

Date: October 2008

Common Object Request Broker Architecture (CORBA)
Specification, Version 3.1

Part 3: CORBA Component Model
OMG Available Specification

OMG Document Number: formal/2008-01-08
Standard document URL: http://www.omg.org/spec/CORBA/3.1/Components/PDF
Associated Schema Files*: http://www.omg.org/spec/CORBA/3.1/20011101

http://www.omg.org/spec/CORBA/3.1/20011101/CCM_IDL.CIF
http://www.omg.org/spec/CORBA/3.1/20011101/CCM_IDL_CIF.dtd
http://www.omg.org/spec/CORBA/3.1/20011101/componentassembly.dtd
http://www.omg.org/spec/CORBA/3.1/20011101/corbacomponent.dtd
http://www.omg.org/spec/CORBA/3.1/20011101/properties.dtd
http://www.omg.org/spec/CORBA/3.1/20011101/softpkg.dtd
http://www.omg.org/spec/CORBA/3.1/20011101/BaseIDL.idl
http://www.omg.org/spec/CORBA/3.1/20011101/CIF.idl
http://www.omg.org/spec/CORBA/3.1/20011101/ComponentIDL.idl
http://www.omg.org/spec/CORBA/3.1/20011101/Components.idl
http://www.omg.org/spec/CORBA/3.1/20011101/Reflective.idl
http://www.omg.org/spec/CORBA/3.1/20011101/CCM_IDL_CIF.mdl

* original zip file: ptc/01-11-03

Notice regarding CORBA, v3.1

You will notice that this version has a different format and organization. Some information
that was included previously in the CORBA specification has not been carried over to this
version. If you are looking for a particular chapter that is not listed in Part 1 or Part 2, please
refer back to CORBA, v3.0.3 (http://www.omg.org/cgi-bin/doc?formal/04-03-01).

Part 3 is the CORBA Components, v4.0 specification. This specification is compatible with
CORBA 3.1 and has become part of the CORBA specification beginning with this release.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/
agreement.htm).

Table of Contents

 Preface ..vii

1 Scope .. 1

2 Conformance and Compliance .. 1

3 References .. 2
3.1 Normative References .. 2
3.2 Non-normative References ... 4

4 Terms and Definitions .. 4

5 Symbols (and abbreviated terms) .. 7

6 Component Model ... 9
6.1 Component Model ... 9

 6.1.1 Component Levels .. 9
 6.1.2 Ports .. 9
 6.1.3 Components and Facets ... 10
 6.1.4 Component Identity ... 11
 6.1.5 Component Homes ... 11

6.2 Component Definition .. 11
6.3 Component Declaration .. 11

 6.3.1 Basic Components .. 11
 6.3.2 Equivalent IDL ... 12
 6.3.3 Component Body .. 13

6.4 Facets and Navigation .. 13
 6.4.1 Equivalent IDL ... 13
 6.4.2 Semantics of Facet References .. 13
 6.4.3 Navigation ... 14
 6.4.4 Provided References and Component Identity ... 17
 6.4.5 Supported interfaces ... 17

6.5 Receptacles .. 19
 6.5.1 Equivalent IDL ... 19
 6.5.2 Behavior .. 20
 6.5.3 Receptacles Interface ... 22

6.6 Events ... 24
 6.6.1 Event types ... 24
 6.6.2 EventConsumer Interface ... 25
 6.6.3 Event Service Provided by Container ... 26
 6.6.4 Event Sources—Publishers and Emitters ... 26
 6.6.5 Publisher ... 27
 6.6.6 Emitters ... 28
 6.6.7 Event Sinks ... 29
CORBA - Part 3: Component Model, v3.1 i

 6.6.8 Events interface .. 29
6.7 Homes ... 32

 6.7.1 Equivalent Interfaces ... 33
 6.7.2 Primary Key Declarations .. 35
 6.7.3 Explicit Operations in Home Definitions .. 36
 6.7.4 Home inheritance .. 37
 6.7.5 Semantics of Home Operations .. 38
 6.7.6 CCMHome Interface ... 40
 6.7.7 KeylessCCMHome Interface.. 41

6.8 Home Finders .. 41
6.9 Component Configuration ... 43

 6.9.1 Exclusive Configuration and Operational Life Cycle Phases 44
6.10 Configuration with Attributes ... 44

 6.10.1 Attribute Configurators .. 44
 6.10.2 Factory-based Configuration ... 45

6.11 Component Inheritance ... 47
 6.11.1 CCMObject Interface ... 48

6.12 Conformance Requirements ... 50
 6.12.1 A Note on Tools .. 51
 6.12.2 Changes to Object Services .. 51

7 OMG CIDL Syntax and Semantics .. 53
7.1 Lexical Conventions .. 53

 7.1.1 Keywords .. 54
7.2 OMG CIDL Grammar .. 54
7.3 OMG CIDL Specification ... 56
7.4 Composition Definition .. 56

 7.4.1 Life Cycle Category and Constraints ... 57
7.5 Home Executor Definition .. 57
7.6 Home Implementation Declaration .. 58
7.7 Storage Home Binding .. 59
7.8 Home Persistence Declaration .. 59
7.9 Executor Definition .. 59
7.10 Segment Definition .. 60
7.11 Segment Persistence Declaration ... 60
7.12 Facet Declaration .. 61
7.13 Feature Delegation Specification .. 61
7.14 Abstract Storage Home Delegation Specification ... 62
7.15 Executor Delegation Specification ... 63
7.16 Abstract Spec Declaration ... 64
7.17 Proxy Home Declaration ... 64

8 CCM Implementation Framework .. 65
8.1 Introduction .. 65
8.2 Component Implementation Framework (CIF) Architecture.............................. 65

 8.2.1 Component Implementation Definition Language (CIDL) 65
 8.2.2 Component persistence and behavior .. 65
 8.2.3 Implementing a CORBA Component .. 65
ii CORBA - Part 3: Component Model, v3.1

 8.2.4 Behavioral elements: Executors .. 66
 8.2.5 Unit of implementation : Composition ... 66
 8.2.6 Composition structure ... 67
 8.2.7 Compositions with Managed Storage .. 73
 8.2.8 Relationship between Home Executor and Abstract Storage Home 75
 8.2.9 Executor Definition .. 87
 8.2.10 Proxy Homes ... 94
 8.2.11 Component Object References ... 95

8.3 Language Mapping ... 97
 8.3.1 Overview ... 97
 8.3.2 Common Interfaces.. 97
 8.3.3 Mapping Rules .. 98

9 The Container Programming Model .. 107
9.1 Introduction ... 107

 9.1.1 External API Types ... 108
 9.1.2 Container API Type ... 109
 9.1.3 CORBA Usage Model ... 109
 9.1.4 Component Categories ... 109

9.2 The Server Programming Environment ... 110
 9.2.1 Component Containers ... 110
 9.2.2 CORBA Usage Model ... 111
 9.2.3 Component Factories .. 112
 9.2.4 Component Activation ... 112
 9.2.5 Servant Lifetime Management .. 112
 9.2.6 Transactions .. 113
 9.2.7 Security ... 115
 9.2.8 Events ... 115
 9.2.9 Persistence ... 116
 9.2.10 Application Operation Invocation .. 117
 9.2.11 Component Implementations .. 118
 9.2.12 Component Levels .. 118
 9.2.13 Component Categories ... 118

9.3 Server Programming Interfaces - Basic Components 122
 9.3.1 Component Interfaces ... 122
 9.3.2 Interfaces Common to both Container API Types ... 123
 9.3.3 Interfaces Supported by the Session Container API Type 128
 9.3.4 Interfaces Supported by the Entity Container API Type 130

9.4 Server Programming Interfaces - Extended Components 132
 9.4.1 Interfaces Common to both Container API Types ... 132
 9.4.2 Interfaces Supported by the Session Container API Type 134
 9.4.3 Interfaces Supported by the Entity Container API Type 136

9.5 The Client Programming Model .. 142
 9.5.1 Component-aware Clients ... 142
 9.5.2 Component-unaware Clients ... 146

10 Integrating with Enterprise JavaBeans... 149
10.1 Introduction ... 149
10.2 Enterprise JavaBeans Compatibility Objectives and
 Requirements .. 150
CORBA - Part 3: Component Model, v3.1 iii

10.3 CORBA Component Views for EJBs ... 151
 10.3.1 Mapping of EJB to Component IDL definitions ... 151
 10.3.2 Translation of CORBA Component requests into EJB requests 155
 10.3.3 Interoperability of the View .. 156
 10.3.4 CORBA Component view Example ... 158

10.4 EJB views for CORBA Components ... 160
 10.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications 160
 10.4.2 Translation of EJB requests into CORBA Component Requests 162
 10.4.3 Interoperability of the View .. 164
 10.4.4 Example .. 166

10.5 Compliance with the Interoperability of Integration Views 167
10.6 Comparing CCM and EJB .. 167

 10.6.1 The Home Interfaces ... 168
 10.6.2 The Component Interfaces .. 169
 10.6.3 The Callback Interfaces .. 171
 10.6.4 The Context Interfaces .. 172
 10.6.5 The Transaction Interfaces ... 173
 10.6.6 The Metadata Interfaces ... 174

11 Interface Repository Metamodel .. 175
11.1 Introduction .. 175

 11.1.1 BaseIDL Package ... 175
 11.1.2 ComponentIDL Package ... 186

11.2 Conformance Criteria .. 194
 11.2.1 Conformance Points .. 195

11.3 MOF DTDs and IDL for the Interface Repository Metamodel 195
 11.3.1 XMI DTD ... 195
 11.3.2 IDL for the BaseIDL Package .. 220
 11.3.3 IDL for the ComponentIDL Package ... 240

12 CIF Metamodel .. 259
12.1 CIF Package .. 259
12.2 Classes and Associations ... 259

 12.2.1 ComponentImplDef ... 260
 12.2.2 SegmentDef .. 261
 12.2.3 ArtifactDef ... 261
 12.2.4 Policy ... 261
 12.2.5 HomeImplDef .. 262

12.3 Conformance Criteria .. 263
 12.3.1 Conformance Points .. 263

12.4 MOF DTDs and IDL for the CIF Metamodel .. 263
 12.4.1 XMI DTD ... 264
 12.4.2 IDL for the CIF Package .. 264

13 Lightweight CCM Profile ... 271
13.1 Summary ... 271
13.2 Changes associated with excluding support for persistence 272
13.3 Changes associated with excluding support for introspection, navigation
 and type-specific operations redundant with generic operations 274
iv CORBA - Part 3: Component Model, v3.1

13.4 Changes associated with excluding support for segmentation 275
13.5 Changes associated with excluding support for transactions 276
13.6 Changes associated with excluding support for security 276
13.7 Changes associated with excluding support for configurators 277
13.8 Changes associated with excluding support for proxy homes 277
13.9 Changes associated with excluding support for home finders 277
13.10 Changes adding additional restrictions to the extended model not
 represented by exclusions above ... 278

14 Deployment PSM for CCM .. 279
14.1 Introduction ... 279
14.2 Overview ... 279
14.3 Definition of Meta-Concepts .. 280

 14.3.1 Component ... 280
 14.3.2 ImplementationArtifact .. 281
 14.3.3 Package .. 281

14.4 PIM to PSM for CCM Transformation ... 281
 14.4.1 ComponentInterfaceDescription .. 281
 14.4.2 PlanSubcomponentPortEndpoint .. 282
 14.4.3 Application .. 282
 14.4.4 RepositoryManager ... 283
 14.4.5 SatisfierProperty .. 283

14.5 PSM for CCM to PSM for CCM for IDL Transformation 283
 14.5.1 Generic Transformation Rules .. 283
 14.5.2 Special Transformation Rules ... 285
 14.5.3 Mapping to IDL .. 286

14.6 PSM for CCM to PSM for CCM for XML Transformation 286
 14.6.1 Generic Transformation Rules .. 286
 14.6.2 Special Transformation Rules ... 287
 14.6.3 Transformation Exceptions and Extensions .. 291
 14.6.4 Interpretation of Relative References .. 292
 14.6.5 Mapping to XML .. 293

14.7 Miscellaneous ... 293
 14.7.1 Entry Points ... 293
 14.7.2 Homes ... 293
 14.7.3 Valuetype Factories .. 294
 14.7.4 Discovery and Initialization .. 294
 14.7.5 Location .. 295
 14.7.6 Segmentation .. 295

14.8 Migration Issues ... 295
 14.8.1 Component Implementations .. 296
 14.8.2 Component and Assembly Packages and Metadata .. 296
 14.8.3 Component Deployment Systems ... 296

14.9 Metadata Vocabulary .. 296
 14.9.1 Implementation Selection Requirements .. 296
 14.9.2 Monolithic Implementation Resource Requirements ... 297

15 Deployment IDL for CCM .. 299
CORBA - Part 3: Component Model, v3.1 v

16 XML Schema for CCM ... 313

Annex A - Legal Information..333

Index ...337
vi CORBA - Part 3: Component Model, v3.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities
CORBA - Part 3: Component Model, v3.1 vii

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
viii CORBA - Part 3: Component Model, v3.1

1 Scope
This specification defines:

• The syntax and semantics of a component model (see Clause 6, ’Component Model’), based on CORBA IDL, and a
corresponding meta-model (see Clause 11, ’Interface Repository Metamodel’).

• A language to describe the structure and state of component implementations (see Clause 7, ’OMG CIDL Syntax and
Semantics’), and a corresponding meta-model (see Clause 12, ’CIF Metamodel’).

• A programming model for constructing component implementations (see Clause 8, ’CCM Implementation
Framework’).

• A runtime environment for component implementations (see Clause 9, ’The Container Programming Model’).

• Interaction between components and Enterprise Java Beans (see Clause 10, ’Integrating with Enterprise JavaBeans’).

• Meta-data for describing component-based applications, and interfaces for their deployment (see Clause 14,
’Deployment PSM for CCM’).

• A lightweight subset of the component model, programming model and runtime environment (see Clause 13,
’Lightweight CCM Profile’).

2 Conformance and Compliance
The following conformance points are defined:

1. A CORBA COS vendor shall provide the relevant changes to the Lifecycle, Transaction, and Security Services
identified in “Changes to Object Services” on page 51.

2. A CORBA Component vendor shall provide a conforming implementation of the Basic Level of CORBA
Components. A Lightweight CORBA Component vendor shall provide a conforming implementation of the
Lightweight CCM Profile as specified in item 8 below.

3. A CORBA Component vendor may provide a conforming implementation of the Extended Level of CORBA
Components.

4. To be conformant at the Basic level a non-Java product shall implement (at a minimum) the following:

• the IDL extensions and generation rules to support the client and server side component model for basic level
components.

• CIDL. The multiple segment feature of CIDL (“Segment Definition” on page 60) need not be supported for basic
components.

• a container for hosting basic level CORBA components.

• the XML deployment descriptors and associated zip files for basic components.

Such implementations shall work on a CORBA ORB as defined in #1 above.

5. To be conformant at the Basic level a Java product shall implement (at a minimum):

• EJB1.1, including support for the EJB 1.1 XML DTD.

• the java to IDL mapping, also known as RMI/IIOP.
CORBA - Part 3: Component Model, v3.1 1

• EJB to IDL mapping as defined in “Translation of CORBA Component requests into EJB requests” on page 155.

Such implementations shall work in a CORBA interoperable environment, including interoperable support for
IIOP, CORBA transactions, and CORBA security.

6. To be conformant at the extended level, a product shall implement (at a minimum) the requirements needed to
achieve Basic PLUS:

• IDL extensions to support the client and server side component model for extended level components.

• A container for hosting extended level CORBA components.

• The XML deployment descriptors and associated zip files for basic and enhanced level components in the format
defined in “Deployment PSM for CCM” on page 279.

Such implementations shall work on a CORBA ORB as defined in #1 above.

7. The Lightweight CCM profile is a conformance point based on the extended model as defined above. “Lightweight
CCM Profile” on page 271 defines the specific parts of this CCM specification that are impacted and the normative
specific subsetting of CCM. In summary, the following general capabilities (and associated machinery) are excluded
from the extended model to define this conformance point:

• Persistence (only session and service components are supported)

• Introspection

• Navigation

• Redundancies, preferring generic over specific

• Segmentation (not allowed for session or service components)

• Transactions

• Security

• Configurators

• Proxy homes

• Home finders

• CIDL

• POA related mandates

8. A CORBA Component vendor may optionally support EJB clients interacting with CORBA Components, by
implementing the IDL to EJB mapping as defined in “Translation of EJB requests into CORBA Component
Requests” on page 162.

3 References

3.1 Normative References

[CORBA] Object Management Group, “Common Object Request Broker Architecture,” version 3.0.3, OMG
document number formal/04-03-01. Available from
http://www.omg.org/cgi-bin/doc?ptc/04-03-01
2 CORBA - Part 3: Component Model, v3.1

http://www.omg.org/cgi-bin/doc?ptc/04-03-01

[D+C] Object Management Group, “Deployment and Configuration of Component-based Distributed
Applications Specification,” version 1.1. OMG document number ptc/05-01-07. Available from
http://www.omg.org/cgi-bin/doc?ptc/05-01-07

[EJB] Sun Microsystems, “Enterprise Java Beans,” version 1.1. Available from
http://java.sun.com/products/ejb/javadoc-1.1-fr/

[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, RFC 2616:
“Hypertext Transfer Protocol -- HTTP/1.1.” June 1999. Available from
http://www.ietf.org/rfc/rfc2616.txt

[INS] Object Management Group, “Naming Service Specification,” version 1.1. February 2001. OMG
document number formal/01-02-65. Available from
http://www.omg.org/cgi-bin/doc?formal/01-02-65

[JIDL] Object Management Group, “Java™ to IDL Language Mapping Specification,” version 1.3.
September 2003. OMG document number formal/03-09-04. Available from
http://www.omg.org/cgi-bin/doc?formal/03-09-04

[MOF1] Object Management Group, “Meta Object Facility Specification,” version 1.4. April 2002. OMG
document number formal/02-04-03. Available from
http://www.omg.org/cgi-bin/doc?formal/02-04-03

[PSS] Object Management Group, “Persistent State Service,” version 2.0. September 2002. OMG document
number formal/02-09-06. Available from
http://www.omg.org/cgi-bin/doc?formal/02-09-06

[SSS] Object Management Group, “Security Service Specification,” version 1.8. March 2002. OMG
document number formal/02-03-11. Available from
http://www.omg.org/cgi-bin/doc?formal/02-03-11

[TSS] Object Management Group, “Transaction Service Specification,” version 1.4. September 2003. OMG
document number formal/03-09-02. Available from
http://www.omg.org/cgi-bin/doc?formal/03-09-02

[UML1] Object Management Group, “Unified Modeling Language Specification,” version 1.5. Adopted
specification. March 2003. OMG document number formal/03-03-01. Available from
http://www.omg.org/cgi-bin/doc?formal/03-03-01

[UPC] Object Management Group, “UML™ Profile for CORBA™ Specification,” version 1.0. Adopted
specification. April 2002. OMG document number formal/02-04-01. Available from
http://www.omg.org/cgi-bin/doc?formal/02-04-01

[URI] T. Berners-Lee, R. Fielding, L. Masinter, RFC 2396: “Uniform Resource Identifiers (URI): Generic
Syntax.” August 1998. Available from
http://www.ietf.org/rfc/rfc2396.txt
CORBA - Part 3: Component Model, v3.1 3

http://www.omg.org/cgi-bin/doc?ptc/05-01-07
http://java.sun.com/products/ejb/javadoc-1.1-fr/
http://www.ietf.org/rfc/rfc2616.txt
http://www.omg.org/cgi-bin/doc?formal/01-02-65
http://www.omg.org/cgi-bin/doc?formal/03-09-04
http://www.omg.org/cgi-bin/doc?formal/02-04-03
http://www.omg.org/cgi-bin/doc?formal/02-09-06
http://www.omg.org/cgi-bin/doc?formal/02-03-11
http://www.omg.org/cgi-bin/doc?formal/03-09-02
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/02-04-01
http://www.ietf.org/rfc/rfc2396.txt

[XMI] Object Management Group, “XML Metadata Interchange (XMI),” version 2.0. Adopted specification.
May 2003. OMG document number formal/03-05-02. Available from
http://www.omg.org/cgi-bin/doc?formal/03-05-02

[XML] World Wide Web Consortium (W3C), “Extensible Markup Language (XML),” version 1.0 (second
edition). W3C Recommendation, October 6, 2000. Available from
http://www.w3.org/TR/REC-xml

[XSD] World Wide Web Consortium (W3C), “XML Schema Part 1: Structures.” W3C Recommendation,
May 2, 2001. Available from http://www.w3.org/TR/xmlschema-1/

World Wide Web Consortium (W3C), “XML Schema Part 2: Datatypes.” W3C Recommendation,
May 2, 2001. Available from http://www.w3.org/2001/xmlschema-2/

[ZIP] Pkware, Inc., “.ZIP File Format Specification,” version 5.2. June 2, 2003. Available from
http://www.pkware.com/products/enterprise/white_papers/appnote.txt

3.2 Non-normative References

[LCS] Object Management Group, “Life Cycle Service Specification,” version 1.2. September 2002. OMG
document number formal/02-09-01. Available from
http://www.omg.org/cgi-bin/doc?formal/02-09-01

[NSS] Object Management Group, “Notification Service Specification,” version 1.1.October 2004. OMG
document number formal/04-10-11. Available from
http://www.omg.org/cgi-bin/doc?formal/04-10-11

4 Terms and Definitions
Basic Component

A basic component is not allowed to inherit from other components, offer facets, receptacles, event sources or sinks. A
basic component may only offer attributes.

Component

A specific, named collection of features that can be described by an IDL component definition or a corresponding
structure in an Interface Repository.

Component Home

A meta-type that acts as a manager for instances of a specified component type. Component home interfaces provide
operations to manage component life cycles, and optionally, to manage associations between component instances and
primary key values.

Component-aware Client

A client that is defined using the IDL extensions in the component model.
4 CORBA - Part 3: Component Model, v3.1

http://www.omg.org/cgi-bin/doc?formal/03-05-02
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.pkware.com/products/enterprise/white_papers/appnote.txt
http://www.omg.org/cgi-bin/doc?formal/02-09-01
http://www.omg.org/cgi-bin/doc?formal/04-10-11

Composition

Denotes both the set of artifacts that constitute the unit of component implementation, and the definition of this aggregate
entity.

Consumer

An event sink.

Container

Containers provide the run-time execution environment for CORBA component implementations A container is a
framework for integrating transactions, security, events and persistence into a component’s behavior at runtime.

Emitter

An event source that can be connected to at most one consumer.

Entity Component

A CORBA component with persistent state, identity which is architecturally visible to clients through a primary key, and
behavior, which may be transactional.

Equivalent IDL

The client mappings; that is, mappings of the externally-visible component features for component declarations, or home
features for home declarations. Implicitly defined by a component definition in IDL.

Equivalent Interface

The interface that manifests the component’s or home’s surface features to clients, allowing clients to navigate among the
component’s facets, and to connect to the component’s ports, as defined by the component’s or home’s equivalent IDL.

Event Sink

A named connection point into which events of a specified type may be pushed.

Event Source

A named connection point that emits events of a specified type to one or more interested event consumers, or to an event
channel.

Executor

The programming artifact(s) that supply the behavior of a component or a component home.

Extended Component

Extended components may offer any type of port.

Facet

A distinct named interface provided by the component for client interaction. The primary vehicle through which a
component exposes its functional application behavior to clients during normal execution.
CORBA - Part 3: Component Model, v3.1 5

Home

A home definition describes an interface for managing instances of a specified component type. A home definition
implicitly defines an equivalent interface, which can be described in terms of IDL. A home may be associated with a
primary key specification.

Monolithic Executor

An executor consisting of a single artifact.

Multiplex Receptacle

A specialization of a receptacle that allows multiple simultaneous connections.

Primary Key

Primary key values uniquely identify component instances within the scope of the home that manages them.

Port

A surface feature through which clients and other elements of an application environment may interact with a component.
The component model supports four basic kinds of ports: facets, receptacles, event sources, event sinks and attributes.

Process Component

A CORBA component with persistent state which is not visible to the client, persistent identity, and behavior, which may
be transactional.

Proxy Home

Implements the component home interface specified by a composition definition, but the implementation is not required
to be collocated with the container where the components managed by the home are activated.

Publisher

An event source that can be connected to an arbitrary number of consumers, who are said to subscribe to the publisher
event source.

Receptacle

A named connection point that describes the component’s ability to use a reference supplied by some external agent.

Segmented Executor

A set of physically distinct artifacts, a physical partition of the executor. Each segment encapsulates independent state and
is capable of being independently activated. Each segment provides at least one facet.

Service Component

A CORBA component with behavior, no state, and no identity.

Session Component

A CORBA component with behavior, transient state, and identity (which is not persistent).

Simplex Receptacle

A specialization of a receptacle that only allows a single connection at a given time.
6 CORBA - Part 3: Component Model, v3.1

5 Symbols (and abbreviated terms)
API — Application Programming Interface

CCM — CORBA Component Model

CIDL — Component Implementation Definition Language

CIF — Component Implementation Framework

CMT — Container-managed Transaction

CORBA — Common Object Request Broker Architecture

COS — Common Object Services

CRUD — Create, Read, Update, Delete

DII — Dynamic Invocation Interface

DTD — Document Type Definition

EJB — Enterprise Java Beans

GIOP — General Inter-ORB Protocol

IDL — Interface Definition Language

IIOP — Internet Inter-ORB Protocol

IR — Interface Repository

JDK — Java Development Kit

JNDI — Java Naming and Directory Interface

JTA — Java Transaction API

MOF — Meta Object Facility

OMG — Object Management Group

ORB — Object Request Broker

PIM — Platform Independent Model

POA — Portable Object Adapter

PSDL — Persistent State Definition Language

PSM — Platform Specific Model

RMI — Remote Method Invocation

SECIOP — Secure Inter-ORB Protocol

SMT — Self-managed Transaction

SSL — Secure Sockets Layer
CORBA - Part 3: Component Model, v3.1 7

UML — Unified Modeling Language

URI — Uniform Resource Identifier

URL — Uniform Resource Locator

XMI — XML Metadata Interchange

XML — Extensible Markup Language
8 CORBA - Part 3: Component Model, v3.1

6 Component Model

This clause describes the semantics of the CORBA Component Model (CCM) and the conformance requirements for
vendors.

6.1 Component Model

Component is a basic meta-type in CORBA. The component meta-type is an extension and specialization of the object
meta-type. Component types are specified in IDL and represented in the Interface Repository. A component is denoted by
a component reference, which is represented by an object reference. Correspondingly, a component definition is a
specialization and extension of an interface definition.

A component type is a specific, named collection of features that can be described by an IDL component definition or a
corresponding structure in an Interface Repository. Although the current specification does not attempt to provide
mechanisms to support formal semantic descriptions associated with component definitions, they are designed to be
associated with a single well-defined set of behaviors. Although there may be several realizations of the component type
for different run-time environments (e.g., OS/hardware platforms, languages, etc.), they should all behave consistently. As
an abstraction in a type system, a component type is instantiated to create concrete entities (instances) with state and
identity.

A component type encapsulates its internal representation and implementation. Although the component specification
includes standard frameworks for component implementation, these frameworks, and any assumptions that they might
entail, are completely hidden from clients of the component.

6.1.1 Component Levels

There are two levels of components: basic and extended. Both are managed by component homes, but they differ in the
capabilities they can offer. Basic components essentially provide a simple mechanism to “componentize” a regular
CORBA object. Extended components, on the other hand, provide a richer set of functionality.

A basic component is very similar in functionality to an EJB as defined in the Enterprise JavaBeans 1.1
specification. This allows much easier mapping and integration at this level.

6.1.2 Ports

Components support a variety of surface features through which clients and other elements of an application environment
may interact with a component. These surface features are called ports. The component model supports four basic kinds
of ports:

• Facets, which are distinct named interfaces provided by the component for client interaction.

• Receptacles, which are named connection points that describe the component’s ability to use a reference supplied by
some external agent.

• Event sources, which are named connection points that emit events of a specified type to one or more interested event
consumers, or to an event channel.

• Event sinks, which are named connection points into which events of a specified type may be pushed.
CORBA - Part 3: Component Model, v3.1 9

• Attributes, which are named values exposed through accessor and mutator operations. Attributes are primarily
intended to be used for component configuration, although they may be used in a variety of other ways.

Basic components are not allowed to offer facets, receptacles, event sources, and sinks. They may only offer attributes.
Extended components may offer any type of port.

6.1.3 Components and Facets

A component can provide multiple object references, called facets, which are capable of supporting distinct (i.e.,
unrelated by inheritance) IDL interfaces. The component has a single distinguished reference whose interface conforms to
the component definition. This reference supports an interface, called the component’s equivalent interface, that manifests
the component’s surface features to clients. The equivalent interface allows clients to navigate among the component’s
facets, and to connect to the component’s ports.

Basic components cannot support facets, therefore attempts to navigate to other facets will always fail. The equivalent
interface of a basic component is the only object available with which a client may interact.

The other interfaces provided by the component are referred to as facets. Figure 6.1 illustrates the relationship between
the component and its facets.

Figure 6.1- Component Interfaces and Facets

The relationship between the component and its facets is characterized by the following observations:

• The implementations of the facet interfaces are encapsulated by the component, and considered to be “parts” of the
component. The internal structure of a component is opaque to clients.

• Clients can navigate from any facet to the component equivalent interface, and can obtain any facet from the
component equivalent interface.

• Clients can reliably determine whether any two references belong to the same component instance.

• The life cycle of a facet is bounded by the life cycle of its owning component.

Component

Component reference supports
component’s equivalent interface

facet references
support independent
facet interfaces

Implementations
of facet
interfaces are
encapsulated
10 CORBA - Part 3: Component Model, v3.1

6.1.4 Component Identity

A component instance is identified primarily by its component reference, and secondarily by its set of facet references (if
any). The component model provides operations to determine whether two references belong to the same component
instance, and (as mentioned above) operations to navigate among a component’s references. The definition of “same”
component instance is ultimately up to the component implementor, in that they may provide a customized
implementation of this operation. However, a component framework shall provide standard implementations that
constitute de facto definitions of “sameness” when they are employed.

Components may also be associated with primary key values by a component home. Primary keys are data values exposed
to the component’s clients that may be used in the context of a component home to identify component instances and
obtain references for them. Primary keys are not features of components themselves; the association between a component
instance and a particular primary key value is maintained by the home that manages the component.

6.1.5 Component Homes

A component home is meta-type that acts as a manager for instances of a specified component type. Component home
interfaces provide operations to manage component life cycles, and optionally, to manage associations between
component instances and primary key values. A component home may be thought of as a manager for the extent of a type
(within the scope of a container). A home must be declared for every component declaration.

Component types are defined in isolation, independent of home types. A home definition, however, must specify exactly
one component type that it manages. Multiple different home types can manage the same component type, though they
cannot manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a particular type. The operations on the
home are roughly equivalent to static or class methods in object-oriented programming languages.

6.2 Component Definition

A component definition in IDL implicitly defines an interface that supports the features defined in the component
definition body. It extends the concept of an interface definition to support features that are not supported in interfaces.
Component definitions also differ from interface definitions in that they support only single inheritance from other
component types.

The IDL grammar for components may be found in CORBA Core, OMG IDL Syntax and Semantics.

6.3 Component Declaration

6.3.1 Basic Components

Basic components cannot avail themselves of certain features in the model. In particular, they cannot inherit from other
components, nor can they provide or use interfaces, or make any event declarations. A basic component is declared using
a restricted version of a <component_dcl>. See CORBA (Part 1), OMG IDL Syntax and Semantics clause, “Component”
sub clause for the syntax.

To avoid ambiguity between basic and extended definitions, any component declaration that matches the following pattern
is a basic component:
CORBA - Part 3: Component Model, v3.1 11

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr_dcl> “;”}* “}”

Ideally the syntax should explicitly represent these rules. However this can only be achieved by introducing a new
keyword to distinguish between basic and extended components. It was felt that an extra keyword would cause
problems in the future, as the distinction between basic and extended components gets blurred. This blurring may
occur due to future development of both the CORBA Component Model and the Enterprise JavaBeans
specifications.

6.3.2 Equivalent IDL

The client mappings; that is, mappings of the externally-visible component features for component declarations are
described in terms of equivalent IDL.

As described above, the component meta-type is a specialization of the interface meta-type. Each component definition
has a corresponding equivalent interface. In programming language mappings, components are denoted by object
references that support the equivalent interface implied by the component definition.

Since basic components are essentially a profile, no specific rules are defined for them.

6.3.2.1 Simple declaration

For a component declaration with the following form:

component component_name { … };

the equivalent interface shall have the following form:

interface component_name
: Components::CCMObject { … };

6.3.2.2 Supported interfaces

For a component declaration with the following form:

component <component_name>
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface <component_name>
: Components::CCMObject,

<interface_name_1>, <interface_name_2> { … };

Supported interfaces are described in detail in “Supported interfaces” on page 17.

6.3.2.3 Inheritance

For a component declaration with the following form:

component <component_name> : <base_name> { … };

the equivalent interface shall have the following form:
12 CORBA - Part 3: Component Model, v3.1

interface <component_name> : <base_name> { … }

6.3.2.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface <component_name>
: <base_name>, <interface_name_1>, <interface_name_2> { … };

6.3.3 Component Body

A component forms a naming scope, nested within the scope in which the component is declared.

Declarations for facets, receptacles, event sources, event sinks and attributes all map onto operations on the component’s
equivalent interface. These declarations and their meanings are described in detail below.

6.4 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle through which a component exposes its functional application behavior to clients during normal
execution. A component may exhibit zero or more facets.

6.4.1 Equivalent IDL

Facet declarations imply operations on the component interface that provide access to the provided interfaces by their
names. A facet declaration of the following form:

provides <interface_type> <name>;

results in the following operation defined on the equivalent interface:

<interface_type> provide_<name> ();

The mechanisms for navigating among a component’s facets are described in “Navigation” on page 14. The relationships
between the component identity and the facet references, and assumptions regarding facet references, are described in
“Provided References and Component Identity” on page 17. The implementation of navigation operations are provided by
the component implementation framework in generated code; the user-provided implementation of a component type is
not responsible for navigation operations. The responsibilities of the component servant framework for supporting
navigation operations are described in detail in the OMG CIDL Syntax and Semantics.

6.4.2 Semantics of Facet References

Clients of a component instance can obtain a reference to a facet by invoking the provide_<name> operation on the
equivalent interface corresponding to the provides declaration in the component definition. The component
implementation is responsible for guaranteeing the following behaviors:
CORBA - Part 3: Component Model, v3.1 13

• In general, a component instance shall be prepared to return object references for facets throughout the instance’s life
cycle. A component implementation may, as part of its advertised behavior, return a nil object reference as the result of
a provide_<name> operation.

• An object reference returned by a provide_<name> operation shall support the interface associated with the
corresponding provides declaration in the component definition. Specifically, when the _is_a operation is invoked on
the object reference with the RepositoryId of the provided interface type, the result shall be TRUE, and legal
operations of the facet interface shall be able to be invoked on the object reference. If the type specified in the
provides declaration is Object, then there are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional interfaces, such as interfaces derived from the
declared type, as long as the stated contract is satisfied.

• Facet references must behave properly with respect to component identity and navigation, as defined in “Provided
References and Component Identity” on page 17 and “Navigation” on page 14.

6.4.3 Navigation

Navigation among a component’s facets may be accomplished in the following ways:

• A client may navigate from any facet reference to the component that provides the reference via
CORBA::Object::get_component.

• A client may navigate from the component interface to any facet using the generated provide_<name> operations on
the equivalent interface.

• A client may navigate from the component interface to any facet using the generic provide_facet operation on the
Navigation interface (inherited by all component interfaces through Components::CCMObject). Other operations on
the Navigation interface (i.e., get_all_facets and get_named_facets) return multiple references, and can also be used
for navigation. When using generic navigation operations on Navigation, facets are identified by string values that
contain their declared names.

• A client may navigate from a facet interface that derives from the Navigation interface directly to any other facet on
the same component, using provide_facet, get_all_facets, and get_named_facets.

• For components, such as basic components, that do not provide interfaces, only the generic navigation operations are
available on the equivalent interface. The behavior of these operations, where there are no facets to navigate to, is
defined below.

The detailed descriptions of these mechanisms follow.

6.4.3.1 get_component()

module CORBA {
interface Object { // PIDL

...
Object get_component ();

};
};

If the target object reference is itself a component reference (i.e., it denotes the component itself), the get_component
operation returns the same reference (or another equivalent reference). If the target object reference is a facet reference,
the get_component operation returns an object reference for the component. If the target reference is neither a component
reference nor a provided reference, get_component returns a nil reference.
14 CORBA - Part 3: Component Model, v3.1

Implementation of get_component

As with other operations on CORBA::Object, get_component is implemented as a request to the target object. Following
the pattern of other CORBA::Object operations (i.e., _interface, _is_a, and _non_existent) the operation name in GIOP
request corresponding to get_component shall be “_component”. An implementation of get_component is a required
element of the CORBA core, even if the ORB does not provide an implementation of CORBA components. Thus
component vendors that are not also ORB vendors can rely on the availability of this capability in a compliant ORB.

6.4.3.2 Component-specific provide operations

The provide_<name> operation implicitly defined by a provides declaration can be invoked to obtain a reference to the
facet.

6.4.3.3 Navigation interface on the component

As described in “Component Declaration” on page 11 all component interfaces implicitly inherit directly or indirectly
from CCMObject, which inherits from Components::Navigation. The definition of the Components::Navigation
interface is as follows:

module Components {

typedef string FeatureName;

typedef sequence<FeatureName> NameList;

valuetype PortDescription
 {

public FeatureName name;
 public CORBA::RepositoryId type_id;
 };

 valuetype FacetDescription : PortDescription
 {
 public Object facet_ref;
 };

typedef sequence<FacetDescription> FacetDescriptions;

exception InvalidName { };

interface Navigation {

Object provide_facet (in FeatureName name)
raises (InvalidName);

FacetDescriptions get_all_facets();

FacetDescriptions get_named_facets (in NameList names)
raises (InvalidName);

boolean same_component (in Object object_ref);

};
};
CORBA - Part 3: Component Model, v3.1 15

This interface provides generic navigation capabilities. It is inherited by all component interfaces, and may be optionally
inherited by any interface that is explicitly designed to be a facet interface for a component. The descriptions of
Navigation operations follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted by the name parameter. The value of the name
parameter must be identical to the name specified in the provides declaration. The valid names are defined by inherited
closure of the actual type of the component; that is, the names of facets of the component type and all of its inherited
component types. If the value of the name parameter does not correspond to one of the component’s facets, the
InvalidName exception shall be raised. A component that does not provide any facets (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the InvalidName exception.

get_all_facets

The get_all_facets operation returns a sequence of value objects, each of which contains the RepositoryId of the facet
interface and name of the facet, along with a reference to the facet. The sequence shall contain descriptions and
references for all of the facets in the component’s inheritance hierarchy. The order in which these values occur in the
sequence is not specified. A component that does not provide any facets (e.g., a basic component) shall return a sequence
of length zero.

get_named_facets

The get_named_facets operation returns a sequence of described references (identical to the sequence returned by
get_all_facets), containing descriptions and references for the facets denoted by the names parameter. If any name in the
names parameter is not a valid name for a provided interface on the component, the operation raises the InvalidName
exception. The order of values in the returned sequence is not specified. A component that does not provide any facets
(e.g., a basic component) will have no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

The same_component operation on Navigation is described in “Provided References and Component Identity” on
page 17.

6.4.3.4 Navigation interface on facet interfaces

Any interface that is designed to be used as a facet interface on a component may optionally inherit from the Navigation
interface. When the navigation operations (i.e., provide_facet, get_all_facets, and get_named_facets) are invoked on the
facet reference, the operations shall return the same results as if they had been invoked on the component interface that
provided the target facet. The skeletons generated by the Component Implementation Framework shall provide
implementations of these operations that will delegate to the component interface.

This option allows navigation from one facet to another to be performed in a single request, rather than a pair of requests
(to get the component reference and navigate from there to the desired facet). To illustrate, consider the following
component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };

component baz {
provides foo a;
provides bar b;

};
16 CORBA - Part 3: Component Model, v3.1

};

A client could navigate from a to b as follows:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz

baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz

bar myBar = barHelper.narrow(myFoo.provide_interface(“b”);

6.4.4 Provided References and Component Identity

The same_component operation on the Navigation interface allows clients to determine reliably whether two references
belong to the same component instance, that is, whether the references are facets of or directly denote the same
component instance. The component implementation is ultimately responsible for determining what the “same component
instance” means. The skeletons generated by the Component Implementation Framework shall provide an implementation
of same_component, where “same instance” is defined in terms of opaque identity values supplied by the component
implementation or the container in the container context. User-supplied implementations can provide different semantics.

If a facet interface inherits the Navigation interface, then the same_component operation on the provided interface shall
give the same results as the same_component operation on the component interface that owns the provided interface.
The skeletons generated by the Component Implementation Framework shall provide an implementation of
same_component for facets that inherit the Navigation interface.

6.4.5 Supported interfaces

A component definition may optionally support one or more interfaces, or in the case of extended components, inherit
from a component that supports one or more interfaces. When a component definition header includes a supports clause
as follows:

component <component_name> supports <interface_name> { … };

the equivalent interface inherits both CCMObject and any supported interfaces, as follows:

interface <component_name>
: Components::CCMObject, <interface_name> { … };

The component implementation shall supply implementations of operations defined on supported interfaces. Clients shall
be able to widen a reference of the component’s equivalent interface type to the type of any of the supported interfaces.
Clients shall also be able to narrow a reference of type CCMObject to the type of any of the component’s supported
interfaces.

For example, given the following IDL:

module M {
interface I {

void op();
};
CORBA - Part 3: Component Model, v3.1 17

component A supports I {
provides I foo;

};
home AManager manages A { };

};

The AManager interface shall be derived from KeylessCCMHome, supporting the create_component operation,
which returns a reference of type CCMObject. This reference shall be able to be narrowed directly from
CCMObject to I:

// java
...
M.AManager aHome = ...; // get A’s home
org.omg.Components.CCMObject myComp = aHome.create_component();
M.I myI = M.IHelper.narrow(myComp);
// must succeed

For example, given the following IDL:

module M {
interface I {

void op();
};
component A supports I {

provides I foo;
};
component B : A { ... };

home BHome manages B {};
};

The equivalent IDL is:

module M {
interface I {

void op();
};
interface A :

org.omg.Components.CCMObject, I { ... };
interface B : A { ... };

};

which allows the following usage:

M.BHome bHome = ... // get B’s home
M.B myB = bHome.create();
myB.op(); // I’s operations are supported

// directly on B’s interface

The supports mechanism provides programming convenience for light-weight components that only need to
implement a single operational interface. A client can invoke operations from the supported interface directly on
the component reference, without narrowing or navigation:

M.A myA = aHome.create();
myA.op();

as opposed to
18 CORBA - Part 3: Component Model, v3.1

M.A myA = aHome.create();
M.I myI = myA.provide_foo();
myI.op();

or, assuming that the client has A’s home, but doesn’t statically know about A’s interface or home interface:

org.omg.Components.KeylessCCMHome genericHome =
... // get A’s home;
org.omg.Components.CCMObject myComp =
genericHome.create_component();

M.I myI = M.IHelper.narrow(myComp);
myI.op();

as opposed to

org.omg.CORBA.Object obj = myComp.provide_interface(“foo”);
M.I myI = M.IHelper.narrow(obj);
myI.op();

This mechanism allows component-unaware clients to receive a reference to a component (passed as type
CORBA::Object) and use the supported interface.

6.5 Receptacles

A component definition can describe the ability to accept object references upon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and
the referent object is called a connection; they are said to be connected. The conceptual point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for
establishing and managing connections. A component may exhibit zero or more receptacles.

Receptacles are intended as a mechanical device for expressing a wide variety of relationships that may exist at
higher levels of abstraction. As such, receptacles have no inherent higher-order semantics, such as implying
ownership, or that certain operations will be transient across connections.

6.5.1 Equivalent IDL

A uses declaration of the following form:

uses <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

void connect_<receptacle_name> (in <interface_type> conxn) raises (
Components::AlreadyConnected,
Components::InvalidConnection);

<interface_type> disconnect_<receptacle_name> ()
raises (Components::NoConnection);

<interface_type> get_connection_<receptacle_name> ();

A uses declaration of the following form:
CORBA - Part 3: Component Model, v3.1 19

uses multiple <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

struct <receptacle_name>Connection {
<interface_type> objref;
Components::Cookie ck;
};

sequence <<receptacle_name>Connection> <receptacle_name>Connections;

Components::Cookie
connect_<receptacle_name> (in <interface_type> connection) raises (

Components::ExceededConnectionLimit,
Components::InvalidConnection

);

<interface_type> disconnect_<receptacle_name> (
in Components::Cookie ck)

raises (Components::InvalidConnection);

<receptacle_name>Connections get_connections_<receptacle_name> ();

6.5.2 Behavior

6.5.2.1 Connect operations

Operations of the form connect_<receptacle_name> are implemented in part by the component implementor, and in part
by generated code in the component servant framework. The responsibilities of the component implementation and
servant framework for implementing connect operations are described in detail in the OMG CIDL Syntax and Semantics.
The receptacle holds a copy of the object reference passed as a parameter. The component may invoke operations on this
reference according to its design. How and when the component invokes operations on the reference is entirely the
prerogative of the component implementation. The receptacle shall hold a copy of the reference until it is explicitly
disconnected.

Simplex receptacles

If a receptacle’s uses declaration does not include the optional multiple keyword, then only a single connection to the
receptacle may exist at a given time. If a client invokes a connect operation when a connection already exists, the
connection operation shall raise the AlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary reasons. If it does so, the connection
operation shall raise the InvalidConnection exception.

Multiplex receptacles

If a receptacle’s uses declaration includes the optional multiple keyword, then multiple connections to the receptacle may
exist simultaneously. The component implementation may choose to establish a limit on the number of simultaneous
connections allowed. If an invocation of a connect operation attempts to exceed this limit, the operation shall raise the
ExceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary reasons. If it does so, the connection
operation shall raise the InvalidConnection exception.
20 CORBA - Part 3: Component Model, v3.1

Connect operations for multiplex receptacles return values of type Components::Cookie. Cookie values are used to
identify the connection for subsequent disconnect operations. Cookie values are generated by the receptacle
implementation (the responsibility of the supplier of the component-enabled ORB, not the component implementor).
Likewise, cookie equivalence is determined by the implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie values and properly associating them with
connected object references, if the client needs to subsequently disconnect specific references. Cookie values must be
unique within the scope of the receptacle that created them. If a cookie value is passed to a disconnect operation on a
different receptacle than that which created it, results are undefined.

Cookie values are described in detail in “Cookie type” on page 21.”

Cookie values are required because object references cannot be reliably tested for equivalence.

6.5.2.2 Disconnect operations

Operations of the form disconnect_receptacle_name terminate the relationship between the component and the connected
object reference.

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object reference. If no connection exists, the
operation shall raise a NoConnection exception.

Multiplex receptacles

The disconnect_receptacle_name operation of a multiplex receptacle takes a parameter of type Components::Cookie.
The ck parameter must be a value previously returned by the connect_receptacle_name operation on the same receptacle.
It is the responsibility of the client to associate cookies with object references they connect and disconnect. If the cookie
value is not recognized by the receptacle implementation as being associated with an existing connection, the
disconnect_receptacle_name operation shall raise an InvalidConnection exception.

6.5.2.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations named get_connection_receptacle_name. If the receptacle is currently connected,
this operation returns the connected object reference. If there is no current connection, the operation returns a nil object
reference.

Multiplex receptacles

Multiplex receptacles have operations named get_connections_receptacle_name. This operation returns a sequence of
structures, where each structure contains a connected object reference and its associated cookie value. The sequence
contains a description of all of the connections that exist at the time of the invocation. If there are no connections, the
sequence length will be zero.

6.5.2.4 Cookie type

The Cookie valuetype is defined by the following IDL:

module Components {
valuetype Cookie {
CORBA - Part 3: Component Model, v3.1 21

private CORBA::OctetSeq cookieValue;
};

};

Cookie values are created by multiplex receptacles, and are used to correlate a connect operation with a disconnect
operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from Cookie, but any derived cookie types
shall be truncatable to Cookie, and the information preserved in the cookieValue octet sequence shall be sufficient for the
receptacle implementation to identify the cookie and its associated connected reference.

6.5.3 Receptacles Interface

The Receptacles interface provides generic operations for connecting to a component’s receptacles. The CCMObject
interface is derived from Receptacles. For components, such as basic components, that do not use interfaces, only the
generic receptacles operations are available on the equivalent interface. The default behavior in such cases is defined
below.

The Receptacles interfaces is defined by the following IDL:

module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

};
typedef sequence<ConnectionDescription> ConnectionDescriptions;

valuetype ReceptacleDescription : PortDescription
{

public boolean is_multiple;
public ConnectionDescriptions connections;

};
typedef sequence<ReceptacleDescription> ReceptacleDescriptions;

exception ExceededConnectionLimit { };

exception CookieRequired { };

interface Receptacles {

Cookie connect (in FeatureName name, in Object connection)
raises (

InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

Object disconnect (
in FeatureName name,
in Cookie ck) raises (

InvalidName,
InvalidConnection,
CookieRequired,
22 CORBA - Part 3: Component Model, v3.1

NoConnection);

ConnectionDescriptions get_connections (
in FeatureName name) raises (InvalidName);

ReceptacleDescriptions get_all_receptacles ();

ReceptacleDescriptions get_named_receptacles (
in NameList names) raises(InvalidName);

};
};

connect

The connect operation connects the object reference specified by the connection parameter to the receptacle specified by
the name parameter on the target component. If the specified receptacle is a multiplex receptacle, the operation returns a
cookie value that can be used subsequently to disconnect the object reference. If the receptacle is a simplex receptacle, the
return value is a nil. The following exceptions may be raised:

• If the name parameter does not specify a valid receptacle name, then the InvalidName exception is raised.

• If the receptacle is a simplex receptacle and it is already connected, then the AlreadyConnected exception is raised.

• If the object reference in the connection parameter does not support the interface declared in the receptacle’s uses
statement, the InvalidConnection exception is raised.

• If the receptacle is a multiplex receptacle and the implementation-defined limit to the number of connections is
exceeded, the ExceededConnectionLimit exception is raised.

• A component that does not have any receptacles (e.g., a basic component) will have no valid name parameter to this
operation and thus shall always raise the InvalidName exception.

disconnect

If the receptacle identified by the name parameter is a simplex receptacle, the operation will disassociate any object
reference currently connected to the receptacle. The cookie value in the ck parameter is ignored. If the receptacle
identified by the name parameter is a multiplex receptacle, the disconnect operation disassociates the object reference
associated with the cookie value (i.e., the object reference that was connected by the operation that created the cookie
value) from the receptacle. In both cases, the disconnect operation returns the previously connected object reference. The
following exceptions may be raised:

• If the name parameter does not specify a valid receptacle name, then the InvalidName exception is raised.

• If the receptacle is a simplex receptacle and there is no current connection, then the NoConnection exception is
raised.

• If the receptacle is a multiplex receptacle and the cookie value in the ck parameter does not denote an existing
connection on the receptacle, the InvalidConnection exception is raised.

• If the receptacle is a multiplex receptacle and a null value is specified in the ck parameter, the CookieRequired
exception is raised.

• A component that does not have any receptacles (e.g., a basic component) will have no valid name parameter to this
operation and thus shall always raise the InvalidName exception.
CORBA - Part 3: Component Model, v3.1 23

get_connections

The get_connections operation returns a sequence of ConnectionDescription structs. Each struct contains an object
reference connected to the receptacle named in the name parameter, and a cookie value that denotes the connection. If the
name parameter does not specify a valid receptacle name, then the InvalidName exception is raised. A component that
does not have any receptacles (e.g., a basic component) will have no valid name parameter to this operation and thus shall
always raise the InvalidName exception.

get_all_receptacles

The get_all_receptacles operation returns information about all receptacle ports in the component’s inheritance hierarchy
as a sequence of ReceptacleDescription values. The order in which these values occur in the sequence is not specified.
For components that do not have any receptacles (e.g., a basic component), this operation returns a sequence of length
zero.

get_named_receptacles

The get_named_receptacles operation returns information about all receptacle ports denoted by the names parameter as
a sequence of ReceptacleDescription values. The order in which these values occur in the sequence is not specified. If
any name in the names parameter is not a valid name for a receptacle in the component’s inheritance hierarchy, the
operation raises the InvalidName exception. A component that does not provide any receptacles (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the InvalidName exception.

6.6 Events

The CORBA component model supports a publish/subscribe event model. The event model for CORBA components is
designed to be compatible with CORBA notification, as defined in http://www.omg.org/technology/documents/formal/
notification_service.htm. The interfaces exposed by the component event model provide a simple programming interface
whose semantics can be mapped onto a subset of CORBA notification semantics.

6.6.1 Event types

IDL contains event type declarations, which are a restricted form of value type declarations. They are for the use in the
CORBA Component event model.

Since the underlying implementation of the component event mechanism provided by the container is CORBA
notification, event values shall be inserted into instances of the any type. The resulting any values shall be inserted into a
CORBA notification structured event. The mapping between a component event and a notification event is implemented
by the container.

6.6.1.1 Equivalent IDL

For the declaration of event types of the following form:

module <module_name> {
valuetype A { <A_state_members> };
eventtype B : A { <B_state_members> };
eventtype C : B { <C_state_members> };

};

The following equivalent IDL is implied:
24 CORBA - Part 3: Component Model, v3.1

module <module_name> {

valuetype A { <A_state_members> };

valuetype B : A, ::Components::EventBase {
<B_state_members>

};

interface BConsumer : ::Components::EventConsumerBase {
void push_B (in B the_b);

};

valuetype C : B {
<C_state_members>

};

interface CConsumer : BConsumer {
void push_C (in C the_c);

};
};

As shown above the first event type in the inheritance chain introduces the inheritance from Components::EventBase
into the inheritance chain for the equivalent value types. The same rule applies for the equivalent consumer interfaces and
Components::EventConsumerBase. Consumer interfaces are in the same inheritance relation as the event types, where
they origin.

6.6.1.2 EventBase

The module Components contains the following abstract value type definition:

module Components {
abstract valuetype EventBase { };

};

It serves as base type for value types derived via the Equivalent IDL mapping for event types.

To ensure proper transmission of value type events, this specification makes the following clarifications to the semantics
of value types when inserted into anys:

When an any containing a value type is received as a parameter in an ORB-mediated operation, the value contained in the
any shall be preserved, regardless of whether the receiving execution context is capable of constructing the value (in its
original form or a truncated form), or not. If the receiving context attempts to extract the value, the extraction may fail, or
the extracted value may be truncated. The value contained in the any shall remain unchanged, and shall retain its integrity
if the any is passed as a parameter to another execution context.

6.6.2 EventConsumer Interface

The component event model is a push model. The basic mechanics of this push model are defined by consumer interfaces.
Event sources hold references to consumer interfaces and invoke various forms of push operations to send events.

Component event sources hold references to consumer interfaces and push to them. Component event sinks provide
consumer references, into which other entities (e.g., channels, clients, other component event sources) push events.
CORBA - Part 3: Component Model, v3.1 25

Event consumer interfaces are derived from the Components::EventConsumerBase interface, which is defined as
follows:

module Components {
exception BadEventType {

 CORBA::RepositoryId expected_event_type;
 };

interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);

};
};

Type-specific event consumer interfaces are derived from the EventConsumerBase interface. Event source and sink
declarations in component definitions cause type-specific consumer interfaces to be generated for the event types used in
the declarations.

The push_event operation pushes the event denoted by the evt parameter to the consumer. The consumer may choose to
constrain the type of event it accepts. If the actual type of the evt parameter is not acceptable to the consumer, the
BadEventType exception shall be raised. The expected_event_type member of the exception contains the RepositoryId
of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose reference the push_event operation was
invoked. The consumer may be a proxy for an event or notification channel with an arbitrary number of subscribers. If
any of those subscribers raise any exceptions, they will not be propagated back to the original event source (i.e., the
component).

6.6.3 Event Service Provided by Container

Container implementations provide event services to components and their clients. Component implementations obtain
event services from the container during initialization, and mediate client access to those event services. The container
implementation is free to provide any mechanism that supports the required semantics. The container is responsible for
configuring the mechanism and determining the specific quality of service and routing policies to be employed when
delivering events.

6.6.4 Event Sources—Publishers and Emitters

An event source embodies the potential for the component to generate events of a specified type, and provides
mechanisms for associating consumers with sources.

There are two categories of event sources, emitters and publishers. Both are implemented using event channels supplied
by the container. An emitter can be connected to at most one proxy provider by the container. A publisher can be
connected through the channel to an arbitrary number of consumers, who are said to subscribe to the publisher event
source. A component may exhibit zero or more emitters and publishers.

A publisher event source has the following characteristics:

• The equivalent operations for publishers allow multiple subscribers (i.e., consumers) to connect to the same source
simultaneously.

• Subscriptions to a publisher are delegated to an event channel supplied by the container at run time. The component is
guaranteed to be the only source publishing to that event channel.
26 CORBA - Part 3: Component Model, v3.1

An emitter event source has the following characteristics:

• The equivalent operations for emitters allow only one consumer to be connected to the emitter at a time.

• The events pushed from an emitter are delegated to an event channel supplied by the container at run time. Other event
sources, however, may use the same channel. Events pushed from an emitter are then pushed by the container into the
consumer interface supplied as a parameter to the connect_<source> operation.

In general, emitters are not intended to be exposed to clients. Rather, they are intended to be used for configuration
purposes. It is expected that emitters will be connected at the time of component initialization and configuration to
consumer interfaces that are proxies for event channels that may be shared between arbitrary clients, components,
and other system elements.

In contrast, publishers are intended to provide clients with direct access to a particular event stream being
generated by the component (embodied by the publisher event source). It is our intent that clients subscribe directly
to the publisher source.

6.6.5 Publisher

6.6.5.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {

publishes <event_type> <source_name>; };
};

The following equivalent IDL is implied:

module <module_name> {
interface <component_name> : Components::CCMObject {

Components::Cookie subscribe_<source_name> (
in <event_type>Consumer consumer)
raises (Components::ExceededConnectionLimit);

<event_type>Consumer unsubscribe_<source_name> (
in Components::Cookie ck)
raises (Components::InvalidConnection);

};
};

6.6.5.2 Event publisher operations

subscribe_<source_name>

The subscribe_<source_name> operation connects the consumer parameter to an event channel provided to the
component implementation by the container. The component shall be the only publisher to that channel. If the
implementation of the component or the channel place an arbitrary limit on the number of subscriptions that can be
supported simultaneously, and the invocation of the subscribe operation would cause that limit to be exceeded, the
operation raises the ExceededConnectionLimit exception. The Cookie value returned by the operation identifies the
subscription formed by the association of the subscriber with the publisher event source. This value can be used
subsequently in an invocation of unsubscribe_<source_name> to disassociate the subscriber from the publisher.
CORBA - Part 3: Component Model, v3.1 27

unsubscribe_<source_name>

The unsubscribe_<source_name> operation destroys the subscription identified by the ck parameter value, returning the
reference to the subscriber. If the ck parameter value does not identify an existing subscription to the publisher event
source, the operation shall raise an InvalidConnection exception.

6.6.6 Emitters

6.6.6.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {emits <event_type> <source_name>;};

};

The following equivalent IDL is implied:

module <module_name> {
interface <component_name> : Components::CCMObject {

void connect_<source_name> (
in <event_type>Consumer consumer)
raises (Components::AlreadyConnected);

<event_type>Consumer disconnect_<source_name>()
raises (Components::NoConnection);

};
};

6.6.6.2 Event emitter operations

connect_<source_name>

The connect_<source_name> operation connects the event consumer denoted by the consumer parameter to the event
emitter. If the emitter is already connected to a consumer, the operation shall raise the AlreadyConnected exception.

disconnect_<source_name>

The disconnect_<source_name> operation destroys any existing connection by disassociating the consumer from the
emitter. The reference to the previously connected consumer is returned. If there was no existing connection, the
operation raises the NoConnection exception.

The following observations and constraints apply to the equivalent IDL for event source declarations:

• The need for a typed event consumer interface requires the definition of a module scope to guarantee that the interface
name for the event subscriber is unique. The module (whose name is formed by appending the string
“EventConsumers” to the component type name) is defined in the same scope as the component’s equivalent interface.
The module is opened before the equivalent interface definition to provide forward declarations for consumer
interfaces. It is re-opened after the equivalent interface definition to define the consumer interfaces.

• The name of a consumer interface is formed by appending the string “Consumer” to the name of the event type. One
consumer interface type is implied for each unique event type used in event source and event sink declarations in the
component definition.
28 CORBA - Part 3: Component Model, v3.1

6.6.7 Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in essence,
a special-purpose facet whose type is an event consumer. External entities, such as clients or configuration services, can
obtain the reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish between connection and subscription. The consumer interface may be
associated with an arbitrary number of event sources, unbeknownst to the component that supplies the event sink. The
component event model provides no inherent mechanism for the component to control which events sources may be
pushing to its sinks. By exporting an event sink, the component is, in effect, declaring its willingness to accept events
pushed from arbitrary sources. A component may exhibit zero or more consumers.

