {

 GUID_t source_guid;

 long long sequence_number;

};

typedef string<> GenericMessageClassId;

@extensibility(APPENDABLE)

struct ParticipantGenericMessage {

 /* target for the request. Can be GUID_UNKNOWN */

 MessageIdentity message_identity;

 MessageIdentity related_message_identity;

 GUID_t destination_participant_guid;

 GUID_t destination_endpoint_guid;

 GUID_t source_endpoint_guid;

 GenericMessageClassId message_class_id;

 DataHolderSeq message_data;

};

The type GUID_t refers to the type defined in the DDS-RTPS specification [2]. See clause 7.4.3 for

additional details on the GUID_t.

DDSSEC12-90 – Meeting CNSSP-15 security requirements

7.3.23 ParticipantSecurityProtectionInfo

This specification introduces a new set of participant security attributes, described in Section 9.4.2.4.

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

In order to communicate securely, two participants need to have a compatible configuration for

participant security attributes. To support making matching decisions upon discovering a remote

participant, this specification defines a new parameter ID for ParticipantBuiltinTopicData topic,

PID_PARTICIPANT_SECURITY_PROTECTION_INFO (see Section 7.5.1.4). The type for that

Parameter IDs is defined by the following extended IDL:

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

typedef unsigned long ParticipantSecurityAttributesMask;

typedef unsigned long PluginParticipantSecurityAttributesMask;

struct ParticipantSecurityAttributesMaskExt {

 unsigned short is_set;

 unsigned short value;

};

@extensibility (APPENDABLE)

struct ParticipantSecurityProtectionInfo {

 ParticipantSecurityAttributesMask participant_security_attributes;

 PluginParticipantSecurityAttributesMask

 plugin_participant_security_attributes;

Deleted: APPENDABLE

Deleted: ci

36 DDS Security, v1.12

 ParticipantSecurityAttributesMaskExt

 participant_security_optional_attributes;

};

#define PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_VALID (0x1 << 31)

The default value for the info ParticipantSecurityInfo sets both masks to zero:

#define PARTICIPANT_SECURITY_ATTRIBUTES_INFO_DEFAULT {0, 0}

DDSSEC12-90 – Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

A compatible configuration is defined as having the same value for the

participant_security_attributes and the

plugin_participant_security_attributes, except that when comparing two masks the

most significant bit is interpreted in a special manner as described below.

The most-significant bit of PluginParticipantSecurityAttributesMask and

ParticipantSecurityAttributesMask is called the is_valid bit and specifies whether the

rest of the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between

the local and remote setting for the ParticipantSecurityProtectionInfo shall ignore the

attribute. This allows new implementations to be backwards compatible with old implementations by

either not sending the ParticipantSecurityProtectionInfo (the default value of zero has

is_valid=0) or sending it with is_valid set to 0.

The value of the plugin_participant_security_attributes shall be defined the security plugin

implementation and are opaque to the DDS middleware (other than the is_valid bit). They allow the

middleware to make matching decisions using the

PluginParticipantSecurityAttributesMask without interpreting it. The definition for

the builtin plugins is detailed in clause 10.4.2.3.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Two participants that don’t have compatible configurations shall not attempt authentication and each

participant shall consider the other participant as an “unauthenticated participant.” Depending on the

configuration these participants can still match each other and communicate with other on a reduced

set of Topics that are allowed to be exchange among unauthenticated Participants.

The participant_security_optional_attributes encode configuration information

about the plugin that does not need to be set consistently for two Participants to authenticate.

Therefore, it is not considered as part of the “compatible configuration” definition above. The

participant_security_optional_attributes contain two masks: The is_set mask

indicates whether the corresponding bit in the value mask is set. The interpretation of each bit is

specified in clause 9.4.2.5.

7.3.24 EndpointSecurityProtectionInfo

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This specification defines a plugin-independent endpoint security attributes, described in clause

9.4.2.7. Additionally, plugin implementations can also have their own plugin-specific attributes, see

clause 10.4.2.5.

In order to communicate, two endpoints need to have a compatible configuration for endpoint security

attributes.

To support making matching decisions upon discovering a remote endpoint, this specification defines a

new parameter ID for PublicationBuiltinTopicData and SubscriptionBuiltinTopicData topics,

PID_ENDPOINT_SECURITY_PROTECTION_INFO (see Section 7.5.1.5). The type for that

Parameter IDs is defined by the following extended IDL:

Deleted: all

Deleted: of the attributes in the
ParticipantSecurityProtectionInfo

DDS Security, v1.12 37

typedef unsigned long EndpointSecurityAttributesMask;

typedef unsigned long PluginEndpointSecurityAttributesMask;

@extensibility(APPENDABLE)

struct EndpointSecurityProtectionInfo {

 EndpointSecurityAttributesMask endpoint_security_attributes;

 PluginEndpointSecurityAttributesMask plugin_endpoint_security_attributes;

};

#define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_VALID (0x1 << 31)

The default value for the EndpointSecurityInfo is both attributes set to the value zero.
#define ENDPOINT_SECURITY_ATTRIBUTES_INFO_DEFAULT {0, 0}

A compatible configuration is defined as having the same value for all of the attributes in the

EndpointSecurityInfo, except that when comparing two masks the most significant bit is

interpreted in a special manner as described below.

The most-significant bit of PluginEndpointSecurityAttributesMask and

EndpointSecurityAttributesMask is called the is_valid bit and specifies whether the rest of

the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between the local

and remote setting for the EndpointSecurityInfo shall ignore the attribute. This allows new

implementations to be backwards compatible with old implementations by either not sending the

EndpointSecurityInfo (the default value of zero has is_valid=0) or sending it with is_valid bit

set to zero in one or both attributes.

The value of the plugin_endpoint_security_attributes shall be defined by the security plugin

implementation and is opaque to the DDS middleware (other than the is_valid bit). It allows the

middleware to make matching decisions using the

PluginEndpointSecurityAttributesMask without interpreting it. The definition for the

builtin plugins is detailed in clause 10.4.2.5.

7.3.25 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY

The DDS specification defines a set of return codes that may be returned by the operations on the DDS

API (see sub clause 7.1.1 of the DDS specification).

The DDS Security specification adds an additional return code NOT_ALLOWED_BY_SECURITY,

which shall be returned by any operation on the DDS API that fails because the security plugins do not

allow it.

7.4 Securing DDS Messages on the Wire

OMG DDS uses the Real-Time Publish-Subscribe (RTPS) on-the-wire protocol [2] for communicating

data. The RTPS protocol includes specifications on how discovery is performed, the metadata sent

during discovery, and all the protocol messages and handshakes required to ensure reliability. RTPS

also specifies how messages are put together.

7.4.1 RTPS Background (Non-Normative)

In a secure system where efficiency and message latency are also considerations, it is necessary to

define exactly what needs to be secured. Some applications may require only the data payload to be

confidential and it is acceptable for the discovery information, as well as, the reliability meta-traffic

(HEARTBEATs, ACKs, NACKs, etc.) to be visible, as long as it is protected from modification. Other

applications may also want to keep the metadata (sequence numbers, in-line QoS) and/or the reliability

traffic (ACKs, NACKs, HEARTBEATs) confidential. In some cases, the discovery information (who

is publishing what and its QoS) may need to be kept confidential as well.

38 DDS Security, v1.12

To help clarify these requirements, sub clause 7.4.1 explains the structure of the RTPS Message and

the different Submessages it may contain.

Figure 4 – RTPS message structure

An RTPS Message is composed of a leading RTPS Header followed by a variable number of RTPS

Submessages. Each RTPS Submessage is composed of a SubmessageHeader followed by a

variable number of SubmessagElements. There are various kinds of SubmessageElements to

communicate things like sequence numbers, unique identifiers for DataReader and DataWriter entities,

SerializedKeys or KeyHash of the application data, source timestamps, QoS, etc. There is one kind of

SubmessageElement called SerializedPayload that is used to carry the data sent by DDS

applications.

For the purposes of securing communications we distinguish three types of RTPS Submessages:

1. DataWriter Submessages. These are the RTPS submessages sent by a DataWriter to one or

more DataReader entities. These include the Data, DataFrag, Gap, Heartbeat, and

HeartbeatFrag submessages.

2. DataReader Submessages. These are the RTPS submessages sent by a DataReader to one or

more DataWriter entities. These include the AckNack and NackFrag submessages.

3. Interpreter Submessages. These are the RTPS submessages that are destined to the Message

Interpreter and affect the interpretation of subsequent submessages. These include all the

“Info” messages.

The only RTPS submessages that contain application data are the Data and DataFrag. The

application data is contained within the SerializedPayload submessage element. In addition to

the SerializedPayload these submessages contain sequence numbers, inline QoS, the Key Hash,

identifiers of the originating DataWriter and destination DataReader, etc.

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SubMessage

SubMsg Header

SubMsg Element

SubMsg Element

SerializedPayload

RTPS Message

RTPS SubMessage

DDS Security, v1.12 39

The Data, and DataFrag submessages contain a ParameterList submessage element called

inlineQos (see section 8.3.7 of the DDS-RTPS specification version 2.2). The inlineQos holds

metadata associated with the submessage. It is encoded as a ParameterList (see section 9.4.2.11

of the DDS-RTPS specification version 2.2). ParameterList is a list of {parameterID, length,

value} tuples terminated by a sentinel. One of these parameters is the KeyHash.

The KeyHash parameter may only appear in the Data and DataFrag submessages. Depending on

the data type associated with the DataWriter that wrote the data, the KeyHash parameter contains

either:

• A serialized representation of the values of all the attributes declared as ‘key’ attributes in the

associated data type, or

• An MD5 hash computed over the aforementioned serialized key attributes.

Different RTPS Submessage within the same RTPS Message may originate on different

DataWriter or DataReader entities within the DomainParticipant that sent the RTPS message.

It is also possible for a single RTPS Message to combine submessages that originated on different

DDS DomainParticipant entities. This is done by preceding the set of RTPS Submessages that

originate from a common DomainParticipant with an InfoSource RTPS submessage.

The RTPS header contains the version of the RTPS protocol composed of a Major Version and Minor

Version numbers.

As specified in clause 8.6.1 of the DDS-RTPS specification, changes to the RTPS protocol that do not

break interoperability should increase the Minor Version number. These changes include additional

submessages, additional builtin-endpoints, and additional parameterIds. The DDS Security

specification makes these kinds of changes to the RTPS protocol and therefore must increase the RTPS

minor version number.

7.4.2 Secure RTPS Messages

Sub clause 7.1.1 identified the threats addressed by the DDS Security specification. To protect against

the “Unauthorized Subscription” threat it is necessary to use encryption to protect the sensitive parts of

the RTPS message.

Depending on the application requirements, it may be that the only thing that should be kept

confidential is the content of the application data; that is, the information contained in the

SerializedPayload RTPS submessage element. However, other applications may also consider

the information in other RTPS SubmessageElements (e.g., sequence numbers, KeyHash, and

unique writer/reader identifiers) to be confidential. So the entire Data (or DataFrag) submessage

may need to be encrypted. Similarly, certain applications may consider other submessages such as

Gap, AckNack, Heartbeat, HeartbeatFrag, etc. also to be confidential.

For example, a Gap RTPS Submessage instructs a DataReader that a range of sequence numbers

is no longer relevant. If an attacker can modify or forge a Gap message from a DataWriter, it can

trick the DataReader into ignoring the data that the DataWriter is sending.

To protect against “Unauthorized Publication” and “Tampering and Replay” threats, messages must be

signed using secure hashes or digital signatures. Depending on the application, it may be sufficient to

sign only the application data (SerializedPayload submessage element), the whole

Submessage, and/or the whole RTPS Message.

To support different deployment scenarios, this specification uses a “message transformation”

mechanism that gives the Security Plugin Implementations fine-grain control over which parts of the

RTPS Message need to be encrypted and/or signed.

40 DDS Security, v1.12

The Message Transformation performed by the Security Plugins transforms an RTPS Message into

another RTPS Message. A new RTPS Header may be added and the content of the original RTPS

Message may be encrypted, protected by a Secure Message Authentication Code (MAC), and/or

signed. The MAC and/or signature can also include the RTPS Header to protect its integrity.

7.4.3 Constraints of the DomainParticipant GUID_t (GUID)

The DDS-RTPS specification [2] states that DDS DomainParticipant entities are identified by a

unique 16-byte GUID with type GUID_t. In this DDS-Security specification the type GUID_t refers

to the same type defined in clauses 8.4.2.1 and 9.3.1 of the DDS-RTPS specification [2]:

// From DDS-RTPS [2] clauses 8.4.2.1 and 9.3.1

typedef octet GuidPrefix_t[12];

struct EntityId_t {

 octet entityKey[3];

 octet entityKind;

};

struct GUID_t {

 GuidPrefix_t prefix;

 EntityId_t entityId;

};

This DomainParticipant GUID is communicated as part of DDS Discovery in the

SPDPdiscoveredParticipantData (see DDS-RTPS specification [2] clauses 8.5.3.2 and 9.3.1.3).

Allowing a DomainParticipant to select its GUID arbitrarily would allow hostile applications to

perform a “squatter” attack, whereby a DomainParticipant with a valid certificate could

announce itself into the DDS Domain with the GUID of some other DomainParticipant. Once

authenticated the “squatter” DomainParticipant would preclude the real DomainParticipant

from being discovered, because its GUID would be detected as a duplicate of the already existing

one.

To prevent the aforementioned “squatter” attack, this specification constrains the GUID that can be

chosen by a DomainParticipant, so that it is tied to the Identity of the DomainParticipant.

This is enforced by the Authentication plugin.

7.4.4 Mandatory use of the KeyHash for encrypted messages

The RTPS Data and DataFrag submessages can optionally contain the KeyHash as an inline Qos

(see sub clause 9.6.3.3, titled “KeyHash (PID_KEY_HASH)”) of the DDS-RTPS specification version

2.3. In this sub clause it is specified that when present, the key hash shall be computed either as the

serialized key or as an MD5 on the serialized key.

The key values are logically part of the data and therefore in situations where the data is considered

sensitive the key should also be considered sensitive.

For this reason the DDS Security specification imposes additional constraints in the use of the key

hash. These constraints apply only to the Data or DataFrag RTPS SubMessages where the

SerializedPayload SubmessageElement is encrypted by the operation

encode_serialized_payload of the CryptoTransform plugin:

(1) The KeyHash shall be included in the Inline Qos.

(2) The KeyHash shall be computed as the 128 bit MD5 Digest (IETF RFC 1321) applied to the

CDR Big- Endian encapsulation of all the Key fields in sequence. Unlike the rule stated in sub

clause 9.6.3.3 of the DDS specification, the MD5 hash shall be used regardless of the

maximum-size of the serialized key.

DDS Security, v1.12 41

These rules accomplish two objectives:

(1) Avoid leaking the value of the key fields in situations where the data is considered sensitive

and therefore appears encrypted within the Data or DataFrag submessages.

(2) Enable the operation of infrastructure services without needed to leak to them the value of the

key fields (see 7.1.1.4).

Note that the use of the MD5 hashing function for these purposes does not introduce significant

vulnerabilities. While MD5 is considered broken as far as resistance to collisions (being able to find

two inputs that result in an identical unspecified hash) there are still no known practical preimage

attacks on MD5 (being able to find the input that resulted on a given hash).

7.4.5 Immutability of Publisher Partition Qos in combination with non-volatile
Durability kind

The DDS specification allows the PartitionQos policy of a Publisher to be changed after the

Publisher has been enabled. See sub clause 7.1.3 titled “Supported QoS) of the DDS 1.2

specification.

The DDS Security specification restricts this situation.

The DDS implementation shall not allow a Publisher to change PartitionQos policy after the

Publisher has been enabled if it contains any DataWriter that meets the following two criteria:

DDSSEC12-49 – Mutability of PartitionQos

(1) The TopicSecurityAttributes for the Topic associated with the DataWriter have

is_read_protected set to TRUE.

(2) The DataWriter has the DurabilityQos policy kind set to something other than

VOLATILE.

This rule prevents data that was published while the DataWriter had associated a set of

Partitions from being sent to DataReaders that were not matching before the Partition

change and match after the Partition is changed.

7.4.6 Platform Independent Description

7.4.6.1 Change to the RTPS minor version number

Implementations of this specification shall set the RTPS protocol version number present in the RTPS

Header. The RTPS Major version number shall be set to 2 and the RTPS Minor version number shall

be set to 3. Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.4.6.2 RTPS Secure Submessage Elements

This specification introduces new RTPS SubmessageElements that may appear inside RTPS

Submessages.

7.4.6.2.1 CryptoTransformIdentifier

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoTransformIdentifier submessage element uniquely identifies the cryptographic

transformation performed in the scope of the sending DomainParticipant. It contains information

about the cryptographic algorithm used to transform an RTPS Submessage or an RTPS

SubmessageElement and also provide a unique identifier of the key material used for the

cryptographic transformation.

Deleted: ¶

Deleted: The DataWriter either encrypts the

SerializedPayload submessage element or encrypts

the Data or DataFrag submessage elements.

Deleted: kind of

Deleted: transformation that was performed in

42 DDS Security, v1.12

The way in which attributes in the CryptoTransformIdentifier are set shall be specified for

each Cryptographic plugin implementation. However, all Cryptographic plugin implementations shall

be set in a way that allows the operations preprocess_secure_submsg,

decode_datareader_submessage, decode_datawriter_submessage, and

decode_serialized_payload to uniquely recognize the cryptographic material they shall use

to decode the message, or recognize that they do not have the necessary key material.

7.4.6.2.2 CryptoContent

The CryptoContent submessage element is used to wrap a SerializedPayload, an RTPS

Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.4.6.2.3 CryptoHeader

The CryptoHeader submessage element is used as prefix to wrap a SerializedPayload, an

RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The CryptoHeader submessage element shall extend the CryptoTransformIdentifier

element. Consequently, the leading bytes in the CryptoHeader shall encode the

CryptoTransformIdentifier, which in turn contains the CryptoTransformKind

containing the CryptoAlgorithmId (see 8), allowing the proper identification of the cryptographic

algorithm used. The specific format of this shall be defined by each Cryptographic plugin

implementation.

7.4.6.2.4 CryptoFooter

The CryptoFooter submessage element is used as postfix to wrap a SerializedPayload, an

RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.4.6.3 RTPS Submessage: SecureBodySubMsg

This specification introduces a new RTPS submessage: SecureBodySubMsg. The format of the

SecureBodySubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

Since the SecureBodySubMsg conforms to the general structure of RTPS submessages, it can

appear inside a well-formed RTPS message.

Deleted: .

Deleted: Therefore, the transformationKind

Deleted:

Deleted: is guaranteed to be the first element within the

CryptoHeader

Deleted: .

DDS Security, v1.12 43

Figure 5 – Secure Submessage and Secured Payload Model

7.4.6.3.1 Purpose

The SecureBodySubMsg submessage is used to wrap one or more regular RTPS submessages in

such a way that their contents are secured via encryption, message authentication, and/or digital

signatures.

7.4.6.3.2 Content

The elements that form the structure of the RTPS SecureBodySubMsg are described in the table

below.

Table 4 – SecureBodySubMsg class

Element Type Meaning

SEC_BODY SubmessageKind The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecureBodySubMsg.

submessageLength ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianess.
crypto_content CryptoContent

Contains the result of transforming the original message. Depending on
the plugin implementation and configuration, it may contain encrypted
content, message access codes, and/or digital signatures.

7.4.6.3.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

class SecureSubmessages

RTPS Submessage eader

 su ess ge d Su ess ge ind

 su ess gLengh ushort

 gs Su ess ge l g

SecureBodySub sg

RTPS Submessage

 interf ce

CryptoTransformIden er

 tr nsfor on ind octet

 tr nsfor on d octet

CryptoContent

RTPS Submessage lement

SecurePre xSub sg

SecurePos ixSub sg

SecureRTPSPre xSub sg

SecureRTPSPos ixSub sg

Crypto eader

Crypto ooter

 use

 use

44 DDS Security, v1.12

7.4.6.3.4 Logical Interpretation

The SecureBodySubMsg provides a way to secure content inside a legal RTPS submessage.

A SecureBodySubMsg may wrap a single RTPS Submessage or a whole RTPS Message.

7.4.6.4 RTPS Submessage: SecurePrefixSubMsg

This specification introduces the RTPS submessage: SecurePrefixSubMsg. The format of the

SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.4.6.4.1 Purpose

The SecurePrefixSubMsg submessage is used as prefix to wrap an RTPS submessage in such a

way that its contents are secured via encryption, message authentication, and/or digital signatures.

7.4.6.4.2 Content

The elements that form the structure of the RTPS SecurePrefixSubMsg are described in the table

below.

Table 5 – SecurePrefixSubMsg class

Element Type Meaning

SEC_PREFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of submessage.
The value indicates it is a SecurePrefixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates
endianess.

transformation_id

CryptoTransformIdentifier

Identifies the kind of transformation performed on
the RTPS submessage that follows it.

plugin_crypto_header_extra octet[]

Provides further information on the transformation
performed. The contents are specific to the Plugin
Implementation and the value of the
transformation_id.

7.4.6.4.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

7.4.6.4.4 Logical Interpretation

The SecurePrefixSubMsg provides a way to prefix secure content inside a legal RTPS

submessage.

A SecurePrefixSubMsg shall be followed by a single RTPS Submessage which itself shall be

followed by a SecurePostfixSubMsg.

DDS Security, v1.12 45

Figure 6 – RTPS message transformations

7.4.6.5 RTPS Submessage: SecurePostfixSubMsg

This specification introduces the RTPS submessage: SecurePostfixSubMsg. The format of the

SecurePostfixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. As such it consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.4.6.5.1 Purpose

The SecurePostfixSubMsg submessage is used to authenticate the RTPS Submessage that

precedes it.

7.4.6.5.2 Content

The elements that form the structure of the RTPS SecurePostfixSubMsg are described in the

table below.

RTPS SubMessage

RTPS SubMessage

SerializedPayload

RTPS Header
RTPS Header

Secure encoding

Secure decoding

Message Transformation

SerializedPayload

SecureRTPSPrefix

SecureRTPSPostfix

SecureBody

SecurePrefix

SecurePostfix

SecureBody

SerializedPayload

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t

CryptoHeader

CryptoFooter

46 DDS Security, v1.12

Table 6 – SecurePostfixSubMsg class

Element Type Meaning

SEC_POSTFIX SubmessageKind The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecurePostfixSubMsg.

submessageLength ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianess.
crypto_footer CryptoFooter

Provides information on the results of the transformation performed,
typically a list of authentication tags. The contents are specific to the
Plugin Implementation and the value of the transformation_id contained
on the related SecurePrefixSubMsg.

7.4.6.5.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The RTPS Submessage is invalid if there is no SecurePrefixSubMsg. Immediately before the

RTPS submessage that precedes the SecurePostfixSubMsg. This SecurePrefixSubMsg is

referred to as the related the SecurePrefixSubMsg.

7.4.6.5.4 Logical Interpretation

The SecurePostfixSubMsg provides a way to authenticate the validity and origin of the RTPS

SubMessage that precedes the SecurePrefixSubMsg. The Cryptographic transformation applied

is identified in the related SecurePrefixSubMsg.

7.4.6.6 RTPS Submessage: SecureRTPSPrefixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPrefixSubMsg. The format of

the SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.4.6.6.1 Purpose

The SecureRTPSPrefixSubMsg submessage is used as prefix to wrap a complete RTPS message

in such a way that its contents are secured via encryption, message authentication, and/or digital

signatures.

7.4.6.6.2 Content

The elements that form the structure of the RTPS SecureRTPSPrefixSubMsg are described in the

table below.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDS Security, v1.12 47

Table 7 – SecureRTPSPrefixSubMsg class

Element Type Meaning

SRTPS_PREFIX SubmessageKind The presence of this field is common to
RTPS submessages. It identifies the kind of
submessage.
The value indicates it is a
SecureRTPSPrefixSubMsg.

submessageLength ushort The presence of this field is common to
RTPS submessages. It identifies the length
of the submessage.

EndianessFlag (E)
E = SubmessageHeader.flags & 0x01

SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

AdditionalAuthenticatedDataFlag (A)
A = SubmessageHeader.flags & 0x02

SubmessageFlag Appears in the Submessage header flags.
Indicates that the RTPS Header and
HeaderExtension are also protected as
“Additional Authenticated Data (AAD)”.

PreSharedKeyFlag (P)
P = SubmessageHeader.flags & 0x04

SubmessageFlag Appears in the Submessage header flags.
Indicates that the RTPS message is
protected using a Pre-Shared-Key

transformation_id

CryptoTransformIdentifier

Identifies the kind of transformation
performed on the RTPS submessages that
follow up to the SRTPS_POSTFIX
submessage.

plugin_crypto_header_extra octet[]

Provides further information on the
transformation performed. The contents are
specific to the Plugin Implementation and
the value of the transformation_id.

7.4.6.6.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The SecureRTPSPrefixSubMsg shall immediately follow the RTPS Header.

7.4.6.6.4 Logical Interpretation

The SecureRTPSPrefixSubMsg provides a way to prefix a list of RTPS Submessages so that they

can be secured.

A SecureRTPSPrefixSubMsg shall be followed by a list of RTPS Submessages which

themselves shall be followed by a SecureRTPSPostfixSubMsg.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

If the AdditionalAuthenticatedDataFlag is set the authentication tag(s) present in the

SecureRTPSPostfixSubMsg include also the RTPS Header and RTPS HeaderExtension

as “Additional Authenticated Data” (AAD).

7.4.6.7 RTPS Submessage: SecureRTPSPostfixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPostfixSubMsg. The format of

the SecureRTPSPostfixSubMsg complies with the RTPS SubMessage format mandated in the

RTPS specification. As such it consists of the RTPS SubmessageHeader followed by a set of

RTPS SubmessageElement elements.

7.4.6.7.1 Purpose

The SecureRTPSPostfixSubMsg submessage is used to authenticate the RTPS Submessages that

appear between the preceeding SecureRTPSPostfixSubMsg and the

SecureRTPSPostfixSubMsg.

48 DDS Security, v1.12

7.4.6.7.2 Content

The elements that form the structure of the SecureRTPSPostfixSubMsg are described in the table

below.

Table 8 – SecurePostfixSubMsg class

Element Type Meaning

SRTPS_POSTFIX SubmessageKind The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecureRTPSPostfixSubMsg.

submessageLength ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianess.
crypto_footer CryptoFooter

Provides information on the results of the transformation performed,
typically a list of authentication tags. The contents are specific to the
Plugin Implementation and the value of the transformation_id contained
on the related SecureRTPSPrefixSubMsg.

7.4.6.7.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The RTPS SecureRTPSPostfixSubMsg is invalid if there is no SecureRTPSPrefixSubMsg

following the RTPS Header. This SecureRTPSPrefixSubMsg is referred to as the related

SecureRTPSPrefixSubMsg.

7.4.6.7.4 Logical Interpretation

The SecureRTPSPostfixSubMsg provides a way to authenticate the validity and origin of the list

of RTPS Submessages between the related SecureRTPSPrefixSubMsg and the

SecureRTPSPrefixSubMsg. The Cryptographic transformation applied is identified in the related

SecureRTPSPrefixSubMsg.

7.4.7 Mapping to UDP/IP PSM

The DDS-RTPS specification defines the RTPS protocol in terms of a platform-independent model

(PIM) and then maps it to a UDP/IP transport PSM (see clause 9, “Platform Specific Model (PSM):

UDP/IP” of the DDS-RTPS specification [2]).

Sub clause 7.4.7 does the same thing for the new RTPS submessage elements and submessages

introduced by the DDS Security specification.

7.4.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

Sub clause 7.5 defines the RTPS Built-In Entities added by the DDS Security specification. The

corresponding EntityIds used when these endpoints are used on the UDP/IP PSM are given in the table

below.

Deleted: a set of builtin Topics and corresponding

DataWriter and DataReader entities that shall be present on

all compliant implementations of the

DDS Security, v1.12 49

Table 9 – EntityId values for secure builtin data writers and data readers

Entity EntityId_t name EntityId_t value

SEDPbuiltinPublicationsSecureWriter ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SE
CURE_WRITER

{{ff, 00, 03}, c2}

SEDPbuiltinPublicationsSecureReader ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SE
CURE_READER

{{ff, 00, 03}, c7}

SEDPbuiltinSubscriptionsSecureWriter ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SE
CURE_WRITER

{{ff, 00, 04}, c2}

SEDPbuiltinSubscriptionsSecureReader ENTITYID_ SEDP_BUILTIN_
SUBSCRIPTIONS_SECURE_READER

{{ff, 00, 04}, c7}

BuiltinParticipantMessageSecureWriter ENTITYID_P2P_BUILTIN_PARTICIPANT_MESS
AGE_SECURE_WRITER

{{ff, 02, 00}, c2}

BuiltinParticipantMessageSecureReader ENTITYID_P2P_BUILTIN_PARTICIPANT_MESS
AGE_SECURE_READER

{{ff, 02, 00}, c7}

BuiltinParticipantStatelessMessageWriter ENTITYID_P2P_BUILTIN_PARTICIPANT_STAT
ELESS_WRITER

{{00, 02, 01}, c3}

BuiltinParticipantStatelessMessageReader ENTITYID_P2P_BUILTIN_PARTICIPANT_STAT
ELESS_READER

{{00, 02, 01}, c4}

BuiltinParticipantVolatileMessageSecure
Writer

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLA
TILE_SECURE_WRITER

{{ff, 02, 02}, c3}

BuiltinParticipantVolatileMessageSecureR
eader

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLA
TILE_SECURE_READER

{{ff, 02, 02}, c4}

SPDPbuiltinParticipantsSecureWriter ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICI
PANT_SECURE_WRITER

{{ff, 01, 01}, c2}

SPDPbuiltinParticipantsSecureReader ENTITYID_SPDP_RELIABLE
_BUILTIN_PARTICIPANT_SECURE_READER

{{ff, 01, 01}, c7}

TypeLookupServiceRequestSecureWriter ENTITYID_TL_SVC_REQ_SECURE _WRITER {{ff, 03, 00}, c3}

TypeLookupServiceRequestSecureReader ENTITYID_TL_SVC_REQ_SECURE _READER {{ff, 03, 00}, c4}

TypeLookupServiceReplySecureWriter ENTITYID_TL_SVC_REPLY_SECURE _WRITER {{ff, 03, 01}, c3}

TypeLookupServiceReplySecureReader ENTITYID_TL_SVC_REPLY_SECURE _READER {{ff, 03, 01}, c4}

7.4.7.2 Mapping of the CryptoTransformIdentifier Type

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The UDP/IP PSM maps the CryptoTransformIdentifier to the IDL definition in 7.3.20.

7.4.7.3 Mapping of the CryptoHeader SubmessageElement

A CryptoHeader SubmessageElement contains the information that identifies a cryptographic

transformation. The CryptoHeader shall start with the CryptoTransformIdentifier and be

followed by a plugin-specific plugin_crypto_header_extra returned by the encoding transformation.

The UDP/IP PSM maps the CryptoHeader to the following extended IDL structure:

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

@extensibility(FINAL)

struct CryptoHeader : CryptoTransformIdentifier {

 // Extra plugin-specific information added below

 // CryptoHeader plugin_crypto_header_extra;

};

The UDP/IP wire representation for the CryptoHeader shall be:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Deleted: following extended

Deleted: structure

Deleted: 7.3.207.3.207.3.19

Deleted: :

Deleted: @extensibility(FINAL)¶

struct CryptoTransformIdentifier {¶

 octet transformation_kind[4];¶

 octet transformation_key_id[4];¶

};

Deleted: APPENDABLE

50 DDS Security, v1.12

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| CryptoTransformationKind transformation_kind |

+---------------+---------------+---------------+---------------+

+ CryptoTransformKeyId transformation_key_id +

+---------------+---------------+---------------+---------------+

| |

~ octet plugin_crypto_header_extra[] ~

| |

+---------------+---------------+---------------+---------------+

7.4.7.4 Mapping of the CryptoFooter SubmessageElement

A CryptoFooter SubmessageElement contains the information that authenticates the result of

a cryptographic transformation. The CryptoFooter contains a plugin-specific plugin_crypto_footer

returned by the encoding transformation.

The UDP/IP wire representation for the CryptoFooter shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| |

~ octet plugin_crypto_footer[] ~

| |

+---------------+---------------+---------------+---------------+

7.4.7.5 SecureBodySubMsg Submessage

7.4.7.5.1 Wire Representation

The UDP/IP wire representation for the SecureBodySubMsg shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_BODY |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoContent crypto_content +

| |

+---------------+---------------+---------------+---------------+

7.4.7.5.2 Submessage Id

The SecureBodySubMsg shall have the submessageId set to the value 0x30.

7.4.7.5.3 Flags in the Submessage Header

The SecureBodySubMsg only uses the EndiannessFlag.

Deleted: octet

Deleted: [4]

Deleted: octet

Deleted: [4]

DDS Security, v1.12 51

7.4.7.6 SecurePrefixSubMsg Submessage

7.4.7.6.1 Wire Representation

The UDP/IP wire representation for the SecurePrefixSubMsg shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoHeader crypto_header +

| |

+---------------+---------------+---------------+---------------+

7.4.7.6.2 Submessage Id

The SecurePrefixSubMsg shall have the submessageId set to the value 0x31 and referred by the

symbolic name SEC_PREFIX.

7.4.7.6.3 Flags in the Submessage Header

The SecurePrefixSubMsg only uses the EndiannessFlag.

7.4.7.7 SecurePostfixSubMsg Submessage

7.4.7.7.1 Wire Representation

The UDP/IP wire representation for the SecurePostfixSubMsg shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoFooter crypto_footer +

| |

+---------------+---------------+---------------+---------------+

7.4.7.7.2 Submessage Id

The SecurePostfixSubMsg shall have the submessageId set to the value 0x32 and referred by the

symbolic name SEC_POSTFIX.

7.4.7.7.3 Flags in the Submessage Header

The SecurePostfixSubMsg only uses the EndiannessFlag.

7.4.7.8 SecureRTPSPrefixSubMsg Submessage

7.4.7.8.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPrefixSubMsg shall be:

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX |X|X|X|X|X|P|A|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

Deleted: X

Deleted: X

52 DDS Security, v1.12

| |

+ CryptoHeader crypto_header +

| |

+---------------+---------------+---------------+---------------+

7.4.7.8.2 Submessage Id

The SecureRTPSPrefixSubMsg shall have the submessageId set to the value 0x33 and referred

by the symbolic name SRTPS_PREFIX.

7.4.7.8.3 Flags in the Submessage Header

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The SecureRTPSPrefixSubMsg uses three flags:

• EndiannessFlag (E): Indicates endianness.

• AdditionalAuthenticatedDataFlag (A): Indicates that the RTPS message protection extends

to the RTPS Header and RTPS HeaderExtension which are protected as “Additional

Authenticated Data (AAD)”.

• PreSharedKeyFlag (P): Indicates that the RTPS message is protected using a Pre-Shared-Key.

7.4.7.9 SecureRTPSPostfixSubMsg Submessage

7.4.7.9.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPostfixSubMsg shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoFooter crypto_footer +

| |

+---------------+---------------+---------------+---------------+

7.4.7.9.2 Submessage Id

The SecureRTPSPostfixSubMsg shall have the submessageId set to the value 0x34 and referred

by the symbolic name SRTPS_POSTFIX.

7.4.7.9.3 Flags in the Submessage Header

The SecureRTPSPostfixSubMsg only uses the EndiannessFlag.

7.5 DDS Support for Security Plugin Information Exchange

In order to perform their function, the security plugins associated with different DDS

DomainParticipant entities need to exchange information representing things such as Identity

and Permissions of the DomainParticipant entities, authentication challenge messages, tokens

representing key material, etc.

DDS already has several mechanisms for information exchange between DomainParticipant

entities. Notably the builtin DataWriter and DataReader entities used by the Simple Discovery

Protocol (see sub clause 8.5 of the DDS Interoperability Wire Protocol [2]) and the

BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of

the DDS Interoperability Wire Protocol [2]).

Deleted: only

Deleted: .the EndiannessFlag.

DDS Security, v1.12 53

Where possible, this specification tries to reuse and extend existing DDS concepts and facilities so that

they can fulfill the needs of the security plugins, rather than defining entirely new ones. This way, the

Security Plugin implementation can be simplified and it does not have to implement a separate

messaging protocol.

7.5.1 Secure builtin Discovery Topics

7.5.1.1 Background (Non-Normative)

DDS discovery information is sent using builtin DDS DataReaders and DataWriters. These are

regular DDS DataReaders and DataWriters, except they are always present in the system and

their Topic names, associated data types, QoS, and RTPS EntityIds are all specified as part of the

DDS and RTPS specifications, so they do not need to be discovered.

The DDS specification defines three discovery builtin Topic entities: the DCPSParticipants used to

discover the presence of DomainParticipants, the DCPSPublications used to discover

DataWriters, and the DCPSSubscriptions used to discover DataReaders (see sub clause 8.5 of

the DDS Interoperability Wire Protocol [2]).

Much of the discovery information could be considered sensitive in secure DDS systems. Knowledge

of things like the Topic names that an application is publishing or subscribing to could reveal

sensitive information about the nature of the application. In addition, the integrity of the discovery

information needs to be protected against tampering, since it could cause erroneous behaviors or

malfunctions.

One possible approach to protecting discovery information would be to require that the discovery

builtin Topic entities always be protected via encryption and message authentication. However, this

would entail the problems explained below.

The DCPSParticipants builtin Topic is used to bootstrap the system, detect the presence of

DomainParticipant entities, and kick off subsequent information exchanges and handshakes. It

contains the bare minimum information needed to establish protocol communications (addresses, port

numbers, version number, vendor IDs, etc.). If this Topic were protected, the Secure DDS system

would have to create an alternative mechanism to bootstrap detection of other participants and gather

the same information—which needs to happen prior to being able to perform mutual authentication and

exchange of key material. This mechanism would, in essence, duplicate the information in the

DCPSParticipants builtin Topic. Therefore, it makes little sense to protect the DCPSParticipants

builtin Topic. A better approach is to augment the information sent using the DCPSParticipants

builtin Topic with any additional data the Secure DDS system needs for bootstrapping

communications (see 7.5.1.3).

Secure DDS systems need to co-exist in the same network and, in some cases, interoperate with non-

secure DDS systems. There may be systems built using implementations compliant with the DDS

Security specification, which do not need to protect their information. Or there may be systems

implemented with legacy DDS implementations that do not support DDS Security. In this situation, the

fact that a secure DDS implementation is present on the network should not impact the otherwise

correct behavior of the non-secure DDS systems. In addition, even in secure systems not all Topics are

necessarily sensitive, so it is desirable to provide ways to configure a DDS Secure system to have

Topics that are “unprotected” and be able to communicate with non-secure DDS systems on those

“unprotected” Topics.

To allow co-existence and interoperability between secure DDS systems and DDS systems that do not

implement DDS security, secure DDS systems must retain the same builtin Topics as the regular DDS

systems (with the same GUIDs, topics names, QoS, and behavior). Therefore, to protect the discovery

54 DDS Security, v1.12

and liveliness information of Topics that are considered sensitive, Secure DDS needs to use additional

builtin discovery Topics protected by the DDS security mechanisms.

7.5.1.2 Extending the Data Types used by DDS Discovery

The DDS Interoperability Wire Protocol specifies the serialization of the data types used for the

discovery of builtin Topics (ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and

SubscriptionBuiltinTopicData) using a representation called a ParameterList. Although this

description precedes the DDS-XTYPES specification, the serialization format matches the Extended

CDR representation defined in DDS-XTYPES for data types declared with MUTABLE extensibility.

This allows the data type associated with discovery topics to be extended without breaking

interoperability.

Given that DDS-XTYPES formalized the ParameterList serialization approach, first defined in the

DDS Interoperability and renamed it to “Extended CDR,” this specification will use the DDS

Extensible Types notation to define the data types associated with the builtin Topics. This does not

imply that compliance to the DDS-XTYPES is required to comply with DDS Security. All that is

required is to serialize the specific data types defined here according to the format described in the

DDS-XTYPES specification.

7.5.1.3 Reserved RTPS parameter IDs

This specification reserves the RTPS Simple Discovery Protocol ParameterIDs in the range: 0x1000 to

0x1FFF and 0x5000 to 0x5FFF.

The second interval covers the same range of parametersID, except they have the must-understand bit

set.

This reserved range applies to RTPS version 2.3 (see 7.4.6.1) and higher minor revisions of RTPS.

Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.5.1.4 Extension to RTPS Standard DCPSParticipants Builtin Topic

The DDS specification specifies the existence of the DCPSParticipants builtin Topic and a

corresponding builtin DataWriter and DataReader to communicate this Topic. These

endpoints are used to discover DomainParticipant entities.

The data type associated with the DCPSParticipants builtin Topic is ParticipantBuiltinTopicData,

defined in sub clause 7.1.5 of the DDS specification [1].

The DDS Interoperability Wire Protocol specifies the serialization of ParticipantBuiltinTopicData.

The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each

member of the ParticipantBuiltinTopicData is serialized using CDR but preceded in the stream by the

serialization of a short ParameterID identifying the member, followed by another short containing the

length of the serialized member, followed by the serialized member. See sub clause 8.3.5.9 of the DDS

Interoperability Wire Protocol [2]. This serialization format allows the ParticipantBuiltinTopicData to

be extended without breaking interoperability.

This DDS Security specification adds several new members to the ParticipantBuiltinTopicData

structure. The member types and the ParameterIDs used for the serialization are described below.

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDS Security, v1.12 55

Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData

Member name Member type Parameter ID name Parameter ID
value

identity_token IdentityToken

(see 7.3.5)
PID_IDENTITY_TOKEN 0x1001

permissions_token PermissionsToken

(see 7.3.5)
PID_PERMISSIONS_TOKEN 0x1002

property PropertyQosPolicy PID_PROPERTY_LIST

(See Table 9.12 of DDS-RTPS)

0x0059

(See Table
9.12 of DDS-
RTPS)

protection_info ParticipantSecurityProtectio
nInfo (see 7.3.23)

PID_PARTICIPANT_SECURITY_PROTECTIO
N_INFO

0x1005

available_builtin_e
ndpoints_ext

AvailableBuiltinEndpointsEx
tSet_t

PID_AVAILABLE_BUILTIN_ENDPOINTS_EX
T

0x1007

digital_signature ParticipantSecurityDigitalSig
natureAlgorithmInfo (see
7.3.11)

PID_PARTICIPANT_SECURITY_DIGITAL_SI
GNATURE_ALGORITHM_INFO

0x1010

key_establishment ParticipantSecurityKeyEstab
lishmentAlgorithmInfo (see
7.3.12)

PID_PARTICIPANT_SECURITY_KEY_ESTAB
LISHMENT_ALGORITHM_INFO

0x1011

symmetric_cipher ParticipantSecuritySymmetr
icCipherAlgorithmInfo (see
7.3.13)

PID_PARTICIPANT_SECURITY_BUILTIN_E
P_SYMMETRIC_CIPHER_ALGORITHM_INF
O

0x1012

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

@extensibility(MUTABLE)

struct ParticipantBuiltinTopicData: DDS::ParticipantBuiltinTopicData {

 @id(0x1001) IdentityToken identity_token;

 @id(0x1002) PermissionsToken permissions_token;

 @id(0x1005) ParticipantSecurityProtectionInfo protection_info;

 @id(0x1007)

 AvailableBuiltinEndpointsExtSet_t available_builtin_endpoints_ext;

 @id(0x1010)

 ParticipantSecurityDigitalSignatureAlgorithmInfo digital_signature;

 @id(0x1011)

 ParticipantSecurityKeyEstablishmentAlgorithmInfo key_establishment;

 @id(0x1012)

 ParticipantSecuritySymmetricCipherAlgorithmInfo symmetric_cipher;

};

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

If the member available_builtin_endpoints_ext is not present in the ParticipantBuiltinTopic, the

receiver shall interpret the value of the member to be 0x00000000.

If the member digital_signature is not present in the ParticipantBuiltinTopic, the receiver shall

interpret the value of the member to be the default defined in clause 7.3.11.2.

If the member key_establishment is not present in the ParticipantBuiltinTopic, the receiver shall

interpret the value of the member to be the default defined in clause 7.3.13.2.

If the member symmetric_cipher is not present in the ParticipantBuiltinTopic, the receiver shall

interpret the value of the member to be the default defined in clause 7.3.13.2.

Only the Property_t and BinaryProperty_t elements having the propagate member set to

TRUE are serialized. Furthermore, as indicated by the @non-serialized annotation the

serialization of the Property_t and BinaryProperty_t elements shall omit the serialization of

Deleted: security_

Deleted: 7.3.237.3.237.3.22

Deleted:

Deleted: security_

56 DDS Security, v1.12

the propagate member. That is, they are serialized as if the type definition did not contain the

propagate member. This is consistent with the data-type definition for Property_t that appears in the

DDS-RTPS specification (see Table 9.12 of DDS-RTPS). Even if it is not present in the serialized

data, the receiver will set the propagate member to TRUE.

Note that according to DDS-RTPS the PID_PROPERTY_LIST is associated with a single

PropertySeq rather than the PropertyQosPolicy, which is a structure that contains two

sequences. This does not cause any interoperability problems because the containing

ParticipantBuiltinTopicData has mutable extensibility.

The DDS Interoperability Wire Protocol specifies that the ParticipantBuiltinTopicData shall contain

the attribute called availableBuiltinEndpoints that is used to announce the builtin endpoints that are

available in the DomainParticipant. See clause 8.5.3.2 of the DDS Interoperability Wire

Protocol [2]. The type for this attribute is an array of BuiltinEndpointSet_t. For the UDP/IP PSM the

BuiltinEndpointSet_t is mapped to a bitmap represented as type long. Each builtin endpoint is

represented as a bit in this bitmap with the bit values defined in Table 9.4 (clause 9.3.2) of the DDS

Interoperability Wire Protocol [2].

This DDS Security specification reserves additional bits to indicate the presence of the corresponding

built-in end points listed in clause 7.5.8. These bits shall be set on the availableBuiltinEndpoints. The

bit that encodes the presence of each individual endpoint is defined in Table 11 below.

Table 11 – Mapping of the additional builtin endpoints added by DDS security to the availableBuiltinEndpoints

Builtin Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints

SEDPbuiltinPublicationsSecureWriter

SEDPbuiltinPublicationsSecureReader

See clause 7.5.1.7

(0x00000001 << 16)

(0x00000001 << 17)

SEDPbuiltinSubscriptionsSecureWriter

SEDPbuiltinSubscriptionsSecureReader

See clause 7.5.1.8

(0x00000001 << 18)

(0x00000001 << 19)

BuiltinParticipantMessageSecureWriter

BuiltinParticipantMessageSecureReader

See clause 7.5.2

(0x00000001 << 20)

(0x00000001 << 21)

BuiltinParticipantStatelessMessageWriter

BuiltinParticipantStatelessMessageReader

See clause 7.5.3

(0x00000001 << 22)

(0x00000001 << 23)

BuiltinParticipantVolatileMessageSecureWriter

BuiltinParticipantVolatileMessageSecureReader

See clause 7.5.4

(0x00000001 << 24)

(0x00000001 << 25)

SPDPbuiltinParticipantSecureWriter

SPDPbuiltinParticipantSecureReader

See clause 7.5.1.6

(0x00000001 << 26)

(0x00000001 << 27)

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints
DDS-Security implementations that support DDS-XTYPES shall advertise the availability of the Secure

TypeLookup Built-In Endpoints using the Parameter with ID

PID_AVAILABLE_BUILTIN_ENDPOINTS_EXT (see Table 10). Implementations that do not support DDS-

XTYPES may omit this parameter. Values of available_builtin_endpoints_ext are defined in Table below. Use

of the Secure TypeLookup Built-In Endpoints is defined in section 7.5.5.

Deleted: specific

Deleted: 7.5.87.5.87.5.5

Formatted: Font: 11 pt

Deleted: Table 10Table 10Table 10

DDS Security, v1.12 57

Table 12 – Mapping of the builtin endpoints added by DDS security to the available_builtin_endpoints_ext

Builtin Endpoint Bit in the ParticipantBuiltinTopicData
available_builtin_endpoints_ext

TypeLookupServiceRequestSecureWriter
TypeLookupServiceRequestSecureReader
See clause 7.5.5

(0x00000001 << 0)

(0x00000001 << 1)

TypeLookupServiceReplySecureWriter
TypeLookupServiceReplySecureReader
See clause 7.5.5

(0x00000001 << 2)

(0x00000001 << 3)

7.5.1.5 Extension to RTPS Standard DCPSPublications and DCPSSubscriptions Builtin Topics

The DDS specification specifies the existence of the DCPSPublications and DCPSSubscriptions builtin

Topics and a corresponding builtin DataWriters and DataReaders to communicate these Topics.

These endpoints are used to discover DataWriter and DataReader entities.

The data type associated with the DCPSPublications and DCPSSubscriptions builtin Topic are

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData, defined in sub clause 7.1.5 of the DDS

specification.

The DDS Interoperability Wire Protocol specifies the serialization of PublicationBuiltinTopicData and

SubscriptionBuiltinTopicData.

The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each

member of the PublicationBuiltinTopicData and SubscriptionBuiltinTopicData is serialized using CDR

but preceded in the stream by the serialization of a short ParameterID identifying the member, followed by

another short containing the length of the serialized member, followed by the serialized member. See sub clause

8.3.5.9 of the DDS Interoperability Wire Protocol [2]. This serialization format allows the

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData to be extended without breaking

interoperability.

This DDS Security specification adds a new member to the PublicationBuiltinTopicData and

SubscriptionBuiltinTopicData structure. The member types and the ParameterIDs used for the

serialization are described below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 13 – Additional parameter IDs in PublicationBuiltinTopicData and SubscriptionBuiltinTopicData

Member name Member type Parameter ID name Paramet
er ID
value

protection_info EndpointSecurityInfo (See 7.3.24) PID_ENDPOINT_SECURITY_PROTECTION
_INFO

0x1004

symmetric_cipher EndpointSecuritySymmetricCipher
AlgorithmInfo (see 7.3.15)

PID_ENDPOINT_SECURITY_SYMMETRIC_
CIPHER_ALGORITHM_INFO

0x1013

DDSSEC12-90 - Meeting CNSSP-15 security requirements

@extensibility(MUTABLE)

struct PublicationBuiltinTopicData: DDS::PublicationBuiltinTopicData {

 @id(0x1004) EndpointSecurityProtectionInfo protection_info;

 @id(0x1013)

 EndpointSecuritySymmetricCipherAlgorithmInfo symmetric_cipher;

};

@extensibility(MUTABLE)

struct SubscriptionBuiltinTopicData: DDS::SubscriptionBuiltinTopicData {

 @id(0x1004) EndpointSecurityProtectionInfo protection_info;

 @id(0x1013)

Deleted: 131312

Deleted: security

Deleted: security_

Deleted: security_

58 DDS Security, v1.12

 EndpointSecuritySymmetricCipherAlgorithmInfo symmetric_cipher;

};

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the member symmetric_cipher is not present in the PublicationBuiltinTopic or the

SubscriptionBuiltinTopic data, the receiver shall interpret the value of the member to be the default

defined in clause 7.3.15.2.

7.5.1.6 New DCPSParticipantSecure Builtin Topic

As described in clause 7.5.1.4, the DCPSParticipants builtin Topic and a corresponding builtin

DataWriter and DataReader are used to discover DomainParticipant entities.

Implementations of the DDS Security shall use that same DCPSParticipants builtin Topic to

announce the DomainParticipant information. This is used for bootstrapping authentication and

allowing discovery of non-secure applications.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSParticipantsSecure and associated builtin DataReader and DataWriter entities to

communicate the DomainParticipant information securely.

The Topic name for the DCPSParticipantsSecure Topic shall be “DCPSParticipantsSecure”.

The data type associated with the DCPSParticipantsSecure Topic shall be

ParticipantBuiltinTopicDataSecure, defined to be the same as the ParticipantBuiltinTopicData

defined in clause 7.5.1.4, except the structure has the additional optional member

identity_status_token with the ParameterId described below.

Table 14 – Additional parameter IDs in ParticipantBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

identity_status_token IdentityStatusToken PID_IDENTITY_STATUS_TOKEN 0x1006

@extensibility(MUTABLE)

struct ParticipantBuiltinTopicDataSecure: ParticipantBuiltinTopicData {

 @id(0x1006) @optional IdentityStatusToken identity_status_token;

};

The QoS associated with the DCPSParticipantsSecure builtin Topic shall be the same as for the

DCPSPublications and DCPSSubscriptions builtin Topic. Note that is not the same as the

DCPSParticipants Topic. Among other differences, the DCPSParticipantsSecure has

ReliabilityQosPolicy kind set to RELIABLE.

The builtin DataWriter for the DCPSParticipantsSecure Topic shall be referred to as the

SPDPbuiltinParticipantsSecureWriter. The builtin DataReader for the DCPSParticipantsSecure

Topic shall be referred to as the SPDPbuiltinParticipantsSecureReader.

The RTPS EntityId_t associated with the SPDPbuiltinParticipantsSecureWriter and

SPDPbuiltinParticipantsSecureReader shall be as specified in 7.5.8.

The ParticipantBuiltinTopicData contains information, such as participant Locators, which may

change at run-time. These changes shall be sent using the DCPSParticipantsSecure builtin Topic.

The deletion of a DomainParticipant shall also be sent using the DCPSParticipantsSecure builtin

Topic.

After authentication has completed successfully a DomainParticipant shall ignore any changes

to the ParticipantBuiltinTopicData (including dispose messages) received on the DCPSParticipants

builtin Topic from the authenticated DomainParticipant. It may, however, rely on these

messages to maintain the liveliness of the remote DomainParticipant. It should only process

Deleted: 141413

Deleted: 7.5.87.5.87.5.5

DDS Security, v1.12 59

ParticipantBuiltinTopicData messages containing data changes or status changes (dispose or

unregister) if they are received over the DCPSParticipantsSecure builtin Topic.

7.5.1.7 New DCPSPublicationsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSPublications builtin Topic with topic

name “DCPSPublications” and corresponding builtin DataWriter and DataReader entities to

communicate on this Topic. These endpoints are used to discover non-builtin DataWriter entities.

The data type associated with the DCPSPublications Topic is PublicationBuiltinTopicData, defined

in sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security shall use that same DCPSPublications Topic to communicate

the DataWriter information for Topic entities that are not considered sensitive.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSPublicationsSecure and associated builtin DataReader and DataWriter entities to

communicate the DataWriter information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the

AccessControl plugin.

The Topic name for the DCPSPublicationsSecure Topic shall be “DCPSPublicationsSecure”.

The data type associated with the DCPSPublicationsSecure Topic shall be

PublicationBuiltinTopicDataSecure, defined to be the same as the PublicationBuiltinTopicData

structure used by the DCPSPublications Topic, except the structure has the additional member

data_tags with the ParameterId described below.

Table 15 – Additional parameter IDs in PublicationBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

@extensibility(MUTABLE)

struct PublicationBuiltinTopicDataSecure: PublicationBuiltinTopicData {

 @id(0x1003) DataTags data_tags;

};

The QoS associated with the DCPSPublicationsSecure Topic shall be the same as for the

DCPSPublications Topic.

The builtin DataWriter for the DCPSPublicationsSecure Topic shall be referred to as the

SEDPbuiltinPublicationsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinPublicationsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinPublicationsSecureWriter and

SEDPbuiltinPublicationsSecureReader shall be as specified in 7.5.8.

7.5.1.8 New DCPSSubscriptionsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSSubscriptions builtin Topic with Topic

name “DCPSSubscriptions” and corresponding builtin DataWriter and DataReader entities to

communicate on this Topic. These endpoints are used to discover non-builtin DataReader entities.

The data type associated with the DCPSSubscriptions is SubscriptionBuiltinTopicData is defined in

sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security specification shall use that same DCPSSubscriptions Topic to

send the DataReader information for Topic entities that are not considered sensitive. The

Deleted: 151514

Deleted: 7.5.87.5.87.5.5

60 DDS Security, v1.12

existence and configuration of Topic entities as non-sensitive shall be specified by the

AccessControl plugin.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSSubscriptionsSecure and associated builtin DataReader and DataWriter entities to

communicate the DataReader information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the

AccessControl plugin.

The data type associated with the DCPSSubscriptionsSecure Topic shall be

SubscriptionBuiltinTopicDataSecure defined to be the same as the SubscriptionBuiltinTopicData

structure used by the DCPSSubscriptions Topic, except the structure has the additional member

data_tags with the data type and ParameterIds described below.

Table 16 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

@extensibility(MUTABLE)

struct SubscriptionBuiltinTopicDataSecure: SubscriptionBuiltinTopicData {

 @id(0x1003) DataTags data_tags;

};

The QoS associated with the DCPSSubscriptionsSecure Topic shall be the same as for the

DCPSSubscriptions Topic.

The builtin DataWriter for the DCPSSubscriptionsSecure Topic shall be referred to as the

SEDPbuiltinSubscriptionsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinSubscriptionsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinSubscriptionsSecureWriter and

SEDPbuiltinSubscriptionsSecureReader shall be as specified in 7.5.8.

7.5.2 New DCPSParticipantMessageSecure builtin Topic

The DDS Interoperability Wire Protocol specifies the BuiltinParticipantMessageWriter and

BuiltinParticipantMessageReader (see sub clauses 8.4.13 and 9.6.2.1 of the DDS Interoperability

Wire Protocol[2]). These entities are used to send information related to the LIVELINESS QoS. This

information could be considered sensitive and therefore secure DDS systems need to provide an

alternative protected way to send liveliness information.

The data type associated with these endpoints is ParticipantMessageData defined in sub clause 9.6.2.1

of the DDS Interoperability Wire Protocol specification [2].

To support coexistence and interoperability with non-secure DDS applications, implementations of the

DDS Security specification shall use the same standard BuiltinParticipantMessageWriter and

BuiltinParticipantMessageReader to communicate liveliness information on Topic entities that are

not considered sensitive.

Implementations of the DDS Security specification shall have an additional

DCPSParticipantMessageSecure builtin Topic and associated builtin DataReader and

DataWriter entities to communicate the liveliness information for Topic entities that are

considered sensitive.

The data type associated with the DCPSParticipantMessageSecure Topic shall be the same as the

ParticipantMessageData structure.

Deleted: 161615

Deleted: 7.5.87.5.87.5.5

DDS Security, v1.12 61

The QoS associated with the DCPSParticipantMessageSecure Topic shall be the same as for the

DCPSParticipantMessage Topic as defined in sub clause 8.4.13 of the DDS Interoperability Wire

Protocol [2].

The builtin DataWriter for the DCPSParticipantMessageSecure Topic shall be referred to as the

BuiltinParticipantMessageSecureWriter. The builtin DataReader for the

DCPSParticipantMessageSecure Topic shall be referred to as the

BuiltinParticipantMessageSecureReader.

The RTPS EntityId_t associated with the BuiltinParticipantMessageSecureWriter and

BuiltinParticipantMessageSecureReader shall be as specified in 7.5.8.

According to clause 8.7.2.2.3 of DDSI-RTPS [2], if the DataWriter LivelinessQos policy is

MANUAL_BY_TOPIC_LIVELINESS_QOS, liveliness is maintained sending data or heartbeats using

the same RTPS DataWriter. The remaining settings for the LivelinessQos policy use the

DCPSParticipantMessage Topic to maintain the DataWriter liveliness.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If a DataWriter LivelinessQos policy is MANUAL_BY_TOPIC_LIVELINESS_QOS,

implementations compliant with DDS-Security shall use the same RTPS DataWriter for the

liveliness heartbeats. The liveliness heartbeats shall be protected using the same means as the regular

DataWriter heartbeats. That is, according to the setting of the EndpointSecurityConfig

is_submessage_protected attribute.

If the DataWriter LivelinessQos policy is AUTOMATIC_LIVELINESS_QOS or

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, implementations compliant with DDS-Security

shall send the liveliness heartbeats using either the DCPSParticipantMessage Topic or the

DCPSParticipantMessageSecure Topic. The selection shall be done according to the setting of the

TopicSecurityConfig is_liveliness_protected: It shall use the DCPSParticipantMessage

Topic if is_liveliness_protected is set to false, otherwise it shall use the

DCPSParticipantMessageSecure Topic.

7.5.3 New DCPSParticipantStatelessMessage builtin Topic

To perform mutual authentication between DDS DomainParticipant entities, the security plugins

associated with those participants need to be able to send directed messages to each other. As

described in 7.5.3.1 below, the mechanisms provided by existing DDS builtin Topic entities are not

adequate for this purpose. For this reason, this specification introduces a new

DCPSParticipantStatelessMessage builtin Topic and corresponding builtin DataReader and

DataWriter entities to read and write the Topic.

7.5.3.1 Background: Sequence Number Attacks (non normative)

DDS has a builtin mechanism for participant-to-participant messaging: the

BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of

the DDS Interoperability Wire Protocol [2]). However this mechanism cannot be used for mutual

authentication because it relies on the RTPS reliability protocol and suffers from the sequence-number

prediction vulnerability present in unsecured reliable protocols:

• The RTPS reliable protocol allows a DataWriter to send to a DataReader Heartbeat

messages that advance the first available sequence number associated with the DataWriter. A

DataReader receiving a Heartbeat from a DataWriter will advance its first available

sequence number for that DataWriter and ignore any future messages it receives with sequence

Deleted: 7.5.87.5.87.5.5

Deleted: EndpointSecurityAttributes

Deleted: TopicSecurityAttributes

62 DDS Security, v1.12

numbers lower than the first available sequence number for the DataWriter. The reliable

DataReader will also ignore duplicate messages for that same sequence number.

• The behavior of the reliability protocol would allow a malicious application to prevent other

applications from communicating by sending Heartbeats pretending to be from other

DomainParticipants that contain large values of the first available sequence number. All the

malicious application needs to do is learn the GUIDs of other applications, which can be done from

observing the initial discovery messages on the wire, and use that information to create fake

Heartbeats.

Stated differently: prior to performing mutual authentication and key exchange, the applications cannot

rely on the use of encryption and message access codes to protect the integrity of the messages.

Therefore, during this time window, they are vulnerable to this kind of sequence-number attack. This

attack is present in most reliable protocols. Stream-oriented protocols such as TCP are also vulnerable

to sequence-number-prediction attacks but they make it more difficult by using a random initial

sequence number on each new connection and discarding messages with sequence numbers outside the

window. This is something that RTPS cannot do given the data-centric semantics of the protocol.

In order to avoid this vulnerability, the Security plugins must exchange messages using writers and

readers sufficiently robust to sequence number prediction attacks. The RTPS protocol specifies

endpoints that meet this requirement: the RTPS StatelessWriter and StatelessReader (see

8.4.7.2 and 8.4.10.2 of the DDS Interoperability Wire Protocol [2]) but there are no DDS builtin

endpoints that provide access to this underlying RTPS functionality.

7.5.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader

The DDS Security specification defines two builtin Endpoints: the

BuiltinParticipantStatelessMessageWriter and the BuiltinParticipantStatelessMessageReader. These

two endpoints shall be present in compliant implementations of this specification. These endpoints are

used to write and read the builtin DCPSParticipantStatelessMessage Topic.

The BuiltinParticipantStatelessMessageWriter is an RTPS Best-Effort StatelessWriter (see sub

clause 8.4.7.2 of the DDS Interoperability Wire Protocol [2]).

The BuiltinParticipantStatelessMessageReader is an RTPS Best-Effort StatelessReader (see

sub clause 8.4.10.2 of the DDS Interoperability Wire Protocol [2]).

The data type associated with these endpoints is ParticipantStatelessMessage defined

below (see also 7.3.21):

typedef ParticipantStatelessMessage ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantStatelessMessageWriter and

BuiltinParticipantStatelessMessageReader shall be as specified in 7.5.8.

7.5.3.3 Contents of the ParticipantStatelessMessage

The ParticipantStatelessMessage is intended as a holder of information that is sent point-

to-point from a DomainParticipant to another.

The message_identity uniquely identifies each individual ParticipantStatelessMessage:

• The source_guid field within the message_identity shall be set to match the GUID_t of the

BuiltinParticipantStatelessMessageWriter that writes the message.

• The sequence_number field within the message_identity shall start with the value set to one and be

incremented for each different message sent by the BuiltinParticipantStatelessMessageWriter.

Deleted: 7.3.217.3.217.3.20

Deleted: 7.5.87.5.87.5.5

DDS Security, v1.12 63

The related_message_identity uniquely identifies another ParticipantStatelessMessage that

is related to the message being processed. It shall be set to either the tuple {GUID_UNKNOWN, 0} if

the message is not related to any other message, or else set to match the message_identity of the

related ParticipantStatelessMessage.

The destination_participant_guid shall contain either the value GUID_UNKNOWN (see sub clause

9.3.1.5 of the DDS Interoperability Wire Protocol [2]) or else the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid provides a mechanism to specify finer granularity on the intended

recipient of a message beyond the granularity provided by the destination_participant_guid. It can

contain either GUID_UNKNOWN or else the GUID of a specific endpoint within destination

DomainParticipant. The targeted endpoint is the one whose Endpoint (DataWriter or

DataReader) GUID_t matches the destination_endpoint_guid.

The contents message_data depend on the value of the message_class_id and are defined in this

specification in the sub clause that introduces each one of the pre-defined values of the

GenericMessageClassId. See 7.5.3.5 and 7.5.3.6.

7.5.3.4 Destination of the ParticipantStatelessMessage

If the destination_participant_guid member is not set to GUID_UNKNOWN, the message written is

intended only for the BuiltinParticipantStatelessMessageReader belonging to the

DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantStatelessMessageReader has an implied content

filter with the logical expression:

“destination_participant_guid == GUID_UNKNOWN

 || destination_participant_guid == BuiltinParticipantStatelessMessageReader.participant.guid”

Implementations of the specification can use this content filter or some other mechanism as long as the

resulting behavior is equivalent to having this content filter.

If the destination_endpoint_guid member is not set to GUID_UNKNOWN, the message written

targets the specific endpoint within the destination DomainParticipant with a matching Endpoint

Key.

7.5.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId

This specification, including future versions of this specification reserves GenericMessageClassId

values that start with the prefix “dds.sec.” (without quotes) .

The specification defines and uses the following specific values for the GenericMessageClassId:

#define GMCLASSID_SECURITY_AUTH_REQUEST \

 “dds.sec.auth_request”

#define GMCLASSID_SECURITY_AUTH_HANDSHAKE \

 “dds.sec.auth”

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.5.3.6 Format of data within ParticipantStatelessMessage

Each value for the GenericMessageClassId uses different schema to store data within the

generic attributes in the message_data.

7.5.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE

If GenericMessageClassId is GMCLASSID_SECURITY_AUTH_HANDSHAKE the

message_data attribute shall contain the HandshakeMessageTokenSeq containing one element.

64 DDS Security, v1.12

The specific contents of the HandshakeMessageToken element shall be defined by the

Authentication Plugin.

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

7.5.3.6.2 Data for message class GMCLASSID_SECURITY_AUTH_REQUEST

If GenericMessageClassId is GMCLASSID_SECURITY_AUTH_REQUEST the message_data

attribute shall contain an AuthRequestMessageTokenSeq containing one element. The specific

contents of the AuthRequestMessageToken element shall be defined by the Authentication

Plugin.

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

7.5.4 New DCPSParticipantVolatileMessageSecure builtin Topic

7.5.4.1 Background (Non-Normative)

In order to perform key exchange between DDS DomainParticipant entities, the security plugins

associated with those participants need to be able to send directed messages to each other using a

reliable and secure channel. These messages are intended only for Participants that are currently in the

system and therefore need a DURABILITY Qos of kind VOLATILE.

The existing mechanisms provided by DDS are not adequate for this purpose:

• The new DCPSParticipantStatelessMessage is not suitable because it is a stateless best-effort

channel not protected by the security mechanisms in this specification and therefore requires the

message data to be explicitly encrypted and signed prior to being given to the

ParticipantStatelessMessageWriter.

• The new DCPSParticipantMessageSecure is not suitable because its QoS has DURABILITY kind

TRANSIENT_LOCAL (see sub clause 8.4.13 of the DDS Interoperability Wire Protocol [2]) rather

than the required DURABILITY kind VOLATILE.

For this reason, implementations of the DDS Security specification shall have an additional builtin

Topic DCPSParticipantVolatileMessageSecure and corresponding builtin DataReader and

DataWriter entities to read and write the Topic.

7.5.4.2 BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The DDS Security specification defines two new builtin Endpoints: The

BuiltinParticipantVolatileMessageSecureWriter and the

BuiltinParticipantVolatileMessageSecureReader. These two endpoints shall be present in compliant

implementations of this specification. These endpoints are used to write and read the builtin

ParticipantVolatileMessageSecure Topic and shall have the TopicSecurityConfig and

EndpointSecurityConfig set as specified in the tables below.

Deleted: TopicSecurityAttributes

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 65

Table 17 – ParticipantVolatileMessageSecure Topic Security Attributes

Attribute Value

is_read_protected false
is_write_protected false
is_discovery_protected false
is_liveliness_protected false

Table 18 – ParticipantVolatileMessageSecure Endpoint Security Attributes (Reader and Writer)

Attribute Value

is_read_protected false
is_write_protected false
is_discovery_protected false
is_liveliness_protected false
is_submessage_protected true
is_payload_protected false
is_key_protected false

The BuiltinParticipantVolatileMessageSecureWriter is an RTPS Reliable StatefulWriter (see sub

clause 8.4.9.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataWriter Qos associated

with the DataWriter shall be as defined in the table below. Any policies that are not shown in the

table shall be set corresponding to the DDS defaults.

Table 19 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter

DataWriter Qos policy Policy Value
RELIABILITY kind= RELIABLE
HISTORY kind= KEEP_ALL
DURABILITY kind= VOLATILE

The BuiltinParticipantVolatileMessageSecureReader is an RTPS Reliable StatefulReader (see sub

clause 8.4.11.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataReader Qos

associated with the DataReader shall be as defined in the table below. Any policies that are not

shown in the table shall be set corresponding to the DDS defaults.

Table 20 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader

DataReader Qos policy Policy Value
RELIABILITY kind= RELIABLE
HISTORY kind= KEEP_ALL
DURABILITY kind= VOLATILE

The data type associated with these endpoints is ParticipantVolatileMessageSecure

defined as:

typedef ParticipantVolatileMessageSecure ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader shall be as specified in 7.5.8.

7.5.4.3 Contents of the ParticipantVolatileMessageSecure

The ParticipantVolatileMessageSecure is intended as a holder of secure information that

is sent point-to-point from a DomainParticipant to another.

The destination_participant_guid shall contain either the value GUID_UNKNOWN (see sub clause

9.3.1.5 of the DDS Interoperability Wire Protocol [2] or else the GUID_t of the destination

DomainParticipant.

Deleted: 171716

Deleted: 181817

Deleted: 191918

Deleted: 202019

Deleted: 7.5.87.5.87.5.5

66 DDS Security, v1.12

The message_identity uniquely identifies each individual
ParticipantVolatileMessageSecure:

• The source_guid field within the message_identity shall be set to match the GUID_t of the

BuiltinParticipantVolatileMessageSecureWriter that writes the message.

• The sequence_number field within the message_identity shall start with the value set to one and be

incremented for each different message sent by the

BuiltinParticipantVolatileMessageSecureWriter.

The related_message_identity uniquely identifies another

ParticipantVolatileMessageSecure that is related to the message being processed. It shall

be set to either the tuple {GUID_UNKNOWN, 0} if the message is not related to any other message, or

else set to match the message_identity of the related ParticipantVolatileMessageSecure.

The contents message_data depend on the value of the message_class_id and are defined in this

specification in the sub clause that introduces each one of the defined values of the

GenericMessageClassId, see 7.5.4.5.

7.5.4.4 Destination of the ParticipantVolatileMessageSecure

If the destination_participant_guid member is not set to GUID_UNKNOWN, the message written is

intended only for the BuiltinParticipantVolatileMessageSecureReader belonging to the

DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantVolatileMessageSecureReader has an implied

content filter with the logical expression:

 “destination_participant_guid == GUID_UNKNOWN

 || destination_participant_guid==BuiltinParticipantVolatileMessageSecureReader.participant.guid”

Implementations of the specification can use this content filter or some other mechanism as long as the

resulting behavior is equivalent to having this filter.

If the destination_endpoint_guid member is not set to GUID_UNKNOWN the message written targets

a specific endpoint within the destination DomainParticipant. The targeted endpoint is the one whose

Endpoint Key (DataWriter or DataReader GUID_t) matches the destination_endpoint_guid. This

attribute provides a mechanism to specify finer granularity on the intended recipient of a message

beyond the granularity provided by the destination_participant_guid.

7.5.4.5 Reserved values of ParticipantVolatileMessageSecure GenericMessageClassId

This specification, including future versions of this specification reserves GenericMessageClassId

values that start with the prefix “dds.sec.” (without the quotes) .

The specification defines and uses the following specific values for the GenericMessageClassId:

#define GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS \

 ”dds.sec.participant_crypto_tokens”

#define GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS \

 ”dds.sec.datawriter_crypto_tokens”

#define GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS \

 ”dds.sec.datareader_crypto_tokens”

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.5.4.6 Format of data within ParticipantVolatileMessageSecure

Each value for the GenericMessageClassId uses different schema to store data within the

generic attributes in the message_data.

DDS Security, v1.12 67

7.5.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS,

the message_data attribute shall contain the ParticipantCryptoTokenSeq.

This message is intended to send cryptographic material from one DomainParticipant to another

when the cryptographic material applies to the whole DomainParticipant and not a specific

DataReader or DataWriter within.

The concrete contents of the ParticipantCryptoTokenSeq shall be defined by the

Cryptographic Plugin (CryptoKeyFactory).

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

7.5.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,

the message_data shall contain the DatawriterCryptoTokenSeq.

This message is intended to send cryptographic material from one DataWriter to a DataReader

whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’

DataWriter and it is constructed for a specific ‘receiving’ DataReader. This may be used to send

the crypto keys used by a DataWriter to encrypt data and sign the data it sends to a DataReader.

The concrete contents of the DatawriterCryptoTokenSeq shall be defined by the Cryptographic

Plugin (CryptoKeyFactory).

The destination_endpoint_guid shall be set to the GUID_t of the DataReader that should receive

the CryptoToken values in the message.

The source_endpoint_guid shall be set to the GUID_t of the DataWriter that will be using the

CryptoToken values to encode the data it sends to the DataReader.

7.5.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,

the message_data attribute shall contain the DatareaderCryptoTokenSeq.

This message is intended to send cryptographic material from one DataReader to a DataWriter

whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’

DataReader and it is constructed for a specific ‘receiving’ DataWriter. This may be used to send

the crypto keys used by a DataReader to encrypt data and sign the ACKNACK messages it sends to

a DataWriter.

The concrete contents of the DatareaderCryptoTokenSeq shall be defined by the Cryptographic

Plugin (CryptoKeyFactory).

The destination_endpoint_guid shall be set to the GUID_t of the DataWriter that should receive

the CryptoToken values in the message.

The source_endpoint_guid shall be set to the GUID_t of the DataReader that will be using the

CryptoToken values to encode the data it sends to the DataWriter.

7.5.5 Secure builtin TypeLookup Service Topics

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

68 DDS Security, v1.12

7.5.5.1 Background

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

DDS-XTYPES [3] defines two Builtin the TypeLookup service Topics:

TypeLookupServiceRequestTopic and TypeLookupServiceReplyTopic and the four corresponding

Built-In Endpoints used to send and receive information on these two Topics:

TypeLookupServiceRequestWriter, TypeLookupServiceRequestReader,

TypeLookupServiceReplyWriter, and TypeLookupServiceReplyReader .

These builtin endpoints may be used by a DomainParticipant P1 to ask another

DomainParticipant P2 to send type information associated with Endpoints the second participant

P2 has announced via DDS discovery.

Specifically, the TypeLookup service interface provides two types of quesries, see [DDS-XTYPES

version 1.3 section 7.6.3.3 [3]:

• The TypeObjects associated with the TypeIdentifers provided as an input

• The TypeIdentifiers of types that the type with a givenTypeIdentifier depends on.

Compliance with DDS-XTYPES requires any DomainParticipant that implements the TypeLookup

service, to respond to requests for any TypeIdentifier that the DomainParticipant announces (directly

or as a dependent type 7.5.6) in the PublicationBuiltinTopicData or SubscriptionBuiltinTopicData.

7.5.5.2 New TypeLookup Service Secure Endpoints

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

DDS-Security defines the secure versions of TypeLookup Service Endpoints defined in DDS-

XTYPES. These consist of four new endpoints: TypeLookupServiceRequestSecureWriter,

TypeLookupServiceRequestSecureReader, TypeLookupServiceReplySecureWriter, and

TypeLookupServiceReplySecureReader.

The EntityIds for the Secure Type Lookup builtin endpoints are defined in Table 9.

The data types and Qos policies of the Secure Type Lookup builtin shall be the same defined for the

corresponding (non-secure) endpoint in DDS-XTYPES.

7.5.6 Definition of the Types a DDS Endpoint depends on

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

Each DDS Endpoint (DataWriter or DataReader) is associated with a DDS Topic. The data-

type associated with that DDS Topic is called the Endpoint’s “top-level type” a.k.a. “Topic Type”.

Some Type definitions make references to other types the defined-type depends on.

For a given Endpoint, the collection consisting of the top-level type as well as the transitive closure

that includes the types that the top-level type depends (i.e. makes a direct reference in its type

definition), shall be referred to as the types the endpoint depends on. Stated differently, the

“depends-on” relationship is applied recursively starting from the top-level type. The collection of all

types that are reached this way defines the “types the endpoint depends on”.

