An OMG® DDS Security™ Publication

OBJECT MANAGEMENT GROUP”

DDS Security

Version 1.2

OMG Document Number: ptc/2024-02-36

Release Date: March 2024

Standard Document URL: https://www.omg.org/spec/DDS-SECURITY/1.2

IPR mode: Non-Assert

DDS Security, v1.12

Copyright © 2018, Object Management Group, Inc.
Copyright © 2014-2017, PrismTech Group Ltd.
Copyright © 2014-2017, Real-Time Innovations, Inc.
Copyright © 2017, Twin Oaks Computing, Inc.
Copyright © 2017, THALES

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification
in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

i DDS Security, v1.12

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBAZ®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, 110P®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)
is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based
on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites
are implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

DDS Security, v1.12 iii

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue.

iv DDS Security, v1.12

Table of Contents

o] £ Vol PN Xi
Y o o = N 1
1.1 [T =T 0 1= 1P 1
1.2 Overview of this SPecificationcccciiiiiiiriiiiiiiiiiiiii s ssasssssssssnnne 1

P N 010 1 (o] 4 - 11 1o TSROt 3
2.1 CoNFOrMANCE POINTScceeeeiiieiiiirieieeerreneeereennaeseennsaereenssssseenssssrennssssnennsssssennsssssenassssnenssssssennnes 3
2.2 Builtin plugin interoperability (Mandatory) ... e s e e e nena 3
23 Plugin framework (Mandatory)ccecciieeeieiiiieierreiccrreeecerrennseeseennseseennsssseensssssssnnssssesnnssssenns 3
2.4 Plugin Language APIS (OPtioNal)ccceeeeiiiieiiiiiiiierieincerrenneersennseeseennseseenssssseenssssssennssssesnnssssenns 3
25 Logging and Tagging profile (0ptional).......cccveiiiiiiiiiiirmniiiiiniiininss. 4

3 NOrmative REfEr@NCESccceuuiiiiieeiiiiiiiiiiitrietteeeiesseenseessenssestenssssssssnnssessssnssssssenssssssssnnsanns 5
4 Terms and Definitions....ccccciiieiiiiiiiiiiiiiiiiin e rense e s eneesenssssnesesensssssnssssnassssnsnsnen 6
LY/ 1 11 T | OO RRN 9
6 Additional INfOrmationc... i eea e s s s e s e s s e s n s s s e s nns s s sennnns 10
6.1 Changes to Adopted OMG SpPecifiCations........ccuceiieiecerieiucirienneerrennseereenneeseennseeserassseserasssenenns 10
6.2 ACKNOWIEAZMENLSceeecieei e crrecesrcea e s e e e s eenn e seeasssssenasssssenasssssennsssssensssnssensssnsnennnes 10

7 SUPPOIt fOr DDS SECUNILY .iieeueiiiiieniiiiiiiieiiiiitenieiieensiestennseesnesnsssessennssesssenssssssennsssssssnnssssssnnnes 13
7.1 =T ol T AV 1Y, [T L] I 13
7.1.1 I T2 L £ PP SURRRS 13

7.2 Cryptographic Algorithm Classesciiieeeciiiiieieiiiieccrreicereenaeeseennseeseennseseensssssesnnssssesnnsnssenns 16
7.3 Types uSed DY DDS SECUIILY......ccveeueiiieeeiiiieceeirreeeeerrenneesrenssesseenssessrenssesssenssssseensssssrennssssnennnes 17
7.3.1 Use of IDL and XTYPES NOTAtIONciiiiiiiiiiccieccee et ses et eteeste e se et e e st este e eseeeesbeeennseenns 17
7.3.2 o 0 01T o 4 18
7.33 YT a1 aVd o] o 1= T nY N PP PP PP SPPPPUPPPPRN 19
7.3.4 DAtAHOIAET ...ttt st sttt st e s e e s be e e sabeesbeesabeesbeeenareen 20
7.3.5 TOKEIN ettt ettt ettt e et e s bt e e s abe e st e e s bt e e s bt e e hte e e abe e e beeesabeesbeeeateesbaeenareeaa 20
7.3.6 CryptOAIZOrtRMNGME ..cci e et e e et e e st e e e e sta e e e eentbeeeesnsaeees 22
7.3.7 (@1 aY o1 oA F-JoT 1 o1 1 o1 1 OSSPSR 22
7.3.8 (@ eV o1 oA F=JoT 1 o1 o] = 7L APPSR 22
7.3.9 (@1 aY o1 oA F-JoT 1 o] g K Y= APPSR 23
7.3.10 CryptoAIgorithmMREQUITEMENTScoiiiiiiie et e e e e saeae e e s sabbe e e s sasaeee s 23
7.3.11 ParticipantSecurityDigitalSignatureAlgorithmInfo.........ccceiieiiiiiccie e 24
7.3.12 ParticipantSecurityKeyEstablishmentAlgorithmInfo...........ccccoeiiiiiiiiicii e, 26
7.3.13 ParticipantSecuritySymmetricCipherAlgorithmInfocccoooiiiiiiiii e, 26
7.3.14 ParticipantSecurity AlgorithmINToocciiii i e e 28
7.3.15 EndpointSecuritySymmetricCipherAlgorithmInfo ..o, 28
7.3.16 EndpointSecurityAlgorithmINTooooiiiiiiee e e 29
7.3.17 CryptoTransfOrMKING.......oocuviii et e e e e et e e e b e e e e s atae e e eeasbeeeeeanneeans 30
7.3.18 CryptoTransfOrMKEY Ic..uveiieeeee ettt e e et e e e eabae e e seataeeeeeabbeeeeennneeans 30
7.3.19 CryptoTransfOrMIdENTITIENcccceiiee e ettt e e et e e e aaeea s 31
7.3.20 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos.................... 31
7.3.21 PartiCiPaNtGENEIICIMESSAZE ... e e s 33
7.3.22 ParticipantSecurityProtectionInfoccoeiiiiii i 33
7.3.23 EndpointSecurityProtectionInfoooiciiii i e 34
7.3.24 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY ..cccceiriiiirieirieeenieenieeeieeesiee e 35

DDS Security, v1.12 Y

vi

7.4 Securing DDS Messages 0N the WIre.........ccoveeeiiiieiiceiieeiereeesssresesssreeessessenasssssenssssesensssssnennnes 35

7.4.1 RTPS Background (NON-NOIMALIVE) ...cccccuiiiiieiiie ettt e e et e e e bae e e e sarae e e e 35
7.4.2 SECUIE RTPS IMIBSSAEES ..eeeiitiiiiiitiiittttettittetttteetettettteeteeeeeeeeretetettttttetatettttttatetetteetettt—.—..—.. 37
7.4.3 Constraints of the DomainParticipant GUID_t (GUID)ccvvieiiiieieeiiiee et e e 38
7.4.4 Mandatory use of the KeyHash for encrypted messagesccccevvvveeeiviieeeccciien e 38
7.4.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind 39
7.4.6 Platform Independent DeSCriPtioNcccuiiiiieciiie ettt bee e e e sree e e e 39
7.4.7 MaPPING tO UDP/IP PSIMl......ueiiieiecteetee sttt eteete e teestae st esateebeebe e baesbaesbaeesaeenteetaassaesanesasesans 46
7.5 DDS Support for Security Plugin Information EXchange........c..ccivvuiiiiiiniciiinniiiiiinnicniinnennnnnn, 50
7.5.1 Secure bUiltin DiSCOVEIY TOPICS. .uuuiiiiiiiieiritiieesctieeessireeessteeeessraeeessabeeeesssbaeeesssseeeessnsaeeessssanees 51
7.5.2 New DCPSParticipantMessageSecure builtin TOPIC.....cccvveiiirciiriiiier e 58
753 New DCPSParticipantStatelessMessage builtin TOPIC.......cueivciiriiiiieei i 59
7.5.4 New DCPSParticipantVolatileMessageSecure builtin TOPIC.....cccceecveriiriiei i 62
7.5.5 Definition of the “Builtin Secure ENAPOints”cccviiiiiiiiiiiriie e 67
7.5.6 Definition of the “Builtin Secure Discovery ENdpoints”.........cccceeeeciieiicciee e 68
7.5.7 Definition of the “Builtin Secure Liveliness ENAPOints”ccceeeiecieeiiciiee et 68
7.5.8 Securing the “Builtin Secure ENdPoints”ooocciiieiciiiie et e et e e e eare e e e eaaeee s 68
Common Cryptographic AlZOrithmscciveiiiiiiiiiiicrncrrr e reaesssasesenasenes 70
8.1.1 Symmetric Cipher AEAD and MAC AlgOIThMS.......coocciiiieiiiie et 70
8.1.2 Digital Signature AIZOITIMSii it e st e e sate e sbeeennreeens 73
8.1.3 Key Establishment AlGOrtRMSoiiiiiiie ettt st sete e s e e sare e 74
Plugin Archit@CtUre.....ccuuiieeiiiiciiirrc e e e re e e ssassssenssssnesesenssssensssssnssssnnssnenns 76
9.1 Yo T ot T o P 76
9.1.1 Service PlUgin INtErface OVEIVIEWcoiieiiiii ittt e et e e et e e s eaae e e eeanaeeeseaneee s 76
9.1.2 (V= oW [T = oL a = o Lo o PRSP 77
9.2 L0007 0130 VoY T N/ « 1= 77
9.2.1 Y =Tol ULV = Cel=] o A o o FS PPNt 77
9.3 Authentication PIUGINiieeiiiiiicciriccrrtcrrre e res s s s e s e s senasssssennsssssenessssaanenas 78
9.3.1 Background (NON-NOIMATIVE)cuieiiieiiiie et cee st etee et ete e et e s re e s sbe e e saveestaeessteesnbeeensraens 78
9.3.2 Authentication PIUZIN MOELuviiiiiieecee e e e s rae e e 79
9.4 ACCESS CONLIOl PIUGIN....cuuuiiiieiiiiiiicitccrtcnse e reenesesesne s sesasssssesasssssenassssssnnsssssenessssaanenas 98
9.4.1 Background (NON-NOIMATIVE)cuieiieeiiie ettt ettt erte et e e tre s te e s sbe e e s veestaeesaseesabeeessraens 98
9.4.2 ACcesSCONLrOl PIUGIN MOTELcooueiiieiciiiee e e e ree e e arae e e e arees 99
9.5 CryptographiC PIUGIN......ccuuuiiiiiiiiiciriircrrrrre st renese s senassessensssesssnsssssasnsssssasnsssssesnssssnens 123
9.5.1 Cryptographic PIUSIN MOAEI ...cc.eeiiieeceeeeeee ettt et e e e e e e abae e e e arees 123
9.6 The LOBEING PIUGINcieeiiiieciiieecc et rreness s renesss s rene s s s senesssssensssssssnssssssensssssesnssssssaness 155
9.6.1 Background (NON-NOFMATIVE)c.c.eiiiiieiiie ettt eee et e e re e sbe e e s are e s beeebaeesabeeennaeas 155
9.6.2 LOZEING PIUGIN IMOAENeeiiieeieeeee ettt ettt e bt e e e e bt e e e e e bt e e e e ebraeeesnteeaeeans 155
9.7 (D E T T4 - 159
9.7.1 Background (NON-NOIMAtIVE)ccccuuiieieiiiee et ettt c ettt e ettt e e ettt e e e e te e e e e etteeeeetseeeeeneeeaeenns 159
9.7.2 BT NI Tod =1 Y= 1Y/ Fo To 1] USRS 159
9.8 Security PIUIins BENAVIOrc..iieiiieiiiiiiiiiiiecitcrreeisreacreeessasessnsessnesesensssensessnssssnsssssassnnnnes 159
9.8.1 Authentication and AccessControl behavior with local DomainParticipant..........cccccceeunnneeen. 159
9.8.2 Compatibility of Participant Security PIUSINScooiiiiiie et 162
9.8.3 Authentication behavior with discovered DomainParticipantcccccceeeeievcciiieeee e, 162
9.8.4 DDS Entities impacted by the AccessControl operationscccceeeeecciiiieeee e 166
9.8.5 AccessControl behavior with local participant creationcccceveecciiiieiee e, 169
9.8.6 AccessControl behavior with local domain entity creationccccceeeevieeiicciee e, 169
9.8.7 AccessControl behavior with remote participant diSCOVery......ccoocvivriiiiiicciei e, 171
9.8.8 AccessControl behavior with remote domain entity discovery........cccoooviieiiiiiiiciee e, 173
9.8.9 Cryptographic Plugin key generation behavior..........cccueeiviieiiiiiiieccec e 176

DDS Security, v1.12

9.8.10 Cryptographic Plugin key exchange behavior.........ccccuviiiiiiiiiciiie e 179

9.8.11 Cryptographic Plugins encoding/decoding behavior...........cccoveevieiieiieieicee e 184
10 2T 1] T T o LT T3 193
00 R 141 oY [T 4o T 193
10.2 Requirements and Priorities (NON-NOrmative)......cccccceeeeeuiiireeniiireeeiirreeecesrenenecsrenessssnenenesssenens 193
10.2.1 Performance and SCalabilitycoccviieieiiii e e 194
10.2.2 Robustness and Availabilitycoccuiiiiiiiiiiie e 194
10.2.3 Fitness to the DDS Data-Centric MOAEloovuiiiiiiiiiee et e e 194
10.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologiesccccccevvviiveennnns 195
10.2.5 Ease-of-Use while Supporting Common Application Requirementscccoecveeevvcieeenicieeennns 195
10.3 Builtin Authentication: DDS:AUth:PKI-DHccciciiiiiiiniiiiieniiniieniiieieeieiesseses 195
10.3.1 (00T o] = {U T 4 o o NP 196
10.3.2 DDS:AULN:PKI-DH TYPES .cceeiitiieeee e ettt e e e e e ecttrte e e e e e e e et raeeeeeeeessansasasesaeeeesasnsssaseeeesssnnnnes 198
10.3.3 DDS:Auth:PKI-DH plugin bBERAVIOrccociiiiiicieee ettt e e 203
10.3.4 DDS:Auth:PKI-DH plugin authentication protocolccceeivciiiiiiiiee e 209
10.4 Builtin Access Control: DDS:ACCESS:PErmiSSiONS.......ccoiirrrrmuuensiiiiiiiinrnmneisiisiinnrsnmseiismmeses 212
10.4.1 (00T o} = {U T | 4 Lo o NS 212
10.4.2 DDS:ACCESS:PEIMISSIONS TYPES e s naaan 248
10.4.3 DDS:Access:Permissions plugin BENAVION..........eeiiciiiee et 254
10.5 Builtin Crypto: DDS:Crypto:AES-GCIM-GIMALC........ccccuuiiiienneiireennniereeaneesenassssenassessenasssssenssssssennns 260
10.5.1 (00T o} = {U T | 4 o o NP R 260
10.5.2 DDS:Crypto:AES-GCM-GIMAC Ty PES. . i s e s s s snnnn 263
10.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior...........oeiccuiiei it 270
10.6 Builtin LOZZING PIUGIN........ciieeeiiieiiierieieceereeneeseenneeseeanseseenssssenassssennsssssenassssesnassssnensssssnennns 290
10.6.1 DDS:Logging:DDS_LogTopic plugin behavioroooeiiiiiiciiee e 292
11 Plugin Language Bindings......c.ccciiiieiiiiiiiiiiiiiiiiiiiienenieneninieeenensisisssessnssersnsssssnsssssnsessnns 305
0 00 A 41 o Yo [Tt o T TSSO 305
11.2 IDL representation of the plugin interfaces........ccccceviiiiieiiiiiiiiini e renens 306
11.3 Clanguage representation of the plugin interfacescccccccoiieeiiiiiieiiiiiiiiiiiiicrn e, 306
11.4 C++ classic representation of the plugin interfaces.......ccccoviiieeiiiiiiiiiiiiiiiiiir e, 306
8 T 1 T ol - 1o 306
11.6 C++11 representation of the plugin interfacescccccovvieiiiiiiiiiiiieiiiirc e 306
11.7 Java modern aligned with the DDS-JAVAS+ PSIVL........cccceeemeueniicierinenenmnsnseisseneeensnssssesssesessnnnnsnns 307
ANNEX A - REfEIENCEScveeeiiiiiiieiiiiiiiiiiireinrrreis s rreasessreaesesstessssssssensssssssenssssstesssssssasnsssssssnnnes 308

DDS Security, v1.12 Vi

Tables

QI Lo L R o (0 o 1= Y o =TSSR 18
Table 2 — BINaryProperty T ClaSS........cuiiiiiieeieiese e 19
Table 3 — DAtaHOIUEE CIASS........ccviieiiiiiiieee ettt 20
Table 4 — SecureBodYSUDIMSG CIASS.........cviiiiiiiieii e 41
Table 5 — SecurePrefiXSUDMSQ CIaSScoviiiiicii e 42
Table 6 — SeCUrePOSFIXSUDMSY CIASScoiiiiiiie et 44
Table 7 — SeCUreRTPSPrefiXSUDMSQ ClaSScveiieiiiiece e 45
Table 8 — SeCUrePOSFIXSUDMSY CIASScoiiiiiiieiiee e 46
Table 9 — Entityld values for secure builtin data writers and data readers.............ccccceevevveresierneriene, 47
Table 10 — Additional parameter I1Ds in ParticipantBuiltinTopicData............ccccooereniieniniiniiieee 53
Table 11 — Mapping of the additional builtin endpoints added by DDS security to the
availableBUItINENGPOINTS.oiiiiiiicie bbbt 54
Table 12 — Additional parameter IDs in PublicationBuiltinTopicData..........c.ccccooveveiieieececie e 55
Table 13 — Additional parameter IDs in ParticipantBuiltinTopicDataSecure............c.ccoceevvineiiniennenn 56
Table 14 — Additional parameter IDs in PublicationBuiltinTopicDataSecurec.cccccevveveivevieernene 57
Table 15 — Additional parameter I1Ds in SubscriptionBuiltinTopicDataSecureccocoevvviieienenn. 58
Table 16 — ParticipantVolatileMessageSecure Topic Security AtribUtescccccveveviieveeie e, 62
Table 17 — ParticipantVolatileMessageSecure Endpoint Security Attributes (Reader and Writer) 63
Table 18 — Non-default Qos policies for BuiltinParticipantVVolatileMessageSecureWriter 63
Table 19 — Non-default Qos policies for BuiltinParticipantVVolatileMessageSecureReader 63
Table 20 — EndpointSecurityAttributes for all "Builtin Security Endpoints™............ccccoevviieiieveeriene 69
Table 21 — Purpose of eaCh SECUrtY PIUGINooiiiiiiiiieeee e 77
Table 22 — SeCUNItYEXCEPLION ClaSS.......ciiiiiiciecie sttt e enes 78
Table 23 — Authentication plUgIn INTEITACEooi i 84
Table 24 — Values for ValidationRESUIL T..........c.coviiiiiiiicic e 87
Table 25 — Authentication HSTENET ClaSS........c.iiiiiiee e 96
Table 26 — Description of the AuthStatusKind Valuescccccveiiiiiiicce e 97
Table 27 — Description of the ParticipantSecurity AttribULES. ... 100
Table 28 — Mapping of fields ParticipantSecurityAttributes to bits in
ParticipantSecurity AtrDUIESMASKooiiiiiiece e 103
Table 29 — Description of the TopicSecurityConfig.........cccoveiiiiiiiciece e, 104
Table 30 — Description of the EndpointSecurity AttribULESc.ooveiiee i 105
Table 31 — Mapping of fields EndpointSecurityAttributes to bits in EndpointSecurityAttributesMask
.. 106
Table 32 — AcCeSSCONIOl INEITACEcveieiiiee e 107
Table 34 — CryptoTransformldentifier Class...........ccoocvveviviieiiennenne. Error! Bookmark not defined.
Table 35 — SecureSUbmMEesSageCAtEgOrY T......c.ciiciiiiieie e sre e ae e 125
Table 36 — CryptoKeYFactory INTEITACEooviiiiiiecieecee e 125
Table 37 — CryptoKeyEXchange INTerfaceoooveiii i 135
Table 38 — CryptoTranSform INTEITACEcvoieiiiiie s 141
Table 39 — LOGOPLIONS VAIUESccviiiieiie ettt ettt et be e e et eeaneeere e 156
Table 40 — LOgging INTEITACEocuiiiiiiieiee bbb bbb 156
Table 41 — Logger structured_data ENTIESccovviiiiiiieiie et 157
Table 42 — Impact of Access Control Operations to the DDS Builtin and Application-defined Entities
.. 167
Table 43 — Summary Of the BUItin PIUGINSc.ooiiiiiiiiiieee s 193
Table 44 — Properties used to configure the builtin Authentication plugin...........ccccovvveviiiiiciiecinenn, 196
Table 45 — IdentityToken class for the builtin Authentication plugin............cccoovviiiiiiiiiineee, 198

viii DDS Security, v1.12

Table 46 — IdentityStatusToken class for the builtin Authentication plugin........c.ccccoecvvieviveienienenn, 199