If a component implementation needs control over which sources can push to a particular sink it owns, the sink
should not be exposed as a port on the component. Rather, the component implementation can create a consumer
internally and explicitly connect or subscribe it to sources.

6.6.7.1 Equivalent IDL

For an event sink declaration of the following form:

module <module_name> {
component <component_name> {

consumes <event_type> <sink_name>;
};

};

The following equivalent IDL is implied:

module <module_name> {
interface <component_name> : Components::CCMObject {

<event_type>Consumer get_consumer_<sink_name>();
};

};

6.6.7.2 Event sink operations

The get_consumer_<sink_name> operation returns a reference that supports the consumer interface specific to the
declared event type.

6.6.8 Events interface

The Events interface provides generic access to event sources and sinks on a component. CCMObject is derived from
Events. For components, such as basic components, that do not declare participation in events, only the generic Events
operations are available on the equivalent interface. The default behavior in such cases is described below.

The Events interface is described as follows:

module Components {

exception InvalidName { };
exception InvalidConnection { };
exception AlreadyConnected { };
exception NoConnection { };
CORBA - Part 3: Component Model, v3.1 29

valuetype ConsumerDescription : PortDescription
{

public EventConsumerBase consumer;
};
typedef sequence<ConsumerDescription> ConsumerDescriptions;

valuetype EmitterDescription : PortDescription
{

public EventConsumerBase consumer;
};
typedef sequence<EmitterDescription> EmitterDescriptions;

valuetype SubscriberDescription
{

public Cookie ck;
public EventConsumerBase consumer;

};
typedef sequence<SubscriberDescription> SubscriberDescriptions;

valuetype PublisherDescription : PortDescription
{

public SubscriberDescriptions consumers;
};
typedef sequence<PublisherDescription> PublisherDescriptions;

interface Events {
EventConsumerBase get_consumer (in FeatureName sink_name)

raises (InvalidName);
Cookie subscribe (in FeatureName publisher_name,

in EventConsumerBase subscriber)
raises (InvalidName, InvalidConnection,

ExceededConnectionLimit);
EventConsumerBase unsubscribe (in FeatureName publisher_name,

in Cookie ck)
raises (InvalidName, InvalidConnection);

void connect_consumer (in FeatureName emitter_name,
in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected,

 InvalidConnection);
EventConsumerBase disconnect_consumer (

in FeatureName source_name)
raises (InvalidName, NoConnection);

ConsumerDescriptions get_all_consumers ();
ConsumerDescriptions get_named_consumers (

in NameList names)
raises (InvalidName);

 EmitterDescriptions get_all_emitters ();
 EmitterDescriptions get_named_emitters (in NameList names)

raises (InvalidName);
PublisherDescriptions get_all_publishers ();
PublisherDescriptions get_named_publishers (in NameList names)

raises (InvalidName);
};

};
30 CORBA - Part 3: Component Model, v3.1

get_consumer

The get_consumer operation returns the EventConsumerBase interface for the sink specified by the sink_name
parameter. If the sink_name parameter does not specify a valid event sink on the component, the operation raises the
InvalidName exception. A component that does not have any sinks (e.g., a basic component) will have no valid
sink_name parameter to this operation and thus shall always raise the InvalidName exception.

subscribe

The subscribe operation associates the subscriber denoted by the subscriber parameter with the event source specified
by the publisher_name parameter. If the publisher_name parameter does not specify a valid event publisher on the
component, the operation raises the InvalidName exception. The cookie return value can be used to unsubscribe from the
source. A component that does not have any event sources (e.g., a basic component) will have no valid publisher_name
parameter to this operation and thus shall always raise the InvalidName exception. If the object reference in the
subscriber parameter does not support the consumer interface of the eventtype declared in the publishes statement, the
InvalidConnection exception is raised. If the implementation-defined limit to the number of subscribers is exceeded, the
ExceededConnectionLimit exception is raised.

unsubscribe

The unsubscribe operation disassociates the subscriber associated with ck parameter with the event source specified by
the publisher_name parameter, and returns the reference to the subscriber. If the publisher_name parameter does not
specify a valid event source on the component, the operation raises the InvalidName exception. If the ck parameter does
not identify a current subscription on the source, the operation raises the InvalidConnection exception. A component that
does not have any event sources (e.g., a basic component) will have no valid publisher_name parameter to this operation
and thus shall always raise the InvalidName exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the consumer parameter with the event source
specified by the emitter_name parameter. If the emitter_name parameter does not specify a valid event emitter on the
component, the operation raises the InvalidName exception. If a consumer is already connected to the emitter, the
operation raises the AlreadyConnected exception. If the object reference in the consumer parameter does not support
the consumer interface of the eventtype declared in the emits statement, the InvalidConnection exception is raised. The
cookie return value can be used to disconnect from the source. A component that does not have any event sources (e.g., a
basic component) will have no valid emitter_name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect_consumer

The disconnect_consumer operation disassociates the currently connected consumer from the event source specified by
the emitter_name parameter, returning a reference to the disconnected consumer. If the emitter_name parameter does not
specify a valid event source on the component, the operation raises the InvalidName exception. If there is no consumer
connected to the emitter, the operation raises the NoConnection exception. A component that does not have any event
sources (e.g., a basic component) will have no valid emitter_name parameter to this operation and thus shall always raise
the InvalidName exception.
CORBA - Part 3: Component Model, v3.1 31

get_all_consumers

The get_all_consumers operation returns information about all consumer ports in the component’s inheritance hierarchy
as a sequence of ConsumerDescription values. The order in which these values occur in the sequence is not specified.
For components that do not consume any events (e.g., a basic component), this operation returns a sequence of length
zero.

get_named_consumers

The get_named_consumers operation returns information about all consumer ports denoted by the names parameter as
a sequence of ConsumerDescription values. The order in which these values occur in the sequence is not specified. If
any name in the names parameter is not a valid name for an event sink in the component’s inheritance hierarchy, the
operation raises the InvalidName exception. A component that does not provide any consumers (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the InvalidName exception.

get_all_emitters

The get_all_emitters operation returns information about all emitter ports in the component's inheritance hierarchy as a
sequence of EmitterDescription values. The order in which these values occur in the sequence is not specified. For
components that do not emit any events (e.g., a basic component), this operation returns a sequence of length zero.

get_named_emitters

The get_named_emitters operation returns information about all emitter ports denoted by the names parameter as a
sequence of EmitterDescription values. The order in which these values occur in the sequence is not specified. If any
name in the names parameter is not a valid name for an emitter port in the component’s inheritance hierarchy, the
operation raises the InvalidName exception. A component that does not provide any emitters (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the InvalidName exception.

get_all_publishers

The get_all_publishers operation returns information about all publisher ports in the component’s inheritance hierarchy
as a sequence of PublisherDescription values. The order in which these values occur in the sequence is not specified. For
components that do not publish any events (e.g., a basic component), this operation returns a sequence of length zero.

get_named_publishers

The get_named_publishers operation returns information about all publisher ports denoted by the names parameter as a
sequence of PublisherDescription values. The order in which these values occur in the sequence is not specified. If any
name in the names parameter is not a valid name for a publisher port in the component’s inheritance hierarchy, the
operation raises the InvalidName exception. A component that does not provide any publishers (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the InvalidName exception.

6.7 Homes

An IDL specification may include home definitions. A home definition describes an interface for managing instances of a
specified component type. The salient characteristics of a home definition are as follows:
32 CORBA - Part 3: Component Model, v3.1

• A home definition implicitly defines an equivalent interface, which can be described in terms of IDL.

• The presence of a primary key specification in a home definition causes home’s equivalent interface to contain a set of
implicitly defined operations whose signatures are determined by the types of the primary key and the managed
component. These operations are specified in “Home definitions with primary keys” on page 34.

6.7.1 Equivalent Interfaces

Every home definition implicitly defines a set of operations whose names are the same for all homes, but whose
signatures are specific to the component type managed by the home and, if present, the primary key type specified by the
home.

Because the same operation names are used for these operations on different homes, the implicit operations cannot be
inherited. The specification for home equivalent interfaces accommodates this constraint. A home definition results in the
definition of three interfaces, called the explicit interface, the implicit interface, and the equivalent interface. The name of
the explicit interface has the form <home_name>Explicit, where <home_name> is the declared name of the home
definition. Similarly, the name of the implicit interface has the form <home_name>Implicit, and the name of the
equivalent interface is simply the name of the home definition, with the form <home_name>. All of the operations
defined explicitly on the home (including explicitly-defined factory and finder operations) are represented on the explicit
interface. The operations that are implicitly defined by the home definition are exported by the implicit interface. The
equivalent interface inherits both the explicit and implicit interfaces, forming the interface presented to programmer using
the home.

The same names are used for implicit operations in order to provide clients with a simple, uniform view of the basic
life cycle operations—creation, finding, and destruction. The signatures differ to make the operations specific to the
storage type (and, if present, primary key) associated with the home. These two goals—uniformity and type safety—
are admittedly conflicting, and the resulting complexity of equivalent home interfaces reflects this conflict. Note
that this complexity manifests itself in generated interfaces and their inheritance relationships; the model seen by
the client programmer is relatively simple.

6.7.1.1 Home definitions with no primary key

Given a home definition of the following form:

home <home_name> manages <component_type> {
<explicit_operations>

};

The resulting explicit, implicit, and equivalent local interfaces have the following forms:

interface <home_name>Explicit : Components::CCMHome {
<equivalent_explicit_operations>

};

interface <home_name>Implicit : Components::KeylessCCMHome {
<component_type> create() raises(CreateFailure);

};

interface <home_name> : <home_name>Explicit, <home_name>Implicit { };

where <equivalent_explicit_operations> are the operations defined in the home declaration (<explicit_operations>),
with factory and finder operations transformed to their equivalent operations, as described in “Explicit Operations in
Home Definitions” on page 36.”
CORBA - Part 3: Component Model, v3.1 33

create

This operation creates a new component instance of the type managed by the home. The CreateFailure exception is
raised if any application errors are encountered in home creation.

6.7.1.2 Home definitions with primary keys

Given a home of the following form:

home <home_name> manages <component_type> primarykey <key_type> {
<explicit_operations>

};

The resulting explicit, implicit, and equivalent interfaces have the following forms:

interface <home_name>Explicit : Components::CCMHome {
<equivalent_explicit_operations>

};

interface <home_name>Implicit {
<component_type> create (in <key_type> key)
raises (Components::CreateFailure, Components::DuplicateKeyValue,

Components::InvalidKey);

<component_type> find_by_primary_key (in <key_type> key)
raises (Components::FinderFailure, Components::UnknownKeyValue,

Components::InvalidKey);

void remove (in <key_type> key)
raises (Components::RemoveFailure, Components::UnknownKeyValue,

Components::InvalidKey);

<key_type> get_primary_key (in <component_type> comp);

};

interface <home_name> : <home_name>Explicit , <home_name>Implicit { };

where <equivalent_explicit_operations> are the operations defined in the home declaration (<explicit_operations>), with
factory and finder operations transformed to their equivalent operations, as described in “Explicit Operations in Home
Definitions” on page 36.

create

This operation creates a new component associated with the specified primary key value, returning a reference to the
component. If the specified key value is already associated with an existing component managed by the storage home, the
operation raises a DuplicateKeyValue exception. If the key value was not a well-formed, legal value, the operation shall
raise the InvalidKey exception. All other error conditions may raise the CreateFailure exception.

find_by_primary_key

This operation returns a reference to the component identified by the primary key value. If the key value does not identify
an existing component managed by the home, an UnknownKeyValue exception is raised. If the key value was not a well-
formed, legal value, the operation shall raise the InvalidKey exception. All other error conditions may raise the
FinderFailure exception.
34 CORBA - Part 3: Component Model, v3.1

remove

This operation removes the component identified by the specified key value. Subsequent requests to any of the
component’s facets shall raise an OBJECT_NOT_EXIST system exception. If the specified key value does not identify
an existing component managed by the home, the operation shall raise an UnknownKeyValue exception. If the key value
was not a well-formed, legal value, the operation shall raise the InvalidKey exception. All other error conditions may
raise the RemoveFailure exception.

6.7.1.3 Supported interfaces

A home definition may optionally support one or more interfaces. When a home definition header includes a supports
clause as follows:

home <home_name> supports <interface_name>
 manages <component_type> {

<explicit_operations>
};

The resulting explicit interface inherits both CCMHome and any supported interfaces, as follows:

interface <home_name>Explicit : Components::CCMHome,
<interface_name> {

<equivalent_explicit_operations>
};

The home implementation shall supply implementations of operations defined on supported interfaces. Clients shall be
able to widen a reference of the home›s resulting explicit or equivalent interface type to the type of any of the supported
interfaces. Clients shall also be able to narrow a reference of type CCMHome to the type of any of the home›s supported
interfaces.

6.7.2 Primary Key Declarations

Primary key values shall uniquely identify component instances within the scope of the home that manages them. Two
component instances cannot exist on the same home with the same primary key value.

Different home types that manage the same component type may specify different primary key types. Consequently, a
primary key type is not inherently related to the component type, and vice versa. A home definition determines the
association between a component type and a primary key type. The home implementation is responsible for maintaining
the association between specific primary key values and specific component identities.

Note that this discussion pertains to component definitions as abstractions. A particular implementation of a
component type may be cognizant of, and dependent upon, the primary keys associated with its instances. Such
dependencies, however, are not exposed on the surface of the component type. A particular implementation of a
component type may be designed to be manageable by different home interfaces with different primary keys, or it
may be inextricably bound to a particular home definition. Generally, an implementation of a component type and
the implementation of its associated home are inter-dependent, although this is not absolutely necessary.

6.7.2.1 Primary key type constraints

Primary key and types are subject to the following constraints:

• A primary key type must be a value type derived from Components::PrimaryKeyBase.

• A primary key type must be a concrete type with at least one public state member.
CORBA - Part 3: Component Model, v3.1 35

• A primary key type may not contain private state members.

• A primary key type may not contain any members whose type is a CORBA interface reference type, including
references for interfaces, abstract interfaces, and local interfaces.

• These constraints apply recursively to the types of all of the members; that is, members that are structs, unions, value
types, sequences or arrays may not contain interface reference types. If the type of a member is a value type or contains
a value type, it must meet all of the above constraints.

6.7.2.2 PrimaryKeyBase

The base type for all primary keys is the abstract value type Components::PrimaryKeyBase. The definition of
PrimaryKeyBase is as follows:

module Components {
abstract valuetype PrimaryKeyBase { };

};

6.7.3 Explicit Operations in Home Definitions

A home body may include zero or more operation declarations, where the operation may be a factory operation, a finder
operation, or a normal operation or attribute.

6.7.3.1 Factory operations

A factory operation is denoted by the factory keyword. A factory operation has a corresponding equivalent operation on
the home’s explicit interface. Given a factory declaration of the following form:

home <home_name> manages <component_type> {
factory <factory_operation_name> (<parameters>)
raises (<exceptions>);

};

The equivalent operation on the explicit interface is as follows:

<component_type> <factory_operation_name> (<parameters>)
raises (Components::CreateFailure, <exceptions>);

A factory operation is required to support creation semantics; that is, the reference returned by the operation shall identify
a component that did not exist prior to the operation’s invocation. Factory operations are required to raise CreateFailure
and may raise other exceptions.

6.7.3.2 Finder operations

A finder operation is denoted by the finder keyword. A finder operation has a corresponding equivalent operation on the
home’s explicit interface. Given a finder declaration of the following form:

home <home_name> manages <component_type> {
finder <finder_operation_name> (<parameters>) raises (<exceptions>);

};

The equivalent operation on the explicit interface is as follows:
36 CORBA - Part 3: Component Model, v3.1

<component_type> <finder_operation_name> (<parameters>)
raises (Components::FinderFailure, <exceptions>);

A finder operation shall support the following semantics. The reference returned by the operation shall identify a
previously-existing component managed by the home. The operation implementation determines which component’s
reference to return based on the values of the operation’s parameters. Finder operations are required to raise
FinderFailure and may raise other exceptions.

6.7.3.3 Miscellaneous exports

All of the exports, other than factory and finder operations, that appear in a home definition are duplicated exactly on the
home’s explicit interface.

6.7.4 Home inheritance

Given a derived home definition of the following form:

home <home_name> : <base_home_name> manages <component_type> {
<explicit_operations>

};

The resulting explicit interface has the following form:

interface <home_name>Explicit : <base_home_name>Explicit {
<equivalent_explicit_operations>

};

Given a derived home definition supporting one or more interfaces, as follows:

home <home_name> : <base_home_name>
 supports <interface_name>
 manages <component_type> {

<explicit_operations>
};

The resulting explicit interface has the following form:

interface <home_name>Explicit : <base_home_name>Explicit, <interface_name> {
<equivalent_explicit_operations>

};

where <equivalent_explicit_operations> are the operations defined in the home declaration (<explicit_operations>), with
factory and finder operations transformed to their equivalent operations, as described in “Explicit Operations in Home
Definitions” on page 36. The forms of the implicit and equivalent interfaces are identical to the corresponding forms for
non-derived storage homes, determined by the presence or absence of a primary key specification.

A home definition with no primary key specification constitutes a pair (H, T) where H is the home type and T is the
managed component type. If the home definition includes a primary key specification, it constitutes a triple (H, T, K),
where H and T are as previous and K is the type of the primary key. Given a home definition (H’, T’) or (H’, T’, K),
where K is a primary key type specified on H’, such that H’ is derived from H, then T’ must be identical to T or derived
(directly or indirectly) from T.
CORBA - Part 3: Component Model, v3.1 37

Given a base home definition with a primary key (H, T, K), and a derived home definition with no primary key (H’, T’),
such that H’ is derived from H, then the definition of H’ implicitly includes a primary key specification of type K,
becoming (H,’ T,’ K). The implicit interface for H’ shall have the form specified for an implicit interface of a home with
primary key K and component type T.’

Given a base home definition (H, T, K), noting that K may have been explicitly declared in the definition of H, or
inherited from a base home type, and a home definition (H’, T’, K’) such that H’ is derived from H, then T’ must be
identical to or derived from T and K’ must be identical to or derived from K.

Note the following observations regarding these constraints and the structure of inherited equivalent interfaces:

• If a home definition does not specify a primary key directly in its header, but it is derived from a home definition that
does specify a primary key, the derived home inherits the association with that primary key type, precisely as if it had
explicitly specified that type in its header. This inheritance is transitive. For the purposes of the following discussion,
home definitions that inherit a primary key type are considered to have specified that primary key type, even though it
did not explicitly appear in the definition header.

• Operations on CCMHome are inherited by all home equivalent interfaces. These operations apply equally to homes
with and without primary keys.

• Operations on KeylessCCMHome are inherited by all homes that do not specify primary keys.

• Implicitly-defined operations (i.e., that appear on the implicit interface) are only visible to the equivalent interface for
the specific home type that implies their definitions. Implicitly-defined operations on a base home type are not
inherited by a derived home type. Note that the implicit operations for a derived home may be identical in form to the
corresponding operations on the base type, but they are defined in a different name scope.

• Explicitly-defined operations (i.e., that appear on the explicit interface) are inherited by derived home types.

6.7.5 Semantics of Home Operations

Operations in home interfaces fall into two categories:

• Operations that are defined by the component model. Default implementations of these operations must, in some cases,
be supplied by the component-enabled ORB product, without requiring user programming or intervention.
Implementations of these operations must have predictable, uniform behaviors. Hence, the required semantics for
these operations are specified in detail. For convenience, we will refer to these operations as orthodox operations.

• Operations that are defined by the user The semantics of these operations are defined by the user-supplied
implementation. Few assumptions can be made regarding the behavior of such operations. For convenience, we will
refer to these operations as heterodox operations.

Orthodox operations include the following:

• Operations defined on CCMHome and KeylessCCMHome.

• Operations that appear on the implicit interface for any home.

Heterodox operations include the following:

• Operations that appear in the body of the home definition, including factory operations, finder operations, and normal
IDL operations and attributes.
38 CORBA - Part 3: Component Model, v3.1

6.7.5.1 Orthodox operations

Because of the inheritance structure described in “Home inheritance” on page 37 problems relating to polymorphism in
orthodox operations are limited. For the purposes of determining key uniqueness and mapping key values to components
in orthodox operations, equality of value types (given the constraints on primary key types specified in “Primary key type
constraints” on page 35) are defined as follows:

• Only the state of the primary key type specified in the home definition (which is also the actual parameter type in
operations using primary keys) shall be used for the purposes of determining equality. If the type of the actual
parameter to the operation is more derived than the formal type, the behavior of the underlying implementation of the
operation shall be as if the value were truncated to the formal type before comparison. This applies to all value types
that may be contained in the closure of the membership graph of the actual parameter value; that is, if the type of a
member of the actual parameter value is a value type, only the state that constitutes the member’s declared type is
compared for equality.

• Two values are equal if their types are precisely equivalent and the values of all of their public state members are
equal. This applies recursively to members that are value types.

• If the values being compared constitute a graph of values, the two values are equal only if the graphs are isomorphic.

• Union members are equal if both the discriminator values and the values of the union member denoted by the
discriminator are precisely equal.

• Members that are sequences or arrays are considered equal if all of their members are precisely equal, where order is
significant.

6.7.5.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are inherited by homes that may specify
more-derived component and primary key types. Assume a home definition (H, T, K), with an explicit factory operation f
that takes a parameter of type K, and a home definition (H’, T’, K’), such that H’ is derived from H, T’ is derived from
T, and K’ is derived from K. The operation f (whose parameter type is K) is inherited by equivalent interface for H’. It
may be the intended behavior of the designer that the actual type of the parameter to invocations of f on H’ should be K’,
exploiting the polymorphism implied by inheritance of K by K’. Alternatively, it may be the intended behavior of the
designer that actual parameter values of either K or K’ are legitimate, and the implementation of the operation determines
what the appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality. Instead, we define the behavior of
operations on home that depend on primary key values in terms of abstract tests for equality that are provided by the
implementation of the heterodox operations.

Implementations of heterodox operations, including implementations of key value comparison for equality, are user-
supplied. This specification imposes the following constraints on the tests for equality of value types used as keys in
heterodox operations:

• For any two actual key values A and B, the comparison results must be the same for all invocations of all operations on
the home.

• The comparison behavior must meet the general definition of equivalence; that is, it must be symmetric, reflexive, and
transitive.
CORBA - Part 3: Component Model, v3.1 39

6.7.6 CCMHome Interface

The definition of the CCMHome interface is as follows:

module Components {

typedef unsigned long FailureReason;

exception CreateFailure { FailureReason reason; };

exception FinderFailure { FailureReason reason; };

exception RemoveFailure { FailureReason reason; };

exception DuplicateKeyValue { };

exception InvalidKey { };

 exception UnknownKeyValue { };

interface CCMHome {
CORBA::IRObject get_component_def();
CORBA::IRObject get_home_def ();
void remove_component (in CCMObject comp)

 raises (RemoveFailure);
};

};

get_component_def

The get_component_def operation returns an object reference that supports the CORBA::ComponentIR::ComponentDef
interface, describing the component type associated with the home object. In strongly typed languages, the IRObject
returned must be narrowed to CORBA::ComponentIR::ComponentDef before use.

get_home_def

The get_home_def operation returns an object reference that supports the CORBA::ComponentIR::HomeDef interface
describing the home type. In strongly typed languages, the IRObject returned must be narrowed to
CORBA::ComponentIR::HomeDef before use.

remove_component

The remove_component operation causes the component denoted by the reference to cease to exist. Subsequent
invocations on the reference will cause an OBJECT_NOT_EXIST system exception to be raised. If the component
denoted by the parameter does not exist in the container associated with target home object, remove_component raises a
BAD_PARAM system exception. All other application errors raise the RemoveFailure exception.

Note – This specification does not define explicitly what the FailureReason values are for the CreateFailure,
FinderFailure, and RemoveFailure exceptions. These values are currently vendor specific and will be standardized once
consensus among vendors is established.
40 CORBA - Part 3: Component Model, v3.1

6.7.7 KeylessCCMHome Interface

The definition of the KeylessCCMHome interface is as follows:

module Components {
interface KeylessCCMHome {

CCMObject create_component() raises (CreateFailure);
};

};

create_component

The create_component operation creates a new instance of the component type associated with the home object. A home
implementation may choose to disable the parameter-less create_component operation, in which case it shall raise a
NO_IMPLEMENT system exception. All other failures raise the CreateFailure exception.

6.8 Home Finders

The HomeFinder interface is, conceptually, a greatly simplified analog of the CosLifeCycle::FactoryFinder interface.
Clients can use the HomeFinder interface to obtain homes for particular component types, of particularly home types, or
homes that are bound to specific names in a naming service.

A reference that supports the HomeFinder interface may be obtained from the ORB pseudo-object by invoking
CORBA::ORB::resolve_initial_references, with the parameter value “ComponentHomeFinder.” This requires the
following enhancement to the ORB interface definition:

module CORBA {

interface ORB {
 Object resolve_initial_references (in ObjectID identifier)

 raises (InvalidName);
};

};

The HomeFinder interface is defined by the following IDL:

module Components {

exception HomeNotFound { };

interface HomeFinder {
CCMHome find_home_by_component_type (

in CORBA::RepositoryId comp_repid)raises (HomeNotFound);
CCMHome find_home_by_home_type (

in CORBA::RepositoryId home_repid) raises (HomeNotFound);
CCMHome find_home_by_name (

in string home_name) raises (HomeNotFound);
};

};
CORBA - Part 3: Component Model, v3.1 41

find_home_by_component_type

The find_home_by_component_type operation returns a reference, which supports the interface of a home object that
manages the component type specified by the comp_repid parameter. This parameter contains the repository identifier of
the component type required. If there are no homes that manage the specified component type currently registered, the
operation shall raise the HomeNotFound exception.

Little is guaranteed about the home interface returned by this operation. If the definition of the returned home
specified a primary key, there is no generic factory operation available on any standard interface (i.e, pre-defined,
as opposed to generated type-specific interface) supported by the home. The only generic factory operation that is
potentially available is Components::KeylessCCMHome::create_component. The client must first attempt to
narrow the CCMHome reference returned by the find_home_by_component_type to KeylessCCMHome.
Otherwise, the client must have specific out-of-band knowledge regarding the home interface that may be returned,
or the client must be sophisticated enough to obtain the HomeDef for the home and use the DII to discover and
invoke a create operation on a type-specific interface supported by the home.

find_home_by_home_type

The find_home_by_home_type operation returns a reference that supports the interface of the type specified by the
repository identifier in the home_repid parameter. If there are no homes of this type currently registered, the operation
shall raise the HomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of factories to the client requiring the client to
choose the one that will create the instance. Based on the experience of the submitters, CORBA components defines
operations which allows the server to choose the “best” home for the client request based on its knowledge of
workload, etc.

Since the operation returns a reference to CCMHome, it must be narrowed to the specific home type before it can be used.

find_home_by_name

The find_home_by_name operation returns a home reference bound to the name specified in the home_name parameter.
This parameter is expected to contain a name in the format described in the Naming Service specification (formal/01-02-
65), section 2.4, “Stringified Names.” The implementation of this operation may be delegated directly to an
implementation of CORBA naming, but it is not required. The semantics of the implementation are considerably less
constrained, being defined as follows:

• The implementation is free to maintain multiple bindings for a given name, and to return any reference bound to the
name.

It is generally expected that implementations that do not choose to use CORBA naming will do so for reasons of
scalability and flexibility, in order, for example, to provide a home which is logically more “local” to the home
finder (and thus, the client).

• The client’s expectations regarding the returned reference, other than that it supports the CCMHome interface, are not
guaranteed or otherwise mediated by the home. The fact that certain names may be expected to provide certain home
types or qualities of implementation are outside the scope of this specification.

This is no different than any application of naming services in general. Applications that require clients to be more
discriminating are free to use the Trader service, or any other similar mechanism that allows query or negotiation
to select an appropriate home. This mechanism is intentionally kept simple.

If the specified name does not map onto a home object registered with the finder, the operation shall raise the
HomeNotFound exception.
42 CORBA - Part 3: Component Model, v3.1

6.9 Component Configuration

The CORBA component model provides mechanisms to support the concept of component configurability.

Experience has proven that building re-usable components involves making difficult trade-offs between providing
well-defined, reasonably-scoped functionality, and providing enough flexibility and generality to be useful (or re-
useful) across a variety of possible applications. Packaging assumptions of the component architecture preclude
customizing a component’s behavior by directly altering its implementation or (in most cases) by deriving
specialized sub-types. Instead, the model focuses on extension and customization through delegation (e.g., via
dependencies expressed with uses declarations) and configuration. Our assumption is that generalized components
will typically provide a set of optional behaviors or modalities that can be selected and adjusted for a specific
application.

The configuration framework is designed to provide the following capabilities:

• The ability to define attributes on the component type that are used to establish a component instance’s
configuration. Component attributes are intended to be used during a component instance’s initialization to
establish its fundamental behavioral properties. Although the component model does not constrain the
visibility or use of attributes defined on the component, it is generally assumed that they will not be of interest
to the same clients that will use the component after it is configured. Rather, it is intended for use by
component factories or by deployment tools in the process of instantiating an assembly of components.

• The ability to define a configuration in an environment other than the deployment environment (e.g., an
assembly tool), and store that configuration in a component package or assembly package to be used
subsequently in deployment.

• The ability to define such a configuration without having to instantiate the component type itself.

• The ability to associate a pre-defined configuration with a component factory, such that component instances
created by that factory will be initialized with the associated configuration.

• Support for visual, interactive configuration tools to define configurations. Specifically, the framework allows
component implementors to provide a configuration manager associated with the component implementation.
The configuration manager interface provides descriptive information to interactive users, constrains
configuration options, and performs validity checks on proposed configurations.

The CORBA component model allows a distinction to be made between interface features that are used primarily for
configuration, and interface features that are used primarily by application clients during normal application operation.
This distinction, however, is not precise, and enforcement of the distinction is largely the responsibility of the component
implementor.

It is the intent of this specification (and a strong recommendation to component implementors and users) that operational
interfaces should be either provided interfaces or supported interfaces. Features on the component interface itself, other
than provided interfaces, (i.e., receptacles, event sources and sinks) are generally intended to be used for configuration,
although there is no structural mechanism for limiting the visibility of the features on a component interface. A
mechanism is provided for defining configuration and operational phases in a component’s life cycle, and for disabling
certain interfaces during each phase.

The distinction between configuration and operational interfaces is often hard to make in practice. For example, we
expect that operational clients of a component will want to receive events generated by a component. On the other
hand, some applications will want to establish a fixed set of event source and sink connections as part of the overall
application structure, and will want to prevent clients from changing those connections. Likewise, the responsibility
for configuration may be hard to assign—in some applications the client that creates and configures a component
may be the same client that will use it operationally. For this reason, the CORBA component model provides
general guidelines and optional mechanisms that may be employed to characterize configuration operations, but
does not attempt to define a strict separation of configuration and operational behaviors.
CORBA - Part 3: Component Model, v3.1 43

6.9.1 Exclusive Configuration and Operational Life Cycle Phases

A component implementation may be designed to implement an explicit configuration phase of its life cycle, enforcing
serialization of configuration and functional operation. If this is the case, the component life cycle is divided into two
mutually exclusive phases, the configuration phase and the operational phase.

The configuration_complete operation (inherited from Components::CCMObject) is invoked by the agent effecting the
configuration to signal the completion of the configuration phase. The InvalidConfiguration exception is raised if the
state of the component configuration state at the time configuration_complete is invoked does not constitute an
acceptable configuration state. It is possible that configuration may be a multi-step process, and that the validity of the
configuration may not be determined until the configuration process is complete. The configuration_complete operation
should not return to the caller until either 1) the configuration is deemed invalid, in which case the InvalidConfiguration
exception is raised, or 2) the component instance has performed whatever work is necessary to consolidate the final
configuration and is prepared to accept requests from arbitrary application clients.

In general, component implementations should defer as much consolidation and integration of configuration state
as possible until configuration_complete is invoked. In practice, configuring a highly-connected distributed object
assembly has proven very difficult, primarily because of subtle ordering dependencies that are difficult to discover
and enforce. If possible, a component implementation should not be sensitive to the ordering of operations
(interface connections, configuration state changes, etc.) during configuration. This is one of the primary reasons
for the definition of configuration_complete.

6.9.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the configuration after configuration_complete is
invoked, or to disable invocations of operations on provided interfaces until configuration_complete is invoked. If an
implementation chooses to do either (or both), an attempt to invoke a disabled operation should raise a
BAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between configuration phase and deployment
phase. In this case, invocation of configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to support disabling operations during
configuration or operation. Certain operations are implemented by the component implementation framework (see the
CCM Implementation Framework) and may not be disabled.

6.10 Configuration with Attributes

A component’s configuration is established primarily through its attributes. An attribute configuration is defined to be a
description of a set of invocations on a component’s attribute set methods, with specified values as parameters.

There are a variety of possible approaches to attribute configuration at run time, depending on the design of the
component implementation and the needs of the application and deployment environments. The CORBA component
model defines a set of basic mechanisms to support attribute configuration. These mechanisms can be deployed in a
number of ways in a component implementation or application.

6.10.1 Attribute Configurators

A configurator is an object that encapsulates a specific attribute configuration that can be reproduced on many instances
of a component type. A configurator may invoke any operations on a component that are enabled during its configuration
phase. In general, a configurator is intended to invoke attribute set operations on the target component.
44 CORBA - Part 3: Component Model, v3.1

6.10.1.1 The Configurator interface

The following interface is supported by all configurators:

module Components {

exception WrongComponentType { };

interface Configurator {
void configure (in CCMObject comp)

raises (WrongComponentType);};
};

configure

The configure operation establishes its encapsulated configuration on the target component. If the target component is not
of the type expected by the configurator, the configure operation shall raise the WrongComponentType exception.

6.10.1.2 The StandardConfigurator interface

The StandardConfigurator has the following definition:

module Components {

valuetype ConfigValue {
public FeatureName name;
public any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};
};

The StandardConfigurator interface supports the ability to provide the configurator with a set of values defining an
attribute configuration.

set_configuration

The set_configuration operation accepts a parameter containing a sequence of ConfigValue instances, where each
ConfigValue contains the name of an attribute and a value for that attribute, in the form of an any. The name member of
the ConfigValue type contains the unqualified name of the attribute as declared in the component definition IDL. After a
configuration has been provided with set_configuration, subsequent invocations of configure will establish the
configuration on the target component by invoking the set operations on the attributes named in the value set, using the
corresponding values provided in the anys. Invocations on attribute set methods will be made in the order in which the
values occur in the sequence.

6.10.2 Factory-based Configuration

Factory operations on home objects may participate in the configuration process in a variety of ways. A factory operation
may
CORBA - Part 3: Component Model, v3.1 45

• be explicitly implemented to establish a particular configuration.

• apply a configurator to newly-created component instances. The configurator may be supplied by an agent responsible
for deploying a component implementation or a component assembly.

• apply an attribute configuration (in the form of a Components::ConfigValues sequence) to newly-created instances.
The attribute configuration may be supplied to the home object by an agent responsible for deploying a component
implementation or a component assembly.

• be explicitly implemented to invoke configuration_complete on newly-created component instances, or to leave
component instances open for further configuration by clients.

• be directed by an agent responsible for deploying a component implementation or assembly to invoke
configuration_complete on newly-created instances, or to leave them open for further configuration by clients.

If no attribute configuration is applied by a factory or by a client, the state established by the component implementation’s
instance initialization mechanism (e.g., the component servant constructor) constitutes the default configuration.

6.10.2.1 HomeConfiguration interface

The implementation of a component type’s home object may optionally support the HomeConfiguration interface. The
HomeConfiguration interface is derived from Components::CCMHome. In general, the HomeConfiguration interface is
intended for use by an agent deploying a component implementation into a container, or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provide a Configurator object and/or a set of configuration values
that will be applied to instances created by factory operations on the home object. It also allows the caller to cause the
home object’s factory operations to invoke configuration_complete on newly-created instances, or to leave them open for
further configuration.

The HomeConfiguration allows the caller to disable further use of the HomeConfiguration interface on the home object.

The Configurator interface and the HomeConfiguration interface are designed to promote greater re-use, by
allowing a component implementor to offer a wide range of behavioral variations in a component implementation.
As stated previously, the CORBA component specification is intended to enable assembling applications from pre-
built, off-the-shelf component implementations. An expected part of the assembly process is the customization
(read: configuration) of a component implementation, to select from among available behaviors the behaviors
suited to the application being assembled. We anticipate that assemblies will need to define configurations for
specific component instances in the assembly, but also that they will need to define configurations for a deployed
component type, i.e., all of the instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:

module Components {

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (
in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

};

};
46 CORBA - Part 3: Component Model, v3.1

set_configurator

This operation establishes a configurator object for the target home object. Factory operations on the home object will
apply this configurator to newly-created instances.

set_configuration_values

This operation establishes an attribute configuration for the target home object, as an instance of
Components::ConfigValues. Factory operations on the home object will apply this configurator to newly-created
instances.

complete_component_configuration

This operation determines whether factory operations on the target home object will invoke configuration_complete on
newly-created instances. If the value of the boolean parameter is TRUE, factory operations will invoke
configuration_complete on component instances after applying any required configurator or configuration values to the
instance. If the parameter is FALSE, configuration_complete will not be invoked.

disable_home_configuration

This operation serves the same function with respect to the home object that the configuration_complete operation serves
for components. This operation disables further use of operations on the HomeConfiguration interface of the target home
object. If a client attempts to invoke HomeConfiguration operations, the request will raise a BAD_INV_ORDER system
exception. This operation may also be interpreted by the implementation of the home as demarcation between its own
configuration and operational phases, in which case the home implementation may disable operations and attributes on
the home interface.

If a home object is supplied with both a configurator and a set of configuration values, the order in which
set_configurator and set_configuration_values are invoked determines the order in which the configurator and
configuration values will be applied to component instances. If set_configurator is invoked before
set_configuration_values, the configurator will be applied before the configuration values, and vice-versa.

The component implementation framework defines default implementations of factory operations that are automatically
generated. These generated implementations will behave as specified here. Component implementors are free to replace
the default factory implementations with customized implementations. If a customized home implementation chooses to
support the HomeConfiguration interface, then the factory operation implementations must behave as specified, with
respect to component configuration.

6.11 Component Inheritance

The mechanics of component inheritance are defined by the inheritance relationships of the equivalent IDL component
interfaces. The following rules apply to component inheritance:

• All interfaces for non-derived component types are derived from CCMObject.

• If a component type directly supports one or more IDL interfaces, the component interface is derived from both
CCMObject and the supported interfaces.

• A derived component type may not directly support an interface.

• The interface for a derived component type is derived from the interface of its base component type.

• A component type may have at most one base component type.
CORBA - Part 3: Component Model, v3.1 47

• The features of a component that are expressed directly on the component interface are inherited as defined by IDL
interface inheritance. These include:

• operations implied by provides statements

• operations implied by uses statements

• operations implied by emits statements

• operations implied by publishes statements

• operations implied by consumes statements

• attributes

Figure 6.2- Component inheritance and related interface inheritance

6.11.1 CCMObject Interface

The CCMObject interface is defined by the following IDL:

module Components {

valuetype ComponentPortDescription

component A supports I

interface I

component B interface B

interface A

interface CCMObject

interface Navigation

interface Events

interface Receptacles

interface CCMHome

home AHome manages A

home BHome manages A

interface AHome

interface BHome

pre-defined

user-defined

generated
48 CORBA - Part 3: Component Model, v3.1

{
public FacetDescriptions facets;
public ReceptacleDescriptions receptacles;
public ConsumerDescriptions consumers;
public EmitterDescriptions emitters;
public PublisherDescriptions publishers;

};

exception NoKeyAvailable { };

interface CCMObject : Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key() raises (NoKeyAvailable);
void configuration_complete() raises (InvalidConfiguration);
void remove() raises (RemoveFailure);
ComponentPortDescription get_all_ports ();

};

};

get_component_def

This operation returns an IRObject reference to the component definition in the Interface Repository. The interface
repository representation of a component is defined in the Interface Repository Metamodel. In strongly typed languages,
the IRObject returned must be narrowed to CORBA::ComponentIR::ComponentDef before use.

get_ccm_home

This operation returns a CCMHome reference to the home that manages this component.

get_primary_key

This operation is equivalent to the same operation on the component’s home interface. It returns a primary key value if
the component is being managed by a home which defines a primary key. Otherwise, the NoKeyAvailable exception shall
be raised.

configuration_complete

This operation is called by a configurator to indicate that the initial component configuration has completed. If the
component determines that it is not sufficiently configured to allow normal client access, it raises the
InvalidConfiguration exception. The component configuration process is described in “Component Configuration” on
page 43.

remove

This operation is used to delete a component. Application failures during remove may raise the RemoveFailure
exception.

get_all_ports

The get_all_ports operation returns a value of type ComponentPortDescription containing information about all facets,
receptacles, event sinks, emitted events and published events in the component’s inheritance hierarchy. The order in
which the information occurs in these sequences is not specified. If a component does not offer a port of any type, the
associated sequence will have length zero.
CORBA - Part 3: Component Model, v3.1 49

6.12 Conformance Requirements

This sub clause identifies the conformance points required for compliant implementations of the CORBA Component
model. The following conformance points are defined:

1. A CORBA COS vendor shall provide the relevant changes to the Lifecycle, Transaction, and Security Services
identified in the following “Changes to Object Services” on page 51.

2. A CORBA ORB vendor need not provide implementations of Components aside from the changes made to the Core
to support components. Conversely a CORBA Component vendor need not be a CORBA ORB vendor.

3. A CORBA Component vendor shall provide a conforming implementation of the Basic Level of CORBA
Components. A Lightweight CORBA Component vendor shall provide a conforming implementation of the
Lightweight CCM Profile as specified in item 8 below.

4. A CORBA Component vendor may provide a conforming implementation of the Extended Level of CORBA
Components.

5. To be conformant at the Basic level a non-Java product shall implement (at a minimum) the following:

• The IDL extensions and generation rules to support the client and server side component model for basic level
components.

• CIDL. The multiple segment feature of CIDL (“Segment Definition” on page 60) need not be supported for basic
components.

• A container for hosting basic level CORBA components.

• The XML deployment descriptors and associated zip files for basic components.

Such implementations shall work on a CORBA ORB as defined in #1 above.

6. To be conformant at the Basic level a Java product shall implement (at a minimum):

• EJB1.1, including support for the EJB 1.1 XML DTD.

• The java to IDL mapping, also known as RMI/IIOP.

• EJB to IDL mapping as defined in “Translation of CORBA Component requests into EJB requests” on page 155.

Such implementations shall work in a CORBA interoperable environment, including interoperable support for IIOP,
CORBA transactions and CORBA security.

7. To be conformant at the extended level, a product shall implement (at a minimum) the requirements needed to
achieve Basic PLUS:

• IDL extensions to support the client and server side component model for extended level components.

• A container for hosting extended level CORBA components.

• The XML deployment descriptors and associated zip files for basic and enhanced level components in the format
defined in “Deployment PSM for CCM” on page 279.

Such implementations shall work on a CORBA ORB as defined in #1 above.

8. The Lightweight CCM profile is a conformance point based on the extended model as defined above. “Lightweight
CCM Profile” on page 271 defines the specific parts of this CCM specification that are impacted and the normative
specific subsetting of CCM. In summary, the following general capabilities (and associated machinery) are excluded
from the extended model to define this conformance point:
50 CORBA - Part 3: Component Model, v3.1

• Persistence (only session and service components are supported)

• Introspection

• Navigation

• Redundancies, preferring generic over specific

• Segmentation (not allowed for session or service components)

• Transactions

• Security

• Configurators

• Proxy homes

• Home finders

• CIDL

• POA related mandates

9. A CORBA Component vendor may optionally support EJB clients interacting with CORBA Components, by
implementing the IDL to EJB mapping as defined in “Translation of EJB requests into CORBA Component
Requests” on page 162.

10. This specification includes extensions to IDL, in the form of new keywords and grammar. Although a CORBA ORB
vendor need not be a CORBA Component vendor, and vice-versa, it is important to maintain IDL as a single
language. To this end, all compliant products of any conformance points above shall be able to parse any valid IDL
definitions. However, it is permitted to raise errors, or to ignore, those parts of the grammar that relate to another
conformance point.

Conforming implementations as defined above may also implement any additional features of this specification not
required by the above conformance points.

6.12.1 A Note on Tools

Component implementations are expected to be supported by tools. It is not possible to define conformance points for
tools, since a particular tool may only support part of the component development and deployment life-cycle. Hence a
suite of tools may be needed. The Component architecture contains a number of definitions that are relevant to tools,
including zip files and XML formats, as well as IDL interfaces for customization and installation. Although it cannot be
enforced, tools are expected to conform to the relevant areas with which they are dealing. For example, a tool that
generates implementations for a particular platform is expected to generate XML according to the <implementation>
clauses in the DTD (defined in CORBA Core, the Interface Repository).

6.12.2 Changes to Object Services

6.12.2.1 Life Cycle Service

To support the factory design pattern for creating a component instance and to allow the server, rather than a client, to
select from a group of functionally equivalent factories based on load or other server-side visible criteria, the following
operation is added to the FactoryFinder interface of the CosLifeCycle module:

module CosLifeCycle {
interface FactoryFinder {
CORBA - Part 3: Component Model, v3.1 51

Factory find_factory (in Key factory_key) raises (noFactory);
};

};

The parameters of the above operation are as defined by CosLifeCycle with the following clarifications:

• The factory_key parameter is a name conforming to the Interoperable Naming Specification (orbos/98-10-11) for
stringified names.

• The factory_key parameter is used as an input to the find_home_by_name operation on Components::HomeFinder.

• The default factory operation on the home is used to obtain a reference which can be narrowed to the
CosLifeCycle::GenericFactory type.

6.12.2.2 Transaction Service

The following CORBA transaction service interface is changed to a local interface:

• CosTransactions::Current

6.12.2.3 Security Service

The following CORBA Security interfaces are changed to local interfaces:

• SecurityLevel1::Current

• SecurityLevel2::PrincipalAuthenticator

• SecurityLevel2::Credentials

• SecurityLevel2::ReceivedCredentials

• SecurityLevel2::AuditChannel

• SecurityLevel2::AuditDecision

• SecurityLevel2::AccessDecision

• SecurityLevel2::QOPPolicy

• SecurityLevel2::MechanismPolicy

• SecurityLevel2::InvocationCredentialsPolicy

• SecurityLevel2::EstablishTrustPolicy

• SecurityLevel2::DelegationDirectivePolicy

• SecurityLevel2::Current

• SecurityReplacable::Vault

• SecurityReplacable::SecurityContext

• SecurityReplacable::ClientSecurityContext

• SecurityReplacable::ServerSecurityContext
52 CORBA - Part 3: Component Model, v3.1

7 OMG CIDL Syntax and Semantics

This clause describes OMG Component Implementation Definition Language (CIDL) semantics and gives the syntax for
OMG CIDL grammatical constructs.

The OMG Component Implementation Definition Language (CIDL) is a language used to describe the structure and state
of component implementations. Component-enable ORB products generate implementation skeletons from CIDL
definitions. Component builders extend these skeletons to create complete implementations.

OMG CIDL obeys the same lexical rules as OMG Persistent State Definition Language (PSDL) and OMG IDL, although
new keywords are introduced to support concepts specific to component implementation descriptions.

The description of OMG CIDL’s lexical conventions is presented in “Lexical Conventions.” A description of OMG IDL
preprocessing is presented in CORBA Core, IDL Syntax and Semantics, Preprocessing sub clause. The scope rules for
identifiers in an OMG IDL specification are described in CORBA Core, IDL Syntax and Semantics, CORBA Module sub
clause.

The OMG CIDL grammar is an extension of a combination of the OMG PSDL and OMG IDL grammars, with new
constructs to define component implementations. OMG CIDL is a declarative language. The grammar is presented in
“OMG CIDL Grammar” on page 54.

A source file containing specifications written in OMG CIDL must have a “.cdl” extension.

The description of OMG CIDL grammar uses the same syntax notation that is used to describe OMG IDL in CORBA
Core, IDL Syntax and Semantics. For reference, Table 7.1 lists the symbols used in this format and their meaning.

7.1 Lexical Conventions

This sub clause presents the lexical conventions of OMG CIDL. In general OMG CIDL uses the same lexical conventions
as OMG PSDL and OMG IDL. It does use additional keywords as described below.

Table 7.1 - IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time
CORBA - Part 3: Component Model, v3.1 53

7.1.1 Keywords

The identifiers listed in Table 7.2 are reserved for use as keywords in CIDL, and may not be used otherwise in CIDL,
unless escaped with a leading underscore. These are in addition to the ones defined by PSDL and IDL, which may also
not be used otherwise in CIDL, unless escaped with a leading underscore.

7.2 OMG CIDL Grammar

The CIDL grammar is a combination of the PSDL and IDL grammars plus the following productions:

(1) <cidl_specification> ::= <import>* <cidl_definition>+
(2) <cidl_definition> ::= <type_dcl> “;”

| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <cidl_module> “;”
| <storagehome> “;”
| <abstract_storagehome> “;”
| <storagetype> “;”
| <abstract_storagetype> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”
| <composition> “;”

(3) <cidl_module> ::= “module” <identifier>
“{” <cidl_definition>+ “}”

(4) <composition> ::= “composition” <category> <identifier>
“{” <composition_body> “}”

(5) <category> ::= “entity”
| “process”
| “service”
| “session”

(6) <composition_body> ::= <home_executor_def>
[<proxy_home_def>]

(7) <home_executor_def> ::= “home” “executor” <identifier> “{”
 <home_executor_body> “}” “;”

(8) <home_executor_body> ::= <home_impl_dcl>
[<abstract_storagehome_binding>]
[<home_persistence_dcl>]
<executor_def>

Table 7.2 - Keywords

bindsTo delegatesTo facet proxy session

composition entity implements segment storagehome

executor process service storedOn
54 CORBA - Part 3: Component Model, v3.1

[<abstract_storagehome_delegation_spec>]
[<executor_delegation_spec>]
[<abstract_spec>]

(9) <home_impl_dcl> ::= “implements” <home_type_name> “;”
(10) <home_type_name> ::= <scoped_name>
(11)<abstract_storagehome_binding> ::= “bindsTo” <identifier> “;”
(12) <home_persistence_dcl> ::= “storedOn” <abstract_storagehome_name> “;”
(13) <executor_def> ::= “manages” <identifier>

[<executor_body>] “;”
(14) <executor_body> ::= “{” <executor_member>+ “}”
(15) <executor_member> ::= <segment_def>

| <feature_delegation_spec>
(16) <segment_def> ::= “segment” <identifier>

“{” <segment_member>+ “}”
(17) <segment_member> ::= <segment_persistence_dcl> “;”

| <facet_dcl> “;”
(18)<segment_persistence_dcl> ::= “storedOn” <abstract_storagehome_name> “;”
(19) <facet_dcl> ::= “provides” “facet” <identifier>

 { “,” <identifier> }*
(20)<feature_delegation_spec> ::=“delegatesTo” “storage”

 <feature_delegation_list>
(21) <feature_delegation_list> ::= “(” <feature_delegation> { “,” <feature_delegation> }* “)”
(22) <feature_delegation> ::= <feature_name> “:”

 <storage_member_name>
(23) <feature_name> ::= <identifier>
(24)<storage_member_name> ::= <identifier>
(25)<abstract_storagehome_delegation_spec> ::= “delegatesTo” “abstract”

 “storagehome” <delegation_list> “;”
(26)<executor_delegation_spec> ::= “delegatesTo” “executor”

<delegation_list> “;”
(27) <delegation_list> ::= “(” <delegation> { “,” <delegation> }* “)”
(28) <delegation> ::= <operation_name> [“:” <operation_name>]
(29) <operation_name> ::= <identifier>
(30) <abstract_spec> ::= “abstract” <operation_list> “;”
(31) <operation_list> ::= “(” <operation_name>

 { “,” <operation_name> }* “)”
(32) <proxy_home_def> ::= “proxy” “home” <identifier>

“{” <proxy_home_member>+ “}” “;”
(33) <proxy_home_member> ::= <home_delegation_spec> “;”

| <abstract_spec>
(34) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>

CORBA - Part 3: Component Model, v3.1 55

7.3 OMG CIDL Specification

A CIDL specification is like a PSDL and IDL specification that could also contain composition definitions. The syntax is:

(1) <cidl_specification> ::= <import>* <cidl_definition>+
(2) <cidl_definition> ::= <type_dcl> “;”

| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <cidl_module> “;”
| <storagehome> “;”
| <abstract_storagehome> “;”
| <storagetype> “;”
| <abstract_storagetype> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”
| <composition> “;”

(3) <cidl_module> ::= “module” <identifier>
“{” <cidl_definition>+ “}”

7.4 Composition Definition

The syntax for composition definitions is as follows:

(4) <composition> ::= “composition” <category> <identifier> “{”
<composition_body> “}”

(5) <category> ::= “entity”
| “process”
| “service”
| “session”

(6) <composition_body> ::= <home_executor_def> [<proxy_home_def>]

A composition definition is a named scope that contains elements that constitute the composition. The elements of a
composition definition are as follows:

• The keyword composition.

• The specification of the life cycle category, one of the keywords service, session, process, or entity. Subsequent
definitions and declarations in the composition must be consistent with the declared category, as defined in “Life Cycle
Category and Constraints” on page 57.

• An identifier that names the composition in the enclosing module scope.

• The composition body.
56 CORBA - Part 3: Component Model, v3.1

The composition body consists of the following elements:

• a mandatory home executor definition, and

• an optional proxy home definition.

7.4.1 Life Cycle Category and Constraints

Certain composition configurations are only valid for certain life cycle categories. The Container Programming Model
sub clause describes the life cycle-related constraints from the perspective of the container. These constraints map onto
corresponding constraints in component and composition definitions. The following lists define the CIDL constructs that
are either mandatory or invalid for the designated life cycle category.

Note that these constraints supersede the conditionality of constructs based on CIDL syntax. If a construct is described
below as mandatory for the category in question, it is mandatory regardless of its syntactic properties. All of the
constructs described as invalid for a particular category are, of necessity, syntactically optional.

7.5 Home Executor Definition

The syntax for a home executor definition is as follows:

(7) <home_executor_def> ::= “home” “executor” <identifier>
“{” <home_executor_body> “}” “;”

(8) <home_executor_body> ::= <home_impl_dcl>
[<abstract_storagehome_binding>]
[<home_persistence_dcl>]
<executor_def>
[<abstract_storagehome_delegation_spec>]
[<executor_delegation_spec>]
[<abstract_spec>]

Table 7.3 - Constraints for service and session components

Service and
Session

Mandatory None

Invalid Abstract storage home bound to home executor:
<abstract_storagehome_binding> in home executor body.

Component home implemented by home executor specifies a primary key.

Component home implemented by home executor specifies explicit finder
operations.

Segmented executor: <segment_def> in executor body.

Table 7.4 - Constraints for process components

Process Mandatory None

Invalid Component home implemented by home executor specifies a primary key.

Table 7.5 - Constraints for entity components

Entity Mandatory Component home implemented by home executor specifies a primary key.

Invalid none
CORBA - Part 3: Component Model, v3.1 57

A home executor definition consists of the following elements:

• the keywords home and executor,

• an identifier that names the home executor definition within the scope of the composition, and

• a home executor body.

The home executor body consists of the following elements:

• A home implementation declaration.

• An optional abstract storage home binding, specifying the storage home upon which the components managed by the
home are stored.

• An optional home persistence declaration, identifying an abstract storage home upon which the state of the home
executor itself is to be stored.

• An executor definition, describing the component executor managed by the home executor.

• An optional delegation specification describing the mapping of home operations to storage home operations.

• An optional delegation specification describing the mapping of home factory operations to the operations on the
component executor.

• An optional abstract specification, declaring operations on the home executor that are to be left unimplemented,
overriding default generated implementations.

The <identifier> in the header of the home executor definition is used as the basis for the name of the skeleton artifact
generated by the CIF. The specific forms of the executors are defined in language mappings. The general requirements for
language mappings of home executors are defined in this sub clause.

7.6 Home Implementation Declaration

The syntax of a home implementation declaration is as follows:

(9) <home_impl_dcl> ::= “implements” <home_type_name> “;”
(10) <home_type_name> ::= <scoped_name>

The home implementation declaration consists of the following elements:

• the keyword implements, and

• a scoped name denoting a component home imported from IDL.

The home implementation declaration specifies the component home that is to be implemented by the home executor
being defined. The generated skeleton must support the home equivalent interface, as defined in “Equivalent Interfaces”
on page 33. Implementations of orthodox home operations are generated if the life cycle category of the composition is
either entity or process and the home executor specifies an abstract storage home binding, or if the life cycle category of
the executor is either session or service.

The detailed semantics of generated implementations are described in this sub clause.
58 CORBA - Part 3: Component Model, v3.1

7.7 Storage Home Binding

The syntax for a storage home binding is as follows:

(11)<abstract_storagehome_binding> ::= “bindsTo” <abstract_storagehome_name> “;”

An abstract storage home binding declaration consists of the following elements:

• the keyword bindsTo, and

• an abstract storage home name.

7.8 Home Persistence Declaration

The syntax for a home persistence declaration is as follows:

(12) <home_persistence_dcl> ::= “storedOn” <abstract_storagehome_name> “;”

A home persistence declaration consists of the following elements:

• the keyword storedOn, and

• an abstract storage home name.

A home persistence declaration establishes that the home executor is itself persistent, and that its persistent state is
managed by the container. The abstract storage type of the specified abstract storage home constitutes the state of the
component home. The specific responsibilities of generated home executors related to home persistence are described in
this sub clause.

7.9 Executor Definition

The syntax for an executor definition is as follows:

(13) <executor_def> ::= “manages” <identifier>
[<executor_body>] “;”

(14) <executor_body> ::= “{” <executor_member>+ “}”
(15) <executor_member> ::= <segment_def>

| <feature_delegation_spec>

An executor definition has the following elements:

• the keyword manages,

• an identifier that names the component executor being defined, and

• an executor body, containing one or more members enclosed in braces.

An executor member is either a segment definition or a feature delegation specification, as defined below.

The identifier in the executor definition forms the basis of the name of the programming artifact generated as the executor
skeleton. The details of executor structure and responsibilities are defined in “Home Executor Definition” on page 57, and
in CIDL language mappings.
CORBA - Part 3: Component Model, v3.1 59

7.10 Segment Definition

The syntax for a segment definition is as follows:

(16) <segment_def> ::= “segment” <identifier>
“{” <segment_member>+ “}”

(17) <segment_member> ::= <segment_persistence_dcl> “;”
| <facet_dcl> “;”

A segment definition consists of the following elements:

• the keyword segment,

• an identifier that names the segment in the scope of the executor definition, and

• one or more segment members enclosed in braces.

A segment member is either a segment persistence declaration, or a facet declaration, as described below.

If a segment definition occurs in an executor definition, the corresponding executor is said to be a segmented executor. If
no segment definition occurs in an executor definition, the executor is said to be monolithic.

A separate skeleton is generated by the CIF for each segment of a segmented executor. Segments are independently
activated. Each segment is assigned a segment identifier, which as a numeric value of type short, by the CIF
implementation. The segment identifier is interpreted internally by the generated implementation during activation.
Segment identifiers are also used in component identities, as described in “Component Identifiers” on page 135. There is
no canonical mechanism for assigning segment identifier values (other than the component segment), as the values of
segment identifiers does not affect portability or interoperability.

All executors have a distinguished segment, the component segment, that supports the component facet (i.e., the facet
supporting the component equivalent interface). The segment identifier value of the component segment is always zero. If
a component does not explicitly declare segments, the monolithic executor is still considered in some contexts to be the
component segment executor.

The details of segment structure and implementation responsibilities are described in this sub clause.

7.11 Segment Persistence Declaration

The syntax for a segment persistence declaration is as follows:

(18)<segment_persistence_dcl> ::= “storedOn” <abstract_storagehome_name> “;”

A segment persistence declaration has the following elements:

• the keyword storedOn, and

• an abstract storage home name.

A segment persistence declaration specifies the abstract storage home upon which the state of the segment will be stored.
The abstract storage type of the storage home constitutes the state of the segment.

The detailed structure of segments, and implementation responsibilities with respect to segment persistence are described
in this sub clause.
60 CORBA - Part 3: Component Model, v3.1

7.12 Facet Declaration

The syntax for a facet declaration is as follows:

(19) <facet_dcl> ::= “provides” “facet” <identifier>
 { “,” <identifier> }*

A facet declaration has the following elements:

• The keywords provides and facet.

• One or more identifiers separated by commas, where each identifier denotes a facet defined by the component type
implemented by the composition (i.e., the component type managed by the home that is implemented by the home
executor defined in the composition).

A facet declaration associates one or more component facets with the segment. The generated segment executor will
provide the specified facets. A facet name may only appear in a single segment definition. Facets that are not explicitly
declared in a segment definition are provided by the component segment.

The detailed structure of segments, and implementation responsibilities with respect to providing facets are described in
this sub clause.