Example: Assume a DataWriter us writing a Topic with the type AircraftReport as defined

by the IDL below:

typedef Latitude float;

typedef Longitude float;

typedef Altitude float;

struct Coordinate2D {

 Longitude longitude;

 Latitude latitude;

DDS Security, v1.12 69

};

typedef sequence<Coordinate2D> Track2D;

struct Coordinate3D : Coordinate2D {

 Altitude altitude;

};

typedef sequence< Coordinate3D> Track3D;

struct Heading {

 float roll;

 float pitch;

 float yaw;

};

struct AircraftReport {

 @key

 string vehicle_id;

 Coordinate3D location;

 Heading heading;

 Track3D route;

 @unit("minutes")

 int32 remaining_fuel;

};

In this case, the top-level type of DataWriter is AircraftReport and the types the DataWriter

depends on is the set consisting of the types: AircraftReport, string, Coordinate3D,

Coordinate2D, Latitude, float, Longitude, Altitude, Heading, Track3D,

sequence<Coordinate3D>, and int32.

7.5.7 Definition of the “RTPS Bootstrapping Messages”

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Certain RTPS messages need to be protected using separate mechanisms. These may include some

messags used during authentication as well as messages used to detect initial presence and lower-level

messages used to detect and maintain network connectivity.

An RTPS Messages is called a “RTPS Bootstraooping Messages” if an only if one or more of the

following conditions applies:

• It contains RTPS submessages for the builtin topic "DCPSParticipants"

• It contains RTPS submessages for the builtin topic "DCPSParticipantStatelessMessage"

• It contains RTPS submessages for the builtin topic "DCPSParticipantVolatileMessageSecure"

• It is not intended to be processed by a DomainParticipant (e.g. it is a transport-level keep-alive

message).

RTPS Messages that are not “RTPS Bootstrapping Messages” are referred to as “RTPS Non-

Bootstrapping Messages”.

RTPS Bootstrapping Messages are restricted in their content. See 7.5.12.

7.5.8 Definition of the “Builtin Secure Endpoints”

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

The complete list of builtin Endpoints that are protected by the security mechanism introduced in the

DDS Security specification is: SPDPbuiltinParticipantsSecureWriter,

SPDPbuiltinParticipantsSecureReader, SEDPbuiltinPublicationsSecureWriter,

SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureWriter,

70 DDS Security, v1.12

SEDPbuiltinSubscriptionsSecureReader, BuiltinParticipantMessageSecureWriter,

BuiltinParticipantMessageSecureReader, BuiltinParticipantVolatileMessageSecureWriter,

BuiltinParticipantVolatileMessageSecureReader, TypeLookupServiceRequestWriterSecure,

TypeLookupServiceRequestReaderSecure, TypeLookupServiceReplyWriterSecure, and

TypeLookupServiceReplyReaderSecure.

This list shall be referred to as the builtin secure endpoints.

7.5.9 Definition of the “Builtin Secure Discovery Endpoints”

The “builtin secure discovery endpoints” is the subset the builtin secure endpoints that are used for

discovery. They are: SPDPbuiltinParticipantsSecureWriter, SPDPbuiltinParticipantsSecureReader,

SEDPbuiltinPublicationsSecureWriter, SEDPbuiltinPublicationsSecureReader,

SEDPbuiltinSubscriptionsSecureWriter, and SEDPbuiltinSubscriptionsSecureReader.

This list shall be referred to as the builtin secure discovery endpoints.

7.5.10 Definition of the “Builtin Secure Liveliness Endpoints”

The “builtin secure liveliness endpoints” is the subset the builtin secure endpoints that are used for

managing automatic liveliness. They are: BuiltinParticipantMessageSecureWriter and

BuiltinParticipantMessageSecureReader.

This list shall be referred to as the builtin secure liveliness endpoints.

7.5.11 Definition of the “Builtin Secure TypeLookup Endpoints”

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

The “builtin secure type lookup endpoints” is the subset the builtin secure endpoints that are used for

the DDS-XTYPES TypeLookup service. They are: TypeLookupServiceRequestSecureWriter,

TypeLookupServiceRequestSecureReader, TypeLookupServiceReplySecureWriter, and

TypeLookupServiceReplySecureReader.

This list shall be referred to as the builtin secure type lookup endpoints.

7.5.12 Constraints in the content of RTPS Bootstrapping Messages

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

In general, the RTPS protocol allows a single RTPS Message to contain RTPS SubMesages sent

by different Entities (DataReaders or DataWriters) which can be associated with different

Topics. For example, it is possible to include Data sub messages for various Topics, including

application Topics as well as Builtin Topics, mix Data submessages with Heartbeat and

AckNack submessages, etc.

DDS-Security limits some of these combinations: RTPS Bootstrapping messages (see 7.5.7) shall not

contain submessages for any other (non-bootstrapping) builtin topic or application-defined topic.

7.5.13 Securing the “Builtin Secure Endpoints”

DDSSEC12-90 - Meeting CNSSP-15 security requirements

As with application defined Topics, the middleware shall call the operations

get_datawriter_security_config and get_datareader_security_config on the

AccessControl interface to obtain the EndpointSecurityConfig associated with

DataReader and DataWriter entities on all the “Builtin Secure Endpoints”. The specific values

of the EndpointSecurityConfig shall be as shown in the Table below:

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

Deleted: and

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 71

Table 21 – EndpointSecurityConfig for all “Builtin Security Endpoints”

Attribute DCPSParticipantSecure,

DCPSPublicationsSecure,

DCPSSubscriptionsSecure

DCPSParticipantMessag

eSecure
DCPSParticipant

StatelessMessage

DCPSParticipantVolatil

eMessageSecure,

TypeLookupServiceReq

uestSecure,

TypeLookupServiceRepl

ySecure

is_read_protec

ted

false false false false

is_write_prote

cted

false false false false

is_discovery_p

rotected

N/A N/A N/A N/A

is_liveliness_p

rotected

N/A N/A N/A N/A

is_submessage

_protected

Set to match
ParticipantSecurit

yConfig

is_discovery_protected

Set to match
ParticipantSecuri

tyConfig

is_liveliness_protected

false true

is_payload_pr

otected

false false false false

is_key_protect

ed

false false false false

The false settings for the is_read_protected and is_write_protected indicate that these secure builtin

endpoints are not protected by the same AccessControl mechanisms as the regular endpoints (i.e., the

AccessControl plugin is not called). However, they are still protected by the access control

mechanism imposed by the DomainParticipant. That is, if ParticipantSecurityConfig

member is_access_protected is true, then access to the secure builtin topics is protected.

For a description of the ParticipantSecurityConfig, see clause 9.4.2.4.

Deleted: 212120

Deleted: EndpointSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

72 DDS Security, v1.12

8 Common Cryptographic Algorithms

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This section defines a common set of standard cryptographic algorithms that are available for the SPIs

to use.

In addition to the algorithm itself, this section defines the algorithm identifiers that the SPIs may use in

different contexts to identify them. The specification uses three identifier representations:

• A CryptoAlgorithmName (string) representation. This representation is used to identify a

cryptographic algorithm in contexts where ease of interpretation is the primary consideration

and a more compact or fixed-size representation isn’t required. A typical use is for

configuration and inside the BinaryProperty_t (see 7.3.3) objects used for SPI

handshakes.

• A CryptoAlgorithmId (binary) representation (see 7.3.7). This representation is used to

identify a type of cryptographic algorithm in contexts where a compact, fixed-size

representation is needed, and the possible set of algorithms is open ended. A typical use is

within a CryptoTransformIdentifier submessage element to identify the type of

encryption or message authentication applied to a message.

• A CryptoAlgorithmBit (bit) representation (see 7.3.8). This representation is used to

identify an algorithm in contexts where there is a need to represent one or more algorithms in a

compact manner and the possible set of possible algorithms is pre-known and limited, allowing

the algoroithm to be represented as a bit position. A typical use is inside a

CryptoAlgorithmSet bitmask (7.3.9).

In the case where multiple string identifiers are provided for the same algorithm, they shall all treated

as equivalent.

The remaining subclauses define the algorithms currently needed to implement the builtin SPIs. As

cryptographic technology and the needs of DDS application evolve the list of algorithms will be

extended in future revisions. The list may also be extended to facilitate development of custom SPIs.

8.1 Symmetric Cipher AEAD and MAC Algorithms

DDSSEC12-90 - Meeting CNSSP-15 security requirements

SPIs may use symmetric cipher algorithms for two purposes:

• Authenticated Encryption with Additional Data (AEAD). This uses a symmetric cipher to

encrypt (or decrypt) data samples as well as the complete RTPS messages sent over the

transport. The AEAD transformation can also provide data/message authentication both on the

data that was encrypted as well as on “additional data” that accompanies the encrypted payload.

• Message Authentication Codes. This uses a symmetric cipher to compute (or validate) message

authentication codes (MACs, also known as message authentication tags) that ensure message

integrity and provide message origin authentication.

As an example, the builtin Cryptographic plugin uses symmetric cipher algorithms in multiple

operations, such as encode_serialized_payload, encode_datawriter_submessage, and

encode_rtps_message, in order to protect application data as well as metadata such as sequence

numbers and timestamps, see 10.5.3

The table below defines the set of key establishment algorithms available to the SPIs.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDS Security, v1.12 73

Table 22 – Symmetric Cipher AEAD and MAC Algorithms

CryptoAlgorithm
Name7.3.87.3.9

CryptoAlgorithm
Id

CryptoAlgorithm
Bit

Description

AES128+ GCM

0x01 0x0001 << 0 Message authentication codes (MACs)
computed using Galois MAC (AES-
GMAC).
The definition of the AES128+GMAC
transformations shall be as specified in
NIST SP 800-38D [45], specialized to
128-bit AES keys with 96-bit
Initialization Vector.

AES128+GCM

0x02 0x0001 << 0

(same bit
used for
GMAC)

Authenticated Encryption with
Additional Data (AEAD) using Advanced
Encryption Standard (AES) in Galois
Counter Mode (AES-GCM) [45].
The definition of the AES128+GCM
transformation shall be as specified in
NIST SP 800-38D [45], specialized to
128-bit AES keys with 96-bit
Initialization Vector.
The most relevant aspects are
summarized below.

AES256+ GCM

0x03 0x0001 << 1 Message authentication codes (MACs)
computed using Galois MAC (AES-
GMAC).
The definition of the AES256+GMAC
transformations shall be as specified in
NIST SP 800-38D [45], specialized to
256-bit AES keys with 96-bit
Initialization Vector.

AES256+GCM

0x04 0x0001 << 1

(same bit
used for
GMAC)

Authenticated Encryption with
Additional Data (AEAD) using Advanced
Encryption Standard (AES) in Galois
Counter Mode (AES-GCM).
The definition of the AES-GCM
transformations shall be as specified in
NIST SP 800-38D [45], specialized to
256-bit AES keys with 96-bit
Initialization Vector.
The most relevant aspects are
summarized below.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Note that the same value of the CryptoAlgorithmName and CryptoAlgorithmBit is used

for the message-authentication-only (MAC-only) variants of the corresponding AEAD algorithms.

The reason is that the CryptoAlgorithmName and CryptoAlgorithmBit are only used to

identify the AEAD/MAC algorithm pair and represent the presence of these algorithms in a set

(CryptoAlgorithmSet) of “supported” or “required” algorithms for the purpose of checking

compatibility between the algorithm usage in two different SPIs. In this context it is not necessary to

differentiate the authentication-only use/support of the algorithm.

The following symbolic constants are defined to facilitate the use of these algorithms by the SPIs.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

/* Predefined values for CryptoAlgorithmName */

const string CNAME_AES128_GMAC = "AES128+GCM";

Deleted: GMAC

Deleted: GMAC

Deleted: is

Deleted: GMAC

74 DDS Security, v1.12

const string CNAME_AES128_GCM = "AES128+GCM";

const string CNAME_AES256_GMAC = "AES256+GCM";

const string CNAME_AES256_GCM = "AES256+GCM";

/* May be used to indicate the “NULL” transformation */

const CryptoAlgorithmId CID_INVALID = 0x00;

/* Predefined values for CryptoAlgorithmId */

const CryptoAlgorithmId CID_AES128_GMAC = 0x01;

const CryptoAlgorithmId CID_AES128_GCM = 0x02;

const CryptoAlgorithmId CID_AES256_GMAC = 0x03;

const CryptoAlgorithmId CID_AES256_GCM = 0x04;

/* Predefined values for CryptoAlgorithmBit */

const CryptoAlgorithmBit CBIT_AES128_GMAC = 1 << 0;

const CryptoAlgorithmBit CBIT_AES128_GCM = 1 << 0;

const CryptoAlgorithmBit CBIT_AES256_GMAC = 1 << 1;

const CryptoAlgorithmBit CBIT_AES256_GCM = 1 << 1;

8.1.1 AEAD with AES-GCM/GMAC

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The essential elements of the AES-GCM authenticated encryption operation are described below, the

normative definition can be found in NIST SP 800-38D [45],

AES-GCM is a transformation that takes the four inputs and produces two outputs, symbolically:

C, T = AES-GCM(K, P, AAD, IV)

The AES-GCM inputs are described in the table below.

Table 23 – AES-GCM transformation inputs

Input Description

K The 128-bit key to be used with the AES-128 block cipher

or the 256-bit key to be used with the AES-256 block cipher.
P The plaintext. This is the data to encrypt and authenticate.

It may be empty in case we only want to authenticate data.
AAD Additional Authenticated Data.

This is data beyond the plaintext that will only be authenticated. I.e. it is not encrypted.
IV Initialization Vector.

This is a 96-bit NONCE that shall not be repeated for the same key.

The AES-GCM transformation outputs are described in the table below.

Table 24 – AES-GCM transformation outputs

Input Description

C Ciphertext.
This is the encryption of the plaintext “P”.

T Authentication Tag.
This is a Message Authentication Code (MAC) that provides authentication for the Ciphertext
(C) and the Additional Authenticated Data (AAD).

AES-GCM uses AES in counter mode with a specific incrementing function called “inc32” used to

generate the counter blocks. As recommended in section 5.2.1.1 of NIST SP 800-38D [45] the counter

blocks shall be created from the 96-bit Initialization Vector as follows:

• The initial value of the 128-bit counter block is a 128-bit string containing the IV as the leading

96 bits and zeros the remaining right-most 32 bits.

Deleted: GMAC

Deleted: 232322

Deleted: 242423

DDS Security, v1.12 75

• Incremental values of the 128-bit counter block used to encrypt each block are obtained using

the “inc32” function which increments the right-most 32 bits of the string, regarded as the

binary representation of a big-endian integer, modulo 2^32. The inc32 operation does not touch

the leading 96 bits.

The AES-GMAC transformation is defined as the special case where the plaintext “P” is empty (zero

length). This transformation produces only an AuthenticationTag (Message Authentication Code) on

the AAD data:

T = AES-GMAC(K, AAD, IV) = AES-GCM(K, “”, AAD, IV)

8.2 Digital Signature Algorithms

DDSSEC12-90 - Meeting CNSSP-15 security requirements

SPIs may use digital signature algorithms for signing/validating identity-type certificates and

attestation documents. They may also be used to sign messages to prove possession of a private key

associated with a public key recognized the other party.

As examples, the builtin Authentication Plugin uses digital signature algorithms for signing/validating

Identity Certificates as well as for signing/validating authentication challenge messages, see 10.3.2 and

its subclauses. Likewise, the builtin Access Control Plugin uses digital signature algorithms for

validating Governance and Permission documents, see 10.4.2 and its subclauses.

The table below defines the set of digital signature algorithms available to the SPIs.

Table 25 – Digital Signature Algorithm identifiers and description

CryptoAlgorithm
Name

CryptoAlgorithm
Id

CryptoAlgorithm
Bit

Description

RSASSA-PSS-

MGF1SHA256+2048+SHA256

RSA-2048 (deprecated in v 1.2)

RSASSA-PSS-SHA256

(deprecated in v 1.2)

0x10

0x0001 << 0 2048-bit RSA key [44].
The digital signature shall be computed using the
RSASSA-PSS algorithm specified in PKCS #1 [44],
using SHA256 as hash function, and MGF1 with
SHA256 (mgf1sha256) as mask generation
function.
The length of the salt is not specified. Plugin
implementations may use permissible value. The
validation of the signature shall detect the salt
length from the signature. Non-normative: In
OpenSSL the “auto” option used when verifying a
signature causes the salt length to be deduced from
the signature itself.

RSASSA-PKCS1-

V1_5+2048+SHA256

0x11 0x0001 << 1 2048-bit RSA key [44].
The digital signature shall be computed using the
RSASSA-PKCS1-v1_5 algorithm specified in PKCS
#1[44], using SHA256 as hash function.

ECDSA+P256+SHA256

EC-prime256v1 (deprecated in

version 1.2)

ECDSA-SHA256 (deprecated

in version 1.2)

0x12 0x0001 << 2 256-bit Elliptic Curve Key for the secp256r1 curve
[57], also known as the prime256v1 curve [41],
also known as the NIST P-256 curve [42].
The digital signature shall be computed using the
ECDSA-SHA256 algorithm specified in ANSI X9.62-
2005 [41].

ECDSA+P384+SHA384
0x13 0x0001 << 3 384-bit Elliptic Curve Key for the secp384r1 curve

[57] also known as the NIST P-384 curve [42].
The digital signature shall be computed using the
ECDSA-SHA384 algorithm specified in ANSI X9.62-
2005 [41].

Deleted: 252524

76 DDS Security, v1.12

The following symbolic constants are defined to facilitate the use of these algorithms by the SPIs.

/* Predefined values for CryptoAlgorithmName */

const string CNAME_RSASSA_PSS_MGF1SHA256_2048_SHA256 =

 "RSASSA-PSS-MGF1SHA256+2048+SHA256";

const string CNAME_RSASSA_PKCS1_V15_2048_SHA256 =

 "RSASSA-PKCS1-V1_5+2048+SHA256";

const string CNAME_ECDSA_P256_SHA256_NAME =

 "ECDSA+P256+SHA256";

const string CNAME_ECDSA_P384_SHA384 =

 "ECDSA+P384+SHA384";

/* Predefined values for CryptoAlgorithmId */

const CryptoAlgorithmId CID_RSASSA_PSS_MGF1SHA256_2048_SHA256 = 0x10;

const CryptoAlgorithmId CID_RSASSA_PKCS1_V15_2048_SHA256 = 0x11;

const CryptoAlgorithmId. CID_ECDSA_P256_SHA256 = 0x12;

const CryptoAlgorithmId CID_ECDSA_P384_SHA384 = 0x13;

/* Predefined values for CryptoAlgorithmBit */

const CryptoAlgorithmBit CBIT_RSASSA_PSS_MGF1SHA256_2048_SHA256 = 1 << 0;

const CryptoAlgorithmBit CBIT_RSASSA_PKCS1_V15_2048_SHA256 = 1 << 1;

const CryptoAlgorithmBit CBIT_ECDSA_P256_SHA256 = 1 << 2;

const CryptoAlgorithmBit CBIT_ECDSA_P384_SHA384 = 1 << 3;

8.3 Key Establishment Algorithms

DDSSEC12-90 - Meeting CNSSP-15 security requirements

SPIs may use key establishment algorithms to establish a shared secret key between two Endpoints

which can then be used to exchange point-to-point messages securely.

As an example, the builtin Authentication Plugin uses a key establishment algorithm as part of its

authentication handshale to establish a SharedSecret between two Participants, see 10.3.3 and 10.3.4.

The table below defines the set of key establishment algorithms available to the SPIs.

Table 26 – Key Establishment Algorithm identifiers and description

CryptoAlgorithm
Name

CryptoAlgorithm
Id

CryptoAlgorithm
Bit

Description

DHE+MODP-2048-

256

DH+MODP-2048-

256 (deprecated in v

1.2)

0x20 0x0001 << 0 The Diffie-Hellman Public Key shall be for the 2048-bit MODP
Group with 256-bit Prime Order Subgroup, see IETF RFC 5114
[47], section 2.3.
Non-normative: The OpenSSL 1.0.2 operation DH_get_2048_256()
retrieves the parameters for the 2048-bit MODP Group with 256-bit
Prime Order Subgroup.
The Key Agreement Algorithm shall be the “dhEphem, C(2e, 0s,
FFC DH) Scheme” defined in section 6.1.2.1 of NIST Special
Publication 800-56A Revision 2 [48].

ECDHE-

CEUM+P256

ECDH+prime256v1

(deprecated in v 1.2)

0x21 0x0001 << 1 The Diffie-Hellman Public Key shall be for the NIST’s EC Curve P-
256 as defined in appendix D of FIPS 186-4 [42] also known as
prime256v1 in ANSI X9.62-2005 [41].
The Key Agreement Algorithm shall be the “(Cofactor) Ephemeral
Unified Model, C(2e, 0s, ECC CDH)” defined in section 6.1.2.2 of
NIST Special Publication 800-56A Revision 2 [48]. See also
section 3.1 “Ephemeral Unified Model” of NIST Suite B
Implementer’s Guide to NIST SP 800-56A [49].

Deleted: 262625

DDS Security, v1.12 77

ECDHE-

CEUM+P384
0x22 0x0001 << 2 The Diffie-Hellman Public Key shall be for the NIST’s EC Curve P-

384 as defined in appendix D of FIPS 186-4 [42] also known as
secp384r1 curve, see IETF 5480 [57].
The Key Agreement Algorithm shall be the “(Cofactor) Ephemeral
Unified Model, C(2e, 0s, ECC CDH)” defined in section 6.1.2.2 of
NIST Special Publication 800-56A Revision 2 [48]. See also
section 3.1 “Ephemeral Unified Model” of NIST Suite B
Implementer’s Guide to NIST SP 800-56A [49].

DDSSEC12-56 - Encoding of Diffie-Hellman Public Key

A Diffie-Hellman public key may be represented as an OctetSeq for the purposes of including it in a

BinaryProperties_t. In this scenario the following format shall be used:

If the public key corresponds to the “DHE+MODP-2048-256” crypto algorithm, then:

• The OctetSeq's value shall contain the big endian representation (an array of bytes) of the DH

public key (a big number). Non normative: In OpenSSL 1.1.1, this can be obtained through the

BN_bn2bin() API.

• The OctetSeq's length shall contain the size in bytes of the big endian representation of the DH

public key. Non normative: In OpenSSL 1.1.1, this can be obtained through the

BN_num_bytes() API.

If the public key corresponds to the “ECDHE-CEUM+P256” or "ECDHE-CEUM+P384" crypto

algorithms, then:

• The OctetSeq's value shall contain the octet string representation of the ECDHE public key.

The octet string representation encoding must conform with Sec. 2.3.3 "Elliptic-Curve-Point-

to-Octet-String Conversion'' of the SECG SEC 1 ("Elliptic Curve Cryptography") standard [X].

Non normative: In OpenSSL 1.1.1, this can be obtained through the EC_POINT_point2oct()

API, passing POINT_CONVERSION_UNCOMPRESSED as the conversion form.

• The OctetSeq's length shall contain the length of the octet string. Non normative: In OpenSSL

1.1.1, this can be obtained as the return value of the EC_POINT_point2oct() API called to

obtain the octet string representation.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The following symbolic constants are defined to facilitate the use of these algorithms by the SPIs.

/* Predefined values for CryptoAlgorithmName */

const string CNAME_DHE_MODP_2048_256 = "DHE+MODP-2048-256";

const string CNAME_ECDHE_CEUM_P256 = "ECDHE-CEUM+P256";

const string CNAME_ECDHE_CEUM_P384 = "ECDHE-CEUM+P384";

/* Predefined values for CryptoAlgorithmId */

const CryptoAlgorithmId CID_DHE_MODP_2048_256 = 0x20;

const CryptoAlgorithmId CID_ECDHE_CEUM_P256 = 0x21;

const CryptoAlgorithmId CID_ECDHE_CEUM_P384 = 0x22;

/* Predefined values for CryptoAlgorithmBit */

const CryptoAlgorithmBit CBIT_DHE_MODP_2048_256 = 1 << 0;

const CryptoAlgorithmBit CBIT_ECDHE_CEUM_P256 = 1 << 1;

const CryptoAlgorithmBit CBIT_ECDHE_CEUM_P384 = 1 << 2;

78 DDS Security, v1.12

9 Plugin Architecture

9.1 Introduction

9.1.1 Service Plugin Interface Overview

There are five plugin SPIs: Authentication, Access-Control, Cryptographic, Logging, and Data

Tagging.

Figure 7 – Plugin Architecture Model

The responsibilities and interactions between these Service Plugins are summarized in the table below

and detailed in the sections that follow.

class DDS vervie

 discovery

Iden tyTo en

 interf ce

AccessControl

 interf ce

Authen ca on

 pri i ve

Permissions andle

 pri i ve

Iden ty andle

 interf ce

Logging

 en le logging void

 log void

 set log op ons oole n

 discovery

PermissionsTo en

CryptoTo en

 interf ce

DataTagging

 pri i ve

SharedSecret andle

 interf ce

Cryptographic

 cre te

 use

 cre te

 use

 cre te

 use cre te

 cre te

 cre te

 use

DDS Security, v1.12 79

Table 27 – Purpose of each Security Plugin

Service Plugin Purpose Interactions
Authentication Authenticate the principal that is joining a DDS

Domain.
Support mutual authentication between participants

and establish a shared secret.

The principal may be an

application/process or the user associated

with that application or process.

AccessControl Decide whether a principal is allowed to perform a

protected operation.

Protected operations include joining a

specific DDS domain, creating a Topic,

reading a Topic, writing a Topic, etc.
Cryptography Generate keys. Perform Key Exchange. Perform the

encryption and decryption operations. Compute

digests, compute and verify Message Authentication

Codes. Sign and verify signatures of messages.

This plugin implements 3

complementary interfaces:

CryptoKeyFactory,

CryptoKeyExchange, and

CryptoTransform.
Logging Log all security relevant events. This plugin is accessible to all other

plugins such that they can log the

relevant events.
DataTagging Add a data tag for each data sample.

9.1.2 Plugin Instantiation

The Security Plugins shall be configurable separately for each DomainParticipant even when

multiple DomainParticipants are constructed within the same Operating System Process and share the

same Address Space.

A collection of the 5 SPIs intended to be used with the same DomainParticipant is referred to as

a DDS-Security Plugin Suite.

The mechanism used to instantiate the security Service Plugins and associate them with each

DomainParticipant is not defined by the DDS-Security specification.

Implementations of this specification may use vendor-specific configurations to facilitate linking the

Plugin Suite, including providing dynamic loading and linking facilities as well as initializing the

Plugin Suite.

Likewise implementations of this specification may use vendor-specific configurations to bind a Plugin

Suite to the DomainParticipant. However it is required for the Plugin Suite to be initialized and

bound by the time the DomainParticipant is enabled. Therefore this process shall complete

either during the DomainParticipantFactory create_domain_participant or else

during the DomainParticipant enable operations defined in [1]. Note that some of the Plugin

Suite Authentication and AccessControl operations shall also be called during

create_domain_participant or during enable.

9.2 Common Types

9.2.1 Security Exception

SecurityException is a data type used to hold error information. SecurityException

objects are potentially returned from many of the calls in the Security plugins. They are used to return

an error code and message.

Deleted: 272726

80 DDS Security, v1.12

Table 28 – SecurityException class

SecurityException

Attributes
message String

code long

minor_code long

9.3 Authentication Plugin

The Authentication Plugin SPI defines the types and operations necessary to support the authentication

of DDS DomainParticipants.

9.3.1 Background (Non-Normative)

Without the security enhancements, any DDS DomainParticipant is allowed to join a DDS

Domain without authenticating. However, in the case of a secure DDS system, every DDS participant

will be required to authenticate to avoid data contamination from unauthenticated participants.

The DDS protocol uses its native discovery mechanism to detect when participants enter the DDS

Domain.

The discovery mechanism that registers participants with the DDS middleware is enhanced with an

authentication protocol. For protected DDS Domains a DomainParticipant that enables the

authentication plugin will only communicate with another DomainParticipant that has the

authentication plugin enabled.

The plugin SPI is designed to support multiple implementations with varying numbers of message

exchanges. The message exchanges may be used by two DomainParticipant entities to challenge each

other so that their identity can be authenticated. Often a shared secret is also derived from a successful

authentication message exchange. The shared secret can be used to exchange cryptographic materal in

support of encryption and message authentication.

9.3.2 Authentication Plugin Model

The Authentication Plugin model is presented in the figure below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Deleted: 282827

DDS Security, v1.12 81

Figure 8 – Authentication plugin model

9.3.2.1 IdentityToken

An IdentityToken contains summary information on the identity of a DomainParticipant in

a manner that can be externalized and propagated via DDS discovery. The specific content of the

IdentityToken shall be defined by each Authentication plugin specialization. The intent is

to provide only summary information on the permissions or derived information such as a hash.

9.3.2.2 IdentityStatusToken

An IdentityStatusToken contains authentication information of a DomainParticipant in a

manner that can be externalized and propagated via the DCPSParticipantSecure builtin Topic. The

specific content of the IdentityStatusToken shall be defined by each Authentication

plugin. The intent is to provide a mechanism that can be used to securely send information to other

participants that are already mutually authenticated. It could be used, for example, to provide an

updated certificate in case the current one has expired.

The information shall be retrieved from the Authentication plugin by calling the operation

get_identity_status_token. And included in the DCPSParticipantSecure builtin Topic.

class Authen ca on

 interf ce

Authen ca on

 egin h ndsh e reply lid on esult t

 egin h ndsh e re uest lid on esult t

 get uthen c ted peer creden l to en Boole n

 get iden ty st tus to en Boole n

 get iden ty to en Boole n

 get sh red secret Sh redSecret ndle

 process h ndsh e lid on esult t

 return uthen c ted peer creden l to en Boole n

 return h ndsh e h ndle Boole n

 return iden ty h ndle Boole n

 return iden ty st tus to en Boole n

 return iden ty to en Boole n

 return sh redsecret h ndle Boole n

 set listener Boole n

 set p r cip nt security con g Boole n

 set per issions creden l nd to en Boole n

 v lid te loc l iden ty lid on esult t

 v lid te re ote iden ty lid on esult t

 pri i ve

Iden ty andle

 interf ce

Authen ca onListener

 on st tus ch nged Boole n

 revo e iden ty Boole n

 discovery

Iden tyTo en

 essageTo en

 pri i ve

 andsha e andle

 pri i ve

SharedSecret andle

PermissionsCreden alTo en

Property

 discovery

Iden tyStatusTo en

 enu er on

AuthStatus ind

 DE S S

 andsha e essageTo en

AuthRe uest essageTo en

 cre te

 cre te

 use

 cre te

 cre te

 cre te

 use

 use cre te

Deleted:

class Authentication

SecurityPlugin

«interface»

Authentication

+ validate_local_identity(): ValidationResult_t

+ get_identity_token(): Boolean

+ get_identity_status_token(): Boolean

+ set_permissions_credential_and_token(): Boolean

+ validate_remote_identity(): ValidationResult_t

+ begin_handshake_request(): ValidationResult_t

+ begin_handshake_reply(): ValidationResult_t

+ process_handshake(): ValidationResult_t

+ get_shared_secret(): SharedSecretHandle

+ get_peer_permissions_credential_token(): Boolean

+ set_listener(): Boolean

+ return_identity_token(): Boolean

+ return_identity_status_token(): Boolean

+ return_peer_permissions_credential_token(): Boolean

+ return_handshake_handle(): Boolean

+ return_identity_handle(): Boolean

+ return_sharedsecret_handle(): Boolean

«primitive»

IdentityHandle

«interface»

AuthenticationListener

+ revoke_identity(): Boolean

+ on_status_changed(): Boolean

Token

«discovery»

IdentityToken

Token

MessageToken

«primitive»

HandshakeHandle

«primitive»

SharedSecretHandle

Token

PermissionsCredentialToken

Property
Token

«discovery»

IdentityStatusToken

«enumeration»

AuthStatusChangeKind

 IDENTITY_STATUS

«create»

«use»

«use»

«create»

«create»

«use»
«create»

«create»

«create»

82 DDS Security, v1.12

The Authentication plugin can use the operation on_status_changed on the

AuthenticationListener to notify that there is an updated IdentityStatusToken.

9.3.2.3 IdentityHandle

An IdentityHandle is an opaque local reference to internal state within the Authentication

plugin, which uniquely identifies a DomainParticipant. It is understood only by the

Authentication plugin and references the authentication state of the DomainParticipant.

This object is returned by the Authentication plugin as part of the validation of the identity of a

DomainParticipant and is used whenever a client of the Authentication plugin needs to

refer to the identity of a previously identified DomainParticipant.

9.3.2.4 HandshakeHandle

A HandshakeHandle is an opaque local reference used to refer to the internal state of a possible

mutual authentication or handshake protocol.

9.3.2.5 AuthRequestMessageToken

The AuthRequestMessageToken encodes plugin-specific information that the

Authentication plugins associated with two DomainParticipant entities exchange to

bootstrap the mutual authentication handshake. The AuthRequestMessageToken is understood

only by the AuthenticationPlugin implementations on either side of the handshake. The

AuthRequestMessageToken is sent and received by the DDS implementation under the direction

of the AuthenticationPlugins.

The AuthRequestMessageToken has class_id set to

GMCLASSID_SECURITY_AUTH_REQUEST (see 7.5.3.5).

9.3.2.6 HandshakeMessageToken

A HandshakeMessageToken encodes plugin-specific information that the Authentication plugins

associated with two DomainParticipant entities exchange as part of the mutual authentication

handshake. The HandshakeMessageToken is understood only by the

AuthenticationPlugin implementations on either side of the handshake. The

HandshakeMessageToken is sent and received by the DDS implementation under the direction of

the AuthenticationPlugins.

The HandshakeMessageToken has class_id set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE (see 7.5.3.5).

9.3.2.7 AuthenticatedPeerCredentialToken

An AuthenticatedPeerCredentialToken encodes plugin-specific information that the

Authentication plugin obtains from a remote DomainParticipant during the authentication process that

is of interest to the AccessControlPlugin. This information is accessible via the operation

get_authenticated_peer_credential_token.

9.3.2.8 SharedSecretHandle

A SharedSecretHandle is an opaque local reference to internal state within the

AuthenticationPlugin containing a secret that is shared between the

AuthenticationPlugin implementation and the peer AuthenticationPlugin

implementation associated with a remote DomainParticipant. It is understood only by the two

DDS Security, v1.12 83

AuthenticationPlugin implementations that share the secret. The shared secret is used to

encode Tokens, such as the CryptoToken, such that they can be exchanged between the two

DomainParticipants in a secure manner.

9.3.2.9 Authentication interface

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This interface is the starting point for all the security mechanisms. When a DomainParticipant

is either locally created or discovered, it needs to be authenticated in order to be able to communicate

in a DDS Domain.

The interaction between the DDS implementation and the Authentication plugin has been designed in a

flexible manner so it is possible to support various authentication mechanisms, including those that

require a handshake and/or perform mutual authentication between participants. It also supports

establishing a shared secret. This interaction is described in the state machine illustrated in the figure

below.

84 DDS Security, v1.12

Figure 9 – Authentication plugin interaction state machine

stm AuthBehavior

Authen ca ng

 h ndsh e

 uth re uest

 uthen c on eout

 hoice

 hoice

Start

Retry ait1

 hoice

 andsha e essageReceived

 andsha e inal essage

 andsha eInit essage ait

 andsha e essage ait

 andsha eCompleted

 hoice

 andsha e essageSend

 lid on iled lid on

Star ngAuthen ca on

 hoice

 andsha eInitReply

 andsha eInit

Ini ali ed

Retry ait2

Retry ait3 Retry ait4

Retry ait5

Begin
Loc l lid on iled

AuthRe uest aitAuthRe uestSend

St rt ro Discovery

St rt ro Discovery

 or

St rt ro uth e uest

NoAuthRe uests

St rt ro uth e uest

 ni l

Authen ca onTimeout ait

 lid on iled

DDS receive message

 L D

DDS discovery

 L D E D E
 L D

DDS receive auth re uest

 L D E D DS E E ES

 retry eout

begin handsha e reply

 retry eout

 retry eout

 L D E D E

 L D L ESS E

 L D LED

 L D

 L D LED

 uthen c on eout

 L D LED

 L D LED

validate local iden ty

 L D E D DS E ESS E

process handsha e

 L D E D E

 L D

 L D E D E

 L D E D E

begin handsha e re uest

 L D E D DS E ESS E

 L D

 uth re uest er

DDS receive message

 retry eout

get shared secret

 retry eout

 L D L ESS E

DDS send message

DDS send auth re uest

 L D E D DS E ESS E

validate remote iden ty

DDS save auth re uest to en

 L D LED

DDS send message

DDS Security, v1.12 85

9.3.2.9.1 Reliability of the Authentication Handshake

In order to be sufficiently robust to avert sequence number attacks (7.5.3.1), the Authentication

Handshake uses the BuiltinParticipantStatelessMessageWriter and

BuiltinParticipantStatelessMessageReader endpoints (7.5.3) with GenericMessageClassId set

to GMCLASSID_SECURITY_AUTH_REQUEST or

GMCLASSID_SECURITY_AUTH_HANDSHAKE (7.5.3.5). These stateless endpoints send

messages best-effort without paying attention to any sequence number information to remove

duplicates or attempt ordered delivery. Despite this, the Authentication Handshake needs to be able to

withstand the message loss that may occur on the network.

In order to operate robustly in the presence of message loss and sequence number attacks DDS

Security implementations shall follow the rules below:

1. The DDS security implementation shall pass to the AuthenticationPlugin any message received

by the BuiltinParticipantStatelessMessageReader that has a GenericMessageClassId

set to GMCLASSID_SECURITY_AUTH_REQUEST or

GMCLASSID_SECURITY_AUTH_HANDSHAKE.

2. Any time the state-machine indicates that a message shall be sent using the

BuiltinParticipantStatelessMessageWriter and a reply message needs to be received by the

BuiltinParticipantStatelessMessageReader, the DDS implementation shall cache the message

that was sent and set a timer. If a correct reply message is not received when the timer expires,

the state-machine shall send the same message again. This process shall be repeated multiple

times until a correct message is received.

3. Whenever a message is sent using the BuiltinParticipantStatelessMessageWriter, a reply

message is received by the BuiltinParticipantStatelessMessageReader. The reply is then

passed to the AuthenticationPlugin. If the plugin operation returns VALIDATION_NOT_OK,

the implementation transitions back to the previous state that caused the message to be sent and

resends the same message.

Rule #2 makes authentication robust to message loss.

Rule #3 makes authentication robust to an attacker trying to disrupt an authentication exchange by

sending bad replies.

Example application of rule #2: Assume the DDS implementation transitioned to the

HandshakeMessageSend state, sent the message M1 and is now in the HandshakeMessageWait state

waiting for the reply. If no reply is received within an implementation-specific retry-time, the same

message M1 shall be sent again and the process repeated until either a reply is received or an

implementation-specific timeout elapses (or a maximum number of retries is reached).

Example application of rule #3: Assume the DDS implementation transitioned to the

HandshakeMessageSend state, sent the message M2, transitions to HandshakeMessageWait, receives

the reply, transitions to HandshakeMessageReceived, calls process_handshake() and the operation

returns VALIDATION_NOT_OK. In this situation the DDS implementation shall transition back to

HandshakeMessageSend and resent M2 again.

9.3.2.10 Unauthenticated DomainParticipant entities

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The term “Unauthenticated” DomainParticipant entity refers to a discovered

DomainParticipant that cannot be authenticated by the Authentication plugin. This can be either

because they lack support for the Authentication plugin being used, have incompatible plugins,

incompatible plugin configurations, or simply fail the authentication protocol.

86 DDS Security, v1.12

All these cases shall be treated the same. Regardless of the reason, each particicipant shall treat the

other as an “unauthenticated” participant and behave towards it according to what its own

configuration specifies with respect to unauthenticated participants. See 9.8.3.

9.3.2.11 Authentication plugin interface

The Authentication plugin shall have the operations shown in the table below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 29 – Authentication plugin interface

Authentication

No Attributes

Operations
validate_local_identity ValidationResult_t

out: local_identity_handle IdentityHandle

out:

adjusted_participant_guid

GUID_t

domain_id DomainId_t

participant_qos DomainParticipantQos

candidate_participant_guid GUID_t

out: exception SecurityException

get_identity_token Boolean

out: identity_token IdentityToken

handle IdentityHandle

out: exception SecurityException

get_identity_status_tok

en

 Boolean

out: identity_status_token IdentityStatusToken

handle IdentityHandle

out: exception SecurityException

set_participant_securit

y_config

 Boolean

 out:

adjusted_algorithm_info

ParticipantSecurityAlgori

thmInfo

 handle IdentityHandle

 participant_security_config ParticipantSecurityConfig

 out: exception SecurityException

Deleted: 292928

DDS Security, v1.12 87

set_permissions_cred

ential_and_token

 Boolean

handle IdentityHandle

permissions_credential_token PermissionsCredentialTok

en

permissions_token PermissionsToken

out: exception SecurityException

validate_remote_iden

tity

 ValidationResult_t

out: remote_identity_handle IdentityHandle

out: local_auth_request_token AuthRequestMessageToken

remote_auth_request_token AuthRequestMessageToken

local_identity_handle IdentityHandle

remote_identity_token IdentityToken

remote_participant_guid GUID_t

out: exception SecurityException

begin_handshake_requ

est

 ValidationResult_t

out: handshake_handle HandshakeHandle

out: handshake_message HandshakeMessageToken

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

serialized_local_participant_data octet[]

out: exception SecurityException

begin_handshake_repl

y

 ValidationResult_t

out: handshake_handle HandshakeHandle

out: handshake_message_out HandshakeMessageToken

handshake_message_in HandshakeMessageToken

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

serialized_local_participant_data octet[]

out: exception SecurityException

process_handshake ValidationResult_t

out: handshake_message_out HandshakeMessageToken

handshake_message_in HandshakeMessageToken

handshake_handle HandshakeHandle

out: exception SecurityException

get_shared_secret SharedSecretHandle

handshake_handle HandshakeHandle

out: exception SecurityException

get_authenticated_pe

er_credential_token

 Boolean

out: peer_credential_token AuthenticatedPeerCredent

ialToken

handshake_handle HandshakeHandle

out: exception SecurityException

set_listener

 Boolean

listener AuthenticationListener

out: exception SecurityException

return_identity_toke

n

 Boolean

token IdentityToken

out: exception SecurityException

return_identity_stat

us_token

 Boolean

token IdentityStatusToken

out: exception SecurityException

return_authenticated

_peer_credential_tok

en

 Boolean

peer_credential_token AuthenticatedPeerCredent

ialToken

out: exception SecurityException

return_handshake_han

dle

 Boolean

handshake_handle HandshakeHandle

88 DDS Security, v1.12

out: exception SecurityException

return_identity_hand

le

 Boolean

identity_handle IdentityHandle

out: exception SecurityException

return_sharedsecret_

handle

 Boolean

sharedsecret_handle SharedSecretHandle

out: exception SecurityException

DDS Security, v1.12 89

9.3.2.11.1 Type: ValidationResult_t

Enumerates the possible return values of the validate_local_identity and

validate_remote_identity operations.

Table 30 – Values for ValidationResult_t

ValidationResult_t
VALIDATION_OK Indicates the validation has succeeded

VALIDATION_FAILED Indicates the validation has failed
VALIDATION_PENDING_

RETRY

Indicates that validation is still proceeding. The operation shall be

retried at a later point in time.
VALIDATION_PENDING_

HANDSHAKE_REQUEST

Indicates that validation of the submitted IdentityToken requires

sending a handshake message. The DDS Implementation shall call the

operation begin_handshake_request and send the

HandshakeMessageToken obtained from this call using the

BuiltinParticipantMessageWriter with

GenericMessageClassId set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE.
VALIDATION_PENDING_

HANDSHAKE_MESSAGE

Indicates that validation is still pending. The DDS Implementation

shall wait for a message on the BuiltinParticipantMessageReader

and, once this is received, call process_handshake to pass the

information received in that message.
VALIDATION_OK_FINAL

_MESSAGE

Indicates that validation has succeeded but the DDS Implementation

shall send a final message using the

BuiltinParticipantMessageWriter with

GenericMessageClassId set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE.

9.3.2.11.2 Operation: validate_local_identity

Validates the identity of the local DomainParticipant. The operation returns as an output

parameter the IdentityHandle, which can be used to locally identify the local Participant to the

Authentication Plugin.

In addition to validating the identity, this operation also returns the DomainParticipant GUID_t

that shall be used by the DDS implementation to uniquely identify the DomainParticipant on the

network.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

The method shall return either VALIDATION_OK if the validation succeeds, or

VALIDATION_FAILED if it fails, or VALIDATION_PENDING_RETRY if the verification has not

finished.

If VALIDATION_PENDING_RETRY has been returned, the operation shall be called again after a

configurable delay to check the status of verification. This shall continue until the operation returns

either VALIDATION_OK (if the validation succeeds), or VALIDATION_FAILED. This approach

allows non-blocking interactions with services whose verification may require invoking remote

services.

Deleted: 303029

90 DDS Security, v1.12

Parameter (out) local_identity_handle: A handle that can be used to locally refer to the

Authenticated Participant in subsequent interactions with the Authentication plugin. The nature

of the handle is specific to each Authentication plugin implementation. The handle will only be

meaningful if the operation returns VALIDATION_OK.

Parameter (out) adjusted_participant_guid: The GUID_t that the DDS implementation shall use to

uniquely identify the DomainParticipant on the network. The returned

adjusted_participant_guid shall be the one that eventually appears in the participant_guid attribute of

the ParticipantBuiltinTopicData sent via discovery.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter candidate_participant_guid: The GUID_t that the DDS implementation would have

used to uniquely identify the DomainParticipant if the Security plugins were not enabled.

Parameter exception: A SecurityException object.

Return: The operation shall return

• VALIDATION_OK if the validation was successful.

• VALIDATION_FAILED if it failed.

• VALIDATION_PENDING_RETRY if verification has not completed and the operation should be

retried later.

9.3.2.11.3 Operation: validate_remote_identity

Initiates the process of validating the identity of the discovered remote DomainParticipant,

represented as an IdentityToken object. The operation returns the ValidationResult_t

indicating whether the validation succeeded, failed, or is pending a handshake. If the validation

succeeds, an IdentityHandle object is returned, which can be used to locally identify the remote

DomainParticipant to the Authentication plugin.

If the validation can be performed with the information passed and succeeds, the operation shall return

VALIDATION_OK. If it can be performed with the information passed and it fails, it shall return

VALIDATION_FAILED.

The validation of a remote participant might require the remote participant to perform a handshake. In

this situation, the validate_remote_identity operation shall return

VALIDATION_PENDING_HANDSHAKE_REQUEST or

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

If the operation returns VALIDATION_PENDING_HANDSHAKE_REQUEST, then the DDS

implementation shall call the operation begin_handshake_request to continue the validation

process.

If the operation returns VALIDATION_PENDING_HANDSHAKE_MESSAGE, then the DDS

implementation shall wait until it receives a ParticipantStatelessMessage from the remote

participant identified by the remote_participant_guid using the contents described in 9.3.2.11.5 and

then call the operation begin_handshake_reply.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) remote_identity_handle: A handle that can be used to locally refer to the remote

Authenticated Participant in subsequent interactions with the AuthenticationPlugin. The nature

of the remote_identity_handle is specific to each AuthenticationPlugin implementation. The

handle will only be provided if the operation returns something other than VALIDATION_FAILED.

Parameter (out) local_auth_request_token: An AuthRequestMessageToken to be sent using

the BuiltinParticipantStatelessMessageWriter. The contents shall be specified by each plugin

DDS Security, v1.12 91

implementation. If the returned token is TokenNIL (see 7.3.5.3), the

AuthRequestMessageToken shall not be sent.

Parameter remote_auth_request_token: The AuthRequestMessageToken received from the

remote DomainParticipant that caused the authentication to begin. This token shall be NIL if the

authentication was not initiated by the reception of an AuthRequestMessageToken.

Parameter remote_identity_token: A token received as part of

ParticipantBuiltinTopicData, representing the identity of the remote

DomainParticipant.

Parameter remote_participant_guid: GUID_t uniquely identifying the remote participant.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.

• VALIDATION_FAILED if it failed.

• VALIDATION_PENDING_HANDSHAKE_REQUEST if validation has not completed. If this is

returned, the DDS implementation shall call begin_handshake_request, to continue the

validation.

• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall wait for a message on the

BuiltinParticipantMessageReader with the message_identity containing a source_guid that

matches the remote_participant_guid and a message_class_id set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the

operation should be called again at a later point in time to check the validation status.

9.3.2.11.4 Operation: begin_handshake_request

This operation is used to initiate a handshake. It shall be called by the DDS middleware solely as a

result of having a previous call to validate_remote_identity returning

VALIDATION_PENDING_HANDSHAKE_REQUEST.

This operation returns a HandshakeMessageToken that shall be used to send a handshake to the

remote participant identified by the replier_identity_handle.

The contents of the HandshakeMessageToken are specified by the plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication plugin used to

keep the state of the handshake. It is passed to other operations in the Authentication plugin.

Parameter (out) handshake_message_token: A HandshakeMessageToken to be sent using the

BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter initiator_identity_handle: Handle to the local participant that originated the handshake.

Parameter replier_identity_handle: Handle to the remote participant whose identity is being

validated.

Parameter serialized_local_participant_data: CDR Big Endian Serialization for the

ParticipantBuiltInTopicDataSecure object associated with the local

DomainParticipant.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.

• VALIDATION_FAILED if it failed.

92 DDS Security, v1.12

• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter and then wait for the reply message on the

BuiltinParticipantMessageReader. The DDS implementation shall set the

ParticipantStatelessMessage participantGuidPrefix message_class_id to

GMCLASSID_SECURITY_AUTH_HANDSHAKE and fill the message_data with the

handshake_message HandshakeMessageToken and set the destination_participant_guid to

match the DDS GUID_t of the destination DomainParticipant. When the reply message is

received the DDS implementation shall call the operation begin_handshake_reply, to

continue the validation.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send the returned handshake_message using the

BuiltinParticipantMessageReader.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

In the cases where the return code indicates that a message shall be sent using the

BuiltinParticipantMessageWriter, the DDS implementation shall set the

ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

• The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

• The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set with source_guid as GUID_UNKNOWN and

sequence_number to zero.

• The message_data shall be filled with the handshake_message HandshakeMessageToken.

9.3.2.11.5 Operation: begin_handshake_reply

This operation shall be invoked by the DDS implementation in reaction to the reception of the initial

handshake message that originated on a DomainParticipant that called the

begin_handshake_request operation. It shall be called by the DDS implementation solely as a

result of having a previous call to validate_remote_identity returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE and having received a message on the

BuiltinParticipantMessageReader with attributes set as follows:

• message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE

• message_identity source_guid matching the GUID_t of the DomainParticipant associated

with the initiator_identity_handle

• destination_participant_guid matching the GUID_t of the receiving DomainParticipant

This operation generates a handshake_message_out in response to a received

handshake_message_in. Depending on the return value of the operation, the DDS implementation

shall send the handshake_message_out using the BuiltinParticipantMessageWriter to the participant

identified by the initiator_identity_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the

plugin implementation.

DDS Security, v1.12 93

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication Plugin used to keep the

state of the handshake. It is passed to other operations in the Plugin.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing a message

to be sent using the BuiltinParticipantMessageWriter. The contents shall be specified by each plugin

implementation.

Parameter handshake_message_in: A HandshakeMessageToken containing a message received

from the BuiltinParticipantMessageReader. The contents shall be specified by each plugin

implementation.

Parameter initiator_identity_handle: Handle to the remote participant that originated the handshake.

Parameter replier_identity_handle: Handle to the local participant that is initiating the handshake

response.

Parameter serialized_local_participant_data: CDR Big Endian Serialization for the

ParticipantBuiltInTopicDataSecure object associated with the local

DomainParticipant.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.

• VALIDATION_FAILED if it failed.

• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter and then wait for a reply message on the

BuiltinParticipantMessageReader from that remote DomainParticipant.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send the returned handshake_message_out using the

BuiltinParticipantMessageWriter.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

In cases where the return code indicates that a message shall be sent using the

BuiltinParticipantMessageWriter, the DDS implementation shall set the

ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

• The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

• The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set to match the message_identity of the

ParticipantStatelessMessage received that triggered the execution of the

begin_handshake_reply operation.

• The message_data shall be filled with the handshake_message_out HandshakeMessageToken.

9.3.2.11.6 Operation: process_handshake

This operation is used to continue a handshake. It shall be called by the DDS middleware solely as a

result of having a previous call to begin_handshake_request or begin_handshake_reply that returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE and having also received a

94 DDS Security, v1.12

ParticipantStatelessMessage on the BuiltinParticipantMessageReader with attributes set

as follows:

• message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE

• message_identity source_guid matching the GUID_t of the peer DomainParticipant

associated with the handshake_handle

• related_message_identity matching the message_identity of the last

ParticipantStatelessMessage sent to the peer DomainParticipant associated with the

handshake_handle.

• destination_participant_guid matching the GUID_t of the receiving DomainParticipant.

This operation generates a handshake_message_out HandshakeMessageToken in response to a

received handshake_message_in HandshakeMessageToken. Depending on the return value of

the function the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter to the peer participant identified by the handshake_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the

plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing the

message_data that should be placed in a ParticipantStatelessMessage to be sent using the

BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter handshake_message_in: The HandshakeMessageToken contained in the

message_data attribute of the ParticipantStatelessMessage received. The interpretation of

the contents shall be specified by each plugin implementation.

Parameter handshake_handle: Handle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.

• VALIDATION_FAILED if it failed.

• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send a ParticipantStatelessMessage continuing

the returned handshake_message_out using the BuiltinParticipantMessageWriter and then wait

for a reply message on the BuiltinParticipantMessageReader from that remote

DomainParticipant.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send a ParticipantStatelessMessage containing the returned

handshake_message_out using the BuiltinParticipantMessageWriter but not wait for any replies.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

In the cases where the return code indicates that a ParticipantStatelessMessage shall be

sent using the BuiltinParticipantMessageWriter the DDS implementation shall set the fields of the

ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

• The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

DDS Security, v1.12 95

• The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set to match the message_identity of the

ParticipantStatelessMessage received that triggered the execution of the

begin_handshake_reply operation.

• The message_data shall be filled with the handshake_message_out HandshakeMessageToken.

9.3.2.11.7 Operation: get_shared_secret

Retrieves the SharedSecretHandle resulting with a successfully completed handshake.

This operation shall be called by the DDS middleware on each HandshakeHandle after the

handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation

called on that handle (begin_handshake_request, begin_handshake_reply, or

process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

The retrieved SharedSecretHandle shall be used by the DDS middleware in conjunction with the

CryptoKeyExchange interface of the Cryptographic Plugin to exchange cryptographic key

material with other DomainParticipant entities.

If an error occurs, this method shall return the NILHandle and fill the SecurityException.

Parameter handshake_handle: Handle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply, which has successfully completed the

handshake operations.

Parameter exception: A SecurityException object.

9.3.2.11.8 Operation: get_authenticated_peer_ credential_token

Retrieves the AuthenticatedPeerCredentialToken resulting with a successfully completed

authentication of a discovered DomainParticipant.

This operation shall be called by the DDS middleware on each HandshakeHandle after the

handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation

called on that handle (begin_handshake_request, begin_handshake_reply, or

process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter peer_credential_token (out): A placeholder for the returned

AuthenticatedPeerCredentialToken.

Parameter handshake_handle: HandshakeHandle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply, which has successfully

completed the handshake operations.

Parameter exception: A SecurityException object.

9.3.2.11.9 Operation: get_identity_token

Retrieves an IdentityToken used to represent on the network the identity of the

DomainParticipant identified by the specified IdentityHandle.

Parameter identity_token (out): The returned IdentityToken.

Parameter handle: The handle used to locally identify the DomainParticipant for which an

IdentityToken is desired. The handle must have been returned by a successful call to

validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter exception: A SecurityException object.

96 DDS Security, v1.12

Return: If an error occurs, this method shall return false and fill the SecurityException.

Otherwise it shall return the IdentityToken.

9.3.2.11.10 Operation: get_identity_status_token

Retrieves an AuthenticationToken used to represent on the network the authentication state of

the DomainParticipant identified by the specified IdentityHandle.

Parameter identity_token (out): The returned IdentityStatusToken.

Parameter handle: The handle used to locally identify the DomainParticipant for which an

IdentityStatusToken is desired. The handle must have been returned by a successful call to

validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false and fill the SecurityException.

Otherwise it shall return the IdentityStatusToken.

9.3.2.11.11 Operation: set_participant_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Configures various aspects of the Authentication algorithm used by the Authentication plugin

and retrieves an updated ParticipantSecurityAlgorithmInfo that contains the

cryptographic algorithms used and supported by the Authentication plugin.

The operation shall be called by the middleware after calling validate_local_identity on the

Authentication plugin and calling the get_participant_security_config on the

AccessControl plugin, AccessControl interface.

The Authentication plugin shall configure itself according to the content of the

participant_security_config parameter, including limiting the cryptographic algorithms used to those

that appear in the supported_mask of the participant_security_config parameter field algorithm_info of

type ParticipantSecurityAlgorithmInfo (see 7.3.14).

For instance, the Authentication plugin shall limit the Key Establishment algorithms used to

those that appear in the member algorithm_info.key_establishment_info. supported_mask and likewise

for the other kinds of cryptographic algorithms.

If the Authentication plugin is not able to restrict the algorithms used as specified in the

participant_security_config.algorithm_info the operation shall fail and return an exception.

The ParticipantSecurityAlgorithmInfo returned in the adjusted_algorithm_info (output)

parameter shall be used to configure the fields of the ParticipantBuiltinTopicData sent

using the DCPSParticipants builtin Topic.

Parameter handle: The handle used to locally identify the DomainParticipant. The handle must

have been returned by a successful call to validate_local_identity, otherwise the operation

shall return false and fill the SecurityException.

Parameter adjusted_algorithm_info (out): The parameter shall be shall be initialized with a copy of

the participant_security_config.algorithm_info (input) parameter. Subsequently the operation shall:

Add any cryptographic algorithm that may be used by the plugin to the required_mask for the

corresponding algorithm kind. For example it shall add any algorithm it used for Key Establismment to

the adjusted_algorithm_info.key_establishment_info.required_mask.

Remove any cryptographic algorithm not supported by the plugin from the supported_mask for the

corresponding algorithm kind. For example it shall remove Key Establismment algorithms it does not

support from the adjusted_algorithm_info.key_establishment_info.supported_mask.

DDS Security, v1.12 97

Parameter participant_security_config (in): This parameter shall match the value of the

participant_security_config parameter returned from calling

get_participant_security_config on the AccessControl plugin, AccessControl

interface.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false and fill the SecurityException.

Otherwise it shall fill the adjusted_algorithm_info.

9.3.2.11.12 Operation: set_permissions_credential_and_token

Associates the PermissionsCredentialToken (see 9.4.2.2) returned by the AccessControl

plugin operation get_permissions_credential_token with the local

DomainParticipant identified by the IdentityHandle.

This operation shall be called by the middleware after calling validate_local_identity and

prior to any calls to validate_remote_identity.

Parameter handle: The handle used to locally identify the DomainParticipant whose

PermissionsCredential is being supplied. The handle must have been returned by a successful

call to validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter permissions_credential_token: The PermissionsCredentialToken associated

with the DomainParticipant identified by the IdentityHandle. The

permissions_credential_token must have been returned by a successful call to

get_permissions_credential_token, on the AccessControl plugin. Otherwise the

operation shall return false and fill the SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false, otherwise it shall return true.

9.3.2.11.13 Operation: set_listener

Sets the AuthenticationListener that the Authentication plugin will use to notify the

DDS middleware infrastructure of events relevant to the Authentication of DDS Participants.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: An AuthenticationListener object to be attached to the

Authentication object. If this argument is nil, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation

returns false.

9.3.2.11.14 Operation: return_identity_token

Returns the IdentityToken object to the plugin so it can be disposed of.

Parameter token: An IdentityToken issued by the plugin on a prior call to

get_identity_token.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.11.15 Operation: return_identity_status_token

Returns the IdentityStatusToken object to the plugin so it can be disposed of.

Parameter token: An IdentityStatusToken issued by the plugin on a prior call to

get_identity_status_token.

98 DDS Security, v1.12

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.11.16 Operation: return_authenticated_peer_credential_token

Returns the AuthenticatedPeerCredentialToken object to the plugin so it can be disposed

of.

Parameter peer_credential_token: An AuthenticatedPeerCredentialToken issued by the

plugin on a prior call to get_authenticated_peer_credential_token.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.11.17 Operation: return_handshake_handle

Returns the HandshakeHandle object to the plugin so it can be disposed of.

Parameter handshake_handle: A HandshakeHandle issued by the plugin on a prior call to

begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.11.18 Operation: return_identity_handle

Returns the IdentityHandle object to the plugin so it can be disposed of.

Parameter identity_handle: An IdentityHandle issued by the plugin on a prior call to

validate_local_identity or validate_remote_identity.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.11.19 Operation: return_sharedsecret_handle

Returns the SharedSecretHandle object to the plugin so it can be disposed of.

Parameter sharedsecret_handle: An IdentityHandle issued by the plugin on a prior call to

get_shared_secret.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

9.3.2.12 AuthenticationListener

The AuthenticationListener provides the means for notifying the DDS middleware

infrastructure of events relevant to the authentication of DDS DomainParticipant entities. For

example, identity certificates can expire; in this situation, the AuthenticationPlugin shall call

the AuthenticationListener to notify the DDS implementation that the identity of a specific

DomainParticipant is being revoked.

Table 31 – Authentication listener class

AuthenticationListener

No Attributes

Operations
on_revoke_identity Boolean

plugin Authentication

handle IdentityHandle

out: exception SecurityException

on_status_changed void

plugin Authentication

Deleted: 313130

DDS Security, v1.12 99

handle IdentityHandle

status_kind AuthStatusKind

out: exception SecurityException

9.3.2.12.1 Enumeration: AuthStatusKind

The AuthStatusKind enumerates the kind of changes to the status of the Authentication

plugin or underlying Identity that are notified via the AuthenticationListener operation

on_status_changed. The possible values are described in the table below:

Table 32 – Description of the AuthStatusKind values

Value Meaning

IDENTITY_STATUS Indicates a change to an identity status.
Identity Status changes are represented externally to the
Authentication plugin with an IdentityStatusToken that

can be retrieved via the operation get_identity_status_token

on the Authentication interface.

The changed IdentityStatusToken shall be propagated by the

DDS implementation to the other DomainParticipants using the

DCPSParticipantsSecure builtin Topic.

9.3.2.12.2 Operation: on_revoke_identity

Revokes the identity of the participant identified by the IdentityHandle. The corresponding

IdentityHandle becomes invalid. As a result of this, the DDS middleware shall terminate any

communications with the DomainParticipant associated with that handle.

DDSSEC12-122 – Provide mechanism for changing the session keys

The DDS middleware shall create a new revision of any Key Material that it had shared with the

DomainParticipant identified by the IdentityHandle and send the revised Key Material to

the remaining DomainParticipant entities (those whose identity has not been revoked) and had

the previous revision of the Key Material. In other words, the DomainParticipant entities that are

still authenticated and have the appropriate permissions to access the information protected by the

regenerated Key Material.

The DDS middleware shall use the revised Key Material such that DomainParticipant that have

not received the revision (e.g. the one whose identity has been revoked) are not able to decode the

messages, even if they were to accidentally receive those messages (e.g. via multicast).

The DDS middleware may delay switching to the use of the revised Key Material until the other

DomainParticipant entities have confirmed reception or sufficient time has elapsed.

To minimize the need for DataWriters to re-encrypt data stored in their caches, DataReaders with

DURABILITY kind different from VOLATILE shall retail at least the last 8 revisions of the Key

Material. Likewise, DataWriters shall not send messages that use KeyMaterial that is more than 7

revisions earlier than the current.

If an error occurs, this method shall return false.

Parameter plugin: An Authentication plugin object that has this listener allocated.

Parameter handle: An IdentityHandle object that corresponds to the Identity of a DDS

Participant whose identity is being revoked.

9.3.2.12.3 Operation: on_status_changed

Informs the DomainParticipant that a status associated with the Authentication plugin or an

Identity managed by the plugin has changed.

Deleted: 323231

100 DDS Security, v1.12

Depending on the kind of status the DDS implementation may need to take specific actions to retrieve

information on the changed status and propagate it to other DomainParticipant entities. The

actions that shall be taken for each kind of status are described in clause 9.3.2.12.1.

9.4 Access Control Plugin

The Access Control Plugin API defines the types and operations necessary to support an access control

mechanism for DDS DomainParticipants.

9.4.1 Background (Non-Normative)

Once a DomainParticipant is authenticated, its permissions need to be validated and enforced.

Permissions or access rights are often described using an access control matrix where the rows are

subjects (i.e., users), the columns are objects (i.e., resources), and a cell defines the access rights that a

given subject has over a resource. Typical implementations provide either a column-centric view (i.e.,

access control lists) or a row-centric view (i.e., a set of capabilities stored with each subject). With the

proposed AccessControl SPI, both approaches can be supported.

Before we can describe the access control plugin SPI, we need to define the permissions that can be

attached to a DomainParticipant. Every DDS application uses a DomainParticipant to

access or produce information on a Domain; hence the DomainParticipant has to be allowed to

run in a certain Domain. Moreover, a DomainParticipant is responsible for creating

DataReaders and DataWriters that communicate over a certain Topic. Hence, a

DomainParticipant has to have the permissions needed to create a Topic, to publish through its

DataWriters certain Topics, and to subscribe via its DataReaders to certain Topics. There

is a very strong relationship between the AccessControl plugin and the Cryptographic plugin

because encryption keys need to be generated for DataWriters based on the

DomainParticipant’s permissions.

9.4.2 AccessControl Plugin Model

The AccessControl plugin model is presented in the figure below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDS Security, v1.12 101

Figure 10 – AccessControl Plugin Model

9.4.2.1 PermissionsToken

A PermissionsToken contains summary information on the permissions for a

DomainParticipant in a manner that can be externalized and propagated over DDS discovery.

The specific content of the PermissionsToken shall be defined by each

AccessControlPlugin specialization. The intent is to provide only summary information on the

permissions or derived information such as a hash.

class AccessControl

 interf ce

AccessControl

 chec cre te d t riter Boole n

 chec cre te d t re der Boole n

 chec cre te p r cip nt Boole n

 chec cre te topic Boole n

 chec loc l d t riter dispose inst nce Boole n

 chec loc l d t riter register inst nce Boole n

 chec re ote d t re der Boole n

 chec re ote d t riter Boole n

 chec re ote p r cip nt Boole n

 chec re ote topic Boole n

 chec loc l d t riter tch Boole n

 chec loc l d t re der tch Boole n

 chec re ote d t riter dispose inst nce Boole n

 chec re ote d t riter register inst nce Boole n

 get d t re der security con g Boole n

 get d t riter security con g Boole n

 get p r cip nt security con g Boole n

 get per issions creden l to en Boole n

 get per issions to en Boole n

 get topic security con g Boole n

 return d t riter security con g Boole n

 return per issions to en Boole n

 return d t re der security con g Boole n

 return p r cip nt security con g Boole n

 return per issions creden l to en Boole n

 return topic security con g Boole n

 set listener Boole n

 v lid te loc l per issions er issions ndle

 v lid te re ote per issions er issions ndle

 pri i ve

Permissions andle

 interf ce

AccessControlListener

 revo e persi issions Boole n

 discovery

PermissionsTo en

 pri i ve

Iden ty andle

Par cipantSecurityCon g

 llo un uthen c ted p r cip nts Boole n

 is ccess protected Boole n

 c p r cip nt proper es roperty

 lgorith info r cip ntSecurity lgorith nfo

 is discovrey protected Boole n

 is liveliness protected Boole n

 is rtps protected Boole n

 is rtps ps protected Boole n

 is ey revision en led Boole n

 ndpointSecurityCon g

 c endpoint proper es roperty

 lgorith info EndpointSecurity lgoriht nfo

 is ey protected Boole n

 is p ylo d protected Boole n

 is su ess ge protected Boole n

Property

TopicSecurityCon g

 is discovery protected Boole n

 is liveliness protected Boole n

 is re d protected Boole n

 is rite protected Boole n

 pri i ve

Plugin ndpointSecurityA ributes as

Par cipantSecurityAlgorithmInfo

 digit l sign ture r cip ntSecurityDigit lSign ture lgorith nfo

 ey est lish ent r cip ntSecurity eyEst lish ent lgorith nfo

 sy etric cipher r cip ntSecuritySy etric ipher lgorith nfo

 pri i ve

PluginPar cipantSecurityA ributes as

 ndpointSecurityAlgorihtmInfo

 sy etric cipher EndpointSecuritySy etric ipher lgoriht nfo

 use

 cre te

 cre te

 plugin endpoint ri utes

 plugin p r cip nt ri utes

 cre te

 cre te

 cre te

Deleted:

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_topic_security_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

+ return_participant_sec_attributes(): Boolean

+ return_datawriter_sec_attributes(): Boolean

+ return_datareader_sec_attributes(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle

ParticipantSecurityAttributes

+ allow_unauthenticated_participants: Boolean

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

+ is_discovrey_protected: Boolean

+ is_liveliness_protected: Boolean

+ ac_participant_properties: Property [0..*]

EndpointSecurityAttributes

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

+ is_key_protected: Boolean

+ ac_endpoint_properties: Property [0..*]

Property

TopicSecurityAttributes

+ is_read_protected: Boolean

+ is_write_protected: Boolean

+ is_discovery_protected: Boolean

+ is_liveliness_protected: Boolean

«primitive»

PluginEndpointSecurityAttributesMask

«primitive»

PluginParticipantSecurityAttributesMask

«create»

«create»

«create»

+plugin_participant_attributes

«use»

«create»

«create»

+plugin_endpoint_attributes

102 DDS Security, v1.12

9.4.2.2 PermissionsCredentialToken

A PermissionsCredentialToken encodes the permissions and access information for a

DomainParticipant in a manner that can be externalized and sent over the network. The

PermissionsCredential is used by the AccessControl plugin to verify the permissions of a

peer DomainParticipant and perform all the access-control decisions related to that peer

DomainParticipant, including determining whether it can join a domain, match specific local

DataWriters or DataReaders, etc.

The PermissionsCredentialToken is intended for dissemination during the authentication

handshake. The specific content of the PermissionsCredentialToken shall be defined by each

AccessControl plugin specialization and it may not be used by some AccessControl plugin

specializations.

9.4.2.3 PermissionsHandle

A PermissionsHandle is an opaque local reference to internal state within the AccessControl

plugin. It is understood only by the AccessControl plugin and characterizes the permissions

associated with a specific DomainParticipant. This object is returned by the AccessControl

plugin as part of the validation of the permissions of a DomainParticipant and is used whenever

a client of the AccessControl plugin needs to refer to the permissions of a previously validated

DomainParticipant.

9.4.2.4 ParticipantSecurityConfig

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The ParticipantSecurityConfig describe how the middleware should protect the

DomainParticipant. This is a structured type with the following IDL representation, whose

members are described in Table 33 below:

DDSSEC12-122 – Provide mechanism for changing the session keys

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

@extensibility (APPENDABLE)

struct ParticipantSecurityConfig {

 boolean allow_unauthenticated_participants;

 boolean is_access_protected;

 boolean is_rtps_axk_protected;

 boolean is_rtps_psk_protected;

 boolean is_discovery_protected;

 boolean is_liveliness_protected;

 boolean is_key_revision_enabled;

 PluginParticipantSecurityAttributesMask plugin_participant_attributes;

 PropertySeq ac_endpoint_properties;

 ParticipantSecurityAlgorithmInfo algorithm_info;

};

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 33 – Description of the ParticipantSecurityConfig

Member Type Meaning

allow_unauthen
ticated_particip
ants

Boolean Indicates whether the matching of the DomainParticipant with a remote
DomainParticipant requires successful authentication.

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: the table

Deleted: Table 33Table 33Table 32

Deleted: ParticipantSecurityAttributes

DDS Security, v1.12 103

If allow_unauthenticated_participants is TRUE, the DomainParticipant shall
allow matching other DomainParticipants—even if the remote
DomainParticipant cannot authenticate—as long as there is not already a valid
authentication with the same DomainParticipant's GUID. Additionally, a
DomainParticipant that later authenticates would kick out the unauthenticated
DomainParticipant if it has the same GUID.
If allow_unauthenticated_participants is FALSE, the DomainParticipant shall
enforce the authentication of remote DomainParticipants and disallow
matching those that cannot be successfully authenticated.

is_access_protec
ted

Boolean Indicates whether the matching of the DomainParticipant with a remote
DomainParticipant requires authorization by the AccessControl plugin.
If is_access_protected is TRUE, then the DDS middleware shall call and
get_authenticated_peer_credential_token,

validate_remote_permissions, and check_remote_participant

operations on the matched and authenticated remote DomainParticipant. Any
failure in these calls will result in failing to authorize the remote participant,
which shall be removed by the local participant.
If is_access_protected is FALSE, then the DDS middleware shall call
get_authenticated_peer_credential_token and

validate_remote_permissions operations on the matched and

authenticated remote DomainParticipant. However, a HandleNIL return from
these operations will not prevent authorization.

is_rtps_axk_prot
ected

Boolean
Indicates whether RTPS Non-Bootstrapping Messages (7.5.7) should be
protected with a Participant Key created by the sending
DomainParticipant and exchanged post-authentication. This “Autenticated

Partcipant Exchanged Key” is generated and shared by the sending participant.

If is_rtps_axk_protected is TRUE then:
(1) allow_unauthenticated_participants must be FALSE.
(2) The DDS middleware shall call the operations on the CryptoKeyFactory for
the local DomainParticipant.
(3) The DDS middleware shall call the operations on the CryptoKeyExchange
for matched DomainParticipants that have been authenticated.
(4) All RTPS non-bootstrapping messages sent by the DomainParticipant to
matched DomainParticipants shall be transformed using the CryptoTransform
operation encode_rtps_message

(5) All RTPS non-bootstrapping messages received shall be transformed using
the CryptoTransform operation decode_rtps_message.

is_rtps_psk_prot
ected

Boolean
Indicates whether all RTPS Messages (including RTPS Bootstrapping Messages)
should be protected: RTPS Messages that are not otherwise protected by an
“Authenticated Partcipant Exchanged Key” will be protected with a Pre-Shared
Key.

• If is_rtps_psk_protected is FALSE the RTPS Bootstrapping Messages
messages will not be cryptographically protected even if
is_rtps_axk_protected is set to TRUE.

• If is_rtps_psk_protected is TRUE all RTPS messages will be
cryptographically protected by either a pre-shared key or a
“Autenticated Partcipant Exchanged Key.”

If is_rtps_psk_protected is TRUE, then:

(1) The DDS middleware shall call the operations on the CryptoKeyFactory

for the local DomainParticipant.

Deleted: Indicates whether the whole RTPS Message
needs to be transformed by the CryptoTransform
operation encode_rtps_message.¶

Deleted: The

Deleted: that have been authenticated

Deleted: and

Deleted: the

Deleted: from the matched authenticated
DomainParticipants …

Deleted: , except for RTPS messages that contain
submessages for any of the following builtin topics
"DCPSParticipants",
"DCPSParticipantStatelessMessage", or
"DCPSParticipantVolatileMessageSecure". These RTPS
messages shall not be transformed by
encode_rtps_message/decode_rtps_message

operations.¶
(5) RTPS messages that contain submessages for the
builtin topics "DCPSParticipants",
"DCPSParticipantStatelessMessage", or
"DCPSParticipantVolatileMessageSecure" cannot
contain submessages for any other builtin topic or
application-defined topic.¶
If is_rtps_protected is FALSE, then the above actions shall
not be taken.

104 DDS Security, v1.12

(2) The DDS middleware shall call the operations on the
CryptoKeyExchange for matched DomainParticipants (authenticated

or not).

(3) All RTPS messages sent shall be transformed using the
CryptoTransform operation encode_rtps_message

(4) All RTPS messages received shall be transformed using the
CryptoTransform operation decode_rtps_message.

If is_rtps_psk_protected is FALSE, then:

(1) RTPS Bootstrapping Messages sent shall NOT be transformed using the
CryptoTransform operation encode_rtps_message

(2) RTPS Bootstrapping Messages received shall NOT be transformed using
the CryptoTransform operation decode_rtps_message.

is_discovery_pro
tected

Boolean Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and CryptoTransform for

the DCPSPublicationsSecure and DCPSSubscriptionsSecure entities:
If is_discovery_protected is TRUE, then the CryptoKeyFactory,

CryptoKeyExchange operations shall be called for the
DCPSPublicationsSecure and DCPSSubscriptionsSecure entities to create the
associated cryptographic material and send it to the matched entities.
If is_discovery_protected is FALSE, then the CryptoKeyFactory,

CryptoKeyExchange and CryptoTransform operations will not be called.

If is_discovery_protected is TRUE, the submessages sent by the
DCPSPublicationsSecure and DCPSSubscriptionsSecure DataWriters shall

be transformed using the CryptoTransform operation

encode_datawriter_submessage and the messages received from the

matched DataReaders shall be transformed using the CryptoTransform

operation decode_datareader_submessage.

If is_discovery_protected is TRUE, the submessages sent by the
DCPSPublicationsSecure and DCPSSubscriptionsSecure DataReaders shall be
transformed using the CryptoTransform operation

encode_datareader_submessage and the messages received from the

matched DataWriters shall be transformed using the CryptoTransform

operation decode_datawriter_submessage.

Independent of the setting of is_discovery_protected, the CryptoTransform

operations encode_serialized_payload and

decode_serialized_payload shall never be called for the

DCPSPublicationsSecure and DCPSSubscriptionsSecure entities.
is_liveliness_pro
tected

Boolean
Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and CryptoTransform for

the BuiltinParticipantMessageSecure entities:

If is_liveliness_protected is TRUE, then the CryptoKeyFactory,

CryptoKeyExchange operations shall be called for the

BuiltinParticipantMessageSecure entities to create the associated
cryptographic material and send it to the matched entities.