Table 47 — AuthenticatedPeerCredential Token class for the builtin Authentication plugin................ 199
Table 48 — AuthRequestMessageToken class for the builtin Authentication plugincccccccvvenee.n. 200
Table 49 — HandshakeRequestMessageToken for the builtin Authentication plugincccceveee. 201
Table 50 — HandshakeReplyMessageToken for the builtin Authentication plugin............cccccveevenee. 201
Table 51 — HandshakeFinalMessageToken for the builtin Authentication plugin...........cccocoveivenene. 203
Table 52 — Actions undertaken by the operations of the builtin Authentication plugin..................... 204
Table 53 — Terms used in the description of the builtin authentication protocolcc.coovvvennee. 209
Table 54 — Notation of the operations/transformations used in the description of the builtin

AUENENEICALION PIOTOCOIottt 210
Table 55 — Description of built-in authentication protocolccoovevi i, 211
Table 56 — Properties used to configure the builtin AccessControl pluginccccvviieiiiiieiieneen, 212
Table 57 — PermissionsCredential Token class for the builtin AccessControl plugincccccveenee.e. 248
Table 58 — PermissionsToken class for the builtin AccessControl plugin..........ccocooviiiiiiiiiicien, 248
Table 59 — Description of the PluginParticipantSecurity AttribUtesccovveveiieie e, 249
Table 60 — Mapping of PluginParticipantSecurityAttributes to the

PluginParticipantSecurity ALIIDULESMASKccveviiieiiiiieie e 252
Table 61 — Description of the PluginEndpointSecurity Attributes ..o, 253
Table 62 — Mapping of fields PluginEndpointSecurityAttributes to the

PluginEndpointSecurity AttriDUIESMASKccviiiiiiii e 254
Table 63 — Actions undertaken by the operations of the bulitin AccessControl plugin........................ 255
Table 64 — AES-GCM transformation INPUEScoeiiriiinieieiesie s 260
Table 65 — AES-GCM trasnsformation OULPULScceeueiieiieiie i 260
Table 66 — CryptoToken class for the builtin Cryptographic plugin...........ccoceveieiiiiiiceee, 263
Table 67 — KeyMaterial AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSeCUreREATENccviiiiiiiiiiiieeee e 264
Table 68 — Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic

0] 1001 TSSO PO TSP TP PP PRURPRTPRPIN 264
Table 69 — CryptoTransformldentifier class for the builtin Cryptographic pluginc.cccceeevenee. 268
Table 70 — Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory

[0 10T 1 ST OSSPSR 270
Table 71 — Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange

[0 10T 1 SRS P SR 274
Table 72 — Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform

[0 10T 1 SRS P SR 275
Table 73 — Terms used in Key Computation and cryptographic transformations formulas for the builtin

(oY o1oTo] = ol T Tl o] [N o | o OO OSPS TP 281
Table 74 — Actions undertaken by the operations of the builtin Logging plugin..........cc.ccoovivvnieienne. 292

DDS Security, v1.12 ix

Figures

Figure 1 — Overall architecture for DDS SECUTILYocvueiieiieiieii et enees 1
FIQUIE 2 — TRIEAL BCTOIS ... ettt bbbttt b bttt 14
Lo U e T o (=] Y (oo =] USSP 21
Figure 4 — RTPS MESSAJE STFUCTUIEcouiiuiiieteiteitesie sttt bbbttt bbbt nb e 36
Figure 5 — Secure Submessage and Secured Payload Modelccccoiveiieiiiiecicce e, 41
Figure 6 — RTPS message transformations............coiiiiiiiiieiciese s 43
Figure 7 — Plugin ArchiteCture MOoooui i 76
Figure 8 — Authentication plugin MOdel...........c.oooiiiiiii e 79
Figure 9 — Authentication plugin interaction state Maching............ccccecvvieiieii i 82
Figure 10 — AccessControl PIUGIN MOGEIc.ooviiiiiiiiiceeee e 99
Figure 11 — Cryptographic PIUGIN MOUELccoveiiiieiiece et 123
Figure 12 — Effect of encode_serialized_payload within an RTPS MeSSagecccccevvvvrvrenievenenn. 143
Figure 13 — Effect of encode_datawriter_submessage within an RTPS mMessage........ccccoccevvvereseennenn 145
Figure 14 — Effect of encode_datareader_submessage within an RTPS message.........c.ccoovvvvvrvenne. 147
Figure 15 — Possible effect of encode_rtps within an RTPS MESSage.........ccccvveveiieiieiecie e eie e 149
Figure 16 — Possible effect of decode_rtps within an RTPS MEeSSage.........ccevvvierenineneninesieeeeens 150
Figure 17 — Effect of decode_datawriter_submessage within an RTPS mMessage..........cccccevvvevervennnn 152
Figure 18 — Effect of decode_datawriter_submessage within an RTPS message...........ccccvvvvvevenne. 153
Figure 19 — Effect of decode_serialized_payload within an RTPS MeSSageccccvvevvveiveieeiiesiennnn 154
Figure 20 — Logging PIUGIN IMOGEIooiiiiiiiiiii e 155
Figure 21 — Authentication and AccessControl sequence diagram with local DomainParticipant...... 160
Figure 22 — Authentication sequence diagram with discovered DomainParticipant.............ccccceevenene. 164
Figure 23 — AccessControl sequence diagram with local entities...........cccccceevvevieiie i, 170
Figure 24 — AccessControl sequence diagram with discovered DomainParticipant.............ccccceevenene. 172
Figure 25 — AccessControl sequence diagram with discovered entities when is_read_protected and
is_write_protected are DOth FALSE ..ot 174
Figure 26 — AccessControl sequence diagram with discovered entities when
is_read_protected==TRUE and is_write_protected==TRUEccccseurrirrrrrrrrrrerrrrerrrerernnns 175
Figure 27 — Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant
.. 180
Figure 28 — Cryptographic KeyExchange plugin sequence diagram with discovered DataReader 182
Figure 29 — Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter 183
Figure 30 — Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single
DataWITEr SUDMESSAGE ..ottt bbbttt bbb e 185
Figure 31 — Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataWITEr SUDMESSAGES.c.vitiiteiiieieeieee ettt bbbt b 187
Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataReader SUDMESSAGESe.viviiteitiiteeieeieie ettt bbbttt ettt b e bbb ne e 188
Figure 33 — Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataWriter and DataReader SUDMESSAGESccveiviriiiiriiieieiie e 190

X DDS Security, v1.12

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A listing of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http:/www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under OMG Specifications, Report an Issue.

DDS Security, v1.12 Xi

1 Scope

1.1 General

This specification adds several new “DDS Security Support” compliance points (“profile”) to the DDS
Specification. See the compliance levels within the Conformance Clause below.

1.2 Overview of this Specification

This specification defines the Security Model and Service Plugin Interface (SPI) architecture for
compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs
by the DDS implementation. This specification also defines a set of builtin implementations of these
SPIs.
e The specified builtin SPI implementations enable out-of-the box security and interoperability
between compliant DDS applications.
e The use of SPIs allows DDS users to customize the behavior and technologies that the DDS
implementations use for Information Assurance, specifically customization of Authentication,
Access Control, Encryption, Message Authentication, Digital Signing, Logging and Data

Tagging.

‘ application component

App.

Authentication Secure DDS
Plugin middleware

_,‘ DataTagging

Plugin
Access Control g

Plugin DDS Entities || T Other

- ¢ v Plugin DDS
Logging Protocol Data System
Plugin Engine cache

Transport (e.g. UDP)
4+
Kernel] Ea—
Policies Module
Y
Network (e.g. TPM)
Driver Secure Kernel 1
J TAG | Encrypted Data | MAC
Network

Figure 1 — Overall architecture for DDS Security

This specification defines five SPIs that when combined together provide Information Assurance to
DDS systems:

DDS Security, v1.12 1

Authentication Service Plugin. Provides the means to verify the identity of the application
and/or user that invokes operations on DDS. Includes facilities to perform mutual
authentication between participants and establish a shared secret.

AccessControl Service Plugin. Provides the means to enforce policy decisions on what DDS
related operations an authenticated user can perform. For example, which domains it can join,
which Topics it can publish or subscribe to, etc.

Cryptographic Service Plugin. Implements (or interfaces with libraries that implement) all
cryptographic operations including encryption, decryption, hashing, digital signatures, etc. This
includes the means to derive keys from a shared secret.

Logging Service Plugin. Supports auditing of all DDS security-relevant events.

Data Tagging Service Plugin. Provides a way to add tags to data samples.

DDS Security, v1.12

2 Conformance

2.1 Conformance points

This specification defines the following conformance points:
(1) Builtin plugin interoperability (mandatory)
(2) Plugin framework (mandatory)
(3) Plugin language APIs (optional)
(4) Logging and Tagging (optional)

Conformance with the “DDS Security” specification requires conformance with all the mandatory
conformance points.

2.2 Builtin plugin interoperability (mandatory)

This point provides interoperability with all the builtin plugins with the exception of the Logging

plugin. Conformance to this point requires conformance to:

e Clause 7 (the security model and the support for interoperability between DDS Security
implementations).

e The configuration of the plugins and the observable wire-protocol behavior specified in Clause 10
(the builtin-plugins), except for sub clause 10.6. This conformance point does not require
implementation of the APIs between the DDS implementation and the plugins.

2.3 Plugin framework (mandatory)

This point provides the architectural framework and abstract APIs needed to develop new security
plugins and “plug them” into a DDS middleware implementation. Plugins developed using this
framework are portable between conforming DDS implementations. However portability for a specific
programming language also requires conformance to the specific language API (see 2.4).
Conformance to this point requires conformance to:

e Clause 7 (the security model and the support for interoperability between DDS Security
implementations).

e Clause 9 (the plugin model) with the exception of 9.6 and 9.7 (Logging and Data Tagging plugins).
The conformance to the plugin model is at the UML level; it does not mandate a particular language
mapping.

e Clause 10, the builtin-plugins, except for 10.6 (Builtin Logging Plugin).

In addition it requires the conforming DDS implementation to provide a public API to insert the
plugins that conform to the aforementioned sections.

2.4 Plugin Language APIs (optional)

These conformance points provide portability across compliant DDS implementations of the security
plugins developed using a specific programming language.

Conformance to any of the language portability points requires conformance to the (mandatory) plugin
architecture framework point.

There are 5 “plugin language API” points, each corresponding to a different programming language
used to implement the plugins.

Each language point is a separate independent conformance point. Conformance with the “plugin
language API” point requires conformance with at least one of the 5 language APIs enumerated below:
e C Plugin APIs. Conformance to sub clauses 11.2 and 11.3

DDS Security, v1.12 3

C++ classic Plugin APIs. Conformance to sub clauses 11.2 and 11.4
Java classic Plugin APIs. Conformance to sub clauses 11.2 and 11.5
C++11 Plugin APIs. Conformance to sub clauses 11.2 and 11.6
Java5+ Plugin APIs. Conformance to sub clauses 11.2 and 11.7

2.5 Logging and Tagging profile (optional)

This point adds support for logging and tagging. Conformance to this point requires conformance to

sub clauses 9.6, 9.7, and 10.6.

DDS Security, v1.12

3 Normative References

e DDS: Data-Distribution Service for Real-Time Systems version 1.4.
http://www.omq.org/spec/DDS/1.4

e DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.5,
http://www.omg.org/spec/DDS-RTPS/2.5/

e DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.3,
http://www.omg.org/spec/DDS-XTypes/1.3/

e OMG-IDL.: Interface Definition Language (IDL) version 4.2, http://www.omg.org/spec/IDL/4.2

e HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R.Canetti,
IETF RFC 2104, http://tools.ietf.org/html/rfc2104

e Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms,
IETF RFC 6151 https://tools.ietf.org/html/rfc6151

e PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.
http://tools.ietf.org/html/rfc2315

e Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.2.
IETF RFC 8017. https://tools.ietf.org/html/rfc8017

e XSD: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes,
https://www.w3.0rg/TR/2012/REC-xmlschemal1-2-20120405

DDS Security, v1.12 5

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDS-RTPS/2.5/
http://www.omg.org/spec/DDS-XTypes/1.3/
http://www.omg.org/spec/IDL/4.2
http://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6151
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc8017
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply:

Access Control

Mechanism that enables an authority to control access to areas and resources in a given physical
facility or computer-based information system.

Authentication

Security measure(s) designed to establish the identity of a transmission, message, or originator.

Authorization

Access privileges that are granted to an entity; conveying an “official” sanction to perform a security
function or activity.

Ciphertext
Data in its encrypted or signed form.

Certification authority

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing certificates, and exacting
compliance to a PKI policy.

Confidentiality
Assurance that information is not disclosed to unauthorized individuals, processes, or devices.

Cryptographic algorithm

A well-defined computational procedure that takes variable inputs, including a cryptographic key and
produces an output.

Cryptographic key

A parameter used in conjunction with a cryptographic algorithm that operates in such a way that
another agent with knowledge of the key can reproduce or reverse the operation, while an agent
without knowledge of the key cannot.

Examples include:

The transformation of plaintext data into ciphertext.

The transformation of ciphertext data into plaintext.

The computation of a digital signature from data.

The verification of a digital signature.

The computation of a message authentication code from data.

The verification of a message authentication code from data and a received authentication
code.

oakrwdE

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an
application to publish and subscribe to the values of data objects.

6 DDS Security, v1.12

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be
specified for data timeliness and reliability. It is independent of the implementation language.

Data Integrity
Assurance that data has not been altered since creation time.

Data-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of specified data (it
includes data integrity). In this specification it is used to indicate assurance of the DataWriter or

DataReader that originated a message.

Digital signature

The result of a cryptographic transformation of data that, when properly implemented with supporting
infrastructure and policy, provides the services of:

1. origin authentication

2. data integrity

3. signer non-repudiation

Extended IDL

Extended Interface Definition Language (IDL) used to describe data types in a way that can be
represented in a machine neutral format for network communications. This syntax was introduced as
part of the DDS-XTYPES specification [3].

Hashing algorithm

A one-way algorithm that maps an input byte buffer of arbitrary length to an output fixed-length byte
array in such a way that:

(a) Given the output it is computationally infeasible to determine the input.

(b) It is computationally infeasible to find any two distinct inputs that map to the same output.

IETF

The Internet Engineering Task Force (IETF) is a standards organization for the Internet and is
responsible for the technical standards that make up the Internet protocol suite.

Information Assurance

The practice of managing risks related to the use, processing, storage, and transmission of information
or data and the systems and processes used for those purposes.

Integrity

Protection against unauthorized modification or destruction of information.

Key derivation function (KDF)

A class of functions that use pseudo-random functions (PRFs) and a pre-shared cryptographic key (the
key-derivation key) to generate additional keys [50].

Key establishment

The process by which cryptographic keys are securely established among cryptographic modules [50].

DDS Security, v1.12 7

Key agreement

A Key Establishment procedure where the resultant keying material is a function of information
contributed by two or more participants, so that no party can predetermine the value of the keying
material independently of the other party’s contribution used to establish secret keying material [50].
Key agreement typically involves two steps: the use of an appropriate “primitive” to generate an
agreed shared secret, and the use of a key derivation function (KDF) to generate one or more keys
from the shared secret.

Key management

The handling of cryptographic material (e.g., keys, Initialization Vectors) during their entire life cycle
of from creation to destruction.

Message authentication code (MAC)

A cryptographic hashing algorithm on data that uses a symmetric key to detect both accidental and
intentional modifications of data.

Message-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of a specified message. In
this specification it is used to indicate assurance of the DomainParticipant that originated the
message.

NIST

National Institute of Standards and Technology (NIST) is a US government agency that among other
things defines standards relevant to science, engineering, and information technology.

Non-Repudiation

Assurance that the sender of data is provided with proof of delivery and the recipient is provided with
proof of the sender's identity, so neither can later deny having received or processed the data.

Public key

A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with
an entity and that may be made public. The public key is associated with a private key. The public key
may be known by anyone and, depending on the algorithm, may be used to:

1. Verify a digital signature that is signed by the corresponding private key,

2. Encrypt data that can be decrypted by the corresponding private key, or

3. Compute a piece of shared data.

Public key certificate

A set of data that uniquely identifies an entity, contains the entity's public key and possibly other
information, and is digitally signed by a trusted party, thereby binding the public key to the entity.
Public key cryptographic algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys
have the property that determining the private key from the public key is computationally infeasible.
Public Key Infrastructure

A framework that is established to issue, maintain, and revoke public key certificates.

8 DDS Security, v1.12

5 Symbols

This specification does not define any symbols or abbreviations.

DDS Security, v1.12

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not modify any existing adopted OMG specifications. It reuses and/or adds
functionality on top of the current set of OMG specifications.

DDS: This specification does not modify or invalidate any existing DDS profiles or compliance
levels. It extends some of the DDS builtin Topics to carry additional information in a
compatible way with existing implementations of DDS.

DDS-RTPS: This specification does not require any modifications to RTPS; however, it may
impact interoperability with existing DDS-RTPS implementations. In particular, DDS-RTPS
implementations that do not implement the DDS Security specification will have limited
interoperability with implementations that do implement the mechanisms introduced by this
specification. Interoperability is limited to systems configured to allow “unauthorized”
DomainParticipant entities and within those systems, only to Topics configured to be
“unprotected.”

DDS-XTYPES: This specification depends on the IDL syntax introduced by and the Extended
CDR encoding defined in the DDS-XTYPES specification. It does not require any
modifications of DDS-XTYPES. Implementations of both this specification and DDS-XTYPES
(Basic Network Interoperability Profile) shall include the Builtin Secure TypeLookup
Endpoints (see section 7.5.11).

OMG IDL: This specification does not modify any existing IDL-related compliance levels.