7.13 Feature Delegation Specification

The syntax for a feature delegation specification is as follows:

(20)<feature_delegation_spec> ::=“delegatesTo” “storage”
 <feature_delegation_list>

(21) <feature_delegation_list> ::= “(” <feature_delegation> { “,” <feature_delegation> }* “)”
(22) <feature_delegation> ::= <feature_name> “:”

 <storage_member_name>
(23) <feature_name> ::= <identifier>
(24)<storage_member_name> ::= <identifier>

A feature delegation specification has the following elements:

• the keywords delegatesTo, abstract, and storagetype, and

• a list of feature delegation specifications, enclosed in parentheses and separated by commas.

A feature delegation specification consists of the following elements:

• An identifier that denotes a stateful feature of the component implemented by the composition.

• A colon.

• An identifier that denotes a member of the abstract storage type of the abstract storage home specified in the abstract
storage home binding in the home executor definition.

A feature delegation specification defines an association between a stateful feature of the component being implemented
and a member of the abstract storage type that incarnates the component (or the component segment). The component
executor skeleton generated by the CIF will provide implementations of feature management operations that store the
feature’s state in the specified storage member. Stateful features include attributes, receptacles, and event sources.
CORBA - Part 3: Component Model, v3.1 61

The following constraints regarding feature delegation must be observed:

• Feature delegation specifications may only occur in an executor definition when the home executor specified an
abstract storage home binding.

• The type of the storage member specified in a feature delegation must be compatible with the type of the feature.
Compatibility, for the purposes of feature delegation is defined in Table 7.6.

* The persistent state maintained internally by the component is the ChannelId of the notification channel created by the container.

7.14 Abstract Storage Home Delegation Specification

The syntax for a storage home delegation specification is as follows:

(25)<abstract_storagehome_delegation_spec> ::= “delegatesTo” “abstract”
 “storagehome” <delegation_list> “;”

(26) <delegation_list> ::= “(” <delegation> { “,” <delegation> }* “)”
(27) <delegation> ::= <operation_name> [“:” <operation_name>]
(28) <operation_name> ::= <identifier>

An abstract storage home delegation specification has the following elements:

• The keywords delegatesTo, abstract, and storagehome.

• A list of delegation specifications enclosed in parentheses and separated by commas.

A delegation specification has the following elements:

• An identifier that denotes an operation on the home equivalent interface supported by the home executor.

• An optional delegation target, consisting of a colon, followed by identifier that denotes an operation on the abstract
storage home to which the home is bound (i.e., the abstract storage home specified in the abstract storage home
binding).

An abstract storage home delegation specification associates an operation on the home interface with an operation on the
abstract storage home interface. The CIF shall generate an implementation of the specified home operation that delegates
to the specified abstract storage home operation.

If the optional delegation target is omitted, the home operation is assumed to be delegated to an operation on the abstract
storage home with the same name. If no such operation exists on the abstract storage home, the specification is not legal.

Table 7.6 - Type compatibility for feature delegation purposes

Feature Storage member type

attribute Must be identical to feature for all types except object reference and valuetype; for
object reference and valuetype storage member must be of identical type or base type
(direct or indirect).

receptacle (simplex) Must be identical to feature type or base interface (direct or indirect) of feature type.

receptacle (multiplex) Sequence of type compatible with receptacle type as defined above.

emitter event source Must be identical to feature type or base interface (direct or indirect) of feature type.

publisher event source long*
62 CORBA - Part 3: Component Model, v3.1

The signature of the abstract storage home operation must be compatible with the abstract storage home. Signature
compatibility, from the perspective of abstract storage home delegation, has the following definition:

• If the home operation is an explicit factory operation, the abstract storage home operation must be an explicit factory
operation.

• If the home operation is not a factory, the return type of the home operation must be identical to the return type of the
abstract storage home operation, except when the return type is an object reference type or a value type. If the return
type of the home operation is an object reference type or a value type, the return type of the storage home operation
must be identical to, or more derived than, the return type of the home operation.

• For each exception explicitly raised by the storage home operation, an identical exception must appear in the raises
clause of the home operation. The inverse is not true—the home operation may raise exceptions not raised by the
abstract storage home operation.

• The number of parameters in the parameter lists of the home operation and the abstract storage home operation must be
equal. Each parameter in the abstract storage home operation must be compatible with the parameter in the same
position in the signature of the home operation, where compatibility is defined as follows:

• If the parameter in the home operation is neither an object reference type nor a value type, the type of the
corresponding parameter in the abstract storage home operation must be identical.

• If the parameter type in the home operation is an object reference and the parameter is an in parameter, the
corresponding parameter in the abstract storage home operation must be identical to, or a base type (direct or
indirect) of, the parameter in the home operation.

• If the parameter type in the home operation is an object reference and the parameter is an out parameter, the
corresponding parameter in the abstract storage home operation must be identical to, or more derived than, the
parameter in the home operation.

• If the parameter type in the home operation is an object reference and the parameter is an inout parameter, the
corresponding parameter in the abstract storage home operation must be identical to the parameter in the home
operation.

The following additional constraints and rules apply to abstract storage home delegation:

• An operation on the home interface may delegate to at most one operation on the abstract storage home interface.

• An operation on the abstract storage home interface may be the target of at most one delegation from the home
interface.

• Implicitly defined operations on the home (i.e., orthodox operations) delegate by default to cognate operations on the
abstract storage home, as described by “Orthodox operations” on page 39. These default delegations may be over-
ridden by explicit delegations. If an operation on the abstract storage home that is normally the default target of a
delegation appears as the target of an explicit delegation, then the home operation that normally would have delegated
to that target by default shall have no generated implementation (unless one is explicitly defined).

The detailed semantics and implementation responsibilities of delegated abstract storage home operations are described in
this sub clause.

7.15 Executor Delegation Specification

The syntax for an executor delegation specification has the following form:

(29)<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list> “;”
CORBA - Part 3: Component Model, v3.1 63

An executor delegation specification consists of the following elements:

• the keywords delegatesTo and executor, and

• a delegation list, identical structurally to the delegation list of the abstract storage home delegation specification.

An executor delegation specification defines an operation on the component executor, to which the specified home
operation will be delegated. The following constraints apply to executor delegation specifications:

• Only factory operations may be delegated to the executor, including explicitly declared factories and implicit create
operations.

• If no delegation target is explicitly specified, the operation defined on the executor shall have the same name as the
delegating home operation.

• The signature of the defined operation on the executor shall be identical to the signature of the home operation, with
the exception that the return type of the executor operation shall be void if the home does not specify a primary key, or
the return type shall be the type of the primary key if the home specifies a primary key.

The CIF shall generate an implementation of the home operation that delegates to the defined operation on the executor.
The detailed semantics and implementation responsibilities are described in this sub clause.

7.16 Abstract Spec Declaration

The syntax for an abstract spec has the following form:

(30) <abstract_spec> ::= “abstract” <operation_list> “;”
(31) <operation_list> ::= “(” <operation_name>

 { “,” <operation_name> }* “)”

7.17 Proxy Home Declaration

The syntax for a proxy home declaration has the following form:

(32) <proxy_home_def> ::= “proxy” “home” <identifier>
“{” <proxy_home_member>+ “}” “;”

(33) <proxy_home_member> ::= <home_delegation_spec> “;”
| <abstract_spec>

(34) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>
64 CORBA - Part 3: Component Model, v3.1

8 CCM Implementation Framework

8.1 Introduction

The Component Implementation Framework (CIF) defines the programming model for constructing component
implementations. Implementations of components and component homes are described in CIDL. See the “OMG CIDL
Syntax and Semantics” clause for the definition and syntax. The CIF uses CIDL descriptions to generate programming
skeletons that automate many of the basic behaviors of components, including navigation, identity inquiries, activation,
state management, lifecycle management, and so on.

8.2 Component Implementation Framework (CIF) Architecture

As a programming abstraction, the CIF is designed to be compatible with the existing POA framework, but also to
insulate programmers from its complexity. In particular, the CIF can be implemented using the existing POA framework,
but it does not directly expose any elements of that framework.

8.2.1 Component Implementation Definition Language (CIDL)

The focal point of the CIF is Component Implementation Definition Language (CIDL), a declarative language for
describing the structure and state of component implementations. Component-enabled ORB products generate
implementation skeletons from CIDL definitions. Component builders extend these skeletons to create complete
implementations.

8.2.2 Component persistence and behavior

CIDL is a superset of the Persistent State Definition Language, defined in the Persistent State Service specification (http:/
/www.omg.org/technology/documents/formal/persistent.htm).

A CIDL implementation definition may optionally associate an abstract storage type with the component implementation,
such that the abstract storage type defines the form of the internal state encapsulated by the component. When a
component implementation declares an associated abstract storage type in this manner, the CIF and the run-time container
environment cooperate to manage the persistence of the component state automatically.

This sub clause addresses the elements of the CIF that pertain to the implementation of a component’s behavior.

8.2.3 Implementing a CORBA Component

The remainder of this sub clause provides an overview of the concepts involved in building component implementations.
It is intended to provide a high-level description that will serve as a framework for understanding the more formal
descriptions that follow in subsequent sub clauses. While the information in this sub clause is normative (with the
exception of italicized, indented rationale), it is not intended to be a complete or precise specification of the CIF, or all of
the possible design options from which a component implementor may choose.
CORBA - Part 3: Component Model, v3.1 65

8.2.4 Behavioral elements: Executors

We coin the term executor to indicate the programming artifact that supplies the behavior of a component or a component
home. In general, the terms executor or component executor refer to the artifact that implements the component type, and
the term home executor refers to the artifact that implements the component home.

We chose to use the word executor rather than servant to avoid confusion with POA servants. POA servants, while
conceptually similar to executors, are significantly different in detail, and map to different types in programming
languages. Executor is pronounced with the accent on the second syllable (e.g.,-ZEK-yoo-tor).

We have tried to avoid terminology that is specific to object-oriented programming languages, such as class, base
class, derive, and so on, in an attempt to be precise and acknowledge that the CIF framework may be mapped to
procedural programming languages. Hence, we typically use the word artifact or programming artifact to denote
what may conveniently be thought of as a class, and likewise, the term skeleton to denote a generated abstract base
class that is extended to form a complete implementation class. We hope this is not overly distracting to the reader.

8.2.5 Unit of implementation : Composition

An implementation of a component comprises a potentially complex set of artifacts that must exhibit specific
relationships and behaviors in order to provide a proper implementation. The CIDL description of a component
implementation is actually a description of this aggregate entity, of which the component itself may be a relatively small
part. In order to enable more concise discussion, we coin the term composition to denote both the set of artifacts that
constitute the unit of component implementation, and the definition itself. composition is the CIDL meta-type that
corresponds to an implementation definition.

A composition definition specifies the following elements:

Component home

A composition definition specifies a component home type, imported from IDL. The specification of a component home
implicitly identifies the component type for which the composition provides an implementation (i.e., the component type
managed by the home, as specified in the IDL home definition).

Abstract Storage home binding

A composition optionally specifies an abstract storage home to which the component home is bound. The specification of
an abstract storage home binding implicitly identifies the abstract storage type that incarnates the component. The
relationship between a home and the component it manages to isomorphic to the relationship between an abstract
storage home and the abstract storage type it manages. When a home binds to an abstract storage home, the component
managed by the home is implicitly bound to the abstract storage type of this abstract storage home.

Home executor

A composition definition specifies a home executor definition. The name of the home executor definition is used as the
name of the programming artifact (e.g., the class) generated by the CIF as the skeleton for the home executor. The
contents of the home executor definition describe the relationships between the home executor and other elements of the
composition, determining the characteristics of the generated home executor skeleton.

Component executor

A composition specifies an executor definition. The name of the executor definition is used as the name of the
programming artifact generated by the CIF as the skeleton of the component executor. The body of the executor definition
optionally specifies executor segments, which are physical partitions of the executor, encapsulating independent state and
66 CORBA - Part 3: Component Model, v3.1

capable of being independently activated. Segments are described in Section 8.2.9.1, “Segmented executors,” on page 87.
The executor body may also specify a mapping, or delegation, of certain component features (e.g., attributes) to storage
members.

Delegation specification

A composition may optionally provide a specification of home operation delegation. This specification maps operations
defined on the component home to isomorphic operations on either the abstract storage home or the component executor.
The CIF uses this description to generate implementations of operations on the home executor, and to generate operation
declarations on the component executor.

Proxy home

A composition may optionally specify a proxy home. The CIF supports the ability to define proxy home implementations,
which are not required to be collocated with the container that executes the component implementation managed by the
home. In some configurations, proxy homes can provide implementations of home operations without contacting the
container that executes the actual home and component implementation. Support for proxy homes is intended to increase
the scalability of the CORBA Component Model. The use of proxy homes is completely transparent to component clients
and, to a great extent, transparent to component implementations. Proxy home behavior is described in “Proxy home
delegation” on page 95.

8.2.6 Composition structure

A composition binds all of the previously-described elements together, and requires that the relationships between the
bound entities define a consistent whole.

Note that a component home type necessarily implies a component type; that is, the managed component type specified in
the home definition. Likewise, an abstract storage home implies an abstract storage type. It is unnecessary, therefore, for
a composition to explicitly specify a component type or an abstract storage type. They are implicitly determined by the
specification of a home and abstract storage home.

It may seem odd that the center of focus for compositions is the home rather than the component, but this works out
to be reasonably intuitive in practice. The home is the primary point of contact for a client, and the home’s interface
and behavior have a major influence on the interaction between the client and the component.

A composition definition specifies a name that identifies the composition within the enclosing module scope, and which
constitutes the name of a scope within which the contents of the composition are contained. The essential parts of a
composition definition are the following:

• The name of the composition.

• The life cycle category of the component implementation, either service, session, process, or entity, as defined in
“Component Categories” on page 109.

• The home type being implemented (which implicitly identifies the component type being implemented).

• The name of the home executor to be generated.

• The name of the component executor skeleton to be generated.

A composition definition has the following essential form:

composition <category> <composition_name> {
home executor <home_executor_name> {
CORBA - Part 3: Component Model, v3.1 67

implements <home_type> ;
manages <executor_name>;

};
};

where <composition_name> is the name of the composition, <category> identifies the life cycle category supported by
the composition, <home_executor_name> is the name assigned to the generated home executor skeleton, <home_type> is
the name of a component home type imported from IDL, and <executor_name> is the name assigned to the generated
component executor skeleton.

This is a schematic representation of the minimal form of a composition, which specifies no state management. The
structure of the composition specified by this schematic is illustrated in Figure 8.1. Note that the component type itself is
not explicitly specified. It is unambiguously implied by the specification of the home type, as is the relationship between
the executor and the component (i.e., that the executor implements the component).

Figure 8.1- Minimal composition structure and relationships

General disclaimer and abdication of responsibility with regards to programming examples:

Before presenting programming examples, it should be noted that all examples are non-normative illustrations. In
particular, the implementations provided in the examples of code that is to be generated by the CIF are merely
schematic representations of the intended behaviors; they are by no means indicative of the actual content of a real
implementation (e.g., they generally don’t include exception handling, testing for validity, etc.).

Although the grammar for CIDL has not been presented yet, a simple example will help illustrate the concepts
described in the previous sub clauses. Assume the following IDL component and home definitions:

component home

CIDL

IDL

component

manages

home executor

executor

manages

implements

composition <category> <composition_name> {

implements <home_type>;
manages <executor_name>;

explicitly defined in composition

implicitly defined by composition

explicitly defined elsewhere in IDL/CIDL
68 CORBA - Part 3: Component Model, v3.1

--
// Example 1

//
// USER-SPECIFIED IDL
//

module LooneyToons {
interface Bird {

void fly (in long how_long);

};
interface Cat {

void eat (in Bird lunch);

};
component Toon {

provides Bird tweety;

provides Cat sylvester;
};

home ToonTown manages Toon {};

};
--

The following example shows a minimal CIDL definition that describes an implementation binding for those IDL
definitions:

--
// Example 1
//

// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

// this is the composition:

composition session ToonImpl {

home executor ToonTownImpl {
implements LooneyToons::ToonTown;
manages ToonSessionImpl;

};
};

};

--

In this example, ToonImpl is the name of the composition. It defines the name of the generated home executor to be
ToonTownImpl, which implemented the ToonTown home interface imported from IDL. The home executor
definition also specified the name of the component executor, ToonSessionImpl, which is managed by the home
executor. Note that the component type (Toon) is not explicitly named—it is implied by the specification of the home
ToonTown, which is known to manage the component type Toon. Thus, the declaration “manages
ToonSessionImpl” implicitly defines the component executor ToonSessionImpl to be the implementation of the
component type Toon.
CORBA - Part 3: Component Model, v3.1 69

This CIDL specification would cause the generation of the following artifacts:

• The skeleton for the component executor ToonSessionImpl

• The complete implementation of the home executor ToonTownImpl

We provide the following brief sketches of generated implementation skeletons in Java to help illustrate the
programming model for component implementations.

Java <interface>Operations interfaces for all of the IDL interfaces are generated, precisely as currently specified
by the current Java IDL language mapping:

// Example 1
//
// GENERATED FROM IDL SPECIFICATION:
//
package LooneyToons;

import org.omg.Components.*;

public interface BirdOperations {
public void fly (long how_long);
}

public interface CatOperations {
void eat(LooneyToons.Bird lunch);
}

public interface ToonOperations
extends CCMObjectOperations {
LooneyToons.Bird provide_tweety();
LooneyToons.Cat provide_sylvester();
}

public interface ToonTownExplicitOperations extends CCMHomeOperations { }

public interface ToonTownImplicitOperations extends KeylessCCMHomeOperations
{
Toon create();
}

public interface ToonTownOperations extends
ToonTownExplicitOperations,
ToonTownExplicitOperations {}
--
The ToonImpl executor skeleton class has the following form:

// Example 1
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;
import org.omg.Components.*;

abstract public class ToonSessionImpl
70 CORBA - Part 3: Component Model, v3.1

implements ToonOperations, SessionComponent,
ExecutorSegmentBase
{

// Generated implementations of operations
// inherited from SessionComponent and
// ExecutorSegmentBase are omitted here.
//

protected ToonSessionImpl() {
// generated implementation ...

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

abstract public CatOperations
_get_facet_sylvester();

}
--

The generated executor abstract base class ToonSessionImpl implements all of the operations inherited by
ToonOperations, including operations on CCMObject and its base interfaces. It also implements all of the
operations inherited through SessionComponent, which are internal operations invoked by the container and
the internals of the home implementation to manage executor instance lifecycle.

A complete implementation of the home executor ToonTownImpl is generated from the CIDL specification:

// Example 1
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;
import org.omg.Components.*;

public class ToonTownImpl
implements LooneyToons,ToonTownOperations,
HomeExecutorBase, CCMHome
{

// Implementations of operations inherited
// from ExecutorBase and CCMHome
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown

CCMObject create_component()
{

return create();
}

void remove_component(CCMObject comp)
CORBA - Part 3: Component Model, v3.1 71

{
}

Toon create()
{
}
// and so on...

}
--

The user-provided executor implementation must supply the following:

• Implementations of the operations _get_tweety and _get_sylvester, which must return
implementations of the

BirdOperations and CatOperations interfaces

• said implementations of the behaviors of the facets tweety and sylvester, respectively

The following example shows one possible implementation strategy:

// Example 1
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonSessionImpl
implements BirdOperations, CatOperations {

protected long timeFlown;
protected Bird lastBirdEaten;

public myToonImpl() {
super();
timeFlown = 0;
lastBirdEaten = nil;

}

public void fly (long how_long) {
timeFlown += how_long);

}
public void eat (Bird lunch) {

lastBirdEaten = lunch;
}
public BirdOperations _get_facet_tweety() {

return (BirdOperations) this;
}
public CatOperations _get_facet_sylvester() {

return (CatOperations) this;
}

}
--
72 CORBA - Part 3: Component Model, v3.1

This simple example implements all of the facets directly on the executor. This is not the only option; the
programming objects that implement BirdOperations and CatOperations could be constructed separately and
managed by the executor class.

The final bit of implementation that the component programmer must provide is an extension of the home executor
that acts as a component executor factory, by implementing the create_executor_segment method. This class
must also provide an implementation of a static method called create_home_executor that returns a new
instance of the home executor (as an ExecutorSegmentBase). This static method acts as an entry point for the
entire composition.

// Example 1
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonTownImpl extends ToonTownImpl
{

protected myToonTownImpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {

return new myToonImpl();
}

public static ExecutorSegmentBase
create_home_executor() {

return new myToonTownImpl();
}

}
--

Note that these last two classes constitute the entirety of the code that must be supplied by the programmer. The
implementations of operations for navigation, executor activation, object reference creation and management, and
other mechanical functions are either generated or supplied by the container.

8.2.7 Compositions with Managed Storage

A composition definition may also contain a variety of optional specifications, most of which are related to state
management. These include the following elements:

• An abstract storage home type to which the component home is bound (this implicitly identifies the abstract storage
type to which the component itself is bound).

• The life cycle category of the composition must be either entity or process to support managed storage.

When state management is added to a composition definition, the definition takes the following general form, expressed
as a schematic:

composition <category> <composition_name> {
home executor <home_executor_name> {

implements <home_type> ;
CORBA - Part 3: Component Model, v3.1 73

bindsTo <abstract_storage_home>;
manages <executor_name>;

};
};

where the additional elements are as follows: <abstract_storage_home> denotes a particular abstract storage home
provided by the catalog.

The structure of the resulting composition and the relationships between the elements is illustrated in Figure 8.2.

Figure 8.2- Structure of composition with managed storage

In many cases, it is expected that an abstract storage home will be intentionally designed to support a particular
component home.

component home

CIDL

IDL

component

manages

home executor

executor

manages

implements

implements

composition <category> <composition_name> {

home executor <home_executor_name>
implements <home_type>;

bindsTo <storage_home>;

manages <executor_name>;

storage home

storage object

stored as

binds to

explicitly defined in composition

implicitly defined by composition

explicitly defined elsewhere in IDL/CIDL
74 CORBA - Part 3: Component Model, v3.1

8.2.8 Relationship between Home Executor and Abstract Storage Home

When a composition specifies managed storage, the relationship between the home executor and the abstract storage
home to which the home executor binds determines many of the characteristics of the implementation, including what
implementation elements may be generated and how they will behave. This sub clause provides an overview of the basic
concepts involved in home implementations and their relationships to abstract storage homes.

In general, operations on a home interface provide life cycle management. As described in “Homes” on page 32, when a
home definition does not specify a primary key, the resulting equivalent home interface has the following operations:

• A generic create_component operation inherited from KeylessCCMHome,

• a remove_component operation inherited from CCMHome, and

• an implicitly-defined type-specific parameter-less create operation.

When a home definition specifies a primary key, the resulting equivalent home interface has the following operations:

• A remove_component operation inherited from CCMHome,

• an implicitly-defined type-specific create operation with a primary key parameter,

• an implicitly-defined type-specific remove operation with a primary key parameter, and

• an implicitly-defined type-specific find_by_primary_key operation.

8.2.8.1 Primary Key Binding

A component home can define its primary key as a valuetype with a number of public data members, whereas abstract
storage home defines keys as lists of attributes. A composition can only bind a component home with a primary key to an
abstract storage home that defines a key on a state member whose type is this valuetype. If there is more than one key
satisfying this condition, the first key is used.

For example:

valuetype SSN {
public string social_security_number;

};

abstract storagetype Person {
readonly state SSN social_security_number;
state string name;
state string address;

};

abstract storagehome PersonStore of Person {
key social_security_number;

};

A home with primary key SSN can be bound to PersonStore. The key social_security_number is called the matching
key.
CORBA - Part 3: Component Model, v3.1 75

8.2.8.2 Implicit delegation of home operations

When a composition specifies managed storage, finder operations can be implemented in terms of finder operations on the
abstract storage home to which the home executor is bound.

• The find_by_primary_key operation uses the find_ref_by_matching_key_name operation on the abstract
storagehome. The returned storage reference is used to create an object reference for the component and returned to the
invoking client.

• Destruction operations delegate to destroy_object operations on the reference.

The validity of these implementation semantics are predicated on the following assumptions:

• The initial state of the storage object created by the storage home constitutes a valid initial state for the component.

• All of the persistent state of the component is defined on (or reachable from) the storage object whose PID is
associated with the component instance.

• The executor is monolithic, not segmented. Home operations can also be delegated to abstract storage homes when the
executor is segmented, but the process is slightly more complex, and is discussed in full in “Segmented executors” on
page 87.

If these assumptions do not hold (in particular, either of the first two), the component implementor can provide custom
implementations of one or more home operations to accommodate the implementation requirements.

The following example extends the previous example to illustrate managed storage and storage home delegation.
The example highlights differences from the previous, and does not repeat elements that are identical:

--
// Example 2

//
// USER-SPECIFIED IDL
//

module LooneyToons { // IDL

... identical to previous example, except for the addition of the

primary key:

valuetype EpisodeName : Components::PrimaryKeyBase {

public string name;
};
home ToonTown manages Toon primarykey EpisodeName {

};
};
--

The CIDL now defines abstract storage types, abstract storage homes, and a catalog. The composition binds :

Table 8.1 - Delegation of finder operations to finder operations on the bound abstract storagehome

home operation abstract storagehome operation

component find_by_primary_key (key) ref<X> find_ref_by_matching_key_name (matching_key)
76 CORBA - Part 3: Component Model, v3.1

--
// Example 2

//
// USER-SPECIFIED CIDL
//

import ::LooneyToons;

module MerryMelodies {

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state unsigned long time_flown;

state LooneyToons::Bird last_bird_eaten;
};

abstract storagehome ToonStateHome of ToonState
{

key episode_name;
factory create(episode_name);

};

catalog ToonCatalog {
provides ToonStateHome TSHome;

};

// this is the composition:

composition entity ToonImpl {
uses catalog { ToonCatalog store; };

home executor ToonTownImpl {
implements LooneyToons::ToonTown {
bindsTo ToonStateHome;

manages ToonEntityImpl;
};

};

};
--

In this example, the composition binds the component home ToonTown to the abstract storage home
ToonStateHome, and thus, implicitly binds the component type Toon to the abstract storage type ToonState.
Note that the primary key (if any) in the home must match a key in the abstract storage home. As will be seen later
in the CIDL grammar specification, the keyword entity in the implementation binding declaration specifies a
particular lifecycle model for the resulting implementation.

This CIDL specification would cause the generation of the following programming objects:

• The skeleton for the component executor ToonEntityImpl

• The implementation of the home executor ToonTownImpl
CORBA - Part 3: Component Model, v3.1 77

• The incarnation interface for the abstract storage type ToonState

• The interface for the abstract storage home ToonStateHome

• The interface for the catalog ToonCatalog.

Note that the complete implementation of the home executor may not be able to be generated in some cases, e.g.,
when no abstract storage type is declared or when user-defined operations with arbitrary signatures appear on the
component home definition.

Note also that the implementations of the storage-related interfaces ToonState and ToonStateHome are not
necessarily provided by the same product that generates the component implementation skeletons. The CIF is
specifically designed to decouple the executor implementation from the storage implementation, so that these
capabilities may be provided by different products. A component-enabled ORB product is only required to generate
the programming interfaces for the abstract storage type and homes through which the executor implementation
will interact with one or more storage mechanisms. The implementations of these interfaces may be supplied
separately, perhaps deferred until run-time.

The interfaces generated from the IDL are identical, with the exception of the addition of the primary key:

// Example 2
//
// GENERATED FROM IDL SPECIFICATION:
//
package LooneyToons;

import org.omg.Components.*;

... same as previous except for the following:

public interface ToonTownImplicitOperations {
Toon create(LooneyToons.EpisodeName key)

throws DuplicateKey, InvalidKey;
Toon find_by_primary_key

(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;

void remove(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;

LooneyToons.EpisodeName
get_primary_key(Toon comp);

}

public interface ToonTownOperations extends
ToonTownExplicitOperations,
ToonTownExplicitOperations {}
--

The abstract storage type ToonState results in the generation of the following incarnation interfaces:

// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import org.omg.CosPersistentState.*;
import LooneyToons.*;
public interface ToonState extends StorageObject {
78 CORBA - Part 3: Component Model, v3.1

public string name();
public void name (String val);
public long time_flown();
public void time_flown (long val);
public Bird last_bird_eaten();
public void last_bird_eaten (Bird val);

}

The storage home ToonStateHome results in the generation of the following interface:

// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//

// no explicit operations
public interface ToonStateHome

extends StorageHomeBase {

public ToonState
find_by_episode_name (EpisodeName k);

public ToonStateRef
find_ref_by_episode_name (EpisodeName k);

}

--

The ToonImpl executor skeleton class has the following form:

// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

abstract public class ToonImpl
implements LooneyToons.ToonOperations,
ExecutorSegmentBase, PersistentComponent
{

// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
//
// ToonImpl also provides implementations of
// operations inherited from ToonState, that
// delegate to a separate incarnation object:

protected ToonStateIncarnation _state;

protected ToonImpl() { _state = null; }
CORBA - Part 3: Component Model, v3.1 79

public void set_incarnation (ToonState state) {
_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

abstract public CatOperations
_get_facet_sylvester();

}
--

An implementation of the home executor ToonHomeImpl is generated from the CIDL specification:

// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
PersistentComponent, ExecutorSegmentBase
{

// Implementations of operations inherited
// from PersistentComponent and
// ExecutorSegmentBase
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
//

// values set during initialization
// and activation:
protected Entity2Context _origin;
protected ToonStateHome _storageHome;
...

Toon create(EpisodeName key)
{

// create a storage object with the key

ToonState new_state = _storageHome.create(key);

 // REVISIT - Bernard Normier 7/27/1999
// don’t know how to complete this method

}

80 CORBA - Part 3: Component Model, v3.1

Toon find(EpisodeName key)
{

ToonStateRef ref =
_storageHome.find_ref_by_episode_name(key);
// create reference from ref
// and return , same as above...

}

// and so on...

}
--

The user-provided executor uses the storage accessors and mutators on the incarnation:

// Example 2
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements BirdOperations, CatOperations {

public myToonImpl() { super(); }

void fly (long how_long) {
_state.timeFlown

(_state.timeFlown() + how_long);
}
void eat (Bird lunch) {

_state.last_bird_eaten(lunch);
}
BirdOperations get_facet_tweety() {

return (BirdOperations) this;
}
CatOperations get_facet_sylvester() {

return (CatOperations) this;
}

}

8.2.8.3 Explicit delegation of home operations

The previous sub clause described the default home executor implementation generated by the CIF. Default delegation
can only be implemented for home operations or the home base interfaces, and implicitly-defined home operations (i.e.,
orthodox home operations). The syntax for home definitions permits explicitly-defined factory operations, finder
operations, and operations with arbitrary signatures to be declared on the home. The CIF makes no assumptions about the
semantics of these operations (i.e., the heterodox operations), other than the assumptions that factory operations return
references for newly-created components, and finder operations return references for existing components that were
indirectly identified by the parameters of the finder operation. Implementations of these operations are not generated by
default. CIDL does, however, allow the component implementor to specify explicitly how heterodox home operations are
implemented. A CIDL home executor definition may optionally include the declarations illustrated in the following
schematic CIDL example:
CORBA - Part 3: Component Model, v3.1 81

composition <category> <composition_name> {
...
home executor <home_executor_name> {

... // assume storage management specified

delegatesTo abstract storagehome (
<home_op0> : <storage_home_op0>,
<home_op1> : <storage_home_op1>, ...

);
delegatesTo executor(

<home_op2> : <executor_op2>, ...
);
abstract(<home_op3>, <home_op4>, ...);

};
};

8.2.8.3.1 Delegation to abstract storage home

The delegatesTo abstract storagehome declaration specifies a sequence of operation mappings, where each operation
mapping specifies the name of an operation on the home, and the name of an operation on the storage home. The
signatures of the operations must be compatible, as defined in “Home inheritance” on page 37. Based on this declaration,
the CIF generates implementations of the home operations on the home executor that delegate to the specified operations
on the abstract storage home.

8.2.8.3.2 Delegation to executor

The delegatesTo executor declaration specifies a sequence of operation mappings, similar to the delegatesTo abstract
storagehome declaration. The name on the left hand side of the mapping (i.e., to the left of the colon, ‘:’) must denote an
explicitly-declared factory operation on the home, or the identifier “create,” denoting the implicitly-declared factory
operation. The right hand side of each mapping specifies the name of an abstract operation that will be generated on the
component executor. The component implementor provides the implementation of the executor operation, and the CIF
provides an implementation of the operation on the home executor that delegates to the executor.

The delegation of home operations to executors is problematic, since home operations (other than factories) have no target
component. For this reason, only factory operations may be delegated to the component executor. The CIF implements
this delegation by defining an additional facet on the component executor, called a factory facet. A factory facet is only
exposed to the home executor; clients cannot navigate to the factory facet, and the factory facet is not exposed in
component meta-data, or described in the FacetDescription values returned from Navigation::get_all_facets.

The implementation of the factory operation on the home executor that delegates to the component executor must first
create an object reference that denotes the factory facet. The home operation then invokes the mapped factory operation
on the object reference, causing the activation of the component and ensuring that the execution of the operation on the
component occurs in a proper invocation context.

If the factory operation being delegated is any operation other than the orthodox create operation, and the home definition
includes a primary key specification, the operation generated on the factory facet of the component executor returns a
value of the specified primary key type. The delegating operation on the home executor associates the primary key value
returned from the component executor with the storage object (i.e., the storage object’s PID) created to incarnate the
component instance.

The use of PID values to create object references obviates the need to have two versions of a create method on the
executor, as is the case in EJB with create and postCreate methods. An appropriate calling context can be created
before the factory operation is invoked on the executor.
82 CORBA - Part 3: Component Model, v3.1

These precise semantics of and requirements for factory operations delegated to the executor are described in detail in
“Factory operations” on page 36.

8.2.8.3.3 Suppressing generated implementation

The abstract specification overrides the generation of implementations for orthodox home operations. The name of any
explicitly-defined operation on the home may be specified in the operation list of the abstract declaration. The CIF will
not implement the specified operations, instead leaving unimplemented abstract operation declarations (on whatever
appropriate equivalent exists for the particular language mapping).

The following example extends the previous example to illustrate delegation of home operations to the abstract
storage home and the executor. The example highlights differences from the previous, and does not repeat elements
that are identical:

--
// Example 3
//

// USER-SPECIFIED IDL
//
module LooneyToons { // IDL

... identical to previous example, except for the home:

home ToonTown manages Toon primarykey EpisodeName {
factory createToon(

in string name, in long num, in Bird bref);

void arbitrary_operation();
};

};

--

The CIDL now defines abstract storage types, abstract storage homes, and a catalog. The composition binds:

--
// Example 3
//

// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

... identical to the previous example, except for:

abstract storagehome ToonStateHome of ToonState

{
key episode_name;
factory create();
void do_something();

};
CORBA - Part 3: Component Model, v3.1 83

composition entity ToonImpl {

uses catalog { ToonCatalog store; };
home executor ToonTownImpl {

implements LooneyToons::ToonTown;

bindsTo store.TSHome;
manages ToonEntityImpl;
delegatesTo abstract storagehome

(arbitrary_operation : do_something);
delegatesTo executor (createToon : createToon);

};

};
};
--

In this example, the arbitrary_operation on the home interface ToonTown is delegated to the storage home
operation do_something. Note that the operations have identical signatures. The createToon factory operation is
delegated to an operation of the same name on the executor. This delegation causes the implicit definition of a
factory facet on the component with the following interface:

--

interface ToonImplFactoryFacet {
EpisodeName createToon(

in string name, in long num, in Bird bref);

};
--

This interface is not part of the public interface of the component; its use is restricted to the home executor. In fact,
the IDL need not be generated. All of the code that uses the factory facet is either generated by the CIF, or derived
from CIF-generated skeletons, so the CIF can simply generate language mappings for the interface without
actually providing any IDL for it. Note also that only a subset of the normal language mapping artifacts are
required, including (in the case of Java) the abstract Operations interface, the POA tie class to be used internally
by the executor, and a local stub to allow the home executor to make a delegating invocation. There is no need to
generate a remote stub, as the facet is never exposed outside of the container.

The abstract storage home ToonStateHome interface has the added do_something operation on the explicit
interface:

// Example 3
//

// GENERATED FROM CIDL SPECIFICATION:
//
public interface ToonStateHome

extends StorageHomeBase {
public void do_something();
// ...

}

--
84 CORBA - Part 3: Component Model, v3.1

The ToonImpl executor skeleton class supports an additional facet (the factory facet), which is returned by the
_get_factory_facet operation:

// Example 3
//

// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;

import LooneyToons;

abstract public class ToonImpl

implements LooneyToons.ToonOperations,
ExecutorSegmentBase, PersistentComponent {
... same as previous

// The following operations must be implemented
// by the component developer:

abstract public ToonImplFactoryFacetOperations
_get_factory_facet();

abstract public BirdOperations

_get_facet_tweety();
abstract public CatOperations

_get_facet_sylvester();

}
--

The CIF generates implementations of the delegated operations on the home executor:

// Example 3

//
// GENERATED FROM CIDL SPECIFICATION:
//

package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase

// values set during initialization
// and activation:

protected ToonStateHome _storageHome;
protected Entity2Context _origin;

...

Toon createToon(
CORBA - Part 3: Component Model, v3.1 85

String name, long num, Bird bref)
{

ToonState new_state=
_storageHome.create();

// etc.

}

void arbitrary_operation() {

_storageHome.do_something();
}

...

}

--

The user-provide executor must implement the factory facet and operation:

// Example 3
//

// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;

import MerryMelodies.*;

public class myToonImpl extends ToonImpl

implements BirdOperations, CatOperations,
ToonImplFactoryFacetOperations{
...

...

EpisodeName

createToon(String name, long num, Bird bref) {
// presumably, the main reason for doing
// this kind of delegation is to initialize

// state in the context of the component:
how_long(num);
last_bird_eaten(bref);

EpisodeNameDefaultFactory _keyFactory
= new EpisodeNameDefaultFactory();

return _keyFactory.create(name);

}

ToonImplFactoryFacetOperations

_get_factory_facet() {
return

(ToonImplFactoryFacetOperations) this;
86 CORBA - Part 3: Component Model, v3.1

}
...

}

8.2.9 Executor Definition

The home executor definition must include an executor definition. An executor definition specifies the following
characteristics of the component executor:

• The name of the executor, which is used as the name of the generated executor skeleton.

• Optionally, one or more distinct segments, or physical partitions of the executor. Each segment encapsulates
independent state and is capable of being independently activated. Each segment also provides at least one facet.

• Optionally, the generation of operation implementations that manage the state of stateful component features (i.e.,
receptacles, attributes, and event sources) as members of the component incarnation.

• A delegation declaration that describes a correspondence between stateful component features and members of the
abstract storage type that incarnates the component. The CIF uses this declaration to generate implementations of the
feature-specific operations (e.g., connect_ and disconnect_ operations for receptacles, accessors, and mutators for
attributes) that store the state associated with each specified feature in the storage member indicated on the right hand
side of the delegation.

8.2.9.1 Segmented executors

A component executor may be monolithic or segmented. A monolithic executor is, from the container’s perspective, a
single artifact. A segmented executor is a set of physically distinct artifacts. Each segment may have a separate abstract
state declaration. Each segment must provide at least one facet defined on the component definition. The life cycle
category of the composition must be entity or process if the executor specifies segmentation.

The primary purpose for defining segmented executors is to allow requests on a subset of the component’s facets to be
serviced without requiring the entire component to be activated. Segments are independently activated. When the
container receives a request whose target is a facet of a segmented executor, the container activates only the segment that
provides the required facet.

The following schematic CIDL illustrates the declaration of a segmented executor:

composition <category> <composition_name> {
...
home executor <home_executor_name> {

... // assume storage management specified

...
manages <executor_name> {

segment <segment_name0> {
storedOn <abstract_storage_home>;
provides (<facet_name0> , <facet_name1> , ...);

};
segment <segment_name1> { ... };
...

};
};
CORBA - Part 3: Component Model, v3.1 87

The abstract storage home specified in the segment’s storedOn declaration implicitly specifies the abstract storage type
that incarnates the segment. The home executor will use this abstract storage home to create and manage instances of the
segment state (i.e., incarnations). If the component home specifies a primary key, then all of the abstract storage homes
associated with executor segments must specify a matching key. The facets specified in the segment’s provides
declaration are implemented on the segment.

A segmented executor has a distinguished segment associated with the component. The component segment is implicitly
declared, and supplies all of the facets not provided by separate segments, as well as all other component features and
supported interfaces.

Figure 8.3, and Figure 8.4, illustrate the structure of monolithic and segmented executors, and the relationships between
facets, storage objects, and segments. These figures also illustrate the identity information that is embedded in component
and facet object references. Component identity information is described in more detail in “Component Identity” on
page 11.

Figure 8.3- Monolithic executor and reference information structure

component facet

incarnation

facet ID = 0

facet ID= F1

facet ID = F2

facet ID = F3

component segment (segment ID = 0)

(PID = p)

0 P

target facet state ID (PID)

component reference info

F1 Pfacet A reference info

facet A

facet B

facet C
88 CORBA - Part 3: Component Model, v3.1

Figure 8.4- Segmented executor and reference information structure

The details of the structure and behavior of segments and requirements for their implementation are specified in
“Segmented executors” on page 87.

The following example extends the previous example 2 to illustrate segmented executors. The example highlights
differences from the previous, and does not repeat elements that are identical:

--
//

// USER-SPECIFIED IDL
//

module LooneyToons { // IDL
... identical to previous example 2

};

--

The CIDL now defines abstract storage types and abstract storage homes. The composition binds :

component facet

incarnation

facet ID = 0

facet ID= F1

component segment (segment ID = 0)

(PID = P0)

incarnation

facet ID = F2

facet ID = F3

segment (segment ID = S1)

(PID = P1)

0 0 0 P0

S1 P1

F2 S1 0 P0

S1 P1

component reference info

facet A

facet B

facet C

facet B reference info

target facet ID

target segment ID
segment descriptors

segment ID state ID
CORBA - Part 3: Component Model, v3.1 89

--
//

// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

... identical to example 2 except for new storage, storage home
and executor definitions

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;

state LooneyToons::Bird last_bird_eaten;
};

abstract storagehome ToonStateHome of ToonState {
key episode_name;

}; };

abstract storagetype BirdSegState {
state unsigned long time_flown;

};

abstract storagehome BirdSegStateHome of BirdSegState {

key episode_name;
};

composition entity ToonImpl {
home executor ToonTownImpl {

implements LooneyToons::ToonTown {
bindsTo ToonStateHome;
manages ToonEntityImpl {

segment BirdSegment {
storedOn BirdSegStateHome;
provides (tweety);

};
};

};

};
};
--

The storage home BirdSegStateHome is bound to the segment BirdSegment, which implicitly binds the segment
executor for BirdSegment to the abstract storage type BirdSegState. This segment provides the facet tweety, leaving
the remaining facet (sylvester) on the component segment.
90 CORBA - Part 3: Component Model, v3.1

The mappings of the CIDL abstract storage types and abstract storage homes are not presented, as they are not
affected by the segmentation.

The generated component executor base class ToonImpl is also not presented, as the changes are trivial. The facet
accessor _get_facet_tweety is no longer present on the component executor. There are other internal changes that
are not visible to the component implementor. The executor for the new BirdSegment has the following form:

// Example 4
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

abstract public class BirdSegment
implements ExecutorSegmentBase,
PersistentComponent
{

// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
//

protected BirdSegState _state;

protected BirdSegment() { _state = null; }

public void set_incarnation (
BirdSegState state) {
_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

}
--

Note that the BirdSegment executor does not implement any IDL interface directly, as does the component segment.
It is remotely accessible only through a provided facet.

A generated implementation of the home executor ToonHomeImpl is considerably different from the previous
example 2. The create method must create references for all of the segments and construct a ComponentId with the
proper information::

//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
CORBA - Part 3: Component Model, v3.1 91

implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase
{

// Implementations of operations inherited
// from CCMHome and ExecutorSegmentBase
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
//

// values set during initialization
// and activation:

protected Entity2Context _origin;
protected ToonStateHome _toonStorageHome;
protected BirdSegStateHome _birdStorageHome;
...

Toon create(EpisodeName key)
{

ToonState new_toon =
_toonStorageHome.create(key);

// etc.
 }
--

There are now two segment executors to implement:

//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements CatOperations {

public myToonImpl() { super(); }

void fly (long how_long) {
_state.timeFlown
(_state.timeFlown() + how_long);

}
void eat (Bird lunch) {

_state.last_bird_eaten(lunch);
}
BirdOperations get_facet_tweety() {

return (BirdOperations) this;
}
CatOperations get_facet_sylvester() {

return (CatOperations) this;
}

}

92 CORBA - Part 3: Component Model, v3.1

public class myBirdSegImpl extends BirdSegment
implements BirdOperations {

public myBirdSegImpl() { super(); }

void fly (long how_long) {
_state.timeFlown
(_state.timeFlown() + how_long);

}

BirdOperations get_facet_tweety() {
return (BirdOperations) this;

}
}

The programmer must also supply a different implementation of the create_executor_segment operation on the
home executor, that uses the segment ID value to determine which executor to create.

// Example 4
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonTownImpl extends ToonTownImpl
{

protected myToonTownImpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {

// case discriminator values are constants
// generated on the executor segment classes
switch (segid) {
case ToonImpl._segment_id_value :

return new myToonImpl();
case BirdSegment._segment_id_value :

return new myBirdSegImpl();
default

... raise an exception
}

}
...

}
--

8.2.9.2 Delegation of feature state

An executor may also optionally declare a correspondence between stateful component features (which include
receptacles, attributes, and event sources) and members of the abstract storage type that incarnates the component (or the
distinguished component segment, in the case of a segmented executor). The CIF uses this declaration to generate
CORBA - Part 3: Component Model, v3.1 93

implementations of the feature-specific operations (e.g., connect_ and disconnect_ operations for receptacles, accessors,
and mutators for attributes) that store the state associated with each specified feature in the storage member indicated on
the right hand side of the delegation. The following schematic CIDL illustrates a feature delegation:

composition <category> <composition_name> {
...

home executor <home_executor_name> {
... // assume storage management specified
...
manages <executor_name> {

delegatesTo abstract storagetype (
<feature_name0> : <storage_member_name0> ,
<feature_name1> : <storage_member_name1> , ...

};
};

};
};

The type of the storage member must be compatible with the type associated with the feature, as defined in the
Component Model sub clause. In the case of attributes, the CIF-generated implementations of accessors and mutators
retrieve and store the attribute value in the specified storage member. The executor programming model allows
implementors to intercept invocations of the generated accessor and mutator invocations and replace or extend their
behaviors. In the case of receptacles and event sources, the implementations of the connect_<receptacle_name>,
disconnect_<receptacle_name>, connect_<source_name>, disconnect_<source_name>, subscribe_<source_name>,
and unsubscribe_<source_name> operations store the connected object references in the specified members of the
storage object that incarnates the component.

This mechanism is only particularly useful if the connected object references are persistent references, capable of
causing server and object activation if necessary.

8.2.10 Proxy Homes

A composition definition may include a proxy home declaration. A proxy home implements the component home
interface specified by the composition definition, but the implementation is not required to be collocated with the
container where the components managed by the home are activated.

Proxy homes are, in essence, remote projections of the actual home implementation, which is always collocated with the
executing component implementation. A proxy home may be able to implement some subset (or potentially, all) of the
operations defined on the component home without contacting the actual home implementation. Operations that cannot be
locally implemented by the proxy home are delegated to the actual home. The run-time implementation of the CIF
(including the supporting infrastructure of the container and the home finder) is responsible for maintaining the
associations between proxy homes and the actual home they represent. The container provides an interface for registering
proxy homes, described in “The ProxyHomeRegistration Interface” on page 134.

Proxy homes offer the capacity for considerably increased scalability over collocated homes, particularly when the home
operations can be implemented locally by the proxy home implementation. The following schematic CIDL illustrates a
proxy home definition:

composition <category> <composition_name> {
...

home executor <home_executor_name> {
implements <home_type> ;
bindsTo <abstract_storage_home>;
94 CORBA - Part 3: Component Model, v3.1

...
};
proxy home <proxy_executor_name> {

delegatesTo home (<home_op0>, <home_op1>, ...);
abstract (<home_op2>, <home_op3>, ...);

};
};

The <proxy_executor_name> is used as the name of the generated skeleton artifact for the proxy home executor. The
proxy home declaration implicitly acquires the characteristics of the actual home, as declared in the home executor
definition (which must precede the proxy home definition in the composition scope). In particular, the proxy home
implements the same home, and binds to the same abstract storage home. The operation delegations specified in the actual
home executor definition are also acquired by the proxy home, but certain delegations are transformed according to rules
specified in “Proxy home delegation” on page 95.

8.2.10.1 Proxy home delegation

For proxy homes in compositions that specify managed state, the CIF assumes that the proxy home has connectivity to the
same persistent store as the actual home. Based on this assumption, the default implementations of orthodox operations on
the proxy home executor are delegated directly to the storage home, precisely as they are in the actual home executor. In
general, other operations are delegated to the actual home, by default, although the specific rules for determining the
implementation of proxy home operations are somewhat more involved, and are described completely in “Implementing
a CORBA Component” on page 65.

8.2.11 Component Object References

The CIF defines an information model for component object references. This information model is encapsulated within
the object_key field of an IIOP profile, or an equivalent field in other profiles. The information model is an abstraction;
no standard encoding within an object_key is specified. It is the responsibility of the container and the underlying ORB
to encode this information for insertion into object references and to extract this information from the object_key in
incoming requests, decode it, and use it to activate the appropriate component or segment and dispatch the request to the
proper facet.

The Entity2Context interface, described in “The Entity2Context Interface” on page 140 is used by the component
implementation to provide this information to the container, with which the container creates the object references for the
component and its facets. The ComponentId interface encapsulates the component reference information. Examples 2, 3,
and 4 in the previous sub sections illustrate the use of the Entity2Context and ComponentId interfaces to create object
references. Figure 8.3, and Figure 8.4, illustrate the structure of the information encapsulated in ComponentId, and its
relationship to executor structure.

8.2.11.1 Facet identifiers

The CIF implementation allocates numeric identifiers to facets. The facet ID values are interpreted by generated code in
the component implementation, so the assignment of values does not need to be uniformly specified; a given CIF
implementation’s choice of facet ID values does not affect portability or interoperability.

8.2.11.2 Segment identifiers

The CIF implementation must also allocate numeric identifiers to segments. Similar to facet IDs, segment IDs are also
interpreted by the component implementation, so no uniform allocation mechanism is specified. The implementation of
create_executor_segment (on the home executor implementation) provided by the component implementor must
CORBA - Part 3: Component Model, v3.1 95

interpret segment ID values in order to create and return the appropriate segment executor. The generated
implementations of segment executor skeletons define symbolic constants to assist the component implementor in this
mapping.

8.2.11.3 State identifiers

State identifier is an abstraction that generalizes different representations of state identifiers, the primary of which is the
pid of the CORBA persistent state service. The generic representation of a state identifier is StateIdValue, an abstract
valuetype from which specific, concrete state identity types are derived. Implementations of the concrete sub-types are
responsible for converting their representations to byte sequences and back again.

8.2.11.4 Monolithic reference information

Monolithic references contain a facet identifier and a single state identifier. The facet identifier denotes the target facet of
the reference (or, of requests made on the reference). The state identifier is interpreted by the component implementation
and used to retrieve the component’s state. In the case of automatically managed state, the CIF-generated implementation
interprets the state identifier as a pid, using it to incarnate the component’s storage object.

Note that navigation from one facet’s reference to another consists of merely replacing the target facet identifier
with the facet identifier of the desired facet. This can be accomplished without activating the component.

8.2.11.5 Segmented reference information

The reference information for segmented executors consists of the following:

• a target facet identifier

• a target segment identifier

• a sequence of segment descriptors, each of which contains:

• the segment identifier of the segment being described

• the state identifier for the segment

The target facet identifier denotes the target of requests made on the reference, and the target segment identifier denotes
the segment on which that facet is implemented. The sequence of segment descriptors contains one element for each
segment, including the component segment. This sequence is invariant for all references to a given component, over the
lifetime of the component.

In the case of segmented executors, navigation is accomplished by replacing the facet and segment identifiers.

8.2.11.6 Component identity

The state identifier of the component segment (or the single state identifier in the case of monolithic executors) is
interpreted as the unique identity of the component, within the scope of the home to which it belongs. Equivalence of
component identity is defined as equivalence of state identifier values of the component segment.
96 CORBA - Part 3: Component Model, v3.1

8.3 Language Mapping

8.3.1 Overview

This part describes the language mapping for CORBA Components and defines interfaces that are used to implement
components and homes. The language mapping, like the mapping for the client side, is based on equivalent IDL. For
components and homes, local interfaces are defined. The user then implements these local interfaces using existing
language mapping rules.

There are two strategies for implementing a component, coined monolithic and locator. In the monolithic strategy, the
user implements all attributes, supported interfaces, and event consumers in a single executor interface. In the locator
strategy, the user implements a locator, and the container uses this locator to retrieve references to executors for each port
of a component. The decision which strategy is being used is made by the home, which can return a reference to either
the monolithic or to the locator.

It is expected that the monolithic strategy is more simple to use and that it is sufficient for most use cases, while the
locator strategy gives the user even more control over the life cycle of each executor.

Interfaces are designated internal or callback. Callback interfaces are implemented by the user and called by the container,
while internal interfaces are provided by the container.

Some callback interfaces may be optionally implemented by the user. In order to optionally implement an interface, the
user must define an interface, in IDL, that inherits both the base interface and the optional interface. For example, to
inherit the optional SessionSynchronization interface in the implementation of a Bank component, the user would
declare a new local interface, as shown below.

local interface MyBank :
Components::SessionSynchronization,
CCM_Bank };

Optional interfaces are used by services that require the component’s cooperation (and therefore callback hooks). To
determine whether an implementation supports an optional interface, the container narrows the object reference to that
interface.

Internal interfaces are used by the container and various services to provide runtime information to the component. The
component accesses internal interfaces through the context reference that it acquires through the set_session_context
operation.

Details about existing internal and callback interfaces can be found in the Container Programming Model clause. Some
of those interfaces are forward-referenced in this sub clause.

8.3.2 Common Interfaces

EnterpriseComponent is an empty callback interface that serves as common base for all component implementations,
whether monolithic or locator-based.

module Components {
local interface EnterpriseComponent {};

};
CORBA - Part 3: Component Model, v3.1 97

Note – The EnterpriseComponent interface is also defined in the Container Programming Model clause.

The ExecutorLocator interface is a callback interface that is used for the locator implementation strategy.

module Components {
local interface ExecutorLocator : EnterpriseComponent {

Object obtain_executor (in string name)
raises (CCMException);

void release_executor (in Object exc)
raises (CCMException);

void configuration_complete()
raises (InvalidConfiguration);

};
};

If a home, in creating a component, returns an ExecutorLocator, the container will invoke its obtain_executor operation
prior to each invocation to retrieve the implementation for a port. The port name, given in the name parameter, is the
same as used in the component’s interface description in IDL, or the component’s name for the “main” executor. The
obtain_executor operation returns a local object reference of the expected type, as detailed below. The CCMException
exception may be raised in case of a system error that prohibits locating the requested executor.

The release_executor operation is called by the container once the current invocation on an executor that was obtained
through the obtain_executor operation has finished. The locator can thus release any resources that were acquired as part
of the obtain_executor operation.

The configuration_complete operation is called to propagate the configuration_complete operation on the CCMObject
interface to the component implementation.

Implementations of the ExecutorLocator interface for a service or session component must implement the
Components::SessionComponent interface. Implementations of the ExecutorLocator interface for a process or entity
component must implement the Components::EntityComponent interface.

Note – Object is used as the return type of the obtain_executor operation, because there is yet no IDL type for the
common base of all local objects. Since local objects inherit from Object, this is not a problem.

The HomeExecutorBase interface is a common base for all home implementations.

module Components {
local interface HomeExecutorBase {};

};

8.3.3 Mapping Rules

This sub clause defines equivalent interfaces that are generated for each interface, eventtype, component, and home.

8.3.3.1 Interfaces

For each non-abstract and non-local interface, a local facet executor interface is generated. This facet executor interface
has the same name as the original interface with a “CCM_” prefix, and inherits the original interface. So for an interface
of name <interface name>, the facet executor interface has the following form:
98 CORBA - Part 3: Component Model, v3.1

local interface CCM_<interface name> : <interface name> { };

If a component provides an interface as a facet, the user implements the facet executor interface rather than the original
interface in order to achieve a local implementation.

Note – A container implementation may choose to limit generation of facet executor interfaces to only those interfaces
that are actually used as a facet.

8.3.3.2 Eventtypes

For each eventtype, a local consumer executor interface is generated. For an eventtype <eventtype name>, a local
interface with the same name, but with a “CCM_” prefix and a postfix of “Consumer” is generated. This interface has a
single push operation with no result, and the eventtype as a single in parameter:

local interface CCM_<eventtype name>Consumer
{

void push (in <eventtype name> ev);
};

8.3.3.3 Components

A component maps to three local interfaces; two of them are callback interfaces, and one is an internal interface. The
monolithic executor callback interface is for use in monolithic implementations, the main executor callback interface is
for use in locator-based implementations. Both callback interfaces inherit the component’s base and supported interfaces.
They also both expose the component’s attributes.

In addition, the monolithic executor callback interface also contains operations for acquiring references to facets, and for
consuming events - in the locator approach, these jobs are mediated by the locator.

An internal context interface is defined for each component. It is implemented by the container and handed to the
component as session or entity context. The context interface contains component-specific runtime information (e.g., for
pushing events into event source ports).

Component Main Executor Interface

The main executor callback interface as used by the locator approach is defined by the following rules:

1. For each component <component name>, a local main executor interface with the same name as the component, but
with a prefix of “CCM_” and a postfix of “_Executor” is defined.

2. The main executor interface contains all attributes declared by the component.

3. If the component has a base component with a name of <base name>, the main executor interface inherits
CCM_<base name>_Executor. If the component does not have a base, the main executor interface inherits
Components::EnterpriseComponent.

4. If the component has supported interfaces, they are inherited by the main executor interface.

If the container desires to acquire a reference to the main executor, it calls the obtain_executor operation of the
ExecutorLocator with the name parameter set to <component name>.
CORBA - Part 3: Component Model, v3.1 99

Component Monolithic Executor Interface

The monolithic executor callback interface is defined by the following rules:

1. For each component <component name>, a local monolithic executor interface with the same name as the
component and a prefix of “CCM_” is defined.

2. The monolithic executor interface contains all attributes declared by the component.

3. If the component has a base component with a name of <base name>, the monolithic executor interface inherits
CCM_<base name>. If the component does not have a base, the monolithic executor interface inherits
Components::EnterpriseComponent.

4. If the component has supported interfaces, they are inherited by the monolithic interface.

5. Additional operations are added to the monolithic interface for facets and event sinks.

6. Above rules can be satisfied by inheriting the main executor interface and adding operations for facets and event
sinks. This is an optional design choice by the container implementation.

In a service and session component, the user may optionally inherit the Components::SessionComponent interface in
the implementation of a monolithic executor in order to be notified by the container of activation and passivation. In a
process or entity component, the user may optionally inherit the Components::EntityComponent interface in the
implementation of a monolithic executor.

Component Context Interface

The context internal interface is defined by the following rules:

1. For each component <component name>, a local context interface with the same name as the component, but with a
prefix of “CCM_” and a postfix of “_Context” is defined.

2. If the component has a base component with a name of <base name>, the context interface inherits
CCM_<base name>_Context. If the component does not have a base, the context interface inherits
Components::CCMContext.

3. Additional operations are added to the context interface for receptacles and event sources.

The container will implement an interface that inherits both the above context interface and either
Components::SessionContext or Components::EntityContext, depending on the type of the component. The component
implementation can narrow the Components::SessionContext or Components::EntityContext reference that it receives
to the above component-specific context interface.

8.3.3.4 Example

For the following component declaration in IDL,

interface Hello {
void sayHello ();

};

component HelloWorld supports Hello {
attribute string message;

};
100 CORBA - Part 3: Component Model, v3.1

the following local interfaces are generated:

local interface CCM_Hello : Hello
{
}

local interface CCM_HelloWorld_Executor :
Components::EnterpriseComponent, Hello

{
attribute string message;

};

local interface CCM_HelloWorld :
Components::EnterpriseComponent, Hello

{
attribute string message;

};

local interface CCM_HelloWorld_Context :
Components::CCMContext

{
};

Read on for further contents of these interfaces.

8.3.3.5 Ports

This sub clause defines equivalent operations that are added to either of the three interfaces for each port definition.

Facets

For each facet, an equivalent operation is defined in the monolithic executor interface. For a facet of name <name> and
type <type>, an operation with the same name as the facet but with a “get_” prefix is generated. This operation has an
empty parameter list and a reference of the interface’s facet executor type as return value:

CCM_<type> get_<name> ();

Users may optionally implement facet interfaces directly in the monolithic executor implementation by declaring a new
local interface that inherits both the monolithic executor interface and the facet executor, and by then returning a
reference to itself in the implementation of the above operation. Example:

// IDL
component MyComponent {

provides MyInterface MyFacet;
};

// User IDL
local interface MyComponentImpl :

CCM_MyComponent, CCM_MyInterface
{};

// C++
CCM_MyInterface_ptr
MyComponent_Impl::get_MyFacet ()
{

CORBA - Part 3: Component Model, v3.1 101

return CCM_MyInterface::_duplicate (this);
}

If the locator strategy is used, the container calls the obtain_executor operation on the ExecutorLocator with the name
parameter set to <name> in order to acquire a reference to the facet executor that matches this facet port.