If is_liveliness_protected is FALSE, then the CryptoKeyFactory,

CryptoKeyExchange and CryptoTransform operations will not be called.

If is_liveliness_protected is TRUE, the submessages sent by the
BuiltinParticipantMessageSecure DataWriter shall be transformed using

the CryptoTransform operation encode_datawriter_submessage and

DDS Security, v1.12 105

the messages received from the matched DataReaders shall be transformed

using the CryptoTransform operation

decode_datareader_submessage.

If is_liveliness_protected is TRUE, the submessages sent by the
BuiltinParticipantMessageSecure DataReader shall be transformed using

the CryptoTransform operation encode_datareader_submessage and

the messages received from the matched DataWriters shall be transformed

using the CryptoTransform operation

decode_datawriter_submessage.

Independent of the setting of is_liveliness_protected, the CryptoTransform

operations encode_serialized_payload and

decode_serialized_payload shall never be called for the

BuiltinParticipantMessageSecure entities.
is_key_revision_
enabled

Boolean
Indicates the DDS middleware will revise Key Material for its entities when
certain events are encountered (e.g. the identity of a matched
DomainParticipant is revoked).

plugin_participa
nt_attributes

PluginPartici
pantSecurity
AttributesM
ask

This field is a holder for plugin-specific information that is propagated via
discovery as part of the ParticipantSecurityInfo (see 7.3.23).
The definition for the builtin plugins can be found in clause 10.4.2.4.

ac_participant_p
roperties

PropertySeq Additional properties to add to the participant_properties parameter passed to
the CryptoKeyFactory operation register_local_participant. See

9.5.1.8.1.
The returned ac_participant_properties and their interpretation shall be
specified by each plugin implementation.

algorithm_info ParticipantS
ecurityAlgor
ithmInfo

Cryptographic algorithms used and supported by the participant. See 7.3.14.

9.4.2.5 Definition of the ParticipantSecurityAttributesMask

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The ParticipantSecurityAttributesMask is used to encode selected fields from the

ParticipantSecurityConfig in a compact way such that it can be included in the

ParticipantSecurityInfo, see 7.3.24.

This type has the following IDL representation:
typedef unsigned long ParticipantSecurityAttributesMask;

The mapping of the selected fields of the ParticipantSecurityConfig to

ParticipantSecurityAttributesMask shall be as follows:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 34 – Mapping of fields ParticipantSecurityConfig to bits in ParticipantSecurityAttributesMask

Field in ParticipantSecurityConfig Corresponding bit in the
ParticipantSecurityAttributesMask

allow_unauthenticated_participants No mapping.
is_access_protected No mapping.
is_rtps_axk_protected #define

PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_AX
K_PROTECTED (0x00000001 << 0)

Deleted: 7.3.237.3.237.3.22

Deleted: 9.5.1.8.19.5.1.8.19.5.1.7.1

Deleted: the

Deleted: value

Deleted: of

Deleted: ParticipantSecurityAttributes

Deleted: 7.3.247.3.247.3.23

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: , this attribute is not checked remotely

Deleted: , this attribute is not checked remotely

106 DDS Security, v1.12

is_discovery_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_DISCOVE
RY_PROTECTED (0x00000001 << 1)|

is_liveliness_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINE
SS_PROTECTED (0x00000001 << 2)

is_key_revision_enabled #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_KEY_REV
ISION_ENABLED (0x00000001 << 3)

is_rtps_psk_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_PS
K_PROTECTED (0x00000001 << 4)

is_valid #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_VALID
(0x00000001 << 31)|

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 35 – Mapping of fields ParticipantSecurityConfig to bits in ParticipantSecurityOptionalAttributesMask

Field in ParticipantSecurityConfig Corresponding bit in the
ParticipantSecurityOptionlAttributesMask

(applies to both is_set and value fields)

allow_unauthenticated_participants #define
PARTICIPANT_SECURITY_OPT_ATTRIBUTES_FLAG_ALLO
W_UNAUTHENTICATED_PARTICIPANTS (0x0001 << 0)

is_access_protected #define
PARTICIPANT_SECURITY_OPT_ATTRIBUTES_FLAG_IS_ACC
ESS_PROTECTED (0x0001 << 1)

is_rtps_axk_protected No mapping.
is_discovery_protected No mapping.
is_liveliness_protected No mapping.
is_key_revision_enabled No mapping.
is_rtps_psk_protected No mapping.
is_valid No mapping.

9.4.2.6 TopicSecurityConfig

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The TopicSecurityConfig describe how the middleware shall protect the Entity. This is a

structured type with the following IDL representation, whose members are described in

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

Table 36 below:

@extensibility (APPENDABLE)

struct TopicSecurityConfig {

 boolean is_read_protected;

 boolean is_write_protected;

 boolean is_discovery_protected;

 boolean is_liveliness_protected;

};

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints

Deleted: TopicSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: the table

Deleted: DDSSEC12-90 - Meeting CNSSP-15 security

requirements¶

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints¶

Table 36DDSSEC12-90 - Meeting CNSSP-15 security

requirements¶

DDSSEC12-86 - Secure TypeLookup Built-In Endpoints¶

Table 36Table 34

DDS Security, v1.12 107

Table 36 – Description of the TopicSecurityConfig

Member Type Meaning

is_read_protected Boolean Indicates if read access to the Topic is protected. If is_read_protected is FALSE,

then local DataReader creation and remote DataReader matching can

proceed without further access-control mechanisms imposed. Otherwise, they

shall be checked using the AccessControl operations.

is_write_protected Boolean Indicates if read access to the Topic is protected. If is_write_protected is

FALSE, then local DataWriter creation and remote DataWriter matching

can proceed without further access-control mechanisms imposed. Otherwise, they

shall be checked using the AccessControl operations.

is_discovery_protected Boolean Indicates if the discovery information for the entity shall be sent using a
secure builtin discovery topics or the regular builtin discovery topics.
If is_discovery_protected is TRUE, then discovery information for that entity
shall be sent using the SEDPbuiltinPublicationsSecureWriter
SEDPbuiltinSubscriptionsSecureWriter.
If is_discovery_protected is FALSE, then discovery information for that entity
shall be sent using the SEDPbuiltinPublicationsWriter or
SEDPbuiltinSubscriptionsWriter.
Also impacts which Types can be looked-up using the regular (non-secure)
Builtin TypeLookup Endpoints and which require use of the Builtin Secure
TypeLookup Endpoints (7.5.5):

• If a type belongs to the set of “types an Endpoint depends on” for an
Endpoint that has is_discovery_protected = FALSE, then information
about the type’s TypeObject and types it depends on can be looked
up using the regular (non-secure) Builtin TypeLookup Endpoints as
well as using the Secure Builtin TypeLookup Endpoints.

• Otherwise, the information about the type’s TypeObject and the and
types it depends on can only be looked-up using the Secure Builtin
TypeLookup Endpoints.

See 7.5.6 for the definition of the “types an Endpoint depends on”.
is_liveliness_protected Boolean The value of this attribute matters only if the DataWriter

LivelinessQos policy is AUTOMATIC_LIVELINESS_QOS or

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS. In this case it indicates
whether the liveliness information for the entity shall be sent using the
BuiltinParticipantMessage or the BuiltinParticipantMessageSecure builtin
Topic.

If is_liveliness_protected is TRUE then the liveliness heartbeats are sent using
the BuiltinParticipantMessageSecure builtin Topic. Otherwise they are

sent using the BuiltinParticipantMessage builtin Topic.

9.4.2.7 EndpointSecurityConfig

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The EndpointSecurityConfig describe how the middleware shall protect the Entity. This is a

structured type, derived from TopicSecurityConfig, with the following IDL representation, whose

members are described in Table 37 below:

@extensibility (APPENDABLE)

struct EndpointSecurityConfig : TopicSecurityConfig {

 boolean is_submessage_protected;

 boolean is_payload_protected;

 boolean is_key_protected;

 PluginEndpointSecurityAttributesMask plugin_endpoint_attributes;

 PropertySeq ac_endpoint_properties;

 EndpointSecurityAlgorithmInfo algorithm_info;

Deleted: 363634

Deleted: TopicSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: additional

Deleted: the table

Deleted: Table 37Table 37Table 35

108 DDS Security, v1.12

};

Table 37 – Description of the EndpointSecurityConfig

Member Type Meaning

is_submessage_protected Boolean Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and CryptoTransform for the
entity:
If is_submessage_protected is TRUE, then the CryptoKeyFactory,
CryptoKeyExchange operations shall be called for that entity to create
the associated cryptographic material and send it to the matched
entities.
If is_submessage_protected is FALSE, then the CryptoKeyFactory,
CryptoKeyExchange and CryptoTransform operations are called only if
is_payload_protected is TRUE.
If is_submessage_protected is TRUE and the entity is a DataWriter, the
submessages sent by the DataWriter shall be transformed using the
CryptoTransform operation encode_datawriter_submessage and the
messages received from the matched DataReaders shall be
transformed using the CryptoTransform operation
decode_datareader_submessage.
 If is_submessage_protected is TRUE, and the entity is a DataReader, the
submessages sent by the DataReader shall be transformed using the
CryptoTransform operation encode_datareader_submessage and the
messages received from the matched DataWriters shall be
transformed using the CryptoTransform operation
decode_datawriter_submessage.

is_payload_protected Boolean Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and CryptoTransform for the
entity.
If is_payload_protected is TRUE, then the CryptoKeyFactory,
CryptoKeyExchange operations shall be called for that entitity to
create the associated cryptographic material and send it to the
matched entities.
If is_payload_protected is FALSE, then the CryptoKeyFactory,
CryptoKeyExchange and CryptoTransform operations are called only if
is_payload_protected is TRUE.
If is_ payload_protected is TRUE and the entity is a DataWriter, the
serialized data sent by the DataWriter shall be transformed by calling
encode_serialized_payload.
If is_ payload_protected is TRUE and the entity is a DataReader, the
serialized data received by the DataReader shall be transformed by
calling decode_serialized_payload

is_key_protected Indicates that the content of the Instance Key is sensitive.
If is_key_protected is TRUE, then the DDS middleware shall compute
the KeyHash for the Instance Key as described in section 7.4.4.
If is_key_protected is FALSE, then the DDS middleware should the
compute the KeyHash for the Instance Key as described in clause
9.6.3.3 of the DDS-RTPS specification [2].

plugin_endpoint_attribute
s

PluginEndpo
intSpecificAtt
ributesMask

This field is a holder for plugin-specific information that is propagated
via discovery as part of the EndpointSecurityInfo (see 7.3.24).
The definition for the builtin plugins can be found in 10.4.2.6.

ac_endpoint_properties PropertySeq Additional properties to add to the datawriter_properties or
datareader_properties passed to the CryptoKeyFactory operations

register_local_datawriter and

register_local_datareader.

Deleted: 373735

Deleted: EndpointSecurityAttributes

Deleted: 7.3.247.3.247.3.23

DDS Security, v1.12 109

The returned ac_endpoint_properties and their interpretation shall be
specified by each plugin implementation.

algorithm_info EndpointSec
urityAlgorith
mInfo

Cryptographic algorithms required to interoperate with the endpoint.
See 7.3.16.

9.4.2.8 Definition of the EndpointSecurityAttributesMask

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The EndpointSecurityAttributesMask is used to encode the value of the

EndpointSecurityConfig in a compact way such that it can be included in the

EndpointSecurityInfo, see 7.3.24

The mapping of the EndpointSecurityConfig to EndpointSecurityAttributesMask

shall be as defined in the table below:

Table 38 – Mapping of fields EndpointSecurityConfig to bits in EndpointSecurityAttributesMask

Field in EndpointSecurityConfig Corresponding bit in the
EndpointSecurityAttributesMask

is_read_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_READ_PROTECTE
D (0x00000001 << 0)

is_write_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_WRITE_PROTECTE
D (0x00000001 << 1)

is_discovery_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_DISCOVERY_PROT
ECTED (0x00000001 << 2)

is_submessage_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_SUBMESSAGE_PRO
TECTED (0x00000001 << 3)

is_payload_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_PAYLOAD_PROTE
CTED (0x00000001 << 4)

is_key_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_KEY_PROTECTED
(0x00000001 << 5)

is_liveliness_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINESS_PROT
ECTED (0x00000001 << 6)

is_valid #define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_VALID
(0x00000001 << 31)

9.4.2.9 AccessControl interface

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 39 – AccessControl Interface

AccessControl

No Attributes

Operations
validate_local_permissi

ons

 PermissionsHandle

auth_plugin AuthenticationPlugin

identity IdentityHandle

domain_id DomainId_t

participant_qos DomainParticipantQos

Deleted: EndpointSecurityAttributes

Deleted: 7.3.247.3.247.3.23

Deleted: EndpointSecurityAttributes

Deleted: 383836

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: 393937

110 DDS Security, v1.12

out: exception SecurityException

validate_remote_permiss

ions

 PermissionsHandle

auth_plugin AuthenticationPlugin

local_identity_handle IdentityHandle

remote_identity_handle IdentityHandle

remote_permissions_tok

en

PermissionsToken

remote_credential_toke

n

AuthenticatedPeerCredentialTok

en

out: exception SecurityException

check_create_participan

t

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

qos DomainParticipantQoS

out: exception SecurityException

check_create_datawriter Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataWriterQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

DDS Security, v1.12 111

check_create_datareader Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataReaderQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

check_create_topic Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos TopicQoS

out: exception SecurityException

check_local_datawriter_

register_instance

 Boolean

permissions_handle PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

check_local_datawriter_

dispose_instance

 Boolean

permissions_handle PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

check_remote_participan

t

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

participant_data ParticipantBuiltinTopicDataSecure

out: exception SecurityException

check_remote_datawriter

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

publication_data PublicationBuiltinTopicDataSecure

out: exception SecurityException

check_remote_datareader Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

subscription_data SubscriptionBuiltinTopicDataSecur

e

out: relay_only Boolean

out: exception SecurityException

check_remote_topic Boolean

permissions_handle PermissionsHandle

DomainId_t domain_id

topic_data TopicBuiltinTopicData

out: exception SecurityException

check_local_datawriter_

match

 Boolean

writer_permissions_

handle

PermissionsHandle

reader_permissions_

handle

PermissionsHandle

publication_data PublicationBuiltInTopicDataSecure

subscription_data PublicationBuiltinTopicDataSecure

out: exception SecurityException

 Boolean

112 DDS Security, v1.12

check_local_datareader_

match

reader_permissions_

handle

PermissionsHandle

writer_permissions_

handle

PermissionsHandle

subscriber_partitio

n

PartitionQosPolicy

publication_data PublicationBuiltInTopicDataSecure

subscription_data PublicationBuiltinTopicDataSecure

out: exception SecurityException

DDS Security, v1.12 113

check_remote_datawriter

_register_instance

 Boolean

permissions_handle PermissionsHandle

reader DataReader

publication_handle InstanceHandle_t

key DynamicData

instance_handle InstanceHandle_t

out: exception SecurityException

check_remote_datawriter

_dispose_instance

 Boolean

permissions_handle PermissionsHandle

reader DataReader

publication_handle InstanceHandle_t

key DynamicData

out: exception SecurityException

get_permissions_token Boolean

out:

permissions_token

PermissionsToken

handle PermissionsHandle

out: exception SecurityException

get_permissions_credent

ial_token

 Boolean

out:

permissions_credent

ial_token

PermissionsCredentialToken

handle PermissionsHandle

out: exception SecurityException

set_listener Boolean

listener AccessControlListener

out: exception SecurityException

return_permissions_toke

n

 Boolean

token PermissionsToken

out: exception SecurityException

return_permissions_cred

ential_token

 Boolean

permissions_credent

ial_token

PermissionsCredentialToken

out: exception SecurityException

114 DDS Security, v1.12

get_participant_securit

y_config

 Boolean

permissions_handle PermissionsHandle

out:

participant_securit

y_config

ParticipantSecurityConfig

out: exception SecurityException

get_topic_security_conf

ig

 Boolean

permissions_handle PermissionsHandle

topic_name string

out:

topic_security_conf

ig

TopicSecurityConfig

out: exception SecurityException

get_datawriter_security

_config

 Boolean

permissions_handle PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out:

endpoint_security_c

onfig

EndpointSecurityConfig

out: exception SecurityException

get_datareader_security

_config

 Boolean

permissions_handle PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out:

endpoint_security_c

onfig

EndpointSecurityConfig

out: exception SecurityException

return_participant_secu

rity_config

 Boolean

config ParticipantSecurityConfig

out: exception SecurityException

return_topic_security_c

onfig

 Boolean

config TopicSecurityConfig

out: exception SecurityException

return_datawriter_secur

ity_config

 Boolean

config EndpointSecurityConfig

out: exception SecurityException

return_datareader_secur

ity_config

 Boolean

config EndpointSecurityConfig

out: exception SecurityException

Deleted: get_participant_sec_attributes

Deleted: attributes

Deleted: ParticipantSecurityAttributes

Deleted: _sec_attributes

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: get_datawriter_sec_attributes

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: get_datareader_sec_attributes

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: return_participant_sec_attributes

Deleted: attributes

Deleted: ParticipantSecurityAttributes

Deleted: _sec_attributes

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: _sec_attributes

Deleted: attributes

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 115

9.4.2.9.1 Operation: validate_local_permissions

Validates the permissions of the local DomainParticipant. The operation returns a

PermissionsHandle object, if successful. The PermissionsHandle can be used to locally

identify the permissions of the local DomainParticipant to the AccessControl plugin.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the local

DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter identity: The IdentityHandle returned by the authentication plugin from a successful

call to validate_local_identity.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter exception: A SecurityException object, which provides details, in case this operation

returns HandleNIL.

9.4.2.9.2 Operation: validate_remote_permissions

Validates the permissions of the previously authenticated remote DomainParticipant, given the

PermissionsToken object received via DDS discovery and the

PermissionsCredentialToken obtained as part of the authentication process. The operation

returns a PermissionsHandle object, if successful.

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the remote

DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter local_identity_handle: The IdentityHandle returned by the authentication plugin.

Parameter remote_identity_handle: The IdentityHandle returned by a successful call to the

validate_remote_identity operation on the Authentication plugin.

Parameter remote_permissions_token: The PermissionsToken of the remote

DomainParticipant received via DDS discovery inside the permissions_token member of the

ParticipantBuiltinTopicData. See 7.5.1.3.

Parameter remote_credential_token: The AuthenticatedPeerCredentialToken of the

remote DomainParticipant returned by the operation

get_authenticated_peer_credential_token on the Authentication plugin.

Parameter exception: A SecurityException object, which provides details, in case this

operation returns HandleNIL.

9.4.2.9.3 Operation: check_create_participant

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant is created, its permissions must allow it to join the DDS Domain specified

by the domain_id. Optionally the use of the specified value for the DomainParticipantQoS must

also be allowed by its permissions. The operation returns a Boolean value.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos

116 DDS Security, v1.12

This operation shall also be called when the application calls the operation set_qos() on the to

check if the DomainParticipant has the permissions needed for the updated

DomainParticipant Qos configuration. The check performed shall be the same as the one

performed when the DomainParticipant is first created, but using the new Qos specified in the

set_qos(). If the check_create_participant does not succeed (return true), the set_qos

operation shall fail with the NOT_ALLOWED_BY_SECURITY error.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id where the local DomainParticipant is about to be

created. If this argument is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DomainParticipant. If this argument is nil, the

operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.4 Operation: check_create_datawriter

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant creates a DataWriter for topic_name with the specified

DataWriterQos associated with the data_tag, its permissions must allow this. The operation

returns a Boolean object.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos

This operation shall also be called when the application calls the operation set_qos() on a

DataWriter to check if the DomainParticipant has the permissions needed for the updated

DataWriter Qos configuration. The check performed shall be the same as the one performed when

the DataWriter is first created, but using the new Qos specified in the set_qos(). If the

check_create_datawriter does not succeed (return true), the set_qos operation shall fail

with the NOT_ALLOWED_BY_SECURITY error.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local

DataWriter will belong.

Parameter topic_name: The topic name that the DataWriter is supposed to write. If this argument

is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DataWriter. If this argument is nil, the operation

shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the

DataWriter will belong.

Parameter data_tag: The data tags that the local DataWriter is requesting to be associated with its

data. This argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

DDS Security, v1.12 117

9.4.2.9.5 Operation: check_create_datareader

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant creates a DataReader for a Topic for topic_name with the specified

DataReaderQos qos associated with the data_tag, its permissions must allow this. The operation

returns a Boolean value.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos

This operation shall also be called when the application calls the operation set_qos() on a

DataReader to check if the DomainParticipant has the permissions needed for the updated

DataReader Qos configuration. The check performed shall be the same as the one performed when

the DataReader is first created, but using the new Qos specified in the set_qos(). If the

check_create_datareader does not succeed (return true), the set_qos operation shall fail

with the NOT_ALLOWED_BY_SECURITY error.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local

DataReader will belong.

Parameter topic_name: The topic name that the DataReader is supposed to read. If this argument

is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DataReader. If this argument is nil, the operation

shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the

DataReader will belong.

Parameter data_tag: The data tags that the local DataReader is requesting read access to. This

argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.6 Operation: check_create_topic

Enforces the permissions of the local DomainParticipant. When an entity of the local

DomainParticipant creates a Topic with topic_name and TopicQos qos its permissions

must allow this. The operation returns a Boolean value.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos

This operation shall also be called when the application calls the operation set_qos() on the

Topic to check if the DomainParticipant has the permissions needed for the new Qos

configuration. The check performed shall be the same as the one performed when the Topic is first

created, but using the new Qos specified in the set_qos(). If the check_create_topic does

not succeed (return true), the set_qos operation shall fail with the

NOT_ALLOWED_BY_SECURITY error.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant that creates the

Topic.

Parameter topic_name: The topic name to be created. If this argument is nil, the operation shall

return false.

118 DDS Security, v1.12

Parameter qos: The QoS policies of the local Topic. If this argument is nil, the operation shall return

false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.7 Operation: check_local_datawriter_register_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the local

DataWriter. The key identifies the instance being registered and permissions are checked to

determine if registration of the specified instance is allowed. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the

operation shall return false.

Parameter key: The key of the instance for which the registration permissions are being checked. If

this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.8 Operation: check_local_datawriter_dispose_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the local

DataWriter. The key has to match the permissions for disposing an instance. The operation returns

a Boolean object.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the

operation shall return false.

Parameter key: The key identifies the instance being registered and the permissions are checked to

determine if disposal of the specified instance is allowed. If this argument is nil, the operation shall

return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns nil.

9.4.2.9.9 Operation: check_remote_participant

Enforces the permissions of the remote DomainParticipant. When the remote

DomainParticipant is discovered, the domain_id and, optionally, the

DomainParticipantQoS are checked to verify that joining that DDS Domain and using that QoS

is allowed by its permissions. The operation returns a Boolean result.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos

This operation shall also be called whenever a DomainParticipant detects a QoS change for a

different (peer) DomainParticipant that is matched with a local DomainParticipant.

DDS Security, v1.12 119

If the check_remote_participant does not succeed (return true), the remote participant shall

be considered invalid. This shall result in un-matching the remote DomainParticipant if it was

previously matched.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id where the remote DomainParticipant is about to be

created. If this argument is nil, the operation shall return false.

Parameter participant_data: The ParticipantBuiltInTopicDataSecure object associated

with the remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns nil.

9.4.2.9.10 Operation: check_remote_datawriter

Enforces the permissions of a remote DomainParticipant.

This operation shall be called by a DomainParticipant prior to matching a local DataReader

belonging to that DomainParticipant with a DataWriter belonging to a different (peer)

DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a

DataWriter belonging to a different (peer) DomainParticipant that is matched with a local

DataReader.

This operation verifies that the peer DomainParticipant has the permissions necessary to publish

data on the DDS Topic with name topic_name using the DataWriterQoS that appears in

publication_data. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote

DataWriter belongs.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the remote DataWriter. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.11 Operation: check_remote_datareader

Enforces the permissions of a remote DomainParticipant.

This operation shall be called by a DomainParticipant prior to matching a local DataWriter

belonging to that DomainParticipant with a DataReader belonging to a different (peer)

DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a

DataReader belonging to a different (peer) DomainParticipant that is matched with a local

DataWriter.

This operation verifies that the peer DomainParticipant has the permissions necessary to

subscribe to data on the DDS Topic with name topic_name using the DataReaderQoS that

appears in subscription_data. The operation returns a Boolean value and also sets the relay_only

output parameter.

120 DDS Security, v1.12

If the operation returns true, the DDS middleware shall allow the local DataWriter to match with

the remote DataReader, if it returns false, it shall not allow it.

If the operation returns true, the relay_only parameter shall be remembered by the DDS middleware

and passed to the register_matched_remote_datareader operation on the

CryptoKeyFactory.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote

DataReader belongs.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the remote DataReader. If this argument is nil, the operation shall return false.

Parameter (out) relay_only: Boolean indicating whether the permissions of the remote

DataReader are restricted to relaying the information (understanding sequence numbers and other

SubmessageHeader information) but not decoding the data itself. This parameter is only

meaningful if the operation returns true.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.12 Operation: check_remote_topic

Enforces the permissions of the remote DomainParticipant. When the remote

DomainParticipant creates a certain topic, the topic_name and optionally the TopicQoS

extracted from the topic_data are verified to ensure the remote DomainParticipant permissions

allow it to create the DDS Topic with the specified QoS. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_data: The TopicBuiltInTopicData object associated with the Topic. If this

argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.13 Operation: check_local_datawriter_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on

the DataTag associated with DataWriter and a matching DataReader.

The operation shall be called for any local DataWriter that matches a DataReader. The

operation shall be called after the operation check_local_datawriter has been called on the

local DataWriter and either check_local_datareader or check_remote_datareader

has been called on the DataReader.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos.

This operation shall also be called when a local DataWriter, matched with a DataReader,

detects a change on the Qos of the local DataWriter or the matched DataReader.

The operation shall be called only if the aforementioned calls to check_local_datawriter and

check_local_datareader or check_remote_datareader are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the

SecurityException filled.

DDS Security, v1.12 121

Parameter writer_permissions_handle: The PermissionsHandle object associated with the

DomainParticipant that contains the local DataWriter. If this argument is nil, the operation

shall return false.

Parameter reader_permissions_handle: The PermissionsHandle object associated with the

remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the local DataWriter. If this argument is nil, the operation shall return false.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the matched DataReader. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.14 Operation: check_local_datareader_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on

the DataTag associated with a DataReader and a matching DataWriter.

The operation shall be called for any local DataReader that matches a DataWriter. The

operation shall be called after the operation check_local_datareader has been called on the

local DataReader and either check_local_datawriter or check_remote_datawriter

has been called on the DataWriter.

DDSSEC12- 62 Indicate that AccessControl operations need to be called on a set_qos.

This operation shall also be called when a local DataReader, matched with a DataWriter, detects

a change on the Qos of the local DataReader or the matched DataWriter.

The operation shall be called only if the aforementioned calls to check_local_datareader and

check_local_datawriter or check_remote_datawriter are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the

SecurityException filled.

Parameter writer_permissions_handle: The PermissionsHandle object associated with the

DomainParticipant that contains the local DataReader. If this argument is nil, the operation

shall return false.

Parameter reader_permissions_handle: The PermissionsHandle object associated with the

remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the local DataReader. If this argument is nil, the operation shall return false.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the matched DataWriter. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.15 Operation: check_remote_datawriter_register_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the remote

DataWriter. The key has to match the permissions for registering an instance. The operation

returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

122 DDS Security, v1.12

Parameter reader: The local DataReader object that is matched to the remote DataWriter that

registered an instance.

Parameter publication handle: Handle that identifies the remote DataWriter.

Parameter key: The key of the instance that needs to match the permissions for registering an

instance. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.16 Operation: check_remote_datawriter_dispose_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the remote

DataWriter. The key has to match the permissions for disposing an instance. The operation returns

a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter reader: The local DataReader object that is matched to the Publication that disposed an

instance.

Parameter publication handle: Handle that identifies the remote Publication.

Parameter key: The key of the instance that needs to match the permissions for disposing an

instance. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.17 Operation: get_permissions_token

Retrieves a PermissionsToken object. The PermissionsToken is propagated via DDS

discovery to summarize the permissions of the DomainParticipant identified by the specified

PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_token (out): The returned PermissionsToken.

Parameter handle: The handle used to locally identify the permissions of the DomainParticipant for

which a PermissionsToken is desired. If this argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.18 Operation: get_permissions_credential_token

Retrieves a PermissionsCredentialToken object that can be used to represent on the network

the permissions of the DomainParticipant identified by the specified PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_credential_token (out): The returned

PermissionsCredentialToken.

Parameter handle: The PermissionsHandle used to locally identify the permissions of the

DomainParticipant for which a PermissionsCredentialToken is desired. If this

argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

DDS Security, v1.12 123

9.4.2.9.19 Operation: set_listener

Sets the listener for the AccessControl plugin.

If an error occurs, this method shall return false.

Parameter listener: An AccessControlListener object to be attached to the

AccessControl plugin. If this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.20 Operation: return_permissions_token

Returns the PermissionsToken to the plugin for disposal.

Parameter token: A PermissionsToken to be disposed of. It should correspond to the

PermissionsToken returned by a prior call to get_permissions_token on the same plugin.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.21 Operation: return_permissions_credential_token

Returns the PermissionsCredentialToken to the plugin for disposal.

Parameter permissions_credential_token: A PermissionsCredentialToken to be disposed

of. It should correspond to the PermissionsCredentialToken returned by a prior call to

get_permissions_credential_token on the same plugin.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.22 Operation: get_participant_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This operation shall be called by the DDS middleware as part of the creation or enabling of the DDS

DomainParticipant.

The operation retrieves the ParticipantSecurityConfig, which describe how the DDS

middleware should enforce the security and integrity of the information produced and consumed via

the DomainParticipant.

The value of the on the ParticipantSecurityConfig member security_info of type

ParticipantSecurityAlgorithmInfo (see 7.3.14) contains information about the

cryptographic algorithms the security plugins may use to perform their function which may restrict the

set of algorithms that the plugins could otherwise use.

The returned ParticipantSecurityConfig shall be used to call the operation

set_participant_security_config on the Authentication plugin and the operation

register_local_participant on the Cryptographic plugin. .

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter (out) attributes: The returned ParticipantSecurityConfig contains attributes

that indicate how the different building topics shall be protected and the kinds of cryptographic

algorithms that may be used by the plugins. This return value is intended to be used to call the

operation set_participant_security_config on each of other plugins so that they can

configure themselves accordingly.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

Deleted: get_participant_sec_attributes

Moved (insertion) [1]

Deleted: R

Deleted: ParticipantSecurityAttributes

Moved up [1]: This operation shall be called by the DDS

middleware as part of the creation or enabling of the DDS

DomainParticipant.

Deleted: ¶

Deleted: ParticipantSecurityAttributes

Formatted: Default Paragraph Font

Formatted: Code Char

Deleted: .

124 DDS Security, v1.12

9.4.2.9.23 Operation: get_topic_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Retrieves the TopicSecurityConfig, which describes how the DDS middleware should enforce

the security and integrity of the information related to the DDS Topic.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

Topic. The operation shall be called before calling check_create_topic,

check_create_datawriter, check_create_datareader,

check_remote_datawriter, check_remote_datareader,

check_remote_datawriter_match, or check_remote_datareader_match.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic. If this argument is nil, the operation shall return

false.

Parameter (out) attributes: The returned TopicSecurityConfig.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.24 Operation: get_datarwriter_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Retrieves the EndpointSecurityConfig, which describes how the DDS middleware should

enforce the security and integrity of the information related to the DDS DataWriter endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

DataWriter. The operation shall be called after calling check_create_datawriter.

The value of the on the EndpointSecurityConfig members shall be used to configure the

DCPSPublications builtin Topic, specifically the PublicationsBuiltinTopicData

members security_info and symmetric_cipher members, see 7.5.1.5.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataWriter. If this argument

is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the

DataWriter belongs.

Parameter data_tag: The DataTagQosPolicy associated with the DataWriter. This argument

can be nil.

Parameter (out) attributes: The returned EndpointSecurityConfig.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.25 Operation: get_datareader_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Retrieves the EndpointSecurityConfig, which describes how the DDS middleware should

enforce the security and integrity of the information related to the DDS DataReader endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

DataReader. The operation shall be called after calling check_create_datareader.

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: get_datareader_sec_attributes

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 125

The value of the on the EndpointSecurityConfig members shall be used to configure the

DCPSPublications builtin Topic, specifically the PublicationBuiltinTopicData

members security_info and symmetric_cipher members, see 7.5.1.5.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataReader. If this argument

is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the

DataReader belongs.

Parameter data_tag: The data tag associated with the DataReader. This argument can be nil.

Parameter (out) attributes: The returned EndpointSecurityConfig.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.26 Operation: return_participant_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Returns the ParticipantSecurityConfig to the plugin for disposal.

Parameter attributes: The ParticipantSecurityConfig to return.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.27 Operation: return_topic_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Returns the TopicSecurityConfig to the plugin for disposal.

Parameter attributes: The TopicSecurityConfig to return.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.28 Operation: return_datawriter_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Returns the EndpointSecurityConfig to the plugin for disposal.

Parameter attributes: The EndpointSecurityConfig to return.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.4.2.9.29 Operation: return_datareader_security_config

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Returns the EndpointSecurityConfig to the plugin for disposal.

Parameter attributes: The EndpointSecurityConfig to return.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

Deleted: EndpointSecurityAttributes

Deleted: return_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: _sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: _sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

126 DDS Security, v1.12

9.4.2.10 AccessControlListener interface

The purpose of the AccessControlListener is to be notified of all status changes for different

identities. For example, permissions can change; hence, the AccessControlListener is notified

and enforces the new permissions.

Table 40 – AccessControlListener interface

AccessControlListener

No Attributes

Operations
on_revoke_permissions Boolean

plugin AccessControl

handle PermissionsHandle

9.4.2.10.1 Operation: on_revoke_permissions

DomainParticipants’ Permissions can be revoked/changed. This listener provides a callback for

permission revocation/changes.

If an error occurs, this method shall return false.

Parameter plugin: The correspondent AccessControl object.

Parameter handle: A PermissionsHandle object that corresponds to the Permissions of a DDS

Participant whose permissions are being revoked.

9.5 Cryptographic Plugin

The Cryptographic plugin defines the types and operations necessary to support encryption,

digest, message authentication codes, and key exchange for DDS DomainParticipants,

DataWriters and DDS DataReaders.

Users of DDS may have specific cryptographic libraries they use for encryption, as well as, specific

requirements regarding the algorithms for digests, message authentication, and signing. In addition,

applications may require having only some of those functions performed, or performed only for certain

DDS Topics and not for others. Therefore, the plugin API has to be general enough to allow flexible

configuration and deployment scenarios.

9.5.1 Cryptographic Plugin Model

The Cryptographic plugin model is presented in the figure below. It combines related

cryptographic interfaces for key creation, key exchange, encryption, message authentication, hashing,

and signature.

Deleted: 404038

DDS Security, v1.12 127

Figure 11 – Cryptographic Plugin Model

9.5.1.1 CryptoToken

This class represents a generic holder for key material. A CryptoToken object contains all the

information necessary to construct a set of keys to be used to encrypt and/or sign plain text

transforming it into cipher-text or to reverse those operations.

The format and interpretation of the CryptoToken depends on the implementation of the

Cryptographic plugin. Each plugin implementation shall fully define itself, so that applications are able

to interoperate. In general, the CryptoToken will contain one or more keys and any other necessary

material to perform crypto-transformation and/or verification, such as, initialization vectors (IVs),

salts, etc.

9.5.1.2 ParticipantCryptoHandle

The ParticipantCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign whole RTPS Messages. It is used by the operations

encode_rtps_message and decode_rtps_message.

class Cryptographic

 interf ce

Cryptographic

 interf ce

Crypto ey actory

 c v te ey revision void

 register loc l d t re der D t re der rypto ndle

 register loc l d t riter D t riter rypto ndle

 register loc l p r cip nt r cip nt rypto ndle

 register tched re ote d t re der D t re der rypto ndle

 register tched re ote d t riter D t riter rypto ndle

 register tched re ote p r cip nt r cip nt rypto ndle

 revise loc l entoty eys nteger

 unregister d t re der Boole n

 unregister d t riter Boole n

 unregister p r cip nt Boole n

 pri i ve

Par cipantCrypto andle

 pri i ve

Data riterCrypto andle

 pri i ve

DatareaderCrypto andle

 interf ce

Crypto ey xchange

 cre te loc l d t re der crypto to ens Boole n

 cre te loc l d t riter crypto to ens Boole n

 cre te loc l p r cip nt crypto to ens Boole n

 return cypto to ens Boole n

 set re ote d t re der crypto to ens Boole n

 set re ote d t riter crypto to ens Boole n

 set re ote p r cip nt crypto to ens Boole n

 interf ce

CryptoTransform

 decode d t re der su ess ge Boole n

 decode d t riter su ess ge Boole n

 decode rtps ess ge Boole n

 decode seri li ed p ylo d Boole n

 encode d t re der su ess ge Boole n

 encode d t riter su ess ge Boole n

 encode rtps ess ge Boole n

 encode seri li ed p ylo d Boole n

 preprocess secure su ess ge Boole n

CryptoTo en

 pri i ve

Iden ty andle
 pri i ve

Permissions andle

 d t ype

CryptoTransformIden er

 tr nsfor on ind rypto r nsfor ind

 tr nsfor on ey id rypto r nsfor ey d

 pri i ve

SharedSecret andle

Property

Crypto ooter

 d t ype

CryptoTransform ind

 tr nsfor on ey revision rypto r nsfor ey evision

 tr nsfor on lgorith id rypto lgorith d

 pri i ve

CryptoAlgorithmId

 pri i ve

CryptoTransform eyRevision

 pri i ve

CryptoTransform eyId

 use

Deleted:

class Cryptographic

«interface»

Cryptographic

«interface»

CryptoKeyFactory

+ register_local_participant(): ParticipantCryptoHandle

+ register_matched_remote_participant(): ParticipantCryptoHandle

+ register_local_datawriter(): DatawriterCryptoHandle

+ register_matched_remote_datareader(): DatareaderCryptoHandle

+ register_local_datareader(): DatareaderCryptoHandle

+ register_matched_remote_datawriter(): DatawriterCryptoHandle

+ unregister_participant(): Boolean

+ unregister_datawriter(): Boolean

+ unregister_datareader(): Boolean

«primitive»

ParticipantCryptoHandle

«primitive»

DatawriterCryptoHandle

«primitive»

DatareaderCryptoHandle

«interface»

CryptoKeyExchange

+ create_local_participant_crypto_tokens(): Boolean

+ set_remote_participant_crypto_tokens(): Boolean

+ create_local_datawriter_crypto_tokens(): Boolean

+ set_remote_datawriter_crypto_tokens(): Boolean

+ create_local_datareader_crypto_tokens(): Boolean

+ set_remote_datareader_crypto_tokens(): Boolean

+ return_cypto_tokens(): Boolean

«interface»

CryptoTransform

+ encode_serialized_payload(): Boolean

+ encode_datawriter_submessage(): Boolean

+ encode_datareader_submessage(): Boolean

+ encode_rtps_message(): Boolean

+ decode_rtps_message(): Boolean

+ preprocess_secure_submessage(): Boolean

+ decode_datawriter_submessage(): Boolean

+ decode_datareader_submessage(): Boolean

+ decode_serialized_payload(): Boolean

Token

CryptoToken

«primitive»

IdentityHandle

«primitive»

PermissionsHandle

«dataType»

CryptoTransformIdentifier

- transformation_kind_id: octet[4]

- transformation_key_id: octet[4]

«primitive»

SharedSecretHandle

Property

SubmessageElement

SecureDataTag

- common_mac: char[]

- receiver_specific_macs: ReceiverSpecificMAC[]

«use»

128 DDS Security, v1.12

9.5.1.3 DatawriterCryptoHandle

The DatawriterCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign RTPS submessages sent from a DataWriter. This includes the RTPS

submessages Data, DataFrag, Gap, Heartbeat, and HeartbeatFrag, as well as, the

SerializedPayload submessage element that appears in the Data and DataFrag submessages.

It is used by the operations encode_datawriter_submessage,

decode_datawriter_submessage, encode_serialized_payload, and

decode_serialized_payload.

9.5.1.4 DatareaderCryptoHandle

The DatareaderCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign RTPS Submessages sent from a DataReader. This includes the

RTPS Submessages AckNack and NackFrag.

It is used by the operations encode_datareader_submessage,

decode_datareader_submessage.

9.5.1.5 CryptoTransformIdentifier

The CryptoTransformIdentifier object used to uniquely identify the transformation applied

on the sending side (encoding) so that the receiver can locate the necessary key material to perform the

inverse transformation (decoding). The generation of CryptoTransformIdentifier is

performed by the Cryptographic plugin.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

To enable interoperability and avoid misinterpretation of the key material, the structure of the

CryptoTransformIdentifier is defined for all Cryptographic plugin implementations.

The definition and interpretation is provided in 7.3.20.

9.5.1.6 Key Revision: CryptoTransformKeyRevision and associated CryptoTransformIdentifier

DDSSEC12-122 – Provide mechanism for changing the session keys

Key Revision creates a new version of existing KeyMaterial.

The revised (updated) the KeyMaterial is basically new key material which should not share any

cryptographic material (e.g. keys and initialization vectors) with the previous revision. What makes it

as “revision” is its intended use as a replacement for already existing (and shared) KeyMaterial so

there is the intent to eventually remove the KeyMaterial corresponding to earlier revisions.

The CryptoTransformIdentifier for the “revised” key material shall have:

• The same value of the transformation_key_id.

• The same value for the transformation_kind’s member transformation_algorithm_id

• An updated (incremented) value for the transformation_kind’s member

transformation_key_revision.

The fact that the transformation_key_id remains constant allows receivers of the

CryptoTransformIdentifier to detect that the associated KeyMaterial replaces existing

KeyMaterial and identify the material being replaced. This allows the resurces for the replaced Key

Material to be reclaimed when it is safe to do so.

9.5.1.7 SecureSubmessageCategory_t

Enumerates the possible categories of RTPS submessages.

Deleted: ¶

Deleted: as follows:

Deleted: 7.3.207.3.207.3.19

Deleted: typedef octet
CryptoTransformKind[4];¶

typedef octet CryptoTransformKeyId[4];¶

struct CryptoTransformIdentifier {¶

 CryptoTransformKind

transformation_kind;¶

 CryptoTransformKeyId

transformation_key_id;¶

};¶

Table 34 – CryptoTransformIdentifier class¶
CryptoTransformIdentifier ...

DDS Security, v1.12 129

Table 41 – SecureSubmessageCategory_t

SecureSubmessageCategory_t
INFO_SUBMESSAGE Indicates an RTPS Info submessage: InfoSource, InfoDestination, or InfoTimestamp.

DATAWRITER_SUMBESSAGE Indicates an RTPS submessage that was sent from a DataWriter: Data, DataFrag,

HeartBeat, Gap.
DATAREADER_SUMBESSAGE Indicates an RTPS submessage that was sent from a DataReader: AckNack,

NackFrag.

9.5.1.8 CryptoKeyFactory interface

This interface groups the operations related to the creation of keys used for encryption and digital

signing of both the data written by DDS applications and the RTPS submessage and message headers,

used to implement the discovery protocol, distribute the DDS data, implement the reliability protocol,

etc.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 42 – CryptoKeyFactory Interface

CryptoKeyFactory

No Attributes

Operations
register_local_participant ParticipantCryptoHandle

out:

adjusted_algorithm

_info

ParticipantSecurityAlgorithmInf

o

participant_identi

ty

IdentityHandle

participant_permis

sions

PermissionsHandle

participant_proper

ties

PropertySeq

participant_securi

ty_config

ParticipantSecurityConfig

out: exception SecurityException

register_matched_remote_pa

rticipant

 ParticipantCryptoHandle

local_participant_

crypto_handle

ParticipantCryptoHandle

remote_participant

_identity

IdentityHandle

remote_participant

_permissions

PermissionsHandle

shared_secret SharedSecretHandle

out: exception SecurityException

register_local_datawriter DatawriterCryptoHandle

out:

adjusted_algorithm

_info

EndpointSecurityAlgorithmInfo

participant_crypto ParticipantCryptoHandle

datawriter_propert

ies

PropertySeq

Deleted: 414139

Deleted: attributes

Deleted: ParticipantSecurityAttributes

130 DDS Security, v1.12

datawriter_securit

y_config

EndpointSecurityConfig

endpoint_guid GUID_t

out: exception SecurityException

Deleted: attributes

Deleted: EndpointSecurityAttributes

Formatted: Indent: First line: 0"

DDS Security, v1.12 131

register_matched_remote_da

tareader

 DatareaderCryptoHandle

local_datawriter_c

rypto_handle

DatawriterCryptoHandle

remote_participant

_crypto

ParticipantCryptoHandle

shared_secret SharedSecretHandle

relay_only Boolean

out: exception SecurityException

register_local_datareader DatareaderCryptoHandle

out:

adjusted_algorithm

_info

EndpointSecurityAlgorithmInfo

participant_crypto ParticipantCryptoHandle

datareader_propert

ies

PropertySeq

datareader_securit

y_config

EndpointSecurityConfig

endpoint_guid GUID_t

out: exception SecurityException

register_matched_remote_da

tawriter

 DatawriterCryptoHandle

local_datareader_c

rypto_handle

DatareaderCryptoHandle

remote_participant

_crypt

ParticipantCryptoHandle

shared_secret SharedSecretHandle

out: exception SecurityException

revise_local_entity_keys CryptoTransformKeyRevisionIntHo

lder

participant_crypto

_handle

ParticipantCryptoHandle

out: exception SecurityException

activate_key_revision Boolean

local_participant_

crypto_handle

ParticipantCryptoHandle

key_revision CryptoTransformKeyRevisionIntHo

lder

out: exception SecurityException

unregister_participant Boolean

participant_crypto

_handle

ParticipantCryptoHandle

out: exception SecurityException

unregister_datawriter Boolean

datawriter_crypto_

handle

DatawriterCryptoHandle

out: exception SecurityException

unregister_datareader Boolean

datareader_crypto_

handle

DatareaderCryptoHandle

out: exception SecurityException

Deleted: attributes

Deleted: EndpointSecurityAttributes

132 DDS Security, v1.12

9.5.1.8.1 Operation: register_local_participant

Registers a local DomainParticipant with the Cryptographic Plugin. The

DomainParticipant must have been already authenticated and granted access to the DDS

Domain. The operation shall create any necessary key material that is needed to Encrypt and Sign

secure messages that are directed to other DDS DomainParticipant entities on the DDS Domain.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Configures the cryptographic algorithms that may be used by the Cryptographic plugin and retrieves an

updated ParticipantSecurityAlgorithmInfo that incorporates the information of the

algorithms supported, required, or used by the Cryptographic plugin.

This operation shall be called by the middleware after calling

get_participant_security_config on the AccessControl plugin.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

If successful, this operation shall return a ParticipantCryptoHandle used to locally identify

the DomainParticipant to the Cryptographic Plugin. Otherwise it shall return HandleNIL and

fill the SecurityException.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter adjusted _algorithm_info (out): An updated

ParticipantSecurityAlgorithmInfo. The value is obtained by starting from the value

passed in the participant_security_config.algorithm_info (in) parameter, adding to the “required”

sets any algorithms that are used by the Cryptographic plugin and removing from the “supported” sets

any algorithms of the types that would be used in the Cryptographic plugin operations that are

supported by the plugin.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Parameter participant_identity: An IdentityHandle returned by a prior call to

validate_local_identity. If this argument is nil, the operation returns HandleNIL.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to

validate_local_permissions. If this argument is nil, the operation returns HandleNIL.

Parameter participant_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DomainParticipant whose name has the prefix

“dds.sec.crypto.” The purpose of this parameter is to allow configuration of the Cryptographic

Plugin by the DomainParticipant, e.g., selection of the cryptographic algorithm, key size, or

even setting of the key. The use of this parameter depends on the particular implementation of the

plugin and shall be specified for each implementation. Properties not understood by the plugin

implementation shall be silently ignored.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter participant_security_config: The ParticipantSecurityConfig returned by the

AccessControl get_participant_security_config operation.

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

9.5.1.8.2 Operation: register_matched_remote_participant

Registers a remote DomainParticipant with the Cryptographic Plugin. The remote

DomainParticipant must have been already Authenticated and granted Access to the DDS

Domain. The operation performs two functions:

Deleted: Parameter handle: The handle used to locally

identify the DomainParticipant. The handle must have

been returned by a successful call to

register_local_participant, otherwise the

operation shall return false and fill the

SecurityException.¶

Deleted: attributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: <#>¶

DDS Security, v1.12 133

1. It shall create any necessary key material needed to decrypt and verify the signatures of

messages received from that remote DomainParticipant and directed to the local

DomainParticipant.

2. It shall create any necessary key material that will be used by the local DomainParticipant

when encrypting or signing messages that are intended only for that remote

DomainParticipant.

Parameter local_participant_crypto_handle: A ParticipantCryptoHandle returned by a prior

call to register_local_participant. If this argument is nil, the operation returns false.

Parameter remote_participant_identity: An IdentityHandle returned by a prior call to

validate_remote_identity. If this argument is nil, the operation returns nil.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to

validate_remote_permissions. If this argument is nil, the operation returns nil.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.8.3 Operation: register_local_datawriter

Registers a local DataWriter with the Cryptographic Plugin. The fact that the DataWriter

was successfully created indicates that the DomainParticipant to which it belongs was

authenticated, granted access to the DDS Domain, and granted permission to create the DataWriter

on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the data written

by the DataWriter and returns a DatawriterCryptoHandle to be used for any cryptographic

operations affecting messages sent or received by the DataWriter.

If an error occurs, this method shall return false. If it succeeds, the operation shall return an opaque

handle that can be used to refer to that key material.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter adjusted _algorithm_info (out): An updated EndpointSecurityAlgorithmInfo.

The value is obtained by starting from the value passed in the datawriter_security_config (in)

parameter, adding to the “required” sets any algorithms that are used by the Cryptographic plugin and

removing from the “supported” sets any algorithms of the types that would be used in the

Cryptographic plugin operations that are supported by the plugin.

Parameter handle: The handle used to locally identify the DomainParticipant. The handle must

have been returned by a successful call to register_local_participant, otherwise the

operation shall return false and fill the SecurityException.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to

register_local_participant. It shall correspond to the ParticipantCryptoHandle

of the DomainParticipant to which the DataWriter belongs. If this argument is nil, the

operation returns false.

Parameter local_datawriter_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DataWriter whose name has the prefix “dds.sec.crypto.”

The purpose of this parameter is to allow configuration of the Cryptographic Plugin by the

DataWriter, e.g., selection of the cryptographic algorithm, key size, or even setting of the key. The

134 DDS Security, v1.12

use of this parameter depends on the particular implementation of the plugin and shall be specified for

each implementation. Properties not understood by the plugin implementation shall be silently ignored.

Parameter datawriter_security_config: The EndpointSecurityConfig returned by the

AccessControl get_datawriter_security_config operation.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter algorithm_support: A EndpointCryptographicAlgorithmSupport object

describing the algorithms that are used and required by the DataWriter.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.8.4 Operation: register_matched_remote_datareader

Registers a remote DataReader with the Cryptographic Plugin. The remote DataReader

shall correspond to one that has been granted permissions to match with the local DataWriter.

This operation shall create the cryptographic material necessary to encrypt and/or sign the RTPS

submessages (Data, DataFrag, Gap, Heartbeat, HeartbeatFrag) sent from the local

DataWriter to that DataReader. It shall also create the cryptographic material necessary to

process RTPS Submessages (AckNack, NackFrag) sent from the remote DataReader to the

DataWriter.

The operation shall associate the value of the relay_only parameter with the returned

DatawriterCryptoHandle. This information shall be used in the generation of the KeyToken

objects to be sent to the DataReader.

Parameter local_datawriter_crypto_handle: A DatawriterCryptoHandle returned by a prior

call to register_local_datawriter. If this argument is nil, the operation returns

HandleNIL.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call

to register_matched_remote_participant. It shall correspond to the

ParticipantCryptoHandle of the DomainParticipant to which the remote DataReader

belongs. If this argument is nil, the operation returns HandleNIL.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Parameter relay_only: Boolean indicating whether the cryptographic material to be generated for the

remote DataReader shall contain everything, or only the material necessary to relay (store and

forward) the information (i.e., understand the SubmessageHeader) without being able to decode

the data itself (i.e., decode the SecureData).

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

9.5.1.8.5 Operation: register_local_datareader

Registers a local DataReader with the Cryptographic Plugin. The fact that the DataReader

was successfully created indicates that the DomainParticipant to which it belongs was

authenticated, granted access to the DDS Domain, and granted permission to create the DataReader

on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the messages

sent by the DataReader when the encryption/signature is independent of the targeted

DataWriter.

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: get_datawriter_sec_attributes

DDS Security, v1.12 135

If successful, the operation returns a DatareaderCryptoHandle to be used for any cryptographic

operations affecting messages sent or received by the DataWriter.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter adjusted _algorithm_info (out): An updated EndpointSecurityAlgorithmInfo.

The value is obtained by starting from the value passed in the datareader_security_config (in)

parameter, adding to the “required” sets any algorithms that are used by the Cryptographic plugin and

removing from the “supported” sets any algorithms of the types that would be used in the

Cryptographic plugin operations that are supported by the plugin.

Parameter handle: The handle used to locally identify the DomainParticipant. The handle must

have been returned by a successful call to register_local_participant, otherwise the

operation shall return false and fill the SecurityException.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to

register_local_participant. It shall correspond to the ParticipantCryptoHandle

of the DomainParticipant to which the DataReader belongs. If this argument is nil, the

operation returns HandleNIL.

Parameter local_datareader_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DataReader whose name has the prefix “dds.sec.crypto.”

The purpose of this parameter is to allow configuration of the Cryptographic Plugin by the

DataReader, e.g., selection of the cryptographic algorithm, key size, or even setting of the key. The

use of this parameter depends on the particular implementation of the plugin and shall be specified for

each implementation. Properties not understood by the plugin implementation shall be silently ignored.

Parameter datareader_security_config: The EndpointSecurityConfig returned by the

AccessControl get_datareader_security_config operation.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Parameter algorithm_support: A EndpointCryptographicAlgorithmSupport object

describing the algorithms that are used and required by the DataReader.

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

9.5.1.8.6 Operation: register_matched_remote_datawriter

Registers a remote DataWriter with the Cryptographic Plugin. The remote DataWriter

shall correspond to one that has been granted permissions to match with the local DataReader.

This operation shall create the cryptographic material necessary to decrypt and/or verify the signatures

of the RTPS submessages (Data, DataFrag, Heartbeat, HeartbeatFrag, Gap) sent from the

remote DataWriter to the DataReader. The operation shall also create the cryptographic material

necessary to encrypt and/or sign the RTPS submessages (AckNack, NackFrag) sent from the local

DataReader to the remote DataWriter.

Parameter local_datareader_crypto_handle: A DatareaderCryptoHandle returned by a prior

call to register_local_datareader. If this argument is nil, the operation returns nil.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call

to register_matched_remote_participant. It shall correspond to the

ParticipantCryptoHandle of the DomainParticipant to which the remote

DataWriter belongs. If this argument is nil, the operation returns nil.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Deleted: attributes

Deleted: EndpointSecurityAttributes

Deleted: get_datareader_sec_attributes

136 DDS Security, v1.12

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

9.5.1.8.7 Operation: revise_local_entity_keys

DDSSEC12-122 – Provide mechanism for changing the session keys

Creates a revision of the KeyMaterial used by the local DomainParticipant and its contained

DataReader and DataWriter entities. See 9.5.1.6 for a description of the concept of Key

Revision.

This operation shall only update the KeyMaterial that is intended to be shared with multiple

DomainParticipant, not the key material that, by its very nature, is shared with a single matched

DomainParticipant or DataReader and DataWriter. For example, receiver-specific Keys

(see 9.5.1.10.2) or the Participant to Participant keys used in the

BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader

(see 9.8.9.1) shall not be updated.

The specific key material that is revised shall be specified for each specific Cryptographic plugin.

This operation shall be called by the middleware whenever it needs to update the Key Material

because a matched DomainParticipant is no longer trusted or has lost access rights to some

matched Topics that it previously had access to.

If successful, this operation shall return an CryptoTransformKeyRevisionIntHolder

containing the CryptoTransformKeyRevision (see 7.3.17).

If not successful it shall return -1 and fill the SecurityException.

Returning a key_revision value of “0” indicates the Plugin does not support Key Revisions and no Key

Material has been updated. In this case there is no need to get the new CryptoTokens, distribute

them, and call .activate_key_revision.

If the returned key_revision value is strictly greated than “0”, subsequent “create crypto tokens” calls

on the CryptoKeyExchange interface shall return the CryptoTokens that correspond to

the.updated Key Material. Otherwise the CryptoTokens returned should be the same as if this

operation was never called.

Parameter participant_crypto_handle: A ParticipantCryptoHandle returned by a prior call

to register_local_participant. If this argument is nil, the operation returns FALSE.

Parameter exception: A SecurityException object, which provides details in case this operation

returns -1.

9.5.1.8.8 Operation: activate_key_revision

DDSSEC12-122 – Provide mechanism for changing the session keys

Configures the plugin to start using the KeyMaterial that corresponds to a Key Revision created by a

previous call to the operation revise_local_entity_keys.

This operation shall only be called by the middleware if the most recent call to

revise_local_entity_keys returned a key_revision strictly greater than zero.

DDS Security, v1.12 137

This operation shall be called by the middleware after calling revise_local_entity_keys,

after obtaining the CrytoTokens that correspond to the revised key material, after sending the

appropriate CryptoTokens to the authorized DomainParticipant entities and getting a

confirmation that the CryptoTokens have been received. Alternatively it may be called by the

middleware after sufficient time has elapsed since the CryptoTokens that correspond to the revised

Key Material have been sent.

If successful, this operation shall return true and any subsequent “encode” calls to the

CryptoTranform interface shall use the KeyMaterial that corresponds to the latest (now

current) revision.

If unsuccessful the operation shall return false and subsequent “encode” calls to the

CryptoTranform interface shall keep using the same the KeyMaterial used before the call.

Parameter participant_crypto_handle: A ParticipantCryptoHandle returned by a prior call

to register_local_participant. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

Parameter key_revision: The CryptoTransformKeyRevisionIntHolder value returned by a

prior call to revise_local_entity_keys. If this argument does not correspond to a value

returned by revise_local_entity_keys, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.8.9 Operation: unregister_participant

Releases the resources, associated with a DomainParticipant that the Cryptographic plugin

maintains. After calling this function, the DDS Implementation shall not use the

participant_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DomainParticipant associated with the

participant_crypto_handle. Specifically, it shall be called when the application deletes a

local DomainParticipant and also when the DDS Discovery mechanism detects that a matched

DomainParticipant is no longer in the system.

Parameter participant_crypto_handle: A ParticipantCryptoHandle returned by a prior call

to register_local_participant, or register_matched_remote_participant if

this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.8.10 Operation: unregister_datawriter

Releases the resources, associated with a DataWriter that the Cryptographic plugin maintains. After

calling this function, the DDS Implementation shall not use the datawriter_crypto_handle

anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DataWriter associated with the datawriter_crypto_handle.

138 DDS Security, v1.12

Specifically it shall be called when the application deletes a local DataWriter and also when the

DDS Discovery mechanism detects that a matched DataWriter is no longer in the system.

Parameter datawriter_crypto_handle: A ParticipantCryptoHandle returned by a prior call to

register_local_datawriter, or register_matched_remote_datawriter if this

argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.8.11 Operation: unregister_datareader

Releases the resources, associated with a DataReader, that the Cryptographic plugin maintains.

After calling this function, the DDS Implementation shall not use the

datareader_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DataReader associated with the datareader_crypto_handle.

Specifically it shall be called when the application deletes a local DataReader and also when the

DDS Discovery mechanism detects that a matched DataReader is no longer in the system.

Parameter datareader_crypto_handle: A ParticipantCryptoHandle returned by a prior call

to register_local_datareader, or register_matched_remote_datareader if this

argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

DDS Security, v1.12 139

9.5.1.9 CryptoKeyExchange Interface

The key exchange interface manages the creation of keys and assist in the secure distribution of keys

and key material.

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 43 – CryptoKeyExchange Interface

CryptoKeyExchange

No Attributes

Operations

create_local_participant

_crypto_tokens

 Boolean

out:

local_participant_c

rypto_tokens

ParticipantCryptoTokenSeq

local_participant_c

rypto

ParticipantCryptoHandle

remote_participant_

crypto

ParticipantCryptoHandle

key_revision int32

out: exception SecurityException

set_remote_participant_c

rypto_tokens

 Boolean

local_participant_c

rypto

ParticipantCryptoHandle

remote_participant_

crypto

ParticipantCryptoHandle

remote_participant_

tokens

ParticipantCryptoTokenSeq

out: exception SecurityException

create_local_datawriter_

crypto_tokens

 Boolean

out:

local_datawriter_cr

ypto_tokens

DatawriterCryptoTokenSeq

local_datawriter_cr

ypto

DatawriterCryptoHandle

remote_datareader_c

rypto

DatareaderCryptoHandle

key_revision int32

out: exception SecurityException

set_remote_datawriter_cr

ypto_tokens

 Boolean

local_datareader_cr

ypto

DatareaderCryptoHandle

remote_datawriter_c

rypto

DatawriterCryptoHandle

remote_datawriter_t

okens

DatawriterCryptoTokenSeq

out: exception SecurityException

create_local_datareader_

crypto_tokens

 Boolean

out:

local_datareader_cr

ypto_tokens

DatareaderCryptoTokenSeq

local_datareader_cr

ypto

DatareaderCryptoHandle

remote_datawriter_c

rypto

DatawriterCryptoHandle

140 DDS Security, v1.12

9.5.1.9.1 Operation: create_local_participant_crypto_tokens

This operation creates a sequence of CryptoToken tokens containing the information needed to

correctly interpret cipher text encoded using the local_participant_crypto. That is, the CryptoToken

sequence contains the information needed to decrypt any data encrypted using the

local_participant_crypto, as well as, verify any signatures produced using the

local_participant_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence is intended for transmission in “clear text” to the remote

DomainParticipant associated with the remote_participant_crypto so that the remote

DomainParticipant has access to the necessary key material. For this reason, the

CryptoKeyExchange plugin implementation may encrypt the sensitive information inside the

CryptoToken using shared secrets and keys obtained from the remote_participant_crypto. The

specific ways in which this is done depend on the plugin implementation.

The DDS middleware implementation shall call this operation for each remote

DomainParticipant that matches a local DomainParticipant. That is, remote participants

that have been successfully authenticated and granted access by the AccessControl plugin.

DDSSEC12-122 – Provide mechanism for changing the session keys

The DDS middleware implementation shall also call this operation after calling

revise_local_entity_keys since this operation will generate new key material for all the local

entities in the DomainParticipant.

The returned ParticipantCryptoTokenSeq shall be sent to the remote

DomainParticipant using the BuiltinParticipantVolatileMessageSecureWriter with kind set to

GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.5.3.5). The returned

ParticipantCryptoTokenSeq sequence shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.5.4).

Parameter local_participant_crypto_tokens (out): The returned

ParticipantCryptoTokenSeq.

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_local_participant, which corresponds to the DomainParticipant that

will be encrypting and signing messages.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_matched_remote_participant, that corresponds to the

DomainParticipant that will be receiving the messages from the local DomainParticipant

and will be decrypting them and verifying their signature.

DDSSEC12-122 – Provide mechanism for changing the session keys

key_revision int32

out: exception SecurityException

set_remote_datareader_cr

ypto_tokens

 Boolean

local_datawriter_cr

ypto

DatawriterCryptoHandle

remote_datareader_c

rypto

DatareaderCryptoHandle

remote_datareader_t

okens

DatareaderCryptoTokenSeq

out: exception SecurityException

return_crypto_tokens Boolean

crypto_tokens CryptoTokenSeq

out: exception SecurityException

DDS Security, v1.12 141

Parameter key_revision: An integer that selects the revision of the Key Material that is encoded

into the returned CryptoTokenSeq. The key_revision shall correspond to one returned by a prior

call to revise_local_entity_keys, otherwise the operation shall return false and set the

SecurityException object.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.2 Operation: set_remote_participant_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.5.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DomainParticipant associated with the

remote_participant_crypto and destined to the local DomainParticipant associated with the

local_participant_crypto. The interpretation of the CryptoToken sequence is specific to each

Cryptographic plugin implementation. The CryptoToken sequence may contain information

that is encrypted and/or signed. Typical implementations of the Cryptographic plugin will use the

previously configured shared secret associated with the local and remote

ParticipantCryptoHandle to decode the CryptoToken sequence and retrieve the key

material within.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_matched_remote_participant, that corresponds to the

DomainParticipant that will be sending the messages from the local DomainParticipant

and will be encrypting/signing them with the key material encoded in the CryptoToken sequence.

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_local_participant, that corresponds to the DomainParticipant that

will be receiving messages from the remote DomainParticipant and will need to decrypt and/or

verify their signature.

Parameter remote_participant_tokens: A ParticipantCryptoToken sequence received via

the BuiltinParticipantVolatileMessageSecureReader. The CryptoToken sequence shall correspond

to the one returned by a call to create_local_participant_crypto_tokens performed by

the remote DomainParticipant on the remote side.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.3 Operation: create_local_datawriter_crypto_tokens

This operation creates a DatawriterCryptoTokenSeq containing the information needed to

correctly interpret cipher text encoded using the local_datawriter_crypto. That is, the

CryptoToken sequence contains that information needed to decrypt any data encrypted using the

local_datawriter_crypto as well as verify any signatures produced using the local_datawriter_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence shall be sent to the remote DataReader associated with the

remote_datareader_crypto so that the remote DataReader has access to the necessary key

material.

The operation shall take into consideration the value of the relay_only parameter associated with the

DatawriterCryptoHandle (see 9.5.1.8.4) this parameter shall control whether the Tokens

142 DDS Security, v1.12

returned contain all the cryptographic material needed to decode/verify both the RTPS SubMessage

and the CryptoContent submessage element within or just part of it.

If the value of the relay_only parameter was FALSE, the Tokens returned contain all the cryptographic

material.

If the value of the relay_only parameter was TRUE, the Tokens returned contain only the

cryptographic material needed to verify and decode the RTPS SubMessage but not the CryptoContent

submessage element within.

The DDS middleware implementation shall call this operation for each remote DataReader that

matches a local DataWriter.

DDSSEC12-122 – Provide mechanism for changing the session keys

The DDS middleware implementation shall also call this operation after calling

revise_local_entity_keys since this operation will generate new key material for all the local

DataWriter entities in the DomainParticipant.

The returned CryptoToken sequence shall be sent by the DDS middleware to the remote

DataReader using the BuiltinParticipantVolatileMessageSecureWriter with kind set to

GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS(see 7.5.3.5). The returned

DatawriterCryptoToken shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.5.4.2). The source_endpoint_guid attribute shall be set to

the GUID_t of the local DataWriter and the destination_endpoint_guid attribute shall be set to the

GUID_t of the remote DataReader.

Parameter local_datawriter_crypto_tokens: The returned DatawriterCryptoTokenSeq.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous call

to register_local_datawriter that corresponds to the DataWriter that will be encrypting

and signing messages.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous

call to register_matched_remote_datareader, that corresponds to the DataReader that

will be receiving the messages from the local DataWriter and will be decrypting them and

verifying their signature.

DDSSEC12-122 – Provide mechanism for changing the session keys

Parameter key_revision: An integer that selects the revision of the Key Material that is encoded

into the returned CryptoTokenSeq. The key_revision shall correspond to one returned by a prior

call to revise_local_entity_keys, otherwise the operation shall return false and set the

SecurityException object.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.4 Operation: set_remote_datawriter_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS (see 7.5.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DataWriter associated with the

remote_datawriter_crypto and destined to the local DataReader associated with the

local_datareader_crypto. The interpretation of the DatawriterCryptoTokenSeq

sequence is specific to each Cryptographic plugin implementation. The CryptoToken sequence

may contain information that is encrypted and/or signed. Typical implementations of the

Cryptographic plugin will use the previously configured shared secret associated with the remote

DDS Security, v1.12 143

DatawriterCryptoHandle and local DatareaderCryptoHandle to decode the

CryptoToken sequence and retrieve the key material within.

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous

call to register_matched_remote_datawriter, that corresponds to the DataWriter that

will be sending the messages to the local DataReader and will be encrypting/signing them with the

key material encoded in the CryptoToken.

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call

to register_local_datareader, that corresponds to the DataReader that will be receiving

messages from the remote DataWriter and will need to decrypt and/or verify their signature.

Parameter remote_datawriter_tokens: A CryptoToken sequence received via the

BuiltinParticipantVolatileMessageSecureReader. The DatawriterCryptoToken shall

correspond to the one returned by a call to create_local_datawriter_crypto_tokens

performed by the remote DataWriter on the remote side.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.5 Operation: create_local_datareader_crypto_tokens

This operation creates a DatareaderCryptoTokenSeq containing the information needed to

correctly interpret cipher text encoded using the local_datareader_crypto. That is, the CryptoToken

sequence contains that information needed to decrypt any data encrypted using the

local_datareader_crypto as well as verify any signatures produced using the local_datareader_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence shall be sent to the remote DataWriter associated with the

remote_datawriter_crypto so that the remote DataWriter has access to the necessary key material.

For this reason, the CryptoKeyExchange plugin implementation may encrypt the sensitive

information inside the CryptoToken sequence using shared secrets and keys obtained from the

remote_datawriter_crypto. The specific ways in which this is done depend on the plugin

implementation.

The DDS middleware implementation shall call this operation for each remote DataWriter that

matches a local DataReader.

DDSSEC12-122 – Provide mechanism for changing the session keys

The DDS middleware implementation shall also call this operation after calling

revise_local_entity_keys since this operation will generate new key material for all the local

DataReader entities in the DomainParticipant.

The returned DatareaderCryptoTokenSeq shall be sent by the DDS middleware to the remote

DataWriter using the BuiltinParticipantVolatileMessageSecureWriter with kind set to

GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.5.4.2). The returned

DatareaderCryptoTokenSeq shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.5.4.2). The source_endpoint_guid attribute

shall be set to the GUID_t of the local DataReader and the destination_endpoint_guid attribute

shall be set to the GUID_t of the remote DataWriter.

Parameter local_datareader_crypto_tokens (out): The returned

DatareaderCryptoTokenSeq.

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call

to register_local_datareader, that corresponds to the DataReader that will be encrypting

and signing messages.

144 DDS Security, v1.12

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous

call to register_matched_remote_datawriter, that corresponds to the DataWriter that

will be receiving the messages from the local DataReader and will be decrypting them and

verifying their signature.

DDSSEC12-122 – Provide mechanism for changing the session keys

Parameter key_revision: An integer that selects the revision of the Key aterial that is encoded

into the returned CryptoTokenSeq. The key_revision shall correspond to one returned by a prior

call to revise_local_entity_keys, otherwise the operation shall return false and set the

SecurityException object.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.6 Operation: set_remote_datareader_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.5.4.2).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DataReader associated with the remote_datareader_crypto and

destined to the local DataWriter associated with the local_datawriter_crypto. The interpretation of

the DatareaderCryptoTokenSeq is specific to each Cryptographic plugin implementation.

The CryptoToken sequence may contain information that is encrypted and/or signed. Typical

implementations of the Cryptographic plugin will use the previously configured shared secret

associated with the remote DatareaderCryptoHandle and local

DatawriterCryptoHandle to decode the CryptoToken sequence and retrieve the key material

within.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous

call to register_matched_remote_datareader, that corresponds to the DataReader that

will be sending the messages to the local DataWriter and will be encrypting/signing them with the

key material encoded in the CryptoToken sequence.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle returned by a previous call

to register_local_datawriter, that corresponds to the DataWriter that will be receiving

messages from the remote DataReader and will need to decrypt and/or verify their signature.

Parameter remote_datareader_tokens: A CryptoToken sequence received via the

BuiltinParticipantVolatileMessageSecureReader. The DatareaderCryptoToken shall

correspond to the one returned by a call to create_local_datareader_crypto_tokens

performed by the remote DataReader on the remote side.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.9.7 Operation: return_crypto_tokens

Returns the tokens in the CryptoToken sequence to the plugin so the plugin can release any

information associated with it.

Parameter crypto_tokens: Contains CryptoToken objects issued by the plugin on a prior call to

one of the following operations:

• create_local_participant_crypto_tokens

• create_local_datawriter_crypto_tokens

• create_local_datareader_crypto_tokens

DDS Security, v1.12 145

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.10 CryptoTransform interface

This interface groups the operations related to encrypting/decrypting, as well as, computing and

verifying both message digests (hashes) and Message Authentication Codes (MAC).

MACs may be used to verify both the (data) integrity and the authenticity of a message. The

computation of a MAC (also known as a keyed cryptographic hash function), takes as input a secret

key and an arbitrary-length message to be authenticated, and outputs a MAC. The MAC value protects

both a message's data integrity, as well as, its authenticity by allowing verifiers (who also possess the

secret key) to detect any changes to the message content.

A Hash-based Message Authentication Code (HMAC) is a specialized way to compute MACs. While

an implementation of the plugin is not forced to use HMAC, and could use other MAC algorithms, the

API is chosen such that plugins can implement HMAC if they so choose.

The operations in the CryptoTransform Plugin are defined to be quite generic, taking an input

byte array to transform and producing the transformed array of bytes as an output. The DDS

implementation is only responsible for calling the operations in the CryptoTransform plugin at the

appropriate times as it generates and processes the RTPS messages, substitutes the input bytes with the

transformed bytes produced by the CryptoTransform operations, and proceeds to generate/send or

process the RTPS message as normal but with the replaced bytes. The decision of the kind of

transformation to perform (encrypt and/or produce a digest and/or a MAC and/or signature) is left to

the plugin implementation.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 44 – CryptoTransform interface

CryptoTransform

No Attributes

Operations
encode_serialized_payload Boolean

out: encoded_buffer octet[]

out:

extra_inline_qos

octet[]

plain_buffer octet[]

sending_datawriter_crypto DatawriterCryptoHandle

out: exception SecurityException

encode_datawriter_submess

age

 Boolean

out:

encoded_rtps_submessage

octet[]

plain_rtps_submessage octet[]

sending_datawriter_crypto DatawriterCryptoHandle

receiving_datareader_cryp

to_list

DatareaderCryptoHandle[]

inout:

receiving_datareader_cryp

to_list_index

long

out: exception SecurityException

encode_datareader_submess

age

 Boolean

out:

encoded_rtps_submessage

octet[]

plain_rtps_submessage octet[]

sending_datareader_crypto DatareaderCryptoHandle

receiving_datawriter_cryp

to_list

DatawriterCryptoHandle[]

146 DDS Security, v1.12

out: exception SecurityException

DDS Security, v1.12 147

encode_rtps_message

 Boolean

out: encoded_rtps_message octet[]

plain_rtps_message octet[]

sending_participant_crypt

o

ParticipantCryptoHandle

receiving_participant_cry

pto_list

ParticipantCryptoHandle[

]

inout:

receiving_participant_cry

pto_list_index

long

transform_with_psk Boolean

out: exception SecurityException

decode_rtps_message Boolean

out: plain_buffer octet[]

encoded_buffer octet[]

receiving_participant_cry

pto

ParticipantCryptoHandle

sending_participant_crypt

o

ParticipantCryptoHandle

out: exception SecurityException

preprocess_secure_submsg Boolean

out:

datawriter_crypto

DatawriterCryptoHandle

out:

datareader_crypto

DatareaderCryptoHandle

out:

secure_submessage_categor

y

DDS_SecureSumessageCateg

ory_t

in:

encoded_rtps_submessage

octet[]

receiving_participant_cry

pto

ParticipantCryptoHandle

sending_participant_crypt

o

ParticipantCryptoHandle

out: exception SecurityException

decode_datawriter_submess

age

 Boolean

out:

plain_rtps_submessage

octet[]

encoded_rtps_submessage octet[]

receiving_datareader_cryp

to

DatareaderCryptoHandle

sending_datawriter_crypto DatawriterCryptoHandle

out: exception SecurityException

decode_datareader_submess

age

 Boolean

out:

plain_rtps_submessage

octet[]

encoded_rtps_submessage octet[]

receiving_datawriter_cryp

to

DatawriterCryptoHandle

sending_datareader_crypto DatareaderCryptoHandle

out: exception SecurityException

decode_serialized_payload Boolean

out: plain_buffer octet[]

encoded_buffer octet[]

inline_qos octet[]

148 DDS Security, v1.12

9.5.1.10.1 Operation: encode_serialized_payload

This operation shall be called by the DDS implementation as a result of the application calling the

write operation on the DataWriter associated with the DatawriterCryptoHandle specified in the

sending_datawriter_crypto parameter.

The operation receives the data written by the DataWriter in serialized form wrapped inside the

RTPS SerializedPayload submessage element and shall output an RTPS CryptoContent

submessage element and a extra_inline_qos containing InlineQos formatted as a ParameterList,

see section 7.4.1.

If the returned extra_inline_qos is not empty, the parameters contained shall be added to the list of

inlineQos parameters present in the (Data or DataFrag) submessage. If the (Data or DataFrag)

submessage did not already have an inlineQos, then the inlineQos submessage element shall be added

and the submessage flags modified accordingly.

The DDS implementation shall call this operation for all outgoing RTPS Submessages with

submessage kind Data and DataFrag. The DDS implementation shall substitute the

SerializedPayload submessage element within the aforementioned RTPS submessages with the

CryptoContent produced by this operation.