6.2 Acknowledgments

The following individuals and companies submitted content that was incorporated into this
specification:

Submitting contributors:

(lead) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com
Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com
Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Supporting contributors:

Char Wales, MITRE charwing AT mitre.org
Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

Finalization Task Force members and participants:

(chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com
Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com
Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

Virginie Watine, THALES, virginie.watine AT thalesgroup.com

Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Julien Enoch, PrismTech, julien.enoch AT prismtech.com

Ricardo Gonzalez, eProsima, RicardoGonzalez AT eprosima.com

Gilles Bessens, Kongsberg Gallium, gilles.bessens AT kongsberggallium.com
Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

Ron Townsen, General Dynamics AlS, Ronald. Townsen AT gd-ais.com

Revision Task Force members and participants:

10

DDS Security, v1.12

mailto:julien.enoch@prismtech.com

e (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com
e Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

e Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

e Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Julien Enoch, PrismTech, julien.enoch AT prismtech.com

Jose Maria Lopez-Vega, Ph.D., Real-Time Innovations. jose AT rti.com

Yusheng Yang, Real-Time Innovations. yusheng AT rti.com

Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

Ron Townsen, General Dynamics AlS, Ronald. Townsen AT gd-ais.com

DDS Security, v1.12

11

mailto:julien.enoch@prismtech.com

12

This page intentionally left blank.

DDS Security, v1.12

7 Support for DDS Security

7.1 Security Model

The Security Model for DDS defines the security principals (users of the system), the objects that are
being secured, and the operations on the objects that are to be restricted. DDS applications share
information on DDS Global Data Spaces (called DDS Domains) where the information is organized
into Topics and accessed by means of read and write operations on data-instances of those Topics.
Ultimately what is being secured is a specific DDS Global Data Space (domain) and, within the
domain, the ability to access (read or write) information (specific Topic or even data-object instances
within the Topic) in the DDS Global Data Space.
Securing DDS means providing:

e Confidentiality of the data samples
Integrity of the data samples and the messages that contain them
Authentication of DDS writers and readers
Authorization of DDS writers and readers
Message-origin authentication
Data-origin authentication

e (Optional) Non-repudiation of data
To provide secure access to the DDS Global Data Space, applications that use DDS must first be
authenticated, so that the identity of the application (and potentially the user that interacts with it) can
be established. Once authentication has been obtained, the next step is to enforce access control
decisions that determine whether the application is allowed to perform specific actions. Examples of
actions are: joining a DDS Domain, defining a new Topic, reading or writing a specific DDS Topic,
and even reading or writing specific Topic instances (as identified by the values of key fields in the
data). Enforcement of access control shall be supported by cryptographic techniques so that
information confidentiality and integrity can be maintained, which in turn requires an infrastructure to
manage and distribute the necessary cryptographic keys.

7.1.1 Threats

In order to understand the decisions made in the design of the plugins, it is important to understand
some of the specific threats impacting applications that use DDS and DDS Interoperability Wire
Protocol (RTPS).
Most relevant are four categories of threats:
1. Unauthorized subscription
2. Unauthorized publication
3. Tampering and replay
4. Unauthorized access to data
These threats are described in the context of a hypothetical communication scenario with six actors all
attached to the same network:
e Alice. A DDS DomainParticipant who is authorized to publish data on a Topic T.
e Bob. A DDS DomainParticipant who is authorized to subscribe to data on a Topic T.
e Eve. An eavesdropper. Someone who is not authorized to subscribe to data on Topic T.
However Eve uses the fact that she is connected to the same network to try to see the data.
e Trudy. An intruder. A DomainParticipant who is not authorized to publish on Topic T.
However, Trudy uses the fact that she is connected to the same network to try to send data.
e Mallory. A malicious DDS DomainParticipant. Mallory is authorized to subscribe to data on
Topic T but she is not authorized to publish on Topic T. However, Mallory will try to use

DDS Security, v1.12 13

information gained by subscribing to the data to publish in the network and try to convince Bob
that she is a legitimate publisher.

e Trent. A trusted service who needs to receive and send information on Topic T. For example,
Trent can be a persistence service or a relay service. He is trusted to relay information without
having malicious intent. However he is not trusted to see the content of the information.

D1 D2
Unauthorize
. ublication
Alice Trudy P
Unauthorize Replay
subscription attack
1| D1 | | D2
y y
/ }/
p | Data Content Y Y Y Y
E Sample Info Trent Eve Mallory Bob
e.g. sequence number

Figure 2 — Threat actors

7.1.1.1 Unauthorized Subscription

The DomainParticipant Eve is connected to the same network infrastructure as the rest of the agents
and is able to observe the network packets despite the fact that the messages are not intended to be sent
to Eve. Many scenarios can lead to this situation. Eve could tap into a network switch or observe the
communication channels. Alternatively, in situations where Alice and Bob are communicating over
multicast, Eve could simply subscribe to the same multicast address.

Protecting against Eve is reasonably simple. All that is required is for Alice to encrypt the data she
writes using a secret key that is only shared with authorized receivers such as Bob, Trent, and Mallory.

7.1.1.2 Unauthorized Publication

The DomainParticipant Trudy is connected to the same network infrastructure as the rest of the agents
and is able to inject network packets with any data contents, headers and destination she wishes (e.g.,
Bob). The network infrastructure will route those packets to the indicated destination.

To protect against Trudy, Bob, Trent and Mallory need to realize that the data is not originating from
Alice. They need to realize that the data is coming from someone not authorized to send data on Topic
T and therefore reject (i.e., not process) the packet.

Protecting against Trudy is also reasonably simple. All that is required is for the protocol to require
that the messages include either a hash-based message authentication code (HMAC) or digital
signature.

e An HMAC creates a message authentication code using a secret key that is shared with the
intended recipients. Alice would only share the secret key with Bob, Mallory and Trent so that
they can recognize messages that originate from Alice. Since Trudy is not authorized to publish
Topic T, Bob and the others will not recognize any HMACSs Trudy produces (i.e., they will not
recognize Trudy’s key).

14 DDS Security, v1.12

e A digital signature is based on public key cryptography. To create a digital signature, Alice
encrypts a digest of the message using Alice’s private key. Everybody (including Bob, Mallory
and Trent) has access to Alice’s public key. Similar to the HMAC above, the recipients can
identify messages from Alice, as they are the only ones whose digital signature can be
interpreted with Alice’s public key. Any digital signatures Trudy may use will be rejected by
the recipients, as Trudy is not authorized to write Topic T.

The use of HMACs versus digital signatures presents tradeoffs that will be discussed further in
subsequent sections. Suffice it to say that in many situations the use of HMACSs is preferred because
the performance to compute and verify them is about 1000 times faster than the performance of
computing/verifying digital signatures.

7.1.1.3 Tampering and Replay

Mallory is authorized to subscribe to Topic T. Therefore Alice has shared with Mallory the secret key
to encrypt the topic and also, if an HMAC is used, the secret key used for the HMAC.

Assume Alice used HMAC:s instead of digital signatures. Then Mallory can use her knowledge of the
secret keys used for data encryption and the HMACSs to create a message on the network and pretend it
came from Alice. Mallory can fake all the TCP/UDP/IP headers and any necessary RTPS identifiers
(e.g., Alice’s RTPS DomainParticipant and DataWriter GUIDs). Mallory has the secret key that was
used to encrypt the data so she can create encrypted data payloads with any contents she wants. She
has the secret key used to compute HMACs so she can also create a valid HMAC for the new message.
Bob and the others will have no way to see that the message came from Mallory and will accept it,
thinking it came from Alice.

So if Alice used an HMAC, the only solution to the problem is that the secret key used for the HMAC
when sending the message to Mallory cannot be the same as the key used for the HMAC when sending
messages to Bob. In other words, Alice must share a different secret key for the HMAC with each
recipient. Then Mallory will not have the HMAC key that Bob expects from Alice and the messages
from Mallory to Bob will not be misinterpreted as coming from Alice.

Recall that Alice needs to be able to use multicast to communicate efficiently with multiple receivers.
Therefore, if Alice wants to send an HMAC with a different key for every receiver, the only solution is
to append multiple HMACs to the multicast message with some key-id that allows the recipient to
select the correct HMAC to verify.

If Alice uses digital signatures to protect the integrity of the message, then this ‘masquerading’
problem does not arise and Alice can send the same digital signature to all recipients. This makes using
multicast simpler. However, the performance penalty of using digital signatures is so high that in many
situations it will be better to compute and send multiple HMACs as described earlier.

7.1.1.4 Unauthorized Access to Data by Infrastructure Services

Infrastructure services, such as the DDS Persistence Service or relay services need to be able to receive
messages, verify their integrity, store them, and send them to other participants on behalf of the
original application.

These services can be trusted not to be malicious; however, often it is not desirable to grant them the
privileges they would need to understand the contents of the data. They are allowed to store and
forward the data, but not to see inside the data.

Trent is an example of such a service. To support deployment of these types of services, the security
model needs to support the concept of having a participant, such as Trent, who is allowed to receive,
process, and relay RTPS messages, but is not allowed to see the contents of the data within the
message. In other words, he can see the headers and sample information (writer GUID, sequence
numbers, keyhash and such) but not the message contents.

DDS Security, v1.12 15

To support services like Trent, Alice needs to accept Trent as a valid destination for her messages on
topic T and share with Trent only the secret key used to compute the HMAC for Trent, but not the
secret key used to encrypt the data itself. In addition, Bob, Mallory and others need to accept Trent as
someone who is able to write on Topic T and relay messages from Alice. This means two things: (1)
accept and interpret messages encrypted with Alice’s secret key and (2) allow Trent to include in his
sample information, the information he got from Alice (writer GUID, sequence number and anything
else needed to properly process the relayed message).

Assume Alice used an HMAC in the message sent to Trent. Trent will have received from Alice the
secret key needed to verify the HMAC properly. Trent will be able to store the messages, but lacking
the secret key used for its encryption, will be unable to see the data. When he relays the message to
Bob, he will include the information that indicates the message originated from Alice and produce an
HMAC with its own secret HMAC key that was shared with Bob. Bob will receive the message, verify
the HMAC and see it is a relayed message from Alice. Bob recognizes Trent is authorized to relay
messages, so Bob will accept the sample information that relates to Alice and process the message as if
it had originated with Alice. In particular, he will use Alice’s secret key to decrypt the data.

If Alice had used digital signatures, Trent would have two choices. If the digital signature only covered
the data and the sample information he needs to relay from Alice, Trent could simply relay the digital
signature as well. Otherwise, Trent could strip out the digital signature and put in his own HMAC.
Similar to before, Bob recognizes that Trent is allowed to relay messages from Alice and will be able
to properly verify and process the message.

7.2 Cryptographic Algorithm Classes

The term Cryptographic Algorithm is used to refer to well-defined computational procedures that
take variable inputs, possibly including a cryptographic key, and produce an output. In the context of
this specification, this term refers to any of the cryptographic algorithms used by the SPIs.
Implementations of DDS-Security SPIs rely on cryptographic algorithms to implement authentication,
access control, confidentiality, and integrity functionality. The concrete algorithms and how they are
used depend on the implementation of the SPIs. However, since the SPIs use well-known algorithms
specified by other standard organizations such as NIST and IETF, it is advantageous for DDS-Security
to define a common (SPI-independent) mechanism that facilitates reuse of the algorithms across SPI
implementations, including the builtin SPIs as well as custom ones.

Following the NIST classification of Cryptographic Algorithms [50], this specification groups the
algorithms into the following classes:

e Digital Signature: This class of operations are used to prove/verify the integrity and
authenticity of a message or a document. In the context of this specification, digital signatures
may be used by the SPIs to establish an identity trust chain that validates certificates and to
authenticate messages exchanged between two Endpoints.

e Key Establishment and KeyAgreement: This class of operations are used to securely
establish cryptographic keys among cryptographic modules or communicating endpoints. Key
Agreement is a special type of key establishment where the resulting key material is a function
of information contributed by two or more participants, so that no party can predetermine the
value of the key material independently of the other party’s contributions. In the context of this
specification, key agreement may be used by the SPIs to generate a shared secret key between
two Participants allowing them to exchange information securely.

e Symmetric Cipher: This class of operations use a shared secret key for (authenticated)
encryption/decryption or to generate/validate Message Authentication Codes (MACS). In the
context of this specification, symmetric ciphers may be used by the SPIs to protect the data and
metadata exchanged between two Endpoints. In the NIST classification this group is separated

16 DDS Security, v1.12

into two: Block-cipher encryption/decryption and message authentication codes. This
differentiation is not needed for DDS-Security.

The classes above are intentionally a subset of the ones defined by NIST. It is limited to the types of
cryptographic algorithms that the SPIs are expected to be able to configure independently and impact
the interoperability between Participants. Other classes of algorithms, such as, Hashing, Random
Number Generators, etc. are used but not separately configurable so it is not needed to manage them
separately. Future revisions of the specification may separate these as well.

The common set of predefined cryptographic algorithms available for use by the SPIs are defined in
Clause 8.

7.3 Types used by DDS Security

The DDS security specification includes extensions to the DDS Interoperability Wire Protocol (DDS-
RTPS), as well as, new API-level functions in the form of Security Plugins. The types described in this
sub clause are used in these extensions.

7.3.1 Use of IDL and XTYPES notation

This specification uses the OMG IDL, including IDL annotations, as a way to define datatypes.
Likewise, it uses DDS-XTYPES to define the serialized representation of those data types. See section
3Normative References.

The use of OMG IDL notation and DDS-XTYPES data representation does not imply that
implementations of this specification need to also conform to the full OMG IDL or DDS-XTYPES
specifications. Rather, the requirement is that the serialized data for types defined/used in the DDS-
Security specification the corresponding DDS-XTYPES data representations for those same concrete
data types.

7.3.1.1 Type Extensibility

DDS-Security leverages the concept of type extensibility as defined in DDS-XTYPES, including the
IDL @extensibility annotation, to indicate the possible evolution of the defined data types in future
revisions of the specification.
This is done according to the following conventions:
e Types that extend or mimic pre-exiting types in DDS, DDS-XTYPES, or DDS-RTPS use the
same extensibility kind as the corresponding base-type.
o Types representing builtin Topics used for discovery (or secure discovery) of DDS
Entities are defined with extensibility MUTABLE.
o Types representing the Qos of a DDS Entity are defined with extensibility kind
MUTABLE.
o Types representing a Qos Policy of a DDS Entity are defined with extensibility kind
APPENDABLE.
o Other top-level types are defined with extensibility kind APPENDABLE.
e Types used as top-level data types sent for a DDS Topics are defined with either extensibility
kind MUTABLE or APPENDABLE.
e Types that appear in sequences or embedded in non-mutable types are defined with
extensibility kind FINAL.

7.3.1.2 Data Representation (Serialization)

DDS-Security only uses the Extended CDR representation with encoded version 1. Specifically, this
means that the serialization of a type with extensibility kind APPENDABLE is the same as if it had

DDS Security, v1.12 17

been declared to have extensibility kind FINAL. The difference is the expected future evolution of the
data type, see 7.3.1.3.

7.3.1.3 Type changes that may appear in future revision of the specification

Types defined with extensibility kind FINALare not expected to be modified in future revisions of the
DDS-Security specification. If they are, the resulting change will likely not be interoperable with this
version of the specification.
Types defined with extensibility kind APPENDABLE may be modified in future revisions of the DDS-
Security specification. If they are, the resulting change should be interoperable with this version of the
specification.
Vendors may only create vendor-specific extensions to the Types representing builtin Topics used for
discovery (or secure discovery) of DDS. These types are all structure types with extensibility kind
MULTABLE. The only vendor-specific extension allowed to these types is the addition of new
members to these structures. If new members are added:

e The member IDs of these vendor-specific members shall be in the Vendor-specific Parameterld

space, defined in DDS-RTPS vesion 2.5, clause 9.4.2.11.2.

The Ignore/Must Understand bit of the memberlD/Parameterld must also be set according with the
meaning of table 9.6 in that same clause.

7.3.2 Property_t

Section 9.3.2 of the DDS-RTPS specification defines Property t as a data type that holds a pair of
strings. One string is considered the property “name” and the other is the property “value” associated
with that name.

The DDS Security specification extends the DDS-RTPS definition of Property t to contain the
additional boolean attribute “propagate” used to indicate whether a property is intended for local use
only or should be propagated by DDS discovery.

The DDS-Security specification uses Property t sequences as a generic data type to configure the
security plugins, pass metadata and provide an extensible mechanism for vendors to configure the
behavior of their plugins without breaking portability or interoperability.

Property t objects with names that start with the prefix “dds . sec.” are reserved by this
specification, including future versions of this specification. Plugin implementers can also use this
mechanism to pass metadata and configure the behavior of their plugins. In order to avoid collisions
with the value of the “name” attribute, implementers shall use property names that start with a prefix to
an ICANN domain name they own, in reverse order. For example, the prefix would be “com.acme.”
for plugins developed by a hypothetical vendor that owns the domain “acme.com”.

The names and interpretation of the expected properties shall be specified by each plugin
implementation.

Table 1 — Property_t class

Property t
Attributes
name String
value String
propagate Boolean

18 DDS Security, v1.12

7.3.2.1 IDL Representation for Property_t

The Property t type may be used for information exchange over the network. When a
Property t issent over the network it shall be serialized using Extended CDR format according to
the Extended IDL representation [3] below.

@extensibility (FINAL)
struct Property t {
string name;
string value;
@non-serialized boolean propagate;
}i
typedef sequence< Property t > PropertySeq;

7.3.3 BinaryProperty_t

BinaryProperty t isa data type that holds a string and an octet sequence. The string is
considered the property “name” and the octet sequence the property “value” associated with that name.
Sequences of BinaryProperty t are used as a generic data type to configure the plugins, pass
metadata and provide an extensible mechanism for vendors to configure the behavior of their plugins
without breaking portability or interoperability.

BinaryProperty t alsocontains the boolean attribute “propagate”. Similar to Property t
this attribute is used to indicate whether the corresponding binary property is intended for local use
only or shall be propagated by DDS discovery.

BinaryProperty t objects with a “name” attribute that start with the prefix “dds.sec.” are
reserved by this specification, including future versions of this specification.

Plugin implementers may use this mechanism to pass metadata and configure the behavior of their
plugins. In order to avoid collisions with the value of the “name”, attribute implementers shall use
property names that start with a prefix to an ICANN domain name they own, in reverse order. For
example, the prefix would be “com.acme.” for plugins developed by a hypothetical vendor that owns
the domain “acme.com”.

The valid values of the “name” attribute and the interpretation of the associated “value” shall be
specified by each plugin implementation.

Table 2 — BinaryProperty_t class

BinaryProperty t

Attributes

name String
value OctetSeq
propagate Boolean

7.3.3.1 IDL Representation for BinaryProperty_t

The BinaryProperty t type may be used for information exchange over the network. When a
BinaryProperty t issentover the network, it shall be serialized using Extended CDR format
according to the Extended IDL representation [3] below.

@extensibility (FINAL)
struct BinaryProperty t ({
string name;
OctetSeq value;
@non-serialized boolean propagate;

}i

DDS Security, v1.12 19

typedef sequence< BinaryProperty t > BinaryPropertySeq;

When setting the BinaryProperty t value octet sequence from an ASCII string, the length of
the sequence shall be set to the number of characters in the string, counting the NUL terminating
character, and each octet in the sequence shall be set to the ASCII value of the corresponding character
in the string, including the NUL terminating character.

For example, if an object the string “ECDSA-SHA256 shall result in an octet sequence value with
length 13 where the first octet is 0x45 (ASCII code for ‘E”) and the last octet is 0x00.

7.3.4 DataHolder

DataHolder is a data type used to hold generic data. It contains various attributes used to store data
of different types and formats. DataHolder appears as a building block for other types, such as
Token and GenericMessageData.