Receptacles

For each receptacle, an equivalent operation is defined in the context interface. The signature of this operation depends on
whether the receptacle is simplex or multiplex.

For a simplex receptacle of name <name> and type <type>, an operation of the same name as the receptacle but with a
“get_connection_” prefix is generated. The operation has an empty parameter list, and an object reference of the
interface’s type as return value:

<type> get_connection_<name> ();

If there is no connection, this operation returns a nil reference.

For a multiplex receptacle of name <name> and type <type>, an operation of the same name as the receptacle but with a
“get_connections_” prefix is generated. The operation has an empty parameter list and a sequence of type
<name>Connections as return value (this type is defined by the client-side equivalent IDL):

<name>Connections get_connections_<name> ();

8.3.3.5.1 Publisher and Emitter

For each publisher and emitter port, an equivalent operation is defined in the context interface. For a publisher or emitter
port of name <name> and type <type>, an operation of the same name as the port but with a “push_” prefix is generated.
This operation has no return value and a single in parameter containing the event.

void push_<name> (in <type> ev);

The component may call this operation in order to push an event to the consumer (for emitter ports) or to all subscribers
(for publisher ports). The container is responsible for delivering the event.

8.3.3.5.2 Consumer

For each consumer port, an equivalent operation is defined in the monolithic executor interface. For a consumer port of
name <name> and type <type>, an operation of the same name as the port but with a “push_” prefix is generated. This
operation has no return value and a single in parameter containing the event.

void push_<name> (in <type> ev);

For component implementations that use the monolithic strategy, the container invokes this operation whenever a client
sends an event to this sink.

For component implementations that use the locator strategy, the container calls the obtain_executor operation on the
ExecutorLocator with the name parameter set to <name> in order to acquire a reference to an implementation of the
eventtype’s consumer executor interface.
102 CORBA - Part 3: Component Model, v3.1

8.3.3.6 Home

For each home, three callback interfaces are generated, similar in structure to the interfaces defined on the client side. The
three interfaces are named the Implicit, Explicit, and Main home executor.

8.3.3.6.1 Home Explicit Executor Interface

The home explicit executor callback interface is defined by the following rules:

1. For each home <home name>, a local explicit executor interface with the same name as the home, but with a prefix
of “CCM_” and a postfix of “Explicit” is defined.

2. The explicit executor interface contains all attributes and operations declared by the home.

3. If the home has a base with a name of <base name>, the explicit executor interface inherits
CCM_<base name>Explicit. If the home does not have a base, the explicit executor interface inherits
Components::HomeExecutorBase.

4. If the home has supported interfaces, they are inherited by the explicit executor interface.

5. Additional operations are added to the explicit executor interface for factories and finders, see below.

8.3.3.6.2 Home Implicit Executor Interface

The contents of the home implicit executor callback interface depend on whether the home is keyless or keyed.

8.3.3.6.3 Implicit Executor Interface for Keyless Homes

For a keyless home <home name>, a local implicit executor interface with the same name as the home, but with a prefix
of “CCM_” and a postfix of “Implicit” is defined. This interface contains a single create operation with the following
signature:

local interface CCM_<home name>Implicit {
Components::EnterpriseComponent create ()

raises (Components::CCMException);
};

The container calls the implicit create operation in order to create a new component instance. The operation can return
either a reference to a monolithic executor or to an ExecutorLocator. In the former case, the container assumes that the
monolithic strategy is used, otherwise it will use the locator strategy. The implementation may raise the CCMException
exception in order to indicate a system-level error.

8.3.3.6.4 Implicit Executor Interface for Explicitly or Implicitly Keyed Homes

For a keyed home <home name> with a key of <key type> or a keyless home <home name> that derives from a keyed
home with a key of <key type>, a local implicit executor interface with the same name as the home, but with a prefix of
“CCM_” and a postfix of “Implicit” is defined. This interface contains the following operations:

local interface CCM_<home name>Implicit {
Components::EnterpriseComponent

create (in <key type> key)
raises (Components::CCMException);

Components::EnterpriseComponent
find_by_primary_key (in <key type> key)
CORBA - Part 3: Component Model, v3.1 103

raises (Components::CCMException);
void remove (in <key_type> key)

raises (Components::CCMException);
};

The container calls the create operation in order to create a new component associated with the specified primary key
value. The operation can return either a reference to a monolithic executor or to an ExecutorLocator. In the former case,
the container assumes that the monolithic strategy is used, otherwise it will use the locator strategy. The operation may
raise the CCMException exception to indicate a system-level error.

The container calls the find_by_primary_key operation in order to find an existing component associated with the
specified primary key value. The operation shall return the same reference to a monolithic executor or to an
ExecutorLocator as it was previously returned from a create operation. The operation may raise the CCMException
exception to indicate a system-level error.

The container calls the remove operation in order to remove the component identified by the specified primary key value.
The operation may raise the CCMException exception to indicate a system-level error.

8.3.3.6.5 Home Main Executor Interface

For each home <home name>, a local main executor interface with the same name as the home and a prefix of “CCM_”
is defined. The main executor interface inherits both the implicit and explicit executor interfaces, as shown below.

local interface CCM_<home name> :
CCM_<home name>Explicit,
CCM_<home name>Implicit

{
};

The main executor interface does not have any other contents.

In the implementation of a home main executor for a service and session component, the user may optionally inherit the
Components::SessionComponent interface in order to be notified by the container of activation and passivation. In the
implementation of a home main executor for a process or entity component, the user may optionally inherit the
Components::EntityComponent interface.

Note – This structure allows implementation inheritance for the explicit interface without name clashes in the implicit
interface.

8.3.3.6.6 Factories

For each factory in the home, an operation is defined in the explicit home executor interface. This operation has the same
parameter list as the factory and the return type EnterpriseComponent. As with the home’s create operation, factories
can return either a reference to a monolithic executor or to an ExecutorLocator.

Factories are assumed to return a new component instance.

8.3.3.6.7 Finders

For each finder in the home, an operation is defined in the explicit home executor interface. This operation has the same
parameter list as the finder and the return type EnterpriseComponent. As with the home’s create operation, finders can
return either a reference to a monolithic executor or to an ExecutorLocator.
104 CORBA - Part 3: Component Model, v3.1

Finders may return existing or new component instances. If a finder decides to return an existing component instance, it
shall return the same reference to a monolithic executor or to an ExecutorLocator as it was previously returned from a
factory or from the create operation.

8.3.3.6.8 Entry Points

Some programming languages require the existence of user-provided entry points, or Home Factories. These entry points
are not part of the language mapping; they are dealt with in the Packaging and Deployment clause.

Home Factories, if required by a language mapping, shall return a reference to an instance of the home’s main executor
interface.

8.3.3.6.9 Example

The following example shows a Bank home that manages an Account component.

home Bank manages Account {
factory open (in string name);
void close (in string name);

};

In this example, the following equivalent interfaces would be generated.

local interface CCM_BankExplicit :
Components::HomeExecutorBase

{
Components::EnterpriseComponent open (in string name);
void close (in string name);

};

local interface CCM_BankImplicit :
{

Components::EnterpriseComponent create ()
raises (Components::CCMException);

};

local interface CCM_Bank :
CCM_BankExplicit,
CCM_BankImplicit

{
};

The user would then implement the CCM_Bank interface and eventually provide an entry point that creates a CCM_Bank
instance.
CORBA - Part 3: Component Model, v3.1 105

106 CORBA - Part 3: Component Model, v3.1

9 The Container Programming Model

The container is the server’s runtime environment for a CORBA component implementation. This environment is
implemented by a deployment platform such as an application server or a development platform like an IDE. A
deployment platform typically provides a robust execution environment designed to support very large numbers of
simultaneous users. A development platform would provide enough of a runtime to permit customization of CORBA
components prior to deployment but perhaps support a limited number of concurrent users. From the point of view of the
CORBA component implementation, such differences are “qualities of service” characteristics and have no effect on the
set of interfaces the component implementor can rely on. This clause is organized as follows:

• “Introduction” on page 107 introduces the programming model and defines the elements that comprise it.

The container programming model is an API framework designed to simplify the task of building a CORBA
application. Although the framework does not exclude the component developer from using any function currently
defined in CORBA, it is intended to be complete enough in itself to support a broad spectrum of applications.

• “The Server Programming Environment” on page 110 describes the programming model the component implementor
is to follow.

The programming model identifies the architectural choices which must be made to develop a CORBA component
which can be deployed in a container.

• “Server Programming Interfaces - Basic Components” on page 122 describes the interfaces seen by the component
developer.

These interfaces constitute the contract between the container provider and the component implementor. Together
with the client programming interfaces defined in the Component Model clause, which can be used by servers as
well as clients, they define the server programmer’s API.

• “The Client Programming Model” on page 141 describes the client view of a CORBA component.

The client programming model has been described previously (see the Component Model clause). This sub
clause describes the specific use of CORBA required by a client, which is NOT itself a CORBA component, to use
a CORBA component written to the server programming model described in “Server Programming Interfaces -
Basic Components” on page 122.

9.1 Introduction

The container programming model is made up of several elements:

• The external API types define the interfaces available to a component client.

• The container API type defines the API framework used by the component developer.

• The CORBA usage model defines the interactions between the container and the rest of CORBA (including the POA,
the ORB, and the CORBA services).

• The component category is the combination of the container API type (i.e., the server view) and the external API types
(i.e., the client view).

The overall architecture is depicted in Figure 9.1.
CORBA - Part 3: Component Model, v3.1 107

Figure 9.1- The Architecture of the Container Programming Model

The external API types are defined by the component IDL including the home specification. These interfaces are
righteous CORBA objects and are stored in the Interface Repository for client use.

The container API type is a framework made up of internal interfaces and callback interfaces used by the component
developer. These are defined using the new local interface declaration in IDL for specifying locality-constrained
interfaces. The container API type is selected using CIDL, which describes component implementations.

The EJB session bean and entity bean can be viewed as two examples of container API type since they offer
different sets of framework APIs to the EJB programmer. However, each of them also implies a client view (i.e., the
external API types). EJB does not define a term for the two framework API sets it supports.

The CORBA usage model is controlled by policies that specify distinct interaction patterns with the POA and a set of
CORBA services. These are defined by CIDL, augmented using XML, and used by the container factory to create a POA
when the container is created.

The component category is a specific combination of external API types and container API type used to implement an
application with the CORBA component technology.

9.1.1 External API Types

The external API types of a component are the contract between the component developer and the component client. We
distinguish between two forms of external API types: the home interface and the application interfaces.

These are analogous to the EJBHome and EJBObject interfaces of Enterprise JavaBeans.

CORBA
Component

Container

Home

Callbacks

External

C

l
i

e
n
t

P
O

A

Transactions Security Persistence Notification

ORB
108 CORBA - Part 3: Component Model, v3.1

Home interfaces support operations that allow the client to obtain references to one of the application interfaces the
component implements. From the client’s perspective, two design patterns are supported - factories for creating new
objects and finders for existing objects. These patterns are distinguished by the presence of a primarykey parameter in the
home IDL declaration.

• A home interface with a primarykey declaration supports finders and its client is a keyfull client.

• A home interface without a primarykey declaration does not support finders and its client is a keyless client. All home
types support factory operations.

9.1.2 Container API Type

The container API type defines an API framework; that is, the contract between a specific component and its container.
This specification defines two base types that define the common APIs and a set of derived types that provide additional
function. The session container API type defines a framework for components using transient object references. The
entity container API type defines a framework for components using persistent object references.

9.1.3 CORBA Usage Model

A CORBA usage model specifies the required interaction pattern between the container, the POA, and the CORBA
services. We define three CORBA usage models as part of this specification. Since all support the same set of CORBA
services, they are distinguished only by their interaction with the POA.

• stateless - which uses transient object references in conjunction with a POA servant that can support any ObjectId.

• conversational - which uses transient references in conjunction with a POA servant that is dedicated to a specific
ObjectId.

• durable - which uses persistent references in conjunction with a POA servant that is dedicated to a specific ObjectId.

It should be obvious that the fourth possibility (persistent references with a POA servant that can support any
ObjectId) makes no sense and is therefore not included.

9.1.4 Component Categories

The component categories are defined as the valid combinations of external API types, container API type, and CORBA
usage model. Table 9.1 summarizes the categories and identifies their EJB equivalent.

Table 9.1 - Definition of the Component Categories

CORBA Usage Model Container
API Type

Primary
Key

Component
Categories

EJB Bean
Type

stateless session No Service -

conversational session No Session Session

durable entity No Process -

durable entity Yes Entity Entity
CORBA - Part 3: Component Model, v3.1 109

9.2 The Server Programming Environment

The component container provides interfaces to the component. These interfaces support access to CORBA services
(transactions, security, notification, and persistence) and to other elements of the component model. This sub clause
describes the features of the container that are selected by the deployment descriptor packaged with the component
implementation. These features comprise the design decisions to be made in developing a CORBA component. Details of
the interfaces provided by the container are provided in “Server Programming Interfaces - Basic Components” on
page 122.

9.2.1 Component Containers

Containers provide the run-time execution environment for CORBA components. A container is a framework for
integrating transactions, security, events, and persistence into a component’s behavior at runtime. A container provides the
following functions for its component:

• All component instances are created and managed at runtime by its container.

• Containers provide a standard set of services to a component, enabling the same component to be hosted by different
container implementations.

Components and homes are deployed into containers with the aid of container specific tools. These tools generate
additional programming language and metadata artifacts needed by the container. The tools provide the following
services:

• Editing the configuration metadata,

• editing the deployment metadata, and

• generating the implementations needed by the containers to support the component.

The container framework defines two forms of interfaces:

• Internal interfaces - These are locality-constrained interfaces defined as local interface types, which provide
container functions to the CORBA component.

These are similar to the EJBContext interface in Enterprise JavaBeans.

• Callback interfaces - These are also local interface types invoked by the container and implemented by a CORBA
component.

These interfaces provide functions analogous to the SessionBean and EntityBean interfaces defined by Enterprise
JavaBeans.

This architecture is depicted in Figure 9.1 on page 108.

We define a small set of container API types to support a broad spectrum of component behavior with their associated
internal and callback interfaces as part of this specification. These container API types are defined using local
interfaces.

Additional component behavior is controlled by policies specified in the deployment descriptor. This specification defines
policies that support POA interactions (CORBA usage model), servant lifetime management, transactions, security,
events, and persistence.
110 CORBA - Part 3: Component Model, v3.1

CORBA containers are designed to be used as Enterprise JavaBeans containers. This allows a CORBA infrastructure to
be the foundation of EJB, enabling a more robust implementation of the EJB specification. To support enterprise Beans
natively within a CORBA container, the container must support the API frameworks defined by the EJB specification.
This architecture is defined in the Integrating with Enterprise JavaBeans clause of this specification.

9.2.2 CORBA Usage Model

The CORBA Component Specification defines a set of CORBA usage models that create either TRANSIENT or
PERSISTENT object references and use either a 1:1 or 1:N mapping of Servant to ObjectId. These CORBA usage models
are summarized in Table 9.2. A given component implementation shall support one and only one CORBA usage model.

A CORBA usage model is specified using CIDL and is used to either create or select a component container at
deployment time.

9.2.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by operations on the home interface defined
in the component declaration.

PERSISTENT objects support either the factory design pattern or the finder design pattern, depending on the component
category. PERSISTENT objects support self-managed or container-managed persistence. PERSISTENT objects can be
used with the CORBA persistent state service or any user-defined persistence mechanism. When the CORBA persistent
state service is used, servant management is aligned with the PersistentId defined by the CORBA persistent state service
and the container supports the transformation of an ObjectId to and from a PersistentId. A PersistentId provides a
persistent handle for a class of objects whose permanent state resides in a persistent store (e.g., a database).

Home references are exported for client use by registering them with a HomeFinder which the client subsequently
interrogates or by binding them to the CORBA naming service in the form of externally visible names.

EJB clients find references to EJBHome using JNDI, the Java API for CosNaming. Placing home references is
CosNaming supports both the CORBA component client and the EJB client programming models.

9.2.2.2 Servant to ObjectId Mapping

Component implementations may use either the 1:1 or 1:N mapping of Servant to ObjectId with TRANSIENT references
(stateless and conversational CORBA usage model, respectively) but may use only the 1:1 mapping with PERSISTENT
references.

• A 1:N mapping allows a Servant to be shared among all requests for the same interface and therefore requires the
object to be stateless (i.e., it has no identity).

• A 1:1 mapping binds a Servant to a specific ObjectId for an explicit servant lifetime policy (see “Servant Lifetime
Management” on page 112) and therefore is stateful.

Table 9.2 - CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping

stateless TRANSIENT 1:N

conversational TRANSIENT 1:1

durable PERSISTENT 1:1

(Invalid) PERSISTENT 1:N
CORBA - Part 3: Component Model, v3.1 111

9.2.2.3 Threading Considerations

CORBA components support two threading models: serialize and multithread. A threading policy of serialize means
that the component implementation is not thread safe and the container will prevent multiple threads from entering the
component simultaneously. A threading policy of multithread means that the component is capable of mediating access
to its state without container assistance and multiple threads will be allowed to enter the component simultaneously.
Threading policy is specified in CIDL.

A threading policy of serialize is required to support an enterprise Bean since they are defined to be single-
threaded.

9.2.3 Component Factories

A home is a component factory, responsible for creating instances of all interfaces exported by a component. Factory
operations are defined on the home interface using the factory declaration. A default factory is automatically defined
whose implementation may be generated by tools using the information provided in the component IDL. Specialized
factories; for example, factories that accept user-defined input arguments must be implemented by the component
developer. Factory operations are typically invoked by clients but may also be invoked as part of the implementation of
the component. A CORBA component implementation can locate its home interface using an interface provided by the
container.

9.2.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor the behavior of the components using
information present in the component’s deployment descriptor. Once references have been exported, clients make
operation requests on the exported references. These requests are then routed by the ORB to the POA that created the
reference and then the component container. This enables the container to control activation and passivation for
components, apply policies defined in the component’s descriptor, and invoke callback interfaces on the component as
necessary.

9.2.5 Servant Lifetime Management

Servants are programming language objects that the POA uses to dispatch operation requests based on the ObjectId
contained in the object key. The server programming model for CORBA components includes facilities to efficiently
manage the memory associated with these programming objects. To implement this sophisticated memory management
scheme, the server programmer makes several design choices:

• The container API type must be chosen.

• The CORBA usage model must be chosen.

• A servant lifetime policy is selected. CORBA components support four servant lifetime policies (method,
transaction, component, and container).

• The designer is required to implement the callback interface associated with his choice.

The servant lifetime policies are defined as follows:
112 CORBA - Part 3: Component Model, v3.1

method

The method servant lifetime policy causes the container to activate the component on every operation request and to
passivate the component when that operation has completed. This limits memory consumption to the duration of an
operation request but incurs the cost of activation and passivation most frequently.

transaction

The transaction servant lifetime policy causes the container to activate the component on the first operation request
within a transaction and leave it active until the transaction completes and which point the component will be passivated.
Memory remains allocated for the duration of the transaction.

component

The component servant lifetime policy causes the container to activate the component on the first operation request and
leave it active until the component implementation requests it to be passivated. After the operation that requests the
passivation completes, the component will be passivated by the container. Memory remains allocated until explicit
application request.

container

The container servant lifetime policy causes the container to activate the component on the first operation request and
leave it active until the container determines it needs to be passivated. After the current operation completes, the
component will be passivated by the container. Memory remains allocated until the container decides to reclaim it.

Table 9.3 shows the relationship between the CORBA usage model, the container API type, and the servant lifetime
policies.

Servant lifetime policies may be defined for each segment within a component.

9.2.6 Transactions

CORBA components may support either self-managed transactions (SMT) or container-managed transactions (CMT).
A component using self-managed transactions will not have transaction policies defined with its deployment descriptor
and is responsible for transaction demarcation using either the container’s UserTransaction interface or the CORBA
transaction service. A component using container-managed transactions defines transaction policies in its associated
descriptor. The selection of container-managed transactions vs. self-managed transactions is a component-level
specification.

When container-managed transactions are selected, additional transaction policies are defined in the component’s
deployment descriptor. The container uses these descriptions to make the proper calls to the CORBA transaction service.
The transaction policy defined in the component’s deployment descriptor is applied by the container prior to invoking the
operation. Differing transaction policy declarations can be made for operations on any of the component’s ports as well as
for the component’s home interface.

Table 9.3 - Servant Lifetime Policies by Container API Type

CORBA Usage Model Container API Type Valid Servant Lifetime Policies

stateless session method

conversational session method, transaction, component, container

durable entity method, transaction, component, container
CORBA - Part 3: Component Model, v3.1 113

Table 9.4 summarizes the effects of the various transaction policy declarations and the presence or absence of a client
transaction on the transaction that is used to invoke the requested operation on the component.

not_supported

This component does not support transactions. If the client does not provide a current transaction, the operation is invoked
immediately. If the client provides a current transaction, it is suspended (CosTransactions::Current::suspend) before the
operation is invoked and resumed (CosTransactions::Current::resume) when the operation completes.

required

This component requires a current transaction to execute successfully. If one is supplied by the client, it is used to invoke
the operation. If one is not provided by the client, the container starts a transaction (CosTransactions::Current::begin)
before invoking the operation and attempts to commit the transaction (CosTransactions::Current::commit) when the
operation completes.

supports

This component will support transactions if one is available. If one is provided by the client, it is used to invoke the
operation. If one is not provided by the client, the operation is invoked outside the scope of a transaction.

requires_new

This component requires its own transaction to execute successfully. If no transaction is provided by the client, the
container starts one (CosTransactions::Current::begin) before invoking the operation and tries to commit it
(CosTransactions::Current::commit) when the operation completes. If a transaction is provided by the client, it is first
suspended (CosTransactions::Current::suspend), a new transaction is started (CosTransactions::Current::begin), the
operation invoked, the component’s transaction attempts to commit (CosTransactions::Current::commit), and the client’s
transaction is resumed (CosTransactions::Current::resume).

Table 9.4 - Effects of Transaction Policy Declaration

Transaction Attribute Client Transaction Component’s Transaction

NOT_SUPPORTED - -

T1 -

REQUIRED - T2

T1 T1

SUPPORTS - -

T1 T1

REQUIRES_NEW - T2

T1 T2

MANDATORY - EXC (TRANSACTION_REQUIRED)

T1 T1

NEVER - -

T1 EXC (INVALID_TRANSACTION)
114 CORBA - Part 3: Component Model, v3.1

mandatory

The component requires that the client be in a current transaction before this operation is invoked. If the client is in a
current transaction, it is used to invoke the operation. If not, the TRANSACTION_REQUIRED exception shall be raised.

never

This component requires that the client not be in a current transaction to execute successfully. If no current transaction
exists, the operation is invoked. If a current transaction exists, the INVALID_TRANSACTION exception shall be raised.

9.2.7 Security

Security policy is applied consistently to all categories of components. The container relies on CORBA security to
consume the security policy declarations from the deployment descriptor and to check the active credentials for invoking
operations. The security policy remains in effect until changed by a subsequent invocation on a different component
having a different policy.

Access permissions are defined by the deployment descriptor associated with the component. The granularity of
permissions must be aligned by the deployer with a set of rights recognized by the installed CORBA security mechanism
since it will be used to check permissions at operation invocation time. Access permissions can be defined for any of the
component’s ports as well as the component’s home interface.

Note – The security model used by EJB and being adopted by CORBA components requires the secure transportation of
security credentials between systems. Today that is only possible if SECIOP is used as the CORBA transport.

9.2.8 Events

CORBA components use a simple subset of the CORBA notification service to emit and consume events. The subset can
be characterized by the following attributes:

• Events are represented as valuetypes to the component implementor and the component client.

• The event data structure is mapped to an any in the body of a structured event presented to and received from CORBA
notification.

• The fixed portion of the structured event is added to the event data structure by the container on sending and removed
from the event data structure when receiving.

• Components support two forms of event generation using the push model:

• A component may be an exclusive supplier of a given type of event.

• A component may supply events to a shared channel that other CORBA notification users are also utilizing.

• A CORBA component consumes both forms of events using the push model.

• Events have transaction and security policies associated with the component’s event ports as defined in the deployment
descriptor.

• All channel management is implemented by the container, not the component.

• Filters are set administratively by the container, not the component.
CORBA - Part 3: Component Model, v3.1 115

Because events can be emitted and consumed by clients as well as component implementations, operations for emitting
and consuming events are generated from the specifications in component IDL. The container is responsible for mapping
these operations to the CORBA notification service to provide a robust event distribution network.

9.2.8.1 Transaction Policies for Events

Transaction policies are defined for component event ports, which include both events being generated and events being
consumed. The possible values are as follows:

normal

A normal event policy indicates the event should be generated or consumed outside the scope of a transaction. If a
current transaction is active, it is suspended before sending the event or invoking the operation on the proxy object
provided by the component.

default

A default event policy indicates the event should be generated or consumed regardless of whether a current transaction
exists. If a current transaction is active, the operation is transactional. If not, it is non-transactional.

transaction

A transaction event policy indicates the event should be generated or consumed within the scope of a transaction. If a
current transaction is not active, a new one is initiated before sending the event or invoking the operation on the proxy
object provided by the component. The new transaction is committed as soon as the operation is complete.

Transaction policy declarations can be defined in the deployment descriptor for each event port defined by the
component.

9.2.8.2 Security Policies for Events

CORBA components permits access control policies based on roles to be associated with the generation and consumption
of events. This is accomplished by associating ACLs with the component ports used to emit/publish and consume events
and using CORBA security to restrict access. These policies provide access control based on role for both event
generation and consumption.

9.2.9 Persistence

The entity container API type supports the use of a persistence mechanism for making component state durable; for
example, storing it in a persistent store like a database. The entity container API type defines two forms of persistence
support:

• container-managed persistence (CMP) - the component developer simply defines the state that is to be made
persistent and the container (in conjunction with generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state associated with a component segment
using the state declaration language of the CORBA persistent state service and connecting that state declaration to
a component segment using CIDL.

• self-managed persistence (SMP) - the component developer assumes the responsibility for saving and restoring state
when requested to do so by the container.
116 CORBA - Part 3: Component Model, v3.1

Self-managed persistence is selected via CIDL declaration and triggered by the container invoking the callback
interfaces (which the component must implement) defined later in this clause (“Server Programming Interfaces -
Basic Components” on page 122).

Table 9.5 summarizes the choices and their required responsibilities.

Container-managed vs. self-managed persistence is selected via the deployment descriptor for each segment of the
component.

9.2.9.1 Container-managed Persistence

Container-managed persistence may be accomplished using the CORBA persistent state service or any user-defined
persistence mechanism. When the CORBA persistent state service is used, the container manages all interactions with the
persistence provider and the component developer need not use the persistence interfaces offered by the container. With
container-managed persistence using the CORBA persistent state service, it is possible to provide automatic code
generation for the storage factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persistence mechanism, the component
developer must implement the various persistence classes defined in the persistence framework.

Container-managed persistence is selected using CIDL and tailored using XML at deployment time to specify connections
to specific persistence providers and persistent stores.

9.2.9.2 Self-managed Persistence

Self-managed persistence is also supported by the entity container API type. Like container-managed persistence, the
component developer has two choices: to use the CORBA persistent state service or some user-defined persistence
mechanism. But since no declarations are available to support code generation, the component developer is responsible
for implementing both the callback interfaces and the persistence classes. The container supports access to a component
persistence abstraction provided by the CORBA persistent state service, which hides many of the details of the underlying
persistence mechanism from the component developer.

Self-managed persistence is selected using CIDL and tailored using XML at deployment time to specify connections to
specific persistence providers and persistent stores.

9.2.10 Application Operation Invocation

The application operations of a component can be specified on both the component’s supported interfaces and the
provided interfaces. These operations are normal CORBA object invocations.

Table 9.5 - Persistence Support for Entity Container API Type

Persistence
Support

Persistence
Mechanism

Responsibility Persistence Classes Callback Interfaces

Container Managed CORBA Container Generated Code Generated Code

Container Managed User Container Component implements Generated Code

Self-managed CORBA Component Generated Code Component implements

Self-managed User Component Component implements Component implements
CORBA - Part 3: Component Model, v3.1 117

Application operations may raise exceptions, both application exceptions (i.e., those defined as part of the IDL interface
definition) and system exceptions (those that are not). Exceptions defined as part of the IDL interfaces defined for a
component (that includes both provided interfaces and supported interfaces) are raised back to the client directly and do
not affect the current transaction. All other exceptions raised by the application are intercepted by the container which
then raises the TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active. Otherwise they are
reported back to the client directly.

9.2.11 Component Implementations

A component implementation consists of one or more executors. Each executor describes the implementation
characteristics of a particular component segment. The session container API type consists of a single executor with a
single segment that is activated in response to an operation request on any component facet. The entity container API type
can be made up of multiple segments, each of which is associated with a different abstract state declaration. Each segment
is independently activated when an operation request on a facet associated with that segment is received.

9.2.12 Component Levels

The CORBA component specification defines two levels of component function that can be used by component
developers and supported by CORBA container providers:

• basic - The basic CORBA component supports a single interface (or multiple interfaces related by inheritance) and
does not define any ports (provided interfaces or event source/sinks). The implementation of a basic component may
use transaction, security, and simple persistence (i.e., a single segment) and relies on its container to manage the
construction of CORBA object references.

The basic component is functionally equivalent to the EJB 1.1 Component Architecture.

• extended - The extended component is a basic component with multiple ports (supported interfaces, provided
interfaces and/or event source/sinks). The implementation of the extended component may use all basic function,
advanced persistence (multiple segments) plus the event model and participates in the construction of component
object references.

The component interfaces defined in this specification have been structured into functional modules corresponding to the
two levels of components defined above.

• Basic container APIs are defined in “Server Programming Interfaces - Basic Components” on page 122.

• Extended container APIs are defined in “Server Programming Interfaces - Extended Components” on page 132.

Partitioning the component function into two discrete packages permits the EJB 1.1 APIs to be used to implement
basic CORBA components in Java. It also supports the construction of CORBA components in any supported
CORBA language that can be accessed by EJB clients. This is described further in the “Integrating with Enterprise
JavaBeans" clause.

9.2.13 Component Categories

As indicated in “Component Categories” on page 109, this specification defines four component categories whose
behavior is specified by the two container API types. Additionally we reserve a component category to describe the
empty container (i.e., a container API type that does not use one of the API frameworks defined in this specification). The
four component categories are described briefly in the following sub clauses. The component categories are independent
of the component levels defined in “Component Levels” on page 118.
118 CORBA - Part 3: Component Model, v3.1

9.2.13.1 The Service Component

The service component is a CORBA component with the following properties:

• no state

• no identity

• behavior

The lifespan of a service component is equivalent to the lifetime of a single operation request (i.e., method) so it is useful
for functions such as command objects that have no duration beyond the lifetime of a single client interaction with them.
A service component can also be compared to a traditional TP monitor program like a Tuxedo service or a CICS
transaction. A service component provides a simple way of wrapping existing procedural applications.

A service component is equivalent to a stateless EJB session bean.

Table 9.6 summarizes the characteristics of a service component as seen by the server programmer.

Because of its absence of state, any programming language servant can service any ObjectId, enabling such servants to be
managed as a pool or dynamically created as required, depending on usage patterns. Because a service component has no
identity, ObjectIds can be managed by the POA, not the component implementor, and the client sees only the factory
design pattern.

The service component can use either container-managed or self-managed transactions.

9.2.13.2 The Session Component

The session component is a CORBA component with the following properties:

• transient state

• identity (which is not persistent)

• behavior

Table 9.6 - Service Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces SessionComponent

CORBA Usage Model stateless

External API Types keyless

Client Design Pattern Factory

Persistence No

Servant Lifetime Policy method

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional

Executor Single segment with a single servant and no managed storage
CORBA - Part 3: Component Model, v3.1 119

The lifespan of a session component is specified using the servant lifetime policies defined in “Servant Lifetime
Management” on page 112. A session component (with a transaction lifetime policy) is similar to an MTS component
and is useful for modeling things like iterators, which require transient state for the lifetime of a client interaction but no
persistent store. A session component is equivalent to the stateful session bean found in EJB.

Table 9.7 summarizes the characteristics of a session component as seen by the server programmer.

A programming language servant is allocated to an ObjectId for the duration of the servant lifetime policy specified. At
that point, the servant can be returned to a pool and re-used for a different ObjectId. Alternatively, servants may be
dynamically created as required, depending on usage patterns. Because a session component has no persistent identity,
ObjectIds can be managed by the container, however extended components may choose to participate in creating
references if desired, and the client sees only the factory design pattern.

The session component shall use either container-managed or self-managed transactions.

9.2.13.3 The Process Component

The process component is a CORBA component with the following properties:

• Persistent state, which is not visible to the client and is managed by the process component implementation or the
container.

• Persistent identity, which is managed by the process component and can be made visible to the client only through
user-defined operations.

• Behavior, which may be transactional.

The process component is intended to model objects that represent business processes (e.g., applying for a loan, creating
an order, etc.) rather than entities (e.g., customers, accounts, etc.). The major difference between process components and
entity components is that the process component does not expose its persistent identity to the client (except through user-
defined operations).

Table 9.7 - Session Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus

SessionContext (basic)

Session2Context (extended)

Callback Interfaces SessionComponent plus (optionally)

SessionSynchronization

CORBA usage model conversational

Client Design Pattern Factory

External API Types keyless

Persistence No

Servant Lifetime Policy Any

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional

Executor Single segment with a single servant and no managed storage
120 CORBA - Part 3: Component Model, v3.1

Table 9.8 summarizes the characteristics of process component as seen by the server programmer.

A process component may have transactional behavior. The container will interact with the CORBA transaction service to
participate in the commit process. The process component shall use container-managed transactions. This is identical to
the EJB restriction for Entity Beans.

The process component can use container-managed or self-managed persistence using either the CORBA persistent
state service or a user-defined persistence mechanism. The implications of the various choices are described in
“Persistence” on page 116. The entity container uses callback interfaces, which enable the process component’s
implementation to retrieve and save state data at activation and passivation respectively.

9.2.13.4 The Entity Component

The entity component is a CORBA component with the following properties:

• Persistent state, which is visible to the client and is managed by the entity component implementation or the container.

• Identity, which is architecturally visible to its clients through a primarykey declaration.

• Behavior, which may be transactional.

As a fundamental part of the architecture, entity components expose their persistent state to the client as a result of
declaring a primarykey value on their home declaration. The entity component may be used to implement the entity bean
in EJB.

Table 9.8 - Process Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in component IDL

Internal Interfaces Base set plus

EntityContext (basic)

Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory

External API Types keyless

Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated managed storage
CORBA - Part 3: Component Model, v3.1 121

Table 9.9 summarizes the characteristics of entity component as seen by the server programmer:

The entity component shall use container-managed transactions. The container shall interact with the CORBA transaction
service to participate in the commit process. This is identical to the EJB restriction for Entity Beans.

The entity component can use container-managed or self-managed persistence using either the CORBA persistent state
service or a user-defined persistence mechanism. The implications of the various choices are described in “Persistence”
on page 116. The entity container uses callback interfaces that enable the entity component’s implementation to retrieve
and save state data at activation and passivation, respectively.

9.3 Server Programming Interfaces - Basic Components

This sub clause defines the local interfaces used and provided by the component developer for basic components. These
interfaces are then grouped as follows:

• Interfaces common to both container API types.

• Interfaces supported by the session container API type only.

• Interfaces supported by the entity container API type only.

Unless otherwise indicated, all of these interfaces are defined within the Components module.

9.3.1 Component Interfaces

All components deal with three sets of interfaces:

• Internal interfaces that are used by the component developer and provided by the container to assist in the
implementation of the component’s behavior.

• External interfaces that are used by the client and implemented by the component developer.

• Callback interfaces that are used by the container and implemented by the component, either in generated code or
directly, in order for the component to be deployed in the container.

Table 9.9 - Entity Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base set plus

EntityContext (basic)

Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory or Finder

External API Types keyfull

Persistence Self-managed with or without PSS or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated managed storage
122 CORBA - Part 3: Component Model, v3.1

A container API type defines a base set of internal interfaces which the component developers use in their
implementation. These interfaces are then augmented by others that are unique to the component category being
developed.

• CCMContext - serves as a bootstrap and provides accessors to the other internal interfaces including access to the
runtime services implemented by the container.

Each container API type has its own specialization of CCMContext, which we refer to as a context.

• UserTransaction - wraps the demarcation subset of the CORBA transaction service required by the application
developer.

• EnterpriseComponent - the base class that all callback interfaces derive from.

All components implement a callback interface that is determined by the component category. It serves the same
role as EnterpriseBean in EJB.

When a component instance is instantiated in a container, it is passed a reference to its context, a local interface used to
invoke services. For basic components, these services include transactions and security. The component uses this
reference to invoke operations required by the implementation at runtime beyond what is specified in its deployment
descriptor.

9.3.2 Interfaces Common to both Container API Types

This sub clause describes the interfaces and operations provided by both container API types to support all categories of
CORBA components.

9.3.2.1 The CCMContext Interface

The CCMContext is an internal interface that provides a component instance with access to the common container-
provided runtime services applicable to both container API types. It serves as a “bootstrap” to the various services the
container provides for the component.

The CCMContext provides the component access to the various services provided by the container. It enables the
component to simply obtain all the references it may require to implement its behavior.

typedef SecurityLevel2::Credentials Principal; exception IllegalState { };

local interface CCMContext {
Principal get_caller_principal();
CCMHome get_CCM_home();
boolean get_rollback_only() raises (IllegalState);
Transaction::UserTransaction get_user_transaction()

raises (IllegalState);
boolean is_caller_in_role (in string role);
void set_rollback_only() raises (IllegalState);

};

get_caller_principal

The get_caller_principal operation obtains the CORBA security credentials in effect for the caller. Security on the server
is primarily controlled by the security policy in the deployment descriptor for this component. The component may use
this operation to determine the credentials associated with the current client invocation.
CORBA - Part 3: Component Model, v3.1 123

get_CCM_home

The get_CCM_home operation is used to obtain a reference to the home interface. The home is the interface that supports
factory and finder operations for the component and is defined by the home declaration in component IDL.

get_rollback_only

The get_rollback_only operation is used by a component to test if the current transaction has been marked for rollback.
The get_rollback_only operation returns TRUE if the transaction has been marked for rollback, otherwise it returns
FALSE. If no transaction is active, the IllegalState exception shall be raised. When get_rollback_only is issued by a
component, it results in a CosTransaction::Current::get_status being issued to the CORBA transaction service and the
status value returned being tested for the MARKED_ROLLBACK state.

get_user_transaction

The get_user_transaction operation is used to access the Transaction::UserTransaction interface. The UserTransaction
interface is used to implement self-managed transactions. The IllegalState exception shall be raised if this component is
using container-managed transactions.

is_caller_in_role

The is_caller_in_role operation is used by the CORBA component to compare the current credentials to the credentials
defined by the role parameter. If they match, TRUE is returned. If not, FALSE is returned.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing transaction for abnormal termination. If no
transaction is active, the IllegalState exception shall be raised. When set_rollback_only is issued by a component, it
results in a CosTransaction::Current::rollback_only being issued to the CORBA transaction service. The rules for the
use of this operation are equivalent to the rules of its corresponding CORBA transaction service operation.

9.3.2.2 The Home Interface

A home is an external interface that supports factory and finder operations for the component. These operations are
generated from the home IDL declaration (see “Homes” on page 32). The context supports an operation
(get_CCM_home) to obtain a reference to the component’s home interface.

9.3.2.3 The UserTransaction Interface

A CORBA component may use either container-managed or self-managed transactions, depending on the component
category. With container-managed transactions, the component implementation relies on the transaction policy
declarations packaged with the deployment descriptor and contains no transaction APIs in its implementation code.

This is identical to container-managed transactions in EJB or the default processing of an MTS component.

A component specifying self-managed transactions may use the CORBA transaction service directly to manipulate the
current transaction or it may choose to use a simpler API, defined by this specification, which exposes only those
transaction demarcation functions needed by the component implementation.

Manipulation of the current transaction shall be consistent between the client, the transaction policy specified in the
deployment descriptor, and the component implementation.

For example, if the client or the container starts a transaction, the component may not end it (commit or rollback).
124 CORBA - Part 3: Component Model, v3.1

The rules to be used are defined by the CORBA transaction service.

If the component uses the CosTransactions::Current interface, all operations defined for Current may be used as defined
by the CORBA transaction service with the following exceptions:

• The Control object returned by suspend may only be used with resume.

• Operations on Control are not supported with CORBA components and may raise the NO_IMPLEMENT system
exception.

The Control interface in the CORBA transaction service supports accessors to the Coordinator and Terminator
interfaces. The Coordinator is used to build object versions of XA resource managers. The Terminator is used to
allow a transaction to be ended by someone other than the originator. Since neither function is within the scope of
the demarcation subset of CORBA transactions used with CORBA components, we allow CORBA transaction
services implementations used with CORBA components to raise the NO_IMPLEMENT exception. This provides
the same level of function as the bean-managed transaction policy in Enterprise JavaBeans.

The UserTransaction is an internal interface implemented by the container and is defined within its own module,
Transaction, within the Components module (Components::Transaction). Because the UserTransaction is a wrapper
over CosTransactions::Current, it is thread specific. The UserTransaction exposes a simple demarcation subset of the
CORBA transaction service to the component. The context supports an operation (get_user_transaction) to obtain a
reference to the UserTransaction interface. The UserTransaction interface is defined by the following IDL.

typedef sequence<octet> TranToken;
exception NoTransaction { };
exception NotSupported { };
exception SystemError { };
exception RollbackError { };
exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };
exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK
};

local interface UserTransaction {
void begin () raises (NotSupported, SystemError);
void commit () raises (RollbackError , NoTransaction,

HeuristicMixed, HeuristicRollback,
Security, SystemError);

void rollback () raises (NoTransaction, Security, SystemError);
void set_rollback_only () raises (NoTransaction, SystemError);
Status get_status() raises (SystemError);
void set_timeout (in long to) raises (SystemError);
TranToken suspend () raises (NoTransaction, SystemError);
void resume (in TranToken txtoken)
CORBA - Part 3: Component Model, v3.1 125

raises (InvalidToken, SystemError);
};

begin

The begin operation is used by a component to start a new transaction and associate it with the current thread. When
begin is issued by a component, it results in a CosTransaction::Current::begin with report_heuristics set to TRUE
being issued to the CORBA transaction service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. The NotSupported exception is returned if it is received from the
CORBA transaction service. Since nested transactions are not supported by CORBA component containers, this indicates
an attempt to start a new transaction when an existing transaction is active. All other exceptions are converted to the
SystemError exception.

commit

The commit operation is used by a component to terminate an existing transaction normally. When commit is issued by a
component, it results in a CosTransaction::Current::commit being issued to the CORBA transaction service. The rules
for the use of this operation are equivalent to the rules of its corresponding CORBA transaction service operation. If no
transaction is active, the NoTransaction exception shall be raised. If the TRANSACTION_ROLLEDBACK system
exception is returned, it is converted to the RollbackError exception. The CosTransaction::HeuristicMixed and
CosTransaction::HeuristicRollback exceptions are reported as the HeuristicMixed and HeuristicRollback exceptions
respectively. The NO_PERMISSION system exception is converted to the Security exception. All other exceptions are
converted to the SystemError exception.

rollback

The rollback operation is used by a component to terminate an existing transaction abnormally. When rollback is issued
by a component, it results in a CosTransaction::Current::rollback being issued to the CORBA transaction service. The
rules for the use of this operation are equivalent to the rules of its corresponding CORBA transaction service operation. If
no transaction is active, the NoTransaction exception shall be raised. The NO_PERMISSION system exception is
converted to the Security exception. All other exceptions are converted to the SystemError exception.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing transaction for abnormal termination. When
set_rollback_only is issued by a component, it results in a CosTransaction::Current::rollback_only being issued to the
CORBA transaction service. The rules for the use of this operation are equivalent to the rules of its corresponding
CORBA transaction service operation. If no transaction is active, the NoTransaction exception shall be raised. All other
exceptions shall be converted to the SystemError exception.

get_status

The get_status operation is used by a component to determine the status of the current transaction. If no transaction is
active, it returns the NoTransaction status value. Otherwise it returns the state of the current transaction. When
get_status is issued by a component, it results in a CosTransaction::Current::get_status being issued to the CORBA
transaction service. The status values returned by this operation are equivalent to the status values of its corresponding
CORBA transaction service operation. All exceptions shall be converted to the SystemError exception.
126 CORBA - Part 3: Component Model, v3.1

set_timeout

The set_timeout operation is used by a component to associate a time-out value with the current transaction. The timeout
value (to) is specified in seconds. When set_timeout is issued by a component, it results in a
CosTransaction::Current::set_timeout being issued to the CORBA transaction service. The rules for the use of this
operation are equivalent to the rules of its corresponding CORBA transaction service operation. All exceptions are
converted to the SystemError exception.

suspend

The suspend operation is used by a component to disconnect an existing transaction from the current thread. The
suspend operation returns a TranToken, which can only be used in a subsequent resume operation. When suspend is
issued by a component, it results in a CosTransaction::Current::suspend being issued to the CORBA transaction service.
The rules for the use of this operation are more restrictive than the rules of its corresponding CORBA transaction service
operation:

• Only one transaction may be suspended.

• The suspended transaction is the only transaction that may be resumed.

If no transaction is active, the NoTransaction exception shall be raised. All other exceptions are converted to the
SystemError exception.

resume

The resume operation is used by a component to reconnect a transaction previously suspended to the current thread. The
TranToken identifies the suspended transaction that is to be resumed. If the transaction identified by TranToken has not
been suspended, the InvalidToken exception shall be raised. When resume is issued by a component, it results in a
CosTransaction::Current::resume being issued to the CORBA transaction service. The rules for the use of this operation
are more restrictive than the rules of its corresponding CORBA transaction service operation since the single suspended
transaction is the only transaction that may be resumed. All other exceptions are converted to the SystemError exception.

The UserTransaction interface is equivalent to the UserTransaction interface
(javax.transaction.UserTransaction) in EJB with the addition of the suspend and resume operations.

9.3.2.4 The EnterpriseComponent Interface

All CORBA components must implement an interface derived from the EnterpriseComponent interface to be housed in
a component container. EnterpriseComponent is a callback interface that defines no operations.

local interface EnterpriseComponent { };

9.3.3 Interfaces Supported by the Session Container API Type

This sub clause describes the interfaces supported by the session container API type. This includes both internal
interfaces provided by the container and callback interfaces, which must be implemented by components deployed in this
container API type.

9.3.3.1 The SessionContext Interface

The SessionContext is an internal interface that provides a component instance with access to the container-provided
runtime services. It serves as a “bootstrap” to the various services the container provides for the component. The
SessionContext enables the component to simply obtain all the references it may require to implement its behavior.
CORBA - Part 3: Component Model, v3.1 127

exception IllegalState { };

local interface SessionContext : CCMContext {
Object get_CCM_object() raises (IllegalState);

};

get_CCM_object

The get_CCM_object operation is used to get the reference used to invoke the component. For basic components, this will
always be the component reference. For extended components, this will be a specific facet reference. If this operation is
issued outside of the scope of a callback operation, the IllegalState exception is returned.

9.3.3.2 The SessionComponent Interface

The SessionComponent is a callback interface implemented by a session CORBA component. It provides operations for
disassociating a context with the component and to manage servant lifetimes for a session component.

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {CCMExceptionReason reason;};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)

raises (CCMException);
void ccm_activate() raises (CCMException);
void ccm_passivate() raises (CCMException);
void ccm_remove () raises (CCMException);

};

set_session_context

The set_session_context operation is used to set the SessionContext of the component. The container calls this
operation after a component instance has been created. This operation is called outside the scope of an active transaction.
The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a
system level error.

ccm_activate

The ccm_activate operation is called by the container to notify a session component that it has been made active. The
component instance should perform any initialization required prior to operation invocation. The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

ccm_passivate

The ccm_passivate operation is called by the container to notify a session component that it has been made inactive. The
component instance should release any resources it acquired at activation time. The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system level error.
128 CORBA - Part 3: Component Model, v3.1

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be destroyed. It informs the component
that it is about to be destroyed. The component may raise the CCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

9.3.3.3 The SessionSynchronization Interface

The SessionSynchronization interface is a callback interface that may optionally be implemented by the session
component. It permits the component to be notified of transaction boundaries by its container.

exception CCMException {CCMExceptionReason reason;};

local interface SessionSynchronization {
void after_begin () raises (CCMException);
void before_completion () raises (CCMException);
void after_completion (
in boolean committed) raises (CCMException);

};

after_begin

The after_begin operation is called by the container to notify a session component that a new transaction has started, and
that the subsequent operations will be invoked in the context of the transaction.The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

before_completion

The before_completion operation is called by the container just prior to the start of the two-phase commit protocol. The
container implements the CosTransactions::Synchronization interface of the CORBA transaction service and invokes
the before_completion operation on the component before starting its own processing. The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

after_completion

The after_completion operation is called by the container after the completion of the two-phase commit protocol. If the
transaction has committed, the committed value is set to TRUE. If the transaction has been rolled back, the committed
value is set to FALSE. The container implements the CosTransactions::Synchronization interface of the CORBA
transaction service and invokes the after_completion operation on the component after completing its own processing.
The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a
system level error.

9.3.4 Interfaces Supported by the Entity Container API Type

This sub clause describes the interfaces supported by the entity container API type. This includes both internal interfaces
provided by the container and callback interfaces that must be implemented by components deployed in this container
API type.

9.3.4.1 The EntityContext Interface

The EntityContext is an internal interface that provides a component instance with access to the container-provided
runtime services. It serves as a “bootstrap” to the various services the container provides for the component.
CORBA - Part 3: Component Model, v3.1 129

The EntityContext enables the component to simply obtain all the references it may require to implement its behavior.

exception IllegalState { };

local interface EntityContext : CCMContext {
Object get_CCM_object () raises (IllegalState);
PrimaryKeyBase get_primary_key () raises (IllegalState);

};

get_CCM_object

The get_CCM_object operation is used to obtain the reference used to invoke the component. For basic components, this
will always be the component reference. For extended components, this will be a specific facet reference. If this operation
is issued outside of the scope of a callback operation, the IllegalState exception is returned.

get_primary_key

The get_primary_key operation is used by an entity component to access the primary key value declared for this
component’s home. This operation is equivalent to issuing the same operation on the component’s home interface. If this
operation is issued outside of the scope of a callback operation, the IllegalState exception is returned.

9.3.4.2 The EntityComponent Interface

The EntityComponent is a callback interface implemented by both process and entity components. It contains operations
to manage the persistent state of the component.

Note – As currently defined, any operation request will cause the container to activate the component segment, if
required. Since the component reference is well-structured, we could consider the possibility of trapping navigation
operations prior to activation and executing them without actually activating the component (or we could leave that to
clever implementations).

exception CCMException {CCMExceptionReason reason;};

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)

raises (CCMException);
void unset_entity_context ()raises (CCMException);
void ccm_activate () raises (CCMException);
void ccm_load ()raises (CCMException);
void ccm_store ()raises (CCMException);
void ccm_passivate ()raises (CCMException);
void ccm_remove ()raises (CCMException);
};

set_entity_context

The set_entity_context operation is used to set the EntityContext of the component. The container calls this operation
after a component instance has been created. This operation is called outside the scope of an active transaction. The
component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system
level error.
130 CORBA - Part 3: Component Model, v3.1

unset_entity_context

The unset_entity_context operation is used to remove the EntityContext of the component. The container calls this
operation just before a component instance is destroyed. This operation is called outside the scope of an active
transaction. The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure
caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify the component that it has been made active. For most
CORBA component implementations, no action is required. The component instance should perform any initialization
(other than establishing its state) required prior to operation invocation. This operation is called within an unspecified
transaction context. The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_load

The ccm_load operation is called by the container to instruct the component to synchronize its state by loading it from its
underlying persistent store. When container-managed persistence is implemented using the CORBA persistent state
service, this operation can be implemented in generated code. If self-managed persistence is being used, the component is
responsible for locating its state in a persistent store. This operation executes within the scope of the current transaction.
The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a
system level error.

ccm_store

The ccm_store operation is called by the container to instruct the component to synchronize its state by saving it in its
underlying persistent store. When container-managed persistence is implemented using the CORBA persistent state
service, this operation can be implemented in generated code. If self-managed persistence is being used, the component is
responsible for saving its state in the persistent store. This operation executes within the scope of the current transaction.
The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a
system level error.

ccm_passivate

The ccm_passivate operation is called by the container to notify the component that it has been made inactive. For most
CORBA component implementations, no action is required. The component instance should perform any termination
processing (other than saving its state) required prior to being passivated. This operation is called within an unspecified
transaction context. The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be destroyed. It informs the component
that it is about to be destroyed. This operation is always called outside the scope of a transaction. The component raises
the CCMException with the REMOVE_ERROR minor code if it does not allow the destruction of the component. The
component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a system
level error.

The EntityComponent interface is equivalent to the EntityBean interface in Enterprise JavaBeans. Container-
managed persistence with the CORBA persistent state service supports automatic code generation for ccm_load
and ccm_store. For self-managed persistence, the component implementor provides the ccm_load and ccm_store
CORBA - Part 3: Component Model, v3.1 131

methods. Since both process and entity components have persistent state and container-managed persistence, the
same callback interfaces can be used.

9.4 Server Programming Interfaces - Extended Components

This sub clause defines the local interfaces used and provided by the component developer for extended components.
These interfaces are grouped as in “Server Programming Interfaces - Basic Components” on page 122. Unless otherwise
indicated, all of these interfaces are defined within the Components module. Extended components add interfaces in the
following areas:

• CCM2Context - adds functions unique to extended components.

Each container API type has its own specialization of CCM2Context that we refer to as a context. The context for
extended components adds accessors to persistence services and supports operations for managing servant lifetime
policy, and creating and managing object references in conjunction with the POA.

• ComponentId - encapsulates a component identifier, which is an abstract information model used to locate the
component’s state.

Only the entity container API type supports the ComponentId interface.

9.4.1 Interfaces Common to both Container API Types

This sub clause describes the interfaces and operations provided for extended components by both container API types
to support all categories of CORBA components.

9.4.1.1 The CCM2Context Interface

The CCM2Context is an internal interface that extends the CCMContext interface to provide the extended component
instance with access to additional container-provided runtime services applicable to both container API types. These
services include advanced persistence using the CORBA Persistent State service, and runtime management of component
references and servants using the POA. The CCM2Context is defined by the following IDL:

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState::TypeId TypeId;

exception PolicyMismatch { };
exception PersistenceNotAvailable { };
local interface CCM2Context : CCMContext {

HomeRegistration get_home_registration ();
void req_passivate () raises (PolicyMismatch);

CatalogBase get_persistence (in TypeId catalog_type_id)
raises (PersistenceNotAvailable);

};

get_home_registration

The get_home_registration operation is used to obtain a reference to the HomeRegistration interface. The
HomeRegistration is used to register component homes so they may be located by the HomeFinder.
132 CORBA - Part 3: Component Model, v3.1

req_passivate

The req_passivate operation is used by the component to inform the container that it wishes to be passivated when its
current operation completes. To be valid, the component must have a servant lifetime policy of component or container.
If not, the PolicyMismatch exception shall be raised.

get_persistence

The get_persistence operation provides the component access to a persistence framework provided by an implementation
of the CORBA Persistence State service. It returns a CosPersistentState::CatalogBase, which serves as an index to the
available storage homes. The CatalogBase is identified by its CosPersistentState::TypeId catalog_type_id. If the
CatalogBase identified by catalog_type_id is not available on this container, the PersistenceNotAvailable exception
shall be raised.

9.4.1.2 The HomeRegistration Interface

The HomeRegistration is an internal interface that may be used by the CORBA component to register its home so it can
be located by a HomeFinder.

The HomeRegistration interface allows a component implementation to advertise a home instance that can be
used to satisfy a client’s find_home request. It may also be used by an administrator to do the same thing. It is likely
that the combination of HomeRegistration and HomeFinder interfaces will work within the domain of a single
container provider unless multiple implementations use other shareable directory mechanisms (e.g., an LDAP
global directory). Federating HomeFinders is a similar problem to federating CORBA security domains and we
defer to the security people for an architecture for such federation rather than attempting to specify such an
architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local interface HomeRegistration {
void register_home (

in CCMHome home_ref,
in string home_name);

void unregister_home (in CCMHome home_ref);
};

register_home

The register_home operation is used to register a component home with the HomeFinder so it can be located by a
component client. The home_ref parameter identifies the home being registered and can be used to obtain both the
CORBA::ComponentIR::ComponentDef (CCMHome::get_component_def) and the CORBA::InterfaceDef
(CORBA::Object::get_interface_def) to support both HomeFinder::find_home_by_component_type and
HomeFinder::find_home_by_home_type. The home_name parameter identifies an Interoperable Naming Service (INS)
name that can be used as input to the HomeFinder::find_home_by_name operation. If the home_name parameter is
NULL, no name is associated with this home so this home cannot be retrieved by name.

unregister_home

The unregister_home operation is used to remove a component home from the HomeFinder. Once unregister_home
completes, a client will never be returned a reference to the home specified as being unregistered. The home_ref
parameter identifies the home being unregistered.
CORBA - Part 3: Component Model, v3.1 133

9.4.1.3 The ProxyHomeRegistration Interface

Because CORBA components exploit the dynamic activation features of the POA, it is possible for some component
types to provide a home that is not collocated with the component instances it creates. This permits load balancing criteria
to be applied in selecting the actual server and POA where this instance will be created. The ProxyHomeRegistration is
an internal interface, derived from HomeRegistration, which can be used by the CORBA component to register a remote
home (i.e., one that is not collocated with the component) so it can be returned by a HomeFinder. The
ProxyHomeRegistration interface is defined by the following IDL:

exception UnknownActualHome { };
exception ProxyHomeNotSupported { };

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy_home (

in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

};

register_proxy_home

The register_proxy_home operation is used to register a component home, not collocated with the instances that it can
create, with the HomeFinder so the proxy home can be used by component clients. The rhome parameter identifies the
proxy home being registered. The ahome parameter identifies the actual home that the rhome is associated with. If the
actual home specified by ahome is not known, the UnknownActualHome exception shall be raised. If this component
does not support proxy homes, the ProxyHomeNotSupported exception shall be raised. Support for proxy homes is a
component implementation option.

9.4.2 Interfaces Supported by the Session Container API Type

This sub clause describes the interfaces supported for extended components by the session container API type. This
includes both internal interfaces provided by the container and callback interfaces, which must be implemented by
components deployed in this container API type.

9.4.2.1 The Session2Context Interface

The Session2Context is an internal interface that extends the SessionContext to provide a component instance with
access to additional container-provided runtime services for the session container API type. It adds the ability to create
references for components deployed in a session container API type. The Session2Context is defined by the following
IDL:

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,

};

exception BadComponentReference {
BadComponentReferenceReason reason;

};
exception IllegalState { };
134 CORBA - Part 3: Component Model, v3.1

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (in CORBA::RepositoryId repid);
Object create_ref_from_oid (

in CORBA::OctetSeq oid,
in CORBA::RepositoryId repid);

CORBA::OctetSeq get_oid_from_ref (in Object objref)
raises (IllegalState, BadComponentReference);

};

create_ref

The create_ref operation is used to create a reference to be exported to clients to invoke operations. The repid parameter
identifies the RepositoryId associated with the interface for which a reference is being created. Invocations on the new
object reference are delivered to the appropriate segment of the component that invokes this operation. The RepositoryId
must match the RepositoryId of the component itself, one of its bases, one of its supported interfaces, or one of its facets.

create_ref_from_oid

The create_ref_from_oid operation is used to create a reference to be exported to clients that includes information
provided by the component which it can use on subsequent operation requests. The oid parameter identifies the
ObjectSeq to be encapsulated in the reference and the repid parameter identifies the RepositoryId associated with the
interface for which a reference is being created.

get_oid_from_ref

The get_oid_from_ref operation is used by the component to extract the oid encapsulated in the reference. The objref
parameter specifies the reference that contains the oid. This operation must be called within an operation invocation. If
not, the IllegalState exception shall be raised. If the reference was not created by this container, the
BadComponentReference with the WRONG_CONTAINER minor code is raised.

9.4.3 Interfaces Supported by the Entity Container API Type

This sub clause describes the interfaces provided for extended components by the entity container API type. This includes
both internal interfaces provided by the container and callback interfaces, which must be implemented by components
deployed in this container API type.

9.4.3.1 Component Identifiers

The ComponentId interface is an internal interface provided by the entity container API type through which the
component implementation and the container exchange identity information, referred to as component identifiers. The
ComponentId interface encapsulates a component identifier, which is an abstract information model. The ComponentId
interface is used in the following ways:

• Component implementations (usually home executor implementations) create component identifiers to describe new
components, and to create object references that encapsulate the provided description. The Entity2Context interface
acts as a factory for component identifiers and as the factory for object references.