The implementation of encode_serialized_payload can perform any desired cryptographic

transformation of the SerializedPayload using the key material in the

sending_datawriter_crypto, including encryption, addition of a MAC, and/or signature. The

encode_serialized_payload shall include in the extra_inline_qos or the CryptoContent

the CryptoTransformIdentifier and the additional information needed to identify the key

used and decode the CryptoContent submessage element.

If an error occurs, this method shall return false.

Figure 12 – Effect of encode_serialized_payload within an RTPS message

RTPS SubMessage

SerializedPayload

RTPS Header

encode_serialized_payload

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t CryptoHeader

CryptoFooter

receiving_datareader_cryp

to

DatareaderCryptoHandle

sending_datawriter_crypto DatawriterCryptoHandle

out: exception SecurityException

DDS Security, v1.12 149

Parameter encoded_buffer: The output containing the CryptoContent RTPS submessage element,

which shall be used to replace the input plain_buffer.

Parameter extra_inline_qos: The output containing additional parameters to be added to the inlineQos

ParamaterList in the submessage.

Parameter plain_buffer: The input containing the SerializedPayload RTPS submessage

element.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_local_datawriter for the DataWriter that wrote the

SerializedPayload.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.10.2 Operation: encode_datawriter_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

submessage of kind Data, DataFrag, Gap, Heartbeat, or HeartbeatFrag.

The operation receives the DatawriterCryptoHandle of the DataWriter that is sending the

submessage, as well as, a list of DatareaderCryptoHandle corresponding to all the

DataReader entities to which the submessage is being sent.

In the case of BuiltinParticipantVolatileMessageSecureWriter (identified through the

DatawriterCryptoHandle), the DatareaderCryptoHandle list has ONE element

containing KxKey material derived from the SharedSecret as described in 10.5.2.1.2.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the

parameter rtps_submessage and shall output one or more RTPS Submessages in the output

parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS

submessage that was passed in the rtps_submessage with the RTPS Submessages returned in the

encoded_rtps_submessage output parameter in the construction of the RTPS message that is

eventually sent to the intended recipients.

The implementation of encode_datawriter_submessage can perform any desired

cryptographic transformation of the RTPS Submessage using the key material in the

sending_datawriter_crypto; it can also add one or more MACs and/or signatures. The fact that the

cryptographic material associated with the list of intended DataReader entities is passed in the

parameter receiving_datareader_crypto_list allows the plugin implementation to include MACs that

may be computed differently for each DataReader.

The implementation of encode_datawriter_submessage shall include, within the RTPS

Submessages, the CryptoTransformIdentifier containing any additional information

necessary for the receiving plugin to identify the DatawriterCryptoHandle associated with the

DataWriter that sent the message, as well as, the DatareaderCryptoHandle associated with the

DataReader that is meant to process the submessage. How this is done depends on the plugin

implementation.

A typical implementation of encode_datawriter_submessage may output a

SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a

SecurePostfixSubMsg.

If an error occurs, this method shall return false.

150 DDS Security, v1.12

Figure 13 – Effect of encode_datawriter_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which

shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a

DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,

and HeartbeatFrag.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_local_datawriter for the DataWriter whose GUID is inside the rtps_submessage.

Parameter receiving_datareader_crypto_list: The list of DatareaderCryptoHandle returned by

previous calls to register_matched_remote_datareader for the DataReader entities to

which the submessage will be sent.

Parameter receiving_datareader_crypto_list_index: Index to the first element of the

receiving_datareader_crypto_list that should be used. This parameter allows the

encode_datawriter_submessage operation to be invoked multiple times for a given

plain_rtps_submessage, iterating over elements in the receiving_datawriter_crypto_list. Each iteration

prepares the encoded_rtps_submessage for a different set of data readers and advances the

receiving_datareader_crypto_list_index.

The receiving_datareader_crypto_list_index shall be set to 0 to start the iteration on a

plain_rtps_submessage. Subsequent calls may use a non-zero value of the index. If the index is non-

zero, then the plain_rtps_submessage shall be set to the empty sequence and the

encoded_rtps_submessage shall be the one returned by a previous call to the

encode_datawriter_submessage. The calls with non-zero values of the

receiving_datareader_crypto_list_index modify the encoded_rtps_submessage, replacing the

receiver-specific parts of the encoded_rtps_submessage.

The operation fills the receiving_datawriter_crypto_list_index with the next index to use in

subsequent calls to encode_datawriter_submessage. The value

receiving_datawriter_crypto_list_index = Length(receiving_datawriter_crypto_list) indicates that the

iteration over the receiving_datawriter_crypto_list is complete.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

DDS Security, v1.12 151

9.5.1.10.3 Operation: encode_datareader_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

submessage of kind AckNack or NackFrag.

The operation receives the DatareaderCryptoHandle of the DataReader that is sending the

submessage, as well as, a list of DatawriterCryptoHandle corresponding to all the DataWriter

entities to which the submessage is being sent.

In the case of BuiltinParticipantVolatileMessageSecureReader (identified through the

DatawriterCryptoHandle), the DatawriterCryptoHandle list has ONE element

containing KxKey material derived from the SharedSecret as described in 10.5.2.1.2.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the

parameter rtps_submessage and shall output one or more RTPS Submessages in the output

parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS

submessage that was passed in the rtps_submessage with the Submessages returned in the

encoded_rtps_submessage output parameter in the construction of the RTPS message that is

eventually sent to the intended recipients.

The implementation of encode_datareader_submessage can perform any desired

cryptographic transformation of the RTPS Submessage using the key material in the

sending_datareader_crypto, it can also add one or more MACs, and/or signatures. The fact

that the cryptographic material associated with the list of intended DataWriter entities is passed in

the parameter receiving_datawriter_crypto_list allows the plugin implementation to

include one of MAC that may be computed differently for each DataWriter.

The implementation of encode_datareader_submessage shall include within the

encoded_rtps_submessage the CryptoTransformIdentifier containing any additional

information necessary for the receiving plugin to identify the DatareaderCryptoHandle

associated with the DataReader that sent the message as well as the DatawriterCryptoHandle

associated with the DataWriter that is meant to process the submessage. How this is done depends on

the plugin implementation.

A typical implementation of encode_datareader_submessage may output a

SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a

SecurePostfixSubMsg.

If an error occurs, this method shall return false.

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

152 DDS Security, v1.12

Figure 14 – Effect of encode_datareader_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which

shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a

DataReader. This submessage will be one of following kinds: AckNack, NackFrag.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by a previous

call to register_local_datareader for the DataReader whose GUID is inside the rtps_submessage.

Parameter receiving_datawriter_crypto_list: The list of DatawriterCryptoHandle returned by

previous calls to register_matched_remote_datawriter for the DataWriter entities to

which the submessage will be sent.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.10.4 Operation: encode_rtps_message

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

message prior to sending it on the wire.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The operation receives the ParticipantCryptoHandle of the DomainParticipant that is sending

the message, as well as, a list of ParticipantCryptoHandle corresponding to all the

DomainParticipant entities to which the message is being sent.

The operation receives the complete RTPS message as it would normally go onto the wire in the

parameter plain_rtps_message and shall also output an RTPS message in the output parameter

encoded_rtps_message. The DDS implementation shall substitute the original RTPS message that was

passed in the plain_rtps_message with the encoded_rtps_message returned by this operation and

proceed to send it to the intended recipients.

This operation may optionally not perform any transformation of the input RTPS message. In this case,

the operation shall return false but not set the exception object. In this situation the DDS

implementation shall send the original RTPS message.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The implementation of encode_rtps_message may perform any desired cryptographic

transformation of the whole RTPS Message using the key material in the

sending_participant_crypto, it can also add one or more MACs, and/or signatures. The fact

that the cryptographic material associated with the list of intended DataWriter entities is passed in the

parameter receiving_participant_crypto_list allows the plugin implementation to

include MACs that may be computed differently for each destination DomainParticipant.

The implementation of encode_rtps_message shall include within the encoded_rtps_message

the CryptoTransformIdentifier containing any additional information beyond the one shared

via the CryptoToken that would be needed to identify the key used and decode the

encoded_rtps_message back into the original RTPS message.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The details of the transformation shall be defined for each specific Cryptographic plugin

implementation:

• A typical implementation of encode_rtps_message to provide authentication only may output

the RTPS Header (and optionally a HeaderExtension), followed by a

SecureRTPSPrefixSubMsg, followed by the submessages included in the input

plain_rtps_message, followed by a SecureRTPSPostfixSubMsg. An additional

Deleted: sub

Deleted: sub

Deleted: one of

Deleted: <#>¶

Deleted: <#>

Deleted: <#>followed by an InfoSourceSubMsg

(containing the information in the original RTPS Header

so it can be authenticated),

DDS Security, v1.12 153

InfoSourceSubMsg duplicating the information in the RTPS Header may be inserted after the

SecureRTPSPrefixSubMsg when additional authenticated data is not enabled.

• A typical implementation of encode_rtps_message to provide authenticated encryption may

output the RTPS Header (and optionally a HeaderExtension), followed by a

SecureRTPSBodySubMsg containing the result of transforming the remining messages included

in the input plain_rtps_message followed by a SecureRTPSPrefixSubMsg, followed by a

SecureRTPSBodySubMsg containing the result of transforming the non-header submessages in

the input plain_rtps_message, followed by a SecureRTPSPostfixSubMsg. An additional

InfoSourceSubMsg duplicating the information in the RTPS Header may be inserted prior to

doing the transformation when additional authenticated data is not enabled,

If an error occurs, this method shall return false and set the exception object.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Figure 15 – Possible effect of encode_rtps within an RTPS message providing authentication only

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

 S Su ess ge

 S Su ess ge

 S e der encode rtps ess ge

 S Su ess ge

 S e der

 S Secure S re

 S Secure S os i

 S e der E tension S e der E tension

 S Su ess ge

 S Su ess ge

 S Su ess ge

154 DDS Security, v1.12

Figure 16 – Possible effect of encode_rtps within an RTPS message providing authenticated encryption

Parameter encoded_rtps_message: The output containing the encoded RTPS message.

Parameter plain_rtps_message: The input containing the RTPS messages the DDS implementation

intended to send.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_local_participant for the DomainParticipant whose GUID is inside the RTPS

Header.

Parameter receiving_participant_crypto_list: The list of ParticipantCryptoHandle returned

by previous calls to register_matched_remote_participant for the DomainParticipant

entities to which the message will be sent.

Parameter receiving_participant_crypto_list_index: Index to the first element of the

receiving_participant_crypto_list that should be used. This parameter allows the

encode_rtps_message operation to be invoked multiple times for a given plain_rtps_message,

iterating over elements in the receiving_receiving_participant_crypto_list. Each iteration prepares the

encoded_rtps_message for a different set of receiving domain participants and advances the

receiving_participant_crypto_list_index.

The receiving_participant_crypto_list_index shall be set to 0 to start the iteration on a

plain_rtps_message. Subsequent calls may use a non-zero value of the index. If the index is non-zero,

then the plain_rtps_message shall be set to the empty sequence and the encoded_rtps_message shall

be the one returned by a previous call to the encode_rtps_message. The calls with non-zero

values of the receiving_participant_crypto_list_index modify the encoded_rtps_message, replacing

the receiver-specific parts of the encoded_rtps_message.

The operation fills the receiving_participant_crypto_list_index with the next index to use in

subsequent calls to encode_rtps_message. The value receiving_participant_crypto_list_index =

Length(receiving_participant_crypto_list) indicates that the iteration over the

receiving_participant_crypto_list is complete.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

 S Su ess ge

 S Su ess ge

 S e der encode rtps ess ge

 S Su ess ge

 S e der

 S Secure S re

 S Secure S os i

 S SecureBody

 S e der E tension S e der E tension

 S Su ess ge

 S Su ess ge

 S Su ess ge

Deleted:

RTPS SubMessage

RTPS SubMessage

RTPS Header encode_rtps_message

RTPS SubMessage

RTPS Header(*)

RTPS SecureRTPSPrefix

RTPS SecureRTPSPostfix

INFO_SRC*

RTPS SubMessage*

RTPS SubMessage*

RTPS SubMessage*

RTPS SecureBody

Deleted: 161615

DDS Security, v1.12 155

Parameter transform_with_psk: If false, indicates that the RTPS message shall be transformed

using the cryptographic material that the sending Participant created and exchanged with the matched

authenticated Participants. If true, indicates that the RTPS message shall be protected using the

sending Participant's pre-shared key. This shall result in the RTPS SecureRTPSPRefix’s

PreSharedKeyFlag (see 7.4.7.8.3) to be set for the outgoing encoded_RTPS_message).

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.10.5 Operation: decode_rtps_message

This operation shall be called by the DDS implementation whenever it receives an RTPS message

prior to parsing it.

This operation shall reverse the transformation performed by the encode_rtps_message

operation, decrypting the content if appropriate and verifying any MACs or digital signatures that were

produced by the encode_rtps_message operation.

If an error occurs, this method shall return an exception.

Figure 17 – Possible effect of decode_rtps within an RTPS message

Parameter plain_rtps_message: The output containing the decoded RTPS message. The output

message shall contain the original RTPS message.

RTPS SubMessage

RTPS SubMessage

SerializedPayload

RTPS Header
RTPS Header

Secure encoding

Secure decoding

Message Transformation

SerializedPayload

SecureRTPSPrefix

SecureRTPSPostfix

SecureBody

SecurePrefix

SecurePostfix

SecureBody

SerializedPayload

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t

CryptoHeader

CryptoFooter

Deleted: 171716

156 DDS Security, v1.12

Parameter encoded_rtps_message: The input containing the encoded RTPS message the DDS

implementation received.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by

previous calls to register_local_participant for the DomainParticipant entity that

received the RTPS message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_matched_remote_participant for the DomainParticipant

that sent the RTPS message whose GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.10.6 Operation: preprocess_secure_submsg

This operation shall be called by the DDS implementation as a result of a DomainParticipant

receiving an RTPS.

The purpose of the operation is to determine whether the secure submessage was produced as a result

of a call to encode_datawriter_submessage or a call to

encode_datareader_submessage, and to retrieve the appropriate

DatawriterCryptoHandle and DatareaderCryptoHandle needed to decode the

submessage.

If the operation returns successfully, the DDS implementation shall call the appropriate decode

operation based on the returned SecureSubmessageCategory_t:

• If the returned SecureSubmessageCategory_t equals DATAWRITER_SUBMESSAGE,

then the DDS Implementation shall call decode_datawriter_submessage.

• If the returned SecureSubmessageCategory_t equals DATAREADER_SUBMESSAGE,

then the DDS Implementation shall call decode_datareader_submessage.

• If the returned SecureSubmessageCategory_t equals INFO_SUBMESSAGE, then the DDS

Implementation proceeds normally to process the submessage without further decoding.

Parameter secure_submessage_category: Output SecureSubmessageCategory_t. It shall be

set to DATAWRITER_SUBMESSAGE if the SecurePrefixSubMsg was created by a call to

encode_datawriter_submessage or set to DATAREADER_SUBMESSAGE if the

SecurePrefixSubMsg was created by a call to encode_datareader_submessage. If none

of these conditions apply, the operation shall return false.

Parameter datawriter_crypto: Output DatawriterCryptoHandle. The setting depends on the

returned value of secure_submessage_category:

• If secure_submessage_category is DATAWRITER_SUBMESSAGE, the

datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call

to register_matched_remote_datawriter for the DataWriter that wrote the RTPS

Submessage.

• If secure_submessage_category is DATAREADER_SUBMESSAGE, the

datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call

to register_local_datawriter for the DataWriter that is also the destination of the RTPS

Submessage.

Parameter datareader_crypto: Output DatareaderCryptoHandle. The setting depends on the

returned value of secure_submessage_category:

DDS Security, v1.12 157

• If secure_submessage_category is DATAWRITER_SUBMESSAGE, the

datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call

to register_local_datareader for the DataReader that is the destination of the RTPS

Submessage.

• If secure_submessage_category is DATAREADER_SUBMESSAGE, the

datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call

to register_matched_remote_datareader for the DataReader that wrote the RTPS

Submessage.

Parameter encoded_rtps_message: The input containing the received RTPS message.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by

previous calls to register_local_participant for the DomainParticipant that received the

RTPS message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_matched_remote_participant for the DomainParticipant whose

GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.5.1.10.7 Operation: decode_datawriter_submessage

This operation shall be called by the DDS implementation as a result of receiving a

SecurePrefixSubMsg whenever the preceding call to preprocess_secure_submessage

identified the SecureSubmessageCategory_t as DATAWRITER_SUBMESSAGE.

This operation shall reverse the transformation performed by the

encode_datawriter_submessage operation, decrypting the content if appropriate and

verifying any MACs or digital signatures that were produced by the

encode_datawriter_submessage operation.

The DDS implementation shall substitute the RTPS SecurePrefixSubMsg and any associated

submessages following (for example, SecureBodySubMsg and SecurePostfixSubMsg) within

the received submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

Figure 18 – Effect of decode_datawriter_submessage within an RTPS message

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Deleted: 181817

158 DDS Security, v1.12

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a

DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,

and HeartbeatFrag.

Parameter encoded_rtps_submessage: The input containing the RTPS SecurePrefixSubMsg and

any associated submessages following (for example, SecureBodySubMsg and

SecurePostfixSubMsg), which were created by a call to

encode_datawriter_submessage.

Parameter receiving_datareader_crypto: The DatareaderCryptoHandle returned by the

preceding call to preprocess_secure_submessage performed on the received

SecurePrefixSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the

DataReader that is receiving the RTPS Submessage.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by the

preceding call to preprocess_secure_submsg performed on the received

SecurePrefixSubMsg. It shall contain the DatawriterCryptoHandle corresponding to the

DataWriter that is sending the RTPS Submessage.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.5.1.10.8 Operation: decode_datareader_submessage

This operation shall be called by the DDS implementation as a result of receiving a

SecurePrefixSubMsg whenever the preceding call to preprocess_secure_submessage

identified the SecureSubmessageCategory_t as DATAREADER_SUBMESSAGE.

This operation shall reverse the transformation performed by the

encode_datareader_submessage operation, decrypting the content if appropriate and

verifying any MACs or digital signatures that were produced by the

encode_datareader_submessage operation.

The DDS implementation shall substitute the RTPS SecurePrefixSubMsg and any associated

submessages following (for example, SecureBodySubMsg and SecurePostfixSubMsg) within

the received submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

Figure 19 – Effect of decode_datawriter_submessage within an RTPS message

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Deleted: 191918

DDS Security, v1.12 159

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a

DataReader. This submessage will be one of the following kinds: AckNack, NackFrag.

Parameter encoded_rtps_submessage: The input containing the RTPS SecurePrefixSubMsg and

any associated submessages following (for example, SecureBodySubMsg and

SecurePostfixSubMsg), which was created by a call to

encode_datareader_submessage.

Parameter receiving_datawriter_crypto: The DatawriterCryptoHandle returned by the

preceding call to preprocess_secure_subessage performed on the received

SecurePrefixSubMsg. It shall contain the DatawriterCryptoHandle corresponding to the

DataWriter that is receiving the RTPS Submessage.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by the

preceding call to preprocess_secure_submessage performed on the received

SecurePrefixSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the

DataReader that is sending the RTPS Submessage.

9.5.1.10.9 Operation: decode_serialized_payload

This operation shall be called by the DDS implementation as a result of a DataReader receiving a

Data or DataFrag submessage containing a CryptoContent RTPS submessage element (instead

of the normal SerializedPayload).

The operation shall receive in the inline_qos parameter the InlineQos RTPS SubmessageElement

that appeared in the RTPS Data submessage that carried the SerializedPayload.

The DDS implementation shall substitute the CryptoContent submessage element within the

received submessages with the SerializedPayload produced by this operation.

The implementation of decode_serialized_payload shall undo the cryptographic

transformation of the SerializedPayload that was performed by the corresponding call to

encode_serialized_payload on the DataWriter side. The DDS implementation shall use the

available information on the remote DataWriter that wrote the message and the receiving DataReader

to locate the corresponding DatawriterCryptoHandle and DatareaderCryptoHandle and

pass them as parameters to the operation. In addition, it shall use the

CryptoTransformIdentifier present in the CryptoContent to verify that the correct key is

available and obtain any additional data needed to decode the CryptoContent.

160 DDS Security, v1.12

Figure 20 – Effect of decode_serialized_payload within an RTPS message

If an error occurs, this method shall return false.

Parameter plain_buffer: The output containing the SerializedPayload RTPS submessage

element, which shall be used to replace the input plain_buffer.

Parameter encoded_buffer: The input containing the CryptoContent RTPS submessage element.

Parameter receiving_reader_crypto: The DatareaderCryptoHandle returned by a previous call

to register_local_datareader for the DataReader that received the Submessage

containing the CryptoContent.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_matched_remote_datawriter for the DataWriter that wrote the

CryptoContent.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

9.6 The Logging Plugin

The Logging Control Plugin API defines the types and operations necessary to support logging of

security events for a DDS DomainParticipant.

9.6.1 Background (Non-Normative)

The Logging plugin provides the capability to log all security events, including expected behavior

and all security violations or errors. The goal is to create security logs that can be used to support

audits. The rest of the security plugins will use the logging API to log events.

The Logging plugin will add an ID to the log message that uniquely specifies the

DomainParticipant. It will also add a time-stamp to each log message.

The Logging API has two options for collecting log data. The first is to log all events to a local file

for collection and storage. The second is to distribute log events securely over DDS.

RTPS SubMessage

SerializedPayload

RTPS Header

decode_serialized_payload

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t CryptoHeader

CryptoFooter

Deleted: 202019

DDS Security, v1.12 161

9.6.2 Logging Plugin Model

The logging model is shown in the figure below.

Figure 21 – Logging Plugin Model

9.6.2.1 LogOptions

The LogOptions let the user control the log level and where to log. The options must be set before

logging starts and may not be changed at run-time after logging has commenced. This is to ensure that

an attacker cannot temporarily suspend logging while they violate security rules, and then start it up

again.

The options specify if the messages should be logged to a file and, if so, the file name. The

LogOptions also specify whether the log messages should be distributed to remote services or only

kept locally.

class Logging

SecurityPlugin

«interface»

Logging

+ enable_logging(): void

+ log(): void

+ set_log_options(): boolean

«primitive»

LogOptions

«interface»

LoggerListener

+ log_message(): Integer

BuiltinLoggingType

- facil ity: octet

- severity: int

- timestamp: Time_t

- hostname: string

- hostip: string

- appname: string

- procid: string

- msgid: string

- message: string

- structured_data: map<string, NameValuePairSeq>

NameValuePair

- name: string

- value: string

Deleted: 212120

162 DDS Security, v1.12

Table 45 – LogOptions values

LogOptions

Attributes
log_level Long

log_file String

distribute Boolean

9.6.2.1.1 Attribute: log_level

Specifies what level of log messages will be logged. Messages at or below the log_level are logged.

The levels are as follows, from low to high:

• FATAL_LEVEL – security error causing a shutdown or failure of the Domain Participant

• SEVERE_LEVEL – major security error or fault

• ERROR_LEVEL – minor security error or fault

• WARNING_LEVEL – undesirable or unexpected behavior

• NOTICE_LEVEL – important security event

• INFO_LEVEL – interesting security event

• DEBUG_LEVEL – detailed information on the flow of the security events

• TRACE_LEVEL – even more detailed information

9.6.2.1.2 Attribute: log_file

Specifies the full path to a local file for logging events. If the file already exists, the logger will append

log messages to the file. If it is NULL, then the logger will not log messages to a file.

9.6.2.1.3 Attribute: distribute

Specifies whether the log events should be distributed over DDS. If it is TRUE, each log message at or

above the log_level is published as a DDS Topic.

9.6.2.2 Logging

Table 46 – Logging Interface

Logging

No Attributes

Operations
set_log_options Boolean

options LogOptions

out: exception SecurityException

Deleted: 454543

Deleted: 464644

DDS Security, v1.12 163

9.6.2.2.1 Operation: set_log_options

Sets the options for the logger. This must be called before enable_logging; it is an error to set the

options after logging has been enabled.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.6.2.2.2 Operation: log

Log a message. The logger shall log the message if its log_level is at or above the level set in the

LogOptions. The Logger shall add to the message the RTPS GUID of the DomainParticipant

whose operations are being logged.

The Logger shall populate the facility, severity, and timestamp, fields. The Logger may populate

the hostname, hostip, appname, procid fields as appropriate. The Logger shall add an entry to the

structured_data field with the key “DDS”. This NameValuePair sequence shall include the

following name-value pairs:

Table 47 – Logger structured_data entries

Name Value

guid RTPS GUID of the DDS entity that triggered the log message
domain_id Domain Id of the DomainParticipant that triggered the log message

plugin_class Identifier of the type of security plugin: Authentication,
AccessControl, Cryptographic, etc.

plugin_method Security plugin method name that triggered the log message

The Logger may add more entries as appropriate for the error condition.

Parameter log_level: The level of the log message. It must correspond to one of the levels defined in

9.6.2.1.1.

Parameter message: The log message.

Parameter category: A category for the log message. This can be used to specify which security

plugin generated the message.

Parameter exception: A SecurityException object that will return an exception if there is an

error with logging.

9.6.2.2.3 Operation: enable_logging

Enables logging. After this method is called, any call to log shall log the messages according to the

options. After this method is called, the options may not be modified. This is to ensure that the logger

cannot be temporarily suspended to cover up an attack.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

log void

log_level long

message String

category String

out:exception SecurityException

enable_logging void

out: exception SecurityException

set_listener Boolean

 listener LoggerListener

 out: exception SecurityException

Deleted: 474745

164 DDS Security, v1.12

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

9.6.2.2.4 Operation: set_listener

Sets the LoggerListener that the Logger plugin will use to notify the application of log events.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: A LoggerListener object to be attached to the Logger object. If this

argument is NIL, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation

returns FALSE.

DDS Security, v1.12 165

9.7 Data Tagging

Data tagging is the ability to add a security label or tag to data. This is often used to specify a

classification level of the data including information about its releasability. In a DDS context, it could

have several uses:

• It can be used for access control – access control would be granted based on the tag.

• It could be used for message prioritization.

• It could not be used by the middleware, and instead used by the application or other service.

9.7.1 Background (Non-Normative)

There are four different approaches to data tagging:

1. DataWriter tagging: data received from a certain DataWriter has the tag of the

DataWriter. This solution does not require the tag to be added to each individual sample.

2. Data instance tagging: each instance of the data has a tag. This solution does not require the tag to

be added to each individual sample.

3. Individual sample tagging: every DDS sample has its own tag attached.

4. Per-field sample tagging: very complex management of the tags.

This specification supports DataWriter tagging. This was considered the best choice as it meets the

majority of use cases. It fits into the DDS paradigm, as the metadata for all samples from a

DataWriter is the same. It is also the highest performance, as the tag only needs to be exchanged

once when the DataWriter is discovered, not sent with each sample.

This approach directly supports typical use cases where each application or DomainParticipant

writes data on a Topic with a common set of tags (e.g., all at the same specified security level). For

use cases where an application creates data at different classifications, that application can create

multiple DataWriters with different tags.

9.7.2 DataTagging Model

The DataWriter tag will be associated with every sample written by the DataWriter. The

DataWriter DataTag is implemented as an immutable DataWriterQos. The DataWriter

DataTag shall be propagated in the PublicationBuiltinTopicData as part of the DDS

discovery protocol.

The DataReader DataTag is implemented as an immutable DataReaderQos. The DataReader

DataTag shall be propagated in the SubscriptionBuiltinTopicData as part of the DDS

discovery protocol.

9.8 Security Plugins Behavior

In the previous sub clauses, the functionality and APIs of each plugin have been described. This sub

clause provides additional information on how the plugins are integrated with the middleware.

9.8.1 Authentication and AccessControl behavior with local DomainParticipant

The figure below illustrates the functionality of the security plugins with regards to a local

DomainParticipant.

In this sub clause the term “DDS application” refers to the application code that calls the DDS API.

The term “DDS middleware” refers to a DDS Implementation that complies with the DDS Security

specification.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

166 DDS Security, v1.12

Figure 22 – Authentication and AccessControl sequence diagram with local DomainParticipant

This behavior sequence is triggered when the DDS application initiates the creation of a local

DomainParticipant by calling the create_participant operation on the

DomainParticipantFactory. The following are mandatory steps that the DDS middleware

shall perform prior to creating the DomainParticipant. The steps need not occur exactly as

described as long as the observable behavior matches the one described below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

1. The DDS middleware shall validate the identity of the application attempting to create the

DomainParticipant by calling the

Authentication::validate_local_identity operation, passing the

domain_id, the DomainParticipantQos, and a candidate_participant_guid. The

Authentication plugin validates the identity of the local DomainParticipant and

returns an IdentityHandle for the holder of the identity (DomainParticipant),

which will be necessary for interacting with the access control plugin. The

validate_local_identity operation also returns an adjusted_participant_guid. If

the identity is not successfully validated, the DDS middleware shall not create the

DomainParticipant and the create_participant operation shall return NIL and

set the return code to NOT_ALLOWED_BY_SECURITY.

sd DDS Security-Par cipant v12

 uthen c on

DDS DiscoveryDDS pplic on

 r cip nt

 ccess ontrol interf ce

 ryptogr phic

get per issions to en Boole n

get iden ty to en Boole n

chec cre te p r cip nt Boole n

get iden ty st tus to en Boole n

v lid te loc l per issions er issions ndle

set p r cip nt security con g Boole n

set per issions creden l nd to en Boole n

 cre te

con gure den ty o en den tySt tus o en er issions o en r cip ntSecurity on g r cip ntSecurity on g

v lid te loc l iden ty lid on esult t

register loc l p r cip nt r cip nt rypto ndle

get p r cip nt security con g Boole n

get per issions creden l to en Boole n

Deleted:

sd DDS::Security-Participant

Authentication

DDS-DiscoveryDDSApplication

Participant

(from DDS)

AccessControl

check_create_participant(): Boolean

get_participant_sec_attributes(): Boolean

get_permissions_credential_token(): Boolean

validate_local_identity(): ValidationResult_t

get_identity_token(): Boolean

«create»

validate_local_permissions(): PermissionsHandle

set_permissions_credential_and_token(): Boolean

configure(IdentityToken, IdentityStstusToken, PermissionsToken)

get_identity_status_token(): Boolean

get_permissions_token(): Boolean

Deleted: 222221

Formatted: Outline numbered + Level: 2 + Numbering
Style: 1, 2, 3, … + Aligned at: 0.5" + Indent at: 0.75"

DDS Security, v1.12 167

2. The DDS middleware shall validate that the DDS application has the necessary permissions

to join DDS domains by calling the

AccessControl::validate_local_permissions operation. The Access

Control plugin shall validate the permissions and issue a signed PermissionsHandle

for the holder of the identity (DomainParticipant). If the permissions are not

validated, the DomainParticipant shall not be created, the create_participant

operation shall return NIL and set the return code to NOT_ALLOWED_BY_SECURITY.

3. The DDS middleware shall verify that the DDS application has the necessary permissions

to join the specific Domain identified by the domainId by calling the operation

AccessControl::check_create_participant. If this operation returns FALSE,

the DomainParticipant shall not be created, the create_participant operation

shall return NIL and set the return code to NOT_ALLOWED_BY_SECURITY.

4. The DDS middleware shall call the get_identity_token operation to obtain the

IdentityToken object corresponding to the received IdentityHandle. The

IdentityToken object shall be placed in the ParticipantBuiltinTopicData sent via

discovery, see 7.5.1.3.

5. The DDS middleware shall call the get_identity_status_token operation to

obtain the IdentityStatusToken object corresponding to the received

IdentityHandle. If the returned IdentityStatusToken object is different than

TokenNIL, it shall be placed in the ParticipantBuiltinTopicDataSecure sent via secure

discovery, see 7.5.1.6.

6. The middleware shall call the get_permissions_token operation on the

AccessControl plugin to obtain the PermissionsToken object corresponding to the

received PermissionsHandle. The PermissionsToken shall be placed in the

ParticipantBuiltinTopicData sent via discovery, see 7.5.1.3.

7. The middleware calls the get_permissions_credential_token operation on the

AccessControl plugin, which returns the PermissionsCredentialToken object

corresponding to the received PermissionsHandle. The

PermissionsCredentialToken object is necessary to configure the

Authentication plugin.

8. The middleware calls the set_permissions_credential_and_token operation

on the Authentication plugin such that it can be sent during the authentication

handshake.

9. The middleware calls the get_participant_security_config operation on the

AccessControl plugin to obtain the ParticipantSecurityConfig to configure

various behavioral aspects including how to handle unauthenticated participants, how the

builtin topics should be protected, and the cryptographic algorithms the plugins are allowed

to use.

10. The middleware calls the set_participant_security_config operation on the

Authentication plugin passing the ParticipantSecurityConfig returned by

the call to get_participant_security_config. Calling

set_participant_security_config configures the Authentication plugin

including the algorithms it may use and gets an output

ParticipantSecurityAlgorithmInfo with information on the cryptographic

algorithms supported and used by the Authentication plugin.

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: such

Deleted: that it knows how to handle remote

participants that fail to authenticate

168 DDS Security, v1.12

11. The middleware calls the register_local_participant operation on the

Cryptographic plugin passing the ParticipantSecurityConfig returned by the

call to get_participant_security_config this configures the

Cryptographic plugin and gets an output

ParticipantSecurityAlgorithmInfo with information on cryptographic the

algorithms supported and used by the Cryptographic plugin.

12. This configure operation is internal to the DDS implementation and therefore this API

is not specified by the DDS Security specification. It is mentioned here to provide guidance

to implementers. The DomainParticipant’s IdentityToken, the

PermissionsToken, the ParticipantSecurityConfig returned by

get_participant_security_config and the

ParticipantSecurityAlgorithmInfo values returned by the two calls to

set_participant_security_config are used to configure DDS discovery and

also impact the information propagated inside the ParticipantBuiltinTopicData and

ParticipantBuiltinTopicDataSecure:

• Information propagated in the ParticipantBuiltinTopicData members:

1. IdentityToken is used to set the identity_token .

2. PermissionsToken is used to set the permissions_token

3. The ParticipantSecurityConfig is used to set the security_info

4. The two ParticipantSecurityAlgorithmInfo are combined and used to

set the digital_signature, key_establishment, and symmetric_cipher.

• Information propagated in the ParticipantBuiltinTopicDataSecure members:

1. The IdentityStatusToken, is used to set the identity_status_token .

9.8.2 Compatibility of Participant Security Plugins

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Discovered DomainParticipant entities may not implement the DDS Security specification of

may be configured with incompatible Security Plugins. For this reason, whenever a (local)

DomainParticipant discovers a (remote) DomainParticipant the first step is to check the

information present in the ParticipantBuiltinTopicData of the remote

DomainParticipant to determine security plugin compatibility. The check examines the

following members: identity_token, permissions_token, security_protection_info, digital_signature,

key_establishment, symmetric_cipher.

9.8.3 Authentication behavior with discovered DomainParticipant

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Depending on the ParticipantSecurityConfig returned by the AccessControl operation

get_participant_security_config the DomainParticipant may allow remote

DomainParticipants that lack the ability to authenticate (e.g., do not implement DDS Security)

to match.

9.8.3.1 Behavior when allow_unauthenticated_participants is set to TRUE

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the ParticipantSecurityConfig returned by the operation

get_participant_security_config has the member

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

DDS Security, v1.12 169

allow_unauthenticated_participants set to TRUE, the DomainParticipant shall

allow matching remote DomainParticipant entities that are not able to authenticate. Specifically:

• Discovered DomainParticipant entities that do not implement the DDS Security specification

or do not contain compatible Security Plugins shall be matched without the

DomainParticipant attempting to authenticate them and shall be treated as “Unauthenticated”

DomainParticipant entities.

• Discovered DomainParticipant entities that do implement the DDS Security specification and

declare compatible Security Plugins but fail the Authentication protocol shall be matched and

treated as “Unauthenticated” DomainParticipants entities.

For any matched “Unauthenticated” DomainParticipant entities, the DomainParticipant

shall match only the regular builtin Endpoints (ParticipantMessage, DCPSParticipants,

DCPSPublications, DCPSSubscriptions) and not the builtin secure Endpoints (see 7.5.8 for the

complete list).

For any matched authenticated DomainParticipant entities, the DomainParticipant

shall match all the builtin endpoints.

9.8.3.2 Behavior when allow_unauthenticated_participants is set to FALSE

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the ParticipantSecurityConfig has the member

allow_unauthenticated_participants set to FALSE, the DomainParticipant shall

reject remote DomainParticipant entities that are not able to authenticate. Specifically:

• Discovered DomainParticipant entities that do not implement the DDS Security specification

or do not contain compatible Security Plugins shall be rejected without the

DomainParticipant attempting to authenticate them.

• Discovered DomainParticipant entities that do implement the DDS Security specification,

declare compatible Security Plugins but fail the Authentication protocol shall be rejected.

• Discovered DomainParticipant entities that do implement the DDS Security specification and

declare compatible Security Plugins automatically "match" the ParticipantStatelessMessage builtin

endpoints to allow the authentication handshake to proceed.

• Discovered DomainParticipant entities that do implement the DDS Security specification,

declare compatible Security Plugins, and pass the Authentication protocol successfully shall be

matched and the DomainParticipant shall also match all the builtin endpoints of the

discovered DomainParticipant, except for the ParticipantStatelessMessage builtin endpoints,

which were already matched prior to the Authentication protocol.

The figure below illustrates the behavior of the security plugins with regards to a discovered

DomainParticipant that also implements the DDS Security specification and announces

compatible security plugins. The exact operations depend on the plugin implementations. The

sequence diagram shown below is just indicative of one possible sequence of events and matches what

the builtin DDS:Auth:PKI-DH plugin (see 10.3.3) does.

Deleted: 7.5.87.5.87.5.5

Deleted: ParticipantSecurityAttributes

170 DDS Security, v1.12

Figure 23 – Authentication sequence diagram with discovered DomainParticipant

1. Participant2 discovers Participant1via the discovery protocol. The

BuiltinParticipantTopicData contains the IdentityToken and

PermissionsToken of Participant1.

2. Participant2 calls the validate_remote_identity operation to validate the identity

of Participant1 passing the local IdentityHandle of Participant2 and the remote

IdentityToken and GUID_t of Participant1 received via discovery and obtains an

IdentityHandle for Participant1, needed for further operations involving Participant1.

The operation returns VALIDATION_PENDING_HANDSHAKE_MESSAGE indicating

that further handshake messages are needed to complete the validation and that Participant2

should wait for a HandshakeMessageToken to be received from Participant1.

Participant2 waits for this message.

3. Participant1 discovers Participant2 via the DDS discovery protocol. The

BuiltinParticipantTopicData contains the IdentityToken and

PermissionsToken of Participant2.

4. Participant1 calls the operation validate_remote_identity to validate the identity

of Participant2 passing the IdentityToken and PermissionsToken of Participant2

received via discovery and obtains an IdentityHandle for Participant2, needed for

further operations involving Participant2. The operation returns

VALIDATION_PENDING_HANDSHAKE_REQUEST indicating further handshake

messages are needed and Participant1 should initiate the handshake.

sd DDS::Security-RemoteParticipant

DDS-DiscoveryParticipant1 Participant2DDS-Protocol

«interface»

:Authentication

«interface»

:Authentication

process_handshake():

VALIDATION_OK_FINAL_MESSAGE

get_peer_permissions_credential_token():

Boolean

get_peer_permissions_credential_token():

Boolean

validate_remote_identity():

VALIDATION_PENDING_HANDSHAKE_MESSAGE

begin_handshake_reply(out: messageToken2, in:

messageToken1):

VALIDATION_PENDING_HANDSHAKE_MESSAGE

validate_remote_identity():

VALIDATION_PENDING_HANDSHAKE_REQUEST

process_handshake(): OK

discoveredParticipant(Participant2,

IdentityToken2, PermissionsToken2)

send(messageToken1)

begin_handshake_request(out: messageToken1):

VALIDATION_PENDING_HANDSHAKE_MESSAGE

send(messageToken3)

get_shared_secret(): SharedSecret

send(messageToken2)

get_shared_secret(): SharedSecret

discoveredParticipant(Participant1,

IdentityToken1, PermissionsToken1)

Deleted: 232322

DDS Security, v1.12 171

5. Participant1 calls begin_handshake_request to begin the requested handshake. The

operation outputs a HandshakeHandle and a HandshakeMessageToken

(messageToken1). The operation returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE indicating authentication is not

complete and the returned messageToken1 needs to be sent to Participant2 and a reply

should be expected.

6. Participant1 sends the HandshakeMessageToken (messageToken1) to Participant2

using the BuiltinParticipantMessageWriter.

7. Participant2 receives the HandshakeMessageToken (messageToken1) on the

BuiltinParticipantMessageReader. Participant2 determines the message originated from a

remote DomainParticipant (Participant1) for which it had already called

validate_remote_identity where the function had returned

VALIDATION_PENDING_HANDSHAKE_REPLY.

8. Participant2 calls begin_handshake_reply passing the received

HandshakeMessageToken (messageToken1). The Authentication plugin

processes the HandshakeMessageToken (messageToken1) and outputs a

HandshakeMessageToken (messageToken2) in response and a HandshakeHandle.

The operation begin_handshake_reply returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE, indicating authentication is not

complete and an additional message needs to be received.

9. Participant2 sends the HandshakeMessageToken (messageToken2) back to

Participant1 using the BuiltinParticipantMessageWriter.

10. Participant1 receives the HandshakeMessageToken (messageToken2) on the

BuiltinParticipantMessageReader. Participant1 determines this message originated from a

remote DomainParticipant (Participant2) for which it had already called

validate_remote_identity where the function had returned

VALIDATION_PENDING_HANDSHAKE_REQUEST.

11. Participant1 calls process_handshake passing the received

HandshakeMessageToken (messageToken2). The Authentication plugin processes

messageToken2, verifies it is a valid reply to the messageToken1 it had sent and outputs the

HandshakeMessageToken messageToken3 in response. The process_handshake

operation returns VALIDATION_OK_FINAL_MESSAGE, indicating authentication is

complete but the returned HandshakeMessageToken (messageToken3) must be sent to

Participant2.

12. Participant1 sends the HandshakeMessageToken (messageToken3) to Participant2

using the BuiltinParticipantMessageWriter.

13. Participant2 receives the HandshakeMessageToken (messageToken3) on the

BuiltinParticipantMessageReader. Participant2 determines this message originated from a

remote DomainParticipant (Participant1) for which it had already called the

operation begin_handshake_reply where the call had returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

14. Participant2 calls the process_handshake operation, passing the received

HandshakeMessageToken (messageToken3). The Authentication plugin processes the

messageToken2, verifies it is a valid reply to the messageToken2 it had sent and returns

OK, indicating authentication is complete and no more messages need to be sent or

received.

172 DDS Security, v1.12

15. Participant1, having completed the authentication of Participant2, calls the operation

get_shared_secret to retrieve the SharedSecret, which is used with the other

Plugins to create Tokens to exchange with Participant2.

16. Participant1, having completed the authentication of Participant2, calls the operation

get_authenticated_peer_credential_token to retrieve the

AuthenticatedPeerCredentialToken associated with Participant2, which is

used with the AccessControl plugin to determine the permissions that Participant1 will

grant to Participant2.

17. Participant2, having completed the authentication of Participant1, calls the operation

get_shared_secret to retrieve the SharedSecret, which is used with the other

Plugins to create Tokens to exchange with Participant1.

18. Participant2, having completed the Authentication of Participant1, calls the operation

get_authenticated_peer_credential_token to retrieve the

AuthenticatedPeerCredentialToken associated with Participant2 which is used

with the AccessControl plugins to determine the permissions that Participant2 will

grant to Participant1.

9.8.4 DDS Entities impacted by the AccessControl operations

There are six types of DDS Entities: DomainParticipant, Topic, Publisher,

Subscriber, DataReader, and DataWriter. All these except the DomainParticipant are

defined as the DDS Domain Entities (subclause 2.2.2.1.2 of DDS [1]).

The Domain Entities created by a DomainParticipant can be grouped into four categories:

1. DDS-RTPS Protocol [2] Builtin Entities. These are domain entities used to read and write the four

builtin Topics: DCPSParticipants, DCPSTopics, DCPSPublications, DCPSSubscriptions.

2. Builtin Secure Entities. These are the Domain Entities related to the Builtin Secure

Endpoints defined in Section 7.5.8. These Entities are used to read and write the four builtin

secure topics: DCPSPublicationsSecure, DCPSSubscriptionsSecure,

DCPSParticipantMessageSecure, and DCPSParticipantVolatileMessageSecure.

3. Other builtin Entities defined by the DDS-Security specification not included in the “Builtin

Secure Endpoints”. These are the BuiltinParticipantStatelessMessageWriter and the

BuiltinParticipantStatelessMessageReader.

4. Application-defined Entities. These are any non-builtin Domain Entities.

The AccessControl plugin shall impact only the Builtin Secure Entities and the application-

defined Entities. It shall not impact the builtin entities defined by the DDS-RTPS Protocol

specification nor the BuiltinParticipantStatelessMessageWriter or the

BuiltinParticipantStatelessMessageReader.

AccessControl plugin operations can be grouped into 5 groups:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

1. Group1. Operations related to DomainParticipant. These are: validate_local_permissions,

validate_remote_permissions, check_create_participant, get_permissions_token,

get_permissions_credential_token, set_listener, return_permissions_token,

return_permissions_credential_token, get_participant_security_config,

return_participant_security_config.

2. Group2. Operations related to the creation of local Domain Entities. These are:

check_create_topic, check_create_datawriter, check_create_datareader,

Deleted: 7.5.87.5.87.5.5

Deleted: get_participant_sec_attributes

Deleted: return_participant_sec_attributes

DDS Security, v1.12 173

get_datawriter_security_config, get_datareader_security_config,

return_datawriter_security_config, return_datareader_security_config.

3. Group3. Operations related to write activities of local Domain Entities. These are:

check_local_datawriter_register_instance and check_local_datawriter_dispose_instance.

4. Group4. Operations related to discovery and match of remote Domain Entities. These are:

check_remote_topic, check_remote_datawriter, check_remote_datareader,

check_local_datawriter_match, and check_local_datareader_match.

5. Group5. Operations related to the write activities of remote Domain Entities. These are:

check_remote_datawriter_register_instance and check_remote_datawriter_dispose_instance.

Table 48 below summarizes the DDS Entities affected by each operation group.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 48 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities

Entity
Category

Entity Impact by AccessControl operation in group
Group1 Group2 Group3 Group4 Group5

DomainPartic
ipant

 All created Yes No No No No

DDS-RTPS
Protocol
Builtin
Entities

See RTPS Protocol
specification [2]

Yes,
indirectly

No No No No

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: _sec_attributes

Deleted: _sec_attributes

Deleted: Table 48Table 48Table 46

Deleted: 484846

174 DDS Security, v1.12

Builtin Secure
Entities

SEDPbuiltinPublications
SecureWriter
SEDPbuiltinPublications
SecureReader
SEDPbuiltinSubscription
sSecureWriter
SEDPbuiltinSubscription
sSecureReader
BuiltinParticipantMessa
geSecureWriter
BuiltinParticipantMessa
geSecureReader
BuiltinParticipantVolatil
eMessageSecureWriter
BuiltinParticipantVolatil
eMessageSecureReader

Yes,
indirectly

Only
get_datawriter_sec
urity_config
and
get_datareader_sec
urity_config

No

No

No

Other builtin
Entities
defined by
DDS-Security

BuiltinParticipantStatele
ssMessageWriter
BuiltinParticipantStatele
ssMessageReader

Yes,
indirectly

No No No No

Application-
defined
Domain
Entities

Publisher, Subscriber Yes,
indirectly

Yes, indirectly No Yes,
indirectly

No

Topic,
DataWriter,
DataReader

Yes,
indirectly

Yes Yes Yes Yes

The DomainParticipant entities are only impacted by AccessControl plugin operations in

Group1. The DomainParticipant is not created unless allowed by the AccessControl plugin.

Also the matching of a remote DomainParticipant must be allowed by the AccessControl

plugin. The full interaction is described in sub clauses 9.8.1 and 9.8.7.

The DDS-RTPS Builtin Entities are impacted indirectly by AccessControl plugin operations in

Group1 in the sense that if the sense that the creation of the Entities is dependent on the successful

creation of the local DomainParticipant which is controlled by the Group1 operations. Likewise

the match of the remote entities is dependent on the successful match of a remote

DomainParticipant, which is also controlled by the Group1 operations.

The DDS-RTPS Builtin Entities shall not be impacted by any of the operations in Group2, Group3,

Group4, or Group5.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The Secure Builtin Entities are impacted indirectly by AccessControl plugin operations in Group1

in the same way as the DDS-RTPS Builtin Entities.

The Secure Builtin Entities are impacted only by the get_datawriter_security_config and

get_datareader_security_config operations in Group2. They shall not be impacted by any

other Group2 operations. This means that the Secure Builtin Entities shall be created unconditionally

when the DomainParticipant is created. During the creation process of DataWriter entities the

get_datawriter_security_config shall be called and likewise during the creation process of

DataReader entities the get_datareader_security_config shall be called. The purpose of

calling these get_xxx_security_config operations is to obtain the information necessary to

call the Cryptographic plugin operations on these endpoints.

The BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader are

only indirectly impacted by the Group2 operations in that they are tied to the successful creation of the

DomainParticipant. They are not impacted by the successful match of remote entities not any

other AccessControl plugin operations in any Group. DDS Secure implementations shall create

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: get_xxx_sec_attributes

DDS Security, v1.12 175

these endpoints unconditionally for all created DomainParticipant. Being stateless these

endpoints are not “matched” to remote endpoints in the sense of being aware and maintaining the state

and presence of the remote endpoints. Nevertheless they are able to send exchange information in a

stateless, best-efforts manner.

The Application-defined Publisher and Subscriber Entities are impacted indirectly by

AccessControl plugin operations in Group1 only by the fact that they depend on the successful

creation of the DomainParticipant. They are impacted indirectly by operations in Group2 by the

fact that the PartitionQos settings of the Publisher (or Subscriber) may cause the

AccessControl plugin to prevent the creation of DataWriter (or DataReader) entities

belonging to them. Likewise they are impacted indirectly by operations in Group4 in that the

PartitionQos settings of the remote Publisher (or Subscriber) may cause the

AccessControl plugin to prevent matching of remote DataWriter (or DataReader)

entities. They are not impacted by operations in Group3 or Group5.

The Application-defined Topic, DataWriter and DataReader entities are impacted indirectly by

AccessControl plugin operations in Group1 the same way the The DDS-RTPS Builtin Entities are.

These Entities are impacted by the AccessControl plugin operations in Group2, Group3,

Group4, and Group5. This is described in subclauses 9.8.6 and 9.8.8.

9.8.5 AccessControl behavior with local participant creation

The functionality of the AccesControl plugin with regards to the creation of local DDS

DomainParticipant entities was illustrated in Figure 22 and described in 9.8.1. Subclause 9.8.1

covered Authentication and AccessControl plugin behavior simultanepusly because these

two plugins interact with each other.

9.8.6 AccessControl behavior with local domain entity creation

The figure below illustrates the functionality of the security plugins with regards to the creation of

local DDS domain entities: Topic, DataWriter, and DataReader entities.

Deleted: Figure 22Figure 22Figure 21

176 DDS Security, v1.12

Figure 24 – AccessControl sequence diagram with local entities

DDSSEC12-90 - Meeting CNSSP-15 security requirements

1. The DDS application initiates the creation of a new Topic for the

DomainParticipant.

2. The middleware calls AccessControl::get_topic_security_config to obtain

the TopicSecurityConfig for the Topic being created.

3. The middleware verifies the DomainParticipant is allowed to create a Topic with

name topicName. Operation AccessControl::check_create_topic() is

called for this verification. If the verification fails, the Topic object is not created.

4. The DDS application initiates the creation of a local DataWriter.

5. The middleware verifies that the DataWriter has the right permissions to publish on

Topic topicName. Operation AccessControl::check_create_datawriter()

is called for this verification. As an optional behavior, check_create_datawriter ()

can also verify if the DataWriter is allowed to tag data with dataTag. If the

verification doesn’t succeed, the DataWriter is not created. As an optional behavior,

check_create_datawriter() can also check the QoS associated with the

DataWriter and grant permissions taking that into consideration.

6. The middleware calls AccessControl::get_datawriter_security_config

to obtain the EndpointSecurityConfig for the created DataWriter.

7. This sequence diagram illustrates the situation where the TopicSecurityConfig for

the created DataWriter has the is_discovery_protected attribute set to FALSE. In this

sd DDS Security-LocalPar cipantAccess

DDS pplic on

D t riter

D t e der

 ccess ontrol opic

DDS SecureDiscoveryDDS egul rDiscovery

register inst nce

con gure

con gure

chec cre te d t riter Boole n

 cre te

chec cre te topic Boole n

get d t riter security con g Boole n

 cre te

 cre te

get topic security con g Boole n

chec loc l d t riter dispose inst nce Boole n

dispose inst nce

chec loc l d t riter register inst nce Boole n

get d t re der security con g

Boole n

chec cre te d t re der Boole n

Deleted: 242423

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: get_datawriter_sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: TopicSecurityAttributes

DDS Security, v1.12 177

situation the middleware configures Discovery to use regular (not secure) publications

discovery endpoint (DCPSPublications) to propagate the

PublicationBuiltinTopicData for the created DataWriter.

8. The DDS application initiates the creation of a local DataReader.

9. The middleware verifies that the DataReader has the right permissions to subscribe on

Topic topicName. Operation AccessControl::check_create_datareader()

is called for this verification. As an optional behavior, check_create_datareader()

can also verify if the DataReader is allowed to receive data tagged with dataTag. If

the verification doesn’t succeed, the DataReader is not created. As an optional behavior

check_create_datareader() can also check the QoS associated with the

DataReader and grant permissions taking that into consideration.

10. The middleware calls the operation

AccessControl::get_datareader_security_config to obtain the

EndpointSecurityConfig for the created DataReader entity.

11. This sequence diagram illustrates the situation where the TopicSecurityConfig for

the topic (a different topic than in the earlier steps) has the is_discovery_protected attribute

set to TRUE. In this situation the middleware configures Discovery to use the secure

subscriptions discovery endpoint (DCPSSecureSubscriptions) to propagate the

SubscriptionBuiltinTopicData for the created DataReader.

12. The DDS application initiates the registration of a data instance on the DataWriter.

13. The middleware verifies that the DataWriter has the right permissions to register the

instance. The operation

AccessControl::check_local_datawriter_register_instance() is

called for this verification. If the verification doesn’t succeed, the instance is not registered.

14. The DDS application initiates the disposal of an instance of the DataWriter.

15. The middleware verifies that the DataWriter has the right permissions to dispose the

instance. The operation

AccessControl::check_local_datawriter_dispose_instance() is

called for this verification. If the verification doesn’t succeed, the instance is not disposed.

9.8.7 AccessControl behavior with remote participant discovery

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the ParticipantSecurityConfig object returned by the AccessControl operation

get_participant_security_config has the allow_unauthenticated_participants attribute

set to TRUE, the DomainParticipant may discover DomainParticipants that cannot be

authenticated because they either lack support for the authentication protocol or they fail the

authentication protocol. These “Unauthenticated” DomainParticipant entities shall be matched

and considered “Unauthenticated” DomainParticipant entities. Local DomainParticipant will not

perform any further participant AccessControl validation with unauthenticated participants (i.e.,

validate_remote_permissions and check_remote_participant will not be called).

If the DomainParticipant discovers a DomainParticipant entity that it can authenticate

successfully, and is_access_protected is TRUE, then it shall validate with the AccessControl plugin

that it has the permissions necessary to join the DDS domain. This is done by successfully calling to

get_authenticated_peer_credential_token on the Authentication plugin, then to

validate_remote_permissions and check_remote_participant in the

AccessControl plugin:

Deleted: get_datareader_sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

178 DDS Security, v1.12

• If the validation succeeds, the discovered DomainParticipant shall be considered “Authenticated”

and all the builtin Topics automatically matched.

• If the validation fails, the discovered DomainParticipant shall be considered ignored and all the

builtin Topics should not be matched.

If the DomainParticipant discovers a DomainParticipant entity that it can authenticate

successfully, and is_access_protected is FALSE, then validation will succeed with no access control

checking. In this case, only get_authenticated_peer_credential_token and

validate_remote_permissions are called, and a HandleNIL return will not impact the

validation result.

The figure below illustrates the functionality of the security plugins with regards to the discovery of

remote DomainParticipant entity that has been successfully authenticated by the Authentication

plugin.

Figure 25 – AccessControl sequence diagram with discovered DomainParticipant

1. The DomainParticipant Participant1 discovers the DomainParticipant

(Participant2) via the discovery protocol and successfully authenticates Participant2 and

obtains the AuthenticatedPeerCredentialToken as described in 9.8.3.

2. Participant1 calls the operation validate_remote_permissions to validate the

permissions of Participant2, passing the PermissionsToken obtained via discovery

from Participant2 and the AuthenticatedPeerCredentialToken returned by the

operation get_authenticated_peer_credential_token on the

Authentication plugin. The operation validate_remote_permissions returns

a PermissionsHandle, which the middleware will use whenever an access control

decision must be made for the remote DomainParticipant.

3. Participant1 calls the operation check_remote_participant to verify the remote

DomainParticipant (Participant2) is allowed to join the DDS domain with the

specified domainId, passing the PermissionsHandle returned by the

validate_remote_permissions operation. If the verification fails, the remote

DomainParticipant is ignored and all the endpoints corresponding to the builtin

Topics are unmatched.

sd DDS Security-RemotePar cipantAccess

 r cip nt

 ccess ontrol

DDS Discovery r cip nt

chec re ote topic er issions ndle Boole n
discovered opic

chec re ote p r cip nt er issions ndle Boole n

v lid te re ote per issions er issions reden l o en

 er issions ndle

discovered r cip nt r cip nt

 uthen c on rocess

 er issions reden l o en

Deleted: 252524

DDS Security, v1.12 179

4. Participant1 discovers that DomainParticipant (Participant2) has created a new DDS

Topic.

5. Participant1 verifies that the remote DomainParticipant (Participant2) has the

permissions needed to create a DDS Topic with name topicName. The operation

check_remote_topic is called for this verification. If the verification fails, the

discovered Topic is ignored.

9.8.8 AccessControl behavior with remote domain entity discovery

This sub clause describes the functionality of the AccessControl plugin relative to the discovery of

remote domain entities, that is, Topic, DataWriter, and DataReader entities.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the ParticipantSecurityConfig object returned by the AccessControl operation

get_participant_security_config has the is_access_protected attribute set to

FALSE, the DomainParticipant may have matched a remote “Unauthenticated”

DomainParticipant, i.e., a DomainParticipant that has not authenticated successfully and

may therefore discover endpoints via the regular (non-secure) discovery endpoints from an

“Unauthenticated” DomainParticipant.

9.8.8.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “Unauthenticated”

DomainParticipant it shall:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

• Reject (do not try to match) local endpoints for which the related TopicSecurityConfig have

the attribute is_read_protected or is_write_protected set to TRUE.

• Proceed to try matching without checking with the AccessControl plugin the local

DataWriter endpoints for which the related TopicSecurityConfig object returned by the

operation get_topic_security_config have the attribute is_read_protected set to FALSE.

• Proceed to try matching without checking with the AccessControl plugin the local

DataReader endpoints for which the related TopicSecurityConfig object returned by the

operation get_topic_security_config have the attribute is_write_protected set to FALSE.

9.8.8.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “authenticated” DomainParticipant

it shall:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

• Perform the AccessControl checks for discovered endpoints that would match local

DataWriters for whom the is_read_protected attribute is set to TRUE, and only proceed to try

matching the discovered endpoints for whom the access control checks succeed.

• Perform the AccessControl checks for discovered endpoints that would match local

DataReader for whom the is_write_protected attribute is set to TRUE, and only proceed to try

matching the discovered endpoints for whom the access control checks succeed.

• Proceed to try matching without checking with the AccessControl plugin the local

DataWriters for whom the related TopicSecurityConfig object returned by the operation

get_topic_security_config has the is_read_protected attribute set to FALSE.

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: TopicSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

180 DDS Security, v1.12

• Proceed to try matching without checking with the AccessControl plugin the local

DataReaders for whom the related TopicSecurityConfig object returned by the operation

get_topic_security_config has the is_write_protected attribute set to FALSE.

The figure below illustrates the behavior relative to discovered endpoints coming from an

“Authenticated” DomainParticipant that would match local endpoints for which the

is_read_protected and is_write_protected attributes are set to FALSE.

Figure 26 – AccessControl sequence diagram with discovered entities when is_read_protected and
is_write_protected are both FALSE

1. DataReader1 discovers via the discovery protocol that a remote DataWriter

(DataWriter2) on a Topic with name topicName. The DataReader1 shall not call any

operations on the AccessControl plugin and shall proceed to match DataWriter2

subject to the matching criteria specified in the DDS and DDS-XTypes specifications.

2. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW,

indicating this is the first sample for that instance received by the DataReader. This

sample shall be processed according to the DDS specification without any calls to the

AccessControl plugin.

3. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState

NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance. This

sample shall be processed according to the DDS specification without any calls to the

AccessControl plugin.

4. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW.

DataReader1 shall operate according to the DDS and DDS-RTPS specifications without

any calls to the AccessControl plugin.

sd DDS Security-Remote ndpoint- nprotectedAccess

 ccess ontrol

DDS Discovery DDS rotocolD t e der D t riter

En es ith

is re d protected LSE nd

is rite protected LSE

 S c c

 S e rt e t p

discoveredD t re der

disposed nst nce

discoveredD t riter

ne nst nce

S ple

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: 262625

DDS Security, v1.12 181

5. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from

DataWriter2. In both these cases DataReader1 shall operate according to the DDS and

DDS-RTPS specifications without any calls to the AccessControl plugin.

6. DataWriter1 discovers via the discovery protocol that a remote DataReader

(DataReader2) on a Topic with name topicName. DataWriter1 shall not call any

operations on the AccessControl plugin and shall match DataReader2 subject to the

matching criteria specified in the DDS and DDS-XTypes specifications.

7. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall

operate according to the DDS and DDS-RTPS specifications without any calls to the

AccessControl plugin.

The figure below illustrates the behavior relative to discovered endpoints coming from an

“Authenticated” DomainParticipant that would match local endpoints for which both

is_read_protected and is_write_protected attributes are set to TRUE.

Figure 27 – AccessControl sequence diagram with discovered entities when is_read_protected==TRUE and
is_write_protected==TRUE

1. DataReader1 discovers via the discovery protocol a remote DataWriter (DataWriter2)

on a Topic with name topicName that matches the DataReader1 Topic topicName.

2. DataReader1 shall call the operation check_remote_datawriter to verify that

Participant2 (the DomainParticipant to whom DataWriter2 belongs) has the

permissions needed to publish the DDS Topic with name topicName. As an optional

behavior, the same operation can also verify if the DataWriter2 is allowed to tag data with

dataTag that are associated with it.

1. If the verification doesn’t succeed, the DataWriter2 is ignored.

2. If the verification succeeds, DataReader1 shall proceed to match DataWriter2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.

sd DDS::Security-RemoteEndpoint-ProtectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader2 DataWriter2

Topic with

is_read_protected=TRUE and

is_write_protected=TRUE

check_remote_datawriter(): Boolean

RTPS_AckNack()

discoveredDatareader()

Sample()

disposedInstance()

newInstance()

discoveredDatawriter()

check_remote_datareader(): Boolean

RTPS_Heartbeat_Gap()

check_remote_datawriter_dispose_instance(): Boolean

check_remote_datawriter_register_instance(): Boolean

Deleted: 272726

182 DDS Security, v1.12

3. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW, indicating

this is the first sample for that instance received by the DataReader. This sample shall be

processed according to the DDS specification without any calls to the AccessControl

plugin.

4. DataReader1 shall call the operation

check_remote_datawriter_register_instance to verify that Participant2

has the permissions needed to register the instance. If the verification doesn’t succeed, the

sample shall be ignored.

5. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState

NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance.

6. DataReader1 shall call the operation

check_remote_datawriter_dispose_instance to verify that Participant2 has

the permissions needed to dispose the instance. If the verification doesn’t succeed, the

instance disposal shall be ignored.

7. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW,

indicating this DataReader1 already received samples on that instance. This sample shall be

processed according to the DDS specification without any calls to the AccessControl

plugin.

8. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from

DataWriter2. In both these cases DataReader1 shall operate according to the DDS and

DDS-RTPS specifications without any calls to the AccessControl plugin.

9. DataWriter1 discovers via the discovery protocol a remote DataReader (DataReader2)

on a Topic with name topicName that matches the DataReader1 Topic topicName.

10. DataWriter1 shall call the operation check_remote_datareader to verify that

Participant2 (the DomainParticipant to whom DataReader2 belongs) has the permissions

needed to subscribe the DDS Topic with name topicName. As an optional behavior, the

same operation can also verify if the DataReader2 is allowed to read data with dataTag

that are associated with DataWriter1.

1. If the verification doesn’t succeed, DataReader2 is ignored.

2. If the verification succeeds, DataWriter1 shall proceed to match DataReader2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.

11. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall

operate according to the DDS and DDS-RTPS specifications without any calls to the

AccessControl plugin.

9.8.9 Cryptographic Plugin key generation behavior

Key Generation is potentially needed for:

• The DomainParticipant as a whole

• Each DomainParticipant match pair

• Each builtin secure endpoint (DataWriter or DataReader)

• Each builtin secure endpoint match pair

• Each application secure endpoint (DataWriter or DataReader)

• Each application secure endpoint match pair

DDS Security, v1.12 183

9.8.9.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader endpoints are special in that they are the ones used

to securely send the Crypto Tokens. Therefore the key material needed to secure this channel has to be

derivable from the SharedSecret without having access to Crypto Tokens returned by the

create_local_datawriter_crypto_tokens or

create_local_datareader_crypto_tokens. Effectively this means the key material used

for key-exchange is always derived from the SharedSecret.

For the BuiltinParticipantVolatileMessageSecureWriter the creation of the key material necessary to

communicate with a matched BuiltinParticipantVolatileMessageSecureReader shall complete during

the operation register_matched_remote_datareader and the DDS middleware shall not

call the operation create_local_datawriter_crypto_tokens or the operation

set_remote_datareader_crypto_tokens on the CryptoKeyExchange.

For the BuiltinParticipantVolatileMessageSecureReader the creation of the key material necessary to

communicate with a matched BuiltinParticipantVolatileMessageSecureWriter shall complete during

the operation register_matched_remote_datawriter and the DDS middleware shall not

call the operation create_local_datareader_crypto_tokens or the operation

set_remote_datawriter_crypto_tokens on the CryptoKeyExchange.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and

value “BuiltinParticipantVolatileMessageSecureWriter” to the Property_t passed to the operation

register_local_datawriter when it registers the

BuiltinParticipantVolatileMessageSecureWriter with the CryptoKeyFactory.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and

value “BuiltinParticipantVolatileMessageSecureReader” to the Property_t passed to the operation

register_local_datareader when it registers the

BuiltinParticipantVolatileMessageSecureReader with the CryptoKeyFactory.

Setting the Property_t as described above allows the CryptoKeyFactory to recognize the

BuiltinParticipantVolatileMessageSecureWriter and the

BuiltinParticipantVolatileMessageSecureReader.

9.8.9.2 Key generation for the DomainParticipant

For each local DomainParticipant that is successfully created the DDS implementation shall call

the operation register_local_participant on the KeyFactory.

For each discovered DomainParticipant that has successfully authenticated and has been

matched to the local DomainParticipant the DDS middleware shall call the operation

register_matched_remote_participant on the KeyFactory. Note that this operation

takes as one parameter the SharedSecret obtained from the Authentication plugin.

9.8.9.3 Key generation for the builtin endpoints

For each DataWriter belonging to the list of “Builtin Secure Endpoints”, see 7.5.8, with the

exception of the BuiltinParticipantVolatileMessageSecureWriter, the DDS middleware shall call the

operation register_local_datawriter on the KeyFactory to obtain the

DatawriterCryptoHandle for the builtin DataWriter.

For each DataReader belonging to the list of “Builtin Secure Endpoints”, see 7.5.8, with the

exception of the BuiltinParticipantVolatileMessageSecureReader, the DDS middleware shall call the

Deleted: 7.5.87.5.87.5.5

Deleted: 7.5.87.5.87.5.5

184 DDS Security, v1.12

operation register_local_datareader on the KeyFactory to obtain the

DatareaderCryptoHandle for the corresponding builtin DataReader.

For each discovered DomainParticipant that has successfully authenticated and has been

matched to the local DomainParticipant the DDS middleware shall:

1. Call the operation KeyFactory::register_matched_remote_datawriter for each

local DataWriter belonging to the “Builtin Secure Endpoints” passing it the local

DataWriter and the corresponding remote DataReader belonging to the “Builtin Secure

Endpoints” of the discovered DomainParticipant.

2. Call the operation KeyFactory::register_matched_remote_datareader for each

local DataReader belonging to the “Builtin Secure Endpoints” passing it the local

DataReader , the corresponding remote DataWriter belonging to the “Builtin Secure

Endpoints” of the discovered DomainParticipant, and the SharedSecret obtained

from the Authentication plugin.

9.8.9.4 Key generation for the application-defined endpoints

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Recall that for each application-defined (non-builtin) DataWriter and DataReader successfully

created by the DDS Application the DDS middleware has an associated

EndpointSecurityConfig object which is the one returned by the

AccessControl::get_datawriter_security_config or

AccessControl::get_datareader_security_config.

For each non-builtin DataWriter for whom the associated EndpointSecurityConfig object

has either the member is_submessage_protected or the member is_payload_protected set to TRUE,

the DDS middleware shall:

1. Call the operation register_local_datawriter on the KeyFactory to obtain the

DatawriterCryptoHandle for the DataWriter.

2. Call the operation register_matched_remote_datareader for each discovered

DataReader that matches the DataWriter.

For each non-builtin DataReader for whom the associated EndpointSecurityConfig object

has either the member is_submessage_protected or the member is_payload_protected set to TRUE,

the DDS middleware shall:

1. Call the operation register_local_datareader on the KeyFactory to obtain the

DatareaderCryptoHandle for the DataReader.

2. Call the operation register_matched_remote_datawriter for each discovered

DataWriter that matches the DataReader.

9.8.9.5 Key revision for local participant and contained endpoints

DDSSEC12-122 – Provide mechanism for changing the session keys

DDS-Security uses key revisions (see 9.5.1.6) to invalidate KeyMaterial that has been shared with

remote Participants that are no longer trusted or have lost the authorization they previously had to

receive the KeyMaterial.

DDS- Security does not use key revisions to simply rotate the KeyMaterial because it has been

used too long, or used to protect too much data. Key Rotation for those purposes should be

implemented internally by the Security Plugins. For example, see 10.5.3.3.4

Deleted: EndpointSecurityAttributes

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 185

To perform a Key Revision the DDS middlewre shall:

1. Call the operation revise_local_entity_keys on the KeyFactory to cause the

Cryptographic plugin to genertate new Key Material for a local

DomainParticipant and all the endpoints it contains.

a. This operation receives the local ParticipantCryptoHandle.

b. The Cryptographic plugin shall be able to navigate from that to the Crypto Handles

of all the endpoints that belong to that DomainParticipant such that the associated

KeyMaterial can be updated.

c. The returned key_revision value used to identify the revision of Key Material.

2. Call the operation create_local_participant_crypto_tokens passing the

ParticipantCryptoHandle and the previously-obtained key_revision.

a. This operation shall retrieve the CryptoTokens that are associated with the

DomainParticipant for the indicated key_revision.

3. Call the operation create_local_datawriter_crypto_tokens for each local

DataWriter belonging to the DomainParticipant passing the

DatawriterCryptoHandle and the key_revision.

a. This operation shall retrieve the CryptoTokens that are associated with the

DataWriter for the indicated key_revision.

4. Call the operation create_local_datareader_crypto_tokens for each local

DataReader belonging to the DomainParticipant passing the

DatareaderCryptoHandle and the key_revision.

a. This operation shall retrieve the CryptoTokens that are associated with the

DataReader for the indicated key_revision.

5. Send the CryptoTokens to the matched, authenticated, DomainParticipants that should have

access to them using the same Key Exchange process that was used to send the original

CryptoTokens prior to creating the Key Revision.

6. Wait until all the matched Authenticated DomainParticipant have acknowledged

receiving the CryptoTokens or else until sufficient time has elapsed.

7. Call activate_key_revision to configure the Cryptographic plugin to use the

specified key_revision for subsequent “encode” calls on the CryptoTransform interface.

9.8.9.6 Limiting message-size overhead caused by receiver specific key material

The use of receiver-specific key material increases the message size in situations where the same

encoded message is sent to multiple receivers. For example, when using a multicast transport. In the

presence of large numbers or receivers this "per-receiver" overhead may cause a single RTPS

submessage with all the receiver-specific authentication codes to exceed the maximum transport MTU.

This would cause problems, as RTPS submessages cannot be fragmented.

To overcome this kind of situation implementations may use different strategies.

1. An implementation may limit the number of different receiver-specific key material it

generates. For example, it may reuse the same receiver-specific key for multiple receivers. This

would limit the overhead at the cost of weakening the origin authentication.

2. An implementation may impose a limit on the number of receiver-specific macs attached to a

single message. This would require DDS implementations to construct multiple messages, each

with a different set of receiver-specific authentication codes. This use-case is facilitated by the

encode_datawriter_submessage and encode_rtps_message CryptoTransform operations.

The selection between and configuration of these choices is implementation specific, as it does not

affect interoperability.

186 DDS Security, v1.12

9.8.10 Cryptographic Plugin key exchange behavior

Cryptographic key exchange is potentially needed for:

• Each DomainParticipant match pair.

• Each builtin secure endpoint match pair.

• Each application secure endpoint match pair.

9.8.10.1 Key Exchange with discovered DomainParticipant

Cryptographic key exchange shall occur between each DomainParticipant and each discovered

DomainParticipant that has successfully authenticated. This key exchange propagates the key

material related to encoding/signing/decoding/verifying the whole RTPS message. In other words the

key material needed to support the CryptoTransform operations encode_rtps_message and

decode_rtps_message.

Given a local DomainParticipant the DDS middleware shall:

1. Call the operation create_local_participant_crypto_tokens on the

KeyFactory for each discovered DomainParticipant that has successfully

authenticated and has been matched to the local DomainParticipant. This operation takes

as parameters the local and remote ParticipantCryptoHandle.

2. Send the ParticipantCryptoTokenSeq returned by operation

create_local_participant_crypto_tokens to the discovered

DomainParticipant using BuiltinParticipantVolatileMessageSecureWriter.

The discovered DomainParticipant shall call the operation

set_remote_participant_crypto_tokens passing the

ParticipantCryptoTokenSeq received by the

BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugins with regards

to the discovery and match of an authenticated remote DomainParticipant entity.

Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant

sd DDS Security- x-Par cipant

DDS Discovery DDS rotocol r cip nt r cip nt

 interf ce

 rypto eyE ch nge

 interf ce

 rypto ey ctory

 interf ce

 rypto eyE ch nge

set re ote p r cip nt crypto to ens

Boole n

send Buil n r cip nt ol le ess geSecure riter

receive Buil n r cip nt ol le ess geSecure e der

register tched re ote p r cip nt r cip nt rypto ndle

discovered r cip nt r cip nt

cre te loc l p r cip nt crypto to ens

Boole n

discovered r cip nt r cip nt

Deleted: 282827

DDS Security, v1.12 187

1. Participant2 discovers the DomainParticipant (Participant1) via the DDS discovery

protocol. This sequence is not described here as it is equivalent to the sequence that

Participant1 performs when it discovers Participant2.

2. Participant1 discovers the DomainParticipant (Participant2) via the DDS discovery

protocol. Participant2 is authenticated and its permissions are checked as described in 9.8.3

and 9.8.7. This is not repeated here. The authentication and permissions checking resulted

in the creation of an IdentityHandle, a PermissionsHandle, and a

SharedSecretHandle for Participant2.

3. Participant1 calls the operation register_matched_remote_participant on the

Cryptographic plugin (CryptoKeyFactory interface) to store the association of the

remote identity and the SharedSecret.

4. Participant1 calls the operation create_local_participant_crypto_tokens

on the Cryptographic plugin (CryptoKeyExchange interface) to obtain a collection

of CriptoToken (cryptoTokensParticipant1ForParticipant2) to send to the remote

DomainParticipant (Participant2).

5. Participant1 sends the collection of CryptoToken objects

(cryptoTokensParticipant1ForParticipant2) to Participant2 using the

BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects

(cryptoTokensParticipant1ForParticipant2) and calls the operation

set_remote_participant_crypto_tokens()to register the CryptoToken

sequence with the DomainParticipant. This will enable the Cryptographic plugin

on Participant2 to decode and verify MACs on the RTPS messages sent by Participant1 to

Participant2.

9.8.10.2 Key Exchange with remote DataReader

Cryptographic key exchange shall occur between each builtin secure DataWriter and the matched

builtin secure DataReader entities of authenticated matched DomainParticipant entities, see

7.5.8, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Cryptographic key exchange shall also occur between each application DataWriter whose

EndpointSecurityConfig object has either the is_submessage_protected or the

is_payload_protected members set to TRUE, and each of its matched DataReader entities.

Given a local DataWriter that is either a builtin secure DataWriter or an application

DataWriter meeting the condition stated above the DDS middleware shall:

1. Call the operation create_local_datawriter_crypto_tokens on the

KeyFactory for each matched DataReader. This operation takes as parameters the local

DatawriterCryptoHandle and the remote DatareaderCryptoHandle.

2. Send the DatawriterCryptoTokenSeq returned by operation create_local_

datawriter_crypto_tokens to the discovered DomainParticipant using

BuiltinParticipantVolatileMessageSecureWriter.