Table 3 — DataHolder class

DataHolder
Attributes
class id String
properties PropertySeq
binary properties BinaryPropertySeq

7.3.4.1 IDL representation for DataHolder

The DataHolder type may be used for information exchange over the network. When a
DataHolder is sent over the network, it shall be serialized using Extended CDR format according to
the Extended IDL representation [3] below.

@extensibility (FINAL)

struct DataHolder {
string class_id;
PropertySeq properties;
BinaryPropertySeq binary properties;

}i

typedef sequence<DataHolder> DataHolderSeq;

7.3.5 Token

The Token class provides a generic mechanism to pass information between security plugins using
DDS as the transport. Token objects are meant for transmission over the network using DDS either
embedded within the builtin topics sent via DDS discovery or via special DDS Topic entities defined
in this specification.

The Token class is structurally identical to the DataHolder class and therefore has the same
structure for all plugin implementations. However, the contents and interpretation of the Token
objects shall be specified by each plugin implementation.

There are multiple specializations of the Token class. They all share the same format, but are used for
different purposes. This is modeled by defining specialized classes.

20 DDS Security, v1.12

class Tokens /

DataHolder

class_id: String
properties: Property [*]
binary_properties: BinaryProperty [*]

7

Token

NN

«discovery»
IdentityToken

«discovery»
IdentityStatusToken

«discovery»
PermissionsToken

PermissionsCredentialToken

CryptoToken

MessageToken

]

AuthRequestMessageToken

HandshakeMessageToken

Figure 3 — Token Model

7.3.5.1 Attribute: class_id

When used as a Token class, the class_id attribute in the DataHolder identifies the kind of Token.
Strings with the prefix “dds . sec.” are reserved for this specification, including future versions of
the specification. Implementers of this specification can use this attribute to identify non-standard
tokens. In order to avoid collisions, the class_id they use shall start with a prefix to an ICANN domain

name they own, using the same rules specified in 7.3.1 for property names.

7.3.5.2 IDL Representation for Token and Specialized Classes

The Token class is used to hold information exchanged over the network. When a Token is sent over

the network, it shall be serialized using Extended CDR format according to the Extended IDL
representation below:

typedef DataHolder Token;

typedef Token MessageToken;

typedef MessageToken AuthRequestMessageToken;
typedef MessageToken HandshakeMessageToken;

typedef Token
typedef Token
typedef Token
typedef Token
typedef Token

typedef Token
typedef Token
typedef Token
typedef Token

DDS Security, v1.12

IdentityToken;

IdentityStatusToken;
PermissionsToken;
AuthenticatedPeerCredentialToken;

PermissionsCredentialToken;

CryptoToken;

ParticipantCryptoToken;

DatawriterCryptoToken;
DatareaderCryptoToken;

typedef sequence<HandshakeMessageToken> HandshakeMessageTokenSeq;
typedef sequence<CryptoToken> CryptoTokenSeq;

typedef CryptoTokenSeq ParticipantCryptoTokenSeq;

typedef CryptoTokenSeq DatawriterCryptoTokenSeqg;

typedef CryptoTokenSeq DatareaderCryptoTokenSeq;

7.3.5.3 TokenNIL

This name refers to the Token object having class_id set to the empty string, and both properties and
binary_properties sequences set to the empty sequence.
The TokenNIL object is used to indicate the absence of a Token.

7.3.6 CryptoAlgorithmName

The CryptoAlgorithmName type provides a common way to identify a Cryptographic Algorithm
in contexts where ease of interpretation is the primary consideration and the set of possible algorithms
is open ended.

Typical use of the is CryptoAlgorithmName is during configuration of the SPla as well as
handshake-type messages sent by the SPlIs.

The representation uses a string identifier. The type for CryptoAlgorithmName is defined by the
IDL below.

typedef string<64> CryptoAlgorithmName;

See clause 8 for the values of the CryptoAlgorithmName used by the SPIs in this specification.

7.3.7 CryptoAlgorithmld

The CryptoAlgorithmId type provides a common way to identify a Cryptographic Algorithm in
contexts where a compact, fixed-size representation is required and the set of possible algorithms is
open ended.

Typical use of the is CryptoAlgorithmId isin message headers that need to identify the type of
encryption or message authentication applied to a message.

The representation uses a 1-byte identifier. The type for CryptoAlgorithmId is defined by the
IDL below.

typedef octet CryptoAlgorithmId;
const CryptoAlgorithmId CRYPTO_ ALGORITHM INVALID ID=0x00;

The value CRYPTO_ALGORITHM INVALID ID is reserved to indicate the algorithm is undefined
or invalid.
e The values in the range 0x01 <= value < 0x80 are reserved for the DDS-Security specification,
including future revisions of the specification.
e The values in the range 0x80 <= value <= OxFF are reserved for implementation-specific

algorithms and should be interpreted within the context of the RTPS vendor ID that constructed
the object containing that value.

See clause 8 for the values of the CryptoAlgorithmId used by the SPIs in this specification.

7.3.8 CryptoAlgorithmBit

The CryptoAlgorithmBit type provides a common way to identify a Cryptographic Algorithm in
contexts where there is a need to represent one or more algorithms in a very compact manner and the
set of possible algorithms is pre-known and very limited.

22 DDS Security, v1.12

Typical use of the is CryptoAlgorithmBit is in discovery messages to announce which kinds of
algorithms are supported or used.

The representation uses an exact power-of-two integer. This integer is used to test and/or set bits in a
CryptoAlgorithmSet bitmask, see 7.3.9. The type for CryptoAlgorithmBit is defined by

the IDL below.

typedef uint32 CryptoAlgorithmBit;
const CryptoAlgorithmBit CRYPTO ALGORITHM COMPATIBILITY MODE=0x80000000;

The range of values for CryptoAlgorithmBit is splitinto 3 sets in order to support defining
vendor-specific extensions of the builtin SPIs while allowing future revision of the specification to also
define new values:
e The value 0x80000000 is reserved and has a special meaning defined in 7.3.10.1.
e The values in the range 0x00000001 <= value < 0x00010000 are reserved for the DDS-
Security specification, including future revisions of the specification.
e The values in the range 0x00010000 <= value < 0x80000000 are reserved for vendor-specific
definition and shall only be interpreted within the context of the RTPS vendor ID that
constructed the object containing that value.

These rules limit the number of possible algorithms that can be represented in the set to 31, of which
16 are reserved for the DDS-Security specification and future revisions thereof.
See clause 8 for the values of the CryptoAlgorithmBit used by the SPIs in this specification.

7.3.9 CryptoAlgorithmSet

The CryptoAlgorithmSet type provides a compact representation a set of cryptographic
algorithms belonging to the same class, see 7.2 for the definition of the cryptographic algorithm
classes.

The representation uses a bitmask. The inclusion of an algorithm in the set is indicated by setting a
specific bit assigned to that algorithm to “1” in the bitmask. This bit may be set using the integer “OR”
operation with the CryptoAlgorithmBit that represents the algorithm.

The definition of the algorithms and the bit position assigned to each algorithm is defined in clause 8.
The type for CryptoAlgorithmSet is defined by the IDL below.

typedef uint32 CryptoAlgorithmSet;
const CryptoAlgorithmSet CRYPTO ALGORITHM SET ALL
const CryptoAlgorithmSet CRYPTO ALGORITHM SET EMPTY

Oxffffffff;
0x00000000;

The highest bit of a CryptoAlgorithmSet does not represent an algorithm identifier. Its
interpretation is described in 7.3.10.1.

7.3.10 CryptoAlgorithmRequirements

The CryptoAlgorithmRequirements type provides information on the cryptographic
algorithms of a single class (e.g. digital signature algorithms) that are supported, required, or used by
the SPIs for a specific purpose.

The type for CryptoAlgorithmRequirements is defined by the extended IDL below:

@extensibility (FINAL)

struct CryptoAlgorithmRequirements
CryptoAlgorithmSet supported mask;
CryptoAlgorithmSet required mask;

}i

DDS Security, v1.12 23

The supported_mask represents the set of algorithms of a particular kind that are supported by the
SPIs. For example, for digital signature algorithms, it may represent the specific algorithms that are
available in the SPIs (e.g., elliptic curve with specific curves and padding, RSA, etc.) so that the SPIs
are able to validate signatures (e.g., sent by another Domain Participant) that use those algorithms.
The required_mask represents the subset of the algorithms in the supported_mask that the SPI uses
when interacting with the corresponding SPIs of another Domain Participant and therefore requires the
other participant SPI to support. The compatibility rules are defined in subclause 7.3.10.1 below.

7.3.10.1 CryptoAlgorithmRequirements compatibility

In order for two participants to communicate securely they must be configured with compatible sets of
Cryptographic Algorithms.
Define the function CheckCryptoAlgorithmCompatibility () as:

bool CheckCryptoAlgorithmCompatibility (
CryptoAlgorithmSet supported mask,
CryptoAlgorithmSet required mask)

{

return
((required mask & supported mask) == required mask)
OR
(((required mask & supported mask) '= 0)
AND ((required_mask & CRYPTO ALGORITHM COMPATIBILITY MODE) != 0))

}

The CryptoAlgorithmRequirements ofthe SPIs used by a Participant “P1” are considered
compatible with those used by the corresponding SPIs of the other Participant “P2” if and only if the
following Boolean expression evaluates to TRUE:

CheckCryptoAlgorithmCompatibility (P2.supported mask, Pl.required mask)
AND
CheckCryptoAlgorithmCompatibility (Pl.supported mask, P2.required mask)

The first condition indicates that the algorithms required by P1 are supported by P2. The second
condition indicate the reverse, that is, the algorithms used by P2 are supported by P1.
DomainParticipants Wwith incompatible CryptoAlgorithmRequirements may not be able to
decrypt messages sent by the other DomainParticipants. Likewise they may not be able to validate
the message authentication codes included in messages sent by the other bomainParticipant.
However, if the encryption/authentication codes do not apply to the whole RTPS message, it may still
be able for the two Participants to communicate in certain “unprotected” Topics.

7.3.11 ParticipantSecurityDigitalSignatureAlgorithminfo

If the SPIs use digital signature algorithms, then for two participants to authenticate they must be
configured with compatible sets.

To support discovering the signature algorithms supported and required by each Participant the
information, this specification defines a new parameter IDs for ParticipantBuiltinTopicData
topic, PID PARTICIPANT SECURITY DIGITAL SIGNATURE ALGORITHM INFO (See Section
7.5.1.4). The type for this Parameter IDs is defined by the following extended IDL.:

@extensibility (APPENDABLE)

struct ParticipantSecurityDigitalSignatureAlgorithmInfo {
CryptoAlgorithmRequirements trust chain;
CryptoAlgorithmRequirements message auth;

24 DDS Security, v1.12

}s

The trust_chain contains information about the digital signature algorithms used for the purpose of
validating a digitally signed document. Note that in general a digitally signed document may contain
one or more digital signatures that “chain” up to a root “authority”.

e The trust_chain.supported_mask shall contain the algorithms the SPIs is able to use to validate
the digital signature of documents.

e The trust_chain.required_mask shall contain all the algorithms that are contained in digitally-
signed documents sent by the SPI, where the digital signatures chain up to some trust authority
recognized by the SPIs of the Participant. So it provides a requirement on what the SPIs of
other participants must support in order to validate the digital signature of those documents.

The message_auth contains information about the digital signature algorithms used directly (i.e. not
chained to a common trust authority) to sign messages or validate message signatures.
e The message_auth.supported_mask shall contain all the algorithms the SPIs is able to use to
validate the digital signature of messages.
e The message_auth.required_mask shall contain all the algorithms the SPIs will use to sign
documents or messages sent to other Participants, so it provides a requirement on what the SPIs
of other participant must support in order to interoperate.

7.3.11.1 Compatibility

The participantSecurityDigitalSignatureAlgorithmInfo Of two participants is
compatible if and only if both the trust_chain and the message _auth are compatible according to the
compatibility rules for CryptoAlgorithmRequirements Values defined in subclause 7.3.10.1.
DomainParticipants With incompatible
ParticipantSecurityDigitalSignatureAlgorithmInfo are not able to authenticate with
each other. However, they may still be able to communicate with each other if both plugins and
configuration allow un-authenticated DomainParticipants t0 communicate.

7.3.11.2 Default value

If the ParticipantSecurityDigitalSignatureAlgorithmInfo IS not present in
ParticipantBuiltinTopicData topic received from another Participant, the result shall be the
same as if the value received had all CryptoAlgorithmRequirements members set to the value:

trust chain.supported mask = CBIT RSASSA PSS MGF1SHA256 2048 SHA256
| CBIT RSASSA PKCS1 V15 2048 SHA256
| CBIT ECDSA P256 SHA256

trust chain.required mask CBIT ECDSA P256 SHA256

message_ auth.supported mask = CBIT RSASSA PSS MGF1SHA256 2048 SHA256
| CBIT ECDSA P256 SHA256

message auth.required mask = CBIT ECDSA P256 SHA256

See subclause 8.2 for the definition of the constants used above.

This default value makes it possible to not send the
ParticipantSecurityDigitalSignatureAlgorithmInfo in a common configuration that
matches previous revisions of the specification.

DDS Security, v1.12 25

7.3.12 ParticipantSecurityKeyEstablishmentAlgorithminfo

If the SPIs establish a secret key, then for two participants to communicate securely they must be
configured with compatible sets.

To support discovering the the key establishment algorithm information as part of discovery, this
specification defines a new parameter IDs for ParticipantBuiltinTopicData topic,

PID PARTICIPANT KEY EXCHANGE ALGORITHM INFO (See Section 7.5.1.4). The type for this
Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)
struct ParticipantSecurityKeyEstablishmentAlgorithmInfo {
CryptoAlgorithmRequirements shared secret;
}i
The shared_secret contains information about the key establishment algorithms used and supported.
e The shared_secret.supported_mask shall contain all the algorithms the SPIs is able to use to
establish a shared key
e The shared_secret.required_mask shall contain all the algorithms the SPIs of other participants
must support in order to interoperate.

7.3.12.1 Compatibility

The ParticipantSecurityKeyEstablishmentAlgorithmInfo Of two participants is
compatible if and only if the shared_secret is compatible according to the compatibility rules for
CryptoAlgorithmRequirements Values defined in subclause 7.3.10.1.
DomainParticipants with incompatible
ParticipantSecurityKeyEstablishmentAlgorithmInfo are not able to establish a shared
secret using a Key-Agreement protocol. As a consequence, they are also not able to mutually
authenticate with each other (most mutual authentication algorithms also include a key agreement
algorithm). However, they may still be able to communicate with each other if both plugins and
configuration allow un-authenticated DomainParticipants to communicate.

7.3.12.2 Default value

If the ParticipantSecurityKeyEstablishmentAlgorithmInfo IS not present in
ParticipantBuiltinTopicData topic received from another Participant, the result shall be the
same as if the value received had all CryptoAlgorithmRequirements members set to the value:

member.supported mask = CBIT DHE MODP 2048 256
| CBIT ECDHE CEUM P256

member.required mask = CBIT ECDHE CEUM P256

See subclause 8.3 for the definition of the constants used above.

This default value makes it possible to not send the
ParticipantSecurityKeyEstablishmentAlgorithmInfo inacommon configuration that
matches previous revisions of the specification.

7.3.13 ParticipantSecuritySymmetricCipherAlgorithminfo

If the SPIs use symmetric ciphers for encryption or message authentication, then for two participants to
communicate securely they must be configured with compatible sets.

To support propagation of this information as part of discovery, this specification defines a new
parameter IDs for ParticipantBuiltinTopicData topic,

26 DDS Security, v1.12

PID PARTICIPANT SECURITY SYMMETRIC CIPHER ALGORITHM INFO (see Section 7.5.1.4). The
type for this Parameter 1Ds is defined by the following extended IDL.:

@extensibility (APPENDABLE)

struct ParticipantSecuritySymmetricCipherAlgorithmInfo ({
CryptoAlgorithmSet supported mask;
CryptoAlgorithmSet builtin endpoints required mask;
CryptoAlgorithmSet builtin kx endpoints required mask;
CryptoAlgorithmSet wuser endpoints default required mask;
}i
The supported_mask shall contain all the algorithms the SPIs is able to use to decrypt messages or
validate authentication tags.
The builtin_endpoints_required_mask shall contain all the algorithms the the SPIs of other
participants must support in order to interoperate with all the builtin endpoints, except for the
DCPSParticipantVolatileMessageSecure builtin Topic (see 7.5.4).
The builtin_kx_endpoints_required_mask shall contain all the algorithms the SPIs of other
participants must support in order to interoperate with all the DCPSParticipantVolatileMessageSecure
builtin Topic (see 7.5.4). This is the builtin topic used to send cryptographic material.
The user_endpoints_default_required_mask shall contain all the default algorithms that will be used
by user-defined (non-builtin) endpoint. This default applies in case the Endpoint does not directly
specify the algorithms it will use.

7.3.13.1 Compatibility

The participantSecuritySymmetricCipherAlgorithmInfo Of two participants P1 and P2 is
compatible if and only if:

CheckCryptoAlgorithmCompatibility (
P2.supported mask, Pl.builtin endpoints required mask)
AND CheckCryptoAlgorithmCompatibility (
P2.supported mask, Pl.builtin kx endpoints required mask)
AND CheckCryptoAlgorithmCompatibility (
Pl.supported mask, P2.builtin endpoints required mask)
AND CheckCryptoAlgorithmCompatibility (
P1l. supported mask, P2.builtin kx endpoints_ required mask)

Note that the user_endpoints_default_required_mask is not considered for compatibility as it may be
overridden for specific endpoints.

See subclause 7.3.10.1 for the definition of the CheckCryptoAlgorithmCompatibility function.
DomainParticipants with incompatible
ParticipantSecuritySymmetricCipherAlgorithmInfo may not be able to decrypt messages
sent by the other bomainParticipants. Likewise, they may not be able to validate the message
authentication codes included in messages sent by the other DomainParticipant. However, if the
encryption/authentication codes do not apply to the whole RTPS message, it may stil be able for the
two Participants to communicate in certain “unprotected” Topics.

7.3.13.2 Default value

If the ParticipantSecuritySymmetricCipherAlgorithmInfo IS not presentin
ParticipantBuiltinTopicData topic received from another Participant, the result shall be the
same as if the value received had the members set as follows:

supported mask = CBIT AES128 GCM | CBIT AES256 GCM

DDS Security, v1.12 27

builtin endpoints required mask
builtin kx endpoints required mask
user endpoints _default required mask

CBIT AES256 GCM
CBIT AES256 GCM
CBIT AES256 GCM

See subclause 8.1 8.2 for the definition of the constants used above.

This default value makes it possible to not send the
ParticipantSecuritySymmetricCipherAlgorithmInfo inacommon configuration that
matches previous revisions of the specification.

7.3.14 ParticipantSecurityAlgorithminfo

This type aggregates the information about the Cryptographic Algorithms supported and required by
the Participant SPIs.
The type is defined by the following extended IDL:

@extensibility (APPENDABLE)

struct ParticipantSecurityAlgorithmInfo {
ParticipantSecurityDigitalSignatureAlgorithmInfo digital signature;
ParticipantSecurityKeyEstablishmentAlgorithmInfo key establishment;
ParticipantSecuritySymmetricCipherAlgorithmInfo symmetric cipher;

}s

7.3.15 EndpointSecuritySymmetricCipherAlgorithminfo

If the SPIs use symmetric ciphers for encryption or message authentication, then for two participants to
communicate on a specific Topic the DataWriter and the DataReader of that Topic must be configured
with compatible sets of algorithms.