• The container encodes the information encapsulated by the component identifier in the object identifier value it uses
internally to create the object reference on the encapsulated POA. The encoding is not specified, since a container’s
choice of encoding does not affect interoperability or portability.
CORBA - Part 3: Component Model, v3.1 135

• While dispatching an incoming request, the container extracts and decodes the component identifier from the
ObjectId. The extracted component identifier is made available to the component executor through the context before
the request is dispatched to the component.

• When the container invokes ccm_load in the component executor, the implementation of ccm_load uses the contents
of the component identifier to locate and incarnate the required component state.

In the following discussions, component identifiers, and component object references are sometimes used as though the
terms were synonymous. Since there is a one-to-one relationship between a component identifier and an object reference
created from the component identifier, this discussion occasionally uses the term “component reference” to mean “the
component reference created from the component identifier in question,” for the sake of brevity.

The ComponentId interface does not explicitly specify the state representation it encapsulates. The abstract state is
implied by the interface and reflects the structure of the executor it describes (see the CCM Implementation Framework
clause for a complete discussion of executor structure).

A component identifier encapsulates the following information:

• A facet identifier value denoting the target facet of the component reference.

• A segment identifier value denoting the target segment of the component reference (i.e., the segment that supports the
target facet).

• A sequence of segment descriptors.

A segment descriptor includes the following:

• A segment identifier denotes the segment being described, and

• a state identifier value that denotes the persistent state of the segment in some storage mechanism.

A monolithic executor is represented as a degenerate case of the generalized component identifier, where the target
segment identifier is set to zero and the sequence of segment descriptors contains a single element, whose segment
identifier is zero and whose state identifier denotes the persistent state of the component’s single segment.

The facet identifier value zero is reserved to denote the component facet; that is, the facet that supports the component
equivalent interface. The segment identifier value zero is reserved to denote the segment that supports the component
facet. For monolithic executors, the segment identifier value is always zero.

State identifier is an abstraction that generalizes a variety of possible state identity schemes. This specification provides a
mechanism for describing state identifiers that can be extended by component implementors, allowing customization for
storage mechanisms that do not support the standard persistence interfaces.

The ComponentId local interface and supporting constructs are defined by the following IDL:

typedef short SegmentId;
const SegmentId COMPONENT_SEGMENT = 0;

typedef short FacetId;
const FacetId COMPONENT_FACET = 0;

typedef sequence<octet> IdData;
typedef CosPersistentState::Pid PersistentId;

exception InvalidStateIdData {};
136 CORBA - Part 3: Component Model, v3.1

typedef short StateIdType;
const StateIdType PERSISTENT_ID = 0;

abstract valuetype StateIdValue {
StateIdType get_sid_type();
IdData get_sid_data();

};

local interface StateIdFactory {
StateIdValue create (in IdData data) raises (InvalidStateIdData);

};

valuetype PersistentIdValue : StateIdValue {
private PersistentId pid;
PersistentId get_pid();
factory init (in PersistentId pid);

};

valuetype SegmentDescr {
private StateIdValue sid;
private SegmentId seg;
StateIdValue get_sid();
SegmentId get_seg_id();
factory init (in StateIdValue sid, in SegmentId seg);

};

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface ComponentId {
FacetId get_target_facet();
SegmentId get_target_segment();
StateIdValue get_target_state_id (in StateIdFactory sid_factory)

raises (InvalidStateIdData);
StateIdValue get_segment_state_id (

in SegmentId seg,
in StateIdFactory sid_factory)
raises (InvalidStateIdData);

ComponentId create_with_new_target (
in FacetId new_target_facet,
in SegmentId new_target_segment);

SegmentDescrSeq get_segment_descrs (
in StateIdFactory sid_factory)
raises (InvalidStateIdData);

};

9.4.3.2 StateIdValue abstract valuetype

The StateIdValue type is the base valuetype for concrete, storage-specific state identity values. The container interacts
with state identities completely in terms of this interface. A single pre-defined concrete value type derived from
StateIdValue is provided for PersistentId state identities. Component implementors, or suppliers of storage mechanisms
that do not support the CORBA component persistence model can provide their own state identity types by deriving from
StateIdValue and implementing the required behaviors properly.
CORBA - Part 3: Component Model, v3.1 137

get_sid_type

The get_sid_type operation returns a discriminator (physically, a short) that identifies the type of the state identity
encapsulated by the StateIdValue. This specification defines the value zero (0) to denote a
Components::Extended::PersistentId state identifier.

get_sid_data

The get_sid_data operation returns the encapsulated state identity expressed in a canonical form, as a sequence of octets.
The implementation of the derived concrete value type is responsible for converting its encapsulated data into this form,
and for supplying a factory that can construct an instance of the concrete type from an IdData value (a sequence of
octets).

9.4.3.3 StateIdFactory Interface

StateIdFactory is the abstract base interface for factories of state identity values derived from StateIdValue. An
implementation of StateIdFactory must be supplied with the implementation of a concrete state identity type. If the
IdData octet sequence provided in the data parameter cannot be decoded to create a proper instance of the expected state
identity concrete type, the operation raises an InvalidStateIdData exception.

create

The create operation constructs an instance of a concrete state identifier from the octet sequence parameter. This
operation performs the inverse of the transformation performed by the get_sid_data.

9.4.3.4 PersistentIdValue valuetype

The PersistentIdValue type is a specialization of StateIdValue that encapsulates a PersistentId value for inclusion in a
component identifier.

get_pid

The get_pid operation returns the PersistentId value encapsulated by the value type.

init

The initializer for PersistentIdValue creates an instance of the valuetype that encapsulates the PersistentId value passed
as a parameter.

get_sid_value

The implementation of get_sid_value for PersistentIdValue performs no transformation on the encapsulated PersistentId
value. The sequence of octets returned by get_sid_value is identical to the encapsulated PersistentId value.

9.4.3.5 SegmentDescr valuetype

The SegmentDescr type describes an executor segment, encapsulating a segment identifier and a state identifier. A
component identifier for a segmented executor encapsulates a sequence of SegmentDescr instances.

get_sid

The get_sid operation returns the state identity value of the segment being described.
138 CORBA - Part 3: Component Model, v3.1

get_seg_id

The get_seg_id operation returns the segment identifier of the segment being described.

init

This initializer sets the value of the encapsulated segment identifier and state identifier to the values of the respective
parameters.

9.4.3.6 ComponentId Interface

The ComponentId interface encapsulates a complete component identity. Instances of ComponentId can only be created
by the Entity2Context interface, which is supplied by the container, or by duplicating an existing component identifier
with a new target value, with ComponentId::create_with_new_target. Instances of ComponentId are also provided by
the EntityContext interface in the context of a CORBA invocation. The value of the component identifier provided by the
Entity2Context shall be identical to the component identifier value used to create the object reference on which the
invocation was made. The ComponentId interface is a read-only interface. Once a component identifier is constructed by
the create_component_id operation or constructed internally and provided through the Entity2Context interface, the
value of the component identifier cannot be altered.

get_target_facet

The get_target_facet operation returns the facet identifier of the facet, which is the target of the component reference;
that is, the target of requests made on the component reference.

get_target_segment

The get_target_segment operation returns the segment identifier of the target segment; that is, the segments that provide
the target facet.

get_target_state_id

The get_target_state_id operation returns the state identifier of the target segment. The StateIdFactory specified in the
sid_factory parameter is used by the implementation of get_target_state_id to construct the proper state identifier from
the octet sequence encapsulated by the component identifier. If the state identifier of the target segment is a
PersistentIdValue, the sid_factory parameter may be nil. Container implementations shall provide a default
implementation of StateIdFactory to be used when the encapsulated state identifier value is a PersistentIdValue. If
provided (or default) factory cannot construct a correct state identifier of the expected type from the undecoded octet
sequence encapsulated by the component identifier, the operation raises an InvalidStateIdData exception.

get_segment_state_id

The get_segment_state_id operation returns the state identifier of the segment specified by the seg parameter. The
semantics are otherwise identical to get_target_state_id, with respect to the meaning and use of the sid_factory
parameter.

get_segment_descrs

The get_segment_descrs operation returns a sequence containing all of the segment descriptors encapsulated by the
component identifier. The sequence is a copy of the encapsulated sequence. The state identifier factory in the sid_factory
parameter (or the default) is used by the implementation of get_segment_descrs to construct state identifiers of the
CORBA - Part 3: Component Model, v3.1 139

appropriate concrete subtype of StateIdValue. If provided (or default) factory cannot construct a correct state identifier of
the expected type from the undecoded octet sequence encapsulated by the component identifier, the operation raises an
InvalidStateIdData exception.

create_with_new_target

The create_with_new_target operation creates a new component identifier that is identical to the target component
identifier, except that the target facet and target segment values are replaced with the values of the new_target_facet and
new_target_segment parameters, respectively.

This operation is intended primarily to be used in implementing navigation operations.

9.4.3.7 The Entity2Context Interface

The Entity2Context is an internal interface that extends the EntityContext interface to provide the extended component
with access to additional container-provided runtime services for managing object references and advanced persistence.
Object references for components deployed in an entity container API type can choose to use the CORBA Persistent State
service or some user defined persistence mechanism. The ComponentId interface (defined in “ComponentId Interface” on
page 139) encapsulates this distinction when a reference is to be used. The Entity2Context is defined by the following
IDL.

exception BadComponentReference {
BadComponentReferenceReason reason; };

exception IllegalState { };

local interface Entity2Context : EntityContext, CCM2Context {
ComponentId get_component_id ()

raises (IllegalState);
ComponentId create_component_id (

in FacetId target_facet,
in SegmentId target_segment,
in SegmentDescrSeq seq_descrs);

ComponentId create_monolithic_component_id (
in FacetId target_facet,
in StateIdValue sid);

Object create_ref_from_cid (
in CORBA::RepositoryId repid,
in ComponentId cid);

ComponentId get_cid_from_ref (
in Object objref) raises (BadComponentReference);

};

get_component_id

The get_component_id operation is used to obtain a reference to the ComponentId interface. The ComponentId interface
encapsulates a persistence identifier that can be used to access the component’s persistence state. If this operation is
issued outside of the scope of a callback operation, the IllegalState exception is returned.
140 CORBA - Part 3: Component Model, v3.1

create_component_id

The create_component_id operation creates a component identifier value, initializing it with the values specified in the
parameters. The target_facet parameter contains the facet identifier of the target facet, the target_segment parameter
contains the segment identifier of the target segment, and the seq_descrs parameter contains a sequence of segment
descriptors describing all of the segments that constitute the component executor.

create_monolithic_component_id

The create_monolithic_component_id operation provides a simplified signature for creating a component identifier
value for monolithic executors, which have a single segment. The target_facet parameter contains the facet identifier of
the target facet, and the sid parameter contains the state identifier for the single executor segment. The target segment
identifier encapsulated by the component identifier is set to zero, and the sequence of segment descriptors encapsulated
by the component identifier has a single element, initialized with segment identifier value zero, and state identifier value
specified by the sid parameter.

create_ref_from_cid

The create_ref_from_cid operation is used by a component factory to create an object reference that can be exported to
clients. The cid parameter specifies the ComponentId value to be placed in the object reference and made available (using
the get_component_id operation on the context) when the EntityComponent callback operations are invoked. The repid
parameter identifies the RepositoryId associated with the interface for which a reference is being created.

get_cid_from_ref

The get_cid_from_ref operation is used by a persistent component to retrieve the ComponentId encapsulated in the
reference (objref). The ComponentId interface supports operations to locate the state in some persistent store. The
BadComponentReference exception can be raised if the input reference is not local (NON_LOCAL_REFERENCE),
not a component reference (NON_COMPONENT_REFERENCE), or created by some other container
(WRONG_CONTAINER).

The ComponentId structure is dependent on the home implementation and the container, in particular, its
implementation of the Entity2Context interface. It is likely that a ComponentId created by one container will not
be understandable by another, hence the possibility of the WRONG_CONTAINER exception.

9.5 The Client Programming Model

This sub clause describes the architecture of the component programming model as seen by the client programmer. The
client programming model as defined by IDL extensions has been described previously (see the Component Model
clause). This sub clause focuses on the use of standard CORBA by the client who wishes to communicate with a CORBA
component implemented in a Component Server. It enables a CORBA client, which is not itself a CORBA component,
to communicate with a CORBA component.

The client interacts with a CORBA component through two forms of external interfaces - a home interface and one or
more application interfaces. Home interfaces support operations that allow the client to obtain references to an
application interface which the component implements.

From the client’s perspective, the home supports two design patterns - factories for creating new objects and finders for
existing objects. These are distinguished by the presence of a primarykey parameter in the home IDL.

• If a primarykey is defined, the home supports both factories and finders and the client may use both.
CORBA - Part 3: Component Model, v3.1 141

• If a primarykey is not defined, the home supports only the factory design pattern and the client must create new
instances.

Two forms of clients are supported by the CORBA component model:

• Component-aware clients - These clients know they are making requests against a component (as opposed to an
ordinary CORBA object) and can therefore avail themselves of unique component function; for example, navigation
among multiple interfaces and component type factories.

• Component-unaware clients - These clients do not know that the interface they are making requests against is
implemented by a CORBA component so they can only invoke functions supported by an ordinary CORBA object; for
example, looking up a name in a Naming or Trader service, searching for a particular type of factory using a factory
finder, etc.

9.5.1 Component-aware Clients

Clients that are defined using the IDL extensions in the Component Model clause are referred to as component-aware
clients. Such clients can avail themselves of the unique features of CORBA components that are not supported by
ordinary CORBA objects. The interaction between these clients and a CORBA component are outlined in the following
sub clauses. A component-aware client interacts with a component through one or more CORBA interfaces:

• The equivalent interface implied by the component IDL declaration.

• Zero or more supported interfaces declared on the component specification.

• Zero or more interfaces defined by the provides clauses in the component definition.

• The home interface that supports factory and finder operations.

Furthermore a component-aware client locates those interfaces using the Components::HomeFinder or a naming service.
The starting point for client interactions with the component is the resolve_initial_references operation on CORBA::ORB
that provides the initial set of object references.

9.5.1.1 Initial References

Initial references for all services used by a component client are obtained using the
CORBA::ORB::resolve_initial_references operation. This operation currently supports the following references required
by a component client:

• Name Service (“NameService”)

• Transaction Current (“TransactionCurrent”)

• Security Current (“SecurityCurrent”)

• Notification Service (“NotificationService”)

• Interface Repository (“InterfaceRepository”) for DII clients

• Home Finder (“ComponentHomeFinder”)

The client uses ComponentHomeFinder (defined in “Home Finders” on page 41) to obtain a reference to the HomeFinder
interface.
142 CORBA - Part 3: Component Model, v3.1

9.5.1.2 Factory Design Pattern

For factory operations, the client invokes a create operation on the home. Default create operations are defined for each
category of CORBA components for which code can be automatically generated. These operations return an object of
type CORBA::Component that must be narrowed to the specific type. Alternatively, the component designer may specify
custom factories as part of the component definition to define a type-specific signature for the create operation. Because
these operations are defined in IDL, operation names can be chosen by the component designer. All that is required is that
the operations return an object of the appropriate type.

A client using the factory design pattern uses the HomeFinder to locate the component factory (CCMHome) by interface
type. The HomeFinder returns a type-specific factory reference, which can then be used to create new instances of the
component interface. Once created, the client makes operation requests on the reference representing the interface. This is
illustrated by the following code fragment:

// Resolve HomeFinder
org.omg.CORBA.Object objref = orb.resolve_initial_references(“ComponentHomeFinder”);

ComponentHomeFinder ff = ComponentHomeFinderHelper.narrow(objref);

org.omg.CORBA.Object of = ff.find_home_by_type(AHomeHelper.id());

AHome F = AHomeHelper.narrow (of);

org.omg.Components.ComponentBase AInst = F.create();

A Areal = AHelper.narrow (AInst);

// Invoke Application Operation

answer = A.foo(input);

9.5.1.3 Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather than create a new instance) uses a finder
operation. Finders are supported for entity components only. Client’s may use the HomeFinder as described in “Home
Finders” on page 41 to locate the component’s home or they may use CORBA naming to look up a specific instance of
the home by symbolic name.

A client using the finder design pattern uses the CosNaming::NamingContext interface to look up a symbolic name. The
naming service returns an object reference of the type previously bound. The client then makes operation requests on the
reference representing the interface. This is illustrated by the following code fragment:

org.omg.CORBA.Object objref = orb.resolve_initial_references(“NamingService”);

NamingContext ncRef = NamingContextHelper.narrow(objref);

// Resolve the Object Reference in Naming
CORBA - Part 3: Component Model, v3.1 143

NameComponent nc = new NameComponent(“A“,””);

NameComponent path[] = {nc};

A aRef = AHelper.narrow(ncref.resolve(path));

// Invoke Application Operation

answer = A.foo(input);

9.5.1.4 Transactions

A component-aware client may optionally define the boundaries of the transaction to be used with CORBA components.
If so, it uses the CORBA transaction service to ensure that the active transaction is associated with subsequent operations
on the CORBA component.

The client obtains a reference to CosTransactions::Current by using the CORBA::ORB::resolve_initial_references
operation specifying an ObjectID of “TransactionCurrent.” This permits the client to define the boundaries of the
transaction; that is, how many operations will be invoked within the scope of the client’s transaction. All operations
defined for Current may be used as defined by the CORBA Transaction service with the following exceptions:

• The Control object returned by get_control and suspend may only be used with resume.

• Operations on Control may raise the NO_IMPLEMENT exception with CORBA components.

The Control interface in the CORBA transaction service supports accessors to the Coordinator and Terminator
interfaces. The Coordinator is used to build object versions of XA resource managers. The Terminator is used to
allow a transaction to be ended by someone other than the originator. Since neither function is within the scope of
the demarcation subset of CORBA transactions used with CORBA components, we allow CORBA transaction
services implementations used with CORBA components to raise the NO_IMPLEMENT exception.

The following code fragment shows a typical usage:

org.omg.CORBA.Object objref = orb.resolve_initial_references(“TransactionCurrent”);

Current txRef = CurrentHelper.narrow(objRef);

txRef.begin();

// Invoke Application Operation

answer = A.foo(input);

txRef.commit();

9.5.1.5 Security

A component-aware client uses the existing CORBA security mechanism to manage security for a CORBA component.
There are two scenarios possible:

• Use of SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with SSL to set the credentials that will be
used to authorize subsequent requests. The credentials must be set in a way that is proprietary to the client ORB.
144 CORBA - Part 3: Component Model, v3.1

• Use of SECIOP by the client ORB.

In this case, CORBA security does define an API and it must be used by the client to establish the credentials to be
used to authorize subsequent requests.

Security processing for CORBA components uses a subset of CORBA security. For SECIOP, the client sets the
credentials to be used with subsequent operations on the component by using operations on the
SecurityLevel2::PrincipalAuthenticator. The client obtains a reference to SecurityLevel2::Current by using the
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of “SecurityCurrent.” This permits the client
to access the PrincipalAuthenticator interface to associate security credentials with subsequent operations. The following
code fragment shows a typical usage:

org.omg.CORBA.Object objref = orb.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.PrincipalAuthenticator secRef = org.omg.SecurityLevel2.Prin-
cipalAuthenticatorHelper.narrow (objRef);

secRef.authenticate(...);

// Invoke Application Operation

answer = A.foo(input);

9.5.1.6 Events

Component-aware clients wishing to emit or consume events use the component APIs defined in the Component Model
clause. Alternatively, they may use CORBA notification directly and conform to the subset supported by CORBA
components (see “Events” on page 145 for details).

9.5.2 Component-unaware Clients

CORBA components can also be used by clients who are unaware that they are making requests against a component.
Such clients can see only a single interface (the supported interface of a component) and do not support navigation.

9.5.2.1 Initial References

Component-unaware clients obtain initial references using existing CORBA mechanisms, viz.
CORBA::ORB::resolve_initial_references. It is unlikely, however, that this mechanism would be used to obtain a
reference to the HomeFinder.

9.5.2.2 Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the supported interface has application
operations defined. This permits existing CORBA objects to be easily converted to CORBA components, transparently to
their existing clients. The following techniques can be used:

• The reference to a factory finder (typically the CosLifeCycle::FactoryFinder) can be stored in the Naming or Trader
service and looked up by the client before creating the instance.
CORBA - Part 3: Component Model, v3.1 145

• A reference to the home interface can be obtained from the Naming service.

• The reference to the home interface can be obtained from a Trader service.

• After locating a factory finder, the factory can be located using the existing find_factories operation or by using the
new find_factory operation on the CosLifeCycle::FactoryFinder interface.

The current CosLifeCycle find_factories operation returns a sequence of factories to the client requiring the
client to choose the one which will create the instance. To allow the server (i.e., the FactoryFinder) to make the
selection, we also add a new find_factory operation to CosLifeCycle which allows the server to choose the
“best” factory for the client request based on its knowledge of workload, etc.

A FactoryFinder will return an Object. A component-unaware client may expect to narrow this to
CosLifeCycle::GenericFactory and use the generic create operation. For this reason, we allow the default creation
operation on home to return a GenericFactory interface. This is fully described in “Homes” on page 32.

• A stringified object reference can be retrieved from a file known by the component-unaware client.

Once a reference to the home has been obtained, the client can create component instances and make operation requests
on the component. Each component exports at least one IDL interface. A supported interface must be used by the client
to invoke the component’s application operations. Provided interfaces cannot be located using the factory design pattern.

9.5.2.3 Finder Design Pattern

A component-unaware client can use CORBA naming to locate an existing entity component. Unlike the factory design
pattern, the name to be looked up by the client can be either a supported interface or any of the provided interfaces. The
following techniques can be used:

• A symbolic name associated with the component’s home can be looked up in a Naming service to make an invocation
of the finder operations.

• Alternatively, the reference to the home interface can be obtained from a Trader service.

• The finder operation can be invoked on the entity component to return a reference to the client.

9.5.2.4 Transactions

This is the same as component-aware clients (See “Transactions” on page 144). However, the possibility of the
NO_IMPLEMENT exception being raised for operations on Control may have a more serious impact, since the
component-unaware client may not be expecting that to happen.

9.5.2.5 Security

This is the same as component-aware clients (See “Security” on page 144).

9.5.2.6 Events

Component-unaware clients wishing to emit or consume events must use the equivalent CORBA notification interfaces
and stay within the subset supported by CORBA components (see “Events” on page 115 for details). This is illustrated by
the following code fragment:

org.omg.CORBA.Object objref = orb.resolve_initial_references(“NotificationService”);
146 CORBA - Part 3: Component Model, v3.1

org.omg.CosNotififyChannelAdmin.EventChannelFactory evfRef = org.omg.EventChannel-
FactoryHelper.narrow(objRef);

// Create an Event Channel

org.omg.CosNotifyChannelAdmin.EventChannel evcRef = evfRef.create_channel(...);

// Obtain a SupplierAdmin

org.omg.CosNotifyChannelAdmin.SupplierAdmin publisher = evcRef.new_for_suppliers
(...);

// And a ConsumerProxy

org.omg.CosNotifyComm.ProxyConsumer proxy = pub-
lisher.obtain_notification_push_comsumer (...);

// Publish a structured event

proxy.push_structured_event(...);
CORBA - Part 3: Component Model, v3.1 147

148 CORBA - Part 3: Component Model, v3.1

10 Integrating with Enterprise JavaBeans

10.1 Introduction

This clause describes how an Enterprise JavaBeans (EJB) component can be used by CORBA clients, including CORBA
components. The EJB will have a CORBA component style remote interface that is described by CORBA IDL (including
the component extensions).

This clause also describes how a CORBA component can be used by a Java client, including an Enterprise JavaBeans
component. The CORBA component will have an EJB style remote interface that is defined following the Enterprise
JavaBeans specification.

The concepts in this clause follow in the same prescription for interworking as laid out in the Common Object Request
Broker Architecture (CORBA) specification, Interworking Architecture clause where it is discussed as follows:

How interworking can be practically achieved is illustrated in an Interworking Model, shown in Figure 10.1. It shows
how an object in Object System B can be mapped and represented to a client in Object System A. From now on, this will
be called a B/A mapping. For example, mapping a CORBA Component Model object to be visible to an EJB client is a
CCM/EJB mapping.

On the left is a client in object system A, that wants to send a request to a target object in system B, on the right. We refer
to the entire conceptual entity that provides the mapping as a bridge. The goal is to map and deliver any request from the
client transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object in system A that presents the
identity and interface of the target in system B mapped to the vernacular of system A, and is described as an A View of a
B target. The View exposes an interface, called the View Interface, which is isomorphic to the target’s interface in system
B. The methods of the View Interface convert requests from system A clients into requests on the target’s interface in
system B. The View is a component of the bridge. A bridge may be composed of many Views.

Figure 10.1- B/A Interworking Model

Object System A Object System B
Bridge

Object reference in B

Object reference in A

View in A of target in B
(object in system A)

Target object
implementation in B
CORBA - Part 3: Component Model, v3.1 149

The bridge maps interface and identify forms between different object systems. Conceptually, the bridge holds a reference
in B for the target (although this is not physically required). The bridge must provide a point of rendezvous between A
and B, and may be implemented using any mechanism that permits communication between the two systems (IPC, RPC,
network, shared memory, and so forth) sufficient to preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes the request in the vernacular request form
of system A. The request is translated into the vernacular of object system B, and delivered to the target object. The net
effect is that a request made on an interface in A is transparently delivered to the intended instance in B.

The Interworking Model works in either direction. For example, if system A is EJB, and system B is CCM, then the View
is called the EJB View of the CCM target. The EJB View presents the target’s interface to the EJB client. Similarly if
system A is CCM and system B is EJB, then the View is called the CCM View of the EJB target. The CCM View presents
the target’s interface to the CCM client.

10.2 Enterprise JavaBeans Compatibility Objectives and
Requirements

The objective is to allow the creation of distributed applications that mix CORBA components running in CORBA
component servers with EJB components running in an EJB technology-based server. This objective allows a developer to
create an application by reusing existing components of either kind.

This requires development time and runtime translations between the CORBA component and EJB domains provided by
mediated bridges. It also requires that:

• A CORBA component view for an EJB comply with the EJB to CORBA mapping specification. In particular, this
requires that:

• An EJB definition be mapped to a CORBA component definition following the Java Language to IDL mapping
plus the extensions to that mapping that are specified in this clause.

• Value objects of one kind (e.g., Keys for EJB) have counterpart value objects of the other kind.

• CORBA components accessible via CosNaming have their EJB views accessible via JNDI, and vice versa.

• An EJB view for a CORBA component comply with the EJB specification.

An application is to be built using both EJB and CORBA components deployed in their respective containers. At
component development time, EJB components are originally defined in Java and CORBA components are originally
defined in IDL. When applications are assembled using both, the application assembly environment will most commonly
dictate which model these components must present to developers. During application assembly, developers construct
clients (which themselves may be components) that make use of components in the way most natural to the particular
environment. Thus in a CORBA environment clients will expect to make use of both the CCM model and the EJB model
as CORBA components, and in an EJB environment, clients will expect to make use of both kinds as enterprise beans. All
four combinations of clients and components are illustrated in Figure 10.2.
150 CORBA - Part 3: Component Model, v3.1

Figure 10.2- Interoperation in a mixed environment

In this scenario, components of one kind are made accessible to clients of another by way of two mechanisms: generation
of bindings at development time and method translation at runtime. Thus, the containers provide an EJB view of a
CORBA component and a CCM view of an EJB.

For application developers in a CORBA environment, EJBs specified in Java are mapped to CORBA IDL for use by
CCM clients, and at runtime client calls on CCM methods are translated by a bridge into EJB methods. In effect, the EJBs
are CORBA components.

For application developers in an EJB environment, CORBA components specified in IDL are mapped to Java interfaces
for use by EJB clients, and at runtime client calls on EJB methods are translated by a bridge into CCM methods. In effect,
the CORBA components are EJBs.

10.3 CORBA Component Views for EJBs

This kind of view allows a CORBA client — either a CORBA component or any piece of code that uses CORBA, and
either component-aware or not — to access an EJB as a CORBA component. To do this, two things are needed:

1. A mapping of the definition of the existing EJB into the definition of a CORBA component. This mapping takes an
EJB’s RMI remote interface and home interface and produces an equivalent CORBA component definition.

2. A translation, at run-time, of CORBA component requests performed by a CORBA client into EJB requests. This
translation can be performed in terms of either straight delegation, or as an interpretation of a CORBA client request
in terms of EJB requests.

10.3.1 Mapping of EJB to Component IDL definitions

An EJB definition includes the following EJB interfaces:

• EJB home interface - This interface extends the pre-defined EJBHome interface.

EJB Container

EJB

CCM Container

CCM

Component/Container

CCM Client

EJB Client

Contract

Bridge

CCM View

EJB Client

CCM Client

Bridge

EJB View
CORBA - Part 3: Component Model, v3.1 151

• EJB remote interface - This interface extends the pre-defined EJBObject interface.

Thus, for the purposes of this clause, at least these EJB interfaces must be mapped into IDL in order to obtain a CORBA
component definition of a view that a CORBA client can use to make requests on an existing EJB. An EJB home
interface definition maps into a CORBA component’s home definition, whose implied IDL inherits from CCMHome. This
means that EJBHome is mapped into CCMHome. Likewise, an EJB remote interface definition maps into a basic CORBA
component definition, whose implied IDL inherits from CCMObject. This means that EJBObject is mapped into
CCMObject.

In addition, EJBHome and EJBObject make use of the following pre-defined EJB interfaces:

• HomeHandle

• Handle

• EJBMetaData

Handles are an EJB concept that has no direct counterpart in CORBA components. Thus, HomeHandle and Handle are
not directly mapped into equivalent IDL.

Notice that although Interoperable Object References (IORs) and the ORB provided operations that manipulate
them (string_to_object and object_to_string) are conceptually similar to Handles, there are enough differences
between IORs and Handles to preclude a mapping from Handles to IORs.

Meta data is available to a CORBA client but not in the same form as that provided by EJBMetaData. Given that an EJB
maps into a CORBA component, whose definition produces the meta data that a CORBA client expects, mapping
EJBMetaData into equivalent IDL is not required.

10.3.1.1 Java Language to IDL Mapping

The reader is assumed to be familiar with the specification for the Java to IDL mapping, whose major aspects are repeated
here for convenience.

• A Java interface is an RMI/IDL remote interface if it at least extends java.rmi.Remote and all of its methods
throw java.rmi.RemoteException.

• get- and set- name pattern names are translated to IDL attributes.

• IDL generated methods have only in parameters (but these can include object references to remote objects, allowing
reference semantics normally obtained by using parameters of type java.rmi.Remote).

• Java objects that inherit from java.io.Serializable or java.io.Externalizable are mapped to a
CORBA valuetype. All object types appearing in RMI remotable interfaces must inherit from these interfaces or from
java.rmi.Remote. EJB Key and Handle types must inherit from java.io.Serializable.

• However, the mapping does NOT require that methods on such objects or constructors be mapped to
corresponding IDL operations on valuetypes and init specifications. The developer is expected to select
those methods that should be mapped to IDL operations, and the method signatures must meet the requirements of
the mapping.

• Objects that inherit from java.io.Externalizable or that implement writeObject are understood to
perform custom marshalling and the corresponding custom marshallers must be created for the CORBA valuetype.

• Arrays are mapped to “boxed” CORBA valuetypes containing sequences because Java arrays are dynamic.

• Java exceptions are subclassable; IDL exceptions are not. Consequently a name pattern is used to map to IDL
152 CORBA - Part 3: Component Model, v3.1

exceptions. The Java exception object is mapped to a CORBA valuetype. The CORBA valuetype has an inheritance
hierarchy like that of the corresponding Java exception object.

• Some additional programming is required to define Java classes (including EJB implementations) that are accessible
via RMI/IIOP. This is to account for the fact that IIOP does not support distributed garbage collection.

10.3.1.2 EJB to IDL mapping

In general, the CORBA component that results from mapping an EJB will support an interface that is the Java to IDL map
of the Remote interface of the EJB. The mapping rules are as follows.

10.3.1.2.1 Mapping the Remote Interface

• An EJB’s remote interface maps to a definition of a basic CORBA component that supports the default interface. The
form of the CORBA component definition is component XXX supports XXXDefault.

• An EJB’s remote interface declaration is used to create a supports declaration and the corresponding IDL for the
primary interface of the CORBA component that the EJB maps to. The identifier of this supported interface on the
component is XXXDefault, where XXX is the name of the EJB remote interface. This generated interface is referred to
as the Default interface of the component that the given EJB maps to.

• Each operation on the Remote interface is mapped under Java to IDL to an equivalent operation on the XXXDefault
interface.

• Each pair of getXXX and setXXX methods in the EJB remote interface will be mapped to IDL attributes in the
component definition itself. Any exceptions thrown by a getXXX method is mapped to an exception in the getraises
clause of the mapped IDL attribute. Likewise, any exception thrown by a setXXX method is mapped to an exception
in the setraises clause of the mapped IDL attribute. The actual definitions of the exceptions thrown are mapped
following the Java to IDL rules.

10.3.1.2.2 Mapping the Home Interface

• An EJB’s home interface maps to a definition of a CORBA component home. The form of the CORBA component
home definition is home YYY manages XXX, where YYY is the name of the EJB home interface. Mapping an EJB
home into a CORBA component home requires the existence of meta data that links the EJB home to the EJB that it
hosts. These meta data are obtained from the EJB’s deployment descriptor. Thus XXX is the name of the EJB that the
EJB home hosts, as it is given in the EJB deployment descriptor.

• The EJB home methods called create are mapped into home factory declarations in IDL. The actual names of each
of the factory operations are produced following the rules for mapping Java names to IDL names in the Java to IDL
specification. The Java parameters of the operation are mapped to their corresponding IDL types and names as defined
by Java to IDL.

• An EJB Primary Key class is mapped to a CORBA valuetype using the mapping rules in Java to IDL. This valuetype
will be declared in the IDL for the CORBA component home as the primary key valuetype for the component. The
key valuetype will inherit from Components::PrimaryKeyBase. If an EJB home uses a primary key, then the form of
the CORBA component home definition is home YYY manages XXX primarykey KKK, where KKK is the name of
the valuetype that the EJB primary key class maps to.

• The EJB home operation named findByPrimaryKey is mapped into the find_by_primary_key(in <key-type>
key) operation on the component’s implicit home interface.

• Finder and Creator EJB operations that return an RMI style object reference are mapped into Component IDL
operations that return a CORBA Component Object Reference to XXX.
CORBA - Part 3: Component Model, v3.1 153

EJB home operations prefixed find whose return type is the type of the EJB hosted by the EJB home are mapped into
component home finder operations in IDL. The actual names of each of the finder operations are produced following
the rules for mapping Java names to IDL names in the Java to IDL specification. The Java parameters of the operation
are mapped to their corresponding IDL types and names as defined by Java to IDL.

• Finder EJB operations that return a Java Enumeration are mapped into CORBA component operations that return a
value of type Enumeration. This value type is declared as:

module Components {
abstract valuetype Enumeration {

boolean has_more_elements();
CCMObject next_element();

};
};

The Enumeration interface is just the RMI/IIOP image of the Java Enumeration class as defined in the JDK 1.1.6+.
Sun has said that they intend to replace this with the JDK 1.2 (Java 2.0) Collections in a future version of the EJB
specification. Subsequent to such a specification being issued, the CORBA components specification will be
updated to correspond.

A concrete specialization of this abstract value type must be provided. This specialization has the form:

module Components {
typedef sequence<CCMObject> CCMObjectSeq;
valuetype DefaultEnumeration : Enumeration {

private CCMObjectSeq objects;
};

};

Any implementation of DefaultEnumeration, in any language, must provide implementations for the two Enumeration
methods. Any client ORB that supports the interoperable bridge has to provide an implementation that knows how to read
DefaultEnumeration from the wire and to use that information to provide a local implementation of these two methods.
Any EJB container that supports the CCM-EJB bridge has to provide an implementation that knows how to construct
itself from a java.util.Enumeration and then write itself to the wire as a DefaultEnumeration.

• In order for an EJB home definition that defines findByPrimaryKey to be successfully mapped onto a CORBA
component home definition, it must define a create method that takes the primary key of the hosted EJB as its sole
argument and returns an instance of the hosted EJB. This create method is mapped to create(in <key-type> key) on
the CORBA component implicit home interface.

10.3.1.2.3 Mapping standard exceptions

The EJB exceptions FinderException, CreateException, DuplicateKeyException, and RemoveException thrown by
methods to find, create, and remove an EJB are always mapped to the CCM exceptions Components::FinderFailure,
Components::CreateFailure, Components::DuplicateKeyValue and Components::RemoveFailure, respectively.
154 CORBA - Part 3: Component Model, v3.1

10.3.2 Translation of CORBA Component requests into EJB requests

A CORBA client that uses a CORBA component view on an EJB expects to be able to perform CORBA component
requests on such a view. These requests need to be translated into EJB requests at run-time. This translation can be
performed at the client-side, server-side, or a combination of the two. Table 10.1 lists the CORBA component operations
that a CORBA client can perform requests on by interface, and it lists the corresponding EJB methods that these requests
translate into, also by interface.

Table 10.1 - Translation of CCM operation requests into EJB method requests

CCM Interface Operation called by client EJB interface Method invoked by bridge

CCMHome ComponentDef
get_component_def ();

EJBHome EJBMetaData
getEJBMetaData ()
throws RemoteException;

CORBA::IRObject
get_home_def ();

EJBMetaData
getEJBMetaData()
throws RemoteException;

void remove_component (
in CCMObject comp)
raises (RemoveFailure);

void remove (Handle handle) throws
RemoveException, RemoteException;

<home-name>Explicit <name> createXXX (
<arg-list>)
raises (CreateFailure, DuplicateKey
Value, InvalidKey);

<home-name> <name> create (
<arg-list>)
throws CreateException, DuplicateKey
Exception;

<name> findXXX (
<arg-list>)
raises (FinderFailure, <exceptions>);

<name> findXXX (
<arg-list>)
throws <exceptions>;

<home-name>Implicit <name> create (
in <key-type> key)
raises (CreateFailure, DuplicateKey
Value, InvalidKey);

<name> create (
Object primaryKey)
throws CreateException,
DuplicateKeyException;

<name> find_by_primary_key (
in <key-type> key)
raises (FinderFailure, UnknownKey
Value, InvalidKey);

<name> findByPrimaryKey (<key-type>
key)
throws FinderException, ObjectNot
FoundException;

void remove (
in <key-type> key)
raises (RemoveFailure, Unknown
KeyValue, InvalidKey);

EJBHome void remove (
Object primaryKey)
throws RemoveException,
RemoteException;

<key_type> get_primary_key
(in <name> comp);

EJBObject Object getPrimaryKey ()
throws RemoteException;

CCMObject ComponentDef
get_component_def ();

EJBHome EJBMetaData
getEJBMetaData ()
throws RemoteException;

CCMHome get_ccm_home (); EJBObject EJBHome getEJBHome()
throws RemoteException;
CORBA - Part 3: Component Model, v3.1 155

Notice that a CORBA client may use operations on object references such as string_to_object and object_to_string that
may be considered as analogous to EJB Handle methods. However, these operations are not seen by the bridge since they
are performed on the ORB and thus no translation for these operations on the part of the bridge is required.

The following restrictions apply:

• create (in <key_type> key) on the component implicit home interface can only be validly invoked by a CORBA client
if the underlying EJB home declares the findByPrimaryKey operation.

• remove (in <key_type> key) on the component implicit home interface can only be validly invoked by a CORBA
client if the underlying EJB home declares the findByPrimaryKey operation.

• get_primary_key on the component implicit home and on CCMObject can only be validly invoked by a CORBA
client if the underlying EJB home declares the findByPrimaryKey operation.

• configuration_complete on CCMObject is not translated by the bridge, a request on this operation by a CORBA
client raises the NO_IMPLEMENT exception.

10.3.3 Interoperability of the View

As stated in “Translation of CORBA Component requests into EJB requests” on page 155, translation of CORBA
Component requests into EJB requests can happen at either the client-side, the server-side, or a combination of the two.

However, in order to provide interoperability of implementations of CORBA component views of EJBs, a minimal
number of translation points must be performed and they must be performed at an explicitly defined location: either the
client-side or the server-side. For the implementation of a CORBA component view of an EJB, and for an EJB home
interface, the translation points are as follows.

PrimaryKeyBase
get_primary_key ();

EJBObject Object getPrimaryKey ()
throws RemoteException;

void remove()
raises (RemoveFailure);

void remove ()
throws RemoveException,
RemoteException;

void
configuration_complete ()
raises (InvalidConfiguration);

Translation performed by bridge is to raise
the NO_IMPLEMENT exception

<name> <res-type> <operation> (<arg-list>)
raises (<exceptions>);

<name> <res-type> <operation> (
<arg-list>)
throws <exceptions>;

<res-type> getXXX ()
throws <exceptions>;

<res-type> getXXX ()
throws <exceptions>;

void setXXX (<arg-list>)
throws <exceptions>;

void setXXX (<arg-list>)
throws <exceptions>;

Table 10.1 - Translation of CCM operation requests into EJB method requests

CCM Interface Operation called by client EJB interface Method invoked by bridge
156 CORBA - Part 3: Component Model, v3.1

10.3.3.1 Translation of specific method names

The following methods shall translate their names as indicated.

10.3.3.2 Handling of standard exceptions

The following exceptions, caught by the indicated methods, shall be translated as indicated before raising them to their
CORBA clients.

Note – RemoteException is translated into CORBA::UNKNOWN system exception according to rules defined in http://
www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm (Mapping RMI Exceptions to
CORBA System Exceptions sub clause).

Table 10.2 - Translation of specific method names

CCM Interface Method name EJB Interface Translation

CCMHome get_component_def EJBHome getEJBMetaData

remove_component remove

<name>Implicit find_by_primary_key <name> findByPrimaryKey

remove remove__java_lang_Object

create create__java_lang_Object

get_primary_key EJBObject getPrimaryKey

CCMObject get_ccm_home EJBObject getEJBHome

get_primary_key getPrimaryKey

Table 10.3 - Handling of standard exceptions

CCM Interface Method name Exception caught Translation

CCMHome get_component_def RemoteException CORBA::UNKNOWN

remove_component RemoveException
RemoteException

Components::RemoveFailure
CORBA::UNKNOWN

<name>Implicit create DuplicateKeyException
CreateException

Components::DuplicateKeyValue
Components::CreateFailure

find_by_primary_key ObjectNotFoundException
FinderException

Components::UnknownKeyValue
Components::FinderFailure

remove RemoveException
RemoteException

Components::RemoveFailure
CORBA::UNKNOWN

get_primary_key RemoteException CORBA::UNKNOWN

CCMObject get_ccm_home RemoteException CORBA::UNKNOWN

get_primary_key RemoteException CORBA::UNKNOWN

remove RemoveException
RemoteException

Components::RemoveFailure
CORBA::UNKNOWN
CORBA - Part 3: Component Model, v3.1 157

10.3.3.3 Handling of a primary key parameter

The methods create, find_by_primary_key and remove, defined by <home>Implicit shall translate the primary key
valuetype they get as input parameter to a CORBA::Any equivalent. Likewise, the method get_primary_key defined by
<home>Implicit shall translate the CORBA::Any value of the primary key it gets as a result from its request into an
equivalent primary key valuetype before returning it.

The method get_primary_key, defined by CCMObject, shall translate the CORBA::Any value of the primary key it gets as
a result from its request into an equivalent Components::PrimaryKeyBase valuetype before returning it.

10.3.4 CORBA Component view Example

In this sub clause we show a simple EJB together with the corresponding Component IDL. Note that the EJB deployment
metadata is needed to generate the IDL; this is because the metadata binds together the Remote interface and the Home
interface.

Below are the remote interfaces of the EJB.

package example;

class CustInfo implements java.io.Serializable
{

public int custNo;

public String custName;

public String custAddr;

};

class CustBal implements java.io.Serializable

{

public int custNo;

public float acctBal;

};

interface CustomerInquiry extends javax.ejb.EJBObject

{

CustInfo getCustInfo(int iCustNo)

throws java.rmi.RemoteException;

CustBal getCustBal(int iCustNo)

throws java.rmi.RemoteException;

};
158 CORBA - Part 3: Component Model, v3.1

interface CustomerInquiryHome extends javax.ejb.EJBHome

{

CustomerInquiry create()

throws java.rmi.RemoteException;

};

Below are the contents of the descriptor classes as they might be expressed in an equivalent XML document.

<ejb-jar>
<session>

<description>

</description>

<ejb-name> CustomerInquiry </ejb-name>

<home> example.CustomerInquiryHome </home>

<remote> example.CustomerInquiry </remote>

<ejb-class> example.CustomerInquiryBean </ejb-class>

<session-type> Stateful </session-type>

</session>

</ejb-jar>

The EJB is a session bean, and in this case, its create operation requires no parameters. The two operations take a key
value and return values to the caller. The EJB implementation will use JDBC to retrieve the information to be returned by
the operations on the CustomerInquiry EJB.

The serializable value classes are translated by RMI/IIOP into CORBA concrete valuetypes as follows:

valuetype CustInfo {
public long custNo;
public ::CORBA::WStringValue custName;
public ::CORBA::WStringValue custAddr;

};

valuetype CustBal {
public long custNo;
public float custBal;

};

The information in the deployment descriptor and the home and remote interface declarations is introspected and used to
generate the following IDL:

interface CustomerInquiryDefault {
CustInfo getCustInfo(in long iCustNo);
CustBal getCustBal(in long iCustNo);

};

component CustomerInquiry supports CustomerInquiryDefault {};
CORBA - Part 3: Component Model, v3.1 159

home CustomerInquiryHome manages CustomerInquiry {
factory create();

};

10.4 EJB views for CORBA Components

This kind of view allows a Java client — either an EJB or any other piece of Java code — to access a CORBA component
as an EJB. To do this, two things are needed:

• A mapping of the Component IDL definition of a CORBA component into an EJB definition. This mapping only
considers that portion of the Component IDL language that has a counterpart in the EJB specification language and it
ignores the rest. Notice that “The home and remote interfaces of the enterprise bean's client view are defined as Java
RMI interfaces. This allows the Container to implement the home and remote interfaces as distributed objects.” One
implication of this is that the signatures on methods on an EJB’s remote interface can only include parameters with in
semantics. That is, out and inout semantics for parameters is not allowed. As a consequence, the out and inout
qualifiers for parameters in IDL interface method definitions are not included in the portion of Component IDL that
can be mapped to an EJB definition.

Note however that a Java client does not have to use an EJB view in order to access a CCM. Any Java client can access
a CCM directly via its IDL interface using a standard Java ORB, such as the one built into the JDK. This provides full
access to all aspects of the CCM. Since the EJB view is derived using the IDL to Java mapping rules, the Java IDL
interface is identical to the EJB view for all business operations. The only differences are in the operations mentioned
in Table 10.4 on page 163 have slightly different names and signatures.

• A translation, at run-time, of EJB requests performed by a Java client into CORBA component requests.

10.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications

The portion of the Component extensions to the IDL language that can be mapped to the EJB specification language is
denoted by the following subset of the Component extensions to IDL grammar.

<component_dcl> ::= <component_header> “{” <component_body> “}”

<component_header> ::= “component” <identifier> [<supported_interface_spec>]

<supported_interface_spec> ::= “supports” <scoped_name> { “,” <scoped_name> }*

<component_body> ::= <component_export>*

<component_export> ::= <attr_dcl> “;”

<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec> <readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> <raises_expr> | <simple_declarator> { “,”
<simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr> | <simple_declarator> { “,”
<simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>] | <set_excep_expr>

<get_excep_expr> ::= “getraises” <exception_list>
160 CORBA - Part 3: Component Model, v3.1

<set_excep_expr> ::= “setraises” <exception_list>

<exception_list> ::= “(” <scoped_name> { “,” <scoped_name> } * “)”

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> “manages” <scoped_name> [<primary_key_spec>]

<primary_key_spec> ::= “primarykey” <scoped_name>

<home_body> ::= “{” <home_export>* “}”

<home_export> ::= <factory_dcl> “;” | <finder_dcl> “;”

<factory_dcl> ::= “factory” <identifier> “(“ [<init_param_decls>] “)” [<raises_expr>]

<finder_dcl> ::= “finder” <identifier> “(“ [<init_param_decls>] “)” [<raises_expr>]

The rules for mapping a CORBA component definition into an EJB definition are defined in the following subclauses.
Where appropriate, these rules rely on the standard IDL to Java mapping.

10.4.1.1 Mapping the component definition

• A basic CORBA component definition is mapped to an EJB remote interface definition.

• The name of the EJB remote interface is the name of the basic CORBA component in the Component IDL definition.

• For each operation defined in each interface that the CORBA component supports, a method definition will be
included in the EJB remote interface that the CORBA component maps to. That is, the EJB to which the basic CORBA
component maps defines all the supported operations defined by the basic CORBA component.

• The signatures of the CORBA component operations are mapped to signatures of EJB remote interface methods
following the IDL to Java mapping rules. Only signatures whose parameters have an in qualifier are allowed.
Signatures that include parameters with out or inout qualifiers shall be signaled as an error.

• For each attribute XXX that the CORBA component defines, the corresponding EJB remote interface defines a pair of
getXXX and setXXX methods, where XXX is the name of the given attribute. If the attribute definition includes a
getraises exception clause, then the corresponding getXXX method definition in the EJB remote interface will
include a throws exception clause. Likewise, if the attribute definition includes a setraises exception clause, then the
corresponding setXXX method definition in the EJB remote interface will include a throws exception clause.

• Exceptions raised by CORBA component definition operations and attributes are mapped to exceptions thrown by EJB
method definitions using the standard IDL to Java mapping rules.

10.4.1.2 Mapping the Component Home definition

• A CORBA component’s home definition is mapped to an EJB home’s remote interface definition. That is a definition
of the form home XXX manages YYY [primarykey KKK] is mapped to an EJB home interface with name XXX.

• The methods defined by the EJB home remote interface include the implicit as well as the explicit methods of the
CORBA component’s home definition.

• Implicit CORBA component home operations are mapped to EJB home remote interface methods as follows:

• <component_type> create (in <key_type> key) raises
(Components::CreateFailure, Components::DuplicateKeyValue,
Components::InvalidKey); maps to <component_type> create (<key_type>
key) throws DuplicateKeyException, CreateException.
CORBA - Part 3: Component Model, v3.1 161

• <component_type> find_by_primary_key (in <key_type> key) raises
(Components::FinderFailure, Components::UnknownKeyValue,
Components::InvalidKey); maps to <component_type> findByPrimaryKey(<key_type>
key) throws ObjectNotFoundException, FinderException.

• void remove (in <key_type> key) raises (Components::RemoveFailure,
Components::UnknownKeyValue, Components::InvalidKey); maps to the remove by key
method defined in EJBHome.

• <key_type> get_primary_key (in <component_type> comp); has no counterpart in an EJB
home definition. Given that EJBObject already defines getPrimaryKey, it is not necessary to map
get_primary_key on the implicit home to an EJB home operation.

• Explicit CORBA component basic home operations are mapped to EJB home remote interface methods as follows:

• A factory operation maps to an overloaded create method with the corresponding arguments and exceptions.

• An operation maps to a find<identifier> method with the corresponding arguments and exceptions, where
<identifier> is the name of the finder operation.

• The signatures of factory and finder operations are mapped to signatures of EJB home interface methods
following the IDL to Java mapping rules.

• A valuetype that is used to define the primary key of a CORBA component home is mapped to a Java class under the
rules of the standard IDL to Java mapping. In addition, such a Java class is defined to extend
java.io.Serializable.

10.4.1.3 Mapping standard exceptions

The CCM exceptions Components::FinderFailure, Components::CreateFailure, Components::DuplicateKeyValue and
Components::RemoveFailure raised by methods to find, create and remove a CORBA component are always mapped to
the EJB exceptions FinderException, CreateException, DuplicateKeyException and RemoveException, respectively.

10.4.2 Translation of EJB requests into CORBA Component Requests

A Java client that uses an EJB view on a CORBA component expects to be able to perform EJB requests on such a view.
These requests need to be translated into CORBA component requests at run-time. This translation can be performed at
the client-side, the server-side, or a combination of the two. Table 10.4 lists the EJB methods that a Java client can
perform requests on by interface, and it lists the corresponding CORBA component operations that these requests
translate into, also by interface.
162 CORBA - Part 3: Component Model, v3.1

Table 10.4 - Translation of EJB method requests into CCM operation requests

EJB Interface Method called by client CCM interface Operation called by bridge

EJBHome EJBMetaData getEJBMetadata ()
throws RemoteException;

CCMHome Translation performed by bridge does
not call a CCM standard operation

void remove (Handle handle)
throws RemoveException, RemoteException;

void remove_component (
in CCMObject comp)
raises (RemoveFailure);

void remove (
Object primaryKey)
throws RemoveException, RemoteException;

<home-
name>Implicit

void remove (
in <key-type> key)
raises (RemoveFailure,
UnknownKeyValue, InvalidKey);

HomeHandle getHomeHandle ()
throws RemoteException;

Translation performed by bridge does
not call a CCM standard operation

<home-name> <name> create (
<arg-list>)
throws CreateException,
DuplicateKeyException;

<home-
name>Explicit

<name> createXXX (
<arg-list>)
raises (CreateFailure,
DuplicateKeyValue, InvalidKey);

<name> findByXXX (
<arg-list>)
throws <exceptions>;

<name> findXXX (
<arg-list>)
raises (FinderFailure, <exceptions>);

<name>
findByPrimaryKey (
<key-type> key)
throws FinderException,
ObjectNotFoundException;

<home-
name>Implicit

<name> find_by_primary_key (
in <key-type> key)
raises (FinderFailure,
UnknownKeyValue, InvalidKey);

EJBObject EJBHome getEJBHome ()
throws RemoteException;

CCMObject CCMHome get_ccm_home ();

Object getPrimaryKey ()
throws RemoteException;

PrimaryKeyBase get_primary_key ();

void remove ()
throws RemoveException, RemoteException;

void remove () raises (RemoveFailure);

boolean isIdentical (EJBObject object)
throws RemoteException;

CORBA::Object boolean is_equivalent ();

Handle getHandle ()
throws RemoteException;

Translation performed by bridge does
not call a CCM standard operation.

<name> <res-type> <operation> (
<arg-list>)
throws <exceptions>;

<name> <res-type> <operation> (<arg-list>)
raises (<exceptions>);

<res-type> getXXX ()
throws <exceptions>;

<res-type> get_XXX ()
raises (<exceptions>);

void setXXX (<arg-list>)
throws <exceptions>;

<res-type> set_XXX ()
raises (<exceptions>);
CORBA - Part 3: Component Model, v3.1 163

In addition, the EJB programming model allows a Java client to:

• Locate EJB homes and distinguished EJB objects via JNDI.

• Demarcate transactions via a UserTransaction object, after locating this object via JNDI.

These requests are translated into similar requests provided by the CORBA component programming model, as follows:

• Location of home and EJB objects requires the definition of a mapping of JNDI to the COSNaming service. It also
requires the mapping of a COSNaming name space into a JNDI name space.

• Transaction demarcation requires the definition of a mapping of JTA to the CORBA transaction service. It also
requires that a JNDI name space location be populated with an object that implements UserTransaction and that maps
to the corresponding CORBA transaction service object.

10.4.3 Interoperability of the View

As stated in “Translation of EJB requests into CORBA Component Requests” on page 162 can happen at either the client-
side, the server-side, or a combination of the two.

However, in order to provide interoperability of implementations of EJB views of CORBA components, a minimal
number of translation points must be performed and they must be performed at an explicitly defined location: either the
client-side or the server-side. For the implementation of an EJB view of a CORBA component, and for a CCM interface,
the translation points are:

10.4.3.0.1 Translation of specific method names

The following methods shall translate their names as indicated.

EJBMetadata EJBHome getEJBHome ()
throws RemoteException;

Translation performed by bridge on all
these invocations does not call a CCM
standard operation.

Class getHomeInterfaceClass ()
throws RemoteException;

Class getRemoteInterfaceClass ()
throws RemoteException;

Class getPrimaryKeyClass ()
throws RemoteException;

boolean isSession ()
throws RemoteException;

boolean isStatelessSession()
throws RemoteException

Table 10.4 - Translation of EJB method requests into CCM operation requests

EJB Interface Method called by client CCM interface Operation called by bridge
164 CORBA - Part 3: Component Model, v3.1

10.4.3.0.2 Handling of standard exceptions

The following exceptions, caught by the indicated methods, shall be translated as indicated before raising them to their
EJB clients.

Note – CORBA system exceptions are translated into RemoteException according to rules defined in http://
www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm (Mapping CORBA System
Exceptions to RMI Exceptions sub clause).

10.4.3.1 Handling of a primary key parameter

The methods create and findByPrimaryKey, defined by <name>, and remove__java_lang_Object, defined by EJBHome,
shall translate the primary key valuetype they get as input parameter to a CORBA::Any equivalent.

The method getPrimaryKey, defined by EJBObject, shall translate the CORBA::Any value of the primary key it gets as a
result from its request into an equivalent Java Object valuetype before returning it.

Table 10.5 - Translation of specific method names

EJB Interface Method name CCM Interface Translation

EJBHome remove CCMHome remove_component

<name> findByPrimaryKey <name>Implicit find_by_primary_key

remove__java_lang_Object remove

create__java_lang_Object create

EJBObject getEJBHome CCMObject get_ccm_home

getPrimaryKey get_primary_key

isIdentical CORBA::Object is_equivalent

Table 10.6 - Handling of standard exceptions

EJB Interface Method name Exception caught Translation

EJBHome remove Components::RemoveFailure
CORBA system exceptions

RemoveException
RemoteException

remove__java_lang_Object Components::RemoveFailure
CORBA system exceptions

RemoveException
RemoteException

<name> create Components::CreateFailure
Components::DuplicateKeyValue

CreateException
DuplicateKeyException

findByPrimaryKey Components::UnknownKeyValue
Components::FinderFailure

ObjectNotFoundException
FinderException

EJBObject getEJBHome CORBA system exceptions RemoteException

getPrimaryKey CORBA system exceptions RemoteException

remove Components::RemoveFailure
CORBA system exceptions

RemoveException
RemoteException

isIdentical CORBA system exceptions RemoteException
CORBA - Part 3: Component Model, v3.1 165

10.4.4 Example

We show a simple CORBA component definition and its corresponding EJB mapping. The basic CORBA component
Account is defined in terms of a regular IDL interface AccountOps. The home AccountHome is defined to manage
Account and to use a primary key.

interface AccountOps {
void debit(in double amt) raises (NotEnoughFunds);
void credit(in double amt);

};

component Account supports AccountOps {
readonly attribute double balance;

};

valuetype AccountKey {
public long acctNo;

};

home AccountHome manages Account primarykey AccountKey {
finder largeAccount(double threshold);

};

The following EJB definition is derived from the definition of Account and its home.

public interface Account extends javax.ejb.EJBObject {
public void debit(double amount)

throws NotEnoughFunds, java.rmi.RemoteException;
public void credit(double amount) throws java.rmi.RemoteException;
public double getBalance() throws java.rmi.RemoteException;

};

public class AccountKey implements java.io.Serializable {
public long acctNo;
public AccountKey(long k) { acctNo = k; }

};

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(AccountKey key)

throws DuplicateKeyException, CreateException,
java.rmi.RemoteException;

public Account findByPrimaryKey(Account key)
throws ObjectNotFoundException, FinderException,

java.rmi.RemoteException;

public Account findByLargeAccount(double threshold)
throws java.rmi.RemoteException;

};

10.5 Compliance with the Interoperability of Integration Views

As stated in “Interoperability of the View” on page 156 and “Interoperability of the View” on page 164, request
translations must happen at an explicitly defined location: either the client-side or the server side.
166 CORBA - Part 3: Component Model, v3.1

Rather than mandate one location arbitrarily, a number of levels of compliance with the interoperability of integration
views are defined. Vendors shall clearly state what level of interoperability is supported by their implementations. These
levels are:

• NONE: Integration view implementations that comply with this level actually perform no request translations. These
implementations can still interoperate with other implementations that understand non-translated requests (e.g.,
implementations compliant with levels SERVER-SIDE and FULL).

• CLIENT-SIDE: Translation occurs either in the address space of a client stub or in a separate address space
downstream from the client stub but before the resulting GIOP request gets sent to the server.

• SERVER-SIDE: Translation occurs either in the address space of a server skeleton or in a separate address space
upstream from the server skeleton but after the GIOP request has been received from the client. The presence of a
server-side view must not prevent native (i.e., non-translated) access to the component.

• FULL: Integration view implementations that comply with this level comply with both the CLIENT-SIDE and
SERVER-SIDE levels. Note that a stand-alone bridge in a separate address space complies at this level since it is both
upstream of the client (SERVER-SIDE) and downstream of the server (CLIENT-SIDE).

• FULL: Integration view implementations that comply with this level comply with both the CLIENT and the
SERVER levels.

Table 10.7 illustrates the possible combinations of level compliance that are implied by the previous definitions. Rows in
the table denote implementations compliant with a given level that send a request. Columns denote implementations
compliant with a given level that receive a request. So, for example, a SERVER-SIDE implementation cannot
interoperate with a CLIENT-SIDE implementation because the SERVER-SIDE implementation does not translate on
send and the CLIENT-SIDE implementation does not translate on receive.