The matched DataReader shall call the operation

set_remote_datawriter_crypto_tokens passing the DatawriterCryptoTokenSeq

received by the BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards

to the discovery and match of a local secure DataWriter and a matched DataReader.

Deleted: 7.5.87.5.87.5.5

Deleted: EndpointSecurityAttributes

188 DDS Security, v1.12

Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader

1. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a

local DataReader (Reader2) according to the constraints in the DDS security specification.

2. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a

local DataWriter (Writer1) according to the constraints in the DDS security specification.

3. Participant1 calls the operation register_matched_remote_datareader as

stated in 9.8.9.

4. Participant1 calls the operation create_local_datawriter_crypto_tokens on

the CryptoKeyExchange to obtain a collection of CriptoToken objects

(cryptoTokensWriter1ForReader2).

5. Participant1 sends the collection of CryptoToken objects

(cryptoTokensWriter1ForReader2) to Participant2 using the

BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects (cryptoTokensWriter1ForReader2) and

calls the operation set_remote_ datawriter_crypto_tokens()to register the

CryptoToken sequence with the DataWriter (Writer1). This will enable the

Cryptographic plugin on Participant2 to decode and verify MACs on the RTPS

submessages and data payloads sent from Writer1to Reader2.

9.8.10.3 Key Exchange with remote DataWriter

Cryptographic key exchange shall occur between each builtin secure DataReader and the matched

builtin secure DataWriter entities of authenticated matched DomainParticipant entities, see

7.5.8, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Cryptographic key exchange shall also occur between each application DataReader whose

EndpointSecurityConfig object has the is_submessage_protected member set to TRUE, and

each of its matched DataWriter entities.

Given a local DataReader that is either a builtin secure DataReader or an application

DataReader meeting the condition stated above the DDS middleware shall:

sd DDS Security- x-Reader

 r cip nt DDS Discovery DDS rotocol r cip nt

 interf ce

 rypto eyE ch nge

 interf ce

 rypto ey ctory

register tched re ote d t re der D t re der rypto ndle

set re ote d t riter crypto to ens Boole n

discoveredD t re der r cip nt e der

cre te loc l d t riter crypto to ens Boole n

discoveredD t riter r cip nt riter

receive Buil n r cip nt ol leSecure ess ge

send Buil n r cip nt ol leSecure ess ge

Deleted: 292928

Deleted: 7.5.87.5.87.5.5

Deleted: EndpointSecurityAttributes

DDS Security, v1.12 189

1. Call the operation create_local_datareader_crypto_tokens on the

KeyFactory for each matched DataWriter. This operation takes as parameters the local

DatareaderCryptoHandle and the remote DatawriterCryptoHandle.

2. Send the DatareaderCryptoTokenSeq returned by operation create_local_

datareader_crypto_tokens to the discovered DomainParticipant using

BuiltinParticipantVolatileMessageSecureWriter.

The matched DataWriter shall call the operation

set_remote_datareader_crypto_tokens passing the DatareaderCryptoTokenSeq

received by the BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards

to the discovery and match of a local secure DataReader and a matched DataWriter.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Cryptographic key exchange shall occur between each DataReader whose

EndpointSecurityConfig has the is_submessage_protected members set to TRUE and each of

its matched DataWriter entities.

Figure 30 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter

1. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a

local DataWriter (Writer1) according to the constraints in the DDS security specification.

2. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a

local DataReader (Reader2) according to the constraints in the DDS security specification.

3. Participant2 calls the operation register_matched_remote_datawriter as stated

in 9.8.9.

4. Participant2 calls the operation create_local_datareader_crypto_tokens on

the CryptoKeyExchange to obtain a collection of CriptoToken objects

(cryptoTokensReader2ForWriter1).

5. Participant2 sends the collection of CryptoToken objects

(cryptoTokensReader2ForWriter1) to Participant1 using the

BuiltinParticipantVolatileMessageSecureWriter.

sd DDS Security- x- riter

 r cip nt DDS Discovery DDS rotocol r cip nt

 interf ce

 rypto eyE ch nge

 interf ce

 rypto ey ctory

discoveredD t re der r cip nt e der

receive receive Buil n r cip nt ol leSecure ess ge e der

cre te loc l d t re der crypto to ens Boole n

register tched re ote d t riter D t riter rypto ndle

discoveredD t riter r cip nt riter

send Buil n r cip nt ol leSecure ess ge riter

set re ote d t re der crypto to ens Boole n

Deleted: EndpointSecurityAttributes

Deleted: 303029

190 DDS Security, v1.12

6. Participant1 receives the CryptoToken objects (cryptoTokensReader2ForWriter1) and

calls the operation set_remote_ datareader_crypto_tokens()to register the

CryptoToken sequence with the DataWriter (Writer1). This will enable the

Cryptographic plugin on Participant1 to decode and verify MACs on the RTPS

submessages sent from Reader2 to Writer1.

9.8.10.4 Key Revision Exchange for DomainParticipant and contained DataWriter and DataReaders

DDSSEC12-122 – Provide mechanism for changing the session keys

The DDS middleware may call the operation revise_local_entity_keys (see 9.5.1.8.7) to

create new Key Material for all DDS Entities in the DominParticipant. This opertion returns an integer

that is used to represent the new CrytoTransformKeyRevision.

Following the call to revise_local_entity_keys the DDS middleware shall call the operation

create_local_participant_crypto_tokens (see 9.5.1.9.1) to retrieve the CryptoTokens

associated with the new Key Material.

The DDS middleware shall subsequently send those CryptoTokens to all Authenticated, matched

DominParticipant entities using the same mechanism used for Discovered DomainParticipants, see

9.8.10.1),

Following the call to revise_local_entity_keys, the DDS middleware shall also call

create_local_datawriter_crypto_tokens (see 9.5.1.9.3) to retrieve the CryptoTokens

containing the new Key Material for each DataWriter .

The DDS middleware shall send those CryptoTokens to all Authenticated, Authorized, matched

DataReader entities that according using the same mechanisms described in 9.8.10.2.

Following the call to revise_local_entity_keys, the DDS middleware shall also call

create_local_datareader_crypto_tokens (see 9.5.1.9.5) to retrieve the CryptoTokens

containing the new Key Material for each DataReader.

The DDS middleware shall send those CryptoTokens to all Authenticated, Authorized, matched

DataWriter entities that according using the same mechanisms described in 9.8.10.3

The DDS middleware shall wait until the above CryptoTokens have been received or else a

“sufficient” time has elapsed. After this it shall call activate_key_revision (see 9.5.1.8.8) to

cause the Cryptographic plugin to start using the Key Material associated with the Key Revision.

9.8.11 Cryptographic Plugins encoding/decoding behavior

This sub clause describes the behavior of the DDS implementation related to the

CryptoTransform interface.

This specification does not mandate a specific DDS implementation in terms of the internal logic or

timing when the different operations in the CryptoTransform plugin are invoked. The sequence

charts below just express the requirements in terms of the operations that need to be called and their

interleaving. This specification only requires that by the time the RTPS message appears on the wire

the proper encoding operations have been executed first on each SerializedPayload submessage

element, then on the enclosing RTPS Submessage, and finally on the RTPS Message. Similarly by

the time a received RTPS Message is interpreted the proper decoding operations are executed on the

reverse order. First on the encoded RTPS Message, then on each set of secured submessages starting

DDS Security, v1.12 191

with either a SecureRTPSPrefixSubMsg or SecurePrefixSubMsg, and finally on each

CryptoContent submessage element.

9.8.11.1 Encoding/decoding of a single writer message on an RTPS message

The figure below illustrates the functionality of the security plugins with regard to encoding the data,

Submessages and RTPS messages in the situation where the intended RTPS Message contains a

single writer RTPS Submessage.

Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single DataWriter
submessage

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

1. The application writes data using a DataWriter belonging to Participant1. The DDS

implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS

submessage element and calls the operation encode_serialized_payload. This

operation creates an RTPS SecData that protects the SerializedPayload potentially

encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to send the data written by the DataWriter to a remote

DataReader in Participant2.

4. Participant1 constructs the RTPS Data Submessage to send to the DataReader and calls

the operation encode_datawriter_submessage to transform the original Data

submessage to a set of secure submessages (SecurePrefixSubMsg, original plain text

submessage or SecureBodySubMsg, and optional SecurePostfixSubMsg). This

same transformation would be applied to any DataWriter submessage (Data, Gap,

sd DDS Security- form- riter

DDS pplic on

 interf ce

 rypto r nsfor

DDS rotocol r cip nt

D t riter

 r cip nt

D t e der

 interf ce

 rypto r nsfor

preprocess secure su ess ge Boole n

decode d t riter su ess ge Boole n

decode seri li ed p ylo d Boole n

decode rtps ess ge Boole n

send S encoded ess ge
encode rtps ess ge Boole n

encode seri li ed p ylo d Boole n

 rite

no fy d t

encode d t riter su ess ge Boole n

on d t

Deleted: 313130

192 DDS Security, v1.12

Heartbeat, DataFrag, HeartbeatFrag). The

encode_datawriter_submessage receives as parameters the

DatawriterCryptoHandle of the DataWriter and a list of

DatareaderCryptoHandle for all the DataReader entities to which the message

will be sent. Using a list allows the same set of secure submessages to be sent to all those

DataReader entities.

5. Participant1 constructs the RTPS Message it intends to send to the DataReader (or

readers). It then calls encode_rtps_message to transform the original RTPS Message

into a new “encoded” RTPS Message with the same RTPS header and a set of secure

submessages protecting the contents of the original RTPS Message. The

encode_rtps_message receives as parameters the ParticipantCryptoHandle

of the sending DomainParticipant (Participant1) and a list of

ParticipantCryptoHandle for all the DomainParticipant entities to which the

message will be sent (Participant2). Using a list enables the DomainParticipant to

send the same message (potentially over multicast) to all those DomainParticipant

entities.

6. Participant1 sends the new “encoded” RTPS Message obtained as a result of the previous

step to Participant2.

7. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and

detects a SecureRTPSPrefixSubMsg. This indicates it shall call the operation

decode_rtps_message to process the prefix, body and optional postfix submessage. If

decode_rtps_message is successful, the result is an RTPS Message that can be

processed further.

8. Participant2 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call the operation

preprocess_rtps_submessage to determine whether this is a Writer submessage or

a Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a Writer submessage.

9. Participant2 calls the operation decode_datawriter_submessage passing in a data

stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datawriter_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original Data submessage that

was input to encode_datawriter_submessage on the DataWriter side. From the

Data submessage the DDS implementation extracts the CryptoContent submessage

element.

10. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 realizes it is time to notify the DataReader and retrieve the actual data sent by

the DataWriter.

11. Participant2 calls decode_serialized_payload passing in the RTPS

CryptoContent and obtains the original SerializedPayload submessage element

was the input to the encode_serialized_payload on the DataWriter side. This

operation takes as arguments the DatawriterCryptoHandle and

DatareaderCryptoHandle obtained in step 8.

Deleted: prepare

DDS Security, v1.12 193

9.8.11.2 Encoding/decoding of multiple writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended

RTPS message contains a multiple DataWriter RTPS Submessages, which can represent

multiple samples, from the same DataWriter or from multiple DataWriter entities, as well as, a mix

of Data, Heartbeat, Gap, and any other DataWriter RTPS Submessage as defined in 7.4.1.

Figure 32 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter
submessages

The steps followed to encode and decode multiple DataWriter Submessages within the same RTPS

message are very similar to the ones used for a single Writer message. The only difference is that the

writer side can create multiple RTPS Submessages. In this case, Participant1 creates two Data

Submessages and a Heartbeat Submessage, transforms each separately using the

encode_datawriter_submessage, places them in the same RTPS message and then transforms

the RTPS Message containing all the resulting secured submessages using

encode_rtps_message.

The steps followed to decode the message are the reverse ones.

Note that the DataWriter entities that are sending the submessages and/or the DataReader entities that

are the destination of the different Submessages may be different. In this situation each call to

encode_serialized_payload(), encode_datawriter_submessage(),

sd DDS Security- form- ul riter

DDS pplic on

 interf ce

 rypto r nsfor

DDS rotocol r cip nt

D t riter

 r cip nt

D t e der

 interf ce

 rypto r nsfor

 rite

encode seri li ed p ylo d Boole n

preprocess secure su ess ge Boole n

decode d t riter su ess ge Boole n

encode rtps ess ge Boole n send S encoded ess ge

decode d t riter su ess ge Boole n

decode seri li ed p ylo d Boole n

on d t

decode rtps ess ge Boole n

preprocess secure su ess ge Boole n

encode seri li ed p ylo d Boole n

encode d t riter su ess ge Boole n

no fy d t

 rite

get d t to send

decode seri li ed p ylo d Boole n

encode d t riter su ess ge Boole n

Deleted: 323231

194 DDS Security, v1.12

decode_datawriter_submessage(), and encode_serialized_payload(), shall

receive the proper DatawriterCryptoHandle and DatareaderCryptoHandle handles.

9.8.11.3 Encoding/decoding of multiple reader messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended

RTPS message contains multiple DataReader RTPS submessages from the same DataReader or

from multiple DataReader entities. These include AckNack and NackFrag RTPS

Submessages as defined in 7.4.1.

Figure 33 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataReader
submessages

1. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 realizes it is time to send an AckNack or NackFrag submessage from

DataReader to a remote DataWriter.

2. Participant2 constructs the AckNack (or any other DataReader RTPS Submessage)

and calls the operation encode_datareader_submessage. This operation creates

multiple submessages: a SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and optionally a SecurePostfixSubMsg. This operation shall

receive as parameter the DatareaderCryptoHandle of the DataReader that sends

the submessage and a list of DatawriterCryptoHandle handles of all the

DataWriter entities to which the Submessage will be sent.

3. Step 2 may be repeated multiple times constructing various secured submessages from

different DataReader RTPS Submessages. Different submessages may originate on

different DataReader entities and/or be destined for different DataWriter entities. On

each case the encode_datareader_submessage operation shall receive the

sd DDS Security- form- ul reader

D t e der

D t riter

 interf ce

 rypto r nsfor

DDS rotocol r cip nt r cip nt

 interf ce

 rypto r nsfor

on c n c

preprocess secure su ess ge Boole n

decode rtps ess ge Boole n

encode rtps ess ge Boole n

encode d t re der su ess ge Boole n

get c n c to send

get c n c to send

decode d t re der su ess ge Boole n

encode d t re der su ess ge Boole n

preprocess secure su ess ge Boole n

send S encoded ess ge

decode d t re der su ess ge Boole n

on c n c

Deleted: 333332

DDS Security, v1.12 195

DatareaderCryptoHandle and list of DatawriterCryptoHandle that

correspond to the source and destinations of that particular Submessage.

4. Participant2 constructs the RTPS Message that contains the submessages obtained as a

result of the previous steps. It shall then call encode_rtps_message to transform the

“original” RTPS Message into a SecureRTPSPrefixSubMsg followed by either 1) an

INFO_SRC SubMsg and the contents of the RTPS Message or 2) a SecureBodySubMsg

(with INFO_SRC and encoded content), and finally a SecureRTPSPostfixSubMsg.

5. Participant2 sends the “encoded” RTPS Message to Participant1 (and any other

destination DomainParticipant).

6. Participant1 receives the “encoded” RTPS Message. Participant parses the message and

detects an RTPS SecureRTPSPrefixSubMsg. This indicates it should call the

operation decode_rtps_message to process the prefix, body and optional postfix

submessage. If decode_rtps_message is successful, the result is an RTPS Message

that can be processed further.

7. Participant1 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call the operation

preprocess_secure_submessage to determine whether this is a Writer

submessage or a Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a DataReader submessage.

8. Participant1 calls decode_datareader_submessage passing in a data stream that

includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datareader_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original AckNack (or proper

DataReader submessage) submessage that was input to encode_datareader_submessage on

the DataReader side.

9. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to notify the DataReader of the Acknowledgment, negative

acknowledgment or whatever the DataReader Submessage indicated.

10. Each RTPS SecurePrefixSubMsg encountered within the RTPS Message is processed

in this same way. The operation preprocess_rtps_submessage is first invoked and

if it indicates it is a DataReader submessage, Participant1 shall call

decode_datareader_submessage() on the submessage.

9.8.11.4 Encoding/decoding of reader and writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins with regard to encoding the data,

Submessages and RTPS messages in the situation where the intended RTPS message contains multiple

RTPS Submessages which can represent a mix of different kinds of DataWriter and DataReader

submessages such as Data, Heartbeat, Gap, AckNack, NackFrag and any other RTPS

Submessage as defined in 7.4.1.

196 DDS Security, v1.12

Figure 34 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter
and DataReader submessages

1. The application writes data using a DataWriter belonging to Participant1. The DDS

implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS

submessage element and calls the operation encode_serialized_payload. This

operation creates an RTPS SecData that protects the SerializedPayload potentially

encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to send the data written by the DataWriter to a remote

DataReader.

4. Participant1 constructs the RTPS Data Submessage that it will send to the DataReader

and calls the operation encode_datawriter_submessage to transform the original

Data submessage to a set of secured submessages.

5. This step is notional. The specifics will depend on the DDS Implementation. Participant1

decides it needs to send a Heartbeat submessage along with the Data submessage. It

constructs the RTPS Heartbeat submessage and calls the operation

encode_datawriter_submessage() to transform the original Heartbeat

submessage to a set of secured submessages.

6. This step is notional. The specific mechanism depends on the DDS Implementation.

Participant1 decides it also wants to include an RTPS AckNack submessage from a

DataReader that also belongs to Participant1 into the same RTPS Message because it is

destined to the same Participant2.

sd DDS Security- form- ul -Reader- riter

DDS pplic on

 interf ce

 rypto r nsfor

DDS rotocol r cip nt r cip nt

 D t e der D t riter D t riter D t e der interf ce

 rypto r nsfor

encode seri li ed p ylo d Boole n

on he rt e t

preprocess secure su ess ge Boole n

on d t

decode d t riter su ess ge Boole n

decode rtps ess ge Boole n

send S encoded ess ge

get c n c to send

encode d t re der su ess ge c c Boole n

preprocess secure su ess ge Boole n

decode d t riter su ess ge Boole n

encode seri li ed p ylo d Boole n

preprocess secure su ess ge Boole n

on c n c

decode d t riter su ess ge e rt e t Boole n

decode d t re der su ess ge Boole n

encode rtps ess ge Boole n

get d t to send

no fy d t

 rite

decode d t riter su ess ge D t Boole n

Deleted: 343433

DDS Security, v1.12 197

7. Participant1 constructs the RTPS AckNack submessage and calls

encode_datareader_submessage to transform the original AckNack submessage

to a set of secured submessages.

8. Participant1 constructs the RTPS Message that contains the submessages obtained as a

result of the previous steps. It shall then call encode_rtps_message. To transform the

“original” RTPS Message into SecureRTPSPrefixSubMsg followed by either 1) an

INFO_SRC SubMsg and the contents of the RTPS Message or 2) a

SecureBodySubMsg (with INFO_SRC and encoded content), and finally a

SecureRTPSPostfixSubMsg.

9. Participant1 sends the “encoded” RTPS Message to Participant2 (and any other

destination DomainParticipant).

10. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and

detects an RTPS SecureRTPSPrefixSubMsg. This indicates it should call the

operation decode_rtps_message to process the prefix, body and optional postfix

submessage. If decode_rtps_message is successful, the result is an RTPS Message

that can be processed further.

11. Participant2 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call

preprocess_secure_submessage to determine whether this is a Writer

submessage or a Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a DataWriter submessage.

12. Participant1 calls the operation decode_datawriter_submessage, passing in a data

stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datawriter_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original DataWriter submessage

that was input to encode_datawriter_submessage on the Participant1 side.

13. This step is notional; the specific mechanism depends on the DDS Implementation. The

Participant2 realizes it is time to notify the DataReader of the arrival of data.

14. Participant2 calls decode_serialized_payload passing in the RTPS

CryptoContent and obtains the original SerializedPayload submessage element

was the input to the encode_serialized_payload on the Participant1 side. This

operation takes as arguments the DatawriterCryptoHandle and

DatareaderCryptoHandle obtained in the step 11.

15. Step 11 is repeated. It is again determined that the next set of secured submessages are a

DataWriter submessage and the proper DatawriterCryptoHandle and

DatareaderCryptoHandle handles are retrieved.

16. Step 12 is repeated. Participant2 calls decode_datawriter_submessage passing in

a data stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. This transforms the

submessages into the original Heartbeat submessage.

17. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 notifies DataReader of the Heartbeat.

198 DDS Security, v1.12

18. Step 11 is repeated. It is determined that the next set of submessages are a DataReader

submessage and the proper DatawriterCryptoHandle and

DatareaderCryptoHandle handles are retrieved.

19. Participant2 calls decode_datareader_submessage passing in a data stream that

includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The result of this

operation is the original AckNack submessage that was the input to the

encode_datareader_submessage on Participant1. This operation takes as

arguments the DatawriterCryptoHandle and DatareaderCryptoHandle

obtained in the previous step.

20. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 notifies DataWriter of the AckNack.

DDS Security, v1.12 199

10 Builtin Plugins

10.1 Introduction

This specification defines the behavior and implementation of at least one builtin plugin for each kind

of plugin. The builtin plugins provide out-of-the-box interoperability between implementations of this

specification.

The builtin plugins are summarized in the table below:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 49 – Summary of the Builtin Plugins

SPI Plugin Name Description

Authentication DDS:Auth:PKI-DH Uses PKI with a pre-configured shared Certificate Authority.
ECDSA or RSA as the digital signature algorithms, and Elliptic-
Curve Diffie-Hellman (ECDH) or Diffie-Hellman (DH) as the key
establishment algorithm.

AccessControl DDS:Access:Permissions Permissions document signed by shared Certificate Authority

Cryptography DDS:Crypto:AES-GCM-
GMAC

AES-GCM (AES using Galois Counter Mode) for encryption.
AES-GMAC for message authentication.

DataTagging DDS:Tagging:DDS_Discovery Send Tags via Endpoint Discovery
Logging DDS:Logging:DDS_LogTopic Logs security events to a dedicated DDS Log Topic

10.2 Requirements and Priorities (Non-Normative)

The selection of the builtin plugins was driven by several functional, as well as, non-functional

requirements, as described below.

Most DDS users surveyed consider the following functional requirements as essential elements of a

secure DDS middleware:

• Authentication of applications (DDS Domain Participants) joining a DDS Domain.

• Access control of applications subscribing to specific data at the Domain and Topic level.

• Message integrity and data-origin authentication.

• Encryption of a data sample using different encryption keys for different Topics.

In addition to these essential needs, many users also required that secure DDS middleware should

provide for:

• Sending digitally signed data samples.

• Sending data securely over multicast.

• Tagging data.

• Integrating with open standard security plugins.

Other functional requirements which are considered useful but less common were:

• Access control to certain samples within a Topic but not others, with access rights being

granted according to the data-sample contents or the data-sample key.

• Access control to certain attributes within a data sample but not others, such that certain

DataReader entities can only observe a subset of the attributes as defined by their permissions.

• Permissions that control which QoS might be used by a specific DDS Entity:

DomainParticipant, Publisher, DataWriter, Subscriber, or DataReader.

The primary non-functional requirements that informed the selection of the builtin plugins are:

• Performance and Scalability.

Deleted: 494947

Deleted: RSA or DSA and Diffie-Hellman for
authentication and key exchange

200 DDS Security, v1.12

• Robustness and Availability.

• Fit to the DDS Data-Centric Information Model.

• Leverage and reuse of existing security infrastructure and technologies.

• Ease of use while supporting common application requirements.

10.2.1 Performance and Scalability

DDS is commonly deployed in systems that demand high performance and need to scale to large

numbers of processes and computers. Different applications vary greatly in the number of processes,

Topics, and/or data-objects belonging to each Topic.

The policy enforcement/decision points as well as the transformations (cipher, decipher, hash)

performed by the plugins should not adversely degrade system performance and scalability beyond

what is tolerable and strictly needed. In practice this means several things for the builtin plugins:

• The use of Asymmetric Key Cryptography shall be limited to the discovery, authentication,

session and shared-secret establishment phase (i.e., when a Participant discovers another

Participant, a DataReader and matching DataWriter). To the extent possible it shall not be used

in the critical path of data distribution.

• The use of ciphers, HMACs, or digital signatures shall be selectable on a per stream (Topic)

basis. In case of encryption, symmetric ciphers should be used for the application data.

• It shall be possible to provide integrity via HMAC techniques without also requiring the data to

be ciphered.

• Multicast shall be supported even for ciphered data.

10.2.2 Robustness and Availability

DDS is deployed in mission-critical systems, which must continue to operate 24/7 despite partial

system malfunction. DDS also operates in fielded environments where specific components or systems

may be subject to accidental failure or active attack. DDS provides a highly robust infrastructure due to

the way the communication model and protocols are defined as they can be (and commonly are)

implemented in a peer-to-peer fashion without any centralized services. For this reason, many DDS

implementations have no single points of failure.

The builtin plugins should not negate these desirable properties present in the underlying DDS

middleware infrastructure.

In practice, this means that:

• Centralized policy decision points or services should be avoided.

• The individual DDS DomainParticipant components should be self-contained and have what

they need to operate securely even in the presence of system partitions.

• Multi-party key agreement protocols shall be avoided because they can be easily disrupted by

disrupting just one party.

• Security tokens and keys should be compartmentalized as much as possible such that

compromise of an application component is contained to that component itself. For example,

selection of a system-wide secret key for the whole Domain or even for a Topic should be

avoided.

10.2.3 Fitness to the DDS Data-Centric Model

Application developers that use DDS think in terms of the data-centric elements that DDS provides.

That is, they think first and foremost about the Domains (global data spaces) the application must join

and the Topics that the application needs to read and write. Therefore, the builtin plugins should offer

the possibility to control access with this level of granularity.

DDS Security, v1.12 201

Users of DDS also think about the data objects (keyed instances) they read and write, the ability to

dispose instances, filter by content, set QoS, and so forth. While it may be useful to offer ways to

provide access controls to this as well, it was considered of lesser priority and potentially conflicting

with the goal of ease of configurability and maintainability.

The semantics of DDS communications require that individual samples can be consumed

independently of each other. Depending on the QoS policy settings samples written by a single

DataWriter may be received and processed out of order relative to the order sent, or may be received

with intermediate gaps resulting from best-effort communication (if selected), or may be filtered by

content, time, or history, etc. For this reason, any encryption and/or digital signature applied to a

sample should be able to be processed in isolation, without requiring the receiver to maintain a specific

context reconstructed from previous samples.

10.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies

To the extent possible, it is desirable that the builtin plugins leverage and reuse existing IA technology

and tools. This not only reduces the barrier of entry for implementers of the specification, but also

more importantly enhances the quality of the result by allowing the use of proven, peer-reviewed,

and/or already certified approaches. The builtin plugins leverage existing standards and tools for PKI,

ciphers, hashing and digital signing. To the extent possible, ideas and approaches from existing

protocols for key management and secure multicast are also leveraged, although where appropriate

they have been adapted to the data-centric communications model of DDS and the DDS-RTPS wire

protocol.

10.2.5 Ease-of-Use while Supporting Common Application Requirements

It is anticipated that specialized applications may need to develop their own security plugins to either

integrate existing security infrastructure or meet specialized requirements. Therefore the primary

consumers of the builtin plugins will be users who want to secure their systems but not have complex

needs or significant legacy components. Under these conditions, ease-of-use is essential. A security

infrastructure that is too hard to configure or too complex to understand or maintain is less likely to be

used, or may be used wrongly, resulting in systems that are less secure overall.

The builtin plugins balance rich functionality and ease-of-use, providing for the most common use

cases, in a manner that is easy to understand and use correctly.

10.3 Builtin Authentication: DDS:Auth:PKI-DH

This builtin authentication plugin is referred to as the “DDS:Auth:PKI-DH”.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The DDS:Auth:PKI-DH plugin implements authentication using a trusted Certificate

Authority (CA). It performs mutual authentication between discovered participants using standard

Digital Signature Algorithms (e.g. ECDSA [11]) to establish an identity trust chain and to sign

authentication messages. It establishes a shared secret to create a peer-to-peer secure channel using

standard Key Establishment Algorithms (e.g. ECDH [12]). See clause 8.

The CA could be an existing one. Or a new one could be created for the purpose of deploying

applications on a DDS Domain. The nature or manner in which the CA is selected is not important

because the way it is used enforces a shared recognition by all participating applications.

Prior to a DomainParticipant being enabled the DDS:Auth:PKI-DH plugin associated with the

DomainParticipant must be configured with three things:

1. The X.509 Certificate that defines the Shared Identity CA. This certificate

contains the Public Key of the CA.

Deleted: the RSA or ECDSA Digital Signature Algorithms

[11] and establishes a shared secret using Diffie-Hellman

(DH) or Elliptic Curve Diffie-Hellman (ECDH) Key

Agreement Methods [12].

202 DDS Security, v1.12

2. The Private Key of the DomainParticipant.

3. An X.509 Certificate that chains up to the Shared Identity CA, that binds the

Public Key of the DomainParticipant to the Distinguished Name (subject name)

for the DomainParticipant.

10.3.1 Configuration

The builtin authentication plugin shall be configured using the PropertyQosPolicy of the

DomainParticipantQos. The specific properties used are described in Table 50 below.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 50 – Properties used to configure the builtin Authentication plugin

Property Name

(all properties have

“dds.sec.auth” prefix)

Property Value

(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.

URI “data” schema follows IETF RFC 2397

URI “pkcs11” schema follows IETF RFC 7512

Vendors may support additional schemas
identity_ca

URI to the X509 certificate [39] of the Identity CA.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509 v3 ITU-T
Recommendation X.509 (2005) [39]) in PEM format.

Examples:

file:identity_ca.pem
file:/home/myuser/identity_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----

pkcs11:object=MyIdentityCACert;type=cert

private_key
URI to access the private Private Key for the DomainParticipant
Supported URI schemes: file, data, pkcs11
pkcs11 URI follows IETF RFC 7512 “The PKCS #11 URI Scheme”

Examples:
file:identity_ca_private_key.pem
file:/home/myuser/identity_ca_private_key.pem
file:identity_ca_private_key.pem?password=OpenSesame

data:,-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEA3HIh...AOBaaqSV37XBUJg==
-----END RSA PRIVATE KEY-----

pkcs11:object=MyParticipantPrivateKey;type=private?pin-value=OpenSesame

password A password used to decrypt the private_key.
The value of the password property shall be interpreted as the Base64 encoding of
the AES-128 key that shall be used to decrypt the private_key using AES128-CBC.
If the password property is not present, then the value supplied in the private_key
property must contain the unencrypted private key.

Deleted: Table 50Table 50Table 48

Deleted: 505048

DDS Security, v1.12 203

The password property is only used if the private_key is provided with a “file:” or a
“data:” URI. It does not apply to private keys supplied with the “pkcs11:” URI.

identity_certificate
URI to a X509 certificate signed by the IdentityCA in PEM format containing the
signed public key for the DomainParticipant
Supported URI schemes: file, data, pkcs11

Examples:

file:participant1_identity_cert.pem

data:,-----BEGIN CERTIFICATE-----
MIIDjjCCAnYCCQDCEu9...6rmT87dhTo=
-----END CERTIFICATE-----

pkcs11:object=MyParticipantIdentityCert;type=cert

key_establishment_algorithm

(The presence of this

property is optional)

The string “AUTO” or one of the CryptoAlgorithmName strings shown in

Table 26 that identifies a Key Establishment Algorithm.

10.3.1.1 Identity CA Certificate

The certificate used to configure the public key of the Identity CA.

The certificate shall be the X.509 v3 Certificate [39] of the issuer of the Identity Certificates in section

10.3.1.3. The certificate can be self-signed if it is a root CA or signed by some other CA public key if

it is a subordinate CA. Regardless of this the Public Key in the Certificate shall be accepted as the one

for the Identity CA trusted to sign DomainParticipant Identity Certificates, see 10.3.1.3.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The algorithm of the public key of the CA shall be one of the algorithms defined in 8.2.

The Identity CA Certificate shall be provided to the plugins using the PropertyQosPolicy on the

DomainParticipantQos as specified in Table 50.

10.3.1.2 Private Key

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The Private Key associated with the DomainParticipant. The algorithm of the private key of the

CA shall be one of the algorithms defined in 8.2.

The Private Key shall be provided to the plugins using the PropertyQosPolicy on the

DomainParticipantQos as specified in Table 50.

10.3.1.3 Identity Certificate

An X.509 v3 Certificate [39] that chains up to the Identity CA (see 10.3.1.1). The Identity Certificate

binds the Public Key of the DomainParticipant to the Distinguished Name (subject name) for the

DomainParticipant.

10.3.1.4 Key Establishment Algorithm

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The Key Establishment Algorithm that the DomainParticipant will use in the situations when the

DomainParticipant initiates the Authentication handshake. The algorithm shall be one of the

algorithms defined in 8.2.

Formatted: Font: 10 pt

Deleted: Table 26Table 26Table 25

Deleted: 8.28.28.1.2

Deleted: The public key of the CA shall be either a 2048-bit

RSA key [44] or else a 256-bit Elliptic Curve Key for the

prime256v1 curve [41], also known as the NIST P-256 curve

[42].…

Deleted: Table 50Table 50Table 48

Deleted: 8.28.28.1.2

Deleted: It may be either a 2048-bit RSA private key or a

256-bit Elliptic Curve Key for use with the prime256v1

curve [41]…

Deleted: Table 50Table 50Table 48

Deleted: 8.28.28.1.2

204 DDS Security, v1.12

The Key Establishment Algorithm should be provided to the plugins using the

PropertyQosPolicy, property key_establishment_algorithm on the DomainParticipantQos

as specified in Table 50

The key_establishment_algorithm property may be omitted or may have the value set to “AUTO”. In

both these cases, the selection of the algorithm will be left to the Authentication plugin.

10.3.2 DDS:Auth:PKI-DH Types

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Auth:PKI-DH plugin.

Credential and Token attributes left unspecified in this specification shall be understood to not

have any required values in this specification. These attributes shall be handled according to the

following rules:

• Plugin implementations may place data in these attributes as long as they also include a property

attribute that allows the implementation to unambiguously detect the presence and interpret these

attributes.

• Attributes that are not understood shall be ignored.

• Property_t and BinaryProperty_t names shall comply with the rules defined in 7.3.1 and

7.3.3, respectively.

The content of the Handle objects is not specified as it represents references to internal state that is

only understood by the plugin itself. The DDS Implementation only needs to hold a reference to the

returned Handle objects returned by the plugin operations and pass these Handle references to other

operations.

10.3.2.1 DDS:Auth:PKI-DH IdentityToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PKI-DH plugin shall set the attributes of the IdentityToken object as specified in

the tables below:

• The settings in Table 51 shall be used in the general situation where a DomainParticipant needs

authenticate and be authenticated by other DomainParticipants. This is the only setting that

allows a Participant to have an Identity and associated Permissions file.

• The settings in Table 52 shall only be used in situations where a DomainParticipant does not

intent to Authenticate and will therefore be treated as an “Unauthenticated Participant” by the

other DomainParticipants.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 51 – IdentityToken class for the builtin Authentication plugin – general case

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.2”
properties

(The presence of each of properties is

optional)

name value

dds.cert.sn The subject name of the Identity Certificate.

dds.cert.algo One of the CryptoAlgorithmName string
identifiers for digital signature algorithms
defined in Table 25.

dds.ca.sn The subject name of the Identity CA
Certificate.

Deleted: Table 50Table 50Table 48

Formatted: Font: 10 pt

Deleted: Table 25Table 25Table 24

Deleted: “RSA-2048” or “EC-prime256v1”

DDS Security, v1.12 205

dds.ca.algo One of the CryptoAlgorithmName string
identifiers for digital signature algorithms
defined in Table 25.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 52 – IdentityToken class for the builtin Authentication plugin – when only using pre-shared key

Attribute name Attribute value
class_id “DDS:Auth:PSK:1.2”
properties

(The presence of this of properties is

optional)

name value

dds.psk.algo One of the CryptoAlgorithmName string
identifiers for Symmetric Cipher AEAD and
MAC Algorithms cypher algorithms defined
in Table 22

The value of the class_id shall be interpreted as composed of three parts: a PluginClassName, a

MajorVersion and a MinorVersion according to the following format:

<PluginClassName>:<MajorVersion>.<MinorVersion>. The PluginClassName is

separated from the MajorVersion by the last ':' character in the class_id. The MajorVersion and

MinorVersion are separated by a '.' character. Accordingly this version of the specification has

PluginClassName equal to "DDS:Auth:PKI-DH", MajorVersion set to 1, and MinorVersion set to 0.

10.3.2.2 DDS:Auth:PKI-DH IdentityStatusToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the IdentityStatusToken object as

specified in the table below:

DDSSEC12-110 – Corrections to tables describing IdentityStatusToken …

Table 53 – IdentityStatusToken class for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0”
binary_properties

(The presence of

each of properties

is optional)

name value

ocsp_sta
tus

A DER-encoded OCSP response (using the ASN.1 type OCSPResponse defined in
clause 4.2.1 of RFC 2560 [54]) that provides the status of the identity certificate of
the DomainParticipant.

10.3.2.3 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the

AuthenticatedPeerCredentialToken object as specified in the table below:

DDSSEC12-110 – Corrections to tables describing IdentityStatusToken …

Table 54 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0”
binary_properties

name value

c.id Contents of the certificate signed by IdentityCA that was received from the peer
DomainParticipant as part of the authentication process.
Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or HandskaheReplyMessageToken.

c.perm Contents of the permissions document signed by the PermissionCA that that was
received from the peer DomainParticipant as part of the authentication process.
Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or HandskaheReplyMessageToken.

Formatted: Font: 10 pt

Deleted: Table 25Table 25Table 24

Deleted: “RSA-2048” or “EC-prime256v1”

Formatted: Font: 10 pt

206 DDS Security, v1.12

10.3.2.4 DDS:Auth:PKI-DH AuthRequestMessageToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the AuthRequestMessageToken object

as specified in the table below:

DDSSEC12-110 – Corrections to tables describing IdentityStatusToken …

Table 55 – AuthRequestMessageToken class for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0+AuthReq”
binary_properties

name value

future_c
hallenge

A 256-bit NONCE generated by the Participant, compliant with Section 8.6.7 of
NIST Recommendation for Random Number Generation Using Deterministic
Random Bit Generators [46].
The value shall match what will be sent on the challenge1 property of the
HandshakeRequestMessageToken or the challenge2 property of the

HandshakeReplyMessageToken.

10.3.2.5 DDS:Auth:PKI-DH HandshakeMessageToken

The DDS:Auth:PKI-DH plugin uses several HandshakeMessageToken object formats:

• HandshakeRequestMessageToken objects

• HandshakeReplyMessageToken objects

• HandshakeFinalMessageToken objects

10.3.2.5.1 HandshakeRequestMessageToken objects

The attributes in HandshakeRequestMessageToken objects shall be set as specified in the table

below. References to the DomainParticipant within the table refer to the

DomainParticipant that is creating the HandshakeRequestMessageToken.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDS Security, v1.12 207

Table 56 – HandshakeRequestMessageToken for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0+Req”
binary_properties name value

c.id Contents of the certificate signed by IdentityCA that was configured
using the Participant PropertyQosPolicy with name
“dds.sec.auth.identity_certificate”

c.perm Contents of the permissions document signed by the PermissionCA that
was configured using the Participant PropertyQosPolicy with name
“dds.sec.access.permissions”

c.pdata The CDR Big Endian Serialization of the ParticipantBuiltinTopicData
c.dsign_algo Digital signature algorithm identifier.

One of the CryptoAlgorithmName unique string identifiers defined in
Table 25.

 c.kagree_algo Key agreement algorithm identifier.
One of the CryptoAlgorithmName string identifiers defined in Table 26.
The string identifier shall correspond to the Key Establishment
algorithm chosen by the initiator Participant.

hash_c1 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties above that start
with “c.” placed in the same order as they appear above.
Inclusion of the hash_c1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

dh1 The Key Agreement Public Key chosen by the Participant.
This will be used for key establishment between the two involved
Participants. The algorithm of this Public Key shall be one of the
algorithms defined in Table 26.

challenge1 A 256-bit NONCE generated by the Participant, compliant with Section
8.6.7 of NIST Recommendation for Random Number Generation Using
Deterministic Random Bit Generators [46].
If the validate_remote_identity returned a non-NIL

AuthRequestMessageToken, then the value shall match what was

sent on the AuthRequestMessageToken future_challenge property.

 ocsp_status Inclusion of this property is optional.
A DER-encoded OCSP response (using the ASN.1 type OCSPResponse
defined in clause 4.2.1 of RFC 2560 [54]) that provides the status of the
identity certificate in the c.id property.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The encoding of the Key Agreement Public Key into the octet sequence that holds the value of a binary

property depends on the type of Key Agreement key and is described in clause 8.3. This convention

applies to the setting of the binary property value for the property “dh1”.

Plugin implementations may add extra properties as long as the names comply with the rules defined in

in 7.3.1. Plugin implementations shall ignore any properties they do not understand.

10.3.2.5.2 HandshakeReplyMessageToken

The attributes in the HandshakeReplyMessageToken objects are set as specified in the table

below. References to the DomainParticipant within the table refer to the

DomainParticipant that is creating the HandshakeReplyMessageToken.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 57 – HandshakeReplyMessageToken for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0+Reply”
binary_properties name value

Deleted: 56565349

Deleted: Either

Formatted: Font: 10 pt

Deleted: Table 25Table 25Table 24

Deleted: “RSASSA-PSS-SHA256” or “ECDSA-SHA256”

Formatted: Font: 10 pt

Deleted: Table 26Table 26Table 25

Deleted: ¶
Either “DH+MODP-2048-256” or “ECDH+prime256v1-
CEUM”

Deleted: The CDR Big Endian Serialization of a

Deleted: Diffie-Hellman

Deleted: This will be used for key agreement.

Formatted: Font: 10 pt

Deleted: Table 26Table 26Table 25

Deleted: ¶
If the Participant Identity uses a RSA Public Key, then the

c.dsign_algo shall be “RSASSA-PSS-SHA256”.¶

If the Participant Identity uses a EC Public Key, then the

c.dsign_algo shall be “ECDSA-SHA256”.

Deleted: 575754

208 DDS Security, v1.12

c.id Contents of the certificate signed by IdentityCA that was configured
using the Participant PropertyQosPolicy with name
“dds.sec.auth.identity_certificate”

c.perm Contents of the permissions document signed by the PermissionCA
that was configured using the Participant PropertyQosPolicy with
name “dds.sec.access.permissions”

c.pdata The CDR Big Endian Serialization of the ParticipantBuiltinTopicData
c.dsign_algo Digital signature algorithm identifier.

One of the CryptoAlgorithmName string identifiers defined in Table 25.
c.kagree_algo Key agreement algorithm identifier.

One of the CryptoAlgorithmName string identifiers defined in Table 26.
The string identifier shall correspond to the Key Establishment
algorithm chosen by the initiator Participant.

hash_c2 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties above that start
with “c.” placed in the same order as they appear above.
Inclusion of the hash_c2 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

dh2 The Key Agreement Public Key chosen by the Participant.
This will be used for key establishment between the two involved
Participants. The algorithm of this Public Key shall be one of the
algorithms defined in Table 26.

hash_c1 The value of the related HandshakeRequestMessageToken property
hash_c1.
Inclusion of the hash_c1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

dh1 The value of the related HandshakeRequestMessageToken property
dh1.
Inclusion of the dh1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

challenge1 Value of the related HandshakeRequestMessageToken property
challenge1.

 challenge2 A 256-bit NONCE generated by the Participant, compliant with Section
8.6.7 of NIST Recommendation for Random Number Generation Using
Deterministic Random Bit Generators [46].
If the validate_remote_identity returned a non-NIL

AuthRequestMessageToken, then the value shall match what was

sent on the AuthRequestMessageToken future_challenge property.

ocsp_status Inclusion of this property is optional.
A DER-encoded OCSP response (using the ASN.1 type OCSPResponse
defined in clause 4.2.1 of RFC 2560 [54]) that provides the status of the
identity certificate in the c.id property.

signature The Digital Signature of the CDR Big Endian serialization of a
BinaryPropertySeq object containing the properties: hash_c2,
challenge2, dh2, challenge1, dh1, and hash_c1, placed in that order.
All the aforementioned properties shall appear within the signature
even if some of the optional properties do not appear separately as
properties in the HandshakeReplyMessageToken.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The encoding of the Key Agreement Public Key into the octet sequence that holds the value of a binary

property depends on the type of Key Agreement key and is described in clause 8.3. This convention

applies to the setting of the binary property value for the properties “dh1” and “dh2”.

Plugin implementations may add extra properties as long as the names comply with the rules defined in

7.5.3.5. Plugin implementations shall ignore any properties they do not understand.

Formatted: Font: 10 pt

Deleted: Table 25Table 25Table 24

Deleted: Either “RSASSA-PSS-SHA256” or “ECDSA-
SHA256”

Formatted: Font: 10 pt

Deleted: Table 26Table 26Table 25

Deleted: Either “DH+MODP-2048-256” or
“ECDH+prime256v1-CEUM”

Deleted: CDR Big Endian Serialization of a Diffie-
Hellman…

Deleted: This will be used to establish the shared secret.

Formatted: Font: 10 pt

Deleted: Table 26Table 26Table 25

DDS Security, v1.12 209

Regardless of the key agreement algorithm, the SharedSecret (see REF _Ref357403335 \h

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 60) shall be computed as the SHA256 hash of the derived shared secret computed by the key

agreement algorithm. [Non-normative: This is done to accommodate the use of cryptographic libraries

that do not provide direct access to the derived shared secret and only allow retrieval of the SHA256 of

the shared secret.]

The digital signature shall be computed using the Private Key associated with the DomainParticipant,

which corresponds to the Public Key that appears in the Identity Certificate.

10.3.2.5.3 HandshakeFinalMessageToken

HandshakeFinalMessageToken objects are used to finish an authentication handshake.

The attributes in the HandshakeFinalMessageToken objects shall be set as specified in the table

below.

References to the DomainParticipant within the table refer to the DomainParticipant that

is creating the HandshakeFinalMessageToken.

Table 58 – HandshakeFinalMessageToken for the builtin Authentication plugin

Attribute name Attribute value
class_id “DDS:Auth:PKI-DH:1.0+Final”.
binary_properties name value

hash_c1 The value of the related HandshakeRequestMessageToken property
hash_c1.
Inclusion of the hash_c1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

hash_c2 The value of the related HandshakeReplyMessageToken property hash_c2.
Inclusion of the hash_c2 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

dh1 The value of the related HandshakeRequestMessageToken property dh1.
Inclusion of the dh1 property is optional. Its only purpose is to facilitate
troubleshoot interoperability problems.

 dh2 The value of the related HandshakeReplyMessageToken property dh2.
Inclusion of the dh2 property is optional. Its only purpose is to facilitate
troubleshoot interoperability problems. |

challenge1 Value of HandshakeRequestMessageToken property challenge1
challenge2 Value of HandshakeReplyMessageToken property challenge2
signature The Digital Signature of the CDR Big Endian serialization of a

BinaryPropertySeq object containing the properties: hash_c1, challenge1,
dh1, challenge2, dh2, and hash_c2, placed in that order.
All the aforementioned properties shall appear within the signature even if
some of the optional properties do not appear separately as properties in
the HandshakeFinalMessageToken.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The Key Agreement public key shall be for the same algorithm and Domain Parameters that were used

for the HandshakeRequestMessageToken key received as value of the dh2 property. The

parameters and algorithm shall be determined based on the value of the

HandshakeRequestMessageToken parameter with key c.kagree_algo. In other words, it is the

Participant that creates the HandshakeRequestMessageToken the one that controls the key

agreement algorithm used.

The digital signature shall be computed using the Private Key associated with the DomainParticipant,

which corresponds to the Public Key that appears in the Identity Certificate.

Deleted: If the value of the c. kagree_algo property is

“DH+MODP-2048-256”, then:¶

The Diffie-Hellman Public Key shall be for the 2048-bit

MODP Group with 256-bit Prime Order Subgroup, see IETF

RFC 5114 REF _Ref316671709 \r \h [47], section 2.3.¶

The Key Agreement Algorithm shall be the “dhEphem,

C(2e, 0s, FFC DH) Scheme” defined in section 6.1.2.1 of

NIST Special Publication 800-56A Revision 2 REF

_Ref316672077 \r \h [48].¶

Non-normative note: The OpenSSL 1.0.2 operation

DH_get_2048_256() retrieves the parameters for the 2048-

bit MODP Group with 256-bit Prime Order Subgroup.¶

If the value of the c.kagree_algo property is

“ECDH+prime256v1-CEUM”, then:¶

The Diffie-Hellman Public Key shall be for the NIST’s EC

Curve P-256 as defined in appendix D of FIPS 186-4 REF

_Ref315698447 \r \h [42] also known as prime256v1 in

ANSI X9.62-2005 REF _Ref315698414 \r \h [41].¶

The Key Agreement Algorithm shall be the “(Cofactor)

Ephemeral Unified Model, C(2e, 0s, ECC CDH)” defined in

section 6.1.2.2 of NIST Special Publication 800-56A

Revision 2 REF _Ref316672077 \r \h [48]. See also section

3.1 “Ephemeral Unified Model” of NIST Suite B

Implementer’s Guide to NIST SP 800-56A REF

_Ref316672299 \r \h [49].¶

Deleted: DDSSEC12-90 - Meeting CNSSP-15 security

requirements¶

Table 60DDSSEC12-90 - Meeting CNSSP-15 security

requirements¶

Table 60Table 57

Deleted: ¶
If the Participant Private Key is a RSA key, then:¶

The value of the c.dsign_algo property shall be “RSASSA-

PSS-SHA256”. ¶

The digital signature shall be computed using the RSASSA-

PSS algorithm specified in PKCS #1 (IETF 3447) RSA

Cryptography Specifications Version 2.1 [44], using

SHA256 as hash function, and MGF1 with SHA256

(mgf1sha256) as mask generation function.¶

If the Participant Private Key is an EC key, then:¶

The value of the c.dsign_algo shall be “ECDSA-SHA256”.¶

The digital signature shall be computed using the ECDSA-

SHA256 algorithm specified in ANSI X9.62-2005 [41].

Deleted: 585855

Deleted: Diffie Hellman

Deleted: If the Participant Private Key is a RSA key, then

the digital signature shall be computed using the RSASSA-

PSS algorithm specified in PKCS #1 (IETF 3447) RSA

Cryptography Specifications Version 2.1 [44], using

SHA256 as hash function, and MGF1 with SHA256

(mgf1sha256) as mask generation function.¶

If the Participant Participant Private Key is an EC key, then

the digital signature shall be computed using the ECDSA-

SHA256 algorithm specified in ANSI X9.62-2005 [41].

210 DDS Security, v1.12

10.3.3 DDS:Auth:PKI-DH plugin behavior

The table below describes the actions that the DDS:Auth:PKI-DH plugin performs when each of the

plugin operations is invoked.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 59 – Actions undertaken by the operations of the builtin Authentication plugin

validate_local_iden

tity

This operation shall receive the participant_guid associated with the local

DomainParticipant whose identity is being validated.

The operation shall receive the DomainParticipantQos with a

PropertyQosPolicy containing the properties defined in 10.3.1.

The operation shall verify the validity of the X509 certificate associated with the

property named dds.sec.auth.identity_certificate using the CA configured by the

dds.sec.auth.identity_ca property. The operation shall check a CRL and/or an

OCSP (RFC 2560 [54]) responder. This includes checking the expiration date of the

certificate.

If the above check fails, the operation shall return VALIDATION_FAILED.

The operation shall fill the handle with an implementation-dependent reference that

allows the implementation to retrieve at least the following information:

1. The private key associated with the identity_credential

2. The public key associated with the identity_credential

3. The participant_guid

The operation shall return the 16-byte adjusted_participant_guid GUID consisting

of the same EntityId_t and a GuidPrefix_t computed as follows:

• The first bit (bit 0) shall be set to 1.

• The 47 bits following the first bit (bits 1 to 47) shall be set to the 47 first bits of

the SHA-256 hash of the ASN.1 DER encoding of the SubjectName [40]

appearing on the identity_credential.

• The following 48 bits (bits 48 to 95) shall be set to the first 48 bits of the SHA-

256 hash of the candidate_participant_guid.

If successful, the operation shall return VALIDATION_OK.
get_identity_token The operation shall receive the handle corresponding to the one returned by a

successful previous call to validate_local_identity.

If the above condition is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

This operation shall return an IdentityToken object with the content specified

in 10.3.2.1.

get_identity_status

_token

This operation shall receive the handle corresponding to the one returned by a

successful previous call to validate_local_identity.

If the above condition is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

This operation shall return an IdentityToken object with the content specified

in 10.3.2.2.
set_participant_sec

urity_config

This operation shall perform the following checks based on the value of the

members of the participant_security_config (in) parameter

Check that the digital_signature.trust_chain.supported_mask includes at least one

algorithm that is supported by the AUTH plugin. Fail otherwise.

Check that the digital_signature.message_auth.supported_mask includes at least

one algorithm that is supported by the AUTH plugin. Fail otherwise.

Check that the key_establisment.shared_secret.supported_mask includes at least

one algorithm that is supported by the AUTH plugin. Fail otherwise.

The operation shall set the adjusted_algorithm_info (out) parameter according to

the following steps:

Initialize adjusted_algorithm_info as a copy of

participant_security_config.algorithm_info

Deleted: 595956

DDS Security, v1.12 211

Remove any unsupported algorithms from the

digital_signature.trust_chain.supported_mask, the

digital_signature.message_auth.supported_mask , and the

key_establisment.shared_secret.supported_mask

Add the algorithms that appear in the Identity Certificate to the

digital_signature.trust_chain.required_mask.

Add the algorithm that corresponds to the public key in the Identity Certificate to

the digital_signature.message_auth.required_mask. Check that this algorithm is

present in thee digital_signature.trust_chain.supported_mask, fail otherwise.

Add the algorithm that will be used for the Key Agreement protocol if the

Participant initiates authentication to the the

key_establisment.shared_secret.required_mask. Check that this algorithm is

present in the the key_establisment.shared_secret.supported_mask, fail otherwise.

The operation shall configure the AUTH plugin to only accept the resulting set of

supported algorithms in the adjusted_algorithm_info.
set_permissions_cre

dential_and_token

This operation shall store the PermissionsCredentialToken and the

PermissionsToken internally to the plugin and associate them with the

DomainParticipant represented by the IdentityHandle.

validate_remote_ide

ntity

The operation shall receive the IdentityToken of the remote participant in the

argument remote_identity_token.

The contents of the IdentityToken shall be identical to what would be returned

by a call to get_identity_token on the Authentication plugin of the

remote DomainParticipant associated with the remote_participant_guid.

The operation shall compare the class_id of the local identity_token with that of the

remote_identity_token. If the PluginClassName or the MajorVersion are different,

it shall return VALIDATION_FAILED.

If the remote_auth_request_token is NIL, the operation shall generate a

local_auth_request_token AuthRequestMessageToken (see 10.3.2.4),

otherwise the local_auth_request_token shall be set to TokenNIL. Note that a

local_auth_request_token is returned as an out parameter.

The operation shall compare lexicographically the remote_participant_guid with

the participant key obtained from the local_identity_handle.

If the remote_participant_guid > local_participant_guid, the operation shall return

VALIDATION_PENDING_HANDSHAKE_REQUEST.

If the remote_participant_guid < local_participant_guid, the operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

In both scenarios the remote_identity_handle shall be filled with a reference to

internal plugin information that identifies the remote participant and associates it to

the contents of the remote_identity_token, the local_auth_request_token, the

remote_auth_request_token and any additional information required for the

challenge protocol.
begin_handshake_req

uest

The operation shall receive the initiator_identity_handle corresponding to the

local_identity_handle of a previous invocation to the validate_remote_identity

operation that returned VALIDATION_PENDING_HANDSHAKE_REQUEST.

The operation shall also receive the replier_identity_handle corresponding to the

remote_identity_handle returned by that same invocation to the

validate_remote_identity operation.

The operation shall also receive the serialized_local_participant_data associated

with the local DomainParticipant. This will be used to set the value of the

property named “c.pdata”.

The operation shall return the handshake_message containing a

HandshakeRequestMessageToken object with contents as defined in

10.3.2.5.1

The operation shall check the content of the local_auth_request_token associated

with the remote_identity_handle. If the token was different from TokenNIL, the

operation shall use the value of property named “future_challenge” found in

212 DDS Security, v1.12

the local_auth_request_token to fill the property named “challenge1” of the

handshake_message returned.

The operation shall fill the handshake_handle with an implementation-dependent

reference that allows the implementation to retrieve at least the following

information:

1. The local_identity_handle

2. The remote_identity_handle

3. The value attribute of the handshake_message returned

The operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.
begin_handshake_rep

ly

The operation shall receive the replier_identity_handle corresponding to

local_identity_handle of a previous invocation to the validate_remote_identity

operation that returned VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The operation shall also receive the initiator_identity_handle corresponding to the

remote_identity_handle returned by that same invocation to the

validate_remote_identity operation.

The operation shall also receive the serialized_local_participant_data associated

with the local DomainParticipant. This will be used to set the value of the

property named “c.pdata”.

If any of the above conditions is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

The operation shall check the content of the remote_auth_request_token associated

with the remote_identity_handle. If the token was different from TokenNIL, the

operation shall verify that the property named “future_challenge” found in

that token is the same value as the property named “challenge1” found in the

handshake_message_in HandshakeRequestMessageToken. If the condition

is not met, the operation shall return VALIDATION_FAILED.

The operation shall check the content of the local_auth_request_token associated

with the remote_identity_handle. If the token was different from TokenNIL, the

operation shall use the value of property named “future_challenge” found in

the local_auth_request_token to fill the property named “challenge2” of the

handshake_message returned.

The operation shall verify the validity of the IdentityCredential contained

in the property named “c.id” found in the handshake_message_in

HandshakeRequestMessageToken. This verification shall be done using the

locally configured CA in the same manner as the validate_local_identity

operation.

If the handshake_message_in does not contain the aforementioned property or the

verification fails, then the operation shall fail and return ValidationResult_Fail.

If the property ocsp_status is present, the operation shall verify that the OCSP

response included in the property corresponds to the identity in the c.id property.

The operation shall use the OCSP response to verify the status of the

IdentityCredential. If that status is good and the validity interval has not

been exceeded it shall accept that as proof that the IdentityCredential is still valid.

If the status is revoked, the operation shall fail and return ValidationResult_Fail. If

the status is different from the aforementioned ones it shall behave as if the

ocsp_status property was not present.

If the property ocsp_status is not present, the operation shall use its own means to

determine the status of the IdentityCredential. This may performing an

OCSP query or consulting a CRL list. The specific behavior is implementation

specific.

The operation shall verify that the first bit of the participant_guid of the

ParticipantBuiltinTopic data inside the “c.pdata” is set to 1 and that the

following 47 bits match the first 47 bits of the SHA-256 hash of the SubjectName

appearing in the IdentityCredential. If this verification fails, the operation

shall fail and return ValidationResult_Fail.

DDS Security, v1.12 213

The operation shall fill the handshake_message_out with a

HandshakeReplyMessageToken object with the content specified in

10.3.2.5.2.

The operation shall fill the handshake_handle with an implementation-dependent

reference that allows the implementation to retrieve at least the following

information:

1. The replier_identity_handle

2. The initiator_identity_handle

3. The value attribute of the challenge_message returned

4. The property with name “dds.sec.permissions” found within the

handshake_message_in if present

The operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.
process_handshake

on a handshake_handle

created by
begin_handshake_req

uest

The operation shall be called with the handshake_handle returned by a previous

call to begin_handshake_request that returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The handshake_message_in shall correspond to a

HandshakeReplyMessageToken object received as a reply to the

handshake_message HandshakeRequestMessageToken object associated

with the handshake_handle.

If any of the above conditons are not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the handshake_message_in

correspond to a HandshakeReplyMessageToken as described in 10.3.2.5.2.

The operation shall check the content of the remote_auth_request_token associated

with the remote_identity_handle. If the token was different from TokenNIL, the

operation shall verify that the property named “future_challenge” found in

that token is the same value as the property named “challenge2” found in the

handshake_message_in HandshakeReplyMessageToken. If the condition is

not met, the operation shall return VALIDATION_FAILED.

The operation shall verify the validity of the IdentityCredential contained

in the property named “c.id” found in the handshake_message_in

HandshakeReplyMessageToken. This verification shall be done using the

locally configured CA in the same manner as the validate_local_identity operation.

If the handshake_message_in does not contain the aforementioned property or the

verification fails, then the operation shall fail and return ValidationResult_Fail.

If the property ocsp_status is present, the operation shall verify that the OCSP

response included in the property corresponds to the identity in the c.id property.

The operation shall use the OCSP response to verify the status of the

IdentityCredential. If that status is good and the validity interval has not

been exceeded, it shall accept that as proof that the IdentityCredential is still valid.

If the status is revoked, the operation shall fail and return ValidationResult_Fail. If

the status is different from the aforementioned ones, it shall behave as if the

ocsp_status property was not present.

If the property ocsp_status is not present, the operation shall use its own means to

determine the status of the IdentityCredential. This may performing an

OCSP query or consulting a CRL list. The specific behavior is implementation

specific.

The operation shall check that the challenge1 matches the one that was sent on the
HandshakeRequestMessageToken.

The operation shall validate the digital signature in the “signature” property,

according to the algorithm described in 8.2.

If the specified checks do not succeed, the operation shall return

VALIDATION_FAILED.

The operation shall create a HandshakeFinalMessageToken object as

described in 10.3.2.5.3. The operation shall fill the handshake_message_out with

the created HandshakeFinalMessageToken object.

214 DDS Security, v1.12

The operation shall store the value of property with name “dds.sec.” found

within the handshake_message_in, if present and associate it with the

handshake_handle as the PermissionsCertificate of remote

DomainParticipant.

The operation shall use the Key Agreement Public Key in the “dh2” property in

combination with the Key Agreement Private Key it used to compute the

HandshakeFinalMessageToken “dh1” property to compute the shared

secret. The algorithm shall be as described in 8.3.

On success the operation shall return VALIDATION_OK_FINAL_MESSAGE.
process_handshake

on a handshake_handle

created by
begin_handshake_rep

ly

The operation shall be called with the handshake_handle returned by a previous

call to begin_handshake_reply that returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The handshake_message_in shall correspond to the one received as a reply to the

handshake_message_out associated with the handshake_handle.

If any of the above conditions is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the handshake_message_in

correspond to a HandshakeFinalMessageToken object as described in

10.3.2.5.3.

The operation shall check that the challenge1 and challenge2 match the ones that

were sent on the HandshakeReplyMessageToken.

The operation shall validate the digital signature in the “signature” property,

according to the expected contents and algorithm described in 8.2.

The operation shall use the Key Agreement Public Key in the “dh1” property in

combination with the Key Agreement Private Key it used to compute the

HandshakeReplyMessageToken “dh2” property to compute the shared

secret. The algorithm shall be as described in 8.3.

On success the operation shall return VALIDATION_OK.
get_shared_secret This operation shall be called with the handshake_handle that was previously used

to call either process_handshake and for which the aforementioned operation

returned VALIDATION_OK_FINAL_MESSAGE or VALIDATION_OK.

If the above conditon is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

The operation shall return a SharedSecretHandle that is internally associated

with the SharedSecret established as part of the handshake.

On failure the operation shall return nil.

get_authenticated_p

eer_credential_toke

n

This operation shall be called with the handshake_handle that was previously used

to call either process_handshake and for which the aforementioned operation

returned VALIDATION_OK_FINAL_MESSAGE or VALIDATION_OK.

If the above conditon is not met, the operation shall return the exception

DDS_SecurityException_PreconditionError.

The operation shall return the AuthenticatedPeerCredentialToken of

the peer DomainParticipant associated with the handshake_handle. If the

DomainParticipant initiated the handshake, then the peer

AuthenticatedPeerCredentialToken is constructed from the

HandshakeReplyMessageToken, otherwise it is constructed from the

HandshakeRequestMessageToken. See 10.3.2.3.

On failure the operation shall return nil.
set_listener

This operation shall save a reference to the listener object and associate it with the

specified IdentityHandle.

return_identity_tok

en

This operation shall behave as specified in 9.3.2.11.14.

return_identity_sta

tus_token

This operation shall behave as specified in 9.3.2.11.15.

Deleted: Diffie

Deleted: Hellman

Deleted: Diffie Hellman

Deleted: Diffie Hellman

Deleted: Diffie Hellman

DDS Security, v1.12 215

return_authenticate

d_peer_credential_t

oken

This operation shall behave as specified in 9.3.2.11.16.

return_handshake_ha

ndle

This operation shall behave as specified in 9.3.2.11.17.

return_identity_han

dle

This operation shall behave as specified in 9.3.2.11.18.

return_sharedsecret

_handle

This operation shall behave as specified in 9.3.2.11.19.

10.3.4 DDS:Auth:PKI-DH plugin authentication protocol

The operations the Secure DDS implementation executes on the Authentication plugin combined

with the behavior of the DDS:Auth:PKI-DH result in an efficient 3-message protocol that performs

mutual authentication and establishes a shared secret.

The rest of this sub clause describes the resulting protocol.

The authentication protocol is symmetric, that is there are no client and server roles. But only one

DomainParticipant should initiate the protocol. To determine which of the two

DomainParticipant entities shall initiate the protocol, each DomainParticipant compares

its own GUID with that of the other DomainParticipant. The DomainParticipant with the lower

GUID (using lexicographical order) initiates the protocol.

10.3.4.1 Terms and notation

The table below summarizes the terms used in the description of the protocol.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 60 – Terms used in the description of the builtin authentication protocol

Term Meaning
Participant1 The DomainParticipant that initiates the handshake protocol.

It calls begin_handshake_request, sends the HandshakeRequestMessageToken,

receives the HandshakeReplyMessageToken, and sends the

HandshakeFinalMessageToken).

Participant2 The DomainParticipant that does not initiate the handshake protocol.
It calls begin_handshake_reply, receives the HandshakeRequestMessageToken ,

sends the HandshakeReplyMessageToken, and receives the

HandshakeFinalMessageToken).

PubK_1 The Public Key of Participant1.
PubK_2 The Public Key of Participant2.
PrivK_1 The Private Key of Participant1.
PrivK_2 The Private Key of Participant2.
Cert1 The IdentityCertificate (signed by the shared CA) of Participant A. It contains PubK_1.

Cert2 The IdentityCertificate (signed by the shared CA) of Participant 2. It contains PubK_2.

Perm1 Permissions document of Participant1 (signed by Permissions CA).
Perm2 Permissions document of Participant2 (signed by Permissions CA).
Pdata1 ParticipantBuiltinTopicData of Participant1.
Pdata2 ParticipantBuiltinTopicData of Participant2.
Dsign_algo1 Token identifying the Digital Signature Algorithm for Participant1.
Dsign_algo2 Token identifying the Digital Signature Algorithm for Participant2.
Kagree_algo1 Token identifying the Key Agreement Algorithm selected by Participant1 that shall be used to

establish the shared secret.
Kagree_algo2 Token identifying the Key Agreement Algorithm used by Participant2. It shall be set to match

the one received from Participant1 in Kagree_algo1and used to establish the shared secret.
Challenge1 The challenge created by Participant1.

Deleted: _permissions

Deleted: 606057

216 DDS Security, v1.12

Challenge2 The challenge created by Participant2.
DH1 Key Agreement Public Key generated by Participant1.
DH2 Key Agreement Public Key generated by Participant2.
DHSharedSecret The shared secret computed combining DH1 and DH2 with the DH secret key each participant

has.
SharedSecret The SHA256 Hash of the DHSharedSecret.
C1 A shortcut for the list: Cert1, Perm1, Pdata1, Dsign_algo1, Kagree_algo1.
C2 A shortcut for the list: Cert2, Perm2, Pdata2, Dsign_algo2, Kagree_algo2.

The table below summarizes the notation and transformation functions used in the description of the

protocol:

Table 61 – Notation of the operations/transformations used in the description of the builtin authentication protocol

Function / notation meaning
Sign(data) Signs the ‘data’ argument using the Participant Private Key.
Hash(data) Hashes the ‘data’ argument using SHA-256.
data1 | data2 The symbol ‘|’ is used to indicate byte concatenation.

Deleted: Diffie-Hellman

Deleted: Diffie-Hellman

Deleted: 616158

DDS Security, v1.12 217

10.3.4.2 Protocol description

The table below describes the resulting 3-way protocol that establishes authentication and a shared

secret between Participant_A and Participant_B.

Table 62 – Description of built-in authentication protocol

Participant A Participant B
Is configured with PrivK_1 and C1 where
C1 = Cert1, Perm1, Pdata1, Dsign_algo1, Kagree_algo1
Generates a random Challenge1.
Generates DH1.
Sends:
HandshakeRequestMessageToken: (C1,

Hash(C1), Challenge1, DH1)

Note: In the above message Hash(C1) may be omitted.

Is configured with PrivK_2 and C2 where
C2 = Cert2, Perm2, Pdata2, Dsign_algo2, Kagree_algo2

 Receives HandshakeRequestMessageToken

Verifies Cert1 with the configured Identity CA
Verifies Hash(C1)
Generates a random Challenge2
Generates DH2
Sends:
HandshakeReplyMessageToken:

(C2, Hash(C2),

 Challenge1, Challenge2,

 DH2, Hash(C1), DH1,

 Sign(Hash(C2) | Challenge2

 | DH2 | Challenge1 | DH1

 | Hash(C1)))

Note: In the above message Hash(C2) , Hash(C1) and
DH1 may be omitted outside the signature.

Deleted: 626259

218 DDS Security, v1.12

Receives HandshakeReplyMessageToken

Verifies Cert2 with the configured Identity CA
Verifies signature against PubK2
Computes shared secret from DH2 and the DH private
key used for DH1
Sends:
HandshakeFinalMessageToken:

(Hash(C1), Hash(C2), DH1, DH2,

 Challenge1, Challenge2,

 Sign(Hash(C1) | Challenge1 | DH1

| Challenge2 | DH2

| Hash(C2)))

Note: In the above message Hash(C1) , Hash(C2), DH1,
and DH2 may be omitted outside the signature.

Receives HandshakeFinalMessageToken

Checks Hash(C1) matches the
HandshakeRequestMessageToken

Verifies the signature in
HandshakeFinalMessageToken against

PubK_1
Computes shared secret from DH1 and the DH
private key used for DH2

10.4 Builtin Access Control: DDS:Access:Permissions

This builtin AccessControl plugin is referred to as the “DDS:Access:Permissions” plugin.

The DDS:Access:Permissions implements the AccessControl plugin API using a permissions

document signed by a shared Certificate Authority (CA).

The shared CA could be an existing one (including the same CA used for the Authentication

plugin), or a new one could be created for the purpose of assigning permissions to the applications on a

DDS Domain. The nature or manner in which the CA is selected is not important because the way it is

used enforces a shared recognition by all participating applications.

Each DomainParticipant has an associated instance of the DDS:Access:Permissions plugin.

10.4.1 Configuration

The DDS:Access:Permissions plugin is configured with three documents:

1. The Permissions CA certificate

2. The Domain governance signed by the Permissions CA

3. The DomainParticipant permissions signed by the Permissions CA

The configuration of the builtin access control plugin shall be done using the PropertyQosPolicy

of the DomainParticipantQos. The specific properties used are described in Table 63 below.

Table 63 – Properties used to configure the builtin AccessControl plugin

Property Name

(all properties have

“dds.sec.access”

prefix)

Property Value

(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.

URI “data” schema follows IETF RFC 2397

Vendors may support additional schemas
permissions_ca

URI to a X509 certificate for the PermissionsCA in PEM format.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509 v3 ITU-T
Recommendation X.509 (2005) [39]) in PEM format.

Deleted: Table 63Table 63Table 60

Deleted: 636360

DDS Security, v1.12 219

Examples:

file:permissions_ca.pem
file:/home/myuser/ permissions_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----
pkcs11:object= MyPermissionsCACert;type=cert

governance
URI to the shared Governance Document signed by the Permissions CA in S/MIME
format
URI schemes: file, data

Example file URIs:
file:governance.smime
file:/home/myuser/governance.smime

Example data URI:
data:,MIME-Version: 1.0
Content-Type: multipart/signed; protocol="application/x-pkcs7-signature";
micalg="sha-256"; boundary="----F9A8A198D6F08E1285A292ADF14DD04F"

This is an S/MIME signed message

------F9A8A198D6F08E1285A292ADF14DD04F
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="omg_shared_ca_governance.xsd">
 <domain_access_rules>
...
 </domain_access_rules>
</dds>
…
------F9A8A198D6F08E1285A292ADF14DD04F
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

MIIDuAYJKoZIhv ...al5s=
------F9A8A198D6F08E1285A292ADF14DD04F—

permissions
URI to the DomainParticipant permissions document signed by the Permissions CA in
S/MIME format
URI schemes: file, data

Example file URIs:
file:participant1_permissions.smime
file:/home/myuser/participant1_permissions.smime

10.4.1.1 Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain

Governance and Domain Permissions document. The certificate can be self-signed or signed by some

other CA. Regardless of this the Public Key in the Certificate shall be trusted to sign the

aforementioned Governance and Permissions documents (see 10.4.1.2 and 10.4.1.5). Deleted: 10.4.1.510.4.1.510.4.1.3

220 DDS Security, v1.12

The Permissions CA Certificate shall be provided to the plugins using the PropertyQosPolicy on

the DomainParticipantQos as specified in Table 63.

10.4.1.2 Domain Governance Document

The domain governance document is an XML document that specifies how the domain should be

secured.

The domain governance document shall be signed by the Permissions CA. The signed document shall

use S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section

2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This

corresponds to the mime-type application/pkcs7-signature. Additionally the signer certificate shall be

included within the signature.

The signed governance document shall be provided to the plugins using the PropertyQosPolicy

on the DomainParticipantQos as specified in Table 63.

The governance document specifies which DDS domain IDs shall be protected and the details of the

protection. Specifically, this document configures the following aspects that apply to the whole

domain:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

• The cryptographic algorithms that can be used by the Participants and Endpoints in the Domain.

• Whether the discovery information should be protected and the kind of protection: only message

authentication codes (MACs) or encryption followed by MAC.

• Whether the whole RTPS message should be protected and the kind of protection. This is in

addition to any protection that may occur for individual submessages and for submessage data

payloads.

• Whether the liveliness messages should be protected.

• Whether a discovered DomainParticipant that cannot authenticate or fail the authentication should

be allowed to join the domain and see any discovery data that are configured as ‘unprotected’ and

any Topics that are configured as ‘unprotected’.

• Whether any discovered DomainParticipant that authenticates successfully should be allowed to

join the domain and see the discovery data without checking the access control policies.

In addition, the domain governance document specifies how the information on specific Topics within

the domain should be treated. Specifically:

• Whether the discovery information on specific Topics should be sent using the secure (protected)

discovery writers or using the regular (unprotected) discovery writers.

• Whether read access to the Topic should be open to all or restricted to the DomainParticipants that

have the proper permissions.

• Whether write access to the Topic should be open to all or restricted to the DomainParticipants that

have the proper permissions.

• Whether the metadata information sent on the Topic (sequence numbers, heartbeats, key hashes,

gaps, acknowledgment messages, etc.) should be protected and the kind of protection (MAC or

Encrypt then MAC).

• Whether the payload data sent on the Topic (serialized application level data) should be protected

and the kind of protection (MAC or Encrypt then MAC).

10.4.1.2.1 Basic Protection Kinds

The domain governance document provides a means for the application to configure the kinds of

cryptographic transformation applied to the complete RTPS Message, certain RTPS SubMessages, and

Deleted: Table 63Table 63Table 60

Deleted: Table 63Table 63Table 60

DDS Security, v1.12 221

the SerializedPayload RTPS submessage element that appears within the Data and DataFrag

submessages.

The configuration allows specification of three protection levels: NONE, SIGN, ENCRYPT.

NONE indicates no cryptographic transformation is applied.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

SIGN indicates the cryptographic transformation shall be purely a message authentication code

(MAC), that is, no encryption is performed. Therefore the resulting

CryptoTransformIdentifier for the output of the "encode" transformations shall have the

transformation_kind attribute member transformation_algorithm_id set to the

CryptoAlgorithmId that corresponds to the selected MAC algorithm (e.g.

CID_AES256_GMAC), see 8.1.

ENCRYPT indicates the cryptographic transformation shall be an encryption followed by a message

authentication code (MAC) computed on the ciphertext, also known as Encrypt-then-MAC. Therefore

the resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute member transformation_algorithm_id set to the

CryptoAlgorithmId that corresponds to the selected AEAD algorithm (e.g.

CID_AES256_GCM), see 8.1.

10.4.1.2.2 Protection Kinds

This configuration allows specification of two protection levels beyond the ones provided by the Basic

Protection Kind (10.4.1.2.1): SIGN_WITH_ORIGIN_AUTHENTICATION and

ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

SIGN_WITH_ORIGIN_AUTHENTICATION indicates the cryptographic transformation shall be

purely a set of message authentication codes (MAC), that is, no encryption is performed. This

cryptographic transformation shall create a first “common authenticationcode” similar to the case

where Protection Kind is SIGN. In addition, the cryptographic transformation shall create additional

authentication codes, each produced with a different secret key. Each of these additional secret keys

shall be shared only with a subset of the receivers. In the limit case each secret key is shared with only

one receiver. The additional MACs prove to the receiver that the sender originated the message,

preventing other receivers from impersonating the sender.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute member transformation_algorithm_id set to the

CryptoAlgorithmId that corresponds to the selected MAC algorithm (e.g.

CID_AES256_GMAC), see 8.1.