To support propagation of this information as part of discovery, this specification defines a new
parameter IDs for PublicationBuiltinTopicData and the SubscriptionBuiltinTopicData
topic, PID ENDPOINT SYMMETRIC CIPHER ALGORITHM INFO (See Section 7.5.1.5). The type for
these Parameter IDs is defined by the following extended IDL:

@extensibility (APPENDABLE)
struct EndpointSecuritySymmetricCipherAlgorithmInfo {
CryptoAlgorithmSet required mask;
@non_serialized
CryptoAlgorithmSet supported mask;
}i
The required_mask shall contain the algorithms the SPIs of other participants must support to
interoperate with the Endpoint.

e If the Endpoint is a DatawWriter then the required_mask shall contain all the algorithms that
are used for encrypting/authenticating the data payload and submessages as well as the
protocol-level messages sent to matched DataReaders (e.g. HB and GAP). This corresponds to
the algorithms used in the Cryptographic plugin operations encode_serialized_payload and
encode_datawriter_submessage when applied to that DataWriter.

e |f the Endpoint is a DataReader then the required_mask shall contain the algorithms that are
used for encrypting/authenticating the protocol-level messages sent to matched writers (e.g.
ACKNACKSs in the case of reliable DataReaders). This corresponds to the algorithms used in
the following Cryptographic plugin encode_datareader_submessage operation when applied to
that DataReader.

The supported_mask is included in the PublicationBuiltinTopicData to make the APl more
convenient for the user. The member is not serialized and is not included in the data sent with the

28 DDS Security, v1.12

PID ENDPOINT SYMMETRIC CIPHER ALGORITHM INFO. The value of this member shall be set by
the SPI implementations to match the supported_mask in the
ParticipantSecuritySymmetricCipherAlgorithmInfo Of the DomainParticipant that
contains the Endpoint.

7.3.15.1 Compatibility

The EndpointSecuritySymmetricCipherAlgorithmInfo of endpoint E1 belonging to

DomainParticipant P1 is compatible with that of endpoint E2 belonging to DomainParticipant P2 if and
only if:

CheckCryptoAlgorithmCompatibility (
P2.symmetric_cipher.supported mask, El.required mask)

AND CheckCryptoAlgorithmCompatibility (
Pl.symmetric cipher.supported mask, EZ.required mask)

See subclause 7.3.10.1 for the definition of the CheckCryptoAlgorithmCompatibility
function.

7.3.15.2 Default value

If the EndpointSecuritySymmetricCipherAlgorithmInfo isnot presentina
PublicationBuiltinTopicData oOraSubscriptionBuiltinTopicData topic received
from another DomainParticipant, the value shall be set to
symmetric_cipher.user_endpoints_default_required_mask of the DomainParticipant that
contains the Endpoint (see 7.3.13.2).

This default value makes it possible to not send the
EndpointSecuritySymmetricCipherAlgorithmInfo if all the user endpoints use the
same symmetric cipher algorithm.

7.3.16 EndpointSecurityAlgorithminfo

This type aggregates the information about the Cryptographic Algorithms required by the Endpoint
SPIs.
The type is defined by the following extended IDL.:

@extensibility (APPENDABLE)
struct EndpointSecurityAlgorithmInfo {
EndpointSecuritySymmetricCipherAlgorithmInfo symmetric cipher;

}s

7.3.17 CryptoTransformKeyRevision, CryptoTransformKeyRevisionintHolder

The CryptoTransformKeyRevision providesaway to represent changes to Key Material. It is
meant to be used withib the CryptoTransformKind class.

The generation of CryptoTransformKeyRevision isimplementation-specific, but the format is
defined for all implementations as follows:

typedef octet CryptoTransformKeyRevision[3];
#define CRYPTO TRANSFORM KEY REVISION NONE {0x00, 0x00, 0x00}

The type CryptoTransformKeyRevisionIntHolder provides a normalized way to hold a
CryptoTransformKeyRevision asan int32 value.

DDS Security, v1.12 29

typedef int32 CryptoTransformKeyRevisionIntHolder;

The representation of a CryptoTransformKeyRevision key revision_value usinga
CryptoTransformKeyRevisionIntHolder int_holder value uses the following encoding:

int holder value = 256*256*transformation key revision value[0]
+ 256*key revision value[l] + key revision value[2]

7.3.18 CryptoTransformKind

The CryptoTransformKind class provides the means to identify the type of cryptographic
transformation performed on a applied on a message without an indication of the key material used.
The generation and interpretation of CryptoTransformKind is performed by the security plugins
but the format is defined for all Cryptographic plugin implementations as follows:

@extensibility (FINAL)
struct CryptoTransformKind ({
CryptoTransformKeyRevision transformation key revision;
CryptoAlgorithmId transformation algorithm id;
bi

#define CRYPTO TRANSFORM KIND INVALID {{0x00, 0x00, 0x00}, 0x00}

The value CRYPTO TRANSFORM KIND INVALID isreserved to indicate an undefined or invalid
transformation.

7.3.18.1 Attribute: transformation_key_revision

This attribute is used to support the change of the key material used by a DDS Entity. It is meant to be
used in combination with a CryptoTransformKeyId. See.7.3.19 and 7.3.20.

7.3.18.2 Attribute: transformation_algorithm_id

Identifies the type of cryptographic transformation. That is, the algorithm, mode, padding, etc.
The CryptoAlgorithmId values used for the transformation algorithm id shall
correspond to those assigned to Symmetric Cipher and MAC algorithms, see clause 8.

7.3.19 CryptoTransformKeyld

The CryptoTransformKeyId class provides a way to identify (lookup) the key material used to
perform a cryptographic transformation. The CryptoTransformKeyId is not the key material
itself, nor it is derived from the key material. It is simply an opaque value that helps create a unique
“lookup” reference that can be associated with the key material that is exchanged by some other
means.

The scope for the CryptoTransformKeyId isthe DomainParticipant that generated the
CryptoTransformKeyId.

When used as part of a CryptoTransformIdentifier, the CryptoTransformKeyId must
be combined with the transformation_key revision of the associated CryptoTransformKind to
uniquely identify the KeyMaterial within the scope of the DomainParticipant GUID that
generated it.

The generation of CryptoTransformKeyId isimplementation-specific, but the format is defined
for all implementations as follows:

30 DDS Security, v1.12

typedef octet CryptoTransformKeyId[4];

7.3.20 CryptoTransformldentifier

The CryptoTransformIdentifier class uniquely identifies the transformation applied on the
sending side (encoding) so that the receiver can locate the necessary key material and use the correct
cryptographic algorithm, to perform the inverse transformation (decoding).

The generation and interpretation of CryptoTransformIdentifier is performed by the
Cryptographic plugin.

The structure of the CryptoTransformIdentifier isdefined for all Cryptographic plugin
implementations as follows:

@extensibility (FINAL)

struct CryptoTransformIdentifier ({
CryptoTransformKind transformation kind;
CryptoTransformKeyId transformation key id;

}s
7.3.20.1 Attribute: transformation_kind

Identifies the type of cryptographic transformation. See 7.3.18 and provides key revision
information. In combination with the transformation_key id it allows the receiver to select the
right cryptographic algorithm and key material to decode or validate a cryptographically
encoded message.
The transformation_kind has two fields:

e transformation_algorithm_id

e transformation_key revision

The transformation_algorithm_id identifies the Crytographic Algorithm used by the transformation.
It shall contain one of the CryptoAlgorithmId values defined in Section 8 (Common
Cryptographic Algorithms).

The transformation_key_revision value (see 7.3.17) shall be combined with the
transformation_key id attribute to identify the key material within the scope of the DomainParticipant
GUID that generated the CryptoTransformIdentifier.

7.3.20.2 Attribute: transformation_key id

Identifies the key material used to perform a cryptographic transformation.

The 3-tuple (sender_participant_guid, transformation_key id, transformation_key_revision)
uniquely identifies the Key Material within the scope of all Domain Participants that are
communicating in a common DDS Domain. This allows receivers to be robust to dynamic changes in
keys and key material: The receiver can either identify the correct key material or else detect that it
does not have it.

The 2-tuple (transformation_key revision, transformation_key id) uniquely identify the Key
Material within the scope provided by the DDS DomainParticipant that creates the key material.
The values of the transformation key id are defined by the Cryptographic plugin
implementation and understood only by that plugin.

7.3.21 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos

This specification also introduces an additional Qos policy called PropertyQosPolicy, which is
defined by the following extended IDL.:

DDS Security, v1.12 31

@extensibility (APPENDABLE)

struct PropertyQosPolicy {
PropertySeq value;
BinaryPropertySeq binary value;

}i

The PropertyQosPolicy applies to the following DDS entities: DomainParticipant,
DataWriter, and DataReader. To allow configuration of this policy from the DDS API the DDS
Security specification extends the definitions of the DDS defined types DomainParticipantQos,
DataWriterQos, and DataReaderQos with the additional member “property” of type
PropertyQosPolicy as indicated in the extended IDL snippets below.

This specification also introduces a Qos policy called DataTagQosPolicy, defined by the
following IDL:

@extensibility (FINAL)
struct Tag {
string name;
string value;

}i
typedef sequence<Tag> TagSeq;

@extensibility (APPENDABLE)
struct DataTags {

TagSeq tags;
}i

typedef DataTags DataTagQosPolicy;

@extensibility (MUTABLE)

struct DomainParticipantQos {
// Existing policies from the DDS specification
PropertyQosPolicy property;

}i

@extensibility (MUTABLE)

struct DataWriterQos {
// Existing policies from the DDS specification
PropertyQosPolicy property;
DataTagQosPolicy data tags;

}i

@extensibility (MUTABLE)
struct DataReaderQos {

// Existing policies from the DDS specification

PropertyQosPolicy property;

DataTagQosPolicy data tags;
}i
The PropertyQosPolicy shall be propagated via DDS discovery so it appears in the
ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and
SubscriptionBuiltinTopicData (see 7.5.1.3, 7.5.1.7, and 7.5.1.8). This is used by the plugins
to check configuration compatibility. Not all name/value pairs within the underlying PropertySeq
and BinaryPropertySeq are propagated. Specifically only the ones with propagate=TRUE are
propagated via DDS discovery and shall appear in the ParticipantBuiltinTopicData,
PublicationBuiltinTopicData, and SubscriptionBuiltinTopicData.

32 DDS Security, v1.12

7.3.22 ParticipantGenericMessage

This specification introduces additional builtin DataWriter and DataReader entities used to send
generic messages between the participants. To support these entities, this specification uses a general-
purpose data type called ParticipantGenericMessage, which is defined by the following
extended IDL:

typedef octet[1l6] GUID t;
@extensibility (FINAL)
struct MessageIdentity {
GUID t source guid;
long long sequence number;
}i

typedef string<> GenericMessageClassId;

@extensibility (APPENDABLE)

struct ParticipantGenericMessage {
/* target for the request. Can be GUID UNKNOWN */
Messageldentity message identity;
MessageIldentity related message identity;
GUID t destination participant guid;
GUID t destination endpoint guid;
GUID t source endpoint guid;
GenericMessageClassId message_ class_id;
DataHolderSeqg message_ data;

}s

The type GUID t refers to the type defined in the DDS-RTPS specification [2]. See clause 7.4.3 for
additional details on the GUID t.

7.3.23 ParticipantSecurityProtectioninfo

This specification introduces a new set of participant security attributes, described in Section 9.4.2.4.
In order to communicate securely, two participants need to have a compatible configuration for
participant security attributes. To support making matching decisions upon discovering a remote
participant, this specification defines a new parameter ID for ParticipantBuiltinTopicData topic,
PID_PARTICIPANT_SECURITY_PROTECTION_INFO (see Section 7.5.1.4). The type for that
Parameter IDs is defined by the following extended IDL:

typedef unsigned long ParticipantSecurityAttributesMask;
typedef unsigned long PluginParticipantSecurityAttributesMask;
struct ParticipantSecurityAttributesMaskExt {
unsigned short 1is_ set;
unsigned short value;
}i
@extensibility (APPENDABLE)
struct ParticipantSecurityProtectionInfo {
ParticipantSecurityAttributesMask participant security attributes;
PluginParticipantSecurityAttributesMask
plugin participant security attributes;
ParticipantSecurityAttributesMaskExt
participant security optional attributes;
}i
#define PARTICIPANT SECURITY ATTRIBUTES FLAG IS VALID (0xl << 31)

The default value for the info ParticipantSecurityInfo sets both masks to zero:

DDS Security, v1.12 33

#define PARTICIPANT SECURITY ATTRIBUTES INFO DEFAULT {0, O}

A compatible configuration is defined as having the same value for the

participant security attributes andthe

plugin participant security attributes, except that when comparing two masks the
most significant bit is interpreted in a special manner as described below.

The most-significant bit of PluginParticipantSecurityAttributesMask and
ParticipantSecurityAttributesMask is called the is_valid bit and specifies whether the
rest of the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between
the local and remote setting for the ParticipantSecurityProtectionInfo shall ignore the
attribute. This allows new implementations to be backwards compatible with old implementations by
either not sending the ParticipantSecurityProtectionInfo (the default value of zero has
is_valid=0) or sending it with is_valid set to 0.

The value of the plugin_participant_security_attributes shall be defined the security plugin
implementation and are opaque to the DDS middleware (other than the is_valid bit). They allow the
middleware to make matching decisions using the
PluginParticipantSecurityAttributesMask without interpreting it. The definition for
the builtin plugins is detailed in clause 10.4.2.3.

Two participants that don’t have compatible configurations shall not attempt authentication and each
participant shall consider the other participant as an “unauthenticated participant.” Depending on the
configuration these participants can still match each other and communicate with other on a reduced
set of Topics that are allowed to be exchange among unauthenticated Participants.

The participant security optional attributes encode configuration information
about the plugin that does not need to be set consistently for two Participants to authenticate.
Therefore, it is not considered as part of the “compatible configuration” definition above. The
participant security optional attributes containtwo masks: The is set mask
indicates whether the corresponding bit in the value mask is set. The interpretation of each bit is
specified in clause 9.4.2.5.

7.3.24 EndpointSecurityProtectioninfo

This specification defines a plugin-independent endpoint security attributes, described in clause
9.4.2.7. Additionally, plugin implementations can also have their own plugin-specific attributes, see
clause 10.4.2.5.

In order to communicate, two endpoints need to have a compatible configuration for endpoint security
attributes.

To support making matching decisions upon discovering a remote endpoint, this specification defines a
new parameter ID for PublicationBuiltinTopicData and SubscriptionBuiltinTopicData topics,

PID ENDPOINT SECURITY PROTECTION INFO (see Section 7.5.1.5). The type for that
Parameter IDs is defined by the following extended IDL.:

typedef unsigned long EndpointSecurityAttributesMask;
typedef unsigned long PluginEndpointSecurityAttributesMask;

@extensibility (APPENDABLE)
struct EndpointSecurityProtectionInfo ({
EndpointSecurityAttributesMask endpoint security attributes;
PluginEndpointSecurityAttributesMask plugin endpoint security attributes;
}i
#define ENDPOINT SECURITY ATTRIBUTES FLAG IS VALID (0xl << 31)

The default value for the EndpointSecurityInfo is both attributes set to the value zero.

34 DDS Security, v1.12

#define ENDPOINT SECURITY ATTRIBUTES INFO DEFAULT {0, 0}

A compatible configuration is defined as having the same value for all of the attributes in the
EndpointSecurityInfo, except that when comparing two masks the most significant bit is
interpreted in a special manner as described below.

The most-significant bit of PluginEndpointSecurityAttributesMask and
EndpointSecurityAttributesMask is called the is_valid bit and specifies whether the rest of
the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between the local
and remote setting for the EndpointSecurityInfo shall ignore the attribute. This allows new
implementations to be backwards compatible with old implementations by either not sending the
EndpointSecurityInfo (the default value of zero has is_valid=0) or sending it with is_valid bit
set to zero in one or both attributes.

The value of the plugin_endpoint_security_attributes shall be defined by the security plugin
implementation and is opaque to the DDS middleware (other than the is_valid bit). It allows the
middleware to make matching decisions using the
PluginEndpointSecurityAttributesMask without interpreting it. The definition for the
builtin plugins is detailed in clause 10.4.2.5.

7.3.25 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY

The DDS specification defines a set of return codes that may be returned by the operations on the DDS
API (see sub clause 7.1.1 of the DDS specification).

The DDS Security specification adds an additional return code NOT_ALLOWED_BY_SECURITY,
which shall be returned by any operation on the DDS API that fails because the security plugins do not
allow it.

7.4 Securing DDS Messages on the Wire

OMG DDS uses the Real-Time Publish-Subscribe (RTPS) on-the-wire protocol [2] for communicating
data. The RTPS protocol includes specifications on how discovery is performed, the metadata sent
during discovery, and all the protocol messages and handshakes required to ensure reliability. RTPS
also specifies how messages are put together.

7.4.1 RTPS Background (Non-Normative)

In a secure system where efficiency and message latency are also considerations, it is necessary to
define exactly what needs to be secured. Some applications may require only the data payload to be
confidential and it is acceptable for the discovery information, as well as, the reliability meta-traffic
(HEARTBEATS, ACKs, NACKS, etc.) to be visible, as long as it is protected from modification. Other
applications may also want to keep the metadata (sequence numbers, in-line QoS) and/or the reliability
traffic (ACKs, NACKs, HEARTBEATS) confidential. In some cases, the discovery information (who
is publishing what and its QoS) may need to be kept confidential as well.

To help clarify these requirements, sub clause 7.4.1 explains the structure of the RTPS Message and
the different Submessages it may contain.

DDS Security, v1.12 35

RTPS Message RTPS SubMessage

RTPS Header SubMsg Header
RTPS SubMessage SubMsg Element
RTPS SubMessage SubMsg Element
RTPS SubMessage SerializedPayload

RTPS SubMessage

Figure 4 — RTPS message structure

An RTPS Message is composed of a leading RTPS Header followed by a variable number of RTPS
Submessages. Each RTPS Submessage is composed of a SubmessageHeader followed by a
variable number of SubmessagElements. There are various kinds of SubmessageElements to
communicate things like sequence numbers, unique identifiers for DataReader and DataWriter entities,
SerializedKeys or KeyHash of the application data, source timestamps, QoS, etc. There is one kind of
SubmessageElement called SerializedPayload thatis used to carry the data sent by DDS
applications.

For the purposes of securing communications we distinguish three types of RTPS Submessages:

1. DataWriter Submessages. These are the RTPS submessages sent by a DataWriter to one or
more DataReader entities. These include the Data, DataFrag, Gap, Heartbeat, and
HeartbeatFrag submessages.

2. DataReader Submessages. These are the RTPS submessages sent by a DataReader to one or
more DataWriter entities. These include the AckNack and NackFrag submessages.

3. Interpreter Submessages. These are the RTPS submessages that are destined to the Message
Interpreter and affect the interpretation of subsequent submessages. These include all the
“Info” messages.

The only RTPS submessages that contain application data are the Data and DataFrag. The
application data is contained within the SerializedPayload submessage element. In addition to
the SerializedPayload these submessages contain sequence numbers, inline QoS, the Key Hash,
identifiers of the originating DataWriter and destination DataReader, etc.