10.6 Comparing CCM and EJB

The following series of tables summarized the component APIs for Enterprise Java Beans (EJB 1.1) and Basic CORBA
Components. The tables are organized as follows:

1. The home interfaces that define the remote access protocols for creating or finding EJBs or CORBA components
(“The Home Interfaces” on page 168).

2. The component interfaces that define the remote access protocols for invoking business operations on EJBs or
CORBA components (“The Component Interfaces” on page 169).

3. The callback interfaces that the CORBA component or EJB programmer must implement (“The Callback Interfaces”
on page 170).

4. The Context interfaces that provide the component developer access to container-provided services (“The Context
Interfaces” on page 172).

Table 10.7 - Compliance with the Interoperability of Integration Views

NONE CLIENT-
SIDE

SERVER-
SIDE

FULL

NONE no no yes yes

CLIENT-SIDE no yes yes yes

SERVER-SIDE no no yes yes

FULL yes yes yes yes
CORBA - Part 3: Component Model, v3.1 167

5. The Transaction interface that supports bean-managed or component-managed transactions (“The Transaction
Interfaces” on page 173).

6. The metadata interfaces that support access to component metadata (“The Metadata Interfaces” on page 174).

10.6.1 The Home Interfaces

Table 10.8 compares the home interfaces and operations that make up the EJB and CORBA component models. In EJB,
the EJBHome object is created by the EJB container provider’s tools and provides implementations for methods of the
base class and delegates factory or finder methods on a derived class (<name>Home) to similarly named methods on the
bean itself (<name>Bean).

In the CORBA component model, homes are defined as righteous CORBA objects and the associated factory or finder
methods are generated as operations on the home and the component developer implements these directly so the container
need not provide delegation support. The component developer may not even need to provide implementations for the
default factory and finder operations if sufficient information is provided with the component’s definition.

For CORBA clients to use EJB implementations, the container provider must externalize EJBHome to the CORBA client
as a CORBA component home. This is accomplished by extensions to the Java to IDL mapping defined in the Interface
Repository Metamodel clause. For EJB clients to access CORBA component homes, the container provider must create an
EJBHome object that serves as a bridge between equivalent operations on EJBHome and the CORBA component home.
This bridge is also described in the Interface Repository Metamodel clause..

Table 10.8 - Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBHome extends java.rmi.Remote CCMHome

Operation public EJBMetaData get EJBMetaData ()
throws java.rmi.RemoteException

ComponentDef get_component_def (); CORBA IR supports
more metadata

public HomeHandle getHomeHandle()
throws java.rmi.RemoteException

CORBA::object_to_string
provides same function

public void remove (
HomeHandle handle)
throws java.rmi.RemoteException,
RemoveException

void remove_component (
in CCMObject component)
raises (CCMException);

CORBA references
instead of handles
REMOVE_ERROR
is minor code

public void remove (
java.lang.Object primaryKey)
throws java.rmi.RemoteException,
RemoveException

similar operation is
defined on
<home>Implicit for
Homes with primarykey

Interface HomeHandle extends java.io.Serializable CORBA reference used
for handle

public EJBHome getEJBHome()
throws java.rmi.RemoteException

CORBA::string_to_object

Module <session-name> <session-home>

Interface <session>home extends EJBHome <session-home>::CCMHome,
<session-home>Implicit,
<session-home>Explicit
168 CORBA - Part 3: Component Model, v3.1

10.6.2 The Component Interfaces

Table 10.9 compares the component interfaces and operations that make up the EJB and CORBA component models. In
EJB, the EJBObject object is created by the EJB container provider’s tools and provides implementations for methods of
the base class and delegates business methods to a derived class (<name>Remote).

In the basic CORBA component model, components are defined as righteous CORBA objects and the associated business
methods are defined as operations on a supported interface and the component developer implements these directly so the
container need not provided delegation support.

For CORBA clients to use EJB implementations, the container provider must externalize EJBObject to the CORBA client
as a CORBA component. This is accomplished by extensions to the Java to IDL mapping defined in the Interface
Repository Metamodel clause. For EJB clients to access CORBA components, the container provider must create an
EJBObject implementation that serves as a bridge between business methods on EJBObject and the basic CORBA
component’s supported interface. This bridge is also described in the Interface Repository Metamodel clause.

Operation public <session-name>Remote create (
<arg-type> <arg-list>)
throws CreateException

<session-component> create (); Generated operation
Inherited from
<home>Implicit

Module <entity-name> <entity-home>

Interface <entity>home extends EJBHome <entity-home>::CCMHome,
<entity-home>Implicit,
<entity-home>Explicit

Operation public <entity-name>Remote create (
<arg-type> <arg-list>)
throws CreateException,
DuplicateKeyException

<entity-component> create ()
raises (InvalidKey,
DuplicateKey);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote
findByPrimaryKey (
<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> find (
in <key-type> key)
raises (InvalidKey,
UnknownKeyType);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote find<method> (
<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> <find-method> (
in <arg-type> <arg-list>)
raises (<exceptions>);

Specified operation
Inherited from
<home>Explicit

Table 10.9 - Comparing the remote interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBObject extends java.rmi.Remote CCMObject

Table 10.8 - Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
CORBA - Part 3: Component Model, v3.1 169

10.6.3 The Callback Interfaces

Table 10.10 summarizes the callback interfaces the EJB programmer or basic CORBA component programmer must
implement. The EJB interfaces are specified as Java interfaces in accordance with the EJB 1.1 specification dated June
28, 1999. The CCM interfaces are specified in IDL as defined in this specification.

Operation public EJBHome getEJBHome()
throws java.rmi.RemoteException

CCMHome
get_ccm_home();

public java.lang.Object primaryKey
getPrimaryKey()
throws java.rmi.RemoteException

operation defined on
<entity>home

public void remove (
Handle handle)
throws java.rmi.RemoteException,
RemoveException

void remove()
raises (CCMException);

CORBA references instead of
handles; REMOVE_ERROR
is minor code

public Handle getHandle()
throws java.rmi.RemoteException

CORBA::object_to_string

public boolean isIdentical (
EJBObject obj)
throws java.rmi.RemoteException

boolean is_equivalent(
in Object obj);

Interface Handle extends java.io.Serializable CORBA reference used for
handle

public EJBObject getEJBObject()
throws java.rmi.RemoteException

CORBA::string_to_object

Module <session-bean> <session-component>

Interface <session>Remote extends
EJBObject

<session>::CCMObject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation>(
in <arg-type> <arg-list)
raises (<exceptions>);

business methods

Module <entity-bean> <entity-component>

Interface <entity>Remote extends EJBObject <entity>::CCMObject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation>
(
in <arg-type> <arg-list)
raises (<exceptions>);

business methods

Table 10.10 - Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes

Module javax.ejb Components::Basic

Interface EnterpriseBean EnterpriseComponent

Interface SessionBean extends EnterpriseBean SessionComponent::EnterpriseComponent

Table 10.9 - Comparing the remote interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
170 CORBA - Part 3: Component Model, v3.1

Operation public void setSessionContext (
SessionContext ctx)
throws EJBException

void set_session_context(
in SessionContext ctx)
raises (CCMException);

public void ejbActivate ()
throws EJBException

void ccm_activate ()
raises (CCMException);

public void ejbPassivate ()
throws EJBException

void ccm_passivate ()
raises (CCMException);

public void ejbRemove ()
throws EJBException

void ccm_remove ()
raises (CCMException);

Interface <name>Bean extends SessionBean Home operations are
not delegated in CCM.

Operation public void ejbCreate (
<Arg-type> <arg-list>)
throws CreateException,
EJBException)

Implemented on home,
CREATE_ERROR
is minor code

Interface SessionSynchronization SessionSynchronization

Operation public void afterBegin ()
throws EJBException

void after_begin ()
raises (CCMException);

public void beforeCompletion()
throws EJBException

void before_completion ()
raises (CCMException);

public void afterCompletion (
boolean committed)
throws EJBException

void after_completion
(in boolean committed)
raises (CCMException);

Interface EntityBean extends EnterpriseBean EntityComponent::EnterpriseComponent

Operation public void setEntityContext (
EntityContext ctx)
throws EJBException

void set_entity_context
(in EntityContext ctx)
raises CCMException;

public void unsetEntityContext ()
throws EJBException

void unset_entity_context ()
raises (CCMException);

public void ejbActivate ()
throws EJBException

void ccm_activate ()
raises (CCMException);

public void ejbLoad ()
throws EJBException

void ccm_load ()
raises (CCMException);

public void ejbStore ()
throws EJBException

void ccm_store()
raises (CCMException);

public void ejbPassivate ()
throws EJBException

void ccm_passivate ()
raises (CCMException);

public void ejbRemove ()
throws RemoveException,
EJBException

void ccm_remove ()
raises (CCMException);

REMOVE_ERROR
is a minor code

Interface <name>Bean extends EntityBean Home operations are
not delegated in CCM.

Table 10.10 - Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
CORBA - Part 3: Component Model, v3.1 171

10.6.4 The Context Interfaces

The context interfaces summarized in Table 10.11 provide accessors to services provided by the component container.
They are used by the component developer when these services are required.

Operation public <key-type> ejbcreate (
<Arg-type> <arg-list>)
throws CreateException,
DuplicateKeyException,
EJBException

Implemented on home,
CREATE_ERROR
and DUPLICATE_KEY
are minor codes

public void ejbPostCreate ()
throws CreateException,
DuplicateKeyException,
EJBException

post_create not
required in CCM due
to CORBA identity
model

public <key-type> findByPrimaryKey (
<Arg-type> <arg-list>)
throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

public <key-type> find<method> (
<Arg-type> <arg-list>)
throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

Table 10.11 - Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes

Module javax.ejb Components::Basic

Interface EJBContext CCMContext

Operation public java.security.Principal getCallerPrincipal() Principal get_caller_principal();

public EJBHome getEJBHome() CCMHome get_ccm_home();

public boolean getRollbackOnly()
throws java.lang.IllegalState

boolean get_rollback_only()
raises (IllegalState);

public javax.transaction.UserTransaction
getUserTransaction ()
throws java.lang.IllegalState

Transaction::UserTransaction
get_user_transaction ()
raises (IllegalState);

public boolean isCallerInRole (
java.lang.String (roleName)

boolean is_caller_in_role
(in string role);

public void setRollbackOnly()
throws java.lang.IllegalState

void set_rollback_only()
raises IllegalState;

Interface SessionContext extends EJBContext SessionContext::CCMContext

Table 10.10 - Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
172 CORBA - Part 3: Component Model, v3.1

10.6.5 The Transaction Interfaces

Table 10.12 summarizes the transaction interfaces provided for bean-managed or component-managed transactions. Both
EJB and CCM provide an accessor function in the context to obtain a reference to a transaction service. The transaction
service supported for EJB is JTA, a subset of JTS which is equivalent to the CORBA transaction service (OTS). The
transaction service supported for CORBA components is implemented by the component container as a wrapper over the
CORBA transaction service. Components::Transaction is functionally equivalent to JTA (which is not a distinct
compliance level for OTS) with the addition of suspend and resume.

Operation public EJBObject getEJBObject()
throws java.lang.IllegalState

CORBA::Object get_CCM_Object()
raises (IllegalState);

this will be the
component
reference

Interface EntityContext extends EJBContext EntityContext::CCMContext

Operation public EJBObject getEJBObject()
throws java.lang.IllegalState

CORBA::Object get_CCM_Object()
raises (IllegalState);

this will be the
component
reference

public java.lang.Object getPrimaryKey ()
throws java.lang.IllegalState

PrimaryKeyBase get_primary_key()
raises (IllegalState);

Table 10.12 - Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct EJB Form CCM Form Notes

Module javax.transaction Components::Transaction

Interface UserTransaction UserTransaction

Operation public void begin()
throws NotSupported,
SystemException

void begin ()
raises (NotSupported,
SystemError);

SystemError to avoid confusion
with System Exception

public void commit()
throws RollbackException,
HeuristicMixedException,
HeuristicRollbackException,
java.security.SecurityException,
java.lang.IllegalStateException,
SystemException

void commit()
raises (RollbackError,
HeuristicMixed,
HeuristicRollback,
Security,
IllegalState,
SystemError

map CORBA system exceptions
TRANSACTION_ROLLED_BACK
to ROLLBACK and
NO_IMPLEMENT to SECURITY

Table 10.11 - Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes
CORBA - Part 3: Component Model, v3.1 173

10.6.6 The Metadata Interfaces

The EJB component model supports a limited set of metadata through the EJBMetaData interface. The CORBA
component model extends the CORBA interface repository to add component-unique metadata for components. This
meta-data is in addition to the metadata currently provided by the IR. When EJB clients access CORBA components, the
container provider must provide an implementation of EJBMetaData, which supports the necessary metadata from the
Interface Repository or the component descriptors. This is described further in Clause 8. When CORBA clients access
EJB implementations, the Interface Repository is already populated for the EJBHome and EJBObject interfaces, enabling
client requests to be satisfied. Table 10.13 compares the metadata supported by EJB and CORBA Components.

public void rollback()
throws java.security.SecurityException,
java.lang.IllegalStateException,
SystemException

void rollback()
raises (Security,
IllegalState,
SystemError);

public void setRollbackOnly()
throws SystemException

void set_rollback_only()
raises (SystemError);

public int getStatus()
throws SystemException;

Status get_status()
raises (SystemError);

public void setTransactionTimeout (
int seconds)
throws SystemException

void set_transaction_timeout(
in long to)
raises (SystemError);

TranToken suspend()
raises (NoTransaction,
SystemError);

CCM supports suspend/resume
which JTA does not

void resume(
in TranToken)
raises (invalidToken,
SystemError);

CCM supports suspend/resume
which JTA does not

Table 10.13 - Comparing component metadata between EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb IR

Interface EJBMetaData ComponentDef

public EJBHome getEJBHome()

public java.lang.Class getHomeInterfaceClass()

public java.lang.Class
getRemoteInterfaceClass()

public java.lang.Class getPrimaryKeyClass()

public boolean isSession()

public boolean isStatelessSession()

Table 10.12 - Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct EJB Form CCM Form Notes
174 CORBA - Part 3: Component Model, v3.1

11 Interface Repository Metamodel

11.1 Introduction

The first goal of the MOF-compliant metamodel is to express the extensions to IDL defined by the CORBA Component
Model. Since these extensions are derived from the previously-existing IDL base, it is not possible to define a MOF-
compliant metamodel for the extensions without defining a MOF-compliant metamodel for the IDL base.

Thus, the first MOF Package defined, entitled BaseIDL, is a MOF-compliant description of the pre-existing CORBA
Interface Repository, while the second Package, entitled ComponentIDL, expresses the Component Model extensions. As
shown by the following package diagram (Figure 11.1), the ComponentIDL Package is dependent upon the BaseIDL
Package.

Figure 11.1- The Two Packages for the IDL Metamodel

11.1.1 BaseIDL Package

The base CORBA Interface Repository (IR) is described in the Common Object Request Broker Architecture (CORBA) in
the form of CORBA IDL. Because the MOF is more expressive than IDL, a range of legitimate MOF-compliant
metamodels are equivalent to this IDL. For instance, multi-valued attributes and references expressed in IDL could be
ordered or unordered, allow an instance to be contained in the collection only once or more than once. Further, specific
multiplicity constraints could be specified; for example:

Can the sequence be empty?

Is there an upper bound?

As can be seen from an examination of the portion of the metamodel contained in the BaseIDL Package, many such
questions are resolved via the more precise expression that the MOF enables.

11.1.1.1 A Structural Comparison of the BaseIDL Package with the Existing IR

Although the structure of the MOF-compliant CORBA IR is very similar to the existing CORBA IR, the authors have
taken this opportunity to do some streamlining.

Com ponentIDL

Bas eIDL
CORBA - Part 3: Component Model, v3.1 175

• In the existing CORBA IR, elements that are “typed,” such as constants, attributes, etc., hold an attribute of type
IDLType. However, the same IDLType can be the type for many elements, so an attribute (with its composition
semantics) is not appropriate. Instead, the MOF-compliant IR specifies the abstract Typed metaclass, and an
Association between Typed and IDLType. This change eliminates the need for repeating the type attribute, which
returns a TypeCode, in 6 different metaclasses.

• In the existing CORBA IR, StructField, Parameter, and UnionField are datatypes (structs). The MOF-compliant IR
specifies them as full-blown metaclasses so that they can participate as derivations of the Typed metaclass.

• The MOF-compliant IR does not have to represent a repository since MOF-based servers inherently have such a
construct. Thus, the MOF-compliant IR has no Repository metaclass and it specifies Container as a sub(meta)class of
Contained, simplifying the hierarchy.

• The existing IR’s IRObject provides a def_kind readonly attribute. This information would be redundant in a MOF
server, which inherently carries information describing the type of a metaobject. Thus, there is no IRObject metaclass
in the MOF-compliant IR. However, it can be derived for a CORBA IR layer.

• In the existing IR, UnionDef, StructDef, ExceptionDef, and OperationDef inherit from Container. Since they each
contain only a single type of object, it makes less sense for them to have a reference to a collection of Contained
metaobjects. Instead, in the MOF-compliant IR they each hold their set of fields or parameters as attributes.

• As a simplification the two-stated enums AttributeMode and OperationMode have been eliminated. Attributes typed as
AttributeMode or OperationMode have been turned into boolean-typed attributes.

• Basic CRUD operations for creating, reading, updating, and deleting metaobjects are generally not included in the
metamodel, since these are generated automatically by the MOF-IDL mapping, which takes a MOF-compliant
metamodel as input and deterministically derives the IDL for representing the metamodel in a repository.

• The existing IR duplicates many of the interfaces representing basic IR elements with structs representing the same
elements. This duplication supports the ability to get a large collection of information required by a DII client without
requiring the client to subsequently make repeated, possibly remote requests to objects in order to process the
collection of information. Since the DII is optimized for the existing IR, this specification assumes that an IR layer will
continue to service DII clients and thus does not attempt to provide this functionality in the MOF-compliant IR.

Figure 11.2 shows all of the metaclasses and relationships defined in the BaseIDL Package.
176 CORBA - Part 3: Component Model, v3.1

Figure 11.2- BaseIDL Package--All Elements

AliasDef

any
<<primitive>>

ArrayDef

bound : unsigned long

boolean
<<primitive>>

ConstantDef

constValue : any

EnumDef

members : string

Field

identifier : string

FixedDef

digits : unsigned short
scale : short

long
<<primitive>>

ModuleDef

prefix : string

ParameterDef

identifier : string
direction : ParameterMode

PrimitiveDef

kind : PrimitiveKind

SequenceDef

bound : unsigned long

short
<<primitive>>

string
<<primitive>>

StringDef

bound : unsigned long

StructDef

members : Field

TypeCode
<<primitive>>

TypedefDef

UnionField

identifier : string
label : any

unsigned long
<<primitive>>

unsigned short
<<primitive>>

ValueBoxDef

ValueMemberDef

isPublicMember : boolean

WstringDef

bound : unsigned long

Typed

UnionDef

unionMembers : UnionField

IDLType

/ typeCode : TypeCode

0..n

1

+typed

0..n

+idlType

1

TypedBy

0..n
1

+unionDef
0..n

+discriminatorType

1

DiscriminatedBy

InterfaceDef

isAbstract : boolean
isLocal : boolean

0..n

0..n

+base

0..n

InterfaceDerivedFrom

+derived

0..n

ValueDef

isAbstract : boolean
isCustom : boolean
isTruncatable : boolean

0..n

0..1

+valueDef 0..n

+interfaceDef

0..1

Supports

0..1

0..n

+base

0..1

ValueDerivedFrom

+derived

0..n

0..n

0..n

+abstractDerived
0..n

AbstractDerivedFrom

+abstractBase

0..n

OperationDef

isOneway : boolean
parameters : ParameterDef
contexts : string

AttributeDef

isReadonly : boolean

ExceptionDef

typeCode : TypeCode
members : Field

0..n

0..n

+operationDef

0..n

+exceptionDef

0..n

CanRaise

0..n

0..n

+getAttribute

0..n

+getException

0..n

GetRaises

0..n

0..n

+setAttribute

0..n

+setException
0..n

SetRaises

Contained

identifier : string
repositoryId : string
version : string
/ absoluteName : string

Container

lookupName()
lookup()
getFilteredContents()

0..n0..1 +contents0..n+def inedIn0..1 Contains

PrimitiveKind

PK_NULL
 PK_VOID
PK_SHORT
 PK_LONG
 PK_USHORT
PK_ULONG
PK_FLOAT
PK_DOUBLE
PK_BOOLEAN
PK_CHAR
PK_OCTET
PK_ANY
PK_LONGDOUBLE
 PK_WSTRING
PK_TYPECODE
PK_WCHAR
PK_PRINCIPAL
PK_STRING
PK_ULONGLONG
PK_OBJREF
 PK_LONGLONG

<<enumeration>>

ParameterMode

PARAM_IN
 PARAM_OUT
PARAM_INOUT

<<enumeration>>
DefinitionKind

DK_NONE
DK_ALL
DK_ATTRIBUTE
DK_CONSTANT
DK_EXCEPTION
DK_INTERFACE
DK_MODULE
DK_OPERATION
DK_TYPEDEF
DK_ALIAS
DK_STRUCT
DK_UNION
 DK_FIXED
DK_ENUM
DK_PRIMITIVE
DK_STRING
DK_SEQUENCE
DK_WSTRING
DK_ARRAY
DK_REPOSITORY

<<enumeration>>
CORBA - Part 3: Component Model, v3.1 177

11.1.1.2 Typing

As mentioned earlier in this clause (“A Structural Comparison of the BaseIDL Package with the Existing IR” on
page 175), the two critical elements of the BaseIDL Package supporting the typing of IR entities are the Typed and
IDLType metaclasses. A Typed element references an IDLType, which has an attribute of type TypeCode.

Figure 11.3- IDL Typing

AliasDef

ArrayDef

bound : unsigned long

ConstantDef

constValue : any

Field

identif ier : string

FixedDef

digits : unsigned short
scale : short

ParameterDef

identifier : string
direction : ParameterMode

PrimitiveDef

kind : PrimitiveKind

SequenceDef

bound : unsigned long

StringDef

bound : unsigned long

UnionFi eld

identifier : string
label : any

ValueMemberDef

isPublicMember : boolean

WstringDef

bound : unsigned long

Typed

IDLType

/ typeCode : TypeCode

0..n

1

0..n

+idlType1

TypedefDef

ValueDef

isAbstract : boolean
isCustom : boolean
isTruncatable : boolean

0..1

0..n

+base

0..1

ValueDerivedFrom

0..n

0..n

0..n

0..n

AbstractDerivedFrom

+abstractBase

0..n

InterfaceDef

isAbstract : boolean
isLocal : boolean

0..n

0..n

+base
0..n

InterfaceDeri vedFrom

0..n

0..n

0..1

0..n

+interfaceDef

0..1

AttributeDef

isReadonly : boolean

OperationDef

isOneway : boolean
parameters : ParameterDef
contexts : string
178 CORBA - Part 3: Component Model, v3.1

11.1.1.3 Containment

Many elements in the metamodel descend from Container or Contained, in keeping with the structure of the original
CORBA Interface Repository. As mentioned in the previous sub clause, the metamodel also derives Container from
Contained so that an element that is logically a container and at the same time is defined in another container does not
have to inherit directly from both Container and Contained. However, this change requires that a constraint be written
such that ModuleDef and only ModuleDef does not have to be defined in a Container. This constraint is included in the
next sub clause on containment constraints. Figure 11.4 expresses the containment hierarchy.

Figure 11.4- Containment Hierarchy

11.1.1.4 Containment Constraints

The Association between Container and Contained is named Contains. Contains is very general and is inherited by
sub(meta)classes of Container and Contained. Unless further constrained, Contains would allow any Container to directly
contain any Contained element. For example, a ModuleDef could contain an OperationDef and a ValueDef could contain
an InterfaceDef. Clearly, the Contains Association must be constrained.

C o n s ta n tD ef

c o n s tVa lu e : a n y

Mo d u le D e f

Typ e d e fD e f

Va lu e Me m b e rD e f

In te rfa c e D e f

Va lu e De f

A tt ri bu t e D e f

is Re a d o n ly : b o o le a n

O p e ra tio n D e f

E xc e p tio n D e f

C o n ta i n ed

id e n ti fi e r : s tr in g
r ep o s i to ryId : s t ri ng
v e rs io n : s t rin g
/ a b so l u te N a m e : s t ri n g

C o n ta in e r

lo o k u p N a m e (s e a rc h N a m e : s tr in g , le ve ls To S e a rc h : lo n g , lim i tTo T yp e : D e fin itio n K in d , e xclu d e In h e rite d : b o o le a n) : C o n ta in e d
lo o k u p (s e a rch N a m e : s tr in g) : C o n ta in e d
g e tF i lte re d C o n te n ts (lim i tTo Typ e : D e fin itio n K in d , in c lu d e In h e ri te d : b o o le a n) : C o n ta in e d

0 ..n

0 ..1

+ co n te n ts0 ..n

+ d e fin e d In 0 ..1

C o n ta in s
CORBA - Part 3: Component Model, v3.1 179

Figure 11.5 and Figure 11.6 express the containment constraints formally via the OMG’s Object Constraint Language
(OCL). They also supplement the formal expressions with English natural language equivalents.

Figure 11.5- Containment Constraints--Subclasses of Contained

Const an tD ef

constValue : any

T ypedefDe f

ValueM e m berDe f

**Constra in ts i n Engl i sh **
[3] an A ttributeDef can m ust be de fined wi th in an In terfaceDef or wi th in a ValueDe f

**Constra in ts i n OCL **
[3] { de finedIn.ocl IsK indOf (In terfaceDe f) or de finedIn.ocl IsK indOf (ValueDe f) }

Constra in ts in Engl ish
[4] an Opera tionDef m ust be de fined wi thin an In terfaceDef or wi th in a ValueDe f

**Constra in ts in OCL **
[4] { de fined In.ocl IsK indOf (In te rfaceDef) o r defi nedIn .ocl IsK indOf (Va lueDef) }

Constra in ts in Engl ish
[5] a ValueM em berDe f m ust be de fined wi th in a ValueDe f

**Constra in ts in OCL **
[5] { de fined In.ocl IsT ypeof (Va lueDef) }

**Constra in ts in Engl ish **
[1] a Constan tDef must be defined in a Conta iner

**Constra in ts in OCL **
[1] { de finedIn.notEm pty }

Constra in ts in Eng l ish
[2] a T ypede fDe f m ust be defined i n a Con ta ine r

**Constra in ts in OCL **
[2] { de fined In.no tEm pty }

A ttributeDef

Operati onDe f

Excep tionDef

C ontaine dCon ta ine r

0.. n

0 ..1 +con tents

0.. n+defined In

0 ..1

Con tains

Constra in ts in Engl ish
[6] an Exc ep tionDef m ust be de fined in a Conta iner

**Constra in ts in OC L **
[6] { def ined In .no tEm p ty }
180 CORBA - Part 3: Component Model, v3.1

Figure 11.6- Containment Constraints--Subclasses of Container

11.1.1.5 Typedef and Type Derivations

Figure 11.7 expresses the hierarchy of derivatives of Typedef and Typed.

M oduleDef

InterfaceDef

ValueDef

Constra in ts in Engl ish
[7] i f ModuleDef is def ined in a Container, this Conta iner m ust be anot her M odul eDef

**Constra in ts in OCL **
[7] { definedIn.notEm pty im pl ies (de fined In.oc l IsKindOf (ModuleDef) and definedIn <> sel f) }

Constraints in Engl ish
[8] an InterfaceDef must be defined wi thin a ModuleDef

**Constraints in OCL **
[8] { definedIn.ocl IsKindOf (ModuleDef) }

Co nstrain ts in Eng l ish
[9] a Value Def mu st be d efine d wi th in a M odu leDef

**Co nstrain ts in OCL **
[9] { defin edIn.ocl IsKi ndOf (Mo dule Def) }

Conta ined

Container 0..n

0..1 +contents

0..n
+definedIn

0..1

Conta ins
CORBA - Part 3: Component Model, v3.1 181

Figure 11.7- Derivations from Typedef and Type

11.1.1.6 Exceptions

Figure 11.8 shows the formal definition of the ExceptionDef metaclass. Note the inclusion of the newly-defined (in this
specification) ability for attribute accessors and mutators to raise user-defined exceptions.

AliasDef

EnumDef

members : string

Field

identifier : string

StructDef

members : Field

TypedefDef

UnionField

identifier : string
label : any

ValueBoxDef

Typed

UnionDef

unionMembers : UnionField

IDLType

/ typeCode : TypeCode
0..n

1

0..n
+idlType

1

TypedBy

0..n

1

0..n

+discriminatorType

1

DiscriminatedBy

Contained

identifier : string
repositoryId : string
version : string
/ absoluteName : string
182 CORBA - Part 3: Component Model, v3.1

Figure 11.8- Exceptions

11.1.1.7 Value Types

CORBA 2.3 provided a model for types of objects that can be passed by value. The Objects By Value specification
expanded the grammar of IDL and the structure of the Interface Repository to accommodate value types. Figure 11.9
focuses on the definition of value types in the MOF-compliant IR metamodel.

Contained

identifier : string
repositoryId : string
version : string
/ absoluteName : string

OperationDef

isOneway : boolean
parameters : ParameterDef
contexts : string

AttributeDef

isReadonly : boo lean

ExceptionDef

typeCode : TypeCode
members : Field

0..n

0..n

0..n

+exceptionDef

0..n
CanRaise

0..n

0..n

0..n

+getExcept ion
0..n

GetRaises

0..n

0..n

0..n

+setException

0..n SetRaises
CORBA - Part 3: Component Model, v3.1 183

Figure 11.9- Value Types

11.1.1.8 Naming

Figure 11.10 focuses on the aspects of the metamodel that concern naming.

ValueMemberDef

isPublicMember : boolean
Typed

IDLType

/ typeCode : TypeCode

0..n

1

0..n

+idlType

1

TypedBy

InterfaceDef

isAbstract : boolean
isLocal : boolean

0..n

0..n

+base0..n

InterfaceDerivedFrom

0..n

ValueDef

isAbstract : boolean
isCustom : boolean
isTruncatable : boolean

0..n

0..1

0 ..n

+interfaceDef
0..1

Supports

0..1
0..n

+bas e

0..1

ValueDerivedFrom

0..n

0..n

0..n

0..n

AbstractDerivedFrom

+abstractBase

0..n

ValueBoxDef

TypedefDef

Constraints in English
[13] Abstract InterfaceDefs may only derive from other abstract InterfaceDefs

**Constraints in OCL
[13] { isAbstract implies base->forAll (isAbstract) }

Constraints in English
[10] Abstract ValueDefs may only derive from other abstract ValueDefs
[11] base (if any) refers to a concrete ValueDef
[12] abstractBase refers only to abstract ValueDefs

**Constraints in OCL
[10]{ isAbstract implies base->isEmpty }
[11]{ base->notEmpty implies not base.isAbstract }
[12]{ abstractBase->forAll(isAbstract) }

Contained

identifier : string
repositoryId : string
version : string
/ absoluteName : string

Container

lookupName()
lookup()
getFilteredContents()

0..n0..1

+contents

0..n

+definedIn
0..1 Contains
184 CORBA - Part 3: Component Model, v3.1

Figure 11.10- Naming

11.1.1.9 Operations

As mentioned earlier in this clause (“A Structural Comparison of the BaseIDL Package with the Existing IR” on
page 175), the metamodel generally does not declare CRUD operations for the metaclasses, due to the fact that the MOF
automatically generates such operations based on the structural metamodel. However, a few convenience operations are
defined on the Container metaclass, as illustrated by Figure 11.11.

Figure 11.11- Convenience Operations

* * C o n st ra i n t s i n E n g l i sh * *
[1 4] C o n t a i n e d e l e m e n t s h a v e u n i q u e n a m e s w i t h i n t h e i r C o n ta i n e r

* * C o n st ra i n t s i n O C L * *
[1 4] { c o n t e n t s-> f o rA l l (c 0 , c 1 | c 0 < > c 1 i m p l i e s c 0 . i d e n t i f i e r < > c 1 . i d e n t i f i e r) }

C o n t a i n e d

i d e n t i f i e r : st r i n g
re p o si t o ry Id : s t r i ng
v e r s io n : s t ri n g
/ ab so l u te N a m e : s t r i n g

C o n t a i n e r

l o o ku p N a m e ()
l o o ku p ()
g e tF i l t e re d C o n t e n t s()

0 . . n

0 . . 1

+ c o n t e n ts

0 . . n

+ d e fi n e d I n

0 . . 1

C o n t a i n s

Container

lookupName(searchName : string, levelsToSearch : long, limitToType : Defini tionKind, excludeInherited : boolean) : Contained
lookup(searchName : string) : Contained
getFilteredContents(limitToType : Defini tionKind, includeInherited : boolean) : Contained
CORBA - Part 3: Component Model, v3.1 185

11.1.2 ComponentIDL Package

11.1.2.1 Overview

The following UML class diagram describes a metamodel representing the extensions to IDL defined by the CORBA
Component Model. Just as these extensions are dependent on the base IDL defined in the CORBA Core, so is this
metamodel dependent on a metamodel representing the base IDL.

Figure 11.12- ComponentIDL Package - Main Diagram

OperationDef

(from BaseIDL)

EventDef

EventPor
tDef

1

0..n

+type1

0..n
Event_Type

EmitsDef PublishesDef ConsumesDef

ProvidesDef
UsesDef

multipl e : boolean FactoryDef FinderDef

ComponentDef

1

0..n

1

+facet
0..n

0..n

1

+receptacle 0..n

1

1

0..n

1

+emits

0..n

1

0..n

1

+publishes 0..n

1

0..n

1

+consumes 0..n

ValueDef
(from BaseIDL)

InterfaceDef

(from BaseIDL)

1

0..n

+provides
1

0..n
0..n

1

0..n

+uses1

0..n

0..n

+supports 0..n

0..n HomeDef

1

0..n

1

+factory0..n

1

0..n

1

+finder0..n

1

0..n

+component 1

+home0..n

0..1

0..n

+primary_key

0..1

+home
0..n

0..n

0..n

+supports0..n

0..n
186 CORBA - Part 3: Component Model, v3.1

11.1.2.2 Containers and Contained Elements

The following UML class diagram (Figure 11.13) describes the derivation of the metamodel elements from the BaseIDL
Container and Contained elements:

Figure 11.13- Containment Hierarchy

Each of the subtypes of Contained shown in Figure 11.13 can only be defined within certain subtypes of Container.
Figure 11.14 formally specifies these constraints via the OMG’s Object Constraint Language (OCL), and supplements the
OCL by expressing the constraints in natural language for the benefit of readers who are not familiar with OCL.

Container

(from BaseIDL)
Contained

(fro m Bas eIDL)
0..1

0..n+definedIn

0..1 + contents

0..n
Contains

OperationDef
(from BaseIDL)

FactoryDe f FinderDef

Hom eDef

ProvidesDef

UsesDef

InterfaceDef

(from BaseIDL)

Com ponentDef

Em itsDef

Consum esDef

Publishes Def

ValueDef
(from BaseIDL)

EventDef

EventPortDef
CORBA - Part 3: Component Model, v3.1 187

Figure 11.14- Constraints on Containment of Elements Defined In ComponentDef

An instance of ComponentDef describes a CORBA component in an abstract manner. The definition contains a
description of all features of a component that are visible from the outside. More precise, it defines all interfaces
including interfaces that are implicit or used for event communication. In detail, the features of component that are visible
to the outside are:

• The component equivalent interface, containing all implicit operations, operations and attributes that are inherited by a
component (also from supported interfaces), and attributes defined inside the component.

Provides Def Us es Def

* *Cons tra in ts in Engl is h**
[1] A Fac etDef can be defined on l y
w i th in a C ompo nentDe f

* *Cons tra in ts in O CL **
[1] {defin edIn.oclType = Com ponentDef}

* *Cons tra in ts in Engl is h**
[2] A Recep tac leDef c an be d efi ned on l y
w i th in a Compo nentDef

* *Cons tra in ts in OC L * *
[2] { def ine dIn.oclTyp e = Com ponentDef}

Cons train ts in English
[3] An EventIn teractionDef can be
defined only w ithin a Com ponentDef

**Cons train ts in OCL **
[3] {definedIn.oclType = Com ponentDef}

FactoryDef FinderDef

Constraints in Englis h
[4] A FactoryDef can be defined on ly
with in a Hom eDef

**Constraints in OCL **
[4] {definedIn.oclType = Hom eDef}

Cons traints in Englis h
[5] A FinderDef can be defined only w ithin
a Hom eDef

**Cons traints in OCL **
[5] {definedIn.oclType = Hom eDef}

Cons traints in Englis h
[6] A Prim aryKeyDef can be defined only
with in a Hom eDef

**Cons traints in OC L **
[6] {definedIn.oclType = Hom eDef}

EventPortDef

Conta ined
(from BaseIDL)

Conta iner
(from Bas eIDL)

0..n0..1

+contents

0..n

+defined In

0..1
Conta ins
188 CORBA - Part 3: Component Model, v3.1

• The facets of a component; that is, all interfaces that are provided by the component to the outside.

• The receptacles of a component; that is, all interfaces that are used by a component.

• The events, which a component can emit, publish, or consume.

If a component is going to be implemented, all these features must be handled by the component implementation. To
provide a common basis for defining the related implementation definitions (as part of CIF) the abstract metaclass
ComponentFeature is defined. The metaclasses ComponentDef, ProvidesDef, UsesDef, and EventPortDef are defined as
subclasses of the metaclass ComponentFeature.

All of ComponentDef's composition Associations shown in the main diagram (Figure 11.12 on page 186) are derived from
the BaseIDL metamodel’s Contains Association between Container and Contained. As shown by Figure 11.13 on
page 187, ComponentDef inherits that Association from InterfaceDef, which inherits it from Container.

The following class diagram (Figure 11.15 on page 190) details these derived Associations. A “/” prefix in an Association
name denotes that the Association is derived, and sets the MOF's “isDerived” property for the Association. The
constraints for each of the derived Associations are expressed in the OMG's Object Constraint Language and declare how
the Associations are derived from the Contains Association.

The <<implicit>> stereotype is a standard UML stereotype that designates the Association as conceptual rather than
manifest. An <<implicit>> Association is ignored when generating IDL for the metamodel via the MOF-IDL mapping.
It is also ignored when deriving the XML DTD for the metamodel via the MOF-XML mapping specified by the XMI
specification. The Contains association is sufficient for generating the accessor methods in the IDL allowing the
containments to be traversed. If these Associations were not marked as <<implicit>>, then additional accessor methods
would be generated to do the more focused traversals that they conceptualize. In the judgement of the submitters the
generation of these additional accessor methods would expand the footprint of the IDL interfaces more than is warranted,
given that the containments can be traversed by the single inherited Contains Association.

The fact that these <<implicit>> Associations are ignored when generating the IDL for the metamodel does not mean that
they have no bearing on the contents of a repository. The “reflective” interfaces that all MOF metaobjects inherit have an
operation called metaObject that returns a metaobject. This metaobject is part of the metamodel rather than part of a
model; in other words, it is actually a meta-metaobject that is part of the description of the metamodel. The definitions of
the <<implicit>> Associations in which a metaobject participates would be available via this meta-metaobject. The
multiplicity constraints of these Associations would be available as well. Thus, for example, the fact that a ComponentDef
aggregates zero or more UsesDef metaobjects is discoverable through such meta-metaobjects and thus serves as a formal
constraint on the Contains Association from which the aggregation is derived.

C om ponentFeature

Pr ovi des D ef U s es Def Com ponentDef EventPortDef
CORBA - Part 3: Component Model, v3.1 189

Furthermore, when the state of the metamodel is streamed in conformance with the DTD for the MOF meta-metamodel,
the state that specifies the <<implicit>> Associations are part of the stream. The DTD for the MOF meta-metamodel is
contained in the XMI specification. XML streams conforming to that DTD and which contain the state of the IR
metamodel are included in “MOF DTDs and IDL for the Interface Repository Metamodel” on page 195.

Figure 11.15- Implicit Derived Containments with ComponentDef as the Composite

Container

(from BaseIDL)

Contained

(from BaseIDL)

0..1

0..n
+definedIn

0..1
+contents

0..n
Contains

ProvidesDef

EmitsDef

UsesDef

ConsumesDefPublishesDef

ComponentDef

0..n

1

+facet

0..n

+component
1

/Component_Facet

<<implicit>>

0..n

1

+emits 0..n

+component

1

/Component_Emits
<<implicit>>

0..n

1

+receptacle 0..n

+component1

/Component_Receptacle
<<implicit>>

0..n

1

+consumes

0..n

+component1

/Component_Consumes

<<implicit>>

0..n

1

+publishes 0..n

+component
1

/Component_Publishes
<<implicit>>

Constraints in English
[7] All of the FacetDef metaobjects that populate
this Association also populate the
ComponentDef's inherited Contains Association

Constraints in OCL
[7] {component.contents->includesAll (provides)}

Constraints in English
[8] All of the ReceptacleDef metaobjects that
populate this Association also populate the
ComponentDef's inherited Contains
Association

Constraints in OCL
[8] {component.contents->includesAll (uses)}

Constraints in English
[9] All of the EmitsDef metaobjects that populate
this Association also populate the
ComponentDef's inherited Contains Association

Constraints in OCL
[9] {component.contents->includesAll (emits)}

Constraints in English
[10] All of the PublishesDef metaobjects that populate
this Association also populate the ComponentDef's
inherited Contains Association

Constraints in OCL
[10] {component.contents->includesAll (publishes)}

Constraints in English
[11] All of the ConsumesDef metaobjects that populate
this Association also populate the ComponentDef's
inherited Contains Association

Constraints in OCL
[11] {component.contents->includesAll (consumes)}
190 CORBA - Part 3: Component Model, v3.1

HomeDef’s composition Associations also are derived from the Contains Association. As shown in Figure 11.13 on
page 187, HomeDef descends from Container. All of the components of its composition Associations descend from
Contained. As with the derived Associations in which ComponentDef plays the composite role, the derived Associations
in which HomeDef plays the composite role are marked as <<implicit>> to prevent excess IDL generation. Figure 11.16
formally defines the constraints that define the semantics of the derivations.

Figure 11.16- Implicit Derived Containments with HomeDef as the Composite

11.1.2.3 ValueDef Constraints EventsDef

The ValueDef metaclass, which is part of the BaseIDL Package, participates in a number of Associations defined by the
ComponentIDL Package. The emits, publishes, and consumes declarations that are part of the component model IDL
extensions all reference a ValueDef. Furthermore, the primaryKey declaration within home declarations references a
ValueDef. However, the IDL type of the ValueDef is constrained, as explained in the Component Model clause.

Figure 11.17 expresses the ValueDef constraints formally. Note that it uses an OCL technique of defining a side-effect free
operation to support recursion, which is required to traverse the transitive closure of a ValueDef’s inheritance hierarchy.

The Component IDL metamodel is changed to introduce the new metatype eventtype. This metatype is introduced as a
metaclass EventDef, which is a specialization of ValueDef. Inheritance for instances of EventDef is allowed from instances
of ValueDef and EventDef; however, instances of ValueDef are not allowed to inherit from instances of EventDef.

Figure 11.17- The new metatype eventtype

FactoryDef

HomeDef

1

0..n

+home1

+factory
0..n

/Home_Factory

<<implicit>>

FinderDef

1

0..n

+home
1

+finder
0..n

/Home _Find er
<<implicit>>

Const raints in Eng lish
[12] A ll of the F ac toryDef me taobjects that pop ulate this
Asso cia tion also populate the HomeDef 's inh erited
Con tain s Association

Const raints in OCL
[12] {ho me.contents-> includesAl l (factory) }

Constrain ts in English
[1 3] All of the Fin derDef metaobjects that populate th is
Association a lso popu late the Home De f's inherited
Contains Association

Constrain ts in OCL
[1 3] {home.conte nts->include sAll (find er)}

E ve n tD e f

V a l u e D e f

i s A b s tr a c t : b o o l e a n
i s C u s to m : b o o l e a n
i s T r u n c a ta b le : b o o l e a n

(f r o m B a s e I D L)
CORBA - Part 3: Component Model, v3.1 191

The former metaclass EventDef as contained in the metamodel for ComponentIDL in orbos/99-07-02 is renamed to
EventPortDef. The Association between EventPortDef and ValueDef is removed. Instead, there is a similar Association
defined between EventPortDef and EventDef. The metamodel for Component IDL is shown in Figure 11.12 on page 186.

11.1.2.4 Additional Type and Inheritance Constraints

Figure 11.18 and Figure 11.19 define additional constraints on the ComponentDef, HomeDef, FactoryDef, and FinderDef
metaclasses.

Figure 11.18- Additional Component, Home, Factory, and Finder Constraints

Constraints in English

[19] A ComponentDef C may be dervied from at most one base.

[20] Furthermore, that one base must be a ComponentDef

[21] A ComponentDef may not define operations

[22] A supported InterfaceDef must not be one of the derived forms of InterfaceDef
(i.e. a ComponentDef or a HomeDef).

Constraints in OCL

[19] {base->size <= 1}

[20] {base->notEmpty implies (base->forAll (oclType = ComponentDef) }

[21] {contents->forAll (oclType <> OperationDef)}

[22] {supports->forAll (oclIsTypeOf (InterfaceDef)) }

OperationDef
(from BaseIDL)

Constraints in English
[17] The return type must be
the same as the type of the
component that the
FactoryDef's home manages.

Constraints in OCL
[17] {type =
home.manages.type}

Constraints in English
[18] The return type must be the
same as the type of the
component that the FinderDef's
home manages.

Constraints OCL
[18] {type = home.manages.type}

Constraints in English

[23] A HomeDef may be dervied from at most one base.

[24] Furthermore, that one base must be a HomeDef

Constraints in OCL

[23] {base->size <= 1}

[24] {base->notEmpty implies (base->forAll (oclType = HomeDef)}

Typed
(from BaseIDL)

IDLType
(from BaseIDL)

0..n 1

+typed

0..n

+idlType

1

FinderDefFactoryDef

HomeDef

1

0..n

+home1

+finder0..n

1

0..n

+home1

+factory0..n

ComponentDef 1

0..n

+component1

+home0..n

InterfaceDef
(from BaseIDL)

0..n

0..n

+supports 0..n

+components

0..n

0..n

0..n

+base
0..n

+derived0..n
192 CORBA - Part 3: Component Model, v3.1

Figure 11.19- Home and Primary Key Constraints

11.1.2.5 Constraints on Basic Components

The CORBA Component Model defines the notion of basic components. The ComponentDef metaclass has an attribute
named isBasic. The fact that a component is basic can actually be computed from the component declaration — if the
component observes certain constraints, it is basic. Thus, strictly speaking, the isBasic attribute is not necessary. However,
the attribute greatly simplifies the process of determining whether a component definition is basic.

Given the circumstances, it would seem appropriate to define the isBasic attribute as a derived one. In the MOF and
UML, isDerived is an attribute of Attribute that indicates that the information can be computed from other information in
the model. However, the XMI standard specifies that the state of derived attributes is not deposited in XMI/XML streams
representing models. Thus, if the isBasic attribute were marked as derived, the state of the attribute would not appear in
XMI streams representing CORBA-based object models. The submitters have therefore decided not to mark the isBasic
attribute of ComponentDef as derived.

C om po ne n tD e f

**C on stra in ts in En g li sh **

[31] G ive n a ho m e d e f in it io n H tha t man ag es a comp on en t typ e T , a nd g ive n a
ho m e d e fin i tion H ’ th a t m a na ge s a co m po ne nt type T ’, such tha t H’ is d e r ive d fro m
H, th e n T ’ m us t b e i de n t ica l to T o r d e r ive d (d irec t ly o r ind irec t ly) fro m T .

[32] F ur th e rm ore , if H o r on e o f its an ce sto rs de fines a p r im a ry ke y K an d H'
de fin es a p rima ry ke y K ', t he n K ' m ust b e ide n tica l to o r de rive d (d irec tly o r
in d irec tly) fro m K.

C on stra in ts in O C L

[31 , 3 2]
NO T E: U ses p re v iou sly -defin ed a d dition a l O C L ope ra tion "d e sce nd sF ro m" a n d n e w
ad d itio n al O C L op e ratio n "p r im aryKey"

{se lf .ba se ->fo rA l l (ba se Hom e | se l f.m a n a g es.d esc en d s Fro m (ba se H ome . man age s)
an d
 p r im aryK ey (s elf) ->n otEm pty imp lies
p rim aryKey

 (s elf) . typ e .d esc en d sF rom
(p r im aryKey(ba s eHom e).ty pe)
)
}

**A dd it ion a l O C L Op era tion **

p rim aryKey (ho me : Hom e De f) : P rim aryKeyD e f
{
 if h om e.ke y-> isEm pty th en
 if ho m e .b ase -> isEmpty th en
 resu lt = ho m e .key
 e ls e
 p r ima ryK ey (ho me.b ase)
 e nd if
 e lse
 re su l t = ho me

Va lue D e f

isAbs tra ct : b o o le an
isCu st om : b oole an
isT runc a tab le : bo o lea n

(fro m Ba s e ID L)

Hom eD ef1

0 ...

+com po ne n t 1

+h ome0 ...

+p rimary _k ey

+h ome 0 ..n

0 ..1

0 ..n

0 ..1
CORBA - Part 3: Component Model, v3.1 193

The constraints on basic components are modeled formally as shown in Figure 11.20.

Figure 11.20- Constraints on Basic Components

11.2 Conformance Criteria

This clause identifies the conformance points required for compliant implementations of the interface repository
metamodel architecture.

*Engl ish *
[34] Home s of bas ic Co mponent s ha ve
only factories and finders, do not inheri t
from other homes , and mana ge on ly
basic compon ents .

OCL
[34] manages->isBasic imp lies
(key- >is Empty and base->isEmpty and
manage s. isBas ic)

English
[33] Basic components shall not have
ports and do not inherit from other
components.

OCL
[33] isBasic implies
facet->isEmpty and
receptacle->isEmpty and
emits->isEmpty and
publishes->isEmpty and
consumes->isEmpty and
base->isEmpty

InterfaceDef
(from BaseIDL)

0..n

0..n
+base

0..n

+derived

0..n

Pr ovidesDef

0..n

1

+providesDef0..n

+provides 1

UsesDef
multiple : boolean

0..n

1

+usesDef0..n

+uses
1

EmitsDef PublishesDef ConsumesDef

Fac toryDef FinderDef

ComponentDef

1

0...

1

+facet
0...

0...

1

+recep tacle 0...

1

1

0...

1

+emits

0...

1

0...

1

+publishes 0...

/Component_Publishes
1

0...

1

+consumes 0...

HomeDef

1

0...

1

+fa ctory0...

1

0...

1

+finder0...

1

0...

+co mponent 1

+home0...
194 CORBA - Part 3: Component Model, v3.1

11.2.1 Conformance Points

In the previous sub clause, the MOF metamodel of the Interface Repository is defined. The following sub clause defines
the XMI format for the exchange of Interface Repository metadata and the IDL for a MOF-compliant Interface
Repository. Support for the generation and consumption of the XMI metadata and for the MOF-compliant IDL is optional.

11.3 MOF DTDs and IDL for the Interface Repository Metamodel

The XMI DTDs and IDL for the Interface Repository metamodel are presented in this sub clause. The DTDs are
generated by applying the MOF-XML mapping defined by the XMI specification to the MOF-compliant metamodel
described in “Introduction” on page 175. The IDL is generated by applying the MOF-IDL mapping defined in the MOF
specification to the metamodels and was validated using the IDL compilers.

The IDL requires the inclusion of the reflective interfaces defined in the Meta Object Facility (MOF) specification
(http://www.omg.org/technology/documents/formal/mof.htm).

11.3.1 XMI DTD

<!-- ___ -->
<!-- -->
<!-- XMI is the top-level XML element for XMI transfer text -->
<!-- ___ -->

<!ELEMENT XMI (XMI.header?, XMI.content?, XMI.difference*,
 XMI.extensions*)>
<!ATTLIST XMI
 xmi.version CDATA #FIXED "1.1"
 timestamp CDATA #IMPLIED
 verified (true|false) #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.header contains documentation and identifies the model, -->
<!-- metamodel, and metametamodel -->
<!-- ___ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,
 XMI.metametamodel*, XMI.import*)>

<!-- ___ -->
<!-- -->
<!-- documentation for transfer data -->
<!-- ___ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |
 XMI.longDescription | XMI.shortDescription |
 XMI.exporter | XMI.exporterVersion |
 XMI.notice)*>
<!ELEMENT XMI.owner ANY>
<!ELEMENT XMI.contact ANY>
CORBA - Part 3: Component Model, v3.1 195

<!ELEMENT XMI.longDescription ANY>
<!ELEMENT XMI.shortDescription ANY>
<!ELEMENT XMI.exporter ANY>
<!ELEMENT XMI.exporterVersion ANY>
<!ELEMENT XMI.exporterID ANY>
<!ELEMENT XMI.notice ANY>

<!-- ___ -->
<!-- -->
<!-- XMI.element.att defines the attributes that each XML element -->
<!-- that corresponds to a metamodel class must have to conform to -->
<!-- the XMI specification. -->
<!-- ___ -->

<!ENTITY % XMI.element.att
 'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
 CDATA #IMPLIED '>

<!-- ___ -->
<!-- -->
<!-- XMI.link.att defines the attributes that each XML element that -->
<!-- corresponds to a metamodel class must have to enable it to -->
<!-- function as a simple XLink as well as refer to model -->
<!-- constructs within the same XMI file. -->
<!-- ___ -->

<!ENTITY % XMI.link.att
 'href CDATA #IMPLIED xmi.idref IDREF #IMPLIED xml:link
 CDATA #IMPLIED xlink:inline (true|false) #IMPLIED
 xlink:actuate (show|user) #IMPLIED xlink:content-role
 CDATA #IMPLIED xlink:title CDATA #IMPLIED xlink:show
 (embed|replace|new) #IMPLIED xlink:behavior CDATA
 #IMPLIED'>

<!-- ___ -->
<!-- -->
<!-- XMI.model identifies the model(s) being transferred -->
<!-- ___ -->

<!ELEMENT XMI.model ANY>
<!ATTLIST XMI.model %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.metamodel identifies the metamodel(s) for the transferred -->
<!-- data -->
<!-- ___ -->

<!ELEMENT XMI.metamodel ANY>
196 CORBA - Part 3: Component Model, v3.1

<!ATTLIST XMI.metamodel %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.metametamodel identifies the metametamodel(s) for the -->
<!-- transferred data -->
<!-- ___ -->

<!ELEMENT XMI.metametamodel ANY>
<!ATTLIST XMI.metametamodel %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.import identifies imported metamodel(s) -->
<!-- ___ -->

<!ELEMENT XMI.import ANY>
<!ATTLIST XMI.import %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.content is the actual data being transferred -->
<!-- ___ -->

<!ELEMENT XMI.content ANY>

<!-- ___ -->
<!-- -->
<!-- XMI.extensions contains data to transfer that does not conform -->
<!-- to the metamodel(s) in the header -->
<!-- ___ -->

<!ELEMENT XMI.extensions ANY>
<!ATTLIST XMI.extensions
 xmi.extender CDATA #REQUIRED>

<!-- ___ -->
<!-- -->
<!-- extension contains information related to a specific model -->
<!-- construct that is not defined in the metamodel(s) in the header -->
<!-- ___ -->

<!ELEMENT XMI.extension ANY>
<!ATTLIST XMI.extension %XMI.element.att; %XMI.link.att;
 xmi.extender CDATA #REQUIRED
CORBA - Part 3: Component Model, v3.1 197

 xmi.extenderID CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- XMI.difference holds XML elements representing differences to a -->
<!-- base model -->
<!-- ___ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |
 XMI.replace)*>
<!ATTLIST XMI.difference %XMI.element.att; %XMI.link.att;>

<!-- ___ -->
<!-- -->
<!-- XMI.delete represents a deletion from a base model -->
<!-- ___ -->

<!ELEMENT XMI.delete EMPTY>
<!ATTLIST XMI.delete %XMI.element.att; %XMI.link.att;>

<!-- ___ -->
<!-- -->
<!-- XMI.add represents an addition to a base model -->
<!-- ___ -->

<!ELEMENT XMI.add ANY>
<!ATTLIST XMI.add %XMI.element.att; %XMI.link.att;
 xmi.position CDATA "-1">

<!-- ___ -->
<!-- -->
<!-- XMI.replace represents the replacement of a model construct -->
<!-- with another model construct in a base model -->
<!-- ___ -->

<!ELEMENT XMI.replace ANY>
<!ATTLIST XMI.replace %XMI.element.att; %XMI.link.att;
 xmi.position CDATA "-1">

<!-- ___ -->
<!-- -->
<!-- XMI.reference may be used to refer to data types not defined in -->
<!-- the metamodel -->
<!-- ___ -->

<!ELEMENT XMI.reference ANY>
<!ATTLIST XMI.reference %XMI.link.att;>

<!-- ___ -->
<!-- -->
<!-- This sub clause contains the declaration of XML elements -->
198 CORBA - Part 3: Component Model, v3.1

<!-- representing data types -->
<!-- ___ -->

<!ELEMENT XMI.TypeDefinitions ANY>
<!ELEMENT XMI.field ANY>
<!ELEMENT XMI.seqItem ANY>
<!ELEMENT XMI.octetStream (#PCDATA)>
<!ELEMENT XMI.unionDiscrim ANY>

<!ELEMENT XMI.enum EMPTY>
<!ATTLIST XMI.enum xmi.value CDATA #REQUIRED>

<!ELEMENT XMI.any ANY>
<!ATTLIST XMI.any %XMI.link.att;
 xmi.type CDATA #IMPLIED
 xmi.name CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias|XMI.CorbaTcStruct|
 XMI.CorbaTcSequence|XMI.CorbaTcArray|XMI.CorbaTcEnum|
 XMI.CorbaTcUnion|XMI.CorbaTcExcept|XMI.CorbaTcString|
 XMI.CorbaTcWstring|XMI.CorbaTcShort|XMI.CorbaTcLong|
 XMI.CorbaTcUshort|XMI.CorbaTcUlong|XMI.CorbaTcFloat|
 XMI.CorbaTcDouble|XMI.CorbaTcBoolean|XMI.CorbaTcChar|
 XMI.CorbaTcWchar|XMI.CorbaTcOctet|XMI.CorbaTcAny|
 XMI.CorbaTcTypeCode|XMI.CorbaTcPrincipal|XMI.CorbaTcNull|
 XMI.CorbaTcVoid|XMI.CorbaTcLongLong|XMI.CorbaTcUlongLong|
 XMI.CorbaTcObjRef|XMI.CorbaTcLongDouble)>
<!ATTLIST XMI.CorbaTypeCode %XMI.element.att;>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode)>
<!ATTLIST XMI.CorbaTcAlias
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)*>
<!ATTLIST XMI.CorbaTcStruct
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode)>
<!ATTLIST XMI.CorbaTcField
 xmi.tcName CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode|XMI.CorbaRecursiveType)>
<!ATTLIST XMI.CorbaTcSequence
 xmi.tcLength CDATA #REQUIRED>

<!ELEMENT XMI.CorbaRecursiveType EMPTY>
<!ATTLIST XMI.CorbaRecursiveType
 xmi.offset CDATA #REQUIRED>
CORBA - Part 3: Component Model, v3.1 199

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode)>
<!ATTLIST XMI.CorbaTcArray
 xmi.tcLength CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcObjRef EMPTY>
<!ATTLIST XMI.CorbaTcObjRef
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel)*>
<!ATTLIST XMI.CorbaTcEnum
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY>
<!ATTLIST XMI.CorbaTcEnumLabel
 xmi.tcName CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any)>
<!ATTLIST XMI.CorbaTcUnionMbr
 xmi.tcName CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*)>
<!ATTLIST XMI.CorbaTcUnion
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)*>
<!ATTLIST XMI.CorbaTcExcept
 xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED>

<!ELEMENT XMI.CorbaTcString EMPTY>
<!ATTLIST XMI.CorbaTcString
 xmi.tcLength CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcWstring EMPTY>
<!ATTLIST XMI.CorbaTcWstring
 xmi.tcLength CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcFixed EMPTY>
<!ATTLIST XMI.CorbaTcFixed
 xmi.tcDigits CDATA #REQUIRED
 xmi.tcScale CDATA #REQUIRED>

<!ELEMENT XMI.CorbaTcShort EMPTY>
<!ELEMENT XMI.CorbaTcLong EMPTY>
<!ELEMENT XMI.CorbaTcUshort EMPTY>
<!ELEMENT XMI.CorbaTcUlong EMPTY>
<!ELEMENT XMI.CorbaTcFloat EMPTY>
<!ELEMENT XMI.CorbaTcDouble EMPTY>
200 CORBA - Part 3: Component Model, v3.1