ENCRYPT_WITH_ORIGIN_AUTHENTICATION indicates the cryptographic transformation

shall be an encryption followed by a message authentication code (MAC) computed on the ciphertext,

followed by additional authentication codes. Each of the additional authentication codes shall use a

different secret key. The encryption and first (common) authentication code is similar to ones produced

when the Protection Kind is ENCRYPT. The additional authentication codes are similar to the ones

produced when the Protection Kind is SIGN_WITH_ORIGIN_AUTHENTICATION.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute member transformation_algorithm_id set to the

CryptoAlgorithmId that corresponds to the selected AEAD algorithm (e.g.

CID_AES256_GCM), see 8.1.

Deleted: CRYPTO_TRANSFORMATION_KIND variants

AES_128_GMAC or AES_256_GMAC.

Deleted: CRYPTO_TRANSFORMATION_KIND variants

AES_128_GCM or AES_256_GCM

Deleted: CRYPTO_TRANSFORMATION_KIND variants

AES_128_GMAC or AES_256_GMAC

Deleted: CRYPTO_TRANSFORMATION_KIND variants

AES_128_GCM or AES_256_GCM

222 DDS Security, v1.12

10.4.1.2.3 Domain Governance document format

The format of this document defined using the following XSD:

DDSSEC12-122 – Provide mechanism for changing the session keys

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDSSEC12-101 – Add specification of domainTag tp governance and permissions
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="dds" type="DomainAccessRulesNode" />

 <xs:complexType name="DomainAccessRulesNode">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="domain_access_rules"

 type="DomainAccessRules" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DomainAccessRules">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="domain_rule" type="DomainRule" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DomainRule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <!-- DDSSEC12-101 -->

 <xs:element name="domains" type="DomainSet" />

 <xs:element name="allow_unauthenticated_participants"

 type="xs:boolean" />

 <xs:element name="enable_join_access_control"

 type="xs:boolean" />

 <xs:element name="enable_key_revision"

 type="xs:boolean" />

 <xs:element name="discovery_protection_kind"

 type="ProtectionKind" />

 <xs:element name="liveliness_protection_kind"

 type="ProtectionKind" />

 <xs:element name="rtps_protection_kind"

 type="ProtectionKind" />

 <!-- DDSSEC12-94 -->

 <xs:element name="rtps_psk_protection_kind"

 type="BasicProtectionKind" />

 <xs:element name="topic_access_rules"

 type="TopicAccessRules" />

 <!-- DDSSEC12-90 -->

 <xs:element name="allowed_crypto_algorithms"

 type="AllowedCryptoAlgorithms" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <!-- DDSSEC12-101 -->

 <xs:complexType name="DomainSet">

Deleted: Id

DDS Security, v1.12 223

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="id" type="DomainId" />

 <xs:element name="id_range" type="DomainIdRange" />

 </xs:choice>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="tag" type="DomainTag" />

 <xs:element name="tag_expression"

 type="DomainTagExpression" />

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="DomainId">

 <xs:restriction base="xs:nonNegativeInteger" />

 </xs:simpleType>

 <xs:complexType name="DomainIdRange">

 <xs:choice>

 <xs:sequence/>

 <xs:element name="min" type="DomainId" />

 <xs:element name="max" type="DomainId" minOccurs="0" />

 </xs:sequence/>

 <xs:element name="max" type="DomainId" />

 </xs:choice>

 </xs:complexType>

 <!-- DDSSEC12-101 -->

 <xs:simpleType name="DomainTag">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="DomainTagExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="ProtectionKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ENCRYPT_WITH_ORIGIN_AUTHENTICATION" />

 <xs:enumeration value="SIGN_WITH_ORIGIN_AUTHENTICATION" />

 <xs:enumeration value="ENCRYPT" />

 <xs:enumeration value="SIGN" />

 <xs:enumeration value="NONE" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="BasicProtectionKind">

 <xs:restriction base="ProtectionKind">

 <xs:enumeration value="ENCRYPT" />

 <xs:enumeration value="SIGN" />

 <xs:enumeration value="NONE" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="TopicAccessRules">

Deleted: <xs:complexType
name="DomainIdSet">¶

 <xs:choice minOccurs="1"

maxOccurs="unbounded">¶

 <xs:element name="id"

type="DomainId" />¶

 <xs:element name="id_range"

type="DomainIdRange" />¶

 </xs:choice>¶

 </xs:complexType>¶

224 DDS Security, v1.12

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="topic_rule" type="TopicRule" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TopicRule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="topic_expression" type="TopicExpression" />

 <xs:element name="enable_discovery_protection"

 type="xs:boolean" />

 <xs:element name="enable_liveliness_protection"

 type="xs:boolean" />

 <xs:element name="enable_read_access_control"

 type="xs:boolean" />

 <xs:element name="enable_write_access_control"

 type="xs:boolean" />

 <xs:element name="metadata_protection_kind"

 type="ProtectionKind" />

 <xs:element name="data_protection_kind"

 type="BasicProtectionKind" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="TopicExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <!-- DDSSEC12-90 -->

 <xs:complexType name="AllowedCryptoAlgorithms">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="digital_signature"

 type="DigitalSignatureAlgorithms"/>

 <xs:element name="digital_signature_identity_trust_chain"

 type="DigitalSignatureAlgorithms" minOccurs="0" />

 <xs:element name="key_establishment"

 type="KeyEstablishmentAlgorithms"/>

 <xs:element name="symmetric_cipher"

 type="SymmetricCipherAlgorithms"/>

 </xs:sequence>

 </xs:complexType>

 <!-- DDSSEC12-90 -->

 <xs:complexType name="DigitalSignatureAlgorithms">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="algorithm" type="DigitalSignatureKind" />

 </xs:sequence>

 </xs:complexType>

 <!-- DDSSEC12-90 -->

 <xs:complexType name="KeyEstablishmentAlgorithms">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="algorithm" type="KeyEstablishmentKind" />

 </xs:sequence>

 </xs:complexType>

Deleted: <!-- DDSSEC11-11 -->¶

Formatted: French (France)

DDS Security, v1.12 225

 <!-- DDSSEC12-90 -->

 <xs:complexType name="SymmetricCipherAlgorithms">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="algorithm" type="SymmetricCipherKind" />

 </xs:sequence>

 </xs:complexType>

 <!-- DDSSEC12-90 -->

 <xs:simpleType name="DigitalSignatureKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="RSASSA-PSS-MGF1SHA256+2048+SHA256" />

 <xs:enumeration value="RSASSA-PKCS1-V1_5+2048+SHA256" />

 <xs:enumeration value="ECDSA+P256+SHA256" />

 <xs:enumeration value="ECDSA+P384+SHA384" />

 </xs:restriction>

 </xs:simpleType>

 <!-- DDSSEC12-90 -->

 <xs:simpleType name="KeyEstablishmentKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="DHE+MODP-2048-256" />

 <xs:enumeration value="ECDHE-CEUM+P256" />

 <xs:enumeration value="ECDHE-CEUM+P384" />

 </xs:restriction>

 </xs:simpleType>

 <!-- DDSSEC12-90 -->

 <xs:simpleType name="SymmetricCipherKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="AES128+GCM" />

 <xs:enumeration value="AES256+GCM" />

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

10.4.1.2.4 Domain Access Rules Section

The XML domain governance document is delimited by the <dds> XML element tag and contains a

single domain access rules Section delimited by the <domain_access_rules> XML element tag.

The domain access rules Section contains a set of domain rules each delimited by the

<domain_rule> XML element tag.

10.4.1.2.5 Domain Rules

Each domain rule appears within the domain access rules Section delimited by the <domain_rule>

XML element tag.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Each domain rule contains the following elements and sections:

1. Domains element

2. Allow Unauthenticated Participants element

3. Enable Join Access Control element

226 DDS Security, v1.12

4. Discovery Protection Kind element

5. Liveliness Protection Kind element

6. RTPS Protection Kind element

7. RTPS PSK Protection Kind element

8. Allowed Algorithms Section

9. Topic Access Rules Section

The contents and delimiters of each Section are described below.

The domain rules shall be evaluated in the same order as they appear in the document. A rule only

applies to a particular DomainParticipant if the domain Section matches the DDS domain_id to

which the DomainParticipant belongs. If multiple rules match, the first rule that matches is the

only one that applies.

10.4.1.2.5.1 Domains element

This element is delimited by the XML element <domains>.

The value in this element identifies the collection of DDS domain_id values to which the rule

applies.

DDSSEC12-101 – Add specification of domainTag tp governance and permissions

The value in this element identifies the DDS domains to which the rule applies. DDS domains are

identified by their DomainId (an integer) and a DomainTag (a string). One or more DomainId

values (or ranges) must always be specified. In addition, one or more DomainTag values or

DomainTagExpression values may be optionally specified.

If no DomainTag and DomainTagExpression is specified, then it shall be treated as if the empty

string ("") was specified as the only DomainTag value.

Note: The empty DomainTag ("") is the value for the DomainTag that is applied to any

DomainParticipant that does not explicitly specify a DomainTag value. This DomainTag

value is interoperable with earlier versions of the DDS implementations that did not support domain

tags.

The <domains> element can contain a single domain ID, for example:
 <domains>

 <id>0</id>

 </domains>

Or it can contain a range of domain IDs, for example:
 <domains>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 </domains>

Or it can contain a list of domain IDs and domain ID ranges, for example:
 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 <id>25</id>

 <id>27</id>

 <id_range>

 <min>40</min>

DDS Security, v1.12 227

 <max>55</max>

 </id_range>

 </domains>

DDSSEC12-101 – Add specification of domainTag tp governance and permissions

Or it can specify both domain IDs and domain Tags, and/or domain tag expressions, for example:

 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 <tag>Robot15</tag>

 <tag_expression>AGVS/*</tag_expression>

 </domains>

10.4.1.2.5.2 Allow Unauthenticated Participants element

This element is delimited by the XML element <allow_unauthenticated_participants>.

This element may take the binary values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the value is set to FALSE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

allow_unauthenticated_participants member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

allow_unauthenticated_participants member set to TRUE.

10.4.1.2.5.3 Enable Join Access Control element

This element is delimited by the XML element <enable_join_access_control>.

This element may take the binary values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

If the value is set to FALSE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

is_access_protected member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

is_access_protected member set to TRUE.

10.4.1.2.5.4 Enable Key Revision element

DDSSEC12-122 – Provide mechanism for changing the session keys

This element is delimited by the XML element <enable_key_revision>.

This element may take the binary values TRUE or FALSE.

If the value is set to FALSE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

is_key_revision_enabled member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityConfig returned by the

get_participant_security_config operation on the AccessControl shall have the

is_key_revision_enabled member set to TRUE.

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

228 DDS Security, v1.12

10.4.1.2.5.5 Discovery Protection Kind element

This element is delimited by the XML element <discovery_protection_kind>.

The discovery protection element specifies the protection kind (see 10.4.1.2.2) used for the secure

builtin DataWriter and DataReader entities used for discovery:

SPDPbuiltinParticipantsSecureWriter, SEDPbuiltinPublicationsSecureWriter,

SEDPbuiltinSubscriptionsSecureWriter, SPDPbuiltinParticipantsSecureReader,

SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureReader.

The discovery protection kind element may take five possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION. The resulting behavior for the aforementioned

builtin discovery secure entities shall be as specified in 10.4.1.2.2 with regards to the RTPS

SubMessages.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This setting controls the contents of the ParticipantSecurityConfig and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_security_config operation on the

DomainParticipant. Specifically:

- The attribute is_discovery_protected attribute in the ParticipantSecurityConfig shall

be set to FALSE if the value specified in the <discovery_protection_kind> element is NONE

and to TRUE otherwise.

- The attribute is_discovery_encrypted in the

PluginParticipantSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the

value specified in the <discovery_protection_kind> is ENCRYPT or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_discovery_origin_authenticated in the

PluginParticipantSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the

value specified in the <discovery_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

10.4.1.2.5.6 Liveliness Protection Kind element

This element is delimited by the XML element <liveliness_protection_kind>.

The liveliness protection element specifies the protection kind (see 10.4.1.2.2) used for builtin

DataWriter and DataReader associated with the ParticipantMessageSecure builtin Topic (see

7.5.2): BuiltinParticipantMessageSecureWriter and BuiltinParticipantMessageSecureReader.

The liveliness protection kind element may five three possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This setting controls the contents of the ParticipantSecurityConfig and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_security_config operation on the

DomainParticipant. Specifically:

- The attribute is_liveliness_protected in the ParticipantSecurityConfig shall be set to

FALSE if the value specified in the <liveliness_protection_kind> element is NONE and to

TRUE otherwise.

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

DDS Security, v1.12 229

- The attribute is_liveliness_encrypted in the

PluginParticipantSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the

value specified in the < liveliness_protection_kind> is ENCRYPT or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_liveliness_origin_authenticated in the

PluginParticipantSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the

value specified in the < liveliness_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

10.4.1.2.5.7 RTPS Protection Kind element

This element is delimited by the XML element <rtps_protection_kind>.

The RTPS protection kind element specifies the protection kind (see 10.4.1.2.2) used for the whole

RTPS message.

The RTPS protection kind element may take five possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION. The resulting behavior for the RTPS message

cryptographic transformation shall be as specified in 10.4.1.2.2.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This setting controls the contents of the ParticipantSecurityConfig and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_security_config operation on the

DomainParticipant. Specifically:

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

- The attribute is_rtps_axk_protected attribute in the ParticipantSecurityConfig shall

be set to FALSE if the value specified in the <rtps_protection_kind> element is NONE and to

TRUE otherwise.

- The attribute is_rtps_axk_encrypted in the PluginParticipantSecurityAttributes

(see 10.4.2.5) shall be set to TRUE if the value specified in the < rtps_protection_kind> is

ENCRYPT or ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_rtps_origin_authenticated in the

PluginParticipantSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the

value specified in the <rtps_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

10.4.1.2.5.8 RTPS PSK Protection Kind element

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This element is delimited by the XML element <rtps_psk_protection_kind>.

The RTPS protection kind element specifies the protection kind (see 10.4.1.2.2) used for RTPS

Messages that are not otherwise protected by an “Authenticated Participant Exchanged Key”. This

includes the RTPS Bootstrapping Messages (see 7.5.7). PSK protection, if enabled, protects

the whole RTPS message using a Pre-Shared Key.

The RTPS PSK Protection Kind element may take three possible values: NONE, SIGN, or ENCRYPT.

The resulting behavior for the RTPS message cryptographic transformation shall be as specified in

10.4.1.2.2.

This setting controls the contents of the ParticipantSecurityConfig and

PluginParticipantSecurityAttributes returned by the

Deleted: ParticipantSecurityAttributes

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

230 DDS Security, v1.12

AccessControl::get_participant_security_config operation on the

DomainParticipant. Specifically:

- The attribute is_rtps_psk_protected attribute in the ParticipantSecurityConfig shall

be set to FALSE if the value specified in the <rtps_psk_protection_kind> element is NONE

and to TRUE otherwise.

- The attribute is_rtps_psk_encrypted in the PluginParticipantSecurityAttributes

(see 10.4.2.5) shall be set to TRUE if the value specified in the <rtps_psk_protection_kind>

is ENCRYPT and to FALSE otherwise.

10.4.1.2.5.9 Allowed Algorithms Section

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This section is delimited by the XML element <allowed_crypto_algorithms>.

The Allowed Algorithms section defines rules that control the cryptographic algorithms that may be

used in the domain. It contains the following elements:

1. Digital Signature element

2. Digital Signature Trust Chain element

3. Key Establishment element

4. Symmetric Cipher element

These elements are described below.

10.4.1.2.5.9.1 Digital Signature Element

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This element is delimited by the XML element <digital_signature>.

The Digital Signature element defines the digital signature algorithms allowed to be used in the

Domain for the purpose of signing messages with the Private Key associated with a Participant Identity

Certificate. This also limits the type of Public Key that may be used in the Participant Identity to those

compatible with the algorithms allowed.

The <digital_signature> element contains a sequence of <algorithm> elements, each identifying an

allowed digital signature algorithm. Each <algorithm> element shall contain the

CryptoAlgorithmName string identifier of the algorithm as defined in clause 8.2.

If the <digital_signature> element is not present the Participant may use any of the algorithms defined

in clause 8.2.

10.4.1.2.5.9.2 Digital Signature Trust Chain Element

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This element is delimited by the XML element <digital_signature_trust_chain>.

The Digital Signature Trust Chain element defines the digital signature algorithms allowed to be used

by the SPIs for the purpose of signing Identity Certificates, Governance Documents, and Permission

Documents. This also limits the type of Public Keys that may be used by the Certificate Authorities

that sign the aforementioned documents as they must be compatible with the algorithms allowed.

The <digital_signature_trust_chain> element contains a sequence of <algorithm> elements, each

identifying an allowed digital signature algorithm. Each <algorithm> element shall contain the

CryptoAlgorithmName string identifier of the algorithm as defined in clause 8.2.

If the <digital_signature_trust_chain> element is not present then the allowed algorithms are the

same specified by the <digital_signature> element, if present. If the <digital_signature> element is

also not present, the Participant may use any of the algorithms defined in clause 8.2.

10.4.1.2.5.9.3 Key Establishment Element

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Deleted: 8.28.28.1.2

Deleted: 8.28.28.1.2

Deleted: 8.28.28.1.2

Deleted: 8.28.28.1.2

DDS Security, v1.12 231

This element is delimited by the XML element <key_establishment>.

The Key Establishment element defines the Key Agreement algorithms allowed to be used by the

Authentication Plugin to compute a SharedSecret between Participants.

The <key_establishment> element contains a sequence of <algorithm> elements each identifying an

allowed key establishment algorithm. Each <algorithm> element shall contain the

CryptoAlgorithmName string identifier of the algorithm as defined in clause 8.2.

If the <key_establishment> is not present, the Participant may use any of the algorithms defined in

clause 8.2.

10.4.1.2.5.9.4 Symmetric Cipher Element

DDSSEC12-90 - Meeting CNSSP-15 security requirements

This element is delimited by the XML element <symmetric_cipher>.

The Symmetric Cipher element defines the algorithms allowed to be used by the SPIs to encrypt and/or

compute message authentication codes on data and messages.

The <symmetric_cipher> element contains a sequence of <algorithm> elements, each representing

an allowed symmetric cipher. Each <algorithm> element shall contain the

CryptoAlgorithmName string identifier of the algorithm as defined in clause 8.1.

If the <symmetric_cipher> element is not present, the Participant may use any of the algorithms

defined in clause 8.1.

10.4.1.2.5.10 Topic Access Rules Section

This section is delimited by the XML element <topic_access_rules> and contains a sequence of topic

rule elements.

10.4.1.2.6 Topic Rule Section

This section is delimited by the XML element <topic_rule> and appears within the domain rule

Section.

Each topic rule Section contains the following elements:

1. Topic expression

2. Enable Discovery protection

3. Enable Liveliness protection

4. Enable Read Access Control element

5. Enable Write Access Control element

6. Metadata protection Kind

7. Data protection Kind

The contents and delimiters of each Section are described below.

The topic expression element within the rules selects a set of Topic names. The rule applies to any

DataReader or DataWriter associated with a Topic whose name matches the Topic expression name.

The topic access rules shall be evaluated in the same order as they appear within the

<topic_access_rules> Section. If multiple rules match the first rule that matches is the only one that

applies.

10.4.1.2.6.1 Topic expression element

This element is delimited by the XML element <topic_expression>.

The value in this element identifies the set of DDS Topic names to which the rule applies. The rule

will apply to any DataReader or DataWriter associated with a Topic whose name matches the

value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX

fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

Deleted: 8.28.28.1.2

Deleted: 8.28.28.1.2

232 DDS Security, v1.12

10.4.1.2.6.2 Enable Discovery protection element

This element is delimited by the XML element <enable_discovery_protection>.

This element may take the boolean values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting controls the contents of the TopicSecurityConfig returned by the

AccessControl::get_topic_security_config on a Topic whose associated Topic

name matches the rule’s topic expression. Specifically the is_discovery_protected attribute in the

TopicSecurityConfig shall be set to the boolean value specified in the

<enable_discovery_protection> element.

10.4.1.2.6.3 Enable Liveliness Protection element

This element is delimited by the XML element <enable_liveliness_protection>.

This element may take the boolean values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting controls the contents of the TopicSecurityConfig returned by the

AccessControl::get_topic_security_config operation on a Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_liveliness_protected attribute in

the TopicSecurityConfig shall be set to the boolean value specified in the

<enable_liveliness_protection> element.

10.4.1.2.6.4 Enable Read Access Control element

This element is delimited by the XML element <enable_read_access_control>.

This element may take the boolean values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting shall control the contents of the TopicSecurityConfig returned by the

AccessControl::get_topic_security_config operation on any Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_read_protected attribute in the

TopicSecurityConfig shall be set to the boolean value specified in the

<enable_read_access_control> element.

In addition, this element shall control the AccessControl::check_create_datareader

operation on any DataReader entity whose associated Topic name matches the rule’s topic

expression. Specifically:

• If the value of <enable_write_access_control> element is FALSE, the operation

check_create_datareader shall return TRUE without further checking the Permissions

document.

• If the value of <enable_write_access_control> element is TRUE, the operation

check_create_datareader shall return a value according to what is specified in the

Permissions document, see 10.4.1.5.

10.4.1.2.6.5 Enable Write Access Control element

This element is delimited by the XML element <enable_write_access_control>.

This element may take the boolean values TRUE or FALSE.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting shall control the contents of the TopicSecurityConfig returned by the

AccessControl::get_topic_security_config operation on any Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_write_protected attribute in the

TopicSecurityConfig shall be set to the binary value specified in the

<enable_write_access_control> element.

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

Deleted: 10.4.1.510.4.1.510.4.1.3

Deleted: TopicSecurityAttributes

Deleted: _sec_attributes

Deleted: TopicSecurityAttributes

DDS Security, v1.12 233

In addition, this element shall control the AccessControl::check_create_datawriter

operation on any DataWriter entity whose associated Topic name matches the rule’s topic

expression. Specifically:

• If the value of <enable_write_access_control> element is FALSE, the operation

check_create_datawriter shall return TRUE without further checking the Permissions

document.

• If the value of <enable_write_access_control> element is TRUE, the operation

check_create_datawriter shall return a value according to what is specified in the

Permissions document, see 10.4.1.5.

10.4.1.2.6.6 Metadata Protection Kind element

This element is delimited by the XML element <metadata_protection_kind>.

This element may take the Protection Kind values NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

The setting of this element shall specify the protection kind (see 10.4.1.2.2) used for the RTPS

SubMessages sent by any DataWriter and DataReader whose associated Topic name

matches the rule’s topic expression.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting of this element shall also control the contents of the EndpointSecurityConfig and

PluginEndpointSecurityAttributes returned by the

AccessControl::get_datawriter_security_config and

AccessControl::get_datareader_security_config operation on any DataWriter or

DataReader entity whose associated Topic name matches the rule’s topic expression. Specifically:

- The attribute is_submessage_protected in the EndpointSecurityConfig shall be set to

FALSE if the value specified in the <metadata_protection_kind> is NONE and shall be set to

TRUE otherwise.

- The attribute is_submessage_encrypted in the PluginEndpointSecurityAttributes

(see 10.4.2.5) shall be set to TRUE if the value specified in the <metadata_protection_kind>

is ENCRYPT or ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_submessage_origin_authenticated in the

PluginEndpointSecurityAttributes (see 10.4.2.5) shall be set to TRUE if the value

specified in the <metadata_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

10.4.1.2.6.7 Data Protection Kind element

This element is delimited by the XML element <data_protection_kind>.

This element may take the Basic Protection Kind values: NONE, SIGN, or ENCRYPT.

The setting of this element shall specify the basic protection kind (see 10.4.1.2.1) used for the RTPS

SerializedPayload submessage element sent by any DataWriter whose associated Topic

name matches the rule’s topic expression.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The setting shall control the contents of the EndpointSecurityConfig and

PluginEndpointSecurityAttributes returned by the

AccessControl::get_datawriter_security_config operation on any DataWriter

entity whose associated Topic name matches the rule’s topic expression. Specifically the

PluginEndpointSecurityAttributes attributes is_payload_protected and is_key_protected,

Deleted: 10.4.1.510.4.1.510.4.1.3

Deleted: EndpointSecurityAttributes

Deleted: get_datawriter_sec_attributes

Deleted: get_datareader_sec_attributes

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

Deleted: get_datawriter_sec_attributes

234 DDS Security, v1.12

as well as the PluginEndpointSecurityAttributes attribute is_payload_encrypted (see

10.4.2.6):

• If the value specified in the <data_protection_kind> element is NONE, then

is_payload_protected, is_key_protected and is_payload_encrypted shall be set to FALSE.

• If the value specified in the <data_protection_kind> element is SIGN, then

is_payload_protected shall be set to TRUE. The attributes is_key_protected and

is_payload_encrypted shall be set to FALSE.

• If the value specified in the <data_protection_kind> element is ENCRYPT, then

is_payload_protected, is_key_protected, and is_payload_encrypted shall be set to TRUE.

10.4.1.2.7 Application of Domain and Topic Rules

DDSSEC12-101 – Add specification of domainTag tp governance and permissions

For a given DomainParticipant the Domain Rules shall be evaluated in the same order they

appear in the Governance document. The first Domain Rule having a <domains> element whose value

matches the DomainParticipant’s Domain shall be the one applied to the

DomainParticipant.

DDSSEC12-101 – Add specification of domainTag tp governance and permissions

For the DomainParticipant Domain to be matched, both the DomainParticipant’s

DomainId and the DomainParticipant’s DomainTag must match one of the ones that appear

in the rule:

• To match the DomainId, the value must be specified in using the <id> element, or else fall

within one of the ranges specified using the <id_range> element.

• To match the DomainTag, the value must be specified in using the <tag> element, or else

match one of expressions specified using the <tag_expression> element.

o If a DomainParticipant does not specify a DomainTag it is considered to have

the empty tag ""

o If the <domains> element does not specify any <tag> or <tag_expression> elements, it

is considered to have specified a single <tag> containing the empty string.

The tag expression syntax and matching shall use the syntax and rules of the POSIX fnmatch()

function as specified in POSIX 1003.2-1992, Section B.6 [38].

If no Domain Rule matches the DomainParticipant domain_id the operation under consideration

shall fail with a suitable “permissions error”. If desired, to avoid this situation, a “default” Domain

Rule can be added to the end using the expression:

DDSSEC12-101 – Add specification of domainTag tp governance and permissions
 <domains>

 <id_range>

 <min>0</min>

 </id_range>

 <tag_expression>*</tag_expression>

 </domains>

This rule will match any domain_id not matched by the rules that appear before.

For a given Topic, DataWriter or DataReader DDS Entity belonging to a

DomainParticipant the Topic Rules appearing within the Domain Rule that applies to that

DomainParticipant shall be evaluated in the same order they appear in the Governance

document. The first Topic Rule having a <topic_expression> element whose value matches the topic

name associated with the Entity shall be the one applied to the Entity.

If no Topic Rule matches the Entity topic name the operation under consideration shall fail with a

suitable “permissions error”. If desired, to avoid this situation, a “default” Topic Rule can be added to

DDS Security, v1.12 235

the end using the expression <topic_expression>*</ topic_expression >. This rule will match any

topic name not matched by the rules that appear before.

10.4.1.3 Governance Document Extensibility

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

Future revisions of the DDS-Security specification may include additional information in the

Governance document. Likewise, plugin implementations may also include implementation-specific or

vendor-specific information into the Governance document.

Extensions to the Governance document shall follow the rules below. These ensures the extension will

be properly interpreted (or ignored) and not break compatibility with DDS-systems built with SPIs that

do not understand the extension.

• The extended governance document shall be a well-formed XML document according to the

XML 1.1 standard [59].

• Extensions shall be done by means of adding new XML elements which may recursively

contain nested elements or text,

o The added elements shall not contain mixed content, that is, the direct content can either

be empty, text data or (children) XML elements. However, any specific element shall

not contain both text data and children XML elements.

o The added elements shall have an optional attribute called must_interpret that can take

the values "true", "false", "TRUE, or "FALSE".

Definitions:

• Any XML element that is not recognized, i.e., does not appear in the XSD defined in clause

10.4.1.2.3 shall be considered a “governance extension element.”

• Any XML unrecognized XML attribute that appears in an otherwise recognized XML element,

i.e. the element appears in the XSD defined in clause 10.4.1.2.3 but the attribute does not shall

be considered a “governance extension attribute.”

• Any XML unrecognized value for an XML attribute that appears in otherwise recognized XML

element and attribute, i.e., the element and attribute appear in the XSD defined in clause

10.4.1.2.3 but the attribute value is not valid according to the XSD shall be considered a

“governance extension attribute value.”

The processing of the Governance document by the Access Control plugin shall follow the rules

below:

• If an XML element does not have the must_interpret attribute it shall be treated as if it had

must_interpret="TRUE".

• If a governance extension element has the must_interpret attribute set to "false" or "FALSE",

then the extension element shall be ignored, and the processing shall skip to the closing of the

extension element.

o Ignoring an extension element recursively ignores any children of the extension element

independently of the presence or value of the regardless of the must_interpret attribute

in the children.

• If a governance extension element has the must_interpret attribute set to "true" or "TRUE",

then the governance document shall be considered invalid, and an error shall be raised.

236 DDS Security, v1.12

• If a governance extension attribute appears in an element that also has the must_interpret

attribute set to "false" or "FALSE", then the extension attribute shall be ignored and the

processing shall continue with the next attribute, if any.

o Ignoring an extension attribute is localized to the attribute itself. It does not cause the

other attributes to be ignored, it also does not cause the children of the element to be

ignored.

• If a governance extension attribute appears in an element that also has the must_interpret

attribute set to "true" or "TRUE", then the governance document shall be considered invalid,

and an error shall be raised.

• If a governance extension attribute value appears in an element that also has the

must_interpret attribute set to "false" or "FALSE", then the attribute shall be ignored and the

processing shall continue with the next attribute, if any.

o Ignoring an extension attribute value is localized to the attribute itself. It does not cause

the other attributes to be ignored, it also does not cause the children of the element to be

ignored.

• If a governance extension attribute value appears in an element that also has the

must_interpret attribute set to "true" or "TRUE", then the governance document shall be

considered invalid, and an error shall be raised.

These rules allow the addition of elements to a Governance document without making them

incompatible with SPIs that do not understand the added element.

The rules also provide a way to mark extensions that must be interpreted. This is done with the

must_interpret attribute. This extension will make the new document incompatible with SPIs that

don’t understand it.

10.4.1.4 Example Domain Governance document (non normative)

Following is an example permissions document that is written according to the XSD described in

10.4.1.2.3.

DDSSEC12-122 – Provide mechanism for changing the session keys

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDSSEC12-101 – Add specification of domainTag tp governance and permissions
<?xml version="1.0" encoding="utf-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-

Security/20170801/omg_shared_ca_domain_governance.xsd">

 <domain_access_rules>

 <domain_rule>

 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 <id_range>

 <!-- DDSSEC12-101 -->

 <tag>Robot15</tag>

 <tag_expression>AGV/*</tag_expression>

 </domains>

 <allow_unauthenticated_participants>false

 </allow_unauthenticated_participants>

 <enable_join_access_control>true</enable_join_access_control>

 <enable_key_revision>true</enable_key_revision>

Deleted: FALSE

Deleted: TRUE

Deleted: TRUE

DDS Security, v1.12 237

 <rtps_protection_kind>SIGN</rtps_protection_kind>

 <!-- DDSSEC12-94 -->

 <rtps_psk_protection_kind>ENCRYPT</rtps_psk_protection_kind>

 <discovery_protection_kind>ENCRYPT</discovery_protection_kind>

 <liveliness_protection_kind>SIGN</liveliness_protection_kind>

 <topic_access_rules>

 <topic_rule>

 <topic_expression>Square*</topic_expression>

 <enable_discovery_protection>true

 </enable_discovery_protection>

 <enable_read_access_control>true

 </enable_read_access_control>

 <enable_write_access_control>true

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Circle</topic_expression>

 <enable_discovery_protection>true

 </enable_discovery_protection>

 <enable_read_access_control>false

 </enable_read_access_control>

 <enable_write_access_control>true

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Triangle

 </topic_expression>

 <enable_discovery_protection>false

 </enable_discovery_protection>

 <enable_read_access_control>false

 </enable_read_access_control>

 <enable_write_access_control>true

 </enable_write_access_control>

 <metadata_protection_kind>NONE

 </metadata_protection_kind>

 <data_protection_kind>NONE

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>*</topic_expression>

 <enable_discovery_protection>true

 </enable_discovery_protection>

Deleted: TRUE

Deleted: TRUE

Deleted: TRUE

Deleted: TRUE

Deleted: FALSE

Deleted: TRUE

Deleted: FALSE

Deleted: FALSE

Deleted: TRUE

Deleted: TRUE

238 DDS Security, v1.12

 <enable_read_access_control>true

 </enable_read_access_control>

 <enable_write_access_control>true

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 </topic_access_rules>

 <!-- DDSSEC-12-90 -->

 <allowed_crypto_algorithms>

 <digital_signature>

 <algorithm>RSASSA-PSS-MGF1SHA256+2048+SHA256

 </algorithm>

 <algorithm>ECDSA+P256+SHA256</algorithm>

 <algorithm>ECDSA+P384+SHA384</algorithm>

 </digital_signature>

 <digital_signature_identity_trust_chain>

 <algorithm>ECDSA+P256+SHA256</algorithm>

 <algorithm>ECDSA+P384+SHA384</algorithm>

 </digital_signature_identity_trust_chain>

 <key_establishment>

 <algorithm>DHE+MODP-2048-256</algorithm>

 <algorithm>ECDHE-CEUM+P256</algorithm>

 <algorithm>ECDHE-CEUM+P384</algorithm>

 </key_establishment>

 <symmetric_cipher>

 <algorithm>AES128+GCM</algorithm>

 <algorithm>AES256+GCM</algorithm>

 </symmetric_cipher>

 </allowed_crypto_algorithms>

 </domain_rule>

 </domain_access_rules>

</dds>

10.4.1.5 DomainParticipant Permissions Document

The permissions document is an XML document containing the permissions of the domain participant

and binding them to the distinguished name of the DomainParticipant as defined in the

DDS:Auth:PKI-DH authentication plugin.

The permissions document shall be signed by the Permissions CA. The signed document shall use

S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section

2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This

corresponds to the mime-type application/pkcs7-signature. Additionally, the signer certificate shall be

included within the signature.

The signed permissions document shall be provided to the plugins using the PropertyQosPolicy

on the DomainParticipantQos as specified in Table 63.

Deleted: TRUE

Deleted: TRUE

Deleted: Table 63Table 63Table 60

DDS Security, v1.12 239

10.4.1.5.1 Permissions document format

DDSSEC12-3 – Add mechanism to extend Governance and Permissions document

DDSSEC12-91 - How are 'subject_name' fields compared?

The format of this document is defined using the following XSD.

DDSSEC12-101 – Add specification of domainTag tp governance and permissions

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="dds" type="PermissionsNode" />

 <xs:complexType name="PermissionsNode">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="permissions" type="Permissions" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Permissions">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="grant" type="Grant" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Grant">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <!— DDSSEC12-91 -->

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="subject_name" type="xs:string" />

 <xs:element name="subject_name_expression"

 type="xs:string" />

 </xs:choice>

 <xs:element name="validity" type="Validity" />

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="allow_rule" minOccurs="0" type="Rule" />

 <xs:element name="deny_rule" minOccurs="0" type="Rule" />

 </xs:choice>

 </xs:sequence>

 <xs:element name="default" type="DefaultAction" />

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="Validity">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="not_before" type="xs:dateTime" />

 <xs:element name="not_after" type="xs:dateTime" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Rule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <!-- DDSSEC12-101 -->

 <xs:element name="domains" type="DomainSet" /> Deleted: Id

240 DDS Security, v1.12

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="publish" type="Criteria" />

 </xs:sequence>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="subscribe" type="Criteria" />

 </xs:sequence>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="relay" type="Criteria" />

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

 <!-- DDSSEC12-101 -->

 <xs:complexType name="DomainSet">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="id" type="DomainId" />

 <xs:element name="id_range" type="DomainIdRange" />

 </xs:choice>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="tag" type="DomainTag" />

 <xs:element name="tag_expression"

 type="DomainTagExpression" />

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="DomainId">

 <xs:restriction base="xs:nonNegativeInteger" />

 </xs:simpleType>

 <xs:complexType name="DomainIdRange">

 <xs:choice>

 <xs:sequence>

 <xs:element name="min" type="DomainId" />

 <xs:element name="max" type="DomainId" minOccurs="0" />

 </xs:sequence>

 <xs:element name="max" type="DomainId" />

 </xs:choice>

 </xs:complexType>

 <!-- DDSSEC12-101 -->

 <xs:simpleType name="DomainTag">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="DomainTagExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:complexType name="Criteria">

 <xs:all minOccurs="1">

 <!-- DDSSEC11-56 -->

 <xs:element name="topics" minOccurs="1"

 type="TopicExpressionList" />

Deleted: <xs:complexType
name="DomainIdSet">¶

 <xs:choice minOccurs="1"

maxOccurs="unbounded">¶

 <xs:element name="id"

type="DomainId" />¶

 <xs:element name="id_range"

type="DomainIdRange" />¶

 </xs:choice>¶

 </xs:complexType>¶

DDS Security, v1.12 241

 <xs:element name="partitions" minOccurs="0"

 type="PartitionExpressionList" />

 <xs:element name="data_tags" minOccurs="0" type="DataTags" />

 </xs:all>

 </xs:complexType>

 <xs:complexType name="TopicExpressionList">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="topic" type="TopicExpression" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PartitionExpressionList">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="partition" type="PartitionExpression" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="TopicExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="PartitionExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:complexType name="DataTags">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="tag" type="TagNameValuePair" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TagNameValuePair">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="name" type="xs:string" />

 <xs:element name="value" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="DefaultAction">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ALLOW" />

 <xs:enumeration value="DENY" />

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

10.4.1.5.2 Permissions Section

The XML permissions document contains a permissions Section. This is the portion of the XML

document delimited by the <permissions> XML element tag.

The permissions Section contains a set of grant sections.

10.4.1.5.3 Grant Section

The grant sections appear within the permissions Section delimited by the <grant> XML element tag.

242 DDS Security, v1.12

Each grant Section contains three sections:

DDSSEC12-91 - How are 'subject_name' fields compared?

1. Either a Subject name Section (subject_name element) or a Subject name expression Section

(subject_name_expression element)

2. Validity Section (validity element)

3. Rules Section (allow, deny and default elements)

The contents and delimiters of each Section are described below.

10.4.1.5.3.1 Subject name Section

This Section is delimited by the XML element <subject_name>.

The subject name Section identifies the DomainParticipant to which the permissions apply. Each

subject name can only appear in a single <permissions> Section within the XML Permissions

document.

The contents of the <subject_name> element shall be the x.509 subject name for the

DomainParticipant as is given in its Authorization Certificate. A permissions Section with a

subject name that does not match the subject name given in the corresponding Authorization certificate

shall be ignored.

DDSSEC12-91 - How are 'subject_name' fields compared?

The X.509 subject name is a set of attribute-value assertions. The format of x.509 subject name shall

be the string representation of the X.509 certificate Subject name as defined in IETF RFC 4514

"Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names" [53],

with additional restrictions.

From IETF RFC 4514:

• Each attribute-value assertion is separated using the comma (',' U+002C) character.

• For each assertion, the attribute name is separated from the value using the equals ('=' U+003D)

character.

Additional restrictions:

• Attribute names shall start with a letter and contain only alphanumeric characters and dot

characters ('.', U+002E). Specifically, names cannot have whitespace.

• Attribute values shall contain only alphanumeric characters, whitespace, and the characters ".",

"/", ";", ":", "+", "@", "&", "|" .

• Attribute values are not allowed to have whitespace at the beginning and the end.

• Whitespace at the beginning and end of the attribute-value pair as well as surrounding the "="

character is not incorporated into the attribute name or value and is silently ignored.

For example:

DDSSEC12-91 - How are 'subject_name' fields compared?
<subject_name>emailAddress=cto@acme.com, CN=AGV/agv1, OU=CTO Office, O=ACME

Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

10.4.1.5.3.1.1 Subject name matching

DDSSEC12-91 - How are 'subject_name' fields compared?

Two subject names match if an only if the following conditions are met:

• They contain the same attribute names

• For each attribute name, the corresponding attribute values are identical strings:

Per the above rules the order of the atributes does not affect the matching.

Deleted: name-value pairs

Deleted: DDS Shapes Demo

DDS Security, v1.12 243

10.4.1.5.3.2 Subject name expression Section

DDSSEC12-91 - How are 'subject_name' fields compared?

This Section is delimited by the XML element <subject_name_expression>.

The subject name expression Section identifies a set of DomainParticipants to which the permissions

apply. It shall be matched against the x.509 subject name for the DomainParticipant as is given in its

Authorization Certificate.

The <subject_name_expression> element shall contain the same type of attribute-value assertions as

the <subject_name > element (see 10.4.1.5.3.1), except that the attribute values may also contain the

special "pattern" characters '*', '?', "[", "]", "!", “-“.

For example:
<subject_name>emailAddress=cto@acme.com, CN=AGV/*, OU=CTO Office, O=ACME

Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

10.4.1.5.3.2.1 Subject name expression matching

DDSSEC12-91 - How are 'subject_name' fields compared?

A subject name matches a subject name expression if an only if the following conditions are met:

• They contain the same attribute names

• For each attribute name, the corresponding attribute values subject_attr_val and

subject_expression_attr_val match according to the POSIX fnmatch() function (see in POSIX

1003.2-1992, Section B.6 [38], with flags: FNM_PATHNAME=TRUE,

FNM_PERIOD=FALSE, and FNM_NOESCAPE=TRUE. Note that it is a case-sensitive match.

Per the above rules the order of the atributes does not affect the matching.

10.4.1.5.3.3 Validity Section

This Section is delimited by the XML element <validity>. The contents of this element reflect the

valid dates for the permissions. It contains both the starting date and the end date using the format

defined by dateTime data type as specified in sub clause 3.3.7 of [XSD]. Time zones that aren't

specified are considered UTC.

A permissions Section with a validity date that falls outside the current date at which the permissions

are being evaluated shall be ignored.

10.4.1.5.3.4 Rules Section

This Section contains the permissions assigned to the DomainParticipant. It is described as a set

of rules.

The rules are applied in the same order that appear in the document. If the criteria for the rule matches

the domain_id join and/or publish or subscribe operation that is being attempted, then the allow or

deny decision is applied. If the criteria for a rule does not match the operation being attempted, the

evaluation shall proceed to the next rule. If all rules have been examined without a match, then the

decision specified by the “default” rule is applied.

DDSSEC12-79 – Built-in Access Control: interpretation of enable_read/write_access_control

The default rule shall always be present and must appear after all allow and deny rules. However, in

DDS-Security 1.1 and earlier versions the presence of the default rule was optional. To allow

implementations that comply with later revisions to still process the older permissions files the absence

of the default rule shall be treated as a <default>DENY</default>.

The matching criteria for each rule specify the domain_id, topics (published and subscribed), the

partitions (published and subscribed), and the data-tags associated with the DataWriter and

DataReader.

Deleted: 10.4.1.5.3.110.4.1.5.3.110.4.1.3.2.1

Deleted: The default rule, if present, must appear after all

allow and deny rules. If the default rule is not present, the

implied default decision is DENY.

244 DDS Security, v1.12

For the grant to match there shall be a match of the topics, partitions, and data-tags criteria. This is

interpreted as an AND of each of the criteria. For a specific criterion to match (e.g., <topics>) it is

enough that one of the topic expressions listed matches (i.e., an OR of the expressions with the

<topics> section).

10.4.1.5.3.4.1 Format of the allow rules

Allow rules appear inside the <allow_rule> XML Element. Each rule contains a Domains Section;

(10.4.1.5.3.4.1.1), followed by a set of allowed actions. There are three kinds of allowed actions:

publish, subscribe and relay.

10.4.1.5.3.4.1.1 Domains Section

This Section is delimited by the XML element <domains>.

The value in this element identifies the collection of DDS domain_id values to which the rule applies.

The syntax is the same as for the domain section of the Governance document. See subclause

10.4.1.2.5.1.

For example:

DDSSEC12-101 – Add specification of domainTag tp governance and permissions
<domains>

 <id>0</id>

 <tag>Robot15</tag>

</domains>

10.4.1.5.3.4.1.2 Format of the Allowed Actions sections

The sections for each of the three action kinds have similar format. The only difference is the name of

the XML element used to delimit the action:

• The Allow Publish Action is delimited by the <publish> XML element

• The Allow Subscribe Action is delimited by the <subscribe> XML element

• The Allow Relay Action is delimited by the <relay> XML element

Each allowed action logically contains three orthogonal conditions. These cover the topic name,

partitions, and data-tags. All these conditions must be met for the allowed action to apply. Note that

some of these conditions may not appear explicitly in the XML file. In this case a specified default

value is assumed and applied as if the condition had been explicitly listed.

Each of these three conditions appears in a separate section:

• Allowed Topics Condition section

• Allowed Partitions Condition section

• Allowed Data Tags Condition section

Example:

<publish> <!— delimits the publish action -->

 <topics> <!— delimits the topic condition -->

 <topic>Square</topic>

 </topics>

 <partitions> <!— delimits the partition condition -->

 <partition>A_partition</partition>

 </partitions>

Deleted: 10.4.1.5.3.4.1.110.4.1.5.3.4.1.110.4.1.3.1.3.1.1

Deleted: 10.4.1.2.5.110.4.1.2.5.110.4.1.2.1.1

Deleted: ¶

DDS Security, v1.12 245

 <!— data tags condition absent so use default -->

</publish>

10.4.1.5.3.4.1.3 Allowed Topic condition section

The topic condition section is delimited by the <topics> XML element. It defines the DDS Topic

names that must be matched for the allow rule to apply. Topic names may be given explicitly or by

means of Topic name expressions. Each topic name or topic-name expression appears separately in a

<topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX

fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

In order for an action (e.g., a publish action) to be allowed it must meet the topic condition. For this to

happen the Topic name associated with the intended action must match one the topics or topic

expressions explicitly listed in the topic condition section.

The topic condition section must always be present; therefore there is no default specfied.

Example (appearing within a <allow_rule> and within a publish, subscribe, or relay action):

 <topics>

 <topic>Square</topic>

 <topic>B*</topic>

 </topics>

The above topic condition would match Topic “Square” and any topic that starts with a “B”.

10.4.1.5.3.4.1.4 Allowed Partitions condition section

The allowed partitions condition section is delimited by the <partitions> XML element. It limits the

set DDS Partitions names that may be associated with the (publish, subscribe, relay) action for the rule

to apply. Partition names may be given explicitly or by means of Partition name expressions. Each

partition name or partition-name expression appears separately in a <partition> sub-element within

the <partitions> element.

The Partition name expression syntax and matching shall use the syntax and rules of the POSIX

fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

In order for an action (e.g., a publish action) to meet the allowed partitions condition that appears

within an allow rule, the set of the Partitions associated with the DDS entity (DataWriter or

DataReader) attempting the (publish, subscribe, or relay) action must be contained in the set of

partitions defined by the allowed partitions condition section.

If there is no <partitions> Section within an allow rule, then the default "empty string" partition is

assumed. See PARTITION QosPolicy entry in Qos Policies table of section 2.2.3 (Supported Qos) of

the DDS Specification version 1.4. This means that the allow rule (e.g., publish) would only allow a

DataWriter to publish on the “empty string” partition.

Example (appearing within a <allow_rule> and within a <publish> action):

 <partitions>

 <partition>A</partition>

 <partition>B</partition>

 </partitions>

The above allowed partitions condition would be matched if the partitions associated with the DDS

Entity attempting to perform the action (e.g., publish action) is a subset of the set {A, B}. So it would

be OK to publish in partition A, in B, or in {A, B} but not in {A, B, C}.

For legacy reasons DDS-Security implementations shall provide a way to select an alternative “legacy

matching” behavior. The “legacy matching behavior” shall match the allowed partitions condition

condition as long as one or more of the Partitions associated with DDS Entity attempting to perform

246 DDS Security, v1.12

the action (e.g., DataWriter for a publish action) matches one of the partitions in the allowed partitions

condition. The same allowed partitions condition section above would be matched if the partitions

associated with the DDS DataWriter include A or B. So it would be OK to publish in A, in B, or in

{A, B} and also in {A, B, C}.

10.4.1.5.3.4.1.5 Allowed Data tags condition section

The allowed data tags condition section is delimited by the < data_tags> XML element. It limits the

set DDS Data Tags that may be associated with the (publish, subscribe, relay) action for the rule to

apply. The <data_tags> XML Element contain a set of tags.

In order for an action (e.g., a publish action) to meet the allowed data tags condition the set of the

Data Tags associated with the DDS Entity performing the action (e.g., a DataWriter for a publish

action) must be contained in the set of data tags defined by the allowed data tags condition section.

If there is no <data_tags> section then the default empty set is assumed. This means that the allow

action (e.g., publish action) would only allow publishing if there are no data tags associated with the

DDS Endpoint (DataWriter for a publish action).

Example (appearing within a <allow_rule> and within a <publish> action):

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

The above allowed data tags condition would be matched if the data tags associated with the DDS

Entity performing the action (e.g., DataWriter for publish action) are a subset of the set { (aTagName1,

aTagValue)} } . So it would be OK to publish using a DataWriter with no associated data-tags, or a

DataWriter with a single tag with name “aTagName1” and value “aTagValue1”.

10.4.1.5.3.4.1.6 Example allow rule

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

DDS Security, v1.12 247

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

 </partitions>

 </subscribe>

 </allow_rule>

10.4.1.5.3.4.2 Format for deny rules

Deny rules appear inside the <deny_rule> XML Element. Each rule contains a Domains Section;

(10.4.1.5.3.4.1.1), followed by a set of denied actions. There are three kinds of denied actions: publish,

subscribe and relay.

Deny rules have the same format as the allow rules. The only difference is how they are interpreted. If

the criteria in the deny rule matches the operation being performed, then the decision is to deny the

operation.

10.4.1.5.3.4.2.1 Domains Section

This Section is delimited by the XML element <domains>. The value in this element identifies the

collection of DDS domain_id values to which the rule applies. The syntax is the same as for the

domain section of the Governance document. See subclause 10.4.1.2.5.1.

For example:
<domains>

 <id>0</id>

</domains>

10.4.1.5.3.4.2.2 Format of the Denied Actions sections

The sections for each of the three action kinds have similar format. The only difference is the name of

the XML element used to delimit the action:

• The Deny Publish Action is delimited by the <publish> XML element.

• The Deny Subscribe Action is delimited by the <subscribe> XML element.

• The Deny Relay Action is delimited by the <relay> XML element.

Each denied action logically contains three orthogonal deny conditions. These cover the topic name,

partitions, and data-tags. All these conditions must be met for the denied action to apply. Note that

some of these conditions may not appear explicitly in the XML file. In this case a specified default

value is assumed and applied as if the condition had been explicitly listed.

Each of these three conditions appears in a separate section:

• Denied Topics Condition section.

Deleted: 10.4.1.5.3.4.1.110.4.1.5.3.4.1.110.4.1.3.1.3.1.1

Deleted: 10.4.1.2.5.110.4.1.2.5.110.4.1.2.1.1

248 DDS Security, v1.12

• Denied Partitions Condition section.

• Denied Data Tags Condition section.

Example (appearing within a <deny_rule>):

<publish> <!— delimits the publish action -->

 <topics> <!— delimits the topic condition -->

 <topic>Square</topic>

 </topics>

 <partitions> <!— delimits the partition condition -->

 <partition>A_partition</partition>

 </partitions>

 <!— data tags condition absent so use default -->

</publish>

10.4.1.5.3.4.2.3 Denied Topic condition section

The denied topic condition section is delimited by the <topics> XML element. It has the same format

and interpretation as the allowed topic condition section for the allowed actions, see 10.4.1.5.3.4.1.3.

In order for an action (e.g., a publish action) to be denied it must meet the denied topic condition. For

this to happen the Topic name associated with the intended action must match one the topics or topic

expressions explicitly listed in the denied topic condition section.

10.4.1.5.3.4.2.4 Denied Partitions condition section

The denied partitions condition section is delimited by the <partitions> XML element. It defines the

DDS Partitions names that when associated with the (publish, subscribe, relay) cause the deny action

for the rule to apply. Partition names may be given explicitly or by means of Partition name

expressions. Each partition name or partition-name expression appears separately in a <partition>

sub-element within the <partitions> element.

In order for an action (e.g., a publish action) to be denied it must meet the denied partitions condition.

For this to happen one of more of the partition names associated with the DDS Entity performing the

action (e.g., a DataWriter for the publish action) must match one the partitions or partition expressions

explicitly listed in the partitions condition section.

If there is no <partitions> section then the "*" partition expression is assumed. This means that the

deny action (e.g., deny publish action) would apply independent of the partition associated with the

DDS Endpoint (DataWriter for the publish action).

Example (appearing within a <deny_rule> and within a <publish> action):

 <partitions>

 <partition>A</partition>

 <partition>B</partition>

 </partitions>

The above denied partitions condition would be matched if the partitions associated with the DDS

Entity performing the action (e.g., DataWriter for a publish action) intersect the set {A, B}. So it

would be OK to publish in C, but not in {A}, {A, B}, or {A, B, C}.

10.4.1.5.3.4.2.5 Data tags condition section

The denied data tags condition section is delimited by the <data_tags> XML element. It defines the

DDS tags names and values that when associated with the (publish, subscribe, relay) cause the deny

action for the rule to apply.

Deleted: 10.4.1.5.3.4.1.310.4.1.5.3.4.1.310.4.1.3.1.3.1.3

DDS Security, v1.12 249

In order for an action (e.g., a publish action) to be denied it must meet the denied data tags condition.

For this to happen the DDS Entity associated with the action (e.g., DataWriter for a publish action)

must have a data tag name and value pair associated that matches one the data tags explicitly listed in

the denied data tags condition section.

If there is no <data_tags> section then the “set of all possible tags” set is assumed as default. This

means that the deny action (e.g., deny publish action) would apply independent of the data tags

associated with the DDS Endpoint (e.g., DataWriter for a publish action).

Example (appearing within a <deny_rule> and within a <publish> action):

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

The above denied data tags condition would be matched if the data tags associated with the DDS

Entity performing the action (e.g., DataWriter for a publish action) intersect the set { (aTagName1,

aTagValue1) }. So it would not deny publishing using a DataWriter with no associated data-tags, or a

DataWriter with a single tag with name “aTagName2”, or a DataWriter with a single tag with name

“aTagName1” and value “aTagValue2”. But it would deny publishing using a DataWriter with with

two associated data-tags { (aTagName1, aTagValue1), (aTagName2, aTagValue2)}.

10.4.1.5.3.4.2.6 Example deny rule

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

250 DDS Security, v1.12

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

 </partitions>

 </subscribe>

 </allow_rule>

DDS Security, v1.12 251

10.4.1.5.3.4.2.7 Example deny rule

 <deny_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Circle1</topic>

 </topics>

 </publish>

 <publish>

 <topics>

 <topic>Square</topic>

 </topics>

 <partitions>

 <partition>A_partition</partition>

 </partitions>

 </publish>

 <subscribe>

 <topics>

 <topic>Square1</topic>

 </topics>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Tr*</topic>

 </topics>

 <partitions>

 <partition>P1*</partition>

 </partitions>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 </deny_rule>

10.4.1.6 Permissions Document Extensibility

DDSSEC12-3 – Add mechanism to extend Governance and Permissions document

Future revisions of the DDS-Security specification may include additional information in the

Permissions document. Likewise, plugin implementations may include implementation-specific or

vendor-specific information into the Permissions document.

DDS-Security provides a specific mechanism to allow making these kinds of extensions to the

Permissions document without breaking compatibility with DDS-systems built with SPIs that do not

understand the extension.

252 DDS Security, v1.12

The approach is the same used for extending the Governance document, see 10.4.1.3. The same rules

described there apply to the extension mechanism as well as how the Permissions plugin shall process

the Permissions document in the presence of extension elements, attributes, and attribute values that

are not recognized.

Deleted: 10.4.1.310.4.1.310.4.1.2.8

DDS Security, v1.12 253

10.4.1.7 DomainParticipant example permissions document (non normative)

Following is an example permissions document that is written according to the XSD described in

10.4.1.5.
<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-

Security/20170801/omg_shared_ca_permissions.xsd">

 <permissions>

 <grant name="ShapesPermission">

 <subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO

Office, O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

 <validity>

 <!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] The time zone may

 be specified as Z (UTC) or (+|-)hh:mm. Time zones that aren't

 specified are considered UTC.

 -->

 <not_before>2024-03-26T00:00:00</not_before>

 <not_after>2034-03-26T22:45:30</not_after>

 </validity>

 <allow_rule>

 <domains>

 <id>0</id>

 <!-- DDSSEC12-101 -->

 <tag>Robot15</tag>

 </domains>

 </allow_rule>

 <deny_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Circle1</topic>

 </topics>

 </publish>

 <publish>

 <topics>

 <topic>Square</topic>

 </topics>

 <partitions>

 <partition>A_partition</partition>

 </partitions>

 </publish>

 <subscribe>

 <topics>

 <topic>Square1</topic>

 </topics>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Tr*</topic>

 </topics>

Deleted: 10.4.1.510.4.1.510.4.1.3

Deleted: 2013

Deleted: 10

Deleted: 2018

Deleted: 10

Deleted: <!-- DDSSEC11-56 -
deleted invalid elements --> ¶

254 DDS Security, v1.12

 <partitions>

 <partition>P1*</partition>

 </partitions>

 </subscribe>

 </deny_rule>

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

 </partitions>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </subscribe>

 <relay>

 <topics>

 <topic>*</topic>

 </topics>

DDS Security, v1.12 255

 <partitions>

 <partition>aPartitionName</partition>

 </partitions>

 </relay>

 </allow_rule>

 <default>DENY</default>

 </grant>

 </permissions>

</dds>

10.4.2 DDS:Access:Permissions Types

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Access:Permissions plugin.

10.4.2.1 DDS:Access:Permissions PermissionsCredentialToken

The DDS:Access:Permissions plugin shall set the attributes of the

PermissionsCredentialToken object as specified in the table below.

Table 64 – PermissionsCredentialToken class for the builtin AccessControl plugin

Attribute name Attribute value
class_id “DDS:Access:PermissionsCredential”

properties name value

dds.perm.cert Contents of the permissions document signed by
the PermissionCA that was configured using the
Participant PropertyQosPolicy with name
“dds.sec.access.permissions”

10.4.2.2 DDS:Access:Permissions PermissionsToken

The DDS:Access:Permissions plugin shall set the attributes of the PermissionsToken object as

specified in the table below:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 65 – PermissionsToken class for the builtin AccessControl plugin

Attribute name Attribute value

class_id “DDS:Access:Permissions:1.2”

properties

(The presence of each of these

properties is optional)

name value

dds.perm_ca.sn The subject name of Permissions CA

dds.perm_ca.algo One of the CryptoAlgorithmName string identifiers
for digital signature algorithms defined in clause
8.2, Table 25.

The value of the class_id shall be interpreted as composed of three parts: a PluginClassName, a

MajorVersion and a MinorVersion according to the same format described in 10.3.2.1.

Accordingly this version of the specification has PluginClassName equal to

“DDS:Access:Permissions”, MajorVersion set to 1, and MinorVersion set to 0.

Deleted: 646461

Deleted: 0

Deleted: 8.28.28.1.2

Formatted: Font: 10 pt

Deleted: Table 25Table 25Table 24

Deleted: “RSA-2048” or “EC-prime256v1”

256 DDS Security, v1.12

If the MajorVersion and MinorVersion are missing from the class_id, it shall be interpreted as being

MajorVersion 1 and MinorVersion 0.

10.4.2.3 PluginParticipantSecurityAttributes

The PluginParticipantSecurityAttributes describe plugin-specific behavior of the

builtin DDS:Crypto:AES:GCM-GMAC Crypto affecting the key material and transformations for the

RTPS messages and the RTPS submessages related to the builtin Topics.

This is a structured type, whose members are described in the table below:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDS Security, v1.12 257

Table 66 – Description of the PluginParticipantSecurityAttributes

Member Type Meaning

is_rtps_axk_encrypted Boolean This field is only used if the ParticipantSecurityConfig field
is_rtps_axk_protected is TRUE. Otherwise it has no effect and it shall be set
to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
RTPS messages protected with an“Authenticated Participant Exchanged
Key” shall be protected using authenticated encryption or only an
authentication code.
If is_rtps_axk_encrypted is TRUE, the CryptoKeyFactory
register_local_participant operation shall create key material

for performing a GCM authenticated encryption.
If is_rtps_axk_encrypted is TRUE, the the CryptoTransform
encode_rtps_message operation, when invoked with parameter

transform_with_psk=FALSE, shall apply the GCM authenticated
encryption transformation.
If is_rtps_axk_encrypted is FALSE, the
register_local_participant operation shall create key material

for performing a GMAC authentication and the CryptoTransform
encode_rtps_message operation, when invoked with parameter

transform_with_psk=FALSE, shall apply the GMAC authentication
transformation.

is_rtps_psk_encrypted Boolean This field is only used if the ParticipantSecurityConfig field
is_rtps_psk_protected is TRUE. Otherwise it has no effect and it shall be set
to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
RTPS messages protected with.a pre-shared key shall be protected using
authenticated encryption or only an authentication code.
If is_rtps_psk_encrypted is TRUE, the CryptoKeyFactory
register_local_participant operation shall use the pre-shared-
key to create key material for performing a GCM authenticated encryption
using the pre-shared key.
If is_rtps_psk_encrypted is TRUE the CryptoTransform
encode_rtps_message operation, when invoked with parameter

transform_with_psk=TRUE, shall apply the GCM authenticated
encryption transformation using the pre-shared key.
If is_rtps_psk_encrypted is FALSE, the register_local_participant

operation shall use the pre-shared-key to create key material for
performing a GMAC authentication and the CryptoTransform
encode_rtps_message operation, when invoked with parameter

transform_with_psk=TRUE, shall apply the GMAC authentication
transformation.

is_discovery_encrypted Boolean This field is only used if the ParticipantSecurityConfig field
is_discovery_protected is TRUE. Otherwise it has no effect and it shall be
set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
submessages related to the builtin secure discovery endpoints (see
7.5.9) shall be protected using authenticated encryption or only an
authentication code.
If is_discovery_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a DataWriter endpoint)

or register_local_datareader (in the case of a DataReader

endpoint) operation for the builtin secure discovery endpoints shall
create key material for performing a GCM authenticated encryption and
the CryptoTransform encode_datawriter_submessage and

Deleted: ParticipantSecurityAttributes

Deleted:

Deleted: and

Deleted: aforementioned

Deleted: s

Deleted: ParticipantSecurityAttributes

Deleted: 7.5.97.5.97.5.6

258 DDS Security, v1.12

encode_datareader_submessage operations shall apply the GCM

authenticated encryption transformation.
If is_discovery_encrypted is FALSE, the aforementioned operations shall
create key material for performing a GMAC authentication and the
CryptoTransform encode_rtps_submessage and

encode_datawriter_submessage operations shall apply the GMAC

authentication transformation.
is_liveliness_encrypted Boolean This field is only used if the ParticipantSecurityConfig field

is_liveliness_protected is TRUE. Otherwise it has no effect and it shall be
set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
submessages related to the builtin secure liveliness endpoints (see
7.5.10) shall be protected using authenticated encryption or only an
authentication code.
If is_liveliness_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a DataWriter endpoint)

or register_local_datareader (in the case of a DataReader

endpoint) operation for the builtin secure liveliness endpoints shall
create key material for performing a GCM authenticated encryption and
the CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall apply the GCM

authenticated encryption transformation.
If is_liveliness_encrypted is FALSE, the aforementioned operations shall
create key material for performing a GMAC authentication and the
CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall apply the GMAC

authentication transformation.
is_rtps_origin_authenticate
d

Boolean This field is only used if the ParticipantSecurityConfig field
is_rtps_axk_protected is TRUE. Otherwise it has no effect and it shall be set
to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
RTPS messages shall have additional authentication codes constructed
using receiver-specific keys.
If is_rtps_origin_authenticated is TRUE, the CryptoKeyFactory
register_matched_remote_participant operation shall create

additional receiver-specific key material for performing a GMAC
authenticatication. The CryptoTransform encode_rtps_message
operation shall add additional GMAC authentication codes using the
receiver-specific key material.
If is_rtps_origin_authenticated is FALSE, the aforementioned operations
shall not create additional key material and the CryptoTransform
encode_rtps_message shall not add additional GMAC authentication
codes.

Deleted: ParticipantSecurityAttributes

Deleted: 7.5.107.5.107.5.7

Deleted: ParticipantSecurityAttributes

Deleted: is_rtps_protected

DDS Security, v1.12 259

is_discovery_origin_authen
ticated

Boolean This field is only used if the ParticipantSecurityConfig field
is_discovery_protected is TRUE. Otherwise it has no effect and it shall be
set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
RTPS submessage from or to the builtin secure discovery endpoints
shall have additional authentication codes constructed using receiver-
specific keys.
If is_discovery_origin_authenticated is TRUE, the CryptoKeyFactory
register_matched_datareader (in the case of a DataWriter

endpoint) or register_matched_datawriter (in the case of a

DataReader endpoint) operation shall create additional receiver-specific
key material for performing a GMAC authentication. The
CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall add additional
GMAC authentication codes using the receiver-specific key material.
If is_discovery_origin_authenticated is FALSE, the aforementioned
operations shall not create additional key material and the
CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall not add

additional GMAC authentication codes.
is_liveliness_origin_authen
ticated

Boolean This field is only used if the ParticipantSecurityConfig field
is_liveliness_protected is TRUE. Otherwise it has no effect and it shall be
set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin whether the
RTPS submessage from or to the builtin secure liveliness endpoints
shall have additional authentication codes constructed using receiver-
specific keys.
If is_liveliness_origin_authenticated is TRUE, the CryptoKeyFactory
register_matched_datareader (in the case of a DataWriter

endpoint) or register_matched_datawriter (in the case of a

DataReader endpoint) operation shall create additional receiver-specific
key material for performing a GMAC authenticatication. The
CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall add additional

GMAC authentication codes using the receiver-specific key material.
If is_liveliness_origin_authenticated is FALSE, the aforementioned
operations shall not create additional key material and the
CryptoTransform encode_datawriter_submessage and

encode_datareader_submessage operations shall not add

additional GMAC authentication codes.

10.4.2.4 Definition of the PluginParticipantSecurityAttributesMask

The PluginParticipantSecurityAttributesMask is used to encode the value of the

PluginParticipantSecurityAttributes in a compact way such that it can be included in

the ParticipantSecurityInfo, see 7.3.23.

As described in section 7.3.23, in order to communicate, two DomainParticipants need to have the

same ParticipantSecurityInfo. As as consequence the

PluginParticipantSecurityAttributesMask must also be the same.

The default value for the mask is:

#define PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_MASK_DEFAULT 0

The mapping of the PluginParticipantSecurityAttributes to

PluginParticipantSecurityAttributesMask is as follows:

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Deleted: ParticipantSecurityAttributes

Deleted: ParticipantSecurityAttributes

Deleted: 7.3.237.3.237.3.22

Deleted: 7.3.237.3.237.3.22

260 DDS Security, v1.12

Table 67 – Mapping of PluginParticipantSecurityAttributes to the PluginParticipantSecurityAttributesMask

Field in
PluginParticipantSecurit
yAttributes

Corresponding bit in the PluginParticipantSecurityAttributesMask

is_rtps_axk_encrypted #define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_AXK_ENCRYPT

ED (0x00000001 << 0)

is_discovery_encrypted #define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_BUILTIN_IS_DISCOVER

Y_ENCRYPTED (0x00000001 << 1)

is_liveliness_encrypted #define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINESS_ENCRY

PTED (0x00000001 << 2)

is_rtps_origin_authentica
ted

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_ORIGIN_AUTH

ENTICATED (0x00000001 << 3)

is_discovery_origin_auth
enticated

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_DISCOVERY_ORIGIN

_AUTHENTICATED (0x00000001 << 4)

is_liveliness_origin_auth
enticated

#define

PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINESS_ORIGIN_AUTHE

NTICATED (0x00000001 << 5)

is_rtps_psk_encrypted #define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_PSK_ENCRYPT

ED (0x00000001 << 6)

DDS Security, v1.12 261

10.4.2.5 PluginEndpointSecurityAttributes

The PluginEndpointSecurityAttributes describe plugin-specific behavior of the builtin

DDS:Crypto:AES:GCM-GMAC Crypto affecting the key material and transformations for endpoints

(DataWriters and DataReaders) submessages and submessage payloads.

This is a structured type, whose members are described in the table below:

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 68 – Description of the PluginEndpointSecurityAttributes

Member Type Meaning

is_submessage_encrypted Boolean This field is only used if the EndpointSecurityConfig field
is_submessage_protected is TRUE. Otherwise it has no effect and it
shall be set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the submessage shall be protected using authenticated
encryption or only an authentication code.
If is_submessage_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a DataWriter

endpoint) or register_local_datareader (in the case of a

DataReader endpoint) operation shall create key material for

performing a GCM authenticated encryption and the
CryptoTransform operation encode_datawriter_submessage

(in the case of a DataWriter endpoint) or

encode_datareader_submessage (in the case of a

DataReader) shall apply the GCM authenticated encryption
transformation.
If is_submessage_encrypted is FALSE, the aforementioned operations
shall create key material for performing a GCM authenticated
encryption and the CryptoTransform operation
encode_datawriter_submessage (in the case of a

DataWriter endpoint) or encode_datareader_submessage

(in the case of a DataReader) shall apply the GCM authenticated

encryption transformation.
is_submessage_origin_authenti
cated

Boolean This field is only used if the EndpointSecurityConfig field
is_submessage_protected is TRUE. Otherwise it has no effect and it
shall be set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the submessage shall have additional authentication codes
constructed using receiver-specific keys.
If is_submessage_origin_authenticated is TRUE, the CryptoKeyFactory
register_matched_datareader (in the case of a DataWriter

endpoint) or register_matched_datawriter (in the case of a

DataReader endpoint) operation shall create additional receiver-
specific key material for performing a GMAC authenticatication. The
CryptoTransform operation encode_datawriter_submessage

(in the case of a DataWriter endpoint) or

encode_datareader_submessage (in the case of a

DataReader) shall add additional GMAC authentication codes using

the receiver-specific key material.

If is_submessage_origin_authenticated is FALSE, the aforementioned
operations shall not create additional key material and the
CryptoTransform operation encode_datawriter_submessage

(in the case of a DataWriter endpoint) or

Deleted: 686865

Deleted: EndpointSecurityAttributes

Deleted: EndpointSecurityAttributes

262 DDS Security, v1.12

encode_datareader_submessage (in the case of a

DataReader) shall not add additional GMAC authentication codes.

is_payload_encrypted Boolean This field is only used if the EndpointSecurityConfig field
is_payload_protected is TRUE. Otherwise it has no effect and it shall be
set to FALSE.
This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the payload shall be protected using authenticated
encryption or only an authentication code.
If is_payload_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a DataWriter

endpoint) or register_local_datareader (in the case of a

DataReader endpoint) operation shall create key material for
performing a GCM authenticated encryption and the
CryptoTransform encode_serialized_payload operation shall

apply the GCM authenticated encryption transformation.
If is_payload_encrypted is FALSE, the aforementioned operations shall
create key material for performing a GCM authenticated encryption
and the CryptoTransform encode_serialized_payload
operation shall apply the GCM authenticated encryption
transformation.

10.4.2.6 Definition of the PluginEndpointSecurityAttributesMask

The PluginEndpointSecurityAttributesMask is used to encode the value of the

PluginEndpointSecurityAttributes in a compact way such that it can be included in the

EndpointSecurityInfo, see 7.3.24.

As described in section 7.3.24, in order to communicate, two endpoints need to have the same

EndpointSecurityAttributesMask. As as consequence the

PluginEndpointSecurityAttributesMask must also be the same.

The default value for the mask is:

#define PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_MASK_DEFAULT 0

The mapping of the PluginEndpointSecurityAttributes to

PluginEndpointSecurityAttributesMask is as follows:

Table 69 – Mapping of fields PluginEndpointSecurityAttributes to the PluginEndpointSecurityAttributesMask

Field in
PluginEndpointSecurityAttributes

Corresponding bit in the
PluginEndpointSecurityAttributesMask

is_submessage_encrypted #define

PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_SUB

MESSAGE_ENCRYPTED (0x00000001 << 0)
is_payload_encrypted #define

PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_PAYL

OAD_ENCRYPTED (0x00000001 << 1)
is_submessage_origin_authenticated #define

PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_SUB

MESSAGE_ORIGIN_AUTHENTICATED (0x00000001 <<2)

10.4.3 DDS:Access:Permissions plugin behavior

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Access:Permissions shall be initialized to have access to the Permissions CA public key. As

this is a builtin plugin the mechanism for initialization is implementation dependent.

The table below describes the actions that the DDS:Access:Permissions plugin performs when each of

the plugin operations is invoked.

Deleted: EndpointSecurityAttributes

Deleted: 7.3.247.3.247.3.23

Deleted: 7.3.247.3.247.3.23

Deleted: 696966

Deleted: 2048-bit RSA

DDS Security, v1.12 263

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-79 - Built-in Access Control: interpretation of enable_read/write_access_control

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

 Table 70 – Actions undertaken by the operations of the builtin AccessControl plugin

check_create_participant This operation shall use the permissions_handle to retrieve the cached

Permissions and Governance information. As a precondition, the

Permissions document must contain a Grant for the DomainParticipant

(otherwise, validate_local_permissions would have failed).

If the ParticipantSecurityConfig has is_access_protected set to

FALSE, then the operation shall succeed and return TRUE.

If the Grant's first matching rule for the DomainParticipant’s domain is an

allow rule, then the operation shall succeed and return TRUE.

If the Grant's first matching rule for the DomainParticipant’s domain is a

deny rule with no publish or subscribe rules, then the operation shall fail

and return FALSE.

If none of the previous conditions are true, then the operation shall return

TRUE if the default is ALLOW and return FALSE otherwise.
check_create_datawriter This operation shall use the permissions_handle to retrieve the cached

Permissions and Governance information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the DataWriter topic

with enable_write_access_control set to FALSE, then the operation shall

succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic with specified

topic_name on all the Publisher’s PartitionQosPolicy names

and with all the tags in the DataWriter DataTagQosPolicy, then

the operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.
check_create_datareader This operation shall use the permissions_handle to retrieve the cached

Permissions and Governance information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the DataReader topic

with enable_read_access_control set to FALSE, then the operation shall

succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to subscribe the Topic with

specified topic_name on all the Subscriber’s

PartitionQosPolicy names and with all the tags in the

DataReader DataTagQosPolicy, then the operation shall succeed

and return TRUE.

Otherwise the operation shall return FALSE.
check_create_topic This operation shall use the permissions_handle to retrieve the cached

Permissions and Governance information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the Topic name with

enable_read_access_control set to FALSE or with

enable_write_access_control set to FALSE, then the operation shall

succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic with specified

topic_name, then the operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to subscribe the Topic with

specified topic_name, then the operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

Deleted: If the Governance specifies any topics on the

DomainParticipant domain_id with

enable_read_access_control set to FALSE or with

enable_write_access_control set to FALSE, then the

operation shall succeed and return TRUE.¶

Deleted: ParticipantSecurityAttributes

Deleted: Otherwise the operation shall return FALSE.

264 DDS Security, v1.12

check_local_datawriter_regist

er_instance

This operation shall return TRUE.

check_local_datawriter_dispos

e_instance

This operation shall return TRUE.

check_remote_participant This operation shall use the permissions_handle to retrieve the cached

local DomainParticipant Governance and the remote

DomainParticipant Permissions information. As a precondition, the

remote Permissions document must contain a Grant for the remote

DomainParticipant (otherwise, validate_remote_permissions would have

failed).

If the ParticipantSecurityConfig has is_access_protected set to

FALSE, then the operation shall succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the remote_permissions_token,

the operation shall return FALSE.

If the Grant's first matching rule for the remote DomainParticipant’s

domain is an allow rule, then the operation shall succeed and return

TRUE.

If the Grant’s first matching rule for the remote DomainParticipant’s

domain is a deny rule with no publish or subscribe rules, then the

operation shall fail and return FALSE.

If none of the previous conditions are true, then the operation shall return

TRUE if the default is ALLOW and return FALSE otherwise.
check_remote_datawriter

This operation shall use the permissions_handle to retrieve the cached

local DomainParticipant Governance and the remote

DomainParticipant Permissions information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the remote DataWriter

topic with enable_write_access_control set to FALSE, then the operation

shall succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the remote_permissions_token,

the operation shall return FALSE.

If the remote DomainParticipant Permissions document contains a

Grant allowing it to publish the DataWriter’s topic_name on all the

remote Publisher’s PartitionQosPolicy names and with all the

tags in the remote DataWriter DataTagQosPolicy, then the

operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.
check_remote_datareader This operation shall use the permissions_handle to retrieve the cached

local DomainParticipant Governance and the remote

DomainParticipant Permissions information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the remote DataReader

topic with enable_read_access_control set to FALSE, then the operation

shall succeed, set the ‘allow_relay_only’ output parameter to FALSE, and

return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the remote_permissions_token,

the operation shall return FALSE.

If the Permissions document contains a Grant for the remote

DomainParticipant allowing it to subscribe the DataReader’s

topic_name on all the Subscriber’s PartitionQosPolicy names

and with all the tags in the DataReader DataTagQosPolicy, then

Deleted: ParticipantSecurityAttributes

Deleted: ¶
If the Permissions document contains a Grant for the remote

DomainParticipant and the Grant contains an allow

rule on the DomainParticipant domain_id, then the

operation shall succeed and return TRUE.¶

Otherwise the operation shall return FALSE.