The Data, and DataFrag submessages contain a ParameterList submessage element called
inlineQos (see section 8.3.7 of the DDS-RTPS specification version 2.2). The inlineQos holds
metadata associated with the submessage. It is encoded as a ParameterList (see section 9.4.2.11

36 DDS Security, v1.12

of the DDS-RTPS specification version 2.2). ParameterList is a list of {parameterID, length,

value} tuples terminated by a sentinel. One of these parameters is the KeyHash.

The KeyHash parameter may only appear in the Data and DataFrag submessages. Depending on

the data type associated with the DataWriter that wrote the data, the KeyHash parameter contains

either:

e A serialized representation of the values of all the attributes declared as ‘key’ attributes in the
associated data type, or

e An MD?5 hash computed over the aforementioned serialized key attributes.

Different RTPS submessage within the same RTPS Message may originate on different
DataWriter or DataReader entities within the DomainParticipant that sent the RTPS message.

It is also possible for a single RTPS Message to combine submessages that originated on different
DDS DomainParticipant entities. This is done by preceding the set of RTPS Submessages that
originate from a common DomainParticipant with an InfoSource RTPS submessage.

The RTPS header contains the version of the RTPS protocol composed of a Major Version and Minor
Version numbers.

As specified in clause 8.6.1 of the DDS-RTPS specification, changes to the RTPS protocol that do not
break interoperability should increase the Minor Version number. These changes include additional
submessages, additional builtin-endpoints, and additional parameterlds. The DDS Security
specification makes these kinds of changes to the RTPS protocol and therefore must increase the RTPS
minor version number.

7.4.2 Secure RTPS Messages

Sub clause 7.1.1 identified the threats addressed by the DDS Security specification. To protect against
the “Unauthorized Subscription” threat it is necessary to use encryption to protect the sensitive parts of
the RTPS message.

Depending on the application requirements, it may be that the only thing that should be kept
confidential is the content of the application data; that is, the information contained in the
SerializedPayload RTPS submessage element. However, other applications may also consider
the information in other RTPS SubmessageElements (e.g., sequence numbers, KeyHash, and
unique writer/reader identifiers) to be confidential. So the entire Data (or DataFrag) submessage
may need to be encrypted. Similarly, certain applications may consider other submessages such as
Gap, AckNack, Heartbeat, HeartbeatFrag, etc. also to be confidential.

For example, a Gap RTPS Submessage instructs a DataReader that a range of sequence numbers
is no longer relevant. If an attacker can modify or forge a Gap message from a DataWriter, it can
trick the DataReader into ignoring the data that the DataWriter is sending.

To protect against “Unauthorized Publication” and “Tampering and Replay” threats, messages must be
signed using secure hashes or digital signatures. Depending on the application, it may be sufficient to
sign only the application data (SerializedPayload submessage element), the whole
Submessage, and/or the whole RTPS Message.

To support different deployment scenarios, this specification uses a “message transformation”
mechanism that gives the Security Plugin Implementations fine-grain control over which parts of the
RTPS Message need to be encrypted and/or signed.

The Message Transformation performed by the Security Plugins transforms an RTPS Message into
another RTPS Message. A new RTPS Header may be added and the content of the original RTPS
Message may be encrypted, protected by a Secure Message Authentication Code (MAC), and/or
signed. The MAC and/or signature can also include the RTPS Header to protect its integrity.

DDS Security, v1.12 37

7.4.3 Constraints of the DomainParticipant GUID_t (GUID)

The DDS-RTPS specification [2] states that DDS DomainParticipant entities are identified by a
unique 16-byte GUID with type GUID t. In this DDS-Security specification the type GUID t refers
to the same type defined in clauses 8.4.2.1 and 9.3.1 of the DDS-RTPS specification [2]:

// From DDS-RTPS [2] clauses 8.4.2.1 and 9.3.1
typedef octet GuidPrefix t[12];
struct EntityId t

octet entityKey[3];

octet entityKind;
}i
struct GUID t {

GuidPrefix t prefix;

EntityId t entityId;
}i
This DomainParticipant GUID is communicated as part of DDS Discovery in the
SPDPdiscoveredParticipantData (see DDS-RTPS specification [2] clauses 8.5.3.2 and 9.3.1.3).
Allowing a DomainParticipant to select its GUID arbitrarily would allow hostile applications to
perform a “squatter” attack, whereby a DomainParticipant with a valid certificate could
announce itself into the DDS Domain with the GUID of some other DomainParticipant. Once
authenticated the “squatter” DomainParticipant would preclude the real DomainParticipant
from being discovered, because its GUID would be detected as a duplicate of the already existing
one.
To prevent the aforementioned “squatter” attack, this specification constrains the GUID that can be
chosen by a DomainParticipant, so that it is tied to the Identity of the DomainParticipant.
This is enforced by the Authentication plugin.

7.4.4 Mandatory use of the KeyHash for encrypted messages

The RTPS Data and DataFrag submessages can optionally contain the KeyHash as an inline Qos
(see sub clause 9.6.3.3, titled “KeyHash (PID_KEY_HASH)”) of the DDS-RTPS specification version
2.3. In this sub clause it is specified that when present, the key hash shall be computed either as the
serialized key or as an MD5 on the serialized key.

The key values are logically part of the data and therefore in situations where the data is considered
sensitive the key should also be considered sensitive.

For this reason the DDS Security specification imposes additional constraints in the use of the key
hash. These constraints apply only to the Data or DataFrag RTPS SubMessages where the
SerializedPayload SubmessageElement is encrypted by the operation

encode serialized payloadofthe CryptoTransform plugin:

(1) The KeyHash shall be included in the Inline Qos.

(2) The KeyHash shall be computed as the 128 bit MD5 Digest (IETF RFC 1321) applied to the
CDR Big- Endian encapsulation of all the Key fields in sequence. Unlike the rule stated in sub
clause 9.6.3.3 of the DDS specification, the MD5 hash shall be used regardless of the
maximume-size of the serialized key.

These rules accomplish two objectives:
(1) Avoid leaking the value of the key fields in situations where the data is considered sensitive
and therefore appears encrypted within the Data or DataFrag submessages.
(2) Enable the operation of infrastructure services without needed to leak to them the value of the
key fields (see 7.1.1.4).

38 DDS Security, v1.12

Note that the use of the MD5 hashing function for these purposes does not introduce significant
vulnerabilities. While MD5 is considered broken as far as resistance to collisions (being able to find
two inputs that result in an identical unspecified hash) there are still no known practical preimage
attacks on MD5 (being able to find the input that resulted on a given hash).

7.4.5 Immutability of Publisher Partition Qos in combination with non-volatile
Durability kind

The DDS specification allows the PartitionQos policy of a Publisher to be changed after the
Publisher has been enabled. See sub clause 7.1.3 titled “Supported QoS) of the DDS 1.2
specification.
The DDS Security specification restricts this situation.
The DDS implementation shall not allow a Publisher to change PartitionQos policy after the
Publisher has been enabled if it contains any DataWriter that meets the following two criteria:
(1) The TopicSecurityAttributes forthe Topic associated with the DataWriter have
is_read_protected set to TRUE.
(2) The DataWriter hasthe DurabilityQos policy kind set to something other than
VOLATILE.

This rule prevents data that was published while the DataWriter had associated a set of
Partitions from being sent to DataReaders that were not matching before the Partition
change and match after the Partition is changed.

7.4.6 Platform Independent Description

7.4.6.1 Change to the RTPS minor version number

Implementations of this specification shall set the RTPS protocol version number present in the RTPS
Header. The RTPS Major version number shall be set to 2 and the RTPS Minor version number shall
be set to 3. Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.4.6.2 RTPS Secure Submessage Elements

This specification introduces new RTPS SubmessageElements that may appear inside RTPS
Submessages.

7.4.6.2.1 CryptoTransformldentifier

The CryptoTransformIdentifier submessage element uniquely identifies the cryptographic
transformation performed in the scope of the sending DomainParticipant. It contains information
about the cryptographic algorithm used to transform an RTPS Submessage or an RTPS
SubmessageElement and also provide a unique identifier of the key material used for the
cryptographic transformation.

The way in which attributes in the CryptoTransformIdentifier are set shall be specified for
each Cryptographic plugin implementation. However, all Cryptographic plugin implementations shall
be set in a way that allows the operations preprocess secure submsg,

decode datareader submessage, decode datawriter submessage,and

decode serialized payload to uniquely recognize the cryptographic material they shall use
to decode the message, or recognize that they do not have the necessary key material.

DDS Security, v1.12 39

7.4.6.2.2 CryptoContent

The CryptoContent submessage element is used to wrap a SerializedPayload, an RTPS
Submessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.4.6.2.3 CryptoHeader

The CryptoHeader submessage element is used as prefix to wrap a SerializedPayload, an
RTPS Ssubmessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The CryptoHeader submessage element shall extend the CryptoTransformIdentifier
element. Consequently, the leading bytes in the CryptoHeader shall encode the
CryptoTransformIdentifier, which inturn contains the CryptoTransformKind
containing the CryptoAlgorithmId (see 8), allowing the proper identification of the cryptographic
algorithm used. The specific format of this shall be defined by each Cryptographic plugin
implementation.

7.4.6.2.4 CryptoFooter

The CryptoFooter submessage element is used as postfix to wrap a SerializedPayload, an
RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.4.6.3 RTPS Submessage: SecureBodySubMsg

This specification introduces a new RTPS submessage: SecureBodySubMsg. The format of the
SecureBodySubMsg complies with the RTPS SsubMessage format mandated in the RTPS
specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

Since the SecureBodySubMsg conforms to the general structure of RTPS submessages, it can
appear inside a well-formed RTPS message.

40 DDS Security, v1.12

class SecureSubmessages /

RTPS::Submessage

A

RTPS::SubmessageHeader
- submessageld: SubmessageKind
‘ - submessaglengh: ushort
1 flags: SubmessageFlag [8]
‘ 0.* RTPS::SubmessageElement
«interface»
CryptoTransformldentifier
transformationKind: octet [4]
SecurePrefixSubMsg <>_ transformationld: octet [4]

SecureRTPSPrefixSubMsg <>———— CryptoHeader <= ——— 7
|
/r\ |
| |
SecureRTPSPostfixSubMsg «use» : I
1 |

I «use»
CryptoFooter |
SecurePostfixSubMsg <>_,_ |
|
|
|
|
SecureBodySubMsg o — CryptoContent I
_____ —

Figure 5 — Secure Submessage and Secured Payload Model

7.4.6.3.1 Purpose

The SecureBodySubMsg submessage is used to wrap one or more regular RTPS submessages in
such a way that their contents are secured via encryption, message authentication, and/or digital

signatures.

7.4.6.3.2 Content

The elements that form the structure of the RTPS SecureBodySubMsg are described in the table

below.

Table 4 — SecureBodySubMsg class

Element Type Meaning

SEC_BODY SubmessageKind | The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecureBodySubMsg.

submessageLength | ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag | Appears in the Submessage header flags. Indicates endianess.

crypto_content CryptoContent Contains the result of transforming the original message. Depending on
the plugin implementation and configuration, it may contain encrypted
content, message access codes, and/or digital signatures.

7.4.6.3.3 Validity

The RTPS Ssubmessage is invalid if the submessageLength in the Submessage header is too small.

DDS Security, v1.12

41

7.4.6.3.4

Logical Interpretation

The SecureBodySubMsg provides a way to secure content inside a legal RTPS submessage.
A SecureBodySubMsg may wrap a single RTPS Submessage or awhole RTPS Message.

7.4.6.4 RTPS Submessage: SecurePrefixSubMsg

This specification introduces the RTPS submessage: SecurePrefixSubMsg. The format of the
SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.4.6.4.1 Purpose

The SecurePrefixSubMsg submessage is used as prefix to wrap an RTPS submessage in such a
way that its contents are secured via encryption, message authentication, and/or digital signatures.

7.4.6.4.2 Content

The elements that form the structure of the RTPS SecurePrefixSubMsg are described in the table

below.

Table 5 — SecurePrefixSubMsg class

Element Type Meaning

SEC_PREFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of submessage.
The value indicates it is a SecurePrefixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates

endianess.

transformation_id

CryptoTransformldentifier

Identifies the kind of transformation performed on
the RTPS submessage that follows it.

plugin_crypto_header_extra

octet[]

Provides further information on the transformation
performed. The contents are specific to the Plugin
Implementation and the value of the
transformation_id.

7.4.6.43 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

7.4.6.4.4

Logical Interpretation

The SecurePrefixSubMsg provides a way to prefix secure content inside a legal RTPS

submessage.

A SecurePrefixSubMsg shall be followed by a single RTPS Submessage which itself shall be
followed by a SecurePostfixSubMsg.

42

DDS Security, v1.12

Message Transformation
TS el oo oo > RTPS Header
SecureRTPSPrefix
RTPS SubMessage
Secure encoding SecureBody
>
ecurePrefix

SecureBody

RTPS SubMessage Secure decoding

RTPS SubMessage

SerializedPayload

SerializedPayload

SecurePostfix

RTPS SubMessage

CryptoHeader

SerializedPayload*

CryptoFooter

CryptoContent

SecureRTPSPostfix

Figure 6 — RTPS message transformations

7.4.6.5 RTPS Submessage: SecurePostfixSubMsg

This specification introduces the RTPS submessage: SecurePostfixSubMsg. The format of the
SecurePostfixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. As such it consists of the RTPS submessageHeader followed by a set of RTPS
SubmessageElement elements.

7.4.6.5.1 Purpose

The SecurePostfixSubMsg submessage is used to authenticate the RTPS Submessage that
precedes it.

7.4.6.5.2 Content

The elements that form the structure of the RTPS SecurePostfixSubMsg are described in the
table below.

DDS Security, v1.12 43

Table 6 — SecurePostfixSubMsg class

Element Type Meaning

SEC_POSTFIX SubmessageKind | The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecurePostfixSubMsg.

submessageLength | ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag | Appears in the Submessage header flags. Indicates endianess.

crypto_footer CryptoFooter Provides information on the results of the transformation performed,

typically a list of authentication tags. The contents are specific to the
Plugin Implementation and the value of the transformation_id contained
on the related SecurePrefixSubMsg.

7.465.3 Validity
The RTPS Ssubmessage is invalid if the submessageLength in the Submessage header is too small.
The RTPS Submessage is invalid if there is no SecurePrefixSubMsg. Immediately before the
RTPS submessage that precedes the SecurePostfixSubMsg. This SecurePrefixSubMsg is
referred to as the related the SecurePrefixSubMsg.

7.4.6.5.4 Logical Interpretation

The SecurePostfixSubMsg provides a way to authenticate the validity and origin of the RTPS
SubMessage that precedes the SecurePrefixSubMsg. The Cryptographic transformation applied
is identified in the related SecurePrefixSubMsg.

7.4.6.6 RTPS Submessage: SecureRTPSPrefixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPrefixSubMsg. The format of
the SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

7.4.6.6.1 Purpose

The SecureRTPSPrefixSubMsg submessage is used as prefix to wrap a complete RTPS message
in such a way that its contents are secured via encryption, message authentication, and/or digital
signatures.

7.4.6.6.2 Content

The elements that form the structure of the RTPS SecureRTPSPrefixSubMsg are described in the
table below.

44 DDS Security, v1.12

Table 7 — SecureRTPSPrefixSubMsg class

Element Type Meaning
SRTPS_PREFIX SubmessageKind The presence of this field is common to
RTPS submessages. It identifies the kind of
submessage.

The value indicates it is a
SecureRTPSPrefixSubMsg.

submessageLength ushort The presence of this field is common to
RTPS submessages. It identifies the length
of the submessage.

EndianessFlag (E) SubmessageFlag Appears in the Submessage header flags.
E = SubmessageHeader.flags & 0x01 Indicates endianness.
AdditionalAuthenticatedDataFlag (A) | SubmessageFlag Appears in the Submessage header flags.
A = SubmessageHeader.flags & 0x02 Indicates that the RTPS Header and

HeaderExtension are also protected as
“Additional Authenticated Data (AAD)".

PreSharedKeyFlag (P) SubmessageFlag Appears in the Submessage header flags.

P = SubmessageHeader.flags & 0x04 Indicates that the RTPS message is
protected using a Pre-Shared-Key

transformation_id CryptoTransformldentifier | Identifies the kind of transformation

performed on the RTPS submessages that
follow up to the SRTPS_POSTFIX
submessage.

plugin_crypto_header_extra octet[] Provides further information on the
transformation performed. The contents are
specific to the Plugin Implementation and
the value of the transformation_id.

7.4.6.6.3 Validity

The RTPS submessage is invalid if the submessageLength in the Submessage header is too small.
The SecureRTPSPrefixSubMsg shall immediately follow the RTPS Header.

7.4.6.6.4 Logical Interpretation

The SecureRTPSPrefixSubMsg provides a way to prefix a list of RTPS Submessages so that they
can be secured.

A SecureRTPSPrefixSubMsg shall be followed by a list of RTPS Submessages which
themselves shall be followed by a SecureRTPSPostfixSubMsg.

If the AdditionalAuthenticatedDataFlag is set the authentication tag(s) present in the
SecureRTPSPostfixSubMsg include also the RTPS Header and RTPS HeaderExtension
as “Additional Authenticated Data” (AAD).

7.4.6.7 RTPS Submessage: SecureRTPSPostfixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPostfixSubMsg. The format of
the SecureRTPSPostfixSubMsg complies with the RTPS SubMessage format mandated in the
RTPS specification. As such it consists of the RTPS SubmessageHeader followed by a set of
RTPS SsubmessageElement elements.

7.4.6.7.1 Purpose

The SecureRTPSPost fixSubMsg submessage is used to authenticate the RTPS Submessages that
appear between the preceeding SecureRTPSPostfixSubMsg and the
SecureRTPSPostfixSubMsg.

DDS Security, v1.12 45

7.4.6.7.2 Content

The elements that form the structure of the SecureRTPSPostfixSubMsg are described in the table
below.

Table 8 — SecurePostfixSubMsg class

Element Type Meaning
SRTPS_POSTFIX SubmessageKind | The presence of this field is common to RTPS submessages. It identifies
the kind of submessage.
The value indicates it is a SecureRTPSPostfixSubMsg.

submessageLength | ushort The presence of this field is common to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag | Appears in the Submessage header flags. Indicates endianess.

crypto_footer CryptoFooter Provides information on the results of the transformation performed,

typically a list of authentication tags. The contents are specific to the
Plugin Implementation and the value of the transformation_id contained
on the related SecureRTPSPrefixSubMsg.

7.4.6.7.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.
The RTPS SecureRTPSPostfixSubMsg is invalid if there isno SecureRTPSPrefixSubMsg
following the RTPS Header. This SecureRTPSPrefixSubMsg is referred to as the related
SecureRTPSPrefixSubMsg.

7.4.6.7.4 Logical Interpretation

The SecureRTPSPostfixSubMsg provides a way to authenticate the validity and origin of the list
of RTPS Submessages between the related SecureRTPSPrefixSubMsg and the
SecureRTPSPrefixSubMsg. The Cryptographic transformation applied is identified in the related
SecureRTPSPrefixSubMsg.

7.4.7 Mapping to UDP/IP PSM

The DDS-RTPS specification defines the RTPS protocol in terms of a platform-independent model
(PIM) and then maps it to a UDP/IP transport PSM (see clause 9, “Platform Specific Model (PSM):
UDP/IP” of the DDS-RTPS specification [2]).

Sub clause 7.4.7 does the same thing for the new RTPS submessage elements and submessages
introduced by the DDS Security specification.