<!ELEMENT XMI.CorbaTcBoolean EMPTY>
<!ELEMENT XMI.CorbaTcChar EMPTY>
<!ELEMENT XMI.CorbaTcWchar EMPTY>
<!ELEMENT XMI.CorbaTcOctet EMPTY>
<!ELEMENT XMI.CorbaTcAny EMPTY>
<!ELEMENT XMI.CorbaTcTypeCode EMPTY>
<!ELEMENT XMI.CorbaTcPrincipal EMPTY>
<!ELEMENT XMI.CorbaTcNull EMPTY>
<!ELEMENT XMI.CorbaTcVoid EMPTY>
<!ELEMENT XMI.CorbaTcLongLong EMPTY>
<!ELEMENT XMI.CorbaTcUlongLong EMPTY>
<!ELEMENT XMI.CorbaTcLongDouble EMPTY>

<!ATTLIST XMI xmlns:BaseIDL CDATA #IMPLIED>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: BaseIDL -->
<!-- -->
<!-- ___ -->

<!ENTITY % BaseIDL:PrimitiveKind '(PK_NULL| PK_VOID|PK_SHORT| PK_LONG|
 PK_USHORT|PK_ULONG|PK_FLOAT|PK_DOUBLE|PK_BOOLEAN|PK_CHAR|PK_OCTET|PK_ANY|
 PK_LONGDOUBLE| PK_WSTRING|PK_TYPECODE|PK_WCHAR|PK_PRINCIPAL|PK_STRING|
 PK_ULONGLONG|PK_OBJREF| PK_LONGLONG)'>

<!ENTITY % BaseIDL:ParameterMode '(PARAM_IN| PARAM_OUT|PARAM_INOUT)'>

<!ENTITY % BaseIDL:DefinitionKind '(DK_NONE|DK_ALL|DK_ATTRIBUTE|
 DK_CONSTANT|DK_EXCEPTION|DK_INTERFACE|DK_MODULE|DK_OPERATION|DK_TYPEDEF|
 DK_ALIAS|DK_STRUCT|DK_UNION| DK_FIXED|DK_ENUM|DK_PRIMITIVE|DK_STRING|
 DK_SEQUENCE|DK_WSTRING|DK_ARRAY|DK_REPOSITORY)'>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.Typed -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:Typed.idlType (BaseIDL:IDLType)*>

<!ENTITY % BaseIDL:TypedFeatures 'XMI.extension |
 BaseIDL:Typed.idlType'>

<!ENTITY % BaseIDL:TypedAtts '%XMI.element.att; %XMI.link.att;
 idlType IDREFS #IMPLIED'>

<!ELEMENT BaseIDL:Typed (%BaseIDL:TypedFeatures;)*>

<!ATTLIST BaseIDL:Typed %BaseIDL:TypedAtts;>
CORBA - Part 3: Component Model, v3.1 201

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ParameterDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ParameterDef.identifier (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL:ParameterDef.direction EMPTY>

<!ATTLIST BaseIDL:ParameterDef.direction xmi.value %BaseIDL:ParameterMode;
#REQUIRED>

<!ENTITY % BaseIDL:ParameterDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:ParameterDef.identifier |
 BaseIDL:ParameterDef.direction'>

<!ENTITY % BaseIDL:ParameterDefAtts '%BaseIDL:TypedAtts;
 identifier CDATA #IMPLIED
 direction %BaseIDL:ParameterMode; #IMPLIED'>

<!ELEMENT BaseIDL:ParameterDef (%BaseIDL:ParameterDefFeatures;)*>

<!ATTLIST BaseIDL:ParameterDef %BaseIDL:ParameterDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.Contained -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:Contained.definedIn (BaseIDL:Container)*>

<!ELEMENT BaseIDL:Contained.identifier (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL:Contained.repositoryId (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL:Contained.version (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:ContainedFeatures 'XMI.extension |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version'>

<!ENTITY % BaseIDL:ContainedAtts '%XMI.element.att; %XMI.link.att;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED'>
202 CORBA - Part 3: Component Model, v3.1

<!ELEMENT BaseIDL:Contained (%BaseIDL:ContainedFeatures;)*>

<!ATTLIST BaseIDL:Contained %BaseIDL:ContainedAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ConstantDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ConstantDef.constValue (XMI.any)>

<!ENTITY % BaseIDL:ConstantDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version |
 BaseIDL:ConstantDef.constValue'>

<!ENTITY % BaseIDL:ConstantDefAtts '%BaseIDL:TypedAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED'>

<!ELEMENT BaseIDL:ConstantDef (%BaseIDL:ConstantDefFeatures;)*>

<!ATTLIST BaseIDL:ConstantDef %BaseIDL:ConstantDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.Container -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:Container.contents (BaseIDL:Contained|
 BaseIDL:ConstantDef|BaseIDL:TypedefDef|BaseIDL:StructDef|
 BaseIDL:UnionDef|BaseIDL:EnumDef|BaseIDL:AliasDef|
 BaseIDL:ValueBoxDef|BaseIDL:Container|BaseIDL:ModuleDef|
 BaseIDL:InterfaceDef|ComponentIDL:ComponentDef|ComponentIDL:HomeDef|
 BaseIDL:ValueDef|ComponentIDL:EventDef|CIF:ComponentImplDef|
 CIF:HomeImplDef|BaseIDL:ValueMemberDef|
 BaseIDL:OperationDef|ComponentIDL:FactoryDef|ComponentIDL:FinderDef|
 BaseIDL:ExceptionDef|BaseIDL:AttributeDef|
 CIF:ArtifactDef|CIF:SegmentDef|ComponentIDL:ProvidesDef|
 ComponentIDL:UsesDef|ComponentIDL:EventPortDef|ComponentIDL:EmitsDef|
 ComponentIDL:ConsumesDef|ComponentIDL:PublishesDef)*>

<!ENTITY % BaseIDL:ContainerFeatures '%BaseIDL:ContainedFeatures; |
 BaseIDL:Container.contents'>
CORBA - Part 3: Component Model, v3.1 203

<!ENTITY % BaseIDL:ContainerAtts '%BaseIDL:ContainedAtts;'>

<!ELEMENT BaseIDL:Container (%BaseIDL:ContainerFeatures;)*>

<!ATTLIST BaseIDL:Container %BaseIDL:ContainerAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ModuleDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ModuleDef.prefix (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:ModuleDefFeatures '%BaseIDL:ContainerFeatures; |
 BaseIDL:ModuleDef.prefix'>

<!ENTITY % BaseIDL:ModuleDefAtts '%BaseIDL:ContainerAtts;
 prefix CDATA #IMPLIED'>

<!ELEMENT BaseIDL:ModuleDef (%BaseIDL:ModuleDefFeatures;)*>

<!ATTLIST BaseIDL:ModuleDef %BaseIDL:ModuleDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.IDLType -->
<!-- -->
<!-- ___ -->

<!ENTITY % BaseIDL:IDLTypeFeatures 'XMI.extension'>

<!ENTITY % BaseIDL:IDLTypeAtts '%XMI.element.att; %XMI.link.att;'>

<!ELEMENT BaseIDL:IDLType (%BaseIDL:IDLTypeFeatures;)*>

<!ATTLIST BaseIDL:IDLType %BaseIDL:IDLTypeAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.TypedefDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % BaseIDL:TypedefDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version'>
204 CORBA - Part 3: Component Model, v3.1

<!ENTITY % BaseIDL:TypedefDefAtts '%BaseIDL:IDLTypeAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED'>

<!ELEMENT BaseIDL:TypedefDef (%BaseIDL:TypedefDefFeatures;)*>

<!ATTLIST BaseIDL:TypedefDef %BaseIDL:TypedefDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.InterfaceDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:InterfaceDef.base (BaseIDL:InterfaceDef)*>

<!ELEMENT BaseIDL:InterfaceDef.isAbstract EMPTY>

<!ATTLIST BaseIDL:InterfaceDef.isAbstract xmi.value (true|false) #REQUIRED>

<!ELEMENT BaseIDL:InterfaceDef.isLocal EMPTY>

<!ATTLIST BaseIDL:InterfaceDef.isLocal xmi.value (true|false) #REQUIRED>

<!ENTITY % BaseIDL:InterfaceDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version |
 BaseIDL:Container.contents |
 BaseIDL:InterfaceDef.base |
 BaseIDL:InterfaceDef.isAbstract |
 BaseIDL:InterfaceDef.isLocal'>

<!ENTITY % BaseIDL:InterfaceDefAtts '%BaseIDL:IDLTypeAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED
 base IDREFS #IMPLIED
 isAbstract (true|false) #IMPLIED
 isLocal (true|false) #IMPLIED'>

<!ELEMENT BaseIDL:InterfaceDef (%BaseIDL:InterfaceDefFeatures;)*>

<!ATTLIST BaseIDL:InterfaceDef %BaseIDL:InterfaceDefAtts;>

<!-- ___ -->
<!-- -->
CORBA - Part 3: Component Model, v3.1 205

<!-- METAMODEL CLASS: BaseIDL.Field -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:Field.identifier (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:FieldFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:Field.identifier'>

<!ENTITY % BaseIDL:FieldAtts '%BaseIDL:TypedAtts;
 identifier CDATA #IMPLIED'>

<!ELEMENT BaseIDL:Field (%BaseIDL:FieldFeatures;)*>

<!ATTLIST BaseIDL:Field %BaseIDL:FieldAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.StructDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:StructDef.members (BaseIDL:Field)*>

<!ENTITY % BaseIDL:StructDefFeatures '%BaseIDL:TypedefDefFeatures; |
 BaseIDL:StructDef.members'>

<!ENTITY % BaseIDL:StructDefAtts '%BaseIDL:TypedefDefAtts;'>

<!ELEMENT BaseIDL:StructDef (%BaseIDL:StructDefFeatures;)*>

<!ATTLIST BaseIDL:StructDef %BaseIDL:StructDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.UnionDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:UnionDef.discriminatorType (BaseIDL:IDLType)*>

<!ELEMENT BaseIDL:UnionDef.unionMembers (BaseIDL:UnionField)*>

<!ENTITY % BaseIDL:UnionDefFeatures '%BaseIDL:TypedefDefFeatures; |
 BaseIDL:UnionDef.discriminatorType |
 BaseIDL:UnionDef.unionMembers'>

<!ENTITY % BaseIDL:UnionDefAtts '%BaseIDL:TypedefDefAtts;
 discriminatorType IDREFS #IMPLIED'>

<!ELEMENT BaseIDL:UnionDef (%BaseIDL:UnionDefFeatures;)*>
206 CORBA - Part 3: Component Model, v3.1

<!ATTLIST BaseIDL:UnionDef %BaseIDL:UnionDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.EnumDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:EnumDef.members (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:EnumDefFeatures '%BaseIDL:TypedefDefFeatures; |
 BaseIDL:EnumDef.members'>

<!ENTITY % BaseIDL:EnumDefAtts '%BaseIDL:TypedefDefAtts;
 members CDATA #IMPLIED'>

<!ELEMENT BaseIDL:EnumDef (%BaseIDL:EnumDefFeatures;)*>

<!ATTLIST BaseIDL:EnumDef %BaseIDL:EnumDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.AliasDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % BaseIDL:AliasDefFeatures '%BaseIDL:TypedefDefFeatures; |
 BaseIDL:Typed.idlType'>

<!ENTITY % BaseIDL:AliasDefAtts '%BaseIDL:TypedefDefAtts;
 idlType IDREFS #IMPLIED'>

<!ELEMENT BaseIDL:AliasDef (%BaseIDL:AliasDefFeatures;)*>

<!ATTLIST BaseIDL:AliasDef %BaseIDL:AliasDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.StringDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:StringDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:StringDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:StringDef.bound'>

<!ENTITY % BaseIDL:StringDefAtts '%BaseIDL:IDLTypeAtts;
 bound CDATA #IMPLIED'>
CORBA - Part 3: Component Model, v3.1 207

<!ELEMENT BaseIDL:StringDef (%BaseIDL:StringDefFeatures;)*>

<!ATTLIST BaseIDL:StringDef %BaseIDL:StringDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.WStringDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:WStringDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:WStringDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:WStringDef.bound'>

<!ENTITY % BaseIDL:WStringDefAtts '%BaseIDL:IDLTypeAtts;
 bound CDATA #IMPLIED'>

<!ELEMENT BaseIDL:WStringDef (%BaseIDL:WStringDefFeatures;)*>

<!ATTLIST BaseIDL:WStringDef %BaseIDL:WStringDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.FixedDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:FixedDef.digits (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL:FixedDef.scale (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:FixedDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:FixedDef.digits |
 BaseIDL:FixedDef.scale'>

<!ENTITY % BaseIDL:FixedDefAtts '%BaseIDL:IDLTypeAtts;
 digits CDATA #IMPLIED
 scale CDATA #IMPLIED'>

<!ELEMENT BaseIDL:FixedDef (%BaseIDL:FixedDefFeatures;)*>

<!ATTLIST BaseIDL:FixedDef %BaseIDL:FixedDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.SequenceDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:SequenceDef.bound (#PCDATA|XMI.reference)*>
208 CORBA - Part 3: Component Model, v3.1

<!ENTITY % BaseIDL:SequenceDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:SequenceDef.bound'>

<!ENTITY % BaseIDL:SequenceDefAtts '%BaseIDL:TypedAtts;
 bound CDATA #IMPLIED'>

<!ELEMENT BaseIDL:SequenceDef (%BaseIDL:SequenceDefFeatures;)*>

<!ATTLIST BaseIDL:SequenceDef %BaseIDL:SequenceDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ArrayDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ArrayDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:ArrayDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:ArrayDef.bound'>

<!ENTITY % BaseIDL:ArrayDefAtts '%BaseIDL:TypedAtts;
 bound CDATA #IMPLIED'>

<!ELEMENT BaseIDL:ArrayDef (%BaseIDL:ArrayDefFeatures;)*>

<!ATTLIST BaseIDL:ArrayDef %BaseIDL:ArrayDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.PrimitiveDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:PrimitiveDef.kind EMPTY>

<!ATTLIST BaseIDL:PrimitiveDef.kind xmi.value %BaseIDL:PrimitiveKind; #REQUIRED>

<!ENTITY % BaseIDL:PrimitiveDefFeatures '%BaseIDL:IDLTypeFeatures; |
 BaseIDL:PrimitiveDef.kind'>

<!ENTITY % BaseIDL:PrimitiveDefAtts '%BaseIDL:IDLTypeAtts;
 kind %BaseIDL:PrimitiveKind; #IMPLIED'>

<!ELEMENT BaseIDL:PrimitiveDef (%BaseIDL:PrimitiveDefFeatures;)*>

<!ATTLIST BaseIDL:PrimitiveDef %BaseIDL:PrimitiveDefAtts;>

<!-- ___ -->
<!-- -->
CORBA - Part 3: Component Model, v3.1 209

<!-- METAMODEL CLASS: BaseIDL.UnionField -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:UnionField.identifier (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL:UnionField.label (XMI.any)>

<!ENTITY % BaseIDL:UnionFieldFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:UnionField.identifier |
 BaseIDL:UnionField.label'>

<!ENTITY % BaseIDL:UnionFieldAtts '%BaseIDL:TypedAtts;
 identifier CDATA #IMPLIED'>

<!ELEMENT BaseIDL:UnionField (%BaseIDL:UnionFieldFeatures;)*>

<!ATTLIST BaseIDL:UnionField %BaseIDL:UnionFieldAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ValueMemberDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ValueMemberDef.isPublicMember EMPTY>

<!ATTLIST BaseIDL:ValueMemberDef.isPublicMember xmi.value (true|false) #REQUIRED>

<!ENTITY % BaseIDL:ValueMemberDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version |
 BaseIDL:ValueMemberDef.isPublicMember'>

<!ENTITY % BaseIDL:ValueMemberDefAtts '%BaseIDL:TypedAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED
 isPublicMember (true|false) #IMPLIED'>

<!ELEMENT BaseIDL:ValueMemberDef (%BaseIDL:ValueMemberDefFeatures;)*>

<!ATTLIST BaseIDL:ValueMemberDef %BaseIDL:ValueMemberDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ValueDef -->
<!-- -->
210 CORBA - Part 3: Component Model, v3.1

<!-- ___ -->

<!ELEMENT BaseIDL:ValueDef.interfaceDef (BaseIDL:InterfaceDef)*>

<!ELEMENT BaseIDL:ValueDef.base (BaseIDL:ValueDef)*>

<!ELEMENT BaseIDL:ValueDef.abstractBase (BaseIDL:ValueDef)*>

<!ELEMENT BaseIDL:ValueDef.isAbstract EMPTY>

<!ATTLIST BaseIDL:ValueDef.isAbstract xmi.value (true|false) #REQUIRED>

<!ELEMENT BaseIDL:ValueDef.isCustom EMPTY>

<!ATTLIST BaseIDL:ValueDef.isCustom xmi.value (true|false) #REQUIRED>

<!ELEMENT BaseIDL:ValueDef.isTruncatable EMPTY>

<!ATTLIST BaseIDL:ValueDef.isTruncatable xmi.value (true|false) #REQUIRED>

<!ENTITY % BaseIDL:ValueDefFeatures '%BaseIDL:ContainerFeatures; |
 BaseIDL:ValueDef.interfaceDef |
 BaseIDL:ValueDef.base |
 BaseIDL:ValueDef.abstractBase |
 BaseIDL:ValueDef.isAbstract |
 BaseIDL:ValueDef.isCustom |
 BaseIDL:ValueDef.isTruncatable'>

<!ENTITY % BaseIDL:ValueDefAtts '%BaseIDL:ContainerAtts;
 interfaceDef IDREFS #IMPLIED
 base IDREFS #IMPLIED
 abstractBase IDREFS #IMPLIED
 isAbstract (true|false) #IMPLIED
 isCustom (true|false) #IMPLIED
 isTruncatable (true|false) #IMPLIED'>

<!ELEMENT BaseIDL:ValueDef (%BaseIDL:ValueDefFeatures;)*>

<!ATTLIST BaseIDL:ValueDef %BaseIDL:ValueDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ValueBoxDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % BaseIDL:ValueBoxDefFeatures '%BaseIDL:TypedefDefFeatures;'>

<!ENTITY % BaseIDL:ValueBoxDefAtts '%BaseIDL:TypedefDefAtts;'>

<!ELEMENT BaseIDL:ValueBoxDef (%BaseIDL:ValueBoxDefFeatures;)*>
CORBA - Part 3: Component Model, v3.1 211

<!ATTLIST BaseIDL:ValueBoxDef %BaseIDL:ValueBoxDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.OperationDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:OperationDef.exceptionDef (BaseIDL:ExceptionDef)*>

<!ELEMENT BaseIDL:OperationDef.isOneway EMPTY>

<!ATTLIST BaseIDL:OperationDef.isOneway xmi.value (true|false) #REQUIRED>

<!ELEMENT BaseIDL:OperationDef.parameters (BaseIDL:ParameterDef)*>

<!ELEMENT BaseIDL:OperationDef.contexts (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL:OperationDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version |
 BaseIDL:OperationDef.exceptionDef |
 BaseIDL:OperationDef.isOneway |
 BaseIDL:OperationDef.parameters |
 BaseIDL:OperationDef.contexts'>

<!ENTITY % BaseIDL:OperationDefAtts '%BaseIDL:TypedAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED
 exceptionDef IDREFS #IMPLIED
 isOneway (true|false) #IMPLIED
 contexts CDATA #IMPLIED'>

<!ELEMENT BaseIDL:OperationDef (%BaseIDL:OperationDefFeatures;)*>

<!ATTLIST BaseIDL:OperationDef %BaseIDL:OperationDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.ExceptionDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:ExceptionDef.typeCode (XMI.CorbaTypeCode)>

<!ELEMENT BaseIDL:ExceptionDef.members (BaseIDL:Field)*>
212 CORBA - Part 3: Component Model, v3.1

<!ENTITY % BaseIDL:ExceptionDefFeatures '%BaseIDL:ContainedFeatures; |
 BaseIDL:ExceptionDef.typeCode |
 BaseIDL:ExceptionDef.members'>

<!ENTITY % BaseIDL:ExceptionDefAtts '%BaseIDL:ContainedAtts;'>

<!ELEMENT BaseIDL:ExceptionDef (%BaseIDL:ExceptionDefFeatures;)*>

<!ATTLIST BaseIDL:ExceptionDef %BaseIDL:ExceptionDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BaseIDL.AttributeDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT BaseIDL:AttributeDef.setException (BaseIDL:ExceptionDef)*>

<!ELEMENT BaseIDL:AttributeDef.getException (BaseIDL:ExceptionDef)*>

<!ELEMENT BaseIDL:AttributeDef.isReadonly EMPTY>

<!ATTLIST BaseIDL:AttributeDef.isReadonly xmi.value (true|false) #REQUIRED>

<!ENTITY % BaseIDL:AttributeDefFeatures '%BaseIDL:TypedFeatures; |
 BaseIDL:Contained.definedIn |
 BaseIDL:Contained.identifier |
 BaseIDL:Contained.repositoryId |
 BaseIDL:Contained.version |
 BaseIDL:AttributeDef.setException |
 BaseIDL:AttributeDef.getException |
 BaseIDL:AttributeDef.isReadonly'>

<!ENTITY % BaseIDL:AttributeDefAtts '%BaseIDL:TypedAtts;
 definedIn IDREFS #IMPLIED
 identifier CDATA #IMPLIED
 repositoryId CDATA #IMPLIED
 version CDATA #IMPLIED
 setException IDREFS #IMPLIED
 getException IDREFS #IMPLIED
 isReadonly (true|false) #IMPLIED'>

<!ELEMENT BaseIDL:AttributeDef (%BaseIDL:AttributeDefFeatures;)*>

<!ATTLIST BaseIDL:AttributeDef %BaseIDL:AttributeDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: CIF -->
<!-- -->
CORBA - Part 3: Component Model, v3.1 213

<!-- ___ -->

<!ENTITY % CIF:ComponentCategory '(PROCESS|SESSION|ENTITY|SERVICE)'>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CIF:ArtifactDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % CIF:ArtifactDefFeatures '%BaseIDL:ContainedFeatures;'>

<!ENTITY % CIF:ArtifactDefAtts '%BaseIDL:ContainedAtts;'>

<!ELEMENT CIF:ArtifactDef (%CIF:ArtifactDefFeatures;)*>

<!ATTLIST CIF:ArtifactDef %CIF:ArtifactDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CIF:SegmentDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT CIF:SegmentDef.artifact (CIF:ArtifactDef)*>

<!ELEMENT CIF:SegmentDef.features (ComponentIDL:ComponentFeature)*>

<!ELEMENT CIF:SegmentDef.policies (CIF:Policy)*>

<!ELEMENT CIF:SegmentDef.isSerialized EMPTY>

<!ATTLIST CIF:SegmentDef.isSerialized xmi.value (true|false) #REQUIRED>

<!ENTITY % CIF:SegmentDefFeatures '%BaseIDL:ContainedFeatures; |
 CIF:SegmentDef.artifact |
 CIF:SegmentDef.features |
 CIF:SegmentDef.policies |
 CIF:SegmentDef.isSerialized'>

<!ENTITY % CIF:SegmentDefAtts '%BaseIDL:ContainedAtts;
 artifact IDREFS #IMPLIED
 features IDREFS #IMPLIED
 policies IDREFS #IMPLIED
 isSerialized (true|false) #IMPLIED'>

<!ELEMENT CIF:SegmentDef (%CIF:SegmentDefFeatures;)*>

<!ATTLIST CIF:SegmentDef %CIF:SegmentDefAtts;>

<!-- ___ -->
214 CORBA - Part 3: Component Model, v3.1

<!-- -->
<!-- METAMODEL CLASS: CIF:ComponentImplDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT CIF:ComponentImplDef.component (ComponentIDL:ComponentDef)*>

<!ELEMENT CIF:ComponentImplDef.category EMPTY>

<!ATTLIST CIF:ComponentImplDef.category xmi.value %CIF:ComponentCategory; #REQUIRED>

<!ENTITY % CIF:ComponentImplDefFeatures '%BaseIDL:ContainerFeatures; |
 CIF:ComponentImplDef.component |
 CIF:ComponentImplDef.category'>

<!ENTITY % CIF:ComponentImplDefAtts '%BaseIDL:ContainerAtts;
 component IDREFS #IMPLIED
 category %CIF:ComponentCategory; #IMPLIED'>

<!ELEMENT CIF:ComponentImplDef (%CIF:ComponentImplDefFeatures;)*>

<!ATTLIST CIF:ComponentImplDef %CIF:ComponentImplDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CIF:Policy -->
<!-- -->
<!-- ___ -->

<!ENTITY % CIF:PolicyFeatures 'XMI.extension'>

<!ENTITY % CIF:PolicyAtts '%XMI.element.att; %XMI.link.att;'>

<!ELEMENT CIF:Policy (%CIF:PolicyFeatures;)*>

<!ATTLIST CIF:Policy %CIF:PolicyAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CIF:HomeImplDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT CIF:HomeImplDef.home (ComponentIDL:HomeDef)*>

<!ELEMENT CIF:HomeImplDef.component_impl (CIF:ComponentImplDef)*>

<!ENTITY % CIF:HomeImplDefFeatures '%BaseIDL:ContainerFeatures; |
 CIF:HomeImplDef.home |
 CIF:HomeImplDef.component_impl'>
CORBA - Part 3: Component Model, v3.1 215

<!ENTITY % CIF:HomeImplDefAtts '%BaseIDL:ContainerAtts;
 home IDREFS #IMPLIED
 component_impl IDREFS #IMPLIED'>

<!ELEMENT CIF:HomeImplDef (%CIF:HomeImplDefFeatures;)*>

<!ATTLIST CIF:HomeImplDef %CIF:HomeImplDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: ComponentIDL -->
<!-- -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:ComponentFeature -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:ComponentFeatureFeatures 'XMI.extension'>

<!ENTITY % ComponentIDL:ComponentFeatureAtts '%XMI.element.att; %XMI.link.att;'>

<!ELEMENT ComponentIDL:ComponentFeature (%ComponentIDL:ComponentFeatureFeatures;)*>

<!ATTLIST ComponentIDL:ComponentFeature %ComponentIDL:ComponentFeatureAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:ComponentDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT ComponentIDL:ComponentDef.supports (BaseIDL:InterfaceDef)*>

<!ENTITY % ComponentIDL:ComponentDefFeatures '%BaseIDL:InterfaceDefFeatures; |
 ComponentIDL:ComponentDef.supports'>

<!ENTITY % ComponentIDL:ComponentDefAtts '%BaseIDL:InterfaceDefAtts;
 supports IDREFS #IMPLIED'>

<!ELEMENT ComponentIDL:ComponentDef (%ComponentIDL:ComponentDefFeatures;)*>

<!ATTLIST ComponentIDL:ComponentDef %ComponentIDL:ComponentDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:ProvidesDef -->
<!-- -->
<!-- ___ -->
216 CORBA - Part 3: Component Model, v3.1

<!ELEMENT ComponentIDL:ProvidesDef.provides (BaseIDL:InterfaceDef)*>

<!ENTITY % ComponentIDL:ProvidesDefFeatures '%BaseIDL:ContainedFeatures; |
 ComponentIDL:ProvidesDef.provides'>

<!ENTITY % ComponentIDL:ProvidesDefAtts '%BaseIDL:ContainedAtts;
 provides IDREFS #IMPLIED'>

<!ELEMENT ComponentIDL:ProvidesDef (%ComponentIDL:ProvidesDefFeatures;)*>

<!ATTLIST ComponentIDL:ProvidesDef %ComponentIDL:ProvidesDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:HomeDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT ComponentIDL:HomeDef.component (ComponentIDL:ComponentDef)*>

<!ELEMENT ComponentIDL:HomeDef.primary_key (BaseIDL:ValueDef)*>

<!ELEMENT ComponentIDL:HomeDef.supports (BaseIDL:InterfaceDef)*>

<!ENTITY % ComponentIDL:HomeDefFeatures '%BaseIDL:InterfaceDefFeatures; |
 ComponentIDL:HomeDef.component |
 ComponentIDL:HomeDef.primary_key |
 ComponentIDL:HomeDef.supports'>

<!ENTITY % ComponentIDL:HomeDefAtts '%BaseIDL:InterfaceDefAtts;
 component IDREFS #IMPLIED
 primary_key IDREFS #IMPLIED
 supports IDREFS #IMPLIED'>

<!ELEMENT ComponentIDL:HomeDef (%ComponentIDL:HomeDefFeatures;)*>

<!ATTLIST ComponentIDL:HomeDef %ComponentIDL:HomeDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:FactoryDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:FactoryDefFeatures '%BaseIDL:OperationDefFeatures;'>

<!ENTITY % ComponentIDL:FactoryDefAtts '%BaseIDL:OperationDefAtts;'>

<!ELEMENT ComponentIDL:FactoryDef (%ComponentIDL:FactoryDefFeatures;)*>
CORBA - Part 3: Component Model, v3.1 217

<!ATTLIST ComponentIDL:FactoryDef %ComponentIDL:FactoryDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:FinderDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:FinderDefFeatures '%BaseIDL:OperationDefFeatures;'>

<!ENTITY % ComponentIDL:FinderDefAtts '%BaseIDL:OperationDefAtts;'>

<!ELEMENT ComponentIDL:FinderDef (%ComponentIDL:FinderDefFeatures;)*>

<!ATTLIST ComponentIDL:FinderDef %ComponentIDL:FinderDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:EventPortDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT ComponentIDL:EventPortDef.type (ComponentIDL:EventDef)*>

<!ENTITY % ComponentIDL:EventPortDefFeatures '%BaseIDL:ContainedFeatures; |
 ComponentIDL:EventPortDef.type'>

<!ENTITY % ComponentIDL:EventPortDefAtts '%BaseIDL:ContainedAtts;
 type IDREFS #IMPLIED'>

<!ELEMENT ComponentIDL:EventPortDef (%ComponentIDL:EventPortDefFeatures;)*>

<!ATTLIST ComponentIDL:EventPortDef %ComponentIDL:EventPortDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:EmitsDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:EmitsDefFeatures '%ComponentIDL:EventPortDefFeatures;'>

<!ENTITY % ComponentIDL:EmitsDefAtts '%ComponentIDL:EventPortDefAtts;'>

<!ELEMENT ComponentIDL:EmitsDef (%ComponentIDL:EmitsDefFeatures;)*>

<!ATTLIST ComponentIDL:EmitsDef %ComponentIDL:EmitsDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:ConsumesDef -->
218 CORBA - Part 3: Component Model, v3.1

<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:ConsumesDefFeatures '%ComponentIDL:EventPortDefFeatures;'>

<!ENTITY % ComponentIDL:ConsumesDefAtts '%ComponentIDL:EventPortDefAtts;'>

<!ELEMENT ComponentIDL:ConsumesDef (%ComponentIDL:ConsumesDefFeatures;)*>

<!ATTLIST ComponentIDL:ConsumesDef %ComponentIDL:ConsumesDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:UsesDef -->
<!-- -->
<!-- ___ -->

<!ELEMENT ComponentIDL:UsesDef.uses (BaseIDL:InterfaceDef)*>

<!ELEMENT ComponentIDL:UsesDef.multiple EMPTY>

<!ATTLIST ComponentIDL:UsesDef.multiple xmi.value (true|false) #REQUIRED>

<!ENTITY % ComponentIDL:UsesDefFeatures '%BaseIDL:ContainedFeatures; |
 ComponentIDL:UsesDef.uses |
 ComponentIDL:UsesDef.multiple'>

<!ENTITY % ComponentIDL:UsesDefAtts '%BaseIDL:ContainedAtts;
 uses IDREFS #IMPLIED
 multiple (true|false) #IMPLIED'>

<!ELEMENT ComponentIDL:UsesDef (%ComponentIDL:UsesDefFeatures;)*>

<!ATTLIST ComponentIDL:UsesDef %ComponentIDL:UsesDefAtts;>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentIDL:PublishesDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:PublishesDefFeatures '%ComponentIDL:EventPortDefFeatures;'>

<!ENTITY % ComponentIDL:PublishesDefAtts '%ComponentIDL:EventPortDefAtts;'>

<!ELEMENT ComponentIDL:PublishesDef (%ComponentIDL:PublishesDefFeatures;)*>

<!ATTLIST ComponentIDL:PublishesDef %ComponentIDL:PublishesDefAtts;>

<!-- ___ -->
<!-- -->
CORBA - Part 3: Component Model, v3.1 219

<!-- METAMODEL CLASS: ComponentIDL:EventDef -->
<!-- -->
<!-- ___ -->

<!ENTITY % ComponentIDL:EventDefFeatures '%BaseIDL:ValueDefFeatures;'>

<!ENTITY % ComponentIDL:EventDefAtts '%BaseIDL:ValueDefAtts;'>

<!ELEMENT ComponentIDL:EventDef (%ComponentIDL:EventDefFeatures;)*>

<!ATTLIST ComponentIDL:EventDef %ComponentIDL:EventDefAtts;>

11.3.2 IDL for the BaseIDL Package

#pragma prefix "ccm.omg.org"
#include "Reflective.idl"

module BaseIDL
{
 interface TypedClass;
 interface Typed;
 typedef sequence<Typed> TypedSet;
 interface ParameterDefClass;
 interface ParameterDef;
 typedef sequence<ParameterDef> ParameterDefSet;
 interface ContainedClass;
 interface Contained;
 typedef sequence<Contained> ContainedSet;
 interface ConstantDefClass;
 interface ConstantDef;
 typedef sequence<ConstantDef> ConstantDefSet;
 interface ContainerClass;
 interface Container;
 typedef sequence<Container> ContainerSet;
 interface ModuleDefClass;
 interface ModuleDef;
 typedef sequence<ModuleDef> ModuleDefSet;
 interface IDLTypeClass;
 interface IDLType;
 typedef sequence<IDLType> IDLTypeSet;
 interface TypedefDefClass;
 interface TypedefDef;
 typedef sequence<TypedefDef> TypedefDefSet;
 interface InterfaceDefClass;
 interface InterfaceDef;
 typedef sequence<InterfaceDef> InterfaceDefSet;
 interface FieldClass;
 interface Field;
 typedef sequence<Field> FieldSet;
 interface StructDefClass;
 interface StructDef;
 typedef sequence<StructDef> StructDefSet;
 interface UnionDefClass;
220 CORBA - Part 3: Component Model, v3.1

 interface UnionDef;
 typedef sequence<UnionDef> UnionDefSet;
 interface EnumDefClass;
 interface EnumDef;
 typedef sequence<EnumDef> EnumDefSet;
 interface AliasDefClass;
 interface AliasDef;
 typedef sequence<AliasDef> AliasDefSet;
 interface StringDefClass;
 interface StringDef;
 typedef sequence<StringDef> StringDefSet;
 interface WstringDefClass;
 interface WstringDef;
 typedef sequence<WstringDef> WstringDefSet;
 interface FixedDefClass;
 interface FixedDef;
 typedef sequence<FixedDef> FixedDefSet;
 interface SequenceDefClass;
 interface SequenceDef;
 typedef sequence<SequenceDef> SequenceDefSet;
 interface ArrayDefClass;
 interface ArrayDef;
 typedef sequence<ArrayDef> ArrayDefSet;
 interface PrimitiveDefClass;
 interface PrimitiveDef;
 typedef sequence<PrimitiveDef> PrimitiveDefSet;
 interface UnionFieldClass;
 interface UnionField;
 typedef sequence<UnionField> UnionFieldSet;
 interface ValueMemberDefClass;
 interface ValueMemberDef;
 typedef sequence<ValueMemberDef> ValueMemberDefSet;
 interface ValueDefClass;
 interface ValueDef;
 typedef sequence<ValueDef> ValueDefSet;
 interface ValueBoxDefClass;
 interface ValueBoxDef;
 typedef sequence<ValueBoxDef> ValueBoxDefSet;
 interface OperationDefClass;
 interface OperationDef;
 typedef sequence<OperationDef> OperationDefSet;
 interface ExceptionDefClass;
 interface ExceptionDef;
 typedef sequence<ExceptionDef> ExceptionDefSet;
 interface AttributeDefClass;
 interface AttributeDef;
 typedef sequence<AttributeDef> AttributeDefSet;
 interface BaseIDLPackage;
 enum PrimitiveKind {PK_NULL, PK_VOID, PK_SHORT, PK_LONG, PK_USHORT, PK_ULONG, PK_FLOAT,
PK_DOUBLE, PK_BOOLEAN, PK_CHAR, PK_OCTET, PK_ANY, PK_LONGDOUBLE, PK_WSTRING, PK_TYPECODE,
PK_WCHAR, PK_PRINCIPAL, PK_STRING, PK_ULONGLONG, PK_OBJREF, PK_LONGLONG};
 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 enum DefinitionKind {DK_NONE, DK_ALL, DK_ATTRIBUTE, DK_CONSTANT, DK_EXCEPTION, DK_INTERFACE,
DK_MODULE, DK_OPERATION, DK_TYPEDEF, DK_ALIAS, DK_STRUCT, DK_UNION, DK_FIXED, DK_ENUM,
DK_PRIMITIVE, DK_STRING, DK_SEQUENCE, DK_WSTRING, DK_ARRAY, DK_REPOSITORY};
CORBA - Part 3: Component Model, v3.1 221

 interface TypedClass : Reflective::RefObject
 {
 readonly attribute TypedSet all_of_type_typed;
 };

 interface Typed : TypedClass
 {
 IDLType idl_type ()
 raises (Reflective::MofError);
 void set_idl_type (in IDLType new_value)
 raises (Reflective::MofError);
 }; // end of interface Typed

 interface ParameterDefClass : TypedClass
 {
 readonly attribute ParameterDefSet all_of_type_parameter_def;
 readonly attribute ParameterDefSet all_of_class_parameter_def;
 ParameterDef create_parameter_def (
 in string identifier,
 in ParameterMode direction)
 raises (Reflective::MofError);
 };

 interface ParameterDef : ParameterDefClass, Typed
 {
 string identifier ()
 raises (Reflective::MofError);
 void set_identifier (in string new_value)
 raises (Reflective::MofError);
 ParameterMode direction ()
 raises (Reflective::MofError);
 void set_direction (in ParameterMode new_value)
 raises (Reflective::MofError);
 }; // end of interface ParameterDef

 interface ContainedClass : Reflective::RefObject
 {
 readonly attribute ContainedSet all_of_type_contained;
 };

 interface Contained : ContainedClass
 {
 Container defined_in ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_defined_in (in Container new_value)
 raises (Reflective::MofError);
 void unset_defined_in ()
 raises (Reflective::MofError);
 string identifier ()
 raises (Reflective::MofError);
 void set_identifier (in string new_value)
 raises (Reflective::MofError);
 string repository_id ()
 raises (Reflective::MofError);
222 CORBA - Part 3: Component Model, v3.1

 void set_repository_id (in string new_value)
 raises (Reflective::MofError);
 string version ()
 raises (Reflective::MofError);
 void set_version (in string new_value)
 raises (Reflective::MofError);
 string absolute_name ()
 raises (Reflective::MofError);
 }; // end of interface Contained

 interface ConstantDefClass : TypedClass, ContainedClass
 {
 readonly attribute ConstantDefSet all_of_type_constant_def;
 readonly attribute ConstantDefSet all_of_class_constant_def;
 ConstantDef create_constant_def (
 in string identifier,
 in string repository_id,
 in string version,
 in any const_value)
 raises (Reflective::MofError);
 };

 interface ConstantDef : ConstantDefClass, Typed, Contained
 {
 any const_value ()
 raises (Reflective::MofError);
 void set_const_value (in any new_value)
 raises (Reflective::MofError);
 }; // end of interface ConstantDef

 interface ContainerClass : ContainedClass
 {
 readonly attribute ContainerSet all_of_type_container;
 };

 interface Container : ContainerClass, Contained
 {
 ContainedSet contents ()
 raises (Reflective::MofError);
 void set_contents (in ContainedSet new_value)
 raises (Reflective::MofError);
 void unset_contents ()
 raises (Reflective::MofError);
 void add_contents (in Contained new_element)
 raises (Reflective::MofError);
 void modify_contents (
 in Contained old_element,
 in Contained new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_contents (in Contained old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Contained lookup_name(
 in string search_name,
 in long levels_to_search,
 in DefinitionKind limit_to_type,
CORBA - Part 3: Component Model, v3.1 223

 in boolean exclude_inherited)
 raises (Reflective::MofError);
 Contained lookup(
 in string search_name)
 raises (Reflective::MofError);
 Contained get_filtered_contents(
 in DefinitionKind limit_to_type,
 in boolean include_inherited)
 raises (Reflective::MofError);
 }; // end of interface Container

 interface ModuleDefClass : ContainerClass
 {
 readonly attribute ModuleDefSet all_of_type_module_def;
 readonly attribute ModuleDefSet all_of_class_module_def;
 ModuleDef create_module_def (
 in string identifier,
 in string repository_id,
 in string version,
 in string prefix)
 raises (Reflective::MofError);
 };

 interface ModuleDef : ModuleDefClass, Container
 {
 string prefix ()
 raises (Reflective::MofError);
 void set_prefix (in string new_value)
 raises (Reflective::MofError);
 }; // end of interface ModuleDef

 interface IDLTypeClass : Reflective::RefObject
 {
 readonly attribute IDLTypeSet all_of_type_idltype;
 };

 interface IDLType : IDLTypeClass
 {
 CORBA::TypeCode type_code ()
 raises (Reflective::MofError);
 }; // end of interface IDLType

 interface TypedefDefClass : IDLTypeClass, ContainedClass
 {
 readonly attribute TypedefDefSet all_of_type_typedef_def;
 };

 interface TypedefDef : TypedefDefClass, IDLType, Contained
 {
 }; // end of interface TypedefDef

 interface InterfaceDefClass : IDLTypeClass, ContainerClass
 {
 readonly attribute InterfaceDefSet all_of_type_interface_def;
 readonly attribute InterfaceDefSet all_of_class_interface_def;
224 CORBA - Part 3: Component Model, v3.1

 InterfaceDef create_interface_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_abstract,
 in boolean is_local)
 raises (Reflective::MofError);
 };

 interface InterfaceDef : InterfaceDefClass, IDLType, Container
 {
 InterfaceDefSet base ()
 raises (Reflective::MofError);
 void set_base (in InterfaceDefSet new_value)
 raises (Reflective::MofError);
 void unset_base ()
 raises (Reflective::MofError);
 void add_base (in InterfaceDef new_element)
 raises (Reflective::MofError);
 void modify_base (
 in InterfaceDef old_element,
 in InterfaceDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_base (in InterfaceDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 boolean is_abstract ()
 raises (Reflective::MofError);
 void set_is_abstract (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_local ()
 raises (Reflective::MofError);
 void set_is_local (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface InterfaceDef

 interface FieldClass : TypedClass
 {
 readonly attribute FieldSet all_of_type_field;
 readonly attribute FieldSet all_of_class_field;
 Field create_field (
 in string identifier)
 raises (Reflective::MofError);
 };

 interface Field : FieldClass, Typed
 {
 string identifier ()
 raises (Reflective::MofError);
 void set_identifier (in string new_value)
 raises (Reflective::MofError);
 }; // end of interface Field

 interface StructDefClass : TypedefDefClass
 {
 readonly attribute StructDefSet all_of_type_struct_def;
CORBA - Part 3: Component Model, v3.1 225

 readonly attribute StructDefSet all_of_class_struct_def;
 StructDef create_struct_def (
 in string identifier,
 in string repository_id,
 in string version,
 in Field members)
 raises (Reflective::MofError);
 };

 interface StructDef : StructDefClass, TypedefDef
 {
 Field members ()
 raises (Reflective::MofError);
 void set_members (in Field new_value)
 raises (Reflective::MofError);
 }; // end of interface StructDef

 interface UnionDefClass : TypedefDefClass
 {
 readonly attribute UnionDefSet all_of_type_union_def;
 readonly attribute UnionDefSet all_of_class_union_def;
 UnionDef create_union_def (
 in string identifier,
 in string repository_id,
 in string version,
 in UnionField union_members)
 raises (Reflective::MofError);
 };

 interface UnionDef : UnionDefClass, TypedefDef
 {
 IDLType discriminator_type ()
 raises (Reflective::MofError);
 void set_discriminator_type (in IDLType new_value)
 raises (Reflective::MofError);
 UnionField union_members ()
 raises (Reflective::MofError);
 void set_union_members (in UnionField new_value)
 raises (Reflective::MofError);
 }; // end of interface UnionDef

 interface EnumDefClass : TypedefDefClass
 {
 readonly attribute EnumDefSet all_of_type_enum_def;
 readonly attribute EnumDefSet all_of_class_enum_def;
 EnumDef create_enum_def (
 in string identifier,
 in string repository_id,
 in string version,
 in string members)
 raises (Reflective::MofError);
 };

 interface EnumDef : EnumDefClass, TypedefDef
 {
226 CORBA - Part 3: Component Model, v3.1

 string members ()
 raises (Reflective::MofError);
 void set_members (in string new_value)
 raises (Reflective::MofError);
 }; // end of interface EnumDef

 interface AliasDefClass : TypedefDefClass, TypedClass
 {
 readonly attribute AliasDefSet all_of_type_alias_def;
 readonly attribute AliasDefSet all_of_class_alias_def;
 AliasDef create_alias_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface AliasDef : AliasDefClass, TypedefDef, Typed
 {
 }; // end of interface AliasDef

 interface StringDefClass : IDLTypeClass
 {
 readonly attribute StringDefSet all_of_type_string_def;
 readonly attribute StringDefSet all_of_class_string_def;
 StringDef create_string_def (
 in unsigned long bound)
 raises (Reflective::MofError);
 };

 interface StringDef : StringDefClass, IDLType
 {
 unsigned long bound ()
 raises (Reflective::MofError);
 void set_bound (in unsigned long new_value)
 raises (Reflective::MofError);
 }; // end of interface StringDef

 interface WstringDefClass : IDLTypeClass
 {
 readonly attribute WstringDefSet all_of_type_wstring_def;
 readonly attribute WstringDefSet all_of_class_wstring_def;
 WstringDef create_wstring_def (
 in unsigned long bound)
 raises (Reflective::MofError);
 };

 interface WstringDef : WstringDefClass, IDLType
 {
 unsigned long bound ()
 raises (Reflective::MofError);
 void set_bound (in unsigned long new_value)
 raises (Reflective::MofError);
 }; // end of interface WstringDef
CORBA - Part 3: Component Model, v3.1 227

 interface FixedDefClass : IDLTypeClass
 {
 readonly attribute FixedDefSet all_of_type_fixed_def;
 readonly attribute FixedDefSet all_of_class_fixed_def;
 FixedDef create_fixed_def (
 in unsigned short digits,
 in short scale)
 raises (Reflective::MofError);
 };

 interface FixedDef : FixedDefClass, IDLType
 {
 unsigned short digits ()
 raises (Reflective::MofError);
 void set_digits (in unsigned short new_value)
 raises (Reflective::MofError);
 short scale ()
 raises (Reflective::MofError);
 void set_scale (in short new_value)
 raises (Reflective::MofError);
 }; // end of interface FixedDef

 interface SequenceDefClass : TypedClass, IDLTypeClass
 {
 readonly attribute SequenceDefSet all_of_type_sequence_def;
 readonly attribute SequenceDefSet all_of_class_sequence_def;
 SequenceDef create_sequence_def (
 in unsigned long bound)
 raises (Reflective::MofError);
 };

 interface SequenceDef : SequenceDefClass, Typed, IDLType
 {
 unsigned long bound ()
 raises (Reflective::MofError);
 void set_bound (in unsigned long new_value)
 raises (Reflective::MofError);
 }; // end of interface SequenceDef

 interface ArrayDefClass : TypedClass, IDLTypeClass
 {
 readonly attribute ArrayDefSet all_of_type_array_def;
 readonly attribute ArrayDefSet all_of_class_array_def;
 ArrayDef create_array_def (
 in unsigned long bound)
 raises (Reflective::MofError);
 };

 interface ArrayDef : ArrayDefClass, Typed, IDLType
 {
 unsigned long bound ()
 raises (Reflective::MofError);
 void set_bound (in unsigned long new_value)
 raises (Reflective::MofError);
 }; // end of interface ArrayDef
228 CORBA - Part 3: Component Model, v3.1

 interface PrimitiveDefClass : IDLTypeClass
 {
 readonly attribute PrimitiveDefSet all_of_type_primitive_def;
 readonly attribute PrimitiveDefSet all_of_class_primitive_def;
 PrimitiveDef create_primitive_def (
 in PrimitiveKind kind)
 raises (Reflective::MofError);
 };

 interface PrimitiveDef : PrimitiveDefClass, IDLType
 {
 PrimitiveKind kind ()
 raises (Reflective::MofError);
 void set_kind (in PrimitiveKind new_value)
 raises (Reflective::MofError);
 }; // end of interface PrimitiveDef

 interface UnionFieldClass : TypedClass
 {
 readonly attribute UnionFieldSet all_of_type_union_field;
 readonly attribute UnionFieldSet all_of_class_union_field;
 UnionField create_union_field (
 in string identifier,
 in any label)
 raises (Reflective::MofError);
 };

 interface UnionField : UnionFieldClass, Typed
 {
 string identifier ()
 raises (Reflective::MofError);
 void set_identifier (in string new_value)
 raises (Reflective::MofError);
 any label ()
 raises (Reflective::MofError);
 void set_label (in any new_value)
 raises (Reflective::MofError);
 }; // end of interface UnionField

 interface ValueMemberDefClass : TypedClass, ContainedClass
 {
 readonly attribute ValueMemberDefSet all_of_type_value_member_def;
 readonly attribute ValueMemberDefSet all_of_class_value_member_def;
 ValueMemberDef create_value_member_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_public_member)
 raises (Reflective::MofError);
 };

 interface ValueMemberDef : ValueMemberDefClass, Typed, Contained
 {
 boolean is_public_member ()
CORBA - Part 3: Component Model, v3.1 229

 raises (Reflective::MofError);
 void set_is_public_member (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface ValueMemberDef

 interface ValueDefClass : ContainerClass, IDLTypeClass
 {
 readonly attribute ValueDefSet all_of_type_value_def;
 readonly attribute ValueDefSet all_of_class_value_def;
 ValueDef create_value_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_abstract,
 in boolean is_custom,
 in boolean is_truncatable)
 raises (Reflective::MofError);
 };

 interface ValueDef : ValueDefClass, Container, IDLType
 {
 InterfaceDef interface_def ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_interface_def (in InterfaceDef new_value)
 raises (Reflective::MofError);
 void unset_interface_def ()
 raises (Reflective::MofError);
 ValueDef base ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_base (in ValueDef new_value)
 raises (Reflective::MofError);
 void unset_base ()
 raises (Reflective::MofError);
 ValueDefSet abstract_base ()
 raises (Reflective::MofError);
 void set_abstract_base (in ValueDefSet new_value)
 raises (Reflective::MofError);
 void unset_abstract_base ()
 raises (Reflective::MofError);
 void add_abstract_base (in ValueDef new_element)
 raises (Reflective::MofError);
 void modify_abstract_base (
 in ValueDef old_element,
 in ValueDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_abstract_base (in ValueDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 boolean is_abstract ()
 raises (Reflective::MofError);
 void set_is_abstract (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_custom ()
 raises (Reflective::MofError);
 void set_is_custom (in boolean new_value)
 raises (Reflective::MofError);
230 CORBA - Part 3: Component Model, v3.1

 boolean is_truncatable ()
 raises (Reflective::MofError);
 void set_is_truncatable (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface ValueDef

 interface ValueBoxDefClass : TypedefDefClass
 {
 readonly attribute ValueBoxDefSet all_of_type_value_box_def;
 readonly attribute ValueBoxDefSet all_of_class_value_box_def;
 ValueBoxDef create_value_box_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface ValueBoxDef : ValueBoxDefClass, TypedefDef
 {
 }; // end of interface ValueBoxDef

 interface OperationDefClass : TypedClass, ContainedClass
 {
 readonly attribute OperationDefSet all_of_type_operation_def;
 readonly attribute OperationDefSet all_of_class_operation_def;
 OperationDef create_operation_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_oneway,
 in ParameterDef parameters,
 in string contexts)
 raises (Reflective::MofError);
 };

 interface OperationDef : OperationDefClass, Typed, Contained
 {
 ExceptionDefSet exception_def ()
 raises (Reflective::MofError);
 void set_exception_def (in ExceptionDefSet new_value)
 raises (Reflective::MofError);
 void unset_exception_def ()
 raises (Reflective::MofError);
 void add_exception_def (in ExceptionDef new_element)
 raises (Reflective::MofError);
 void modify_exception_def (
 in ExceptionDef old_element,
 in ExceptionDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_exception_def (in ExceptionDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 boolean is_oneway ()
 raises (Reflective::MofError);
 void set_is_oneway (in boolean new_value)
 raises (Reflective::MofError);
CORBA - Part 3: Component Model, v3.1 231

 ParameterDef parameters ()
 raises (Reflective::MofError);
 void set_parameters (in ParameterDef new_value)
 raises (Reflective::MofError);
 string contexts ()
 raises (Reflective::MofError);
 void set_contexts (in string new_value)
 raises (Reflective::MofError);
 }; // end of interface OperationDef

 interface ExceptionDefClass : ContainedClass
 {
 readonly attribute ExceptionDefSet all_of_type_exception_def;
 readonly attribute ExceptionDefSet all_of_class_exception_def;
 ExceptionDef create_exception_def (
 in string identifier,
 in string repository_id,
 in string version,
 in CORBA::TypeCode type_code,
 in Field members)
 raises (Reflective::MofError);
 };

 interface ExceptionDef : ExceptionDefClass, Contained
 {
 CORBA::TypeCode type_code ()
 raises (Reflective::MofError);
 Field members ()
 raises (Reflective::MofError);
 void set_members (in Field new_value)
 raises (Reflective::MofError);
 }; // end of interface ExceptionDef

 interface AttributeDefClass : TypedClass, ContainedClass
 {
 readonly attribute AttributeDefSet all_of_type_attribute_def;
 readonly attribute AttributeDefSet all_of_class_attribute_def;
 AttributeDef create_attribute_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_readonly)
 raises (Reflective::MofError);
 };

 interface AttributeDef : AttributeDefClass, Typed, Contained
 {
 ExceptionDefSet set_exception ()
 raises (Reflective::MofError);
 void set_set_exception (in ExceptionDefSet new_value)
 raises (Reflective::MofError);
 void unset_set_exception ()
 raises (Reflective::MofError);
 void add_set_exception (in ExceptionDef new_element)
 raises (Reflective::MofError);
232 CORBA - Part 3: Component Model, v3.1

 void modify_set_exception (
 in ExceptionDef old_element,
 in ExceptionDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_set_exception (in ExceptionDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ExceptionDefSet get_exception ()
 raises (Reflective::MofError);
 void set_get_exception (in ExceptionDefSet new_value)
 raises (Reflective::MofError);
 void unset_get_exception ()
 raises (Reflective::MofError);
 void add_get_exception (in ExceptionDef new_element)
 raises (Reflective::MofError);
 void modify_get_exception (
 in ExceptionDef old_element,
 in ExceptionDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_get_exception (in ExceptionDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 boolean is_readonly ()
 raises (Reflective::MofError);
 void set_is_readonly (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface AttributeDef

 struct InterfaceDerivedFromLink
 {
 InterfaceDef base;
 InterfaceDef derived;
 };
 typedef sequence<InterfaceDerivedFromLink> InterfaceDerivedFromLinkSet;

 interface InterfaceDerivedFrom : Reflective::RefAssociation
 {
 InterfaceDerivedFromLinkSet all_interface_derived_from_links()
 raises (Reflective::MofError);
 boolean exists (
 in InterfaceDef base,
 in InterfaceDef derived)
 raises (Reflective::MofError);
 InterfaceDefSet base (in InterfaceDef derived)
 raises (Reflective::MofError);
 void add (
 in InterfaceDef base,
 in InterfaceDef derived)
 raises (Reflective::MofError);
 void modify_base (
 in InterfaceDef base,
 in InterfaceDef derived,
 in InterfaceDef new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in InterfaceDef base,
 in InterfaceDef derived)
CORBA - Part 3: Component Model, v3.1 233

 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface InterfaceDerivedFrom

 struct DiscriminatedByLink
 {
 IDLType discriminator_type;
 UnionDef union_def;
 };
 typedef sequence<DiscriminatedByLink> DiscriminatedByLinkSet;

 interface DiscriminatedBy : Reflective::RefAssociation
 {
 DiscriminatedByLinkSet all_discriminated_by_links()
 raises (Reflective::MofError);
 boolean exists (
 in IDLType discriminator_type,
 in UnionDef union_def)
 raises (Reflective::MofError);
 IDLType discriminator_type (in UnionDef union_def)
 raises (Reflective::MofError);
 void add (
 in IDLType discriminator_type,
 in UnionDef union_def)
 raises (Reflective::MofError);
 void modify_discriminator_type (
 in IDLType discriminator_type,
 in UnionDef union_def,
 in IDLType new_discriminator_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in IDLType discriminator_type,
 in UnionDef union_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface DiscriminatedBy

 struct TypedByLink
 {
 IDLType idl_type;
 BaseIDL::Typed typed;
 };
 typedef sequence<TypedByLink> TypedByLinkSet;

 interface TypedBy : Reflective::RefAssociation
 {
 TypedByLinkSet all_typed_by_links()
 raises (Reflective::MofError);
 boolean exists (
 in IDLType idl_type,
 in BaseIDL::Typed typed)
 raises (Reflective::MofError);
 IDLType idl_type (in BaseIDL::Typed typed)
 raises (Reflective::MofError);
 void add (
 in IDLType idl_type,
 in BaseIDL::Typed typed)
234 CORBA - Part 3: Component Model, v3.1

 raises (Reflective::MofError);
 void modify_idl_type (
 in IDLType idl_type,
 in BaseIDL::Typed typed,
 in IDLType new_idl_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in IDLType idl_type,
 in BaseIDL::Typed typed)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface TypedBy

 struct SupportsLink
 {
 InterfaceDef interface_def;
 ValueDef value_def;
 };
 typedef sequence<SupportsLink> SupportsLinkSet;

 interface Supports : Reflective::RefAssociation
 {
 SupportsLinkSet all_supports_links()
 raises (Reflective::MofError);
 boolean exists (
 in InterfaceDef interface_def,
 in ValueDef value_def)
 raises (Reflective::MofError);
 InterfaceDef interface_def (in ValueDef value_def)
 raises (Reflective::MofError);
 void add (
 in InterfaceDef interface_def,
 in ValueDef value_def)
 raises (Reflective::MofError);
 void modify_interface_def (
 in InterfaceDef interface_def,
 in ValueDef value_def,
 in InterfaceDef new_interface_def)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in InterfaceDef interface_def,
 in ValueDef value_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Supports

 struct ValueDerivedFromLink
 {
 ValueDef base;
 ValueDef derived;
 };
 typedef sequence<ValueDerivedFromLink> ValueDerivedFromLinkSet;

 interface ValueDerivedFrom : Reflective::RefAssociation
 {
 ValueDerivedFromLinkSet all_value_derived_from_links()
 raises (Reflective::MofError);
CORBA - Part 3: Component Model, v3.1 235

 boolean exists (
 in ValueDef base,
 in ValueDef derived)
 raises (Reflective::MofError);
 ValueDef base (in ValueDef derived)
 raises (Reflective::MofError);
 void add (
 in ValueDef base,
 in ValueDef derived)
 raises (Reflective::MofError);
 void modify_base (
 in ValueDef base,
 in ValueDef derived,
 in ValueDef new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ValueDef base,
 in ValueDef derived)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ValueDerivedFrom

 struct AbstractDerivedFromLink
 {
 ValueDef abstract_derived;
 ValueDef abstract_base;
 };
 typedef sequence<AbstractDerivedFromLink> AbstractDerivedFromLinkSet;

 interface AbstractDerivedFrom : Reflective::RefAssociation
 {
 AbstractDerivedFromLinkSet all_abstract_derived_from_links()
 raises (Reflective::MofError);
 boolean exists (
 in ValueDef abstract_derived,
 in ValueDef abstract_base)
 raises (Reflective::MofError);
 ValueDefSet abstract_base (in ValueDef abstract_derived)
 raises (Reflective::MofError);
 void add (
 in ValueDef abstract_derived,
 in ValueDef abstract_base)
 raises (Reflective::MofError);
 void modify_abstract_base (
 in ValueDef abstract_derived,
 in ValueDef abstract_base,
 in ValueDef new_abstract_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ValueDef abstract_derived,
 in ValueDef abstract_base)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AbstractDerivedFrom

 struct SetRaisesLink
 {
236 CORBA - Part 3: Component Model, v3.1

 ExceptionDef set_exception;
 AttributeDef set_attribute;
 };
 typedef sequence<SetRaisesLink> SetRaisesLinkSet;

 interface SetRaises : Reflective::RefAssociation
 {
 SetRaisesLinkSet all_set_raises_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExceptionDef set_exception,
 in AttributeDef set_attribute)
 raises (Reflective::MofError);
 ExceptionDefSet set_exception (in AttributeDef set_attribute)
 raises (Reflective::MofError);
 void add (
 in ExceptionDef set_exception,
 in AttributeDef set_attribute)
 raises (Reflective::MofError);
 void modify_set_exception (
 in ExceptionDef set_exception,
 in AttributeDef set_attribute,
 in ExceptionDef new_set_exception)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExceptionDef set_exception,
 in AttributeDef set_attribute)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface SetRaises

 struct CanRaiseLink
 {
 ExceptionDef exception_def;
 OperationDef operation_def;
 };
 typedef sequence<CanRaiseLink> CanRaiseLinkSet;

 interface CanRaise : Reflective::RefAssociation
 {
 CanRaiseLinkSet all_can_raise_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExceptionDef exception_def,
 in OperationDef operation_def)
 raises (Reflective::MofError);
 ExceptionDefSet exception_def (in OperationDef operation_def)
 raises (Reflective::MofError);
 void add (
 in ExceptionDef exception_def,
 in OperationDef operation_def)
 raises (Reflective::MofError);
 void modify_exception_def (
 in ExceptionDef exception_def,
 in OperationDef operation_def,
 in ExceptionDef new_exception_def)
CORBA - Part 3: Component Model, v3.1 237