DDS Security, v1.12 265

the operation shall succeed, set the ‘allow_relay_only’ output parameter

to FALSE, and return TRUE.

If the Permissions document contains a Grant for the remote

DomainParticipant allowing it to ‘relay’ the DataReader’s

topic_name, the operation shall return TRUE and also set the

‘allow_relay_only’ output parameter to TRUE.

Otherwise the operation shall return FALSE.
check_remote_topic This operation shall use the permissions_handle to retrieve the cached

local DomainParticipant Governance and the remote

DomainParticipantPermissions information.

If the Governance specifies a topic or topic-expression on the

DomainParticipant domain_id matching the Topic name with

enable_read_access_control set to FALSE or with

enable_write_access_control set to FALSE, then the operation shall

succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the remote_permissions_token,

the operation shall return FALSE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic with specified

topic_name, then the operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to subscribe the Topic with

specified topic_name, then the operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.
check_local_datawriter_match This operation shall return TRUE.

check_local_datareader_match This operation shall return TRUE.

check_remote_datawriter_regis

ter_instance

This operation shall return TRUE.

check_remote_datawriter_dispo

se_instance

This operation shall return TRUE.

get_permissions_token This operation shall return the PermissionsToken formatted as

described in 10.4.2.2.

get_permissions_credential_to

ken

This operation shall return the PermissionsToken formatted as

described in 10.4.2.1

set_listener This operation shall save a reference to the listener object and associate it

with the specified PermissionsHandle.

return_permissions_token This operation shall behave as specified in 9.4.2.9.20

return_permissions_credential

_token

This operation shall behave as specified in 9.4.2.9.21

validate_local_permissions This operation shall receive the DomainId and

DomainParticipantQos from which it can access the Identity

266 DDS Security, v1.12

Certificate, Signed Domain Governance and Signed Permissions

document.

The operation shall check the subject name in the Identity Certificate

matches the one from the Signed Permissions document.

The operation shall verify the signature of the Signed Domain

Governance and Signed Permissions document by the configured

Permissions CA.

If all of these succeed, the operation shall cache the Permissions (see

10.4.1.5.2) from the certificate and return an opaque handle that the

plugin can use to refer to the saved information. Otherwise the operation

shall return an error.
validate_remote_permissions This operation shall invoke the operation

get_authenticated_peer_credential_token on the

auth_plugin passing the remote_identity_handle to retrieve the

AuthenticatedPeerCredentialToken (see 10.3.2.3) for the

remote DomainParticipant.

The AuthenticatedPeerCredentialToken contains both the

Identity Certificate and the Signed Permissions Document obtained from

the remote DomainParticipant during the Authentication.

The operation shall check the subject name in the Signed Permissions

Document matches the one in the Identity Certificate.

The operation shall verify the signature of the Signed Permissions

Document by the configured Permissions CA.

If all of these succeed, the operation shall cache the Permission Section

from the Signed Permissions Document and return an opaque handle that

the plugin can use to refer to the saved information. Otherwise the

operation shall return an error.
get_participant_security_conf

ig

This operation shall use the permissions_handle to retrieve the cached

Permissions and Governance information.

Based on the Governance document rules for the

DomainParticipant domain_id the operation shall fill the attributes

output parameter. The fields of the ParticipantSecurityConfig

attributes shall be set according to the following rules:

If the Governance document has the element

allow_unauthenticated_participants set to FALSE, the attributes field

allow_unauthenticated_participants shall be set to FALSE. Otherwise

the field shall be set to TRUE.

If the Governance document has the element enable_join_access_control

set to FALSE, the attributes field is_access_protected shall be set to

FALSE. Otherwise the field shall be set to TRUE.

If the Governance document has the element rtps_protection_kind set to

NONE, the attributes field is_rtps_axk_protected shall be set to FALSE.

Otherwise the field shall be set to TRUE.

If the Governance document does not have the XML element

<allowed_crypto_algorithms> the algorithm_info shall have the

“supported_mask” field corresponding each of the algorithm types set to

CRYPTO_ALGORITHM_SET_ALL defined in 7.3.9, representing that

there are no constraints on the supported algorithms.

If the Governance document has the XML element <key_establishment>,

the algorithm_info shall have the key_establishment.supported_mask

field set field set according to the algorithms that appear in the XML

element. Otherwise the mask shall be set to

CRYPTO_ALGORITHM_SET_ALL.

If the Governance document has the XML element <symmetric_cipher>,

the algorithm_info shall have the symmetric_cipher.supported_mask

field set set according to the algorithms that appear in the XML element.

Otherwise mask shall be set to CRYPTO_ALGORITHM_SET_ALL.

Deleted: get_participant_sec_attributes

Deleted: ParticipantSecurityAttributes

Deleted: is_rtps_protected

DDS Security, v1.12 267

If the Governance document has the XML element <digital_signature>,

the algorithm_info shall have the

digital_signature.message_auth.supported_mask field set according to

the algorithms that appear in the XML element. Otherwise the mask shall

be set to CRYPTO_ALGORITHM_SET_ALL.

If the Governance document has the XML element

<digital_signature_identity_trust_chain>, the algorithm_info shall have

the digital_signature.trust_chain.supported_mask field set according to

the algorithms that apear in the XML element. Otherwise the mask shall

be set to the same value as the

digital_signature.message_auth.supported_mask.

The digital_signature.trust_chain.required_mask shall be set to represent

the set of digital signature algorithms that appear in the Identity

Certificate and the CRYPTO_ALGORITHM_COMPATIBILITY_MODE

bit shall be set if there are 2 or more algorithms.

If any of the algorithms in the

digital_signature.trust_chain.required_mask is not present in the

digital_signature.trust_chain.supported_mask the opearion shall return

an error.

The digital_signature.message_auth.required_mask shall be set to

CRYPTO_ALGORITHM_SET_EMPTY.

The key_establishment.required_mask and

symmetric_cipher.required_mask and shall both be set to

CRYPTO_ALGORITHM_SET_EMPTY.
return_participant_security_c

onfig

This operation shall behave as specified in 9.4.2.9.26.

return_topic_security_config This operation shall behave as specified in 9.4.2.9.27

return_datawriter_security_co

nfig

This operation shall behave as specified in 9.4.2.9.28.

return_datareader_security_co

nfig

This operation shall behave as specified in 9.4.2.9.29.

Deleted: return_participant_sec_attributes

Deleted: _sec_attributes

Deleted: _sec_attributes

268 DDS Security, v1.12

10.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This builtin Cryptographic plugin is referred to as “DDS:Crypto:AES-GCM-GMAC” plugin. This

plugin does Authenticated Encryption with Associated Data (AEAD) using Advanced Encryption

Standard with Galois Counter Mode (AES-GCM/GMAC), see 8.1 for more details.

The use of (Galois) counter mode allows authenticated decryption of blocks in arbitrary order. All that

is needed to decrypt and validate the authentication tag are the Key and the Initialization Vector. This

is very important for DDS because a DataReader may not receive all the samples written by a

matched DataWriter. The use of DDS ContentFilteredTopics as well as DDS QoS policies

such as History (with KEEP_LAST kind), Reliability (with BEST_EFFORTS kind),

Lifespan, and TimeBasedFilter, among others, can result in a DataReader receiving a

subset of the samples written by a DataWriter.

The AES-GCM transformation produces both the ciphertext and a message authentication code (MAC)

using the same secret key. This is sufficient to protect the plaintext and ensure integrity. However,

there are situations where multiple MACs are required. For example, when a DataWriter shares the

same Key with multiple DataReaders and, in spite of this, the DataWriter needs to ensure message-

origin authentication. In this situation the DataWriter should create a separate “reader-specific key”

used only for authentication and append additional reader-specific MACs, each computed with one of

the reader-specific keys.

10.5.1 Configuration

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The DDS:Crypto:AES-GCM-GMAC plugin shall be configured using the PropertyQosPolicy of

the DomainParticipantQos, DataWriterQos, or DataReaderQos. The specific properties

used are described in Table 50 below.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 71 – Properties used to configure the builtin Crypto plugin

Property Name

(all properties have “dds.sec.crypto.”

prefix)

Property Value

(all these properties shall have propagate set to

FALSE)

Applicable Entities

symmetric_cipher_algorithm

(the presence of this property is

optional)

The string "AUTO" or one of the
CryptoAlgorithmName strings shown in

Table 22 that identifies a Symmetric Cipher
AEAD and MAC Algorithm.
If not specified it is treated as if it was specified
to be "AUTO".
If "AUTO" is specified it is treated as if it was
specified to be "AES256-GCM".
This property must be configured consistently
on all the DomainParticipants that join a DDS
Domain.

DomainParticipant
DataWriter
DataReader

Deleted: The

Deleted: ¶

Deleted: DDS:Crypto:AES-GCM-GMAC provides

authenticated encryption using Advanced Encryption

Standard (AES) in Galois Counter Mode (AES-GCM) [45].

It supports two AES key sizes: 128 bits and 256 bits. It may

also provide additional reader-specific message

authentication codes (MACs) using Galois MAC (AES-

GMAC) [45].¶

¶

The definition of the AES-GCM and AES-GMAC

transformations shall be as specified in NIST SP 800-38D

[45] specialized to 128-bit and 256-bit AES keys with 96-bit

Initialization Vector. The most relevant aspects are

summarized below.¶

¶

The AES-GCM authenticated encryption operation is a

transformation that takes the four inputs and produces two

outputs, symbolically:¶
C, T = AES-GCM(K, P, AAD, IV)¶

The AES-GCM inputs are described in Table 64 below.¶

Table 64 – AES-GCM transformation inputs¶
Input ...

Deleted: x

Deleted: requires no additional configuration as part of this

specification. However this specification reserves all

PropertyQos names with the prefix “dds.sec.crypto.” for

use in future revisions of this specification.

Deleted: Table 50Table 50Table 71Table 71Table 71Table

68…

Deleted: Table 71Table 71Table 68

Formatted: Font: 10 pt

Deleted: Table 22Table 22Table 21

DDS Security, v1.12 269

rtps_psk_symmetric_cipher_algorithm

(the presence of this property is

optional)

The string "AUTO" or one of the
CryptoAlgorithmName strings shown in

Table 22 that identifies a pair of Symmetric
Cipher AEAD and MAC Algorithms.
If not specified it is treated as if it was specified
to be "AUTO".
If "AUTO" is specified it is treated as if it was
specified to be "AES256-GCM".
This property must be configured consistently
on all the DomainParticipants that join a DDS
Domain.

DomainParticipant

rtps_psk_secret_passphrase

(the presence of this property is

optional)

Setting this property enables pre-shared-key
(PSK) protection. See 10.4.1.2.5.8.

The property specifies the URI to access the
passphrase_id and passphrase that is used to
protect RTPS messages using a pre-shared key..

The passphrase_id shall be a number between
0 and 232-1 represented as a decimal string. The
passphrase_id shall immediately follow the
URI schema, after the character(s) used to
delimit the URI schema, e.g. ‘:’ or ‘:,’.

The range of passphrase_id that verify
passphrase_id && 0xFF== 0xFF is reserved
and shall not be used.

The passphrase shall contain up to 512 ASCII
printable characters (character codes 32 to
126, both included), except that the first and
last characters of the passphrase shall not be
the space character (character codes 32)
The passphrase shall follow the passphrase_id
be and separated from it by the ‘:’ character.

The passphrase_id and passphrase must be
configured consistently on all the
DomainParticipants that join the DDS Domain.

Supported URI schemas are: "file" and "data".

Examples:
file:myfile.txt

file:/home/myuser/myfile.txt

data:,5612:Open Sesame

Here the passphrase_id is 5612 and the
passphase is "Open Sesame"

In the above example, in order to specify the
same configuration, the content of the file
myfile.txt should be the string:
5612:Open Sesame

DomainParticipant

Formatted: Font: 10 pt

270 DDS Security, v1.12

rtps_psk_secret_passphrase_extra

(the presence of this property is

optional. This property is ignored is

the rtps_psk_secret_passphrase is not

present)

URI to access a list of additional passphrase_id
and passphrase values that are also accepted
during decoding. This is intended to allow
replacing the pre-shared keys system-wide
while the system remains in operation.

The URIs accepted are the same used for the
rtps_psk.secret_passphrase

property.

If multiple passphrases are provided each secret
passphrase_id and passphrase tuple shall be
separated from the next using the LineFeed (\n,
character 10), the CarryReturn (\r, character
13), or both.
For example:
data:,5613:ExtraSecretPassphase

5614:AnotherSecretPassphase

5615:YetAnotherSecretPassphase

DomainParticipant

10.5.1.1 Symmetric Cipher Algorithm

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

If used in the DomainParticipantQos, it configures multiple things:

• The Symmetric Cipher Algorithm Pair that the DomainParticipant will use to protect the

secure builtin endpoints (with the exception of the SecureVolatile).

• The default Symmetric Cipher Algorithm Pair used by DataWriters and DataReaders in

the DomainParticipant that will be used unless it is overridden by a configuration in a

specific DataWriterQos or DataReaderQos.

• The default Symmetric Cipher Algorithm Pair used by for RTPS Message Protection, assuming

it is enabled.

• The default Symmetric Cipher Algorithm Pair used by for RTPS PSK Message Protection,

assuming it is enabled.

If used in a DataWriterQos or DataReaderQos it configures the symmetric cipher used by that

specific DataWriter or DataReader, overriding any default configuration that may have been set

on the DomainParticipantQos. If the property is omitted or set to AUTO on the

PropertyQosPolicy of a DataWriterQos or DataReaderQos the default specified for the

DomainParticipant will apply to the corresponding DataWriter or DataReader.

The Symmetric Cipher Algorithm shall be one of the algorithms defined in 8.1.

10.5.1.2 PSK Symmetric Cipher Algorithm

DDSSEC12-94 – Provide Pre-Shared Key Protection

Configures the Cipher Algorithm Pair that the DomainParticipant will use to protect RTPS

Messages with a pre-shared Key.

The algorithm selected will be reflected in the transformation_algorithm_id field that appears in the

CryptoTransformIdentifier of the protected RTPS Messages.

10.5.1.3 PSK Secret Passphrase

DDSSEC12-94 – Provide Pre-Shared Key Protection

Deleted: two

Deleted: If the symmetric_cipher_algorithm property is

omitted or has its value set to “AUTO” in the
PropertyQosPolicy of the

DomainParticipantQos, the selection of the symmetric

cipher algorithm used will be left to the Cryptographic

plugin implementation.¶

Deleted: 8.18.18.1.1

DDS Security, v1.12 271

Configures the KeyMaterial and CryptoTransformKeyId and

CryptoTransformKeyRevision used by the operation encode_rtps_message when the

parameter transform_with_psk is set to true. Note that the CryptoTransformKeyId and

CryptoTransformKeyRevision both appear within the CryptoTransformIdentifier.

The same KeyMaterial shall also be used to by the operation decode_rtps_message when the

CryptoHeader indicates it has been protected with a pre-shared key when the

CryptoTransformIdentifier contains matching values for the CryptoTransformKeyId

and CryptoTransformKeyRevision.

The derivation of the CryptoTransformKeyId, CryptoTransformKeyRevision and

KeyMaterial from the secret passphrase shall be as specified in 10.5.2.1.3.

10.5.1.4 PSK Secret Passphrase Alternative

DDSSEC12-94 – Provide Pre-Shared Key Protection

Configures alternative values for the KeyMaterial, CryptoTransformKeyId and

CryptoTransformKeyRevision used to decrypt/authenticate received RTPS Messages

protected with a pre-shared Key. That is the transformation performed by the operation

decode_rtps_message when the context indicates they have been protected with a pre-shared

key.

The derivation of the CryptoTransformKeyId, CryptoTransformKeyRevision and

KeyMaterial from the secret passphrase alternative shall be as specified in 10.5.2.1.3.

10.5.2 DDS:Crypto:AES-GCM-GMAC Types

The Cryptographic plugin defines a set of generic data types to be used to initialize the plugin and

to externalize the properties and material that must be shared with the applications that need to decode

the cipher material, verify signatures, etc.

Each plugin implementation defines the contents of these types in a manner appropriate for the

algorithms it uses. All “Handle” types are local opaque handles that are only understood by the local

plugin objects that create or use them. The remaining types shall be fully specified so that independent

implementations of DDS:Crypto:AES-GCM-GMAC can interoperate.

10.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken

The DDS:Crypto:AES-GCM-GMAC plugin shall set the attributes of the CryptoToken object as

specified in the table below:

Table 72 – CryptoToken class for the builtin Cryptographic plugin

Attribute name Attribute value
class_id “DDS:Crypto:AES_GCM_GMAC”

binary_properties name value

dds.cryp.keymat The Big Endian CDR Serialization of the
KeyMaterial_AES_GCM_GMAC structure defined below.

10.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure

The contents and serialization of the KeyMaterial_AES_GCM_GMAC structure are described by

the Extended IDL below.

Deleted: 727269

272 DDS Security, v1.12

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Note: The types CryptoTransformKind and CryptoTransformKeyId were defined in 7.3.18

and 7.3.19. The acceptable values for CryptoAlgorithmId are defined in 8.1.

@extensibility(FINAL)

struct KeyMaterial_AES_GCM_GMAC {

 CryptoTransformKind transformation_kind;

 sequence<octet, 32> master_salt;

 CryptoTransformKeyId sender_key_id;

 sequence<octet, 32> master_sender_key;

 CryptoTransformKeyId receiver_specific_key_id;

 sequence<octet, 32> master_receiver_specific_key;

};

typedef

sequence<KeyMaterial_AES_GCM_GMAC> KeyMaterial_AES_GCM_GMAC_Seq;

A zero value for receiver_specific_key_id indicates there is no receiver-specific authentication tags

and shall occur if and only if the length of the master_receiver_specific_key is also zero.

10.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The Key Material used by the BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader shall be derived from the SharedSecret

obtained as part of the authentication process. The attributes of the KeyMaterial_AES_GCM_GMAC

shall be set as described in Table 73 below. This uses HMAC-Based Key Derivation (HKDF)

recommended in IETF RFC 5869 [50].

DDSSEC12-90 - Meeting CNSSP-15 security requirements

Table 73 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader

Attribute name Attribute value
transformation_kind Set transformation_algorithm_id to CRYPTO_ALGORITHM_ID_AES256_GCM
master_salt HMACsha256 (sha256(Challenge1 | KxSaltCookie | Challenge2) , SharedSecret)

The parameters to the above functions are defined in Table 74.
In the case where transformation_kind. member transformation_algorithm_id is
CRYPTO_ALGORITHM_ID_AES128_GCM this is truncated to the first 128 bits.

sender_key_id 0
master_sender_key HMACsha256 (sha256(Challenge2 | KxKeyCookie | Challenge1) , SharedSecret)

The parameters to the above functions are defined in Table 74.
In the case where transformation_kind member transformation_algorithm_id is
CRYPTO_ALGORITHM_ID_AES128_GCM this is truncated to the first 128 bits.

receiver_specific_key_id 0
master_receiver_specific_key Zero-length sequence

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 74 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic plugin

Term Meaning
Challenge1 The challenge that was sent in the challenge1 attribute of the

HandshakeRequestMessageToken as part of the Authentication protocol.

This information shall be accessible from the SharedSecretHandle.

Deleted: ation

Deleted: 7.3.187.3.187.3.17

Deleted: 7.3.197.3.197.3.18

Deleted: /* Valid values for
CryptoTransformKind */¶

¶

/* No encryption, no authentication tag

*/¶

#define CRYPTO_TRANSFORMATION_KIND_NONE

{0, 0, 0, 0}¶

¶

/* No encryption.¶

 One AES128-GMAC authentication tag

using the sender_key¶

 Zero or more AES128-GMAC auth. tags

with receiver keys */¶

#define

CRYPTO_TRANSFORMATION_KIND_AES128_GMAC

{0, 0, 0, 1} ¶

¶

/* Authenticated Encryption using AES-

128 in Galois Counter Mode¶

 (GCM) using the sender key.¶

 The authentication tag using the

sender_key obtained from GCM¶

 Zero or more AES128-GMAC auth. tags

with receiver keys */¶

#define

CRYPTO_TRANSFORMATION_KIND_AES128_GCM

{0, 0, 0, 2} ¶

 ¶

/* No encryption.¶

 One AES256-GMAC authentication tag

using the sender_key¶

 Zero or more AES256-GMAC auth. tags

with receiver keys */¶

#define

CRYPTO_TRANSFORMATION_KIND_AES256_GMAC

{0, 0, 0, 3} ¶

¶

/* Authenticated Encryption using AES-

256 in Galois Counter Mode¶

 (GCM) using the sender key.¶

 The authentication tag using the

sender_key obtained from GCM¶

 Zero or more AES256-GMAC auth. tags

with receiver keys */¶

#define

CRYPTO_TRANSFORMATION_KIND_AES256_GCM

{0, 0, 0, 4}¶

Deleted: Table 73Table 73Table 70

Deleted: 737370

Deleted: . transformation_algorithm_id

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: Table 74Table 74Table 71

Deleted: is

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: Table 74Table 74Table 71

Deleted: CRYPTO_TRANSFORMATION_KIND_

DDS Security, v1.12 273

Challenge2 The challenge that was sent in the challenge2 attribute of the
HandshakeReplyMessageToken as part of the Authentication protocol.

This information shall be accessible from the SharedSecretHandle.

SharedSecret The shared secret established as part of the key agreement protocol.
This information shall be accessible from the SharedSecretHandle.

KxKeyCookie The 16 bytes in the string “key exchange key”

KxSaltCookie The 16 bytes in the string “keyexchange salt”
data1 | data2 | data3 The symbol ‘|’ is used to indicate byte string concatenation
HMACsha256(key, data) Computes the hash-based message authentication code on ‘data’ using the key

specified as first argument and a SHA256 hash as defined in [27].
When the ‘data’ is a string, it is passed to the function a the raw array of
characters treted as bytes without any leading “length” or terminating “nul”
character.

10.5.2.1.3 Key material used by the RTPS Pre-Shared Key (PSK) Protection

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The KeyMaterial used by the RTPS PSK Protection (ParticipantPSKMaterial) shall be derived

from the Pre-Shared Secret (a.k.a. Pre-Shared-Key) configured for the Participant.

The attributes of the KeyMaterial_AES_GCM_GMAC shall be set as described in Table 75 and

Table 76 below. This uses HMAC-Based Key Derivation (HKDF) recommended in IETF RFC 5869

[52].

Table 75 – KeyMaterial_AES_GCM_GMAC for RTPS Pre Shared Key (PSK) Protection

Attribute name Attribute value
transformation_kind

nested attribute:
transformation_algorithm_id

Set the transformation_algorithm_id to one of the following
CryptoAlgorithmId values (see section 8.1):
CRYPTO_ALGORITHM_ID_NONE

CRYPTO_ALGORITHM_ID_AES128_GMAC

CRYPTO_ALGORITHM_ID_AES128_GCM

CRYPTO_ALGORITHM_ID_AES256_GMAC

CRYPTO_ALGORITHM_ID_AES256_GCM

The CryptoAlgorithmId variants containing AES128 in their name indicate

that the encryption and/or authentication use AES with 128-bit key as the
underlaying cryptographic engine. These variants shall have master_sender_key
with 16 octets in length.
The variants containing AES256 in their name indicate that the encryption and/or
authentication use AES with 256-bit key as the underlaying cryptographic engine.
These variants shall have master_sender_key with 32 octets in length.
The variants with name ending with GCM indicate that the transformation is the
standard authenticated encryption operation known as AES-GCM (AES using
Galois Counter Mode) where the plaintext is encrypted and followed by an
authentication tag computed using the same secret key.
The variants ending in GMAC indicate that there is no encryption (i.e., the
ciphertext matches the input plaintext) and there is an authentication tag
computed using the sender key that is shared with all the readers.

transformation_kind

nested attribute:
transformation_key_revision

PassphraseKeyId

This value is defined in Table 76.

master_salt HMACsha256(HMACsha256("PSK-SALT" | SenderKeyId | "RTPS" |

ProtocolVersion | VendorId | GuidPrefix, PreSharedSecret), "master salt

derivation" | 0x01)

The parameters to the above functions are defined in Table 76.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

274 DDS Security, v1.12

In the case where transformation_kind member transformation_algorithm_id is
CRYPTO_ALGORITHM_ID_AES128_GMAC or

CRYPTO_ALGORITHM_ID_AES128_GCM this is truncated to the first 128 bits.

sender_key_id SenderKeyId

This value is defined in Table 76.

master_sender_key HMACsha256(HMACsha256("PSK-SKEY" | SenderKeyId | "RTPS" |
ProtocolVersion | VendorId | GuidPrefix, PreSharedSecret), "master sender
key derivation"| 0x01)
The parameters to the above functions are defined in Table 76.
In the case where transformation_kind member transformation_algorithm_id is
CRYPTO_ALGORITHM_ID_AES128_GMAC or

CRYPTO_ALGORITHM_ID_AES128_GCM this is truncated to the first 128 bits.

receiver_specific_key_id 0
master_receiver_specific_key Zero-length sequence

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 76 – Terms used in the RTPS PSK Protection derivation formula for the builtin Cryptographic plugin

Term Meaning
“ASCII TEXT” Well-known text string.
Sha256(data) Computes the hash on ‘data’ using the SHA256 hash as defined in [27].

When the ‘data’ is a string, it is passed to the function as a byte buffer, one ASCII
character per byte, without any leading “length” or terminating “nul” character.

HMACsha256(key, data) Computes the hash-based message authentication code on ‘data’ using the key
specified as first argument and a SHA256 hash as defined in [27].
When the ‘data’ is a string, it is passed to the function as a byte buffer, one ASCII
character per byte, without any leading “length” or terminating “nul” character.

data1 | data2 | data3 The symbol ‘|’ is used to indicate byte string concatenation

DomainId The decimal string representation of the DDS DomainId for the DomainParticipant.

DomainTag The string containing the DDS DomainTag of the DomainParticipant.

Note the special case where DomainTag is the emtpy string is allowed.
GuidPrefix 12 bytes matching the GUID Prefix that will appear in the RTPS Header of the RTPS

messages protected with the derived key material.
PassphraseId The integer value resulting from interpreting the passphrase_id configured in the

property dds.sec.crypto.psk.secret_passphrase as decimal integer.

For example,e if the property is set to
data:,5612:Open Sesame

The PassphaseId would be the integer 5612.

PassphraseKeyId Single byte computed as specified below:
PassphraseKeyId = PassphraseId & 0xFF

PassphraseKeyRevision The CryptoTransformKeyRevision (7.3.17) value computed as specified below:
PassphraseRevision[0] = (PassphraseId >> 24) & 0xFF

PassphraseRevision[1] = (PassphraseId >> 16) & 0xFF

PassphraseRevision[2] = (PassphraseId >> 8) & 0xFF

PassphraseSecret Text string: The pre-shared secret (a.k.a. PSK or passphrase) configured on all
DomainParticipants intended to join the same PSK-protected Domain.
This string shall match the passphrase configured on the Cryptographic plugin
using the property “dds.sec.crypto.psk.secret_passphrase“ , see 10.5.1
When the string is passed to a function that expects an array of octets, it is treated
as. an array of characters without any leading “length” or terminating “nul”
character.

For example if the dds.sec.crypto.psk.secret_passphrase property is set to
data:,5612:Open Sesame

Formatted: Font: 10 pt

Formatted: Font:

DDS Security, v1.12 275

The PassphaseSecret would be the string "Open Sesame"
ProtocolVersion 2 bytes matching the Protocol Version that will appear in the RTPS Header of the

RTPS messages being protected with the derived key material.
SenderKeyId Four-byte array.

The first 3 bytes are the first 3 bytes resulting from the

Sha256("DomainId=" | DomainId | ";DomainTag=" | DomainTag)

The last byte is set to the PassphraseKeyId.

VendorId 2 bytes matching the Vendor Id that will appear in the RTPS Header of the RTPS

messages protected with the derived key material.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Example derivation of the Key Material from a pre-shared secret:
dds.sec.crypto.psk.secret_passphrase=data:,5632:castle super radar denial

swing lunar kind swarm wet toilet output harbor basic begin margin huge

year visit

INPUTS:
 Property dds.sec.crypto.psk.secret_passphrase =
data:,5632:castle super radar denial swing lunar kind swarm wet toilet

output harbor basic begin margin huge year visit

 DomainId = 201

 DomainTag =""

 ProtocolVersion = {0x02, 0x05}

 VendorId = {0x01, 0x01}

 GuidPrefix = {DF, CD, 91, E1, 68, 68, 04, 51, 6C, B1, B6, 0E}

OUTPUTS:
 PassphraseSecret = "castle super radar denial swing lunar kind swarm wet

toilet output harbor basic begin margin huge year visit"

 PassphraseId = 5632 = 0x1600

 PassphraseKeyId = 5632 & 0xFF = 0x1600 & 0XFF = 0x00

 PassphraseKeyRevision = {0x00, 0x00, 0x16} = {0, 0, 22}

 SenderKeyId:

 sha256("DomainId=201;DomainTag=") =

 61c853ac1adb0af119364e30f74271fc16a57608e2aca13f74bcd343e9ec5a2a

 SenderKeyId = {{0x61, 0xC8, 0x53}, PassphraseKeyId}

 SenderKeyId = {0x61, 0xC8, 0x53, 0x00}

 master_salt =

 HMACsha256(

 HMACsha256(

 "PSK-SALT" | SenderKeyId | "RTPS" | ProtocolVersion | VendorId |

GuidPrefix,

 PassphraseSecret),

 "master salt derivation" | 0x01)

 master_salt =

 HMACsha256(

 HMACsha256(

276 DDS Security, v1.12

 50 53 4B 2D 53 41 4C 54 | 61 C8 53 00 | 52 54 50 53 | 02 05 | 01 01

| DF CD 91 E1 68 68 04 51 6C B1 B6 0E,

 63 61 73 74 6C 65 20 73 75 70 65 72 20 72 61 64 61 72 20 64 65 6E

69 61 6C 20 73 77 69 6E 67 20 6C 75 6E 61 72 20 6B 69 6E 64 20 73 77 61 72

6D 20 77 65 74 20 74 6F 69 6C 65 74 20 6F 75 74 70 75 74 20 68 61 72 62 6F

72 20 62 61 73 69 63 20 62 65 67 69 6E 20 6D 61 72 67 69 6E 20 68 75 67 65

20 79 65 61 72 20 76 69 73 69 74),

 6D 61 73 74 65 72 20 73 61 6C 74 20 64 65 72 69 76 61 74 69 6F 6E |

01)

 master_salt =

a4ebff5738dc6826c8d3f5e55a24bb96d9e80147b51c4e49a0927c4fa2cfec8c

 master_sender_key =

 HMACsha256(

 HMACsha256(

 "PSK-SKEY" | SenderKeyId | "RTPS" | ProtocolVersion | VendorId |

GuidPrefix,

 PassphraseSecret),

 "master sender key derivation" | 0x01)

 master_sender_key =

 HMACsha256(

 HMACsha256(

 50 53 4B 2D 53 4B 45 59 | 61 C8 53 00 | 52 54 50 53 | 02 05 | 01 01

| DF CD 91 E1 68 68 04 51 6C B1 B6 0E,

 63 61 73 74 6C 65 20 73 75 70 65 72 20 72 61 64 61 72 20 64 65 6E

69 61 6C 20 73 77 69 6E 67 20 6C 75 6E 61 72 20 6B 69 6E 64 20 73 77 61 72

6D 20 77 65 74 20 74 6F 69 6C 65 74 20 6F 75 74 70 75 74 20 68 61 72 62 6F

72 20 62 61 73 69 63 20 62 65 67 69 6E 20 6D 61 72 67 69 6E 20 68 75 67 65

20 79 65 61 72 20 76 69 73 69 74),

 6D 61 73 74 65 72 20 73 65 6E 64 65 72 20 6B 65 79 20 64 65 72 69

76 61 74 69 6F 6E | 01)

 master_sender_key =

4708460adc6bb886521fbdc4b3a9d34e27eed36c162ccdf4fb7427a7f347738b

10.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier

DDSSEC12-90 - Meeting CNSSP-15 security requirements

The DDS:Crypto:AES-GCM-GMAC shall set the CryptoTransformIdentifier attributes as

specified in the table below:

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 77 – CryptoTransformIdentifier class for the builtin Cryptographic plugin

Attribute Value
transformation_kind Set the transformation_algorithm field to one of the following values (see section

8.1):
CRYPTO_ALGORITHM_ID_NONE

CRYPTO_ALGORITHM_ID_AES128_GMAC

CRYPTO_ALGORITHM_ID_AES128_GCM

CRYPTO_ALGORITHM_ID_AES256_GMAC

CRYPTO_ALGORITHM_ID_AES256_GCM

Deleted: DDS:Crypto:AES-GCM-GMAC

Deleted: 9.5.2.1.1

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: CRYPTO_TRANSFORMATION_KIND_

DDS Security, v1.12 277

The variants containing AES128 in their name indicate that the encryption
and/or authentication use AES with 128-bit key as the underlaying cryptographic
engine. These variants shall have master_sender_key with 16 octets in length and
master_receiver_specific_key with either zero or 16 octets in length.
The variants containing AES256 in their name indicate that the encryption
and/or authentication use AES with 256-bit key as the underlaying cryptographic
engine. These variants shall have master_sender_key with 32 octets in length and
master_receiver_specific_key with either zero or 32 octets in length.
The variants with name ending with GCM indicate that the transformation is the
standard authenticated encryption operation known as AES-GCM (AES using
Galois Counter Mode) where the plaintext is encrypted and followed by an
authentication tag computed using the same secret key. These variants may
contain zero or more receiver-specific authentication tags. If
receiver_specific_key_id is set to zero there shall be no receiver-specific tags
otherwise there shall be one or more receiver-specific tags.
The variants ending in GMAC indicate that there is no encryption (i.e., the
ciphertext matches the input plaintext) and there is an authentication tag
computed using the sender key that is shared with all the readers. These variants
may contain zero or more receiver-specific authentication tags. If
receiver_specific_key_id is set to zero there shall be no receiver-specific tags
otherwise there shall be one or more receiver-specific tags.
Set the transformation_key_revision field to the value {0, 0, 0} the first time Key
Material is produced for a specific value of the transformation_key_id.

Subsequent generation of the Key Material for that same
transformation_key_id should increment the transformation_key_revision,

starting from the last Byte, as in {0x00, 0x00, 0x01}, {0x00, 0x00, 0x02}, etc. until
{0xFF, 0xFF, 0xFF} and then roll-over to {0x00, 0x00, 0x01} again.

transformation_key_id This is set to a different value each time new Key Material is produced by a
DomainParticipant. The algorithm used is implementation specific but it

shall avoid repeating the values for the same DomainParticipant.

This value is not modified for the Key Material created by the
revise_local_entity_keys operation..

10.5.2.3 DDS:Crypto:AES-GCM-GMAC CryptoHeader

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that

transform plain text into cipher text. The cipher-text created by these “encode” operations

contains a CryptoHeader that is interpreted by the corresponding “decode” operations on the

receiving side.

The CryptoHeader structure is described by the Extended IDL below:

// Serialized as Big Endian

@extensibility(FINAL)

struct CryptoHeader {

 CryptoTransformIdentifier transform_identifier;

 octet session_id[4];

 octet initialization_vector_suffix[8];

};

As indicated by the IDL above, the plugin_crypto_header_extra attribute introduced in 7.4.6.4.2

consists of the session_id and the initialization_vector_suffix.

The transformation_indentifier combined with the identity of the sending DomainParticipant

uniquely identifies the KeyMaterial used to transform the plaintext into the cipher text.

The session_id combined with the KeyMaterial uniquely identifies the cryptographic keys used for

the encryption and MAC operations.

Deleted: ¶

278 DDS Security, v1.12

The initialization_vector_suffix combined with the session_id uniquely identifies the

Initialization Vector used as part of the AES-GCM and AES-GMAC transformations.

The CryptoHeader structure shall be serialized using Big Endian serialization (a.k.a. network byte

order).

10.5.2.4 DDS:Crypto:AES-GCM-GMAC CryptoContent

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has operations that transform

plaintext into cipher text. The cipher-text created by some of these “encode” operations contains a

CryptoContent submessage element (see 7.4.6.2) that is interpreted by the corresponding “decode”

operations on the receiving side.

The CryptoContent structure is described by the Extended IDL below:

// Serialized as Big Endian

@extensibility(FINAL)

struct CryptoContent {

 sequence<octet> crypto_content;

};

The CryptoContent structure shall be serialized using Big Endian serialization (a.k.a. network byte

order).

10.5.2.5 DDS:Crypto:AES-GCM-GMAC CryptoFooter

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that

transform plaintext into cipher text. The cipher-text created by these “encode” operations contains a

CryptoFooter that is interpreted by the corresponding “decode” operations on the receiving side.

The CryptoFooter structure is described by the Extended IDL below:

// Serialized as Big Endian

@extensibility(FINAL)

struct ReceiverSpecificMAC {

 CryptoTransformKeyId receiver_mac_key_id;

 octet receiver_mac[16];

};

// Serialized as Big Endian

@extensibility(FINAL)

struct CryptoFooter {

 octet common_mac[16];

 sequence<ReceiverSpecificMAC> receiver_specific_macs;

};

As indicated by the IDL above, the crypto_footer attribute introduced in 7.4.6.5 consists of the

common_mac and the receiver_specific_macs.

The receiver-specific Message Authentication Codes (MACs) are computed with a secret key that the

sender shares only with one receiver. The receiver-specific MACs provide message-origin

authentication to the receiver even when the sender is communicating with multiple receivers via

multicast and shares the same encryption key will all of them.

The ReceiverSpecificMAC and CryptoFooter structures shall be serialized using Big Endian

serialization (a.k.a. network byte order).

DDS Security, v1.12 279

10.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior

This plugin implements three interfaces: CryptoKeyFactory, CryptoKeyExchange, and

CryptoTransform. Each is described separately.

10.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyFactory plugin operations is invoked.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 78 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory plugin

register_local_partic

ipant

This operation shall create a new KeyMaterial_AES_GCM_GMAC object and

return a handle that the plugin can use to access the created object. We will refer to

this object by the name: ParticipantKeyMaterial.

The transformation_kind member transformation_algorithm_id for the

ParticipantKeyMaterial object determines whether the transformation

performs authentication only (GMAC) or authenticated encryption (GCM). The

selection between these two options shall be done according to the setting of the

RTPS Protection Kind (see 10.4.1.2.5.7).

The transformation_kind member transformation_algorithm_id also determines

whether the encryption and/or authentication uses 128-bit or 256-bit keys. This aspect

shall be configurable but the configuration mechanism is not specified.

The operation shall store in the internal state of the plugin the value for

particiant_security_config.algorithm_info.symmetric_cipher.supported_mask.
This operation shall fill the adjusted_algorithm_info output parameter as follows:

• The member symmetric_cipher.supported_mask shall be initialized with all

the CryptoAlgorithmBit that correspond to the algorithms that can be

used to protect the RTPS messages, RTPS submessages, and the data in

application level (non built-in) Topics.

• The member symmetric_cipher.builtin_kx_endpoints_required_mask shall

be initialized with CryptoAlgorithmBit that corresponds to the

algorithm that will be used to protect the

DCPSParticipantVolatileMessageSecure builtin Topic.

• The member symmetric_cipher.builtin_endpoints_required_mask shall be

initialized with all the CryptoAlgorithmBit that correspond to the

algorithms that will be used to protect he remaining buitin Topics, other than

the DCPSParticipantVolatileMessageSecure builtin Topic.

• All other members of adjusted_algorithm_info shall be set to zero.

The operation shall configure the Crypto plugins to only accept the resulting set of

supported algorithms in the adjusted_algorithm_info.
register_matched_remo

te_participant

This operation shall associate the SharedSecret received as an argument with

the local and remote ParticipantCryptoHandle.

This operation shall create a new KeyMaterial_AES_GCM_GMAC object and

associate it with the local and remote ParticipantCryptoHandle pair. We will

refer to this object by the name: Participant2ParticipantKeyMaterial.

The Participant2ParticipantKeyMaterial transformation_kind,

master_salt, and master_sender_key, and sender_key_id shall match those of the

ParticipantKeyMaterial.

If the RTPS Protection Kind (see 10.4.1.2.5.7) does not specify the use of origin

authentication, then the receiver_specific_key_id shall be set to zero and the

master_receiver_specific key shall be set to the empty sequence.

If the RTPS Protection Kind (see 10.4.1.2.5.7) specifies the use of origin

authentication, then a new secret key

Deleted: 10.4.1.2.5.710.4.1.2.5.710.4.1.2.1.6

Deleted: 10.4.1.2.5.710.4.1.2.5.710.4.1.2.1.6

Deleted: 10.4.1.2.5.710.4.1.2.5.710.4.1.2.1.6

280 DDS Security, v1.12

(MasterReceiverParticipantSpecificKey) shall be created, the

receiver_specific_key_id shall be set to identify this new key, and the

master_receiver_specific key field shall contain
MasterReceiverParticipantSpecificKey.

The Participant2ParticipantKeyMaterial shall be used to transform and

authenticate the RTPS messages.

The Participant2ParticipantKeyMaterial shall be sent to the remote

DomainParticipant using the operations of the CryptoKeyExchange.

This operation also creates a KeyMaterial_AES_GCM_GMAC object derived from

the SharedSecret passed as a parameter. This key material shall be associated

with the local and remote ParticipantCryptoHandle pair. We will refer to this

key material as the Participant2ParticipantKxKeyMaterial. It is used

to exchange key material between DomainParticipant entities.

register_local_datawr

iter

This operation shall create a new KeyMaterial_AES_GCM_GMAC_Seq object

and returns a handle that the plugin can use to access the created object. We will refer

to this object by the name: WriterKeyMaterialSeq. The sequence may contain

one or two elements depending on the settings of the Metadata Protection Kind (see

10.4.1.2.6.6) and Data Protection Kind (see 10.4.1.2.6.7).

If the Metadata Protection Kind is different from NONE, then the operation shall

create a KeyMaterial_AES_GCM_GMAC to use for the

encode_datawriter_submessage operation. In addition, this key material

shall appear as the first element in the KeyMaterial_AES_GCM_GMAC_Seq.

If the Data Protection Kind is different from NONE, then the operation shall create a

KeyMaterial_AES_GCM_GMAC to use for the

encode_serialized_payload operation.

In the case where both meta-data protection and data protection are the same, it is

allowed for an implementation to reuse the same key material for both. In this case the

KeyMaterial_AES_GCM_GMAC_Seq would contain only one element. This “key

reuse” aspect shall be configurable but the configuration mechanism is not specified.

The transformation_kind member transformation_algorithm_id for the

KeyMaterial_AES_GCM_GMAC objects determines whether the transformation

performs authentication only (GMAC) or encryption followed by authentication

(GCM). The selection between these two options for each created

KeyMaterial_AES_GCM_GMAC object shall be done according to the setting of

corresponding Protection Kind.

The transformation_kind member transformation_algorithm_id for the

KeyMaterial_AES_GCM_GMAC objects also determines whether the encryption

and/or authentication uses 128-bit or 256-bit keys. This aspect shall be configurable

but the configuration mechanism is not specified.

This operation shall fill the adjusted_algorithm_info output parameter as follows:

• The member adjusted_algorithm_info. symmetric_cipher.supported_mask
shall be initialized with the same value set in the

register_local_participant operation.

• The member adjusted_algorithm_info. symmetric_cipher.required_mask
shall be initialized with CryptoAlgorithmBit that corresponds to the

algorithm that will be used to protect the application data and the RTPS

submessages sent by the DataWriter.

All other members of adjusted_algorithm_info shall be set to zero.
register_matched_remo

te_datareader

This operation shall create a new KeyMaterial_AES_GCM_GMAC_Seq object

and associate it with the local DatawriterCryptoHandle and remote

DatareaderCryptoHandle pair. We will refer to this object by the name:

Writer2ReaderKeyMaterialSeq.

The first elements of the Writer2ReaderKeyMaterialSeq shall contain the

elements of the WriterKeyMaterialSeq.

Additional elements depend on whether the Metadata Protection Kind (see

10.4.1.2.6.6) specified the use of origin authentication.

Deleted: 10.4.1.2.6.610.4.1.2.6.610.4.1.2.1.14

Deleted: 10.4.1.2.6.710.4.1.2.6.710.4.1.2.1.15

Deleted: 10.4.1.2.6.610.4.1.2.6.610.4.1.2.1.14

DDS Security, v1.12 281

If the Metadata Protection Kind (see 10.4.1.2.6.6) specified the use of origin

authentication, the first element of the Writer2ReaderKeyMaterialSeq shall

contain a non-zero receiver_specific_key_id that identifies a new key created by this
operation. The new key (MasterReceiverREndpointSpecificKey) shall be

stored in the master_receiver_specific_key. This master_receiver_specific_key shall
be shared only with that one specific remote DataReader so that it can be used

to authenticate the DataWriter that originated the message.

The Writer2ReaderKeyMaterialSeq shall be sent to the remote DataReader

such that it can process the CryptoTransform encoded from the DataWriter.

Deleted: 10.4.1.2.6.610.4.1.2.6.610.4.1.2.1.14

282 DDS Security, v1.12

register_local_datare

ader

This operation shall create a new KeyMaterial_AES_GCM_GMAC object and

return a handle that the plugin can use to access the created object. We will refer to

this object by the name: ReaderKeyMaterial.

The transformation_kind. member transformation_algorithm_id for the

ReaderKeyMaterial object determines whether the transformation performs

authentication only (GMAC) or encryption followed by authentication (GCM). The

selection between these two options shall be done according to the setting of the Data

Protection Kind (see 10.4.1.2.6.7).

The transformation_kind. member transformation_algorithm_id also determines

whether the encryption and/or authentication uses 128-bit or 256-bit keys. This aspect

shall be configurable but the configuration mechanism is not specified.

This operation shall fill the adjusted_algorithm_info output parameter as follows:

• The member adjusted_algorithm_info. symmetric_cipher.supported_mask
shall be initialized with the same value set in the

register_local_participant operation.

• The member adjusted_algorithm_info. symmetric_cipher.required_mask
shall be initialized with CryptoAlgorithmBit that corresponds to the

algorithm that will be used to protect the the RTPS submessages sent by the

DataReader.

All other members of adjusted_algorithm_info shall be set to zero.
register_matched_remo

te_datawriter

This operation shall create a new KeyMaterial_AES_GCM_GMAC object and

associate it with the local DatareaderCryptoHandle and remote

DatawriterCryptoHandle pair. We will refer to this object by the name:

Reader2WriterKeyMaterial.

The transformation_kind, master_salt, and master_sender_key, and sender_key_id

for the Reader2WriterKeyMaterial object shall match those in the

DataReader ReaderKeyMaterial.

If the Metadata Protection Kind (see 10.4.1.2.6.6) does not specify the use of origin

authentication, then the receiver_specific_key_id shall be set to zero and the

master_receiver_specific key shall be set to the empty sequence.

If the Metadata Protection Kind (see 10.4.1.2.6.6) specifies the use of origin

authentication, then a new secret key

(MasterReceiverWEndpointSpecificKey) shall be created, the

receiver_specific_key_id shall be set to identify this new key, and the

master_receiver_specific key field shall contain
MasterReceiverWEndpointSpecificKey.

The Reader2WriterKeyMaterial shall be sent to the remote DataWriter

such that it can process the ciphetext from the DataReader.

Deleted: 10.4.1.2.6.710.4.1.2.6.710.4.1.2.1.15

Deleted: 10.4.1.2.6.610.4.1.2.6.610.4.1.2.1.14

Deleted: 10.4.1.2.6.610.4.1.2.6.610.4.1.2.1.14

DDS Security, v1.12 283

revise_local_entity_k

eys

This operation shall create new Key Material for all the Entities in the
DomainParticipant with the exceptions noted below. The Key Material should be
associated with the new key revision value returned by the operation. See
9.5.1.6.
The new Key Material created by this operation shall be related to the existing
material in that:
The transformation_kind shall only change the key_revision member.
The master_salt shall be entirely new.
The sender_key_id shall remain the same.

The master_sender_key shall be entirely new.
The receiver_specific_key shall remain the same.

The master_receiver_specific_key shall remain the same.

This operation shall not create new Key Material for the
BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader.

This operation shall not create new Key Material for any Key Material derived
from. Pre-shared key.

activate_key_revision This operation shall cause the CryptoTransform API “encode” operations that do
not use a preshared key (i.e. not the encode_rtps_message called with

transform_with_psk = true) to use the Key Material associated with the

specified key_revision.
Note that the KeyMaterial being revised/activated is subject to the limitations
described in 9.5.1.8.7 regarding the fact that they only impact KeyMaterial that is
potentially shared with multiple Participants.

unregister_participan

t

Releases any resources allocated on the corresponding call to
register_local_participant, or
register_matched_remote_participant.

unregister_datawriter Releases any resources allocated on the corresponding call to
register_local_datawriter, or
register_matched_remote_datawriter.

unregister_datareader Releases any resources allocated on the corresponding call to
register_local_datareader, or
register_matched_remote_datareader.

10.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyExchange plugin operations is invoked.

Table 79 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange plugin

create_local_particip

ant_crypto_tokens
Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and returns it in

the output sequence.
The CryptoToken contains the Participant2ParticipantKeyMaterial

created on the call to register_matched_remote_participant for the
remote_participant_crypto.

set_remote_participan

t_crypto_tokens
Shall receive the sequence containing one CryptoToken object that was created

by the corresponding call to
create_local_participant_crypto_tokens on the remote side.

create_local_datawrit

er_crypto_tokens
Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and returns it in

the output sequence.
The CryptoToken contains the Writer2ReaderKeyMaterial created on

the call to register_matched_remote_datareader for the
remote_datareader_crypto.

Deleted: 797974

284 DDS Security, v1.12

set_remote_datawriter

_crypto_tokens
Shall receive the sequence containing one CryptoToken object that was created

by the corresponding call to create_local_datawriter_crypto_tokens

on the remote side.
create_local_dataread

er_crypto_tokens
Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and returns it in

the output sequence.
The CryptoToken contains the Reader2WriterKeyMaterial created on

the call to register_matched_remote_datawriter for the

remote_datawriter_crypto.
set_remote_datareader

_crypto_tokens

Shall receive the sequence containing one CryptoToken object that was created

by the corresponding call to create_local_datareader_crypto_tokens

on the remote side.
return_crypto_tokens Releases the resources associated with the CryptoToken objects in the

sequence.

10.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC

10.5.3.3.1 Overview

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyTransform plugin operations is invoked.

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Table 80 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform plugin

encode_serialized_

payload
Uses the WriterKeyMaterial associated with the

sending_datawriter_crypto to encrypt and/or sign the input

SerializedPayload RTPS SubmessageElement (see 7.4.1).

If the transformation_kind indicates that encryption is performed, then the output
shall be the three RTPS Submessage elements: CryptoHeader, CryptoContent, and
CryptoFooter (see 10.4.2.5 and 10.5.3.3.4.4).
If the transformation_kind indicates that only authentication is performed, then the
output shall be the three RTPS Submessage elements: CryptoHeader,
SerializedPayload, and CryptoFooter. Where SerializedPayload is the serialized
payload passed as an input to the operation.
This operation shall always set the receiver_specific_macs attribute in the
CryptoFooter to the empty sequence.

encode_datawriter_

submessage
Uses the WriterKeyMaterial associated with the

sending_datawriter_crypto and the Writer2ReaderKeyMaterial

associated with the sending_datawriter_crypto and each of the

receiving_datareader_crypto handles to encrypt and/or sign the input RTPS

Submessage.
If the transformation_kind indicates that encryption is performed, then the output
shall be the three RTPS Submessages: SecurePrefixSubMsg,

SecureBodySubMsg, and SecurePostfixSubMsg. See 7.4.7.6, 7.4.7.5, and

7.4.7.7.
If the transformation_kind indicates that only authentication is performed, then the
output shall be the three RTPS Submessages: SecurePrefixSubMsg,

InputSubmessage, and SecurePostfixSubMsg. Where InputSubmessage

indicates the submessage that was passed as input to the operation.
The transformations shall be computed using the WriterKeyMaterial associated

with the sending_datawriter_crypto.

Depending on the configuration the operation may compute and set the common_mac
and the receiver_specific_macs attributes within the SecurePostfixSubMsg.

The common_mac shall be computed using the WriterKeyMaterial associated

with the sending_datawriter_crypto.

Deleted: 10.5.3.3.4.410.5.3.3.4.410.5.3.3.1.4

DDS Security, v1.12 285

If computed, the receiver_specific_macs shall be computed using the
Writer2ReaderKeyMaterial associated with the pair composed of the

sending_datawriter_crypto and each of the corresponding

receiving_datareader_crypto.

In the case of BuiltinParticipantVolatileMessageSecureWriter, the
receiving_datareader_crypto_list has ONE element containing KxKey material derived

from the SharedSecret as described in 10.5.2.1.2.
encode_datareader_

submessage
Uses the ReaderKeyMaterial associated with the

sending_datareader_crypto and the Reader2WriterKeyMaterial

associated with the sending_datareader_crypto and each of the

receiving_datareader_crypto handles to encrypt and/or sign the input RTPS

Submessage.
If the transformation_kind indicates that encryption is performed, then the output
shall be the three RTPS Submessages: SecurePrefixSubMsg,

SecureBodySubMsg, and SecurePostfixSubMsg. See 7.4.7.6, 7.4.7.5, and

7.4.7.7.
If the transformation_kind indicates that only authentication is performed, then the
output shall be the three RTPS Submessages: SecurePrefixSubMsg,

InputSubmessage, and SecurePostfixSubMsg. Where InputSubmessage

indicates the submessage that was passed as input to the operation.
The transformations shall be computed using the ReaderKeyMaterial associated

with the sending_datareader_crypto.

Depending on the configuration the operation may compute and set the
common_digest or the additional_digests.
The common_mac shall be computed using the ReaderKeyMaterial associated

with the sending_datareader_crypto.

If computed, the receiver_specific_macs shall be computed using the
Reader2WriterKeyMaterial associated with the pair composed of the

sending_datareader_crypto and each of the corresponding

receiving_datawriter_crypto.

In the case of BuiltinParticipantVolatileMessageSecureReader, the
receiving_datawriter_crypto_list has ONE element containing KxKey material derived

from the SharedSecret as described in 10.5.2.1.2.

286 DDS Security, v1.12

encode_rtps_messag

e

Transforms the input RTPS Message into an output RTPS Message that contains the
original RTPS Header and, if present, the original HeaderExtension, followed by the
SecureRTPSPrefixSubMsg, one or more RTPS SubMessages, and the
SecureRTPSPostfixSubMsg.

If this operation is called with the parameter transform_with_psk=TRUE. then it
shall use the pre-shared key material defined in section 10.5.2.1.3, otherwise the

transformation shall use the ParticipantKeyMaterial associated with the

sending_participant_crypto and

Participant2ParticipantKeyMaterial and each of the

receiving_participant_crypto handles.

1) Transformation when “Additional Authenticated Data (AAD)” is disabled
Let RTPSMessage{RTPSHdr-> InfoSourceSubMsg} represent the input RTPS

Message transformed so that the RTPS Header is replaced with an RTPS

InfoSourceSubMsg containing the same information as the RTPS Header and the
remaining submessages remain the same.
1.1) If the transformation_kind indicates that encryption is performed, then the
output shall be the three RTPS Submessages: SecureRTPSPrefixSubMsg,

SecureBodySubMsg, and SecureRTPSPostfixSubMsg.

The SecureRTPSPrefixSubMsg flag AuthenticatedDataFlag shall be unset.

The SecureRTPSPrefixSubMsg PreSharedKeyFlag shall be set if

encode_rtps_message was called with transform_with_psk=TRUE.

The SecureBodySubMsg shall contain the result of encrypting the
RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the SecureBodySubMsg.

1.2) If the transformation_kind indicates that only authentication is performed then
the output shall be the RTPS Submessages: SecureRTPSPostfixSubMsg,

RTPSMessage{RTPSHdr-> InfoSourceSubMsg}, and

SecureRTPSPostfixSubMsg.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

Depending on the configuration the operation may contain only the common_mac and
a non-zero length receiver_specific_macs.
The common_mac shall be computed using the ParticipantKeyMaterial

associated with the sending_participant_crypto.

If present, the receiver_specific_macs shall be computed using the
Participant2ParticipantKeyMaterial associated with the pair composed of

the sending_participant_crypto and each of the corresponding

receiving_participant_crypto.

2) Transformation when “Additional Authenticated Data (AAD)” is enabled
Let RTPSMessage{Body} represent the input RTPS Message excluding the RTPS

Header and HeaderExtension. This case shall not insert an

InfoSourceSubMsg on the resulting output.
2.1) If the transformation_kind indicates that encryption is performed, then the
output shall be the original RTPS Header and (if present) the (adjusted)

HeaderExtension (see bullet (3)), plus three RTPS Submessages:

SecureRTPSPrefixSubMsg, SecureBodySubMsg, and

SecureRTPSPostfixSubMsg.

The SecureRTPSPrefixSubMsg flag AdditionlAuthenticatedDataFlag

shall be set.
The SecureRTPSPrefixSubMsg flag PreSharedKeyFlag shall be set if

encode_rtps_message was called with transform_with_psk=TRUE.

Deleted: T

Deleted: uses

Deleted: SecurePrefixSubMsg,

DDS Security, v1.12 287

The SecureBodySubMsg shall contain the result of encrypting the
RTPSMessage{Body}.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the SecureBodySubMsg with both the RTPS Header and (if present) the

(adjusted) HeaderExtension as AAD, see bullet (3).

2.2) If the transformation_kind indicates that only authentication is performed then
the output shall be: the original RTPS Header and (if present) the (adjusted)

Header Extension (see bullet (3)), followed by the

SecureRTPSPostfixSubMsg, RTPSMessage{Body}, and

SecureRTPSPostfixSubMsg.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the RTPSMessage{Body} with both the RTPS Header and (if present) the

(adjusted) Header Extension as AAD, see bullet (3).

Depending on the configuration the operation may contain only the common_mac and
a non-zero length receiver_specific_macs.
The common_mac shall be computed using the ParticipantKeyMaterial

associated with the sending_participant_crypto.
If present, the receiver_specific_macs shall be computed using the
Participant2ParticipantKeyMaterial associated with the pair composed of

the sending_participant_crypto and each of the corresponding
receiving_participant_crypto.
3) In both cases: transformation_kind indicating encryption or only authentication,
the HeaderExtension, if present, shall be adjusted as follows:

3.1) The HeaderExtension used as input to the AAD shall have the

messageLength element, if present, set to zero.

3.2) The HeaderExtension used as input to the AAD shall have the

messageChecksum element, if present, set to zero.

3.3) After computing the SecureRTPSPrefixSubMsg, SecureBodySubMsg, and

SecureRTPSPostfixSubMsg. The HeaderExtension shall be adjusted setting

the appropriate values of the messageLength and messageChecksum elements,

if originally present, to correspond to the transformed (encoded) RTPS message.

288 DDS Security, v1.12

decode_rtps_messag

e
Examines the SecureRTPSPrefixSubMsg to determine the transformation_kind

matches the one the receiving DomainParticipant is expecting both in terms of the
type of algorithm as well as the protection (encrypt, authentication, origin
authentication, etc.). If the kind is not the expected one, the operation shall fail with
an exception.

1) If SecureRTPSPrefixSubMsg’s PreSharedKeyFlag is not set:

Uses source DomainParticipant GUIDs in the RTPS Header to locate the

sending_participant_crypto and receiving_participant_crypto.

Then looks whether the transformation_key_id attribute in the
CryptoTransformIdentifier is associated with those

ParticipantCryptoHandles. If the association is not found, the operation shall

fail with an exception.
If the transformation_kind indicates the use of authenticated encryption, it uses the
RemoteParticipantKeyMaterial to decode the encoded input RTPS message.
Uses the RemoteParticipantKeyMaterial and the

RemoteParticipant2ParticipantKeyMaterial associated with the

retrieved ParticipantCryptoHandles to validate the authentication tags

contained in the SecureRTPSPostfixSubMsg. If the

RemoteParticipant2ParticipantKeyMaterial specified a
receiver_specific_key_id different from zero, the operation shall check that the
received SecureRTPSPostfixSubMsg contains a receiver_specific_macs element

containing the receiver_specific_key_id associated with local and remote
CryptoHandles and use it to verify the submessage. If the receiver_specific_key_id

is missing or the verification fails the operation shall fail with an exception.

2) If SecureRTPSPrefixSubMsg’s PreSharedKeyFlag is set:
Uses content of the RTPS Header, the pre-shared secret and SenderKeyId to compute
(or locate a previously computed) PSK Key Material associated with the sending
Participant (see 10.5.2.1.3).

If the transformation_kind indicates the use of authenticated encryption, it uses the
PSK KeyMaterial to decode the encoded input RTPS message.
Uses the PSK KeyMaterial to validate the authentication tags contained in the
SecureRTPSPostfixSubMsg.

3) If the SecureRTPSPrefixSubMsg’s AdditionalAuthenticatedDataFlag is set:
The validation of the tag present in the SecureRTPSPostfixSubMsg shall pass the

RTPS Header and (if present) the (adjusted) HeaderExtension as AAD.

3.1) The (adjusted) HeaderExtension used as input to the AAD validation shall

have the messageLength element, if present, set to zero and the

messageChecksum element, if present, also set to zero.

4) Finally:
The HeaderExtension, if present, shall have the messageLength element, if

present and the messageChecksum element, if present, adjusted such that they

correspond to the values passed as input to the encode_rtps_message operation.

Upon success the returned RTPS Message shall match the input to the
encode_rtps_message operation on the DomainParticipant that sent the

message.
preprocess_secure_

submsg

Examines the RTPS SecureSubmessage to:
1. Determine whether the CryptoTransformIdentifier the

transformation_kind matches one of the recognized kinds.
2. Classify the RTPS Submessage as a Writer or Reader Submessage.

Deleted: is

Deleted: one of the recognized kinds

Deleted: recognized

Deleted: and destination

DDS Security, v1.12 289

3. Retrieve the DatawriterCryptoHandle and DataReaderCryptoHandle handles
associated with the CryptoTransformIdentifier

transformation_key_id.

decode_datawriter_

submessage

Uses the RemoteDatawriterKeyMaterial and the

RemoteDatawriter2DatareaderKeyMaterial associated with the

CryptoHandles returned by the preprocess_secure_submessage to verify and

decrypt the RTPS SubMessage that follows the SecurePrefixSubMsg, using the

authentication tags in the SecurePostfixSubMsg. If the verification or decryption
fails, the operation shall fail with an exception.
If the RemoteDatawriterKeyMaterial specified a transformation_kind different

from CRYPTO_ALGORITHM_ID_NONE, then the operation shall check that the
received SecurePostfixSubMsg contains a common_mac and use it to verify the

RTPS SubMessage that follows the SecurePrefixSubMsg. If the common_mac is

missing or the verification fails the operation shall fail with an exception.
If the RemoteDatawriter2DatareaderKeyMaterial specified a
receiver_specific_key_id different from zero, then the operation shall check that the
received SecurePostfixSubMsg contains a non-zero length

receiver_specific_macs element containing the receiver_specific_key_id that is
associated with local and remote CryptoHandles and use it to verify the submessage.
If the receiver_mac_key_id is missing or the verification fails, the operation shall fail
with an exception.
If the RemoteDatawriterKeyMaterial specified a transformation_kind that

performs encryption the operation shall use the
RemoteDatawriterKeyMaterial to decode the data in the

SecureBodySubMsg, obtain an RTPS SubMessage and return it. Otherwise the

RTPS Submessage that follows the SecurePrefixSubMsg is returned.

Upon success the returned RTPS SubMessage shall match the input to the
encode_datawriter_message operation on the DomainParticipant that sent the

message.
In the case of BuiltinParticipantVolatileMessageSecureReader, the
sending_datawriter_crypto contains the KxKey material derived from the

SharedSecret as described in 10.5.2.1.2

decode_datareader_

submessage

Uses the RemoteDatareaderKeyMaterial and the

RemoteDatareader2DatawriterKeyMaterial associated with the

CryptoHandles returned by the preprocess_secure_submessage to verify and

decrypt the RTPS SubMessage that follows the SecurePrefixSubMsg, using the

authentication tags in the SecurePostfixSubMsg.If the verification or decryption

fails, the operation shall fail with an exception.
If the RemoteDatareaderKeyMaterial specified a transformation_kind different
from CRYPTO_ALGORITHM_ID_NONE, then the operation shall check that the
received SecurePostfixSubMsg contains a common_mac and use it to verify the

RTPS SubMessage that follows the SecurePrefixSubMsg. If the common_mac is

missing or the verification fails, the operation shall fail with an exception.
If the RemoteDatareader2DatawriterKeyMaterial specified a
receiver_specific_key_id different from zero, then the operation shall check that the
received SecurePostfixSubMsg contains a non-zero length

receiver_specific_macs element containing the receiver_specific_key_id that is
associated with local and remote CryptoHandles and use it to verify the submesage. If
the receiver_specific_key_id is missing or the verification fails, the operation shall fail
with an exception.
If the RemoteDatareaderKeyMaterial specified a transformation_kind that

performs encryption the operation shall use the
RemoteDatareaderKeyMaterial to decode the data in the SecureBodySubMs,

obtain an RTPS SubMessage and return it. Otherwise the RTPS Submessage that
follows the SecurePrefixSubMsg is returned.

Deleted: CRYPTO_TRANSFORMATION_KIND_

Deleted: CRYPTO_TRANSFORMATION_KIND_

290 DDS Security, v1.12

Upon success the returned RTPS SubMessage shall match the input to the
encode_datareader_message operation on the DomainParticipant that sent the

message.
In the case of BuiltinParticipantVolatileMessageSecureWriter, the
sending_datareader_crypto contains the KxKey material derived from the

SharedSecret as described in 10.5.2.1.2

decode_serialized_

payload

Uses writerGUID and the readerGUID in the RTPS SubMessage to locate the
sending_datawriter_crypto and receiving_datareader_crypto. Then
looks whether the transformation_key_id attribute in the
CryptoTransformIdentifier in the CryptoHeader SubmessageElement is

associated with those CryptoHandles. If the association is not found, the operation
shall fail with an exception.
Uses the RemoteDatawriterKeyMaterial associated with the retrieved

CryptoHandles to verify the common_mac and decrypt the RTPS SecureData
SubmessageElement. If the verification or decryption fails, the operation shall fail
with an exception.
If the RemoteDatawriterKeyMaterial specified a receiver_specific_key_id

different from zero, then the operation shall check that the received SecureData
SubmessageElement contains a non-zero length receiver_specific_macs element
containing the receiver_specific_key_id that is associated with the local and remote
CryptoHandles. If the receiver_specific_key_id is missing or the verification fails, the
operation shall fail with an exception.
If the RemoteDatawriterKeyMaterial specified a transformation_kind that

performs encryption, the operation shall use the
RemoteDatawriterKeyMaterial to decode the data in the CryptoContent,

obtain a SerializedPayload and return it. Otherwise the RTPS Submessage

Element that follows the CryptoHeader is returned as SerializedPayload.

Upon success the returned RTPS SerializedPayload shall match the input to the

encode_serialized_payload operation on the DomainParticipant that sent the

message.

10.5.3.3.2 Encode/decode operation virtual machine

The logical operation of the DDS:Crypto:AES-GCM-GMAC is described in terms of a virtual machine

as it performs the encrypt message digest operations. This is not intended to mandate implementations

should follow this approach literally, simply that the observable results for any plaintext are the same

as the virtual machine described here.

For any given cryptographic session the operation of the DDS:Crypto:AES-GCM-GMAC transforms

plaintext into ciphertext can be described in terms of a virtual machine that maintains the following

state:

DDSSEC12-53 Clarify meaning of "bit array" and specify number of constant …

Table 81 – Terms used in Key Computation and cryptographic transformations formulas for the builtin
cryptographic plugin

State variable Type Meaning
MasterKey octet[16] for AES128

octet[32] for AES256
The master key from which session salts, session keys
and session hash keys are derived.

MasterSalt octet[16] for AES128
octet[32] for AES256

A random vector used in connection with the
MasterKey to create the SessionKey.

MasterKeyId octet[4] A NONCE value associated with the master key when it
is first created used to tag the ciphertext to ensure the
correct key is being used during decryption. It may be
used also for the purposes of re-keying.

Deleted: 128 bit array

Deleted: 256 bit array

Deleted: 128 bit array

Deleted: 256 bit array

DDS Security, v1.12 291

MasterReceiverSpecificKey octet[16] for AES128
octet[32] for AES256

The master key from which
SessionReceiverSpecificKey keys are derived.

InitializationVectorSuffix octet[8] An initially random NONCE used to create the
Initialization Vector needed by the cryptographic
operations. This value shall be changed each time an
encryption or MAC operation is performed using the
same key.

SessionId octet[4] An initially random value used to create the current
SessionKey, and SessionReceiverSpecificKey from the
MasterKey, MasterReceiverSpecificKey, and Master
salts.
The SessionId is incremented each time a new
SessionKey is needed and then used to derive the new
SessionKey and SessionReceiverSpecificKey from the
MasterKey and MasterReceiverSpecificKey.
Knowledge of the MasterKey, MasterSalt, and the
SessionId is sufficient to create the SessionKey.
Knowledge of the MasterReceiverSpecificKey,
MasterSalt, and the SessionId is sufficient to create the
SessionReceiverSpecificKey.

SessionKey octet[16] for AES128
octet[32] for AES256

The current key used for creating the ciphertext
and/or the common_mac.
It is constructed from the MasterKey, MasterSalt, and
SessionId.

SessionReceiverSpecificKey octet[16] for AES128
octet[32] for AES256

The current key used for creating the
receiver_specific_mac.

session_block_counter 64 bit integer A counter that counts the number of blocks that have
been ciphered with the current SessionKey.

max_blocks_per_session 64 bit integer A configurable property that limits the number of
blocks that can be ciphered with the same SessionKey.
If the session_block_counter exceeds this value, a new
SessionKey and SessionReceiverSpecificKey are
computed and the session_block_counter is reset to
zero.

All the key material with a name that starts with “Master” corresponds to the

KeyMaterial_AES_GCM_GMAC objects that were created by the CryptoKeyFactory

operations. This key material is not used directly to encrypt or compute MAC of the plaintext. Rather it

is used to create “Session” Key material by means of the algorithms described below. This has the

benefit that the ‘session’ keys used to secure the data stream data can be modified as needed to

maintain the security of the stream without having to perform explicit rekey and key-exchange

operations.

10.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey

The SessionKey and SessionReceiverSpecificKey are computed from the MasterKey,

MasterSalt and the SessionId:

SessionKey := HMAC256(MasterKey,"SessionKey" | MasterSalt | SessionId)

SessionReceiverSpecificKey

 := HMAC256(MasterReceiverSpecificKey,

 "SessionReceiverKey" | MasterSalt | SessionId)

HMAC256 is a HMAC-SHA256. In case a 128 key is desired the 256 bit HMAC is truncated to the

first 128 bits.

DDSSEC12-53 Clarify meaning of "bit array" and specify number of constant …

Deleted: 128 bit array

Deleted: 256 bit array

Deleted: 128 bit array

Deleted: 256 bit array

Deleted: 128 bit array

Deleted: 256 bit array

292 DDS Security, v1.12

In the above expressions the symbol ‘|’ indicates concatenation. When constructing the input to the

HMAC256 function, the strings should be treated as arrays of octets, each octet being the ASCII

representation of a character, and there should be no NUL termination of the string, that is, the last

character of the string is immediately followed by the bytes concatenated after the string.

10.5.3.3.4 Computation of ciphertext from plaintext

The ciphertext is computed from the plain text using AES in Galois Counter Mode (AES-GCM).

The encryption transforms the plaintext input into ciphertext by performing an encryption operation

using the AES-GCM algorithm in counter mode using the SessionKeys associated with the specified

KeyHandle. The encryption transformation is described in detail in the sections that follow.

The encryption operation uses a 96-bit initialization vector constructed as:
 InitializationVector = SessionId | InitializationVectorSuffix

In the above expression ‘|’ indicates the concatenation of bit strings.

The same InitializationVector is associated with all the session keys (SessionKey and all

SessionReceiverSpecificKeys) associated with a specific Sender. It shall be incremented each time any

of those keys are used to encrypt and/or create a MAC.

The session_block_counter is an internal counter that keeps track of the number of blocks encrypted

with the same session key. The purpose is to ensure that a single session key is not used to encrypt

more than the configured max_blocks_per_session. The session_block_counter and the size of the

plain text shall be used by implementations of the Crypto encode operations to ensure that

max_blocks_per_session will not be exceeded during the encode operation. If the operation detects

that the counter would exceed the maximum then it should modify the SessionId and derive new

session keys prior to transforming any of the input plain text. The change in the SessionId creates new

session keys and thus resets the session_block_counter. This approach ensures that all ciphertext

returned by the operation is encrypted with the same session keys.

The resulting ciphertext will be preceded by a CryptoHeader that indicates the SessionId and

InitializationVectorSuffix.

The resulting block of bytes from the “encode” operations (encode_serialized_payload,

encode_datawriter_submessage, encode_datareader_submessage, and

encode_rtps_message) is illustrated in the sections that follow:

10.5.3.3.4.1 Format of the CryptoHeader Submessage Element

The CryptoHeader submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoHeader: +

+ CryptoTransformIdentifier transformation_id +

| octet[4] transformation_id.transformation_kind |

| octet[4] transformation_id.transformation_key_id |

+ - +

+ plugin_sec_prefix: +

| octet[4] plugin_sec_prefix.session_id |

~ octet[8] plugin_sec_prefix.init_vector_suffix ~

+---------------+---------------+---------------+---------------+

Note that as specified in 10.5.2.3 the CryptoHeader shall be serialized using Big Endian representation.

DDS Security, v1.12 293

10.5.3.3.4.2 Format of the CryptoContent Submessage Element

The CryptoContent submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoContent: +

| long crypto_content.length = N |

+ - +

|crypto_ct[0] |crypto_ct[1] |crypto_ct[2] |crypto_ct[3] |

~ . . . ~

|crypto_ct[N-4] |crypto_ct[N-3] |crypto_ct[N-2] |crypto_ct[N-1] |

+---------------+---------------+---------------+---------------+

Note that the cipher operations have 16-byte block-size and add padding when needed. Therefore the

secure data.length (“N”) will always be a multiple of 16.

Note that as specified in 10.5.2.4 the secure data.length shall be serialized using Big Endian

representation.

10.5.3.3.4.3 Format of the CryptoFooter Submessage Element

The CryptoFooter submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoFooter (= plugin_sec_tag): +

~ octet[16] plugin_sec_tag.common_mac ~

+ - +

+ plugin_sec_tag.receiver_specific_macs: +

| long plugin_sec_tag.receiver_specific_macs.length = N |

| - |

| octet[4] receiver_specific_macs[0].receiver_mac_key_id |

| octet[16] receiver_specific_macs[0].receiver_mac ~

+ - +

+ . . . +

+ - +

| octet[4] receiver_specific_macs[N-1].receiver_mac_key_id|

~ octet[16] receiver_specific_macs[N-1].receiver_mac ~

+---------------+---------------+---------------+---------------+

Note that as specified in 10.5.2.5 the CryptoFooter shall be serialized using Big Endian representation.

10.5.3.3.4.4 Result from encode_serialized_payload

The input to this operation is a SerializedPayload submessage element:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ SerializedPayload ~

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

294 DDS Security, v1.12

+---------------+---------------+---------------+---------------+

~ SerializedPayload (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the

SerializedPayload.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = Encrypt(SerializedPayload) |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the SerializedPayload.

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-

GCM where the Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

10.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage

The input to this operation is an RTPS submessage:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage ~

| |

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage (unchanged from input) ~

| |

+---------------+---------------+---------------+---------------+

DDS Security, v1.12 295

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the RTPS

Submessage.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_BODY | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = Encrypt(RTPS SubMsg) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the input RTPS Submessage.

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-GCM

transformation where the Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

10.5.3.3.4.6 Result from encode_rtps_message

The input to this operation is an RTPS message:

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages
+---------------+---------------+---------------+---------------+

~ RTPSHdr ~

+---------------+---------------+---------------+---------------+

~ RTPSHdrExt (optional) ~

+---------------+---------------+---------------+---------------+

~ SubMsg1 submessage ~

+---------------+---------------+---------------+---------------+

~ SubMsg2 submessage ~

296 DDS Security, v1.12

+---------------+---------------+---------------+---------------+

| . . . |

+---------------+---------------+---------------+---------------+

~ SubMsgN submessage ~

+---------------+---------------+---------------+---------------+

10.5.3.3.4.6.1 Authentication only with AAD enabled

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The output in case the transformation performs authentication only and Additional Authenticated Data

(AAD)” is enabled shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ RTPSHdrExt (optional, unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) A E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

~ RTPSMessage{ Body } ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the RTPSMessage{

Body } where the Additional Authenticated Data is set to the RTPS Header and RTPS

HeaderExtension.

RTPSMessage{ Body }. Represents the original RTPS Message where the RTPS Header and

HeaderExtension are removed.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

10.5.3.3.4.6.2 Authentication only with AAD not enabled

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The output in case the transformation performs authentication only and Additional Authenticated Data

(AAD)” is not enabled shall be:
0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ RTPSHdrExt (optional, unchanged from input) ~

DDS Security, v1.12 297

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

~ RTPSMessage{ RTPSHdr+RTPSHdrExt? -> InfoSourceSubMsg } ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the RTPSMessage{

RTPSHdr -> InfoSourceSubMsg}.

RTPSMessage{ RTPSHdr -> InfoSourceSubMsg}. Represents the original RTPS Message

where the RTPS Header is repaced with an InfoSourceSubMsg with equivalent content.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

If Additional Authenticated Data (AAD)” is not enabled the inout RTPS Message cannot contain an

RTPS Header Extension. Preventing this configuration is implementation specific.