7.4.7.1 Mapping of the Entitylds for the Builtin DataWriters and DataReaders

Sub clause 7.5 defines the RTPS Built-In Entities added by the DDS Security specification. The
corresponding Entitylds used when these endpoints are used on the UDP/IP PSM are given in the table
below.

46 DDS Security, v1.12

Table 9 — Entityld values for secure builtin data writers and data readers

Entity

Entityld_t name

Entityld_t value

SEDPbuiltinPublicationsSecureWriter

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SE
CURE_WRITER

{{ff, 00, 03}, c2}

SEDPbuiltinPublicationsSecureReader

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SE
CURE_READER

{{ff, 00, 03}, c7}

SEDPbuiltinSubscriptionsSecureWriter

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SE
CURE_WRITER

{{ff, 00, 04}, c2}

SEDPbuiltinSubscriptionsSecureReader

ENTITYID_SEDP_BUILTIN_
SUBSCRIPTIONS_SECURE_READER

{{ff, 00, 04}, c7}

BuiltinParticipantMessageSecureWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_MESS
AGE_SECURE_WRITER

{{ff, 02, 00}, c2}

BuiltinParticipantMessageSecureReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_MESS
AGE_SECURE_READER

{{ff, 02, 00}, c7}

BuiltinParticipantStatelessMessageWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_STAT
ELESS_WRITER

{{00, 02, 01}, c3}

BuiltinParticipantStatelessMessageReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_STAT
ELESS_READER

{{00, 02, 01}, c4}

BuiltinParticipantVolatileMessageSecure
Writer

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLA
TILE_SECURE_WRITER

{{ff, 02, 02}, 3}

BuiltinParticipantVolatileMessageSecureR
eader

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLA
TILE_SECURE_READER

{{ff, 02, 02}, c4}

SPDPbuiltinParticipantsSecureWriter

ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICI
PANT_SECURE_WRITER

{{ff, 01, 01}, c2}

SPDPbuiltinParticipantsSecureReader

ENTITYID_SPDP_RELIABLE

_BUILTIN_PARTICIPANT_SECURE_READER

{{ff, 01, 013}, c7}

TypeLookupServiceRequestSecureWriter

ENTITYID_TL_SVC_REQ_SECURE _WRITER

{{ff, 03, 00}, c3}

TypeLookupServiceRequestSecureReader

ENTITYID_TL_SVC_REQ_SECURE _READER

{{ff, 03, 00}, c4}

TypeLookupServiceReplySecureWriter

ENTITYID_TL_SVC_REPLY_SECURE WRITER

{{ff, 03, 01}, 3}

TypeLookupServiceReplySecureReader

ENTITYID_TL_SVC_REPLY_SECURE _READER

{{ff, 03, 01}, c4}

7.4.7.2 Mapping of the CryptoTransformidentifier Type

The UDP/IP PSM maps the CryptoTransformIdentifier tothe IDL definition in 7.3.20.

7.4.7.3 Mapping of the CryptoHeader SubmessageElement

A CryptoHeader SubmessageElement contains the information that identifies a cryptographic
transformation. The CryptoHeader shall start with the CryptoTransformIdentifier and be
followed by a plugin-specific plugin_crypto_header_extra returned by the encoding transformation.
The UDP/IP PSM maps the CryptoHeader to the following extended IDL structure:

@extensibility (FINAL)

struct CryptoHeader : CryptoTransformIdentifier {
// Extra plugin-specific information added below
// CryptoHeader plugin crypto header extra;

}i

The UDP/IP wire representation for the CryptoHeader shall be:

DDS Security, v1.12 47

| CryptoTransformationKind transformation kind |

—_— —_— - Fo———_——— +
+ CryptoTransformKeyId transformation key id +
—_— —_— - b +
| |
~ octet plugin crypto header extral] ~
| |
o o Fom Fom————— +

7.4.7.4 Mapping of the CryptoFooter SubmessageElement

A CryptoFooter SubmessageElement contains the information that authenticates the result of
a cryptographic transformation. The CryptoFooter contains a plugin-specific plugin_crypto_footer
returned by the encoding transformation.

The UDP/IP wire representation for the CryptoFooter shall be:

0 20 B e 160, 2400 e 32
- - - - +
| |
~ octet plugin crypto footer[] ~
| |
f————— f————— Fom Fm———— +

7.4.7.5 SecureBodySubMsg Submessage
7.4.75.1 Wire Representation

The UDP/IP wire representation for the SecureBodySubMsg shall be:

0 2 Bt 16 i 240 0 32
- F———————— F———————— f————————————— +
| SEC BODY [XX X|X|X|X|X|E| octetsToNextHeader |
- F———————— F———————— f————————————— +
| |
+ CryptoContent crypto content +
| |
tmm tmm Fomm Fomm +

7.4.75.2 Submessage Id
The SecureBodySubMsg shall have the submessageld set to the value 0x30.

7.4.75.3 Flags in the Submessage Header
The SecureBodySubMsg only uses the EndiannessFlag.

7.4.7.6 SecurePrefixSubMsg Submessage
7.4.7.6.1 Wire Representation

The UDP/IP wire representation for the SecurePrefixSubMsg shall be:

48 DDS Security, v1.12

| SEC_PREFIX [XX |X|X|X|X|X|E| octetsToNextHeader |

—_— —_— - Fo———_——— +
| |
+ CryptoHeader crypto header +
| |
—_— —_— - Fo———_——— +

7.4.7.6.2 Submessage Id

The SecurePrefixSubMsg shall have the submessageld set to the value 0x31 and referred by the
symbolic name SEC_PREFIX.

7.4.7.6.3 Flags in the Submessage Header

The SecurePrefixSubMsg only uses the EndiannessFlag.

7.4.7.7 SecurePostfixSubMsg Submessage
7.4.7.7.1 Wire Representation

The UDP/IP wire representation for the SecurePostfixSubMsg shall be:

0 2 B 160, 24 0 e e 32
tm————————————— tm——————— o —————— Fm———————— +
| SEC POSTFIX [XXX X|X|X|X|E| octetsToNextHeader |
tm————————————— tm——————— o —————— Fm———————— +
| |
+ CryptoFooter crypto footer +
| |
tmm tmm Fomm Fomm +

7.4.7.7.2 Submessage Id

The SecurePostfixSubMsg shall have the submessageld set to the value 0x32 and referred by the
symbolic name SEC_POSTFIX.

7.4.7.7.3 Flags in the Submessage Header

The SecurePostfixSubMsg only uses the EndiannessFlag.
7.4.7.8 SecureRTPSPrefixSubMsg Submessage

7.4.7.8.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPrefixSubMsg shall be:

0 2 8t 160 .0, N 32
o o Fomm e Fom e +
| SRTPS PREFIX [|XI[X[|X|X|X|P|A|E] octetsToNextHeader |
o o Fomm e Fom e +
| |
+ CryptoHeader crypto header +
| |
- - - F—_——— +

DDS Security, v1.12 49

7.4.7.8.2 Submessage Id

The SecureRTPSPrefixSubMsg shall have the submessageld set to the value 0x33 and referred
by the symbolic name SRTPS PREFIX.

7.4.7.8.3 Flags in the Submessage Header

The SecureRTPSPrefixSubMsg uses three flags:

e EndiannessFlag (E): Indicates endianness.

e AdditionalAuthenticatedDataFlag (A): Indicates that the RTPS message protection extends
to the RTPS Header and RTPS HeaderExtension which are protected as “Additional
Authenticated Data (AAD)”.

e PreSharedKeyFlag (P): Indicates that the RTPS message is protected using a Pre-Shared-Key.

7.4.7.9 SecureRTPSPostfixSubMsg Submessage
7.4.7.9.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPostfixSubMsg shall be:

0 2 8t 160 ... S 32
Fom Fom fom fom +
| SRTPS POSTFIX |XI|X|X|X|X|X|X|E]| octetsToNextHeader |
Fom - Fom - Fom Fom e +
| |
+ CryptoFooter crypto footer +
| |
Fom - Fom - Fom Fom e +

7.4.7.9.2 Submessage Id

The SecureRTPSPost fixSubMsg shall have the submessageld set to the value 0x34 and referred
by the symbolic name SRTPS POSTFIX.

7.4.79.3 Flags in the Submessage Header
The SecureRTPSPostfixSubMsg only uses the EndiannessFlag.

7.5 DDS Support for Security Plugin Information Exchange

In order to perform their function, the security plugins associated with different DDS
DomainParticipant entities need to exchange information representing things such as Identity
and Permissions of the DomainParticipant entities, authentication challenge messages, tokens
representing key material, etc.

DDS already has several mechanisms for information exchange between DomainParticipant
entities. Notably the builtin DataWriter and DataReader entities used by the Simple Discovery
Protocol (see sub clause 8.5 of the DDS Interoperability Wire Protocol [2]) and the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of
the DDS Interoperability Wire Protocol [2]).

Where possible, this specification tries to reuse and extend existing DDS concepts and facilities so that
they can fulfill the needs of the security plugins, rather than defining entirely new ones. This way, the
Security Plugin implementation can be simplified and it does not have to implement a separate
messaging protocol.

50 DDS Security, v1.12

7.5.1 Secure builtin Discovery Topics

7.5.1.1 Background (Non-Normative)

DDS discovery information is sent using builtin DDS DataReaders and DataWriters. These are
regular DDS DataReaders and DataWriters, except they are always present in the system and
their Topic names, associated data types, QoS, and RTPS EntityIds are all specified as part of the
DDS and RTPS specifications, so they do not need to be discovered.

The DDS specification defines three discovery builtin Topic entities: the DCPSParticipants used to
discover the presence of DomainParticipants, the DCPSPublications used to discover
DataWriters, and the DCPSSubscriptions used to discover DataReaders (See sub clause 8.5 of
the DDS Interoperability Wire Protocol [2]).

Much of the discovery information could be considered sensitive in secure DDS systems. Knowledge
of things like the Topi c names that an application is publishing or subscribing to could reveal
sensitive information about the nature of the application. In addition, the integrity of the discovery
information needs to be protected against tampering, since it could cause erroneous behaviors or
malfunctions.

One possible approach to protecting discovery information would be to require that the discovery
builtin Top1i c entities always be protected via encryption and message authentication. However, this
would entail the problems explained below.

The DCPSParticipants builtin Topic is used to bootstrap the system, detect the presence of
DomainParticipant entities, and kick off subsequent information exchanges and handshakes. It
contains the bare minimum information needed to establish protocol communications (addresses, port
numbers, version number, vendor IDs, etc.). If this Topic were protected, the Secure DDS system
would have to create an alternative mechanism to bootstrap detection of other participants and gather
the same information—which needs to happen prior to being able to perform mutual authentication and
exchange of key material. This mechanism would, in essence, duplicate the information in the
DCPSParticipants builtin Topi c. Therefore, it makes little sense to protect the DCPSParticipants
builtin Topic. A better approach is to augment the information sent using the DCPSParticipants
builtin Top1ic with any additional data the Secure DDS system needs for bootstrapping
communications (see 7.5.1.3).

Secure DDS systems need to co-exist in the same network and, in some cases, interoperate with non-
secure DDS systems. There may be systems built using implementations compliant with the DDS
Security specification, which do not need to protect their information. Or there may be systems
implemented with legacy DDS implementations that do not support DDS Security. In this situation, the
fact that a secure DDS implementation is present on the network should not impact the otherwise
correct behavior of the non-secure DDS systems. In addition, even in secure systems not all Topics are
necessarily sensitive, so it is desirable to provide ways to configure a DDS Secure system to have
Topics that are “unprotected” and be able to communicate with non-secure DDS systems on those
“unprotected” Topics.

To allow co-existence and interoperability between secure DDS systems and DDS systems that do not
implement DDS security, secure DDS systems must retain the same builtin Topics as the regular DDS
systems (with the same GUIDs, topics names, QoS, and behavior). Therefore, to protect the discovery
and liveliness information of Topics that are considered sensitive, Secure DDS needs to use additional
builtin discovery Topics protected by the DDS security mechanisms.

7.5.1.2 Extending the Data Types used by DDS Discovery

The DDS Interoperability Wire Protocol specifies the serialization of the data types used for the
discovery of builtin Topics (ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and

DDS Security, v1.12 51

SubscriptionBuiltinTopicData) using a representation called a ParameterList. Although this
description precedes the DDS-XTYPES specification, the serialization format matches the Extended
CDR representation defined in DDS-XTYPES for data types declared with MUTABLE extensibility.
This allows the data type associated with discovery topics to be extended without breaking
interoperability.

Given that DDS-XTYPES formalized the ParameterList serialization approach, first defined in the
DDS Interoperability and renamed it to “Extended CDR,” this specification will use the DDS
Extensible Types notation to define the data types associated with the builtin Topics. This does not
imply that compliance to the DDS-XTYPES is required to comply with DDS Security. All that is
required is to serialize the specific data types defined here according to the format described in the
DDS-XTYPES specification.

7.5.1.3 Reserved RTPS parameter IDs

This specification reserves the RTPS Simple Discovery Protocol ParameterIDs in the range: 0x1000 to
Ox1FFF and 0x5000 to OX5FFF.

The second interval covers the same range of parameterslID, except they have the must-understand bit
set.

This reserved range applies to RTPS version 2.3 (see 7.4.6.1) and higher minor revisions of RTPS.
Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.5.1.4 Extension to RTPS Standard DCPSParticipants Builtin Topic

The DDS specification specifies the existence of the DCPSParticipants builtin Topic and a
corresponding builtin DataWriter and DataReader to communicate this Topic. These
endpoints are used to discover DomainParticipant entities.

The data type associated with the DCPSParticipants builtin Topi c is ParticipantBuiltinTopicData,
defined in sub clause 7.1.5 of the DDS specification [1].

The DDS Interoperability Wire Protocol specifies the serialization of ParticipantBuiltinTopicData.
The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each
member of the ParticipantBuiltinTopicData is serialized using CDR but preceded in the stream by the
serialization of a short ParameterID identifying the member, followed by another short containing the
length of the serialized member, followed by the serialized member. See sub clause 8.3.5.9 of the DDS
Interoperability Wire Protocol [2]. This serialization format allows the ParticipantBuiltinTopicData to
be extended without breaking interoperability.

This DDS Security specification adds several new members to the ParticipantBuiltinTopicData
structure. The member types and the ParameterIDs used for the serialization are described below.

52 DDS Security, v1.12

Table 10 — Additional parameter IDs in ParticipantBuiltinTopicData

Member name Member type Parameter ID name Parameter ID
value
identity_token IdentityToken PID_IDENTITY_TOKEN 0x1001
(see 7.3.5)
permissions_token | PermissionsToken PID_PERMISSIONS_TOKEN 0x1002
(see 7.3.5)
property PropertyQosPolicy PID_PROPERTY_LIST 0x0059
(See Table 9.12 of DDS-RTPS) (See Table
9.12 of DDS-
RTPS)
protection_info ParticipantSecurityProtectio | PID_PARTICIPANT_SECURITY_PROTECTIO | 0x1005
ninfo (see 7.3.23) N_INFO
available_builtin_e | AvailableBuiltinEndpointsEx | PID_AVAILABLE_BUILTIN_ENDPOINTS_EX | 0x1007
ndpoints_ext tSet_t T

digital_signature ParticipantSecurityDigitalSig | PID_PARTICIPANT_SECURITY_DIGITAL_SI | 0x1010
natureAlgorithmlInfo (see GNATURE_ALGORITHM_INFO
7.3.11)

key_establishment | ParticipantSecurityKeyEstab | PID_PARTICIPANT_SECURITY_KEY_ESTAB | 0x1011
lishmentAlgorithmInfo (see LISHMENT_ALGORITHM_INFO
7.3.12)

symmetric_cipher ParticipantSecuritySymmetr | PID_PARTICIPANT_SECURITY_BUILTIN_E 0x1012
icCipherAlgorithmInfo (see | P_SYMMETRIC_CIPHER_ALGORITHM_INF
7.3.13) 0

@extensibility (MUTABLE)
struct ParticipantBuiltinTopicData: DDS::ParticipantBuiltinTopicData {

@id (0x1001) IdentityToken identity token;
@id(0x1002) PermissionsToken permissions_token;
@id(0x1005) ParticipantSecurityProtectionInfo protection info;
@id (0x1007)

AvailableBuiltinEndpointsExtSet t available builtin endpoints ext;
@id(0x1010)

ParticipantSecurityDigitalSignatureAlgorithmInfo digital signature;
@id (0x1011)

ParticipantSecurityKeyEstablishmentAlgorithmInfo key establishment;
@id(0x1012)

ParticipantSecuritySymmetricCipherAlgorithmInfo symmetric cipher;

}s

If the member available_builtin_endpoints_ext is not present in the ParticipantBuiltinTopic, the
receiver shall interpret the value of the member to be 0x00000000.

If the member digital_signature is not present in the ParticipantBuiltinTopic, the receiver shall
interpret the value of the member to be the default defined in clause 7.3.11.2.

If the member key_establishment is not present in the ParticipantBuiltinTopic, the receiver shall
interpret the value of the member to be the default defined in clause 7.3.13.2.

If the member symmetric_cipher is not present in the ParticipantBuiltinTopic, the receiver shall
interpret the value of the member to be the default defined in clause 7.3.13.2.

Only the Property tand BinaryProperty t elements having the propagate member set to
TRUE are serialized. Furthermore, as indicated by the @non-serialized annotation the
serialization of the Property t and BinaryProperty t elementsshall omit the serialization of
the propagate member. That is, they are serialized as if the type definition did not contain the
propagate member. This is consistent with the data-type definition for Property t that appears in the

DDS Security, v1.12 53

DDS-RTPS specification (see Table 9.12 of DDS-RTPS). Even if it is not present in the serialized
data, the receiver will set the propagate member to TRUE.

Note that according to DDS-RTPS the PID_PROPERTY _LIST is associated with a single
PropertySeq rather than the PropertyQosPolicy, which is a structure that contains two
sequences. This does not cause any interoperability problems because the containing
ParticipantBuiltinTopicData has mutable extensibility.

The DDS Interoperability Wire Protocol specifies that the ParticipantBuiltinTopicData shall contain
the attribute called availableBuiltinEndpoints that is used to announce the builtin endpoints that are
available in the DomainParticipant. See clause 8.5.3.2 of the DDS Interoperability Wire
Protocol [2]. The type for this attribute is an array of BuiltinEndpointSet_t. For the UDP/IP PSM the
BuiltinEndpointSet_t is mapped to a bitmap represented as type long. Each builtin endpoint is
represented as a bit in this bitmap with the bit values defined in Table 9.4 (clause 9.3.2) of the DDS
Interoperability Wire Protocol [2].

This DDS Security specification reserves additional bits to indicate the presence of the corresponding
built-in end points listed in clause 7.5.8. These bits shall be set on the availableBuiltinEndpoints. The
bit that encodes the presence of each individual endpoint is defined in Table 11 below.