10.5.3.3.4.6.3 Authenticated Encryption with AAD enabled

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The output in case the transformation performs authenticated encryption and has Additional

Authenticated Data enabled shall be:
+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ RTPSHdrExtension (optional, unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) A E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_BODY | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = |

| Encrypt(RTPSMessage{Body}) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

Deleted:

298 DDS Security, v1.12

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the RTPSMessage{ Body }.

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-GCM

transformation where the Additional Authenticated Data is set to the RTPS Header and RTPS

Header Extension.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector

10.5.3.3.4.6.4 Authenticated Encryption with AAD not enabled

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The output in case the transformation performs encryption and authentication shall be:
+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_BODY | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = |

| Encrypt(RTPSMessage{RTPSHdr -> InfoSourceSubMsg}) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the RTPSMessage{ RTPSHdr ->

InfoSourceSubMsg}.

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-GCM

transformation where the Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

If Additional Authenticated Data (AAD)” is not enabled the input RTPS Message cannot contain an

RTPS Header Extension. Preventing this configuration is implementation specific.

10.5.3.3.5 Computation of plaintext from ciphertext

The decrypt operation first checks that the CryptoTransformIdentifier attribute in the

CryptoHeader has the proper transformation_kind and also uses the

CryptoTransformIdentifier transformation_key_id to locate the MasterKey, and

MasterSalt. In case of a re-key the crypto handle (ParticipantCryptoHandle,

DatawriterCryptoHandle, or DatareaderCryptoHandle) may be associated with

Deleted: CM

DDS Security, v1.12 299

multiple MasterKeyId and this parameter allows selection of the correct one. If the MasterKeyId

is not found associated with the crypto handle the operation shall fail.

The session_id attribute within the CryptoHeader is used to obtain the proper

SessionReceiverSpecificKeys and SessionKey. Note that this only requires a re-

computation if it has changed from the previously received SessionId for that crypto handle.

Given the InitializationVector from the CryptoHeader and the SessionKey the

transformation performed to recover the plaintext from the ciphertext is identical to the one performed

to go plaintext to ciphertext.

10.5.3.3.6 Computation of the message authentication codes

The message digest is computed on the crypto_header and the ciphertext.

There are two types of message authentication codes (MACs) that may appear.

• The first stored in the common_mac uses the SessionKey. This MAC may be verified by all the

receivers of the message.

• The second type, stored in the receiver_specific_macs contains MACs that use different

SessionReceiverSpecificKey whose CryptoTransformIdentifier appears explicitly in the

receiver_specific_macs. These MACs use receiver-specific keys that are shared with only one

receiver. The key material for these MACs is derived from the

RemoteParticipant2ParticipantKeyMaterial, the

RemoteWriter2ReaderKeyMaterial, or the RemoteReader2WriterKeyMaterial.

10.6 Builtin Logging Plugin

The builtin Logging Plugin is known as the DDS:Logging:DDS_LogTopic.

The DDS:Logging:DDS_LogTopic implements logging by publishing information to a DDS Topic

BuiltinLoggingTopic defined below.

DDSSEC12-108 – secure log topic has a year 2038 issue

The BuiltinLoggingTopic shall have the Topic name “DDS:Security:LogTopicV2”.

The BuiltinLoggingTopic shall have the Type BuiltinLoggingTypeV2 defined in the IDL

below.

DDSSEC12-108 – secure log topic has a year 2038 issue

Prior versions of DDS-Security (1.1 and earlier) published a topic with name

"DDS:Security:LogTopic” and type BuiltinLoggingType also shown in the IDL below.

Implementors of DDS-Security 1.2 may optionally provide mechanisms that configure a

DomainParticipant to publish the legacy BuiltinLoggingTopic, that is, topic name

"DDS:Security:LogTopic" and type "BuiltinLoggingType". Implementors may optionally provide

mechanisms that configure a DomainParticipant to publish both the legacy “DDS:Security:LogTopic”

as well as the new “DDS:Security:LogTopicV2”. Note that publishing both Topics requires two

separate DataWriters.

Users of DDS-Security 1.2 that want to receive the secure log messages shall create a DataReader for

topic “DDS:Security:LogTopicV2” with type BuiltinLoggingTypeV2. Users that want to receive

messages from applications that are using the "legacy" Log Topic may create an additional DataReader

for “DDS:Security:LogTopic” with type BuiltinLoggingType. Users may subscribe to both Topics,

using two different DataReaders.

enum LoggingLevel {

 EMERGENCY_LEVEL, // System is unusable. Should not continue use.

 ALERT_LEVEL, // Should be corrected immediately

 CRITICAL_LEVEL, // A failure in primary application.

300 DDS Security, v1.12

 ERROR_LEVEL, // General error conditions

 WARNING_LEVEL, // May indicate future error if action not taken.

 NOTICE_LEVEL, // Unusual, but nor erroneous event or condition.

 INFORMATIONAL_LEVEL, // Normal operational. Requires no action.

 DEBUG_LEVEL

};

@extensibility(FINAL)

struct NameValuePair {

 string name;

 string value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

DDSSEC12-108 – secure log topic has a year 2038 issue

struct LegacyTime_t {

 long sec;

 unsigned long nanosec;

};

struct Time_t {

 long long sec;

 unsigned long nanosec;

};

DDSSEC12-29 - Specify DDS Security uses XCDR serialization version 1

@extensibility(APPENDABLE)

struct BuiltinLoggingType {

 octet facility; // Set to 0x0A (10). Indicates sec/auth msgs

 LoggingLevel severity;

 LegacyTime_t timestamp; // Since epoch 1970-01-01 00:00:00 +0000 (UTC)

 string hostname; // IP host name of originator

 string hostip; // IP address of originator

 string appname; // Identify the device or application

 string procid; // Process name/ID for syslog system

 string msgid; // Identify the type of message

 string message; // Free-form message

 // Note that certain string keys (SD-IDs) are reserved by IANA

 map<string, NameValuePairSeq> structured_data;

};

@extensibility(APPENDABLE)

struct BuiltinLoggingTypeV2 {

 octet facility; // Set to 0x0A (10). Indicates sec/auth msgs

 LoggingLevel severity;

 Time_t timestamp; // Since epoch 1970-01-01 00:00:00 +0000 (UTC)

 string hostname; // IP host name of originator

 string hostip; // IP address of originator

 string appname; // Identify the device or application

 string procid; // Process name/ID for syslog system

 string msgid; // Identify the type of message

 string message; // Free-form message

 // Note that certain string keys (SD-IDs) are reserved by IANA

 map<string, NameValuePairSeq> structured_data;

Deleted: FINAL

DDS Security, v1.12 301

};

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

Knowledge of the BuiltinLoggingTopic shall be builtin into the DDS:Access:Permissions

AccessControl plugin and it shall be treated according to the following topic rule:

<topic_rule>
 <topic_expression> DDS:Security:LogTopic</topic_expression>
 <enable_discovery_protection>FALSE</enable_discovery_protection>
 <enable_read_access_control>TRUE</enable_read_access_control>
 <enable_write_access_control>FALSE</enable_write_access_control>
 <metadata_protection_kind>SIGN</metadata_protection_kind>
 <data_protection_kind>ENCRYPT</data_protection_kind>
 </topic_rule>

The above rule states that any DomainParticipant with permission necessary to join the DDS

Domain shall be allowed to write the BuiltinLoggingTopic but in order to read the

BuiltinLoggingTopic the DomainParticipant needs to have a grant for the

BuiltinLoggingTopic in its permissions document.

10.6.1 DDS:Logging:DDS_LogTopic plugin behavior

The table below describes the actions that the DDS:Logging:DDS_LogTopic plugin performs when

each of the plugin operations is invoked.

 Table 82 – Actions undertaken by the operations of the builtin Logging plugin

set_log_options
Controls the configuration of the plugin. The LogOptions parameter shall be used to take the

actions described below:

If the distribute parameter is set to TRUE, the DDS:Logging:DDS_LogTopic shall create a

DataWriter to send the BuiltinLoggingTopic if it is FALSE, it shall not.

The plugin shall open a file with the name indicated in the log_file parameter.

The plugin shall remember the value of the log_level so that it can be used during the log

operation.

Deleted: Auth

Deleted: PKI-DH

Deleted: 828277

302 DDS Security, v1.12

log
This operation shall check if logging was enabled by a prior call to enable_logging and if

not it shall return without performing any action.

If logging was enabled, it shall behave as described below:

The operation shall compare the value of the the log_level parameter with the value saved

during the set_log_options operation.

If the log_level parameter value is greater than the one saved by the set_log_options

operation, the operation shall return without performing any action.

If the log_level parameter value is less than or equal to the one saved, the log operation shall

perform two actions:

• It shall append a string representation of the parameters passed to the log operation to the

end of the file opened by the set_log_options operation.

• If the value of the distribute option was set on the call to set_log_options, the plugin

shall fill an object of type BuiltinLoggingType with the values passed as arguments

to the log operation and publish it using the DataWriter associated with the

BuiltinLoggingTopic created by the set_log_options operation.

enable_logging
This operation shall save the fact that logging was enabled such that the information can be

used by the log operation.

set_listener
This operation shall save a reference to the LoggerListener such that the listener is be notified

each time a log message is produced.

10.7 Builtin Authentication: DDS:Auth:PSK

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This builtin authentication plugin is referred to as the “DDS:Auth:PSK”. ”. It is intended to be used in

conjunction with the “DDS:Access:PSK” and “DDS:Crypto:PSK.

The DDS:Auth:PSK plugin is mostly a “NOOP” plugin that constructs an IdentityHandle with the

information the information the “DDS:Access:PSK” and “DDS:Crypto:PSK need.

The DDS:Auth:PSK plugin does not do any Authentication treating all participants it discovers as

“Unauthenticated” Participants. However, provided it is used with the “DDS:Crypto:PSK” plugin, any

discovered DDS DomainParticipant must have access to the same pre-shared secret key.

10.7.1 Configuration

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This plugin does not require any configuration beyond selecting it to be used. The mechanism for

selecting which plugins are active is implementation specific.

10.7.2 DDS:Auth:PSK Types

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Auth:PSK plugin.

Credential and Token attributes left unspecified in this section shall be understood to not have

any required values for the plugin. These attributes shall be handled according to the following rules:

• Plugin implementations may place data in these attributes as long as they also include a property

attribute that allows the implementation to unambiguously detect the presence and interpret these

attributes.

• Attributes that are not understood shall be ignored.

DDS Security, v1.12 303

• Property_t and BinaryProperty_t names shall comply with the rules defined in 7.3.1 and

7.3.3, respectively.

The content of the Handle objects is not specified as it represents references to internal state that is

only understood by the plugin itself. The DDS Implementation only needs to hold a reference to the

returned Handle objects returned by the plugin operations and pass these Handle references to other

operations.

10.7.2.1 DDS:Auth:PSK IdentityToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin shall set the class_id attribute of the IdentityToken object to

“DDS:Auth:PSK:1.2” no other attributes are specified or required.

The value of the class_id shall be interpreted as composed of three parts: a PluginClassName, a

MajorVersion and a MinorVersion according to the following format:

<PluginClassName>:<MajorVersion>.<MinorVersion>. The PluginClassName is

separated from the MajorVersion by the last ':' character in the class_id. The MajorVersion and

MinorVersion are separated by a '.' character. Accordingly this version of the specification has

PluginClassName equal to "DDS:Auth:PSK", MajorVersion set to 1, and MinorVersion set to 2.

10.7.2.2 DDS:Auth:PSK IdentityStatusToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin does not use this Token. There is no value specified for it.

10.7.2.3 DDS:Auth:PSK AuthenticatedPeerCredentialToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin does not use this Token. There is no value specified for it.

10.7.2.4 DDS:Auth:PSK AuthRequestMessageToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin does not use this Token. There is no value specified for it.

10.7.2.5 DDS:Auth:PSK HandshakeMessageToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

There is no value specified for it.

10.7.2.5.1 HandshakeRequestMessageToken objects

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin does not use this Token. There is no value specified for it.

10.7.2.5.2 HandshakeReplyMessageToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Auth:PSK plugin does not use this Token. There is no value specified for it.

10.7.2.5.3 HandshakeFinalMessageToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

304 DDS Security, v1.12

There is no value specified for it.

10.7.3 DDS:Auth:PSK plugin behavior

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The table below describes the actions that the DDS:Auth:PSK plugin performs when each of the plugin

operations is invoked.

Table 83 – Actions undertaken by the operations of the builtin DDS:Auth:PSK plugin

validate_local_iden

tity

This operation shall receive the participant_guid associated with the local

DomainParticipant whose identity is being validated.

The operation shall always return VALIDATION_OK.

The operation shall set the output 16-byte adjusted_participant_guid GUID to the

same value as the input participant_guid.
get_identity_token This operation returns the Token specified in 10.7.2.1

get_identity_status

_token

This operation shall return TokenNIL.

set_participant_sec

urity_config

This operation shall do nothing and return TRUE.

set_permissions_cre

dential_and_token

This operation shall do nothing and return TRUE.

validate_remote_ide

ntity

The operation shall always return VALIDATION_FAILED.

begin_handshake_req

uest

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED.
begin_handshake_rep

ly

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED
process_handshake

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED
get_shared_secret This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED.
get_authenticated_p

eer_credential_toke

n

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED.
set_listener

This operation shall save a reference to the listener object and associate it with the

specified IdentityHandle.

return_identity_tok

en

This operation shall behave as specified in 9.3.2.11.14.

return_identity_sta

tus_token

This operation shall behave as specified in 9.3.2.11.15.

return_authenticate

d_peer_credential_t

oken

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity immediately fails

return_handshake_ha

ndle

This operation does not need to be implemented. It will not be called on the plugin

given that begin_handshake_request and begin_handshake_reply

are never called.

DDS Security, v1.12 305

return_identity_han

dle

This operation shall behave as specified in 9.3.2.11.18.

return_sharedsecret

_handle

This operation does not need to be implemented. It will not be called on the plugin

given that validate_remote_identity always returns

VALIDATION_FAILED.

10.8 Builtin Access Control: DDS:Access:PSK

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This builtin plugin is referred to as the “DDS:Access:PSK”. It is intended to be used in conjunction

with the DDS:Auth:PSK and the DDS:Crypto:PSK.

The plugin implements the AccessControl plugin API granting all permissions. Specifically:

• It allows the local application to join any DDS domain, as well as publish and subscribe to any

DDS Topic in that domain.

• It allows a remote DomainParticipant to join any DDS domain, as well as publish and

subscribe to any DDS Topic in that domain.

Provided it is used with the DDS:Crypto:PSK, the broad permissions are granted on the basis that any

discovered DDS DomainParticipant must have access to the same pre-shared secret key.

10.8.1 Configuration

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The configuration of the DDS:Access:PSK access control plugin shall be done using the

PropertyQosPolicy of the DomainParticipantQos. The specific properties used are

described in Table 84 below.

Table 84 – Properties used to configure the builtin DDS:Access:PSK plugin

Property Name

(all properties have “dds.sec.access.”

prefix)

Property Value

(all these properties shall have propagate set to

FALSE)

Applicable Entities

rtps_psk_protection_kind

(the presence of this property is

optional)

One of the following 3 string options: “NONE”,
“SIGN”, or “ENCRYPT”.
Note that use of “NONE” will disable all
protection.
If not specified it is treated as if it was specified
to be “ENCRYPT”.
This property must be configured consistently
on all the DomainParticipants that join a DDS
Domain.

DomainParticipant

10.8.2 DDS:Access:PSK Types

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Access:PSK plugin.

10.8.2.1 DDS:Access:PSK PermissionsCredentialToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

306 DDS Security, v1.12

The DDS:Access:PSK plugin does not interpret the value of this Token. For this reason the value is

implementation specific.

10.8.2.2 DDS:Access:PSK PermissionsToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Access:PSK plugin shall set the class_id attributes to “DDS:Access:PSK:1.2”. No other

attributes need to be set.

10.8.2.3 DDS:Access:PSKPluginParticipantSecurityAttributes

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The PluginParticipantSecurityAttributes describe plugin-specific behavior of the

associated cryptographic plugin affecting the key material and transformations for the RTPS messages

10.8.2.4 DDS:Access:PSK PluginParticipantSecurityAttributesMask

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The PluginParticipantSecurityAttributesMask is used to encode the value of the

PluginParticipantSecurityAttributes in a compact way such that it can be included in

the ParticipantSecurityInfo.

10.8.2.5 DDS:Access:PSK PluginEndpointSecurityAttributes

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The PluginEndpointSecurityAttributes describe plugin-specific behavior of the

associated cryptographic plugin affecting the key material and transformations for DataWriter and

DataReader messages.

10.8.2.6 DDS:Access:PSK PluginEndpointSecurityAttributesMask

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The PluginEndpointSecurityAttributesMask is used to encode the value of the
PluginEndpointSecurityAttributes

10.8.3 DDS:Access:PSK plugin behavior

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The table below describes the actions that the DDS:Access:PSK plugin performs when each of the

plugin operations is invoked.

 Table 85 – Actions undertaken by the operations of the builtin AccessControl plugin

check_create_participant This operation shall return TRUE.

check_create_datawriter This operation shall return TRUE.

check_create_datareader This operation shall return TRUE.

check_create_topic This operation shall return TRUE.

check_local_datawriter_regist

er_instance

This operation shall return TRUE.

check_local_datawriter_dispos

e_instance

This operation shall return TRUE.

check_remote_participant This operation shall return TRUE.

DDS Security, v1.12 307

check_remote_datawriter

This operation shall return TRUE.

check_remote_datareader This operation shall return TRUE.

check_remote_topic This operation shall return TRUE.

check_local_datawriter_match This operation shall return TRUE.

check_local_datareader_match This operation shall return TRUE.

check_remote_datawriter_regis

ter_instance

This operation shall return TRUE.

check_remote_datawriter_dispo

se_instance

This operation shall return TRUE.

get_permissions_token This operation shall return the PermissionsToken formatted as

described in 10.8.2.2.

get_permissions_credential_to

ken

This operation shall return the PermissionsToken formatted as

described in 10.8.2.1

set_listener This operation shall save a reference to the listener object and associate it

with the specified PermissionsHandle.

return_permissions_token This operation shall behave as specified in 9.4.2.9.20

return_permissions_credential

_token

This operation shall behave as specified in 9.4.2.9.21

validate_local_permissions This operation shall succeedand return an opaque handle that the plugin

can use to refer to any implementation-specific saved information.

validate_remote_permissions This operation shall succeedand return an opaque handle that the plugin

can use to refer to any implementation-specific saved information.

get_participant_security_conf

ig

This operation shall use the permissions_handle to retrieve the cached

information resulting from the configuration of the plugin.

The fields of the ParticipantSecurityConfig attributes shall be

set according to the following rules:

The field allow_unauthenticated_participants shall be set to TRUE.

The field is_access_protected shall be set to FALSE.

The field is_rtps_axk_protected shall be set to FALSE.

The field is_rtps_psk_protected shall be set to TRUE if the

DomanParticipant was configured with the PropertyQos

property dds.sec.access.rtps_psk_protection_kind set to “ENCRYPT” or

“SIGN”. It shall be set to FALSE if it was configured with the property

set to “NONE”.

The field is_discovery_protected shall be set to FALSE.

The field is_liveliness_protected shall be set to FALSE.

The field plugin_participant_mask shall have the

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTP

S_PSK_ENCRYPTED set if and only if the DomanParticipant

was configured with the PropertyQos property

dds.sec.access.rtps_psk_protection_kind set to “ENCRYPT” All other

flags should be unset.

The field algorithm_info shall have its nested fields set as follows:

• All the “supported_mask” nested fields corresponding each

of the algorithm types shall be set to

308 DDS Security, v1.12

CRYPTO_ALGORITHM_SET_ALL defined in 7.3.9, indicating

that there are no constraints on the supported algorithms.

• All the “required_mask” nested fields corresponding each of

the algorithm types shall be set to

CRYPTO_ALGORITHM_SET_EMPTY indicating that there

are no required algorithms.

get_topic_security_config The fields of the TopicSecurityConfig attributes shall all be set to

FALSE.
get_datawriter_security_confi

g
The boolean fields of the DatawriterSecurityConfig attributes

shall all be set to FALSE.

The plugin_endpoint_attributes shall be set to the empty mask.

The setting of the ac_endpoint_properties is implementation

specific.

The field algorithm_info shall have its nested fields set as follows:

• All the “supported_mask” nested fields corresponding each of

the algorithm types shall be set to

CRYPTO_ALGORITHM_SET_ALL defined in 7.3.9, indicating

that there are no constraints on the supported algorithms.

• All the “required_mask” nested fields corresponding each of the

algorithm types shall be set to

CRYPTO_ALGORITHM_SET_EMPTY indicating that there

are no required algorithms.

get_datareader_security_confi

g
The boolean fields of the DatareaderSecurityConfig attributes

shall all be set to FALSE.

The plugin_endpoint_attributes shall be set to the empty mask.

The setting of the ac_endpoint_properties is implementation specific.

The field algorithm_info shall have its nested fields set as follows:

• All the “supported_mask” nested fields corresponding each of

the algorithm types shall be set to

CRYPTO_ALGORITHM_SET_ALL defined in 7.3.9, indicating

that there are no constraints on the supported algorithms.

• All the “required_mask” nested fields corresponding each of the

algorithm types shall be set to

CRYPTO_ALGORITHM_SET_EMPTY indicating that there

are no required algorithms.

return_participant_security_c

onfig

This operation shall behave as specified in 9.4.2.9.26

return_topic_security_config This operation shall behave as specified in 9.4.2.9.27

return_datawriter_security_co

nfig

This operation shall behave as specified in 9.4.2.9.28.

return_datareader_security_co

nfig

This operation shall behave as specified in 9.4.2.9.29.

10.9 Builtin Crypto: DDS:Crypto:PSK

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

DDS Security, v1.12 309

This builtin Cryptographic plugin is referred to as the “DDS:Crypto:PSK” plugin. This plugin

does Authenticated Encryption with Associated Data (AEAD) using Advanced Encryption Standard

with Galois Counter Mode (AES-GCM/GMAC), see 8.1 for more details.

The algorithms used are the same described in 10.5.

The DDS:Crypto:PSK plugin is intended to be used in connection with the DDS:Auth:PSK and the

DDS:Access:PSK.

10.9.1 Configuration

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The DDS:Crypto:PSK plugin shall be configured using the PropertyQosPolicy of the

DomainParticipantQos. The specific properties used are described in Table 86 below.

Table 86 – Properties used to configure the builtin DDS:Crypto:PSK plugin

Property Name

(all properties have “dds.sec.crypto.”

prefix)

Property Value

(all these properties shall have propagate set to

FALSE)

URI syntax follows IETF RFC 3986.

URI “data” schema follows IETF RFC 2397

Vendors may support additional schemas

Applicable Entities

310 DDS Security, v1.12

rtps_psk_symmetric_cipher_algorithm

(the presence of this property is

optional)

The string “AUTO” or one of the
CryptoAlgorithmName strings shown in

Table 22 that identifies a pair of Symmetric
Cipher AEAD and MAC Algorithms.
If not specified it is treated as if it was specified
to be “AUTO”.
If “AUTO” is specified it is treated as if it was
specified to be “AES256-GCM”.
This property must be configured consistently
on all the DomainParticipants that

join the same DDS Domain.

DomainParticipant

rtps_psk_secret_passphrase

(the presence of this property is

mandatory)

Specifying this property enables pre-shared-key
(PSK) protection. See 10.4.1.2.5.8.

The property specifies the URI to access the
passphrase_id and passphrase that is used to
protect RTPS messages using a pre-shared key.

The passphrase_id shall be a number between
0 and 232-1 represented as a decimal string. The
passphrase_id shall immediately follow the URI
schema, after the character(s) used to delimit
the URI schema, e.g. ‘:’ or ‘:,’.

The range of passphrase_id that verify
passphrase_id && 0xFF== 0xFF is reserved
and shall not be used.

The passphrase shall contain up to 512 ASCII
printable characters (character codes 32 to 126,
both included), except that the first and last
characters of the passphrase shall not be the
space character (character codes 32)
The passphrase shall follow the passphrase_id
be and separated from it by the ‘:’ character.

The passphrase_id and passphrase must be
configured consistently on all the
DomainParticipants that join the DDS Domain.

Supported URI schemas are: "file" and "data".

Examples:
file:myfile.txt

file:/home/myuser/myfile.txt

data:,5612:Open Sesame

Here the passphrase_id is 5612 and the
passphrase is "Open Sesame"

In the above example, in order to specify the
same configuration, the content of the file
myfile.txt should be the string:
5612:Open Sesame

DomainParticipant

Formatted: Font: 10 pt

DDS Security, v1.12 311

rtps_psk_secret_passphrase_alt

(the presence of this property is

optional)

URI to access a list of additional passphrase_id
and passphase values that are also accepted
during decoding. This is intended to allow
replacing the pre-shared keys system-wide
while the system remains in operation.

The URIs accepted are the same used for the
rtps_psk.secret_passphrase

property.

If multiple passphrases are provided each secret
passphrase_id, and passphrase tuple shall be
separated from the next using the LineFeed (\n,
character 10), the CarryReturn (\r, character
13), or both.
For example:
data:,5613:ExtraSecretPassphase

5614:AnotherSecretPassphase

5615:YetAnotherSecretPassphase

DomainParticipant

10.9.2 DDS:Crypto:PSK Types

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The Cryptographic plugin defines a set of generic data types that are used to externalize the

properties and material that must be shared with the applications that need to decode the cipher

material.

The types defined are the same as the corresponding ones for the DDS:Crypto:AES-GCM-GMAC

plugin, see 10.5.2.

10.9.2.1 DDS:Crypto:PSK CryptoToken

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This type is defined the same way as the DDS:Crypto:AES-GCM-GMAC CryptoToken, see 10.5.2.1.

This type is not strictly needed as the pre-shared Keys are not sent over the network. However, it may

still be useful to plugin implementations in order to hold the key material and pass it between

functions.

The Key Material used by the plugin shall be derived from the DomainParticipant configuration

properties defined in 10.9.1 using the same algorithm described in 10.5.2.1.3.

10.9.2.2 DDS:Crypto:PSK CryptoTransformIdentifier

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This type is defined the same wasy as the DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier,

see 10.5.2.2.

10.9.2.3 DDS:Crypto:PSK CryptoHeader

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This type is defined the same wasy as the DDS:Crypto:AES-GCM-GMAC CryptoHeader, see

10.5.2.3.

10.9.2.4 DDS:Crypto:PSK CryptoContent

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

312 DDS Security, v1.12

This type is defined the same wasy as the DDS:Crypto:AES-GCM-GMAC CryptoContent, see

10.5.2.4.

10.9.2.5 DDS:Crypto:PSK CryptoFooter

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This type is defined the same wasy as the DDS:Crypto:AES-GCM-GMAC CryptoFooter, ee 10.5.2.5.

10.9.3 DDS:Crypto:PSK plugin behavior

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

This plugin implements three interfaces: CryptoKeyFactory, CryptoKeyExchange, and

CryptoTransform. Each is described separately.

10.9.3.1 CryptoKeyFactory for DDS:Crypto:PSK

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The table below describes the actions that the DDS:Crypto:PSK when each of the

CryptoKeyFactory plugin operations is invoked.

DDSSEC12-122 – Provide mechanism for changing the session keys

Table 87 – Actions undertaken by the operations on the DDS:Crypto:PSK CryptoKeyFactory plugin

register_local_partic

ipant

This operation shall create a new KeyMaterial_AES_GCM_GMAC object and

return a handle that the plugin can use to access the created object. We will refer to

this object by the name: ParticipantKeyMaterial.

The transformation_kind member transformation_algorithm_id for the

ParticipantKeyMaterial object determines whether the transformation

performs authentication only (GMAC) or authenticated encryption (GCM). The

selection between these two options shall be done according to the setting of the

RTPS Protection Kind (see 10.4.1.2.5.7).

The transformation_kind member transformation_algorithm_id also determines

whether the encryption and/or authentication uses 128-bit or 256-bit keys. This aspect

shall be configurable but the configuration mechanism is not specified.

The operation shall store in the internal state of the plugin the value for

particiant_security_config.algorithm_info.symmetric_cipher.supported_mask.
This operation shall fill the adjusted_algorithm_info output parameter as follows:

• The member symmetric_cipher.supported_mask shall be initialized with the

CryptoAlgorithmBit that correspond to the algorithm that will be used

to protect the RTPS messages. That is, the algorithm configured using the

property rtps_psk_symmetric_cipher_algorithm, see 10.9.1.

• The member symmetric_cipher.required_mask shall be initialized with the

same value as the symmetric_cipher.supported_mask.

• The member symmetric_cipher.builtin_kx_endpoints_required_mask shall

be initialized with CRYPTO_ALGORITHM_SET_EMPTY.

• The member symmetric_cipher.builtin_endpoints_required_mask shall be

initialized with CRYPTO_ALGORITHM_SET_EMPTY.

• All other members of adjusted_algorithm_info shall be set to zero. Note that

a zero value for a mask corresponds to the constant value

CRYPTO_ALGORITHM_SET_EMPTY.

The operation shall configure the Crypto plugins to only accept the resulting set of

supported algorithms in the adjusted_algorithm_info.
register_matched_remo

te_participant

This operation shall do nothing and return dummy Handle.

register_local_datawr

iter

This operation shall do nothing and return dummy Handle.

DDS Security, v1.12 313

register_matched_remo

te_datareader

This operation shall do nothing and return dummy Handle.

register_local_datare

ader

This operation shall do nothing and return dummy Handle.

register_matched_remo

te_datawriter

This operation shall do nothing and return dummy Handle.

revise_local_entity_k

eys

This operation shall do nothing and return dummy Handle.

activate_key_revision This operation shall do nothing and return FALSE.
unregister_participan

t

Releases any resources allocated on the corresponding call to
register_local_participant, or
register_matched_remote_participant.

unregister_datawriter Releases any resources allocated on the corresponding call to
register_local_datawriter, or
register_matched_remote_datawriter.

unregister_datareader Releases any resources allocated on the corresponding call to
register_local_datareader, or
register_matched_remote_datareader.

10.9.3.2 CryptoKeyExchange for DDS:Crypto:PSK

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The table below describes the actions that the DDS:Crypto:PSK when each of the

CryptoKeyExchange plugin operations is invoked.

Table 88 – Actions undertaken by the operations of the builtin DDS CryptoKeyExchange plugin

create_local_particip

ant_crypto_tokens
This operation shall do nothing and return FALSE.

set_remote_participan

t_crypto_tokens
This operation shall do nothing and return FALSE.

create_local_datawrit

er_crypto_tokens
This operation shall do nothing and return FALSE.

set_remote_datawriter

_crypto_tokens
This operation shall do nothing and return FALSE.

create_local_dataread

er_crypto_tokens
This operation shall do nothing and return FALSE.

set_remote_datareader

_crypto_tokens

This operation shall do nothing and return FALSE.

return_crypto_tokens Releases the resources associated with the CryptoToken objects in the

sequence.

10.9.3.3 CryptoKeyTransform for DDS:Crypto:PSK

10.9.3.3.1 Overview

DDSSEC12-94 - Provide pre-shared protection for unauthenticated messages

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyTransform plugin operations is invoked.

Table 89 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform plugin

encode_serialized_

payload
This operation shall do nothing and return FALSE.

encode_datawriter_

submessage
This operation shall do nothing and return FALSE.

314 DDS Security, v1.12

encode_datareader_

submessage
This operation shall do nothing and return FALSE.

encode_rtps_messag

e

Transforms the input RTPS Message into an output RTPS Message that contains the
original RTPS Header and, if present, the original HeaderExtension, followed by the
SecureRTPSPrefixSubMsg, one or more RTPS SubMessages, and the
SecureRTPSPostfixSubMsg.

The operation checks that the parameter transform_with_psk=TRUE. If this is not the
case the operation shall fail and return FALSE.
The operation checks that the parameter receiver_specific_macs contains an empty
list. If this is not the case the operation shall fail and return FALSE.

The transformation uses the ParticipantKeyMaterial associated with the

sending_participant_crypto.

Let RTPSMessage{Body} represent the input RTPS Message excluding the RTPS

Header and HeaderExtension.

1) If the transformation_kind indicates that encryption is performed, then the output
shall be the original RTPS Header and (if present) the (adjusted)

HeaderExtension (see bullet (3)), plus three RTPS Submessages:

SecureRTPSPrefixSubMsg, SecureBodySubMsg, and

SecureRTPSPostfixSubMsg.

The SecureRTPSPrefixSubMsg flag AdditionalAuthenticatedDataFlag

shall be set.
The SecureRTPSPrefixSubMsg flag PreSharedKeyFlag shall be set.

The SecureBodySubMsg shall contain the result of encrypting the
RTPSMessage{Body}.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the SecureBodySubMsg with both the RTPS Header and (if present) the

(adjusted) HeaderExtension as AAD, see bullet (3).

2) If the transformation_kind indicates that only authentication is performed then the
output shall be: the original RTPS Header and (if present) the (adjusted) Header

Extension (see bullet (3)), followed by the SecureRTPSPostfixSubMsg,

RTPSMessage{Body}, and SecureRTPSPostfixSubMsg.

The SecureRTPSPostfixSubMsg shall contain the authentication tags computed

on the RTPSMessage{Body} with both the RTPS Header and (if present) the

(adjusted) Header Extension as AAD, see bullet (3).

The common_mac shall be computed using the ParticipantKeyMaterial

associated with the sending_participant_crypto.
3) In both cases: transformation_kind indicating encryption or only authentication,
the HeaderExtension, if present, shall be adjusted as follows:

3.1) The HeaderExtension used as input to the AAD shall have the

messageLength element, if present, set to zero.

3.2) The HeaderExtension used as input to the AAD shall have the

messageChecksum element, if present, set to zero.

3.3) After computing the SecureRTPSPrefixSubMsg, SecureBodySubMsg, and

SecureRTPSPostfixSubMsg. The HeaderExtension shall be adjusted setting

the appropriate values of the messageLength and messageChecksum elements,

if originally present, to correspond to the transformed (encoded) RTPS message.

DDS Security, v1.12 315

decode_rtps_messag

e
Examines the SecureRTPSPrefixSubMsg to determine the transformation_kind

matches the one the receiving DomainParticipant is expecting both in terms of the
type of algorithm as well as the protection (encrypt, authentication,, etc.). If the kind
is not the expected one, the operation shall fail with an exception.

The operation checks that the parameter transform_with_psk=TRUE. If this is not the
case the operation shall fail and return FALSE.

1) Uses content of the RTPS Header, the pre-shared secret and SenderKeyId to
compute (or locate a previously computed) PSK Key Material associated with the
sending Participant (see 10.5.2.1.3).
If the transformation_kind indicates the use of authenticated encryption, it uses the
PSK KeyMaterial to decode the encoded input RTPS message.
Uses the PSK KeyMaterial to validate the authentication tags contained in the
SecureRTPSPostfixSubMsg.

2) Checks the SecureRTPSPrefixSubMsg’s AdditionalAuthenticatedDataFlag.
If this flag is not set, the decode operation shall fail.
If the flag is set, the decode shall validate the tag present in the
SecureRTPSPostfixSubMsg passing the RTPS Header and (if present) the

(adjusted) HeaderExtension as AAD.

2.1) The (adjusted) HeaderExtension used as input to the AAD validation shall

have the messageLength element, if present, set to zero and the

messageChecksum element, if present, also set to zero.

3) Finally:
The HeaderExtension, if present, shall have the messageLength element, if

present and the messageChecksum element, if present, adjusted such that they

correspond to the values passed as input to the encode_rtps_message operation.
Upon success the returned RTPS Message shall match the input to the
encode_rtps_message operation on the DomainParticipant that sent the

message.
preprocess_secure_

submsg

This operation shall do nothing and return FALSE.

decode_datawriter_

submessage

This operation shall do nothing and return FALSE.

decode_datareader_

submessage

This operation shall do nothing and return FALSE.

decode_serialized_

payload

This operation shall do nothing and return FALSE.

11 Plugin Language Bindings

11.1 Introduction

Clause 9 defines the plugin interfaces in a programming-language independent manner using UML.

Using the terminology of the DDS specification this UML definition could be considered a Platform

Independent Model (PIM) for the plugin interfaces. The mapping to each specific programming

languages platform could therefore be considered a Platform Specific Model (PSM) for that

programming language.

The mapping of the plugin interfaces to specific programming languages is defined by first defining

the interfaces using OMG-IDL version 3.5 with the additional syntax defined in the DDS-XTYPES

specification and subsequently applying the IDL to language mapping to the target language.

316 DDS Security, v1.12

IDL Types lacking the DDS-XTYPES @extensibility annotation shall be interpreted as having

the extensibility kind APPENDABLE. This matches the DDS-XTYPES specification implied

extensibility of un-annotated types.

For consistency with the DDS specification, the DDS security specification defines language bindings

to each of the language PSMs specified for DDS, namely:

• C as derived from the IDL to C mapping

• C++ classic, as derived from the IDL to C++ mapping

• Java classic, as derived from the IDL to Java mapping

• C++ modern, aligned with the DDS-STDC++ specification, this is derived from the IDL to C++11

mapping

• Java modern with the DDS-JAVA5+ specification

11.2 IDL representation of the plugin interfaces

For consistency in the resulting APIs, the mapping from the plugin interfaces defined in clause 9 and

the OMG IDL follows the same PIM to PSM mapping rules as the OMG DDS specification (see sub

clause 7.2.2 of the DDS specification version 1.2 [1]). A relevant subset of these rules is repeated here.

In these rules “PIM” refers to the UML description of the interfaces in clause 9 and PSM refers to the

OMG-IDL description of the interfaces that appears in the associated dds_security.idl file.

• The PIM to PSM mapping maps the UML interfaces and classes into IDL interfaces. Plain data

types are mapped into structures.

• ‘Out’ parameters in the PIM are conventionally mapped to ‘inout’ parameters in the PSM in order

to minimize the memory allocation performed by the Service and allow for more efficient

implementations. The intended meaning is that the caller of such an operation should provide an

object to serve as a “container” and that the operation will then “fill in” the state of that objects

appropriately.

The resulting IDL representation of the plugin interfaces appears in the file dds_security.idl which

shall be considered part of the DDS Security specification.

11.3 C language representation of the plugin interfaces

The C language representation of the plugin interfaces shall be obtained applying the IDL to C

mapping [5] to the dds_security.idl file.

11.4 C++ classic representation of the plugin interfaces

The C++ classic (without the use of the C++ standard library) language representation of the plugin

interfaces shall be obtained using the IDL2C++ mapping [7] to the dds_security.idl file.

11.5 Java classic

The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java

mapping [6] to the dds_security.idl file.

11.6 C++11 representation of the plugin interfaces

This representation is aligned with the DDS-STDC++ PSM.

The C++ classic language representation of the plugin interfaces shall be obtained using the

IDL2C++11 mapping [8] to the dds_security.idl file with the following exceptions:

DDS Security, v1.12 317

1. The IDL module DDS shall be mapped to the C++ namespace dds so it matches the namespace

used by the DDS-STD-C++ PSM.

2. The mapping shall not use any C++11-only feature of the language or the library (e.g., move

constructors, noexcept, override, std::array).

3. Arrays shall map to the dds::core::array template defined in the DDS-STD-C++ PSM.

4. The enumerations shall map to the dds::core::safe_enum template defined in the DDS-STD-

C++ PSM.

5. The IDL DynamicData native type shall be mapped to the C++ type

dds::code::xtypes::DynamicData defined in the DDS-STDC++ PSM.

11.7 Java modern aligned with the DDS-JAVA5+ PSM

The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java

mapping [6] to the dds_security.idl file with the following exceptions:

1. The IDL module DDS shall be mapped to the Java namespace org.omg.dds so it matches the

namespace used by the DDS-JAVA5+ PSM.

2. The IDL DynamicData native type shall be mapped to the type

org.omg.dds.type.dynamic.DynamicData defined in the DDS-JAVA5+ PSM.

318 DDS Security, v1.12

Annex A – References

DDSSEC12-90 - Meeting CNSSP-15 security requirements

DDSSEC12-3 – Add mechanism to extend Governance and Permissions document

[1] DDS: Data-Distribution Service for Real-Time Systems version 1,2.

http://www.omg.org/spec/DDS/1.2/

[2] DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.1,

http://www.omg.org/spec/DDS-RTPS/2.1/

[3] DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.0

http://www.omg.org/spec/DDS-XTypes/

[4] OMG-IDL: Interface Definition Language (IDL) version 3.5 http://www.omg.org/spec/IDL35/

[5] IDL2C: IDL to C Language Mapping, Version 1.0. http://www.omg.org/spec/C/1.0/

[6] IDL2Java: IDL To Java Language Mapping, Version 1.3 http://www.omg.org/spec/I2JAV/1.3/

[7] IDL2C++: IDL to C++ Language Mapping (CPP), Version 1.3

http://www.omg.org/spec/CPP/1.3/PDF

[8] IDL2C++11: IDL To C++11 Language Mapping http://www.omg.org/spec/CPP11/

[9] Transport Layer Security, http://en.wikipedia.org/wiki/Transport_Layer_Security

[10] IPSec, http://en.wikipedia.org/wiki/IPsec

[11] Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC. IETF 6605.

http://tools.ietf.org/html/rfc6605

[12] Fundamental Elliptic Curve Cryptography Algorithms. IETF RFC 6090.

http://tools.ietf.org/html/rfc2631

[13] J. H. Catch et. al., “A Security Analysis of the CLIQUES Protocol Suite”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964

[14] Erramilli, S.; Gadgil, S.; Natarajan, N., “Efficient assignment of multicast groups to publish-

subscribe information topics in tactical networks”, MILCOM 2008

[15] “RFC 2094 - Group Key Management Protocol (GKMP) Architecture”,

http://www.faqs.org/rfcs/rfc2094.html

[16] Raghav Bhaskar, Daniel Augot, Cedric Adjih, Paul Muhlethaler and Saadi Boudjit, “AGDH

(Asymmetric Group Diffie Hellman): An Efficient and Dynamic Group Key Agreement

Protocol for Ad hoc Networks”, Proceedings of New Technologies, Mobility and Security

(NTMS) conference, Paris, France, May 2007

[17] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin and Josep Domingo-Ferrer “Asymmetric Group

Key Agreement”, EUROCRYPT 2009

[18] “Secure IP Multicast”,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900ae

cd80473105.pdf

[19] Gerardo Pardo-Castellote. “Secure DDS: A Security Model suitable for NetCentric, Publish-

Subscribe, and Data Distribution Systems”, RTESS, Washington DC, July 2007.

http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf

[20] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, “The Secure Real-time

Transport Protocol (SRTP)” IETF RFC 3711, http://tools.ietf.org/html/rfc3711

[21] Baugher, M., Weis, B., Hardjono, T. and H. Harney, "The Group Domain of Interpretation,”

IETF RFC 3547, http://tools.ietf.org/html/rfc3547, July 2003.

[22] P. Zimmerman, A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure

RTP”, Internet-Draft, March 2009

Deleted: DSA,

Deleted: FIPS

Deleted: PUB 186-4 Digital Signature Standard (DSS).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-

4.pdf…

Deleted: Diffie-Hellman (D-H) Key Agreement Method.

Deleted: 2631

http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS-RTPS/2.1/
http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/IDL35/
http://www.omg.org/spec/C/1.0/
http://www.omg.org/spec/I2JAV/1.3/
http://www.omg.org/spec/CPP/1.3/PDF
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/IPsec
http://tools.ietf.org/html/rfc6605
http://tools.ietf.org/html/rfc2631
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964
http://www.faqs.org/rfcs/rfc2094.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3547

DDS Security, v1.12 319

[23] F. Andreason, M. Baugher, and D. Wing, “Session description protocol (SDP) security

description for media streams,” IETF RFC 4568, July 2006

[24] D. Ignjatic, L. Dondeti, F. Audet, P. Lin, “MIKEY-RSA-R: An Additional Mode of Key

Distribution in Multimedia Internet KEYing (MIKEY)”, RFC 4738, November 2006.

[25] M. Baugher, A. Rueegsegger, and S. Rowles, “GDOI Key Establishment for the STRP Data

Security Protocol”, http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt, June 2008.

[26] Bruce Schneier (August 2005). "SHA-1 Broken". Retrieved 2009-01-09. "

[27] H. Krawczyk, M. Bellare, and R.Canetti, “HMAC: Keyed-Hashing for Message

Authentication” IETF RFC 2104, http://tools.ietf.org/html/rfc2104

[28] Bellare, Mihir (June 2006). "New Proofs for NMAC and HMAC: Security without Collision-

Resistance". In Dwork, Cynthia. Advances in Cryptology – Crypto 2006 Proceedings. Lecture

Notes in Computer Science 4117. Springer-Verlag.

[29] S. Turner and L. Chen, “Updated Security Considerations for the MD5 Message-Digest and the

HMAC-MD5 Algorithms” IETF RFC 6151, http://tools.ietf.org/html/rfc6151

[30] Cisco, “Implementing Group Domain of Interpretation in a Dynamic Multipoint VPN”,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_whit

e_paper0900aecd804c363f.html

[31] CiscoIOS Secure Multicast,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900ae

cd8047191e.html

[32] A. Mason. IPSec Overview Part Two: Modes and Transforms.

http://www.ciscopress.com/articles/article.asp?p=25477

[33] R. Canetti, P. Cheng, F. Giraud, D. Pendararkis, J. Rao, P. Rohatgi, and D. Saha, “An IPSec-

based Host Architecture for Secure Internet Multicast”, Proceedings of the 7th Annual Network

and Distributed Systems Security Symposium, San Diego, CA, 2000

[34] T. Aurisch, and C. Karg, “Using the IPSec architecture for secure multicast communications,”

8th International Command and Control Research and Technology Symposium (ICCRTS),

Washington D.C., 2003

[35] J. Zhang and C. Gunter. Application-aware secure multicast for power grid communications,

International Journal of Security and Networks, Vol 6, No 1, 2011

[36] List of reserved RTPS Vendor Ids. http://portals.omg.org/dds/content/page/dds-rtps-vendor-

and-product-ids

[37] PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.

http://tools.ietf.org/html/rfc2315

[38] File expression matching syntax for fnmatch() ; POSIX fnmatch API (IEEE 1003.2-1992

Section B.6)

[39] X.509 v3. ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005, Information

technology - Open Systems Interconnection - The Directory: Public-key and attribute

certificate frameworks. http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.509

[40] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, https://tools.ietf.org/html/rfc5280

[41] ANSI X9.62. ANSI, "Public Key Cryptography For The Financial Services Industry: The

Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, 2005

[42] FIPS 186-4: FIPS Digital Signature Standard (DSS).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[43] PKCS#8: Asymmetric Key Packages. IETF RFC 5958. https://tools.ietf.org/html/rfc5958

[44] PKCS#1: Public-Key Cryptography Standards: RSA Cryptography Specifications Version 2.2

https://tools.ietf.org/html/rfc8017

Deleted: 1

Deleted: https://tools.ietf.org/html/rfc3447

http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc6151
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc5280
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc5958
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017

320 DDS Security, v1.12

[45] [NIST SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[46] [NIST SP 800-90A-R1] NIST Special Publication 800-90A Revision 1. Recommendation for

Random Number Generation Using Deterministic Random Bit Generators.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[47] IETF RFC 5114 “Additional Diffie-Hellman Groups for Use with IETF

Standards” https://tools.ietf.org/html/rfc5114.

[48] [NIST SP 800-56Ar2] NIST Special Publication 800-56A Revision 2. Recommendation for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[49] NIST Suite B Implementer’s Guide to NIST SP 800-56A

https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf

[50] [NIST SP 800-131A-R2] NIST Special Publication 800A. Transitioning the Use of

Cryptographic Algorithms and Key Lengths Revision 2.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

[51] NIST Computer Security Resource Center Glossary. https://csrc.nist.gov/glossary

[52] IETF RFC 5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

https://tools.ietf.org/html/rfc5869

[53] IETF RFC 4514 "Lightweight Directory Access Protocol (LDAP): String Representation of

Distinguished Names" https://tools.ietf.org/html/rfc4514

[54] IETF RFC 2560 “X.509 Internet Public Key Infrastructure Online Certificate Status Protocol –

OCSP” https://tools.ietf.org/html/rfc2560

[55] IETF RFC 6066 “Transport Layer Security (TLS) Extensions: Extension Definitions”

https://tools.ietf.org/html/rfc6066

[56] IETF RFC 2560 “The Transport Layer Security (TLS) Multiple Certificate Status Request

Extension” https://tools.ietf.org/html/rfc6961

[57] IETF RFC 5480 “Elliptic Curve Cryptography Subject Public Key Information”

https://tools.ietf.org/html/rfc5480

[58] David Orchard, “Extensibility, XML Vocabularies, and XML Schema”

https://www.xml.com/pub/a/2004/10/27/extend.html

[59] W3C Extensible Markup Language (XML) 1.1 (Second Edition)

https://www.w3.org/TR/xml11

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://tools.ietf.org/html/rfc5114
https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://csrc.nist.gov/glossary
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc4514
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6961
https://tools.ietf.org/html/rfc5480

	DDS Security
	Table of Contents
	Tables
	Figures
	Preface
	1 Scope
	1.1 General
	1.2 Overview of this Specification

	2 Conformance
	2.1 Conformance points
	2.2 Builtin plugin interoperability (mandatory)
	2.3 Plugin framework (mandatory)
	2.4 Plugin Language APIs (optional)
	2.5 Logging and Tagging profile (optional)

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 Support for DDS Security
	7.1 Security Model
	7.1.1 Threats
	7.1.1.1 Unauthorized Subscription
	7.1.1.2 Unauthorized Publication
	7.1.1.3 Tampering and Replay
	7.1.1.4 Unauthorized Access to Data by Infrastructure Services

	7.2 Cryptographic Algorithm Classes
	7.3 Types used by DDS Security
	7.3.1 Use of IDL and XTYPES notation
	7.3.1.1 Type Extensibility
	7.3.1.2 Data Representation (Serialization)
	7.3.1.3 Type changes that may appear in future revision of the specification

	7.3.2 Property_t
	7.3.2.1 IDL Representation for Property_t

	7.3.3 BinaryProperty_t
	7.3.3.1 IDL Representation for BinaryProperty_t

	7.3.4 DataHolder
	7.3.4.1 IDL representation for DataHolder

	7.3.5 Token
	7.3.5.1 Attribute: class_id
	7.3.5.2 IDL Representation for Token and Specialized Classes
	7.3.5.3 TokenNIL

	7.3.6 CryptoAlgorithmName
	7.3.7 CryptoAlgorithmId
	7.3.8 CryptoAlgorithmBit
	7.3.9 CryptoAlgorithmSet
	7.3.10 CryptoAlgorithmRequirements
	7.3.10.1 CryptoAlgorithmRequirements compatibility

	7.3.11 ParticipantSecurityDigitalSignatureAlgorithmInfo
	7.3.11.1 Compatibility
	7.3.11.2 Default value

	7.3.12 ParticipantSecurityKeyEstablishmentAlgorithmInfo
	7.3.12.1 Compatibility
	7.3.12.2 Default value

	7.3.13 ParticipantSecuritySymmetricCipherAlgorithmInfo
	7.3.13.1 Compatibility
	7.3.13.2 Default value

	7.3.14 ParticipantSecurityAlgorithmInfo
	7.3.15 EndpointSecuritySymmetricCipherAlgorithmInfo
	7.3.15.1 Compatibility
	7.3.15.2 Default value

	7.3.16 EndpointSecurityAlgorithmInfo
	7.3.17 CryptoTransformKeyRevision, CryptoTransformKeyRevisionIntHolder
	7.3.18 CryptoTransformKind
	7.3.18.1 Attribute: transformation_key_revision
	7.3.18.2 Attribute: transformation_algorithm_id

	7.3.19 CryptoTransformKeyId
	7.3.20 CryptoTransformIdentifier
	7.3.20.1 Attribute: transformation_kind
	7.3.20.2 Attribute: transformation_key_id

	7.3.21 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos
	7.3.22 ParticipantGenericMessage
	7.3.23 ParticipantSecurityProtectionInfo
	7.3.24 EndpointSecurityProtectionInfo
	7.3.25 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY

	7.4 Securing DDS Messages on the Wire
	7.4.1 RTPS Background (Non-Normative)
	7.4.2 Secure RTPS Messages
	7.4.3 Constraints of the DomainParticipant GUID_t (GUID)
	7.4.4 Mandatory use of the KeyHash for encrypted messages
	7.4.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind
	7.4.6 Platform Independent Description
	7.4.6.1 Change to the RTPS minor version number
	7.4.6.2 RTPS Secure Submessage Elements
	7.4.6.2.1 CryptoTransformIdentifier
	7.4.6.2.2 CryptoContent
	7.4.6.2.3 CryptoHeader
	7.4.6.2.4 CryptoFooter

	7.4.6.3 RTPS Submessage: SecureBodySubMsg
	7.4.6.3.1 Purpose
	7.4.6.3.2 Content
	7.4.6.3.3 Validity
	7.4.6.3.4 Logical Interpretation

	7.4.6.4 RTPS Submessage: SecurePrefixSubMsg
	7.4.6.4.1 Purpose
	7.4.6.4.2 Content
	7.4.6.4.3 Validity
	7.4.6.4.4 Logical Interpretation

	7.4.6.5 RTPS Submessage: SecurePostfixSubMsg
	7.4.6.5.1 Purpose
	7.4.6.5.2 Content
	7.4.6.5.3 Validity
	7.4.6.5.4 Logical Interpretation

	7.4.6.6 RTPS Submessage: SecureRTPSPrefixSubMsg
	7.4.6.6.1 Purpose
	7.4.6.6.2 Content
	7.4.6.6.3 Validity
	7.4.6.6.4 Logical Interpretation

	7.4.6.7 RTPS Submessage: SecureRTPSPostfixSubMsg
	7.4.6.7.1 Purpose
	7.4.6.7.2 Content
	7.4.6.7.3 Validity
	7.4.6.7.4 Logical Interpretation

	7.4.7 Mapping to UDP/IP PSM
	7.4.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders
	7.4.7.2 Mapping of the CryptoTransformIdentifier Type
	7.4.7.3 Mapping of the CryptoHeader SubmessageElement
	7.4.7.4 Mapping of the CryptoFooter SubmessageElement
	7.4.7.5 SecureBodySubMsg Submessage
	7.4.7.5.1 Wire Representation
	7.4.7.5.2 Submessage Id
	7.4.7.5.3 Flags in the Submessage Header

	7.4.7.6 SecurePrefixSubMsg Submessage
	7.4.7.6.1 Wire Representation
	7.4.7.6.2 Submessage Id
	7.4.7.6.3 Flags in the Submessage Header

	7.4.7.7 SecurePostfixSubMsg Submessage
	7.4.7.7.1 Wire Representation
	7.4.7.7.2 Submessage Id
	7.4.7.7.3 Flags in the Submessage Header

	7.4.7.8 SecureRTPSPrefixSubMsg Submessage
	7.4.7.8.1 Wire Representation
	7.4.7.8.2 Submessage Id
	7.4.7.8.3 Flags in the Submessage Header

	7.4.7.9 SecureRTPSPostfixSubMsg Submessage
	7.4.7.9.1 Wire Representation
	7.4.7.9.2 Submessage Id
	7.4.7.9.3 Flags in the Submessage Header

	7.5 DDS Support for Security Plugin Information Exchange
	7.5.1 Secure builtin Discovery Topics
	7.5.1.1 Background (Non-Normative)
	7.5.1.2 Extending the Data Types used by DDS Discovery
	7.5.1.3 Reserved RTPS parameter IDs
	7.5.1.4 Extension to RTPS Standard DCPSParticipants Builtin Topic
	7.5.1.5 Extension to RTPS Standard DCPSPublications and DCPSSubscriptions Builtin Topics
	7.5.1.6 New DCPSParticipantSecure Builtin Topic
	7.5.1.7 New DCPSPublicationsSecure Builtin Topic
	7.5.1.8 New DCPSSubscriptionsSecure Builtin Topic

	7.5.2 New DCPSParticipantMessageSecure builtin Topic
	7.5.3 New DCPSParticipantStatelessMessage builtin Topic
	7.5.3.1 Background: Sequence Number Attacks (non normative)
	7.5.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader
	7.5.3.3 Contents of the ParticipantStatelessMessage
	7.5.3.4 Destination of the ParticipantStatelessMessage
	7.5.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId
	7.5.3.6 Format of data within ParticipantStatelessMessage
	7.5.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE
	7.5.3.6.2 Data for message class GMCLASSID_SECURITY_AUTH_REQUEST

	7.5.4 New DCPSParticipantVolatileMessageSecure builtin Topic
	7.5.4.1 Background (Non-Normative)
	7.5.4.2 BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	7.5.4.3 Contents of the ParticipantVolatileMessageSecure
	7.5.4.4 Destination of the ParticipantVolatileMessageSecure
	7.5.4.5 Reserved values of ParticipantVolatileMessageSecure GenericMessageClassId
	7.5.4.6 Format of data within ParticipantVolatileMessageSecure
	7.5.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS
	7.5.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS
	7.5.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

	7.5.5 Secure builtin TypeLookup Service Topics
	7.5.5.1 Background
	7.5.5.2 New TypeLookup Service Secure Endpoints

	7.5.6 Definition of the Types a DDS Endpoint depends on
	7.5.7 Definition of the “RTPS Bootstrapping Messages”
	7.5.8 Definition of the “Builtin Secure Endpoints”
	7.5.9 Definition of the “Builtin Secure Discovery Endpoints”
	7.5.10 Definition of the “Builtin Secure Liveliness Endpoints”
	7.5.11 Definition of the “Builtin Secure TypeLookup Endpoints”
	7.5.12 Constraints in the content of RTPS Bootstrapping Messages
	7.5.13 Securing the “Builtin Secure Endpoints”

	8 Common Cryptographic Algorithms
	8.1 Symmetric Cipher AEAD and MAC Algorithms
	8.1.1 AEAD with AES-GCM/GMAC

	8.2 Digital Signature Algorithms
	8.3 Key Establishment Algorithms

	9 Plugin Architecture
	9.1 Introduction
	9.1.1 Service Plugin Interface Overview
	9.1.2 Plugin Instantiation

	9.2 Common Types
	9.2.1 Security Exception

	9.3 Authentication Plugin
	9.3.1 Background (Non-Normative)
	9.3.2 Authentication Plugin Model
	9.3.2.1 IdentityToken
	9.3.2.2 IdentityStatusToken
	9.3.2.3 IdentityHandle
	9.3.2.4 HandshakeHandle
	9.3.2.5 AuthRequestMessageToken
	9.3.2.6 HandshakeMessageToken
	9.3.2.7 AuthenticatedPeerCredentialToken
	9.3.2.8 SharedSecretHandle
	9.3.2.9 Authentication interface
	9.3.2.9.1 Reliability of the Authentication Handshake

	9.3.2.10 Unauthenticated DomainParticipant entities
	9.3.2.11 Authentication plugin interface
	9.3.2.11.1 Type: ValidationResult_t
	9.3.2.11.2 Operation: validate_local_identity
	9.3.2.11.3 Operation: validate_remote_identity
	9.3.2.11.4 Operation: begin_handshake_request
	9.3.2.11.5 Operation: begin_handshake_reply
	9.3.2.11.6 Operation: process_handshake
	9.3.2.11.7 Operation: get_shared_secret
	9.3.2.11.8 Operation: get_authenticated_peer_ credential_token
	9.3.2.11.9 Operation: get_identity_token
	9.3.2.11.10 Operation: get_identity_status_token
	9.3.2.11.11 Operation: set_participant_security_config
	9.3.2.11.12 Operation: set_permissions_credential_and_token
	9.3.2.11.13 Operation: set_listener
	9.3.2.11.14 Operation: return_identity_token
	9.3.2.11.15 Operation: return_identity_status_token
	9.3.2.11.16 Operation: return_authenticated_peer_credential_token
	9.3.2.11.17 Operation: return_handshake_handle
	9.3.2.11.18 Operation: return_identity_handle
	9.3.2.11.19 Operation: return_sharedsecret_handle

	9.3.2.12 AuthenticationListener
	9.3.2.12.1 Enumeration: AuthStatusKind
	9.3.2.12.2 Operation: on_revoke_identity
	9.3.2.12.3 Operation: on_status_changed

	9.4 Access Control Plugin
	9.4.1 Background (Non-Normative)
	9.4.2 AccessControl Plugin Model
	9.4.2.1 PermissionsToken
	9.4.2.2 PermissionsCredentialToken
	9.4.2.3 PermissionsHandle
	9.4.2.4 ParticipantSecurityConfig
	9.4.2.4 ParticipantSecurityConfig
	9.4.2.5 Definition of the ParticipantSecurityAttributesMask
	9.4.2.6 TopicSecurityConfig
	9.4.2.6 TopicSecurityConfig
	9.4.2.7 EndpointSecurityConfig
	9.4.2.7 EndpointSecurityConfig
	9.4.2.8 Definition of the EndpointSecurityAttributesMask
	9.4.2.9 AccessControl interface
	9.4.2.9.1 Operation: validate_local_permissions
	9.4.2.9.2 Operation: validate_remote_permissions
	9.4.2.9.3 Operation: check_create_participant
	9.4.2.9.4 Operation: check_create_datawriter
	9.4.2.9.5 Operation: check_create_datareader
	9.4.2.9.6 Operation: check_create_topic
	9.4.2.9.7 Operation: check_local_datawriter_register_instance
	9.4.2.9.8 Operation: check_local_datawriter_dispose_instance
	9.4.2.9.9 Operation: check_remote_participant
	9.4.2.9.10 Operation: check_remote_datawriter
	9.4.2.9.11 Operation: check_remote_datareader
	9.4.2.9.12 Operation: check_remote_topic
	9.4.2.9.13 Operation: check_local_datawriter_match
	9.4.2.9.14 Operation: check_local_datareader_match
	9.4.2.9.15 Operation: check_remote_datawriter_register_instance
	9.4.2.9.16 Operation: check_remote_datawriter_dispose_instance
	9.4.2.9.17 Operation: get_permissions_token
	9.4.2.9.18 Operation: get_permissions_credential_token
	9.4.2.9.19 Operation: set_listener
	9.4.2.9.20 Operation: return_permissions_token
	9.4.2.9.21 Operation: return_permissions_credential_token
	9.4.2.9.22 Operation: get_participant_security_config
	9.4.2.9.23 Operation: get_topic_security_config
	9.4.2.9.24 Operation: get_datarwriter_security_config
	9.4.2.9.25 Operation: get_datareader_security_config
	9.4.2.9.26 Operation: return_participant_security_config
	9.4.2.9.27 Operation: return_topic_security_config
	9.4.2.9.28 Operation: return_datawriter_security_config
	9.4.2.9.29 Operation: return_datareader_security_config

	9.4.2.10 AccessControlListener interface
	9.4.2.10.1 Operation: on_revoke_permissions

	9.5 Cryptographic Plugin
	9.5.1 Cryptographic Plugin Model
	9.5.1.1 CryptoToken
	9.5.1.2 ParticipantCryptoHandle
	9.5.1.3 DatawriterCryptoHandle
	9.5.1.4 DatareaderCryptoHandle
	9.5.1.5 CryptoTransformIdentifier
	9.5.1.6 Key Revision: CryptoTransformKeyRevision and associated CryptoTransformIdentifier
	9.5.1.7 SecureSubmessageCategory_t
	9.5.1.8 CryptoKeyFactory interface
	9.5.1.8.1 Operation: register_local_participant
	1.1.1.1.1
	1.1.1.1.1
	9.5.1.8.2 Operation: register_matched_remote_participant
	9.5.1.8.3 Operation: register_local_datawriter
	9.5.1.8.4 Operation: register_matched_remote_datareader
	9.5.1.8.5 Operation: register_local_datareader
	9.5.1.8.6 Operation: register_matched_remote_datawriter
	9.5.1.8.7 Operation: revise_local_entity_keys
	9.5.1.8.8 Operation: activate_key_revision
	9.5.1.8.9 Operation: unregister_participant
	9.5.1.8.10 Operation: unregister_datawriter
	9.5.1.8.11 Operation: unregister_datareader

	9.5.1.9 CryptoKeyExchange Interface
	9.5.1.9.1 Operation: create_local_participant_crypto_tokens
	9.5.1.9.2 Operation: set_remote_participant_crypto_tokens
	9.5.1.9.3 Operation: create_local_datawriter_crypto_tokens
	9.5.1.9.4 Operation: set_remote_datawriter_crypto_tokens
	9.5.1.9.5 Operation: create_local_datareader_crypto_tokens
	9.5.1.9.6 Operation: set_remote_datareader_crypto_tokens
	9.5.1.9.7 Operation: return_crypto_tokens

	9.5.1.10 CryptoTransform interface
	9.5.1.10.1 Operation: encode_serialized_payload
	9.5.1.10.2 Operation: encode_datawriter_submessage
	9.5.1.10.3 Operation: encode_datareader_submessage
	9.5.1.10.4 Operation: encode_rtps_message
	9.5.1.10.5 Operation: decode_rtps_message
	9.5.1.10.6 Operation: preprocess_secure_submsg
	9.5.1.10.7 Operation: decode_datawriter_submessage
	9.5.1.10.8 Operation: decode_datareader_submessage
	9.5.1.10.9 Operation: decode_serialized_payload

	9.6 The Logging Plugin
	9.6.1 Background (Non-Normative)
	9.6.2 Logging Plugin Model
	9.6.2.1 LogOptions
	9.6.2.1.1 Attribute: log_level
	9.6.2.1.2 Attribute: log_file
	9.6.2.1.3 Attribute: distribute

	9.6.2.2 Logging
	9.6.2.2.1 Operation: set_log_options
	9.6.2.2.2 Operation: log
	9.6.2.2.3 Operation: enable_logging
	9.6.2.2.4 Operation: set_listener

	9.7 Data Tagging
	9.7.1 Background (Non-Normative)
	9.7.2 DataTagging Model

	9.8 Security Plugins Behavior
	9.8.1 Authentication and AccessControl behavior with local DomainParticipant
	9.8.2 Compatibility of Participant Security Plugins
	9.8.3 Authentication behavior with discovered DomainParticipant
	9.8.3.1 Behavior when allow_unauthenticated_participants is set to TRUE
	9.8.3.2 Behavior when allow_unauthenticated_participants is set to FALSE

	9.8.4 DDS Entities impacted by the AccessControl operations
	9.8.5 AccessControl behavior with local participant creation
	9.8.6 AccessControl behavior with local domain entity creation
	9.8.7 AccessControl behavior with remote participant discovery
	9.8.8 AccessControl behavior with remote domain entity discovery
	9.8.8.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant
	9.8.8.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

	9.8.9 Cryptographic Plugin key generation behavior
	9.8.9.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	9.8.9.2 Key generation for the DomainParticipant
	9.8.9.3 Key generation for the builtin endpoints
	9.8.9.4 Key generation for the application-defined endpoints
	9.8.9.5 Key revision for local participant and contained endpoints
	9.8.9.6 Limiting message-size overhead caused by receiver specific key material

	9.8.10 Cryptographic Plugin key exchange behavior
	9.8.10.1 Key Exchange with discovered DomainParticipant
	9.8.10.2 Key Exchange with remote DataReader
	9.8.10.3 Key Exchange with remote DataWriter
	9.8.10.4 Key Revision Exchange for DomainParticipant and contained DataWriter and DataReaders

	9.8.11 Cryptographic Plugins encoding/decoding behavior
	9.8.11.1 Encoding/decoding of a single writer message on an RTPS message
	9.8.11.2 Encoding/decoding of multiple writer messages on an RTPS message
	9.8.11.3 Encoding/decoding of multiple reader messages on an RTPS message
	9.8.11.4 Encoding/decoding of reader and writer messages on an RTPS message

	10 Builtin Plugins
	10.1 Introduction
	10.2 Requirements and Priorities (Non-Normative)
	10.2.1 Performance and Scalability
	10.2.2 Robustness and Availability
	10.2.3 Fitness to the DDS Data-Centric Model
	10.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies
	10.2.5 Ease-of-Use while Supporting Common Application Requirements

	10.3 Builtin Authentication: DDS:Auth:PKI-DH
	10.3.1 Configuration
	10.3.1.1 Identity CA Certificate
	10.3.1.2 Private Key
	10.3.1.3 Identity Certificate
	10.3.1.4 Key Establishment Algorithm

	10.3.2 DDS:Auth:PKI-DH Types
	10.3.2.1 DDS:Auth:PKI-DH IdentityToken
	10.3.2.2 DDS:Auth:PKI-DH IdentityStatusToken
	10.3.2.3 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken
	10.3.2.4 DDS:Auth:PKI-DH AuthRequestMessageToken
	10.3.2.5 DDS:Auth:PKI-DH HandshakeMessageToken
	10.3.2.5.1 HandshakeRequestMessageToken objects
	10.3.2.5.2 HandshakeReplyMessageToken
	10.3.2.5.3 HandshakeFinalMessageToken

	10.3.3 DDS:Auth:PKI-DH plugin behavior
	10.3.4 DDS:Auth:PKI-DH plugin authentication protocol
	10.3.4.1 Terms and notation
	10.3.4.2 Protocol description

	10.4 Builtin Access Control: DDS:Access:Permissions
	10.4.1 Configuration
	10.4.1.1 Permissions CA Certificate
	10.4.1.2 Domain Governance Document
	10.4.1.2.1 Basic Protection Kinds
	10.4.1.2.2 Protection Kinds
	10.4.1.2.3 Domain Governance document format
	10.4.1.2.4 Domain Access Rules Section
	10.4.1.2.5 Domain Rules
	10.4.1.2.5.1 Domains element
	10.4.1.2.5.2 Allow Unauthenticated Participants element
	10.4.1.2.5.3 Enable Join Access Control element
	10.4.1.2.5.4 Enable Key Revision element
	10.4.1.2.5.5 Discovery Protection Kind element
	10.4.1.2.5.6 Liveliness Protection Kind element
	10.4.1.2.5.7 RTPS Protection Kind element
	10.4.1.2.5.8 RTPS PSK Protection Kind element
	10.4.1.2.5.9 Allowed Algorithms Section
	10.4.1.2.5.9.1 Digital Signature Element
	10.4.1.2.5.9.2 Digital Signature Trust Chain Element
	10.4.1.2.5.9.3 Key Establishment Element
	10.4.1.2.5.9.4 Symmetric Cipher Element

	10.4.1.2.5.10 Topic Access Rules Section

	10.4.1.2.6 Topic Rule Section
	10.4.1.2.6.1 Topic expression element
	10.4.1.2.6.2 Enable Discovery protection element
	10.4.1.2.6.3 Enable Liveliness Protection element
	10.4.1.2.6.4 Enable Read Access Control element
	10.4.1.2.6.5 Enable Write Access Control element
	10.4.1.2.6.6 Metadata Protection Kind element
	10.4.1.2.6.7 Data Protection Kind element

	10.4.1.2.7 Application of Domain and Topic Rules

	10.4.1.3 Governance Document Extensibility
	10.4.1.4 Example Domain Governance document (non normative)
	10.4.1.5 DomainParticipant Permissions Document
	10.4.1.5.1 Permissions document format
	10.4.1.5.2 Permissions Section
	10.4.1.5.3 Grant Section
	10.4.1.5.3.1 Subject name Section
	10.4.1.5.3.1.1 Subject name matching

	10.4.1.5.3.2 Subject name expression Section
	10.4.1.5.3.2.1 Subject name expression matching

	10.4.1.5.3.3 Validity Section
	10.4.1.5.3.4 Rules Section
	10.4.1.5.3.4.1 Format of the allow rules
	10.4.1.5.3.4.1.1 Domains Section
	10.4.1.5.3.4.1.2 Format of the Allowed Actions sections
	10.4.1.5.3.4.1.3 Allowed Topic condition section
	10.4.1.5.3.4.1.4 Allowed Partitions condition section
	10.4.1.5.3.4.1.5 Allowed Data tags condition section
	10.4.1.5.3.4.1.6 Example allow rule

	10.4.1.5.3.4.2 Format for deny rules
	10.4.1.5.3.4.2.1 Domains Section
	10.4.1.5.3.4.2.2 Format of the Denied Actions sections
	10.4.1.5.3.4.2.3 Denied Topic condition section
	10.4.1.5.3.4.2.4 Denied Partitions condition section
	10.4.1.5.3.4.2.5 Data tags condition section
	10.4.1.5.3.4.2.6 Example deny rule
	10.4.1.5.3.4.2.7 Example deny rule

	10.4.1.6 Permissions Document Extensibility
	10.4.1.7 DomainParticipant example permissions document (non normative)

	10.4.2 DDS:Access:Permissions Types
	10.4.2.1 DDS:Access:Permissions PermissionsCredentialToken
	10.4.2.2 DDS:Access:Permissions PermissionsToken
	10.4.2.3 PluginParticipantSecurityAttributes
	10.4.2.4 Definition of the PluginParticipantSecurityAttributesMask
	10.4.2.5 PluginEndpointSecurityAttributes
	10.4.2.6 Definition of the PluginEndpointSecurityAttributesMask

	10.4.3 DDS:Access:Permissions plugin behavior

	10.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC
	10.5.1 Configuration
	10.5.1.1 Symmetric Cipher Algorithm
	10.5.1.2 PSK Symmetric Cipher Algorithm
	10.5.1.3 PSK Secret Passphrase
	10.5.1.4 PSK Secret Passphrase Alternative

	10.5.2 DDS:Crypto:AES-GCM-GMAC Types
	10.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken
	10.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure
	10.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	10.5.2.1.3 Key material used by the RTPS Pre-Shared Key (PSK) Protection

	10.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier
	10.5.2.3 DDS:Crypto:AES-GCM-GMAC CryptoHeader
	10.5.2.4 DDS:Crypto:AES-GCM-GMAC CryptoContent
	10.5.2.5 DDS:Crypto:AES-GCM-GMAC CryptoFooter

	10.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior
	10.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC
	10.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC
	10.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC
	10.5.3.3.1 Overview
	10.5.3.3.2 Encode/decode operation virtual machine
	10.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey
	10.5.3.3.4 Computation of ciphertext from plaintext
	10.5.3.3.4.1 Format of the CryptoHeader Submessage Element
	10.5.3.3.4.2 Format of the CryptoContent Submessage Element
	10.5.3.3.4.3 Format of the CryptoFooter Submessage Element
	10.5.3.3.4.4 Result from encode_serialized_payload
	10.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage
	10.5.3.3.4.6 Result from encode_rtps_message
	10.5.3.3.4.6.1 Authentication only with AAD enabled
	10.5.3.3.4.6.2 Authentication only with AAD not enabled
	10.5.3.3.4.6.3 Authenticated Encryption with AAD enabled
	10.5.3.3.4.6.4 Authenticated Encryption with AAD not enabled

	10.5.3.3.5 Computation of plaintext from ciphertext
	10.5.3.3.6 Computation of the message authentication codes

	10.6 Builtin Logging Plugin
	10.6.1 DDS:Logging:DDS_LogTopic plugin behavior

	10.7 Builtin Authentication: DDS:Auth:PSK
	10.7.1 Configuration
	10.7.2 DDS:Auth:PSK Types
	10.7.2.1 DDS:Auth:PSK IdentityToken
	10.7.2.2 DDS:Auth:PSK IdentityStatusToken
	10.7.2.3 DDS:Auth:PSK AuthenticatedPeerCredentialToken
	10.7.2.4 DDS:Auth:PSK AuthRequestMessageToken
	10.7.2.5 DDS:Auth:PSK HandshakeMessageToken
	10.7.2.5.1 HandshakeRequestMessageToken objects
	10.7.2.5.2 HandshakeReplyMessageToken
	10.7.2.5.3 HandshakeFinalMessageToken

	10.7.3 DDS:Auth:PSK plugin behavior

	10.8 Builtin Access Control: DDS:Access:PSK
	10.8.1 Configuration
	10.8.2 DDS:Access:PSK Types
	10.8.2.1 DDS:Access:PSK PermissionsCredentialToken
	10.8.2.2 DDS:Access:PSK PermissionsToken
	10.8.2.3 DDS:Access:PSKPluginParticipantSecurityAttributes
	10.8.2.4 DDS:Access:PSK PluginParticipantSecurityAttributesMask
	10.8.2.5 DDS:Access:PSK PluginEndpointSecurityAttributes
	10.8.2.6 DDS:Access:PSK PluginEndpointSecurityAttributesMask

	10.8.3 DDS:Access:PSK plugin behavior

	10.9 Builtin Crypto: DDS:Crypto:PSK
	10.9.1 Configuration
	10.9.2 DDS:Crypto:PSK Types
	10.9.2.1 DDS:Crypto:PSK CryptoToken
	10.9.2.2 DDS:Crypto:PSK CryptoTransformIdentifier
	10.9.2.3 DDS:Crypto:PSK CryptoHeader
	10.9.2.4 DDS:Crypto:PSK CryptoContent
	10.9.2.5 DDS:Crypto:PSK CryptoFooter

	10.9.3 DDS:Crypto:PSK plugin behavior
	10.9.3.1 CryptoKeyFactory for DDS:Crypto:PSK
	10.9.3.2 CryptoKeyExchange for DDS:Crypto:PSK
	10.9.3.3 CryptoKeyTransform for DDS:Crypto:PSK
	10.9.3.3.1 Overview

	11 Plugin Language Bindings
	11.1 Introduction
	11.2 IDL representation of the plugin interfaces
	11.3 C language representation of the plugin interfaces
	11.4 C++ classic representation of the plugin interfaces
	11.5 Java classic
	11.6 C++11 representation of the plugin interfaces
	11.7 Java modern aligned with the DDS-JAVA5+ PSM

	Annex A – References