Table 11 — Mapping of the additional builtin endpoints added by DDS security to the availableBuiltinEndpoints

Builtin Endpoint Bit in the ParticipantBuiltinTopicData

availableBuiltinEndpoints

SEDPbuiltinPublicationsSecureWriter (0x00000001 << 16)

SEDPbuiltinPublicationsSecureReader
See clause 7.5.1.7

(0x00000001 << 17)

SEDPbuiltinSubscriptionsSecureWriter
SEDPbuiltinSubscriptionsSecureReader
See clause 7.5.1.8

(0x00000001 << 18)
(0x00000001 << 19)

BuiltinParticipantMessageSecureWriter
BuiltinParticipantMessageSecureReader
See clause 7.5.2

(0x00000001 << 20)
(0x00000001 << 21)

BuiltinParticipantStatelessMessageWriter
BuiltinParticipantStatelessMessageReader
See clause 7.5.3

(0x00000001 << 22)
(0x00000001 << 23)

See clause 7.5.4

BuiltinParticipantVolatileMessageSecureWriter
BuiltinParticipantVolatileMessageSecureReader

(0x00000001 << 24)
(0x00000001 << 25)

SPDPbuiltinParticipantSecureWriter
SPDPbuiltinParticipantSecureReader
See clause 7.5.1.6

(0x00000001 << 26)
(0x00000001 << 27)

DDS-Security implementations that support DDS-XTYPES shall advertise the availability of the Secure
TypeLookup Built-In Endpoints using the Parameter with ID
PID_AVAILABLE_BUILTIN_ENDPOINTS_EXT (see Table 10). Implementations that do not support DDS-

XTYPES may omit this parameter. Values of available_builtin_endpoints_ext are defined in Table below. Use
of the Secure TypeLookup Built-In Endpoints is defined in section 7.5.5.

54

DDS Security, v1.12

Table 12 — Mapping of the builtin endpoints added by DDS security to the available_builtin_endpoints_ext

Builtin Endpoint Bit in the ParticipantBuiltinTopicData
available_builtin_endpoints_ext

TypeLookupServiceRequestSecureWriter | (0x00000001 << 0)
TypeLookupServiceRequestSecureReader | (0x00000001 << 1)
See clause 7.5.5

TypeLookupServiceReplySecureWriter (0x00000001 << 2)
TypeLookupServiceReplySecureReader (0x00000001 << 3)
See clause 7.5.5

7.5.1.5 Extension to RTPS Standard DCPSPublications and DCPSSubscriptions Builtin Topics

The DDS specification specifies the existence of the DCPSPublications and DCPSSubscriptions builtin
Topics and a corresponding builtin DataWriters and DataReaders to communicate these Topics.
These endpoints are used to discover DataWriter and DataReader entities.

The data type associated with the DCPSPublications and DCPSSubscriptions builtin Topic are
PublicationBuiltinTopicData and SubscriptionBuiltinTopicData, defined in sub clause 7.1.5 of the DDS
specification.

The DDS Interoperability Wire Protocol specifies the serialization of PublicationBuiltinTopicData and
SubscriptionBuiltinTopicData.

The format used is what the DDS Interoperability Wire Protocol calls a ParameterLi st whereby each
member of the PublicationBuiltinTopicData and SubscriptionBuiltinTopicData is serialized using CDR
but preceded in the stream by the serialization of a short ParameterID identifying the member, followed by
another short containing the length of the serialized member, followed by the serialized member. See sub clause
8.3.5.9 of the DDS Interoperability Wire Protocol [2]. This serialization format allows the
PublicationBuiltinTopicData and SubscriptionBuiltinTopicData to be extended without breaking
interoperability.

This DDS Security specification adds a new member to the PublicationBuiltinTopicData and
SubscriptionBuiltinTopicData structure. The member types and the ParameterIDs used for the
serialization are described below.

Table 13 — Additional parameter IDs in PublicationBuiltinTopicData and SubscriptionBuiltinTopicData

Member name Member type Parameter ID name Paramet
erID
value

protection_info EndpointSecurityInfo (See 7.3.24) PID_ENDPOINT_SECURITY_PROTECTION | 0x1004
INFO
symmetric_cipher | EndpointSecuritySymmetricCipher | PID_ENDPOINT_SECURITY_SYMMETRIC_ | 0x1013
AlgorithmInfo (see 7.3.15) CIPHER_ALGORITHM_INFO

@extensibility (MUTABLE)

struct PublicationBuiltinTopicData: DDS::PublicationBuiltinTopicData {
@id(0x1004) EndpointSecurityProtectionInfo protection info;
@id (0x1013)
EndpointSecuritySymmetricCipherAlgorithmInfo symmetric cipher;

}i

@extensibility (MUTABLE)

struct SubscriptionBuiltinTopicData: DDS::SubscriptionBuiltinTopicData {
@id(0x1004) EndpointSecurityProtectionInfo protection info;
@id(0x1013)
EndpointSecuritySymmetricCipherAlgorithmInfo symmetric cipher;

}s

DDS Security, v1.12 55

If the member symmetric_cipher is not present in the PublicationBuiltinTopic or the
SubscriptionBuiltinTopic data, the receiver shall interpret the value of the member to be the default
defined in clause 7.3.15.2.

7.5.1.6 New DCPSParticipantSecure Builtin Topic

As described in clause 7.5.1.4, the DCPSParticipants builtin Topic and a corresponding builtin
DataWriter and DataReader are used to discover DomainParticipant entities.
Implementations of the DDS Security shall use that same DCPSParticipants builtin Topic to
announce the DomainParticipant information. This is used for bootstrapping authentication and
allowing discovery of non-secure applications.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to
as DCPSParticipantsSecure and associated builtin DataReader and DataWriter entities to
communicate the DomainParticipant information securely.

The Topic name for the DCPSParticipantsSecure Topic shall be “DCPSParticipantsSecure”.

The data type associated with the DCPSParticipantsSecure Topic shall be
ParticipantBuiltinTopicDataSecure, defined to be the same as the ParticipantBuiltinTopicData
defined in clause 7.5.1.4, except the structure has the additional optional member
identity_status_token with the Parameterld described below.

Table 14 — Additional parameter IDs in ParticipantBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value
identity_status_token | IdentityStatusToken | PID_IDENTITY_STATUS_TOKEN | 0x1006

@extensibility (MUTABLE)

struct ParticipantBuiltinTopicDataSecure: ParticipantBuiltinTopicData {
@1id(0x1006) Qoptional IdentityStatusToken identity status_token;

}i

The QoS associated with the DCPSParticipantsSecure builtin Top1i c shall be the same as for the

DCPSPublications and DCPSSubscriptions builtin Topi c. Note that is not the same as the

DCPSParticipants Topic. Among other differences, the DCPSParticipantsSecure has

ReliabilityQosPolicy kind setto RELIABLE.

The builtin DataWriter for the DCPSParticipantsSecure Topic shall be referred to as the

SPDPbuiltinParticipantsSecureWriter. The builtin DataReader for the DCPSParticipantsSecure

Topic shall be referred to as the SPDPbuiltinParticipantsSecureReader.

The RTPS EntityId t associated with the SPDPbuiltinParticipantsSecureWriter and

SPDPbuiltinParticipantsSecureReader shall be as specified in 7.5.8.

The ParticipantBuiltinTopicData contains information, such as participant Locators, which may

change at run-time. These changes shall be sent using the DCPSParticipantsSecure builtin Topic.

The deletion of a DomainParticipant shall also be sent using the DCPSParticipantsSecure builtin

Topic.

After authentication has completed successfully a DomainParticipant shall ignore any changes

to the ParticipantBuiltinTopicData (including dispose messages) received on the DCPSParticipants

builtin Top1ic from the authenticated DomainParticipant. It may, however, rely on these

messages to maintain the liveliness of the remote DomainParticipant. It should only process

ParticipantBuiltinTopicData messages containing data changes or status changes (dispose or

unregister) if they are received over the DCPSParticipantsSecure builtin Topic.

56 DDS Security, v1.12

7.5.1.7 New DCPSPublicationsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSPublications builtin Topi c with topic
name “DCPSPublications” and corresponding builtin DataWriter and DataReader entities to
communicate on this Topic. These endpoints are used to discover non-builtin DataWriter entities.
The data type associated with the DCPSPublications Topic is PublicationBuiltinTopicData, defined
in sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security shall use that same DCPSPublications Topi c to communicate
the DataWriter information for Topi c entities that are not considered sensitive.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to
as DCPSPublicationsSecure and associated builtin DataReader and DataWriter entities to
communicate the DataWriter information for Topic entities that are considered sensitive.

The determination of which Topi c entities are considered sensitive shall be specified by the
AccessControl plugin.

The Topic name for the DCPSPublicationsSecure Topic shall be “DCPSPublicationsSecure”.

The data type associated with the DCPSPublicationsSecure Topic shall be
PublicationBuiltinTopicDataSecure, defined to be the same as the PublicationBuiltinTopicData
structure used by the DCPSPublications Topic, except the structure has the additional member
data_tags with the Parameterld described below.

Table 15 — Additional parameter IDs in PublicationBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

@extensibility (MUTABLE)

struct PublicationBuiltinTopicDataSecure: PublicationBuiltinTopicData {
@id(0x1003) DataTags data_ tags;

}i

The QoS associated with the DCPSPublicationsSecure Topi c shall be the same as for the

DCPSPublications Topic.

The builtin DataWriter for the DCPSPublicationsSecure Topic shall be referred to as the

SEDPbuiltinPublicationsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinPublicationsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinPublicationsSecureWriter and

SEDPbuiltinPublicationsSecureReader shall be as specified in 7.5.8.

7.5.1.8 New DCPSSubscriptionsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSSubscriptions builtin Topic with Topic
name “DCPSSubscriptions” and corresponding builtin DataWriter and DataReader entities to
communicate on this Topic. These endpoints are used to discover non-builtin DataReader entities.
The data type associated with the DCPSSubscriptions is SubscriptionBuiltinTopicData is defined in
sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security specification shall use that same DCPSSubscriptions Topic to
send the DataReader information for Topi c entities that are not considered sensitive. The
existence and configuration of Topic entities as non-sensitive shall be specified by the
AccessControl plugin.

DDS Security, v1.12 57

Implementations of the DDS Security specification shall have an additional builtin Topic referred to
as DCPSSubscriptionsSecure and associated builtin DataReader and DataWriter entities to
communicate the DataReader information for Topic entities that are considered sensitive.

The determination of which Topi c entities are considered sensitive shall be specified by the
AccessControl plugin.

The data type associated with the DCPSSubscriptionsSecure Topic shall be
SubscriptionBuiltinTopicDataSecure defined to be the same as the SubscriptionBuiltinTopicData
structure used by the DCPSSubscriptions Topi ¢, except the structure has the additional member
data_tags with the data type and Parameterlds described below.

Table 16 — Additional parameter IDs in SubscriptionBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

@extensibility (MUTABLE)

struct SubscriptionBuiltinTopicDataSecure: SubscriptionBuiltinTopicData {
@1id(0x1003) DataTags data_ tags;

}i

The QoS associated with the DCPSSubscriptionsSecure Topi c shall be the same as for the

DCPSSubscriptions Topic.

The builtin DataWriter for the DCPSSubscriptionsSecure Topi c shall be referred to as the

SEDPbuiltinSubscriptionsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinSubscriptionsSecureReader.

The RTPSEntityId t associated with the SEDPbuiltinSubscriptionsSecureWriter and

SEDPbuiltinSubscriptionsSecureReader shall be as specified in 7.5.8.

7.5.2 New DCPSParticipantMessageSecure builtin Topic

The DDS Interoperability Wire Protocol specifies the BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader (see sub clauses 8.4.13 and 9.6.2.1 of the DDS Interoperability
Wire Protocol[2]). These entities are used to send information related to the LIVELINESS QoS. This
information could be considered sensitive and therefore secure DDS systems need to provide an
alternative protected way to send liveliness information.

The data type associated with these endpoints is ParticipantMessageData defined in sub clause 9.6.2.1
of the DDS Interoperability Wire Protocol specification [2].

To support coexistence and interoperability with non-secure DDS applications, implementations of the
DDS Security specification shall use the same standard BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader to communicate liveliness information on Topic entities that are
not considered sensitive.

Implementations of the DDS Security specification shall have an additional
DCPSParticipantMessageSecure builtin Topi c and associated builtin DataReader and
DataWriter entities to communicate the liveliness information for Topi c entities that are
considered sensitive.

The data type associated with the DCPSParticipantMessageSecure Topi c shall be the same as the
ParticipantMessageData structure.

The QoS associated with the DCPSParticipantMessageSecure Topi c shall be the same as for the
DCPSParticipantMessage Topic as defined in sub clause 8.4.13 of the DDS Interoperability Wire
Protocol [2].

58 DDS Security, v1.12

The builtin DataWriter for the DCPSParticipantMessageSecure Topi c shall be referred to as the
BuiltinParticipantMessageSecureWriter. The builtin DataReader for the
DCPSParticipantMessageSecure Topic shall be referred to as the
BuiltinParticipantMessageSecureReader.

The RTPS EntityId t associated with the BuiltinParticipantMessageSecureWriter and
BuiltinParticipantMessageSecureReader shall be as specified in 7.5.8.

According to clause 8.7.2.2.3 of DDSI-RTPS [2], if the DataWriter LivelinessQos policy is
MANUAL BY TOPIC LIVELINESS QOS, liveliness is maintained sending data or heartbeats using
the same RTPS DataWriter. The remaining settings for the LivelinessQos policy use the
DCPSParticipantMessage Topi c to maintain the DataWriter liveliness.

IfaDataWriter LivelinessQos policy is MANUAL BY TOPIC LIVELINESS QOS,
implementations compliant with DDS-Security shall use the same RTPS DataWriter for the
liveliness heartbeats. The liveliness heartbeats shall be protected using the same means as the regular
DataWriter heartbeats. That is, according to the setting of the EndpointSecurityConfig
is_submessage_protected attribute.

Ifthe DataWriter LivelinessQos policy iS AUTOMATIC LIVELINESS QOS or
MANUAL BY PARTICIPANT LIVELINESS QOS, implementations compliant with DDS-Security
shall send the liveliness heartbeats using either the DCPSParticipantMessage Topic or the
DCPSParticipantMessageSecure Topic. The selection shall be done according to the setting of the
TopicSecurityConfig is_liveliness_protected: It shall use the DCPSParticipantMessage
Topic ifis_liveliness_protected is set to false, otherwise it shall use the
DCPSParticipantMessageSecure Topic.

7.5.3 New DCPSParticipantStatelessMessage builtin Topic

To perform mutual authentication between DDS DomainParticipant entities, the security plugins
associated with those participants need to be able to send directed messages to each other. As
described in 7.5.3.1 below, the mechanisms provided by existing DDS builtin Top1i c entities are not
adequate for this purpose. For this reason, this specification introduces a new
DCPSParticipantStatelessMessage builtin Topi c and corresponding builtin DataReader and
DataWriter entities to read and write the Topic.

7.5.3.1 Background: Sequence Number Attacks (non normative)

DDS has a builtin mechanism for participant-to-participant messaging: the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of
the DDS Interoperability Wire Protocol [2]). However this mechanism cannot be used for mutual
authentication because it relies on the RTPS reliability protocol and suffers from the sequence-number
prediction vulnerability present in unsecured reliable protocols:

e The RTPS reliable protocol allows a DataWriter to send to a DataReader Heartbeat
messages that advance the first available sequence number associated with the DataWriter. A
DataReader receiving a Heartbeat from a DataWriter will advance its first available
sequence number for that DataWriter and ignore any future messages it receives with sequence
numbers lower than the first available sequence number for the DataWriter. The reliable
DataReader will also ignore duplicate messages for that same sequence number.

e The behavior of the reliability protocol would allow a malicious application to prevent other
applications from communicating by sending Heartbeats pretending to be from other
DomainParticipants that contain large values of the first available sequence number. All the

DDS Security, v1.12 59

malicious application needs to do is learn the GUIDs of other applications, which can be done from
observing the initial discovery messages on the wire, and use that information to create fake
Heartbeats.

Stated differently: prior to performing mutual authentication and key exchange, the applications cannot
rely on the use of encryption and message access codes to protect the integrity of the messages.
Therefore, during this time window, they are vulnerable to this kind of sequence-number attack. This
attack is present in most reliable protocols. Stream-oriented protocols such as TCP are also vulnerable
to sequence-number-prediction attacks but they make it more difficult by using a random initial
sequence number on each new connection and discarding messages with sequence numbers outside the
window. This is something that RTPS cannot do given the data-centric semantics of the protocol.

In order to avoid this vulnerability, the Security plugins must exchange messages using writers and
readers sufficiently robust to sequence number prediction attacks. The RTPS protocol specifies
endpoints that meet this requirement: the RTPS StatelessWriter and StatelessReader (see
8.4.7.2 and 8.4.10.2 of the DDS Interoperability Wire Protocol [2]) but there are no DDS builtin
endpoints that provide access to this underlying RTPS functionality.

7.5.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader

The DDS Security specification defines two builtin Endpoints: the
BuiltinParticipantStatelessMessageWriter and the BuiltinParticipantStatelessMessageReader. These
two endpoints shall be present in compliant implementations of this specification. These endpoints are
used to write and read the builtin DCPSParticipantStatelessMessage Topic.

The BuiltinParticipantStatelessMessageWriter is an RTPS Best-Effort StatelessWriter (see sub
clause 8.4.7.2 of the DDS Interoperability Wire Protocol [2]).

The BuiltinParticipantStatelessMessageReader is an RTPS Best-Effort StatelessReader (See
sub clause 8.4.10.2 of the DDS Interoperability Wire Protocol [2]).

The data type associated with these endpoints is ParticipantStatelessMessage defined
below (see also 7.3.21):

typedef ParticipantStatelessMessage ParticipantGenericMessage;

The RTPS EntityId t associated with the BuiltinParticipantStatelessMessageWriter and
BuiltinParticipantStatelessMessageReader shall be as specified in 7.5.8.

7.5.3.3 Contents of the ParticipantStatelessMessage

The ParticipantStatelessMessage is intended as a holder of information that is sent point-

to-point from a DomainParticipant to another.

The message_identity uniquely identifies each individual ParticipantStatelessMessage:

e The source_guid field within the message_identity shall be set to match the GUID_t of the
BuiltinParticipantStatelessMessageWriter that writes the message.

e The sequence_number field within the message_identity shall start with the value set to one and be
incremented for each different message sent by the BuiltinParticipantStatelessMessageWriter.

The related_message_identity uniquely identifies another ParticipantStatelessMessage that
is related to the message being processed. It shall be set to either the tuple {GUID_UNKNOWN, 0} if
the message is not related to any other message, or else set to match the message_identity of the
related ParticipantStatelessMessage.

60 DDS Security, v1.12

The destination_participant_guid shall contain either the value GUID_UNKNOWN (see sub clause
9.3.1.5 of the DDS Interoperability Wire Protocol [2]) or else the GUID_t of the destination
DomainParticipant.

The destination_endpoint_guid provides a mechanism to specify finer granularity on the intended
recipient of a message beyond the granularity provided by the destination_participant_guid. It can
contain either GUID_UNKNOWN or else the GUID of a specific endpoint within destination
DomainParticipant. The targeted endpoint is the one whose Endpoint (DataWriter or
DataReader) GUID t matches the destination_endpoint_guid.

The contents message_data depend on the value of the message_class_id and are defined in this
specification in the sub clause that introduces each one of the pre-defined values of the
GenericMessageClassId. See 7.5.3.5and 7.5.3.6.

7.5.3.4 Destination of the ParticipantStatelessMessage

If the destination_participant_guid member is not set to GUID_UNKNOWN, the message written is
intended only for the BuiltinParticipantStatelessMessageReader belonging to the
DomainParticipant with a matching Participant Key.
This is equivalent to saying that the BuiltinParticipantStatelessMessageReader has an implied content
filter with the logical expression:

“destination_participant_guid == GUID_UNKNOWN

|| destination_participant_guid == BuiltinParticipantStatelessMessageReader.participant.guid”
Implementations of the specification can use this content filter or some other mechanism as long as the
resulting behavior is equivalent to having this content filter.
If the destination_e