 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExceptionDef exception_def,
 in OperationDef operation_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface CanRaise

 struct GetRaisesLink
 {
 ExceptionDef get_exception;
 AttributeDef get_attribute;
 };
 typedef sequence<GetRaisesLink> GetRaisesLinkSet;

 interface GetRaises : Reflective::RefAssociation
 {
 GetRaisesLinkSet all_get_raises_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExceptionDef get_exception,
 in AttributeDef get_attribute)
 raises (Reflective::MofError);
 ExceptionDefSet get_exception (in AttributeDef get_attribute)
 raises (Reflective::MofError);
 void add (
 in ExceptionDef get_exception,
 in AttributeDef get_attribute)
 raises (Reflective::MofError);
 void modify_get_exception (
 in ExceptionDef get_exception,
 in AttributeDef get_attribute,
 in ExceptionDef new_get_exception)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExceptionDef get_exception,
 in AttributeDef get_attribute)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface GetRaises

 struct ContainsLink
 {
 Container defined_in;
 Contained contents;
 };
 typedef sequence<ContainsLink> ContainsLinkSet;

 interface Contains : Reflective::RefAssociation
 {
 ContainsLinkSet all_contains_links()
 raises (Reflective::MofError);
 boolean exists (
 in Container defined_in,
 in Contained contents)
 raises (Reflective::MofError);
 Container defined_in (in Contained contents)
238 CORBA - Part 3: Component Model, v3.1

 raises (Reflective::MofError);
 ContainedSet contents (in Container defined_in)
 raises (Reflective::MofError);
 void add (
 in Container defined_in,
 in Contained contents)
 raises (Reflective::MofError);
 void modify_defined_in (
 in Container defined_in,
 in Contained contents,
 in Container new_defined_in)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_contents (
 in Container defined_in,
 in Contained contents,
 in Contained new_contents)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Container defined_in,
 in Contained contents)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Contains

 interface BaseIDLPackageFactory
 {
 BaseIDLPackage create_base_idl_package ()
 raises (Reflective::MofError);
 };

 interface BaseIDLPackage : Reflective::RefPackage
 {
 readonly attribute TypedClass typed_ref;
 readonly attribute ParameterDefClass parameter_def_ref;
 readonly attribute ContainedClass contained_ref;
 readonly attribute ConstantDefClass constant_def_ref;
 readonly attribute ContainerClass container_ref;
 readonly attribute ModuleDefClass module_def_ref;
 readonly attribute IDLTypeClass idltype_ref;
 readonly attribute TypedefDefClass typedef_def_ref;
 readonly attribute InterfaceDefClass interface_def_ref;
 readonly attribute FieldClass field_ref;
 readonly attribute StructDefClass struct_def_ref;
 readonly attribute UnionDefClass union_def_ref;
 readonly attribute EnumDefClass enum_def_ref;
 readonly attribute AliasDefClass alias_def_ref;
 readonly attribute StringDefClass string_def_ref;
 readonly attribute WstringDefClass wstring_def_ref;
 readonly attribute FixedDefClass fixed_def_ref;
 readonly attribute SequenceDefClass sequence_def_ref;
 readonly attribute ArrayDefClass array_def_ref;
 readonly attribute PrimitiveDefClass primitive_def_ref;
 readonly attribute UnionFieldClass union_field_ref;
 readonly attribute ValueMemberDefClass value_member_def_ref;
 readonly attribute ValueDefClass value_def_ref;
 readonly attribute ValueBoxDefClass value_box_def_ref;
CORBA - Part 3: Component Model, v3.1 239

 readonly attribute OperationDefClass operation_def_ref;
 readonly attribute ExceptionDefClass exception_def_ref;
 readonly attribute AttributeDefClass attribute_def_ref;
 readonly attribute InterfaceDerivedFrom interface_derived_from_ref;
 readonly attribute DiscriminatedBy discriminated_by_ref;
 readonly attribute TypedBy typed_by_ref;
 readonly attribute Supports supports_ref;
 readonly attribute ValueDerivedFrom value_derived_from_ref;
 readonly attribute AbstractDerivedFrom abstract_derived_from_ref;
 readonly attribute SetRaises set_raises_ref;
 readonly attribute CanRaise can_raise_ref;
 readonly attribute GetRaises get_raises_ref;
 readonly attribute Contains contains_ref;
 };
}; // end of module BaseIDL

11.3.3 IDL for the ComponentIDL Package

#pragma prefix "ccm.omg.org"
#include "BaseIDL.idl"

module ComponentIDL
{
 interface ComponentFeatureClass;
 interface ComponentFeature;
 typedef sequence<ComponentFeature> ComponentFeatureSet;
 interface ComponentDefClass;
 interface ComponentDef;
 typedef sequence<ComponentDef> ComponentDefSet;
 interface ProvidesDefClass;
 interface ProvidesDef;
 typedef sequence<ProvidesDef> ProvidesDefSet;
 interface HomeDefClass;
 interface HomeDef;
 typedef sequence<HomeDef> HomeDefSet;
 interface FactoryDefClass;
 interface FactoryDef;
 typedef sequence<FactoryDef> FactoryDefSet;
 interface FinderDefClass;
 interface FinderDef;
 typedef sequence<FinderDef> FinderDefSet;
 interface EventPortDefClass;
 interface EventPortDef;
 typedef sequence<EventPortDef> EventPortDefSet;
 interface EmitsDefClass;
 interface EmitsDef;
 typedef sequence<EmitsDef> EmitsDefSet;
 interface ConsumesDefClass;
 interface ConsumesDef;
 typedef sequence<ConsumesDef> ConsumesDefSet;
 interface UsesDefClass;
 interface UsesDef;
 typedef sequence<UsesDef> UsesDefSet;
 interface PublishesDefClass;
 interface PublishesDef;
240 CORBA - Part 3: Component Model, v3.1

 typedef sequence<PublishesDef> PublishesDefSet;
 interface EventDefClass;
 interface EventDef;
 typedef sequence<EventDef> EventDefSet;
 interface ComponentIDLPackage;

 interface ComponentFeatureClass : Reflective::RefObject
 {
 readonly attribute ComponentFeatureSet all_of_type_component_feature;
 };

 interface ComponentFeature : ComponentFeatureClass
 {
 }; // end of interface ComponentFeature

 interface ComponentDefClass : BaseIDL::InterfaceDefClass, ComponentFeatureClass
 {
 readonly attribute ComponentDefSet all_of_type_component_def;
 readonly attribute ComponentDefSet all_of_class_component_def;
 ComponentDef create_component_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_abstract,
 in boolean is_local)
 raises (Reflective::MofError);
 };

 interface ComponentDef : ComponentDefClass, BaseIDL::InterfaceDef, ComponentFeature
 {
 ProvidesDefSet facet ()
 raises (Reflective::MofError);
 void set_facet (in ProvidesDefSet new_value)
 raises (Reflective::MofError);
 void unset_facet ()
 raises (Reflective::MofError);
 void add_facet (in ProvidesDef new_element)
 raises (Reflective::MofError);
 void modify_facet (
 in ProvidesDef old_element,
 in ProvidesDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_facet (in ProvidesDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 EmitsDefSet emits ()
 raises (Reflective::MofError);
 void set_emits (in EmitsDefSet new_value)
 raises (Reflective::MofError);
 void unset_emits ()
 raises (Reflective::MofError);
 void add_emits (in EmitsDef new_element)
 raises (Reflective::MofError);
 void modify_emits (
 in EmitsDef old_element,
 in EmitsDef new_element)
CORBA - Part 3: Component Model, v3.1 241

 raises (Reflective::NotFound, Reflective::MofError);
 void remove_emits (in EmitsDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ConsumesDefSet consumes ()
 raises (Reflective::MofError);
 void set_consumes (in ConsumesDefSet new_value)
 raises (Reflective::MofError);
 void unset_consumes ()
 raises (Reflective::MofError);
 void add_consumes (in ConsumesDef new_element)
 raises (Reflective::MofError);
 void modify_consumes (
 in ConsumesDef old_element,
 in ConsumesDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_consumes (in ConsumesDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 UsesDefSet receptacle ()
 raises (Reflective::MofError);
 void set_receptacle (in UsesDefSet new_value)
 raises (Reflective::MofError);
 void unset_receptacle ()
 raises (Reflective::MofError);
 void add_receptacle (in UsesDef new_element)
 raises (Reflective::MofError);
 void modify_receptacle (
 in UsesDef old_element,
 in UsesDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_receptacle (in UsesDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 BaseIDL::InterfaceDefSet supports ()
 raises (Reflective::MofError);
 void set_supports (in BaseIDL::InterfaceDefSet new_value)
 raises (Reflective::MofError);
 void unset_supports ()
 raises (Reflective::MofError);
 void add_supports (in BaseIDL::InterfaceDef new_element)
 raises (Reflective::MofError);
 void modify_supports (
 in BaseIDL::InterfaceDef old_element,
 in BaseIDL::InterfaceDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_supports (in BaseIDL::InterfaceDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 PublishesDefSet publishes ()
 raises (Reflective::MofError);
 void set_publishes (in PublishesDefSet new_value)
 raises (Reflective::MofError);
 void unset_publishes ()
 raises (Reflective::MofError);
 void add_publishes (in PublishesDef new_element)
 raises (Reflective::MofError);
 void modify_publishes (
 in PublishesDef old_element,
242 CORBA - Part 3: Component Model, v3.1

 in PublishesDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_publishes (in PublishesDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentDef

 interface ProvidesDefClass : BaseIDL::ContainedClass, ComponentFeatureClass
 {
 readonly attribute ProvidesDefSet all_of_type_provides_def;
 readonly attribute ProvidesDefSet all_of_class_provides_def;
 ProvidesDef create_provides_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface ProvidesDef : ProvidesDefClass, BaseIDL::Contained, ComponentFeature
 {
 BaseIDL::InterfaceDef provides ()
 raises (Reflective::MofError);
 void set_provides (in BaseIDL::InterfaceDef new_value)
 raises (Reflective::MofError);
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 }; // end of interface ProvidesDef

 interface HomeDefClass : BaseIDL::InterfaceDefClass
 {
 readonly attribute HomeDefSet all_of_type_home_def;
 readonly attribute HomeDefSet all_of_class_home_def;
 HomeDef create_home_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_abstract,
 in boolean is_local)
 raises (Reflective::MofError);
 };

 interface HomeDef : HomeDefClass, BaseIDL::InterfaceDef
 {
 FinderDefSet finder ()
 raises (Reflective::MofError);
 void set_finder (in FinderDefSet new_value)
 raises (Reflective::MofError);
 void unset_finder ()
 raises (Reflective::MofError);
 void add_finder (in FinderDef new_element)
 raises (Reflective::MofError);
 void modify_finder (
 in FinderDef old_element,
 in FinderDef new_element)
CORBA - Part 3: Component Model, v3.1 243

 raises (Reflective::NotFound, Reflective::MofError);
 void remove_finder (in FinderDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 FactoryDefSet factory ()
 raises (Reflective::MofError);
 void set_factory (in FactoryDefSet new_value)
 raises (Reflective::MofError);
 void unset_factory ()
 raises (Reflective::MofError);
 void add_factory (in FactoryDef new_element)
 raises (Reflective::MofError);
 void modify_factory (
 in FactoryDef old_element,
 in FactoryDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_factory (in FactoryDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 BaseIDL::ValueDef primary_key ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_primary_key (in BaseIDL::ValueDef new_value)
 raises (Reflective::MofError);
 void unset_primary_key ()
 raises (Reflective::MofError);
 BaseIDL::InterfaceDefSet supports ()
 raises (Reflective::MofError);
 void set_supports (in BaseIDL::InterfaceDefSet new_value)
 raises (Reflective::MofError);
 void unset_supports ()
 raises (Reflective::MofError);
 void add_supports (in BaseIDL::InterfaceDef new_element)
 raises (Reflective::MofError);
 void modify_supports (
 in BaseIDL::InterfaceDef old_element,
 in BaseIDL::InterfaceDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_supports (in BaseIDL::InterfaceDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface HomeDef

 interface FactoryDefClass : BaseIDL::OperationDefClass
 {
 readonly attribute FactoryDefSet all_of_type_factory_def;
 readonly attribute FactoryDefSet all_of_class_factory_def;
 FactoryDef create_factory_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_oneway,
 in BaseIDL::ParameterDef parameters,
 in string contexts)
 raises (Reflective::MofError);
244 CORBA - Part 3: Component Model, v3.1

 };

 interface FactoryDef : FactoryDefClass, BaseIDL::OperationDef
 {
 HomeDef home ()
 raises (Reflective::MofError);
 void set_home (in HomeDef new_value)
 raises (Reflective::MofError);
 }; // end of interface FactoryDef

 interface FinderDefClass : BaseIDL::OperationDefClass
 {
 readonly attribute FinderDefSet all_of_type_finder_def;
 readonly attribute FinderDefSet all_of_class_finder_def;
 FinderDef create_finder_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_oneway,
 in BaseIDL::ParameterDef parameters,
 in string contexts)
 raises (Reflective::MofError);
 };

 interface FinderDef : FinderDefClass, BaseIDL::OperationDef
 {
 HomeDef home ()
 raises (Reflective::MofError);
 void set_home (in HomeDef new_value)
 raises (Reflective::MofError);
 }; // end of interface FinderDef

 interface EventPortDefClass : BaseIDL::ContainedClass, ComponentFeatureClass
 {
 readonly attribute EventPortDefSet all_of_type_event_port_def;
 };

 interface EventPortDef : EventPortDefClass, BaseIDL::Contained, ComponentFeature
 {
 EventDef type ()
 raises (Reflective::MofError);
 void set_type (in EventDef new_value)
 raises (Reflective::MofError);
 }; // end of interface EventPortDef

 interface EmitsDefClass : EventPortDefClass, ComponentFeatureClass
 {
 readonly attribute EmitsDefSet all_of_type_emits_def;
 readonly attribute EmitsDefSet all_of_class_emits_def;
 EmitsDef create_emits_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };
CORBA - Part 3: Component Model, v3.1 245

 interface EmitsDef : EmitsDefClass, EventPortDef, ComponentFeature
 {
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 }; // end of interface EmitsDef

 interface ConsumesDefClass : EventPortDefClass, ComponentFeatureClass
 {
 readonly attribute ConsumesDefSet all_of_type_consumes_def;
 readonly attribute ConsumesDefSet all_of_class_consumes_def;
 ConsumesDef create_consumes_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface ConsumesDef : ConsumesDefClass, EventPortDef, ComponentFeature
 {
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 }; // end of interface ConsumesDef

 interface UsesDefClass : BaseIDL::ContainedClass, ComponentFeatureClass
 {
 readonly attribute UsesDefSet all_of_type_uses_def;
 readonly attribute UsesDefSet all_of_class_uses_def;
 UsesDef create_uses_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean multiple)
 raises (Reflective::MofError);
 };

 interface UsesDef : UsesDefClass, BaseIDL::Contained, ComponentFeature
 {
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 BaseIDL::InterfaceDef uses ()
 raises (Reflective::MofError);
 void set_uses (in BaseIDL::InterfaceDef new_value)
 raises (Reflective::MofError);
 boolean multiple ()
 raises (Reflective::MofError);
 void set_multiple (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface UsesDef
246 CORBA - Part 3: Component Model, v3.1

 interface PublishesDefClass : EventPortDefClass, ComponentFeatureClass
 {
 readonly attribute PublishesDefSet all_of_type_publishes_def;
 readonly attribute PublishesDefSet all_of_class_publishes_def;
 PublishesDef create_publishes_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface PublishesDef : PublishesDefClass, EventPortDef, ComponentFeature
 {
 ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentDef new_value)
 raises (Reflective::MofError);
 }; // end of interface PublishesDef

 interface EventDefClass : BaseIDL::ValueDefClass
 {
 readonly attribute EventDefSet all_of_type_event_def;
 readonly attribute EventDefSet all_of_class_event_def;
 EventDef create_event_def (
 in string identifier,
 in string repository_id,
 in string version,
 in boolean is_abstract,
 in boolean is_custom,
 in boolean is_truncatable)
 raises (Reflective::MofError);
 };

 interface EventDef : EventDefClass, BaseIDL::ValueDef
 {
 }; // end of interface EventDef

 struct ProvidesInterfaceLink
 {
 BaseIDL::InterfaceDef provides;
 ProvidesDef provides_def;
 };
 typedef sequence<ProvidesInterfaceLink> ProvidesInterfaceLinkSet;

 interface ProvidesInterface : Reflective::RefAssociation
 {
 ProvidesInterfaceLinkSet all_provides_interface_links()
 raises (Reflective::MofError);
 boolean exists (
 in BaseIDL::InterfaceDef provides,
 in ProvidesDef provides_def)
 raises (Reflective::MofError);
 BaseIDL::InterfaceDef provides (in ProvidesDef provides_def)
 raises (Reflective::MofError);
CORBA - Part 3: Component Model, v3.1 247

 void add (
 in BaseIDL::InterfaceDef provides,
 in ProvidesDef provides_def)
 raises (Reflective::MofError);
 void modify_provides (
 in BaseIDL::InterfaceDef provides,
 in ProvidesDef provides_def,
 in BaseIDL::InterfaceDef new_provides)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BaseIDL::InterfaceDef provides,
 in ProvidesDef provides_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ProvidesInterface

 struct ComponentFacetLink
 {
 ComponentDef component;
 ProvidesDef facet;
 };
 typedef sequence<ComponentFacetLink> ComponentFacetLinkSet;

 interface ComponentFacet : Reflective::RefAssociation
 {
 ComponentFacetLinkSet all_component_facet_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in ProvidesDef facet)
 raises (Reflective::MofError);
 ComponentDef component (in ProvidesDef facet)
 raises (Reflective::MofError);
 ProvidesDefSet facet (in ComponentDef component)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in ProvidesDef facet)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in ProvidesDef facet,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_facet (
 in ComponentDef component,
 in ProvidesDef facet,
 in ProvidesDef new_facet)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentDef component,
 in ProvidesDef facet)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentFacet

 struct HomeFinderLink
248 CORBA - Part 3: Component Model, v3.1

 {
 HomeDef home;
 FinderDef finder;
 };
 typedef sequence<HomeFinderLink> HomeFinderLinkSet;

 interface HomeFinder : Reflective::RefAssociation
 {
 HomeFinderLinkSet all_home_finder_links()
 raises (Reflective::MofError);
 boolean exists (
 in HomeDef home,
 in FinderDef finder)
 raises (Reflective::MofError);
 HomeDef home (in FinderDef finder)
 raises (Reflective::MofError);
 FinderDefSet finder (in HomeDef home)
 raises (Reflective::MofError);
 void add (
 in HomeDef home,
 in FinderDef finder)
 raises (Reflective::MofError);
 void modify_home (
 in HomeDef home,
 in FinderDef finder,
 in HomeDef new_home)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_finder (
 in HomeDef home,
 in FinderDef finder,
 in FinderDef new_finder)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in HomeDef home,
 in FinderDef finder)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface HomeFinder

 struct ComponentEmitsLink
 {
 ComponentDef component;
 EmitsDef emits;
 };
 typedef sequence<ComponentEmitsLink> ComponentEmitsLinkSet;

 interface ComponentEmits : Reflective::RefAssociation
 {
 ComponentEmitsLinkSet all_component_emits_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in EmitsDef emits)
 raises (Reflective::MofError);
 ComponentDef component (in EmitsDef emits)
 raises (Reflective::MofError);
CORBA - Part 3: Component Model, v3.1 249

 EmitsDefSet emits (in ComponentDef component)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in EmitsDef emits)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in EmitsDef emits,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_emits (
 in ComponentDef component,
 in EmitsDef emits,
 in EmitsDef new_emits)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentDef component,
 in EmitsDef emits)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentEmits

 struct ComponentConsumesLink
 {
 ComponentDef component;
 ConsumesDef consumes;
 };
 typedef sequence<ComponentConsumesLink> ComponentConsumesLinkSet;

 interface ComponentConsumes : Reflective::RefAssociation
 {
 ComponentConsumesLinkSet all_component_consumes_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in ConsumesDef consumes)
 raises (Reflective::MofError);
 ComponentDef component (in ConsumesDef consumes)
 raises (Reflective::MofError);
 ConsumesDefSet consumes (in ComponentDef component)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in ConsumesDef consumes)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in ConsumesDef consumes,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_consumes (
 in ComponentDef component,
 in ConsumesDef consumes,
 in ConsumesDef new_consumes)
 raises (Reflective::NotFound, Reflective::MofError);
250 CORBA - Part 3: Component Model, v3.1

 void remove (
 in ComponentDef component,
 in ConsumesDef consumes)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentConsumes

 struct ComponentReceptacleLink
 {
 ComponentDef component;
 UsesDef receptacle;
 };
 typedef sequence<ComponentReceptacleLink> ComponentReceptacleLinkSet;

 interface ComponentReceptacle : Reflective::RefAssociation
 {
 ComponentReceptacleLinkSet all_component_receptacle_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in UsesDef receptacle)
 raises (Reflective::MofError);
 ComponentDef component (in UsesDef receptacle)
 raises (Reflective::MofError);
 UsesDefSet receptacle (in ComponentDef component)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in UsesDef receptacle)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in UsesDef receptacle,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_receptacle (
 in ComponentDef component,
 in UsesDef receptacle,
 in UsesDef new_receptacle)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentDef component,
 in UsesDef receptacle)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentReceptacle

 struct UsesInterfaceLink
 {
 BaseIDL::InterfaceDef uses;
 UsesDef uses_def;
 };
 typedef sequence<UsesInterfaceLink> UsesInterfaceLinkSet;

 interface UsesInterface : Reflective::RefAssociation
 {
 UsesInterfaceLinkSet all_uses_interface_links()
CORBA - Part 3: Component Model, v3.1 251

 raises (Reflective::MofError);
 boolean exists (
 in BaseIDL::InterfaceDef uses,
 in UsesDef uses_def)
 raises (Reflective::MofError);
 BaseIDL::InterfaceDef uses (in UsesDef uses_def)
 raises (Reflective::MofError);
 void add (
 in BaseIDL::InterfaceDef uses,
 in UsesDef uses_def)
 raises (Reflective::MofError);
 void modify_uses (
 in BaseIDL::InterfaceDef uses,
 in UsesDef uses_def,
 in BaseIDL::InterfaceDef new_uses)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BaseIDL::InterfaceDef uses,
 in UsesDef uses_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface UsesInterface

 struct ComponentHomeLink
 {
 ComponentDef component;
 HomeDef home;
 };
 typedef sequence<ComponentHomeLink> ComponentHomeLinkSet;

 interface ComponentHome : Reflective::RefAssociation
 {
 ComponentHomeLinkSet all_component_home_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in HomeDef home)
 raises (Reflective::MofError);
 ComponentDef component (in HomeDef home)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in HomeDef home)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in HomeDef home,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentDef component,
 in HomeDef home)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentHome

 struct ComponentSupportsLink
252 CORBA - Part 3: Component Model, v3.1

 {
 BaseIDL::InterfaceDef supports;
 ComponentDef components;
 };
 typedef sequence<ComponentSupportsLink> ComponentSupportsLinkSet;

 interface ComponentSupports : Reflective::RefAssociation
 {
 ComponentSupportsLinkSet all_component_supports_links()
 raises (Reflective::MofError);
 boolean exists (
 in BaseIDL::InterfaceDef supports,
 in ComponentDef components)
 raises (Reflective::MofError);
 BaseIDL::InterfaceDefSet supports (in ComponentDef components)
 raises (Reflective::MofError);
 void add (
 in BaseIDL::InterfaceDef supports,
 in ComponentDef components)
 raises (Reflective::MofError);
 void modify_supports (
 in BaseIDL::InterfaceDef supports,
 in ComponentDef components,
 in BaseIDL::InterfaceDef new_supports)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BaseIDL::InterfaceDef supports,
 in ComponentDef components)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentSupports

 struct HomeFactoryLink
 {
 HomeDef home;
 FactoryDef factory;
 };
 typedef sequence<HomeFactoryLink> HomeFactoryLinkSet;

 interface HomeFactory : Reflective::RefAssociation
 {
 HomeFactoryLinkSet all_home_factory_links()
 raises (Reflective::MofError);
 boolean exists (
 in HomeDef home,
 in FactoryDef factory)
 raises (Reflective::MofError);
 HomeDef home (in FactoryDef factory)
 raises (Reflective::MofError);
 FactoryDefSet factory (in HomeDef home)
 raises (Reflective::MofError);
 void add (
 in HomeDef home,
 in FactoryDef factory)
 raises (Reflective::MofError);
 void modify_home (
CORBA - Part 3: Component Model, v3.1 253

 in HomeDef home,
 in FactoryDef factory,
 in HomeDef new_home)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_factory (
 in HomeDef home,
 in FactoryDef factory,
 in FactoryDef new_factory)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in HomeDef home,
 in FactoryDef factory)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface HomeFactory

 struct ComponentPublishesLink
 {
 ComponentDef component;
 PublishesDef publishes;
 };
 typedef sequence<ComponentPublishesLink> ComponentPublishesLinkSet;

 interface ComponentPublishes : Reflective::RefAssociation
 {
 ComponentPublishesLinkSet all_component_publishes_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentDef component,
 in PublishesDef publishes)
 raises (Reflective::MofError);
 ComponentDef component (in PublishesDef publishes)
 raises (Reflective::MofError);
 PublishesDefSet publishes (in ComponentDef component)
 raises (Reflective::MofError);
 void add (
 in ComponentDef component,
 in PublishesDef publishes)
 raises (Reflective::MofError);
 void modify_component (
 in ComponentDef component,
 in PublishesDef publishes,
 in ComponentDef new_component)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_publishes (
 in ComponentDef component,
 in PublishesDef publishes,
 in PublishesDef new_publishes)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentDef component,
 in PublishesDef publishes)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentPublishes

 struct EventTypeLink
254 CORBA - Part 3: Component Model, v3.1

 {
 EventDef type;
 EventPortDef event;
 };
 typedef sequence<EventTypeLink> EventTypeLinkSet;

 interface EventType : Reflective::RefAssociation
 {
 EventTypeLinkSet all_event_type_links()
 raises (Reflective::MofError);
 boolean exists (
 in EventDef type,
 in EventPortDef event)
 raises (Reflective::MofError);
 EventDef type (in EventPortDef event)
 raises (Reflective::MofError);
 void add (
 in EventDef type,
 in EventPortDef event)
 raises (Reflective::MofError);
 void modify_type (
 in EventDef type,
 in EventPortDef event,
 in EventDef new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in EventDef type,
 in EventPortDef event)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface EventType

 struct APrimaryKeyHomeLink
 {
 BaseIDL::ValueDef primary_key;
 HomeDef home;
 };
 typedef sequence<APrimaryKeyHomeLink> APrimaryKeyHomeLinkSet;

 interface APrimaryKeyHome : Reflective::RefAssociation
 {
 APrimaryKeyHomeLinkSet all_a_primary_key_home_links()
 raises (Reflective::MofError);
 boolean exists (
 in BaseIDL::ValueDef primary_key,
 in HomeDef home)
 raises (Reflective::MofError);
 BaseIDL::ValueDef primary_key (in HomeDef home)
 raises (Reflective::MofError);
 void add (
 in BaseIDL::ValueDef primary_key,
 in HomeDef home)
 raises (Reflective::MofError);
 void modify_primary_key (
 in BaseIDL::ValueDef primary_key,
 in HomeDef home,
CORBA - Part 3: Component Model, v3.1 255

 in BaseIDL::ValueDef new_primary_key)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BaseIDL::ValueDef primary_key,
 in HomeDef home)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface APrimaryKeyHome

 struct ASupportsHomeDefLink
 {
 BaseIDL::InterfaceDef supports;
 HomeDef home_def;
 };
 typedef sequence<ASupportsHomeDefLink> ASupportsHomeDefLinkSet;

 interface ASupportsHomeDef : Reflective::RefAssociation
 {
 ASupportsHomeDefLinkSet all_a_supports_home_def_links()
 raises (Reflective::MofError);
 boolean exists (
 in BaseIDL::InterfaceDef supports,
 in HomeDef home_def)
 raises (Reflective::MofError);
 BaseIDL::InterfaceDefSet supports (in HomeDef home_def)
 raises (Reflective::MofError);
 void add (
 in BaseIDL::InterfaceDef supports,
 in HomeDef home_def)
 raises (Reflective::MofError);
 void modify_supports (
 in BaseIDL::InterfaceDef supports,
 in HomeDef home_def,
 in BaseIDL::InterfaceDef new_supports)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BaseIDL::InterfaceDef supports,
 in HomeDef home_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASupportsHomeDef

 interface ComponentIDLPackageFactory
 {
 ComponentIDLPackage create_component_idl_package ()
 raises (Reflective::MofError);
 };

 interface ComponentIDLPackage : Reflective::RefPackage
 {
 readonly attribute ComponentFeatureClass component_feature_ref;
 readonly attribute ComponentDefClass component_def_ref;
 readonly attribute ProvidesDefClass provides_def_ref;
 readonly attribute HomeDefClass home_def_ref;
 readonly attribute FactoryDefClass factory_def_ref;
 readonly attribute FinderDefClass finder_def_ref;
 readonly attribute EventPortDefClass event_port_def_ref;
256 CORBA - Part 3: Component Model, v3.1

 readonly attribute EmitsDefClass emits_def_ref;
 readonly attribute ConsumesDefClass consumes_def_ref;
 readonly attribute UsesDefClass uses_def_ref;
 readonly attribute PublishesDefClass publishes_def_ref;
 readonly attribute EventDefClass event_def_ref;
 readonly attribute ProvidesInterface provides_interface_ref;
 readonly attribute ComponentFacet component_facet_ref;
 readonly attribute HomeFinder home_finder_ref;
 readonly attribute ComponentEmits component_emits_ref;
 readonly attribute ComponentConsumes component_consumes_ref;
 readonly attribute ComponentReceptacle component_receptacle_ref;
 readonly attribute UsesInterface uses_interface_ref;
 readonly attribute ComponentHome component_home_ref;
 readonly attribute ComponentSupports component_supports_ref;
 readonly attribute HomeFactory home_factory_ref;
 readonly attribute ComponentPublishes component_publishes_ref;
 readonly attribute EventType event_type_ref;
 readonly attribute APrimaryKeyHome a_primary_key_home_ref;
 readonly attribute ASupportsHomeDef a_supports_home_def_ref;
 };
}; // end of module ComponentIDL
CORBA - Part 3: Component Model, v3.1 257

258 CORBA - Part 3: Component Model, v3.1

12 CIF Metamodel

12.1 CIF Package

In addition to the packages BaseIDL and ComponentIDL, a new package CIF is introduced that contains the metamodel
for the Component Implementation Framework. This package obviously depends on the ComponentIDL package since its
main purpose is to enable the modeling of implementations for components specified using the ComponentIDL
definitions. This situation is depicted in the following diagram:

Figure 12.1- Package structure of CCM metamodels

12.2 Classes and Associations

The CIF metamodel defines additional metaclasses and associations. An overview on these is to be seen in Figure 12.2.
Their meaning is explained on the following pages.

C o m p o n e n t ID L

B a s e ID L

C IF
CORBA - Part 3: Component Model, v3.1 259

Figure 12.2- CIF metamodel (overview)

12.2.1 ComponentImplDef

This metaclass is used to model an implementation definition for a given component definition. It specifies an association
to ComponentDef to allow instances to point exactly to the component the instance is going to implement. A
ComponentImplDef always has exactly one ComponentDef associated while each ComponentDef might be implemented
by different ComponentImplDefs.

ComponentImplDef is specified as being a Container, by doing so, instances are able to contain other definitions. The
only definitions that are allowed to be contained by a ComponentImplDef are instances of SegmentDef.

Currently, there is no inheritance specification for instances of ComponentImplDef.

Contained
(from BaseIDL)

Container
(from BaseIDL)

0..n0..1

+contents

0..n

+definedIn

0..1

Contains

Specification of Policies
Specification of State

ComponentCategory

PROCESS
SESSION
ENTITY
SERVICE

<<Enumeration>>

ArtifactDef

ComponentFeature

(from ComponentIDL)

Policy

SegmentDef

isSerialized : boolean 1

+artifact

1

1..n

1

+features
1..n

1

implemented_by

0..n

1..n

+policies
0..n

1..n
policies

InterfaceDef

(from BaseIDL)

ComponentDef

(from ComponentIDL)

ComponentImplDef

category : ComponentCategory

1..n1

+segments

1..n1

/segments

<<implicit>>

1

0..n

+component1

0..n

implements

HomeImplDef

0..n 1

+home_impl

0..n

+component_impl

1manages

HomeDef

(from ComponentIDL))

0..n 1

+home

0..n

+component

1

Component_Home

0..n

1

0..n

+home 1

implements
260 CORBA - Part 3: Component Model, v3.1

12.2.2 SegmentDef

Instances of SegmentDef are used to model a segmented implementation structure for a component implementation. This
means that the behavior for each component feature can be provided by a separate segment of the component
implementation (most likely a separate programming language class in the code generated by the CIF tools) if necessary.
It is also possible to specify that a segment provides the behavior for a number of component features including the
extreme that only one segment implements all component features.

Instances of SegmentDef are always contained in instances of ComponentImplDef and therefore are derived from
Contained. SegmentDef has an association to ComponentFeature so that instances can point to all features of a component
which the segment is going to implement. SegmentDef has in addition an association to ArtifactDef, which are models of
programming language constructs (classes) used to actually implement the behavior for component features. There is
always exactly one artifact for each segment. However, artefacts may be shared between component implementations
whereas segments cannot. That’s why the distinction between artefacts and segments has been modeled in the CIF.

The attribute isSerialized is used to indicate that the access to segment is required to be serialized or not.

12.2.3 ArtifactDef

ArtifactDef is used to model abstractions from programming language constructs like classes. Instances from ArtifactDef
in a model represent the elements that provide the behavior for features of a component. Since these can be shared across
component implementations the distinctions between artifacts and segments have been made in the metamodel.

ArtifactDef is a specialization of the metaclass Contained, which means that artifacts are identifiable and contained in
other definitions. The only allowed Container for ArtifactDef is ModuleDef.

12.2.4 Policy

Segment definitions modeled as instances of the metaclass SegmentDef may contain a set of policies that have to be
applied to realizations of the segment in the implementation code. These policies include for example activation policies
for the artifact associated to a segment. The complete set of required policies is not known yet and the metamodel is
designed to be flexible. Policy is introduced as an abstract metaclass and concrete policies are expected to be defined as
specializations of that class. SegmentDef aggregates a set of policies.

The metamodel for component implementations is shown in Figure 12.3.
CORBA - Part 3: Component Model, v3.1 261

Figure 12.3- Metamodel for component implementations

12.2.5 HomeImplDef

Home interfaces have to be implemented and their implementation is not part of a component implementation. However,
for a home implementation it has to be specified, which component implementation the home implementation manages.
For that reason, the CIF metamodel contains a metaclass HomeImplDef. Each instance of HomeImplDef in a model
implements exactly one instance of HomeDef. This relation is modeled by the association implements between both
metaclasses. HomeImplDef inherits from the abstract metaclass Container. This is to allow a home implementation to be
identifiable within a model and to contain other model elements. (For the time being, no such elements have been
identified). Each home implementation manages exactly one component implementation, this relation is modeled by the

Specification of Policies
Specification of State

ComponentCategory
PROCESS
SESSION
ENTITY
SERVICE

<<Enumeration>>

InterfaceDef
(from BaseIDL)

Contained
(from BaseIDL)

Container
(from BaseIDL)

0..n0..1

+contents

0..n

+definedIn

0..1

Contains

ArtifactDef

ComponentFeature
(from ComponentIDL)

Policy

SegmentDef
isSerialized : boolean

1

+artifact

1

1..n

1

+features
1..n

1

implemented_by

0..n

1..n

+policies
0..n

1..n

policies

ComponentDef
(from ComponentIDL)

ComponentImplDef
category : ComponentCategory

1..n1

+segments

1..n1

/segments
<<implicit>>

1

0..n

+component1

0..n

implements
262 CORBA - Part 3: Component Model, v3.1

association manages. It is required, that for each instance x of HomeImplDef the instance of ComponentDef, which is
associated to the instance of HomeDef associated to x is the same instance as the instance of ComponentDef associated to
the instance of ComponentImplDef which is associated to x.

Figure 12.4- Metamodel for home implementations

12.3 Conformance Criteria

This sub clause identifies the conformance points required for compliant implementations of the Component
Implementation Framework (CIF) metamodel architecture.

12.3.1 Conformance Points

In the previous sub clause, the MOF metamodel of the Component Implementation Framework (CIF) was defined. The
following sub clause defines the XMI format for the exchange of CIF metadata and the IDL for a MOF-compliant CIF
repository. Support for the generation and consumption of the XMI metadata and for the MOF-compliant IDL is optional.

12.4 MOF DTDs and IDL for the CIF Metamodel

The XMI DTDs and IDL for the Interface Repository metamodel are presented in this sub clause. The DTDs are
generated by applying the MOF-XML mapping defined by the XMI specification to the MOF-compliant metamodel
described in “CIF Package” on page 259. The IDL is generated by applying the MOF-IDL mapping defined in the MOF
specification to the metamodels and was validated using the IDL compilers.

HomeDef
(from ComponentIDL)

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string

(from BaseIDL)
Container

<<[0..*]>> lookupName()
lookup()
<<[0..*]>> getFilteredContents()

(from BaseIDL)

0..n0..1

+contents

0..n

+definedIn

0..1 Contains

InterfaceDef

isAbstract : boolean
isLocal : boolean

(from BaseIDL)

ComponentDef
(from ComponentIDL))

0..n 1

+home

0..n

+component

1

Component_Home

ComponentImplDef

category : ComponentCategory

0..n

1

0..n

+component1

implements

HomeImplDef

1

0..n

+home1

0..n

implements

10..n

+component_impl

1

+home_impl

0..n

manages
CORBA - Part 3: Component Model, v3.1 263

The IDL requires the inclusion of the reflective interfaces defined in http://www.omg.org/technology/documents/formal/
mof.htm as part of the MOF specification.

12.4.1 XMI DTD

See “XMI DTD” on page 195.

12.4.2 IDL for the CIF Package

#pragma prefix "ccm.omg.org"
#include "ComponentIDL.idl"

module CIF
{
 interface ArtifactDefClass;
 interface ArtifactDef;
 typedef sequence<ArtifactDef> ArtifactDefSet;
 interface SegmentDefClass;
 interface SegmentDef;
 typedef sequence<SegmentDef> SegmentDefSet;
 interface ComponentImplDefClass;
 interface ComponentImplDef;
 typedef sequence<ComponentImplDef> ComponentImplDefSet;
 interface PolicyClass;
 interface Policy;
 typedef sequence<Policy> PolicySet;
 interface HomeImplDefClass;
 interface HomeImplDef;
 typedef sequence<HomeImplDef> HomeImplDefSet;
 interface CIFPackage;
 enum ComponentCategory {PROCESS, SESSION, ENTITY, SERVICE};

 interface ArtifactDefClass : BaseIDL::ContainedClass
 {
 readonly attribute ArtifactDefSet all_of_type_artifact_def;
 readonly attribute ArtifactDefSet all_of_class_artifact_def;
 ArtifactDef create_artifact_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface ArtifactDef : ArtifactDefClass, BaseIDL::Contained
 {
 }; // end of interface ArtifactDef

 interface SegmentDefClass : BaseIDL::ContainedClass
 {
 readonly attribute SegmentDefSet all_of_type_segment_def;
 readonly attribute SegmentDefSet all_of_class_segment_def;
 SegmentDef create_segment_def (
 in string identifier,
 in string repository_id,
264 CORBA - Part 3: Component Model, v3.1

 in string version,
 in boolean is_serialized)
 raises (Reflective::MofError);
 };

 interface SegmentDef : SegmentDefClass, BaseIDL::Contained
 {
 ArtifactDef artifact ()
 raises (Reflective::MofError);
 void set_artifact (in ArtifactDef new_value)
 raises (Reflective::MofError);
 ComponentIDL::ComponentFeatureSet features ()
 raises (Reflective::MofError);
 void set_features (in ComponentIDL::ComponentFeatureSet new_value)
 raises (Reflective::MofError);
 void add_features (in ComponentIDL::ComponentFeature new_element)
 raises (Reflective::MofError);
 void modify_features (
 in ComponentIDL::ComponentFeature old_element,
 in ComponentIDL::ComponentFeature new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_features (in ComponentIDL::ComponentFeature old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 PolicySet policies ()
 raises (Reflective::MofError);
 void set_policies (in PolicySet new_value)
 raises (Reflective::MofError);
 void unset_policies ()
 raises (Reflective::MofError);
 void add_policies (in Policy new_element)
 raises (Reflective::MofError);
 void modify_policies (
 in Policy old_element,
 in Policy new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_policies (in Policy old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 boolean is_serialized ()
 raises (Reflective::MofError);
 void set_is_serialized (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface SegmentDef

 interface ComponentImplDefClass : BaseIDL::ContainerClass
 {
 readonly attribute ComponentImplDefSet all_of_type_component_impl_def;
 readonly attribute ComponentImplDefSet all_of_class_component_impl_def;
 ComponentImplDef create_component_impl_def (
 in string identifier,
 in string repository_id,
 in string version,
 in ComponentCategory category)
 raises (Reflective::MofError);
 };
CORBA - Part 3: Component Model, v3.1 265

 interface ComponentImplDef : ComponentImplDefClass, BaseIDL::Container
 {
 ComponentIDL::ComponentDef component ()
 raises (Reflective::MofError);
 void set_component (in ComponentIDL::ComponentDef new_value)
 raises (Reflective::MofError);
 SegmentDefSet segments ()
 raises (Reflective::MofError);
 void set_segments (in SegmentDefSet new_value)
 raises (Reflective::MofError);
 void add_segments (in SegmentDef new_element)
 raises (Reflective::MofError);
 void modify_segments (
 in SegmentDef old_element,
 in SegmentDef new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_segments (in SegmentDef old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ComponentCategory category ()
 raises (Reflective::MofError);
 void set_category (in ComponentCategory new_value)
 raises (Reflective::MofError);
 }; // end of interface ComponentImplDef

 interface PolicyClass : Reflective::RefObject
 {
 readonly attribute PolicySet all_of_type_policy;
 };

 interface Policy : PolicyClass
 {
 }; // end of interface Policy

 interface HomeImplDefClass : BaseIDL::ContainerClass
 {
 readonly attribute HomeImplDefSet all_of_type_home_impl_def;
 readonly attribute HomeImplDefSet all_of_class_home_impl_def;
 HomeImplDef create_home_impl_def (
 in string identifier,
 in string repository_id,
 in string version)
 raises (Reflective::MofError);
 };

 interface HomeImplDef : HomeImplDefClass, BaseIDL::Container
 {
 ComponentIDL::HomeDef home ()
 raises (Reflective::MofError);
 void set_home (in ComponentIDL::HomeDef new_value)
 raises (Reflective::MofError);
 ComponentImplDef component_impl ()
 raises (Reflective::MofError);
 void set_component_impl (in ComponentImplDef new_value)
 raises (Reflective::MofError);
 }; // end of interface HomeImplDef
266 CORBA - Part 3: Component Model, v3.1

 struct AArtifactSegmentDefLink
 {
 ArtifactDef artifact;
 SegmentDef segment_def;
 };
 typedef sequence<AArtifactSegmentDefLink> AArtifactSegmentDefLinkSet;

 interface AArtifactSegmentDef : Reflective::RefAssociation
 {
 AArtifactSegmentDefLinkSet all_a_artifact_segment_def_links()
 raises (Reflective::MofError);
 boolean exists (
 in ArtifactDef artifact,
 in SegmentDef segment_def)
 raises (Reflective::MofError);
 ArtifactDef artifact (in SegmentDef segment_def)
 raises (Reflective::MofError);
 void add (
 in ArtifactDef artifact,
 in SegmentDef segment_def)
 raises (Reflective::MofError);
 void modify_artifact (
 in ArtifactDef artifact,
 in SegmentDef segment_def,
 in ArtifactDef new_artifact)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ArtifactDef artifact,
 in SegmentDef segment_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AArtifactSegmentDef

 struct SegmentsLink
 {
 SegmentDef segments;
 ComponentImplDef component_impl_def;
 };
 typedef sequence<SegmentsLink> SegmentsLinkSet;

 interface Segments : Reflective::RefAssociation
 {
 SegmentsLinkSet all_segments_links()
 raises (Reflective::MofError);
 boolean exists (
 in SegmentDef segments,
 in ComponentImplDef component_impl_def)
 raises (Reflective::MofError);
 SegmentDefSet segments (in ComponentImplDef component_impl_def)
 raises (Reflective::MofError);
 void add (
 in SegmentDef segments,
 in ComponentImplDef component_impl_def)
 raises (Reflective::MofError);
 void modify_segments (
CORBA - Part 3: Component Model, v3.1 267

 in SegmentDef segments,
 in ComponentImplDef component_impl_def,
 in SegmentDef new_segments)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in SegmentDef segments,
 in ComponentImplDef component_impl_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Segments

 struct ImplementedByLink
 {
 ComponentIDL::ComponentFeature features;
 SegmentDef segment_def;
 };
 typedef sequence<ImplementedByLink> ImplementedByLinkSet;

 interface ImplementedBy : Reflective::RefAssociation
 {
 ImplementedByLinkSet all_implemented_by_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentIDL::ComponentFeature features,
 in SegmentDef segment_def)
 raises (Reflective::MofError);
 ComponentIDL::ComponentFeatureSet features (in SegmentDef segment_def)
 raises (Reflective::MofError);
 void add (
 in ComponentIDL::ComponentFeature features,
 in SegmentDef segment_def)
 raises (Reflective::MofError);
 void modify_features (
 in ComponentIDL::ComponentFeature features,
 in SegmentDef segment_def,
 in ComponentIDL::ComponentFeature new_features)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentIDL::ComponentFeature features,
 in SegmentDef segment_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ImplementedBy

 struct PoliciesLink
 {
 Policy policies;
 SegmentDef segment_def;
 };
 typedef sequence<PoliciesLink> PoliciesLinkSet;

 interface Policies : Reflective::RefAssociation
 {
 PoliciesLinkSet all_policies_links()
 raises (Reflective::MofError);
 boolean exists (
 in Policy policies,
268 CORBA - Part 3: Component Model, v3.1

 in SegmentDef segment_def)
 raises (Reflective::MofError);
 PolicySet policies (in SegmentDef segment_def)
 raises (Reflective::MofError);
 void add (
 in Policy policies,
 in SegmentDef segment_def)
 raises (Reflective::MofError);
 void modify_policies (
 in Policy policies,
 in SegmentDef segment_def,
 in Policy new_policies)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Policy policies,
 in SegmentDef segment_def)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Policies

 struct ManagesLink
 {
 ComponentImplDef component_impl;
 HomeImplDef home_impl;
 };
 typedef sequence<ManagesLink> ManagesLinkSet;

 interface Manages : Reflective::RefAssociation
 {
 ManagesLinkSet all_manages_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentImplDef component_impl,
 in HomeImplDef home_impl)
 raises (Reflective::MofError);
 ComponentImplDef component_impl (in HomeImplDef home_impl)
 raises (Reflective::MofError);
 void add (
 in ComponentImplDef component_impl,
 in HomeImplDef home_impl)
 raises (Reflective::MofError);
 void modify_component_impl (
 in ComponentImplDef component_impl,
 in HomeImplDef home_impl,
 in ComponentImplDef new_component_impl)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentImplDef component_impl,
 in HomeImplDef home_impl)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Manages

 interface CIFPackageFactory
 {
 CIFPackage create_cif_package ()
 raises (Reflective::MofError);
CORBA - Part 3: Component Model, v3.1 269

 };

 interface CIFPackage : Reflective::RefPackage
 {
 readonly attribute ArtifactDefClass artifact_def_ref;
 readonly attribute SegmentDefClass segment_def_ref;
 readonly attribute ComponentImplDefClass component_impl_def_ref;
 readonly attribute PolicyClass policy_ref;
 readonly attribute HomeImplDefClass home_impl_def_ref;
 readonly attribute AArtifactSegmentDef a_artifact_segment_def_ref;
 readonly attribute Segments segments_ref;
 readonly attribute ImplementedBy implemented_by_ref;
 readonly attribute Policies policies_ref;
 readonly attribute Manages manages_ref;
 };
}; // end of module CIF
270 CORBA - Part 3: Component Model, v3.1

13 Lightweight CCM Profile

13.1 Summary

This Lightweight CCM profile is a conformance point based on the extended model as defined in “Conformance and
Compliance” on page 1. The table below defines the specific parts of this CCM specification that are impacted and the
normative specific subsetting of CCM. In summary, the following general capabilities (and associated machinery) are
excluded from the extended model to define this conformance point:

• Persistence (only session and service components are supported)

• Introspection

• Navigation

• Redundancies, preferring generic over specific.

• Segmentation (not allowed for session or service components)

• Transactions

• Security

• Configurators

• Proxy homes

• Home finders

• CIDL

• POA related mandates

Operations that are termed “disabled” in this conformance point are still part of the associated interface, but
implementations may raise either BAD_OPERATION or NO_IMPLEMENT exceptions when they are invoked. This
flexibility avoids the overhead required for the lightweight component skeletons to have explicit tests for all disabled
operations. In the specific case of the disabled “same_component” operation, on the Navigation interface, throwing an
exception of NO_IMPLEMENT is required, with a minor code of IS_LIGHTWEIGHT_COMPONENT. Clients that wish to
clearly determine whether an object has a Lightweight CCM implementation can make this determination by performing
a get_component on the object, and then perform the same_component operation to specifically test for a component
meeting this conformance point.

Document impacts below are those that would make the CCM specification document describe this conformance point
without reference to the unsupported features and disabled operations. However, the disabled operations are considered
present in the interface to preserve the meaning of the interface repository IDs.

The following tables list the specification and document impacts. The normative description column contains all
normative issues, without redundancy, and thus those columns contains all the functional “exclusions” to the specification
and can be used as a quick reference list of detailed changes. The text in the “Document Impact” column describes the
editing changes that would turn the CCM specification into a document describing only the Lightweight CCM profile.
CORBA - Part 3: Component Model, v3.1 271

13.2 Changes associated with excluding support for persistence

Normative Exclusion Document Impact Comment(s)

Exclude support for primary
keys

6.1.4, paragraph 2: remove
6.1.5, paragraph 1: remove reference to
associations between instances and keys
6.7, paragraph 3: remove
6.7.1, paragraph 1 and 3: remove references to
primary key
6.7.1.2: remove
6.7.2: remove
6.7.4: remove references to primary key
6.7.5.1, paragraph 1 and 2: remove references to
primary key
6.7.5.2, paragraph 1 and 2: remove references to
primary key
9.1.1: remove

Only components with persistence can
have primary keys (Table 7.4, sub
clause 7.5.1).

Exclude support for CIDL 6.2.2.1, paragraph 1: remove references to
CIDL
Clause 7: remove
8.1, paragraph 1: remove references to CIDL
8.2.1: remove
8.2.2: remove

Note excluding CIDL is a
consequence of excluding support for
both persistence and segmentation.

Exclude support for abstract
storage homes

6.7.4: remove references to storage home
8.2.5, paragraph 4: remove references to
abstract storage home
8.2.6: remove references to storage home
8.2.7: remove
8.2.8: remove

Table 7-4 in sub clause 7.5.1 disallows
such abstract storage homes on session
or service components.

Exclude support for abstract
storage types

8.2.2, paragraph 2: remove references to
abstract storage type
8.2.6: remove references to abstract storage
type
8.2.9, point 4: remove references to abstract
storage type
8.2.9.2: remove
8.2.11.3: remove references to using the state
identifier for persistence.
8.2.11.4: remove references to using the state
identifier for persistence.

Exclude the Implicit
Executor Interface for
Keyed Homes

8.3.3.6: remove paragraphs about the Implicit
Executor Interface for keyed homes.

Keyed homes already excluded.
272 CORBA - Part 3: Component Model, v3.1

Remove support for finders
in the explicit home
executor

8.3.3.6: remove paragraphs about finders
9.3.2.2: remove reference to finders

Table 7-4 in sub clause 7.5.1 disallows
such finder operations on session or
service components.

Remove support for entity
container API types. Only
session containers exist.

8.2.11, paragraph 2: remove reference to
Entity2Context
8.3.3.3: remove references to entity
components
9.1.2: remove references to entity container API
types
9.2.9: remove
9.2.10, 9.3: remove references to entity
container API type
9.2.13.3, 9.2.13.4, 9.3.4: remove
9.4: remove reference to ComponentId
9.4.1.1: remove reference to persistence
9.4.3: remove
9.5.1.3, paragraph 1: remove references to
entity components
9.5.2.3, point 3: remove references to entity
components
9.1, 12.2, 12.4: remove Process and Entity
component categories from the
ComponentType enumeration.

Remove durable CORBA
usage model

9.1.3: remove description of durable usage
model
9.1.4: remove table entries associated with
durable usage model
9.2.2, 9.2.2.1, 9.2.2.2, 9.2.5: remove table
entries and references associated with
PERSISTENT object references

Disable get_persistence
operation from
CCM2Context interface

9.4.1.1: remove reference to and description of
this operation

Exclude support for
persistence

9.2, paragraph 1: remove reference to
persistence
9.2.1, paragraph 1: remove reference to
persistence
9.2.12: remove reference to persistence
CORBA - Part 3: Component Model, v3.1 273

13.3 Changes associated with excluding support for introspection, navigation
and type-specific operations redundant with generic operations

Normative Exclusion Document Impact Comment(s)

Disable provide_<name> operation in
the component’s equivalent interface

6.4.1: remove
6.4.3.2: remove
6.4.2, 6.4.3: replace provide_<name>
with provide_facet

The generic version, provide_facet, in
the Navigation interface, is retained as
it is required for containers for
deployment.

Disable get_all_facets,
get_named_facets, same_component
operations in Navigation interface.

6.4.3.3: remove these operations from
the Navigation interface. Also remove
the PortDescription, FacetDescription,
and FacetDescriptions types.
6.4.3.4: remove
6.4.4: remove

Only the generic provide_facet
remains enabled in the Navigation
interface, and only for the equivalent
interface.

Disable connect_<name>,
disconnect_<name>,
get_connection_<name> operations,
get_connections_<name> for
receptacles, in the component’s
equivalent interface

6.5.1: remove
6.5.2: replace references to type-
specific connect and disconnect with
generic equivalent.
6.5.2.3: remove

Introspection, or redundant with
generic connect/disconnect operations
in the Receptacles interface.

Disable get_connections,
get_all_receptacles,
get_named_receptacles operations in
the Receptacles interface

6.5.3: remove these operations from the
Receptacles interface. Also remove the
ConnectionDescription and
ReceptacleDescription types.

Introspection

Disable subscribe_<name>,
unsubscribe_<name> operations for
event publishers, in the equivalent
interface

6.6.5: remove These are redundant with the generic
connect/disconnect operations in the
Receptacles interface

Disable connect_<name>,
disconnect_<name> operations for
event emitters, in the equivalent
interface

6.6.6: remove These are redundant with the generic
connect/disconnect operations in the
Receptacles interface.

Disable get_consumer_<name>
operations in the equivalent interface

6.6.7: remove These operation are redundant with the
generic provide_facet operation in the
Navigation interface inherited by the
equivalent interface.
274 CORBA - Part 3: Component Model, v3.1

13.4 Changes associated with excluding support for segmentation

Disable get_all_consumers,
get_named_consumers,
get_all_emitters, get_named_emitters,
get_all_publishers,
get_named_publishers in the Events
interface inherited by the equivalent
interface

6.6.8: remove these operations from the
Events interface. Also remove the
ConsumerDescrption,
EmitterDescription,
SubscriberDescription, and
PublisherDescription types.

These operations are for introspection.

Disable get_component_def,
get_home_def operations on
CCMHome interface

6.7.6: remove references to these
operations

Introspection excluded

Disable get_component_def,
get_primary_key, get_all_ports
operations in the CCMObject interface

6.11.1: remove references to these
operations

Introspection excluded

Normative Exclusion Document Impact Comment(s)

Exclude support for CIDL Chapter 7: remove
8.2.1: remove

Note excluding CIDL is a consequence of
excluding support for both persistence
and segmentation. In some sense
segmentation is only valid with
persistence (see 9.2.11), but this is not the
consistent message of the specification.

Exclude composition 8.2.5: remove
8.2.6: remove
8.2.7: remove
8.2.9.1: remove
8.2.11.2: remove
8.2.11.5: remove
9.2.5, 9.2.11: remove reference to
segments

Sub clause 8.2.7 is also removed since it
deals with persistence

Remove locator support 8.3.1, 8.3.2: remove references to
locators, locator-based implementations
and the ExecutorLocator interface
8.3.3.3, 8.3.3.4: remove references to
main executors and locators
8.3.3.5, paragraph 4 and last paragraph:
remove references to locator
8.3.3.6: remove reference to factories
returning ExecutorLocators

Restrict CIF metamodel to a single
segment per implementation

12.1, 12.2, 12.4: restrict the multiplicity
of the association between
ComponentImplDef and SegmentDef to
1:1
CORBA - Part 3: Component Model, v3.1 275

13.5 Changes associated with excluding support for transactions

13.6 Changes associated with excluding support for security

Remove segmentation support 8.2.11, 8.2.9, 9.2.12: remove reference to
segmentation

Normative Exclusion Document Impact Comment(s)

Remove support for the “transaction”
servant lifetime policy

9.2.5: remove references to the transaction servant
lifetime policy.

Remove support for transaction
policies

9.2.6: remove
9.2.8: remove reference to transaction policies
9.2.8.1: remove
9.2.10, 9.2.13.1, 9.2.13.2, 9.3.1, 9.3.3.2: remove
reference to transactions

Disable the get_rollback_only,
get_user_transaction, and
set_rollback_only operations in the
CCMContext interface

9.3.2.1: remove references to these operations

Disable the UserTransaction
interface

9.3.2.3: remove

Remove support for the
SessionSynchronization interface

8.3.1, 9.2.12.2: remove reference to this interface
9.3.3.3: remove

Exclude support for transactions 9.2, paragraph 1: remove reference to transaction
9.2.1, paragraph 1: remove reference to transaction
9.2.12: remove reference to transaction
9.5.1.1, point 2: remove reference to transaction
9.5.1.4: remove reference to transaction
9.5.2.4: remove reference to transaction

Normative Exclusion Document Impact Comment(s)

Remove support for the security policy
declarations

9.2.7: remove
9.2.8, 0.3.1: remove reference to security policies
9.2.8.2: remove

Disable the get_caller_principal and
is_caller_in_role operations in the
CCMContext interface

9.3.2.1: remove references to these operations
276 CORBA - Part 3: Component Model, v3.1

13.7 Changes associated with excluding support for configurators

13.8 Changes associated with excluding support for proxy homes

13.9 Changes associated with excluding support for home finders

Normative Exclusion Document Impact Comment(s)

Exclude support for Configurator
and StandardConfigurator
interfaces

6.10.1: remove Note that the set_configuration_values
operation in the HomeConfiguration interface is
retained. Support for Configurators is
functionally redundant.

Disable the set_configurator
operation in the
HomeConfiguration interface

6.10.2.1: remove references to the
set_configurator operation (3
places)

Note that the set_configuration_values
operation in the HomeConfiguration interface is
retained

Remove references to
configurators

6.10.2, 6.10.2.1, 6.11.1: remove
references to configurators

Normative Exclusion Document Impact Comment(s)

Exclude support for proxy homes 8.2.5 last paragraph: remove
8.2.10: remove
9.4.1.3: remove

Exclude support for security 9.2, paragraph 1: remove reference to
security
9.2.1, paragraph 1: remove reference to
security
9.2.12: remove reference to security
9.5.1.1: remove reference to security
9.5.1.5: remove reference to security
9.5.2.5: remove reference to security

Normative Exclusion Document Impact Comment(s)

Disable support for the HomeFinder
interface and the
ComponentHomeFinder parameter
value to the ORB::
resolve_initial_references operation

6.8: remove
9.2.2.1: remove sentence about
HomeFinders

Although 9.1.1 implies that homes without
primary keys do not support finders, 6.8
implies that they do, thus this table assumes
that home finders are not necessarily tied to
primary keys and thus we explicitly exclude
them in their own right.

Disable the get_home_registration
operation in the CCM2Context
interface

9.4.1.1: Remove references to and
description of this operation
9.4.1.2: remove
CORBA - Part 3: Component Model, v3.1 277

13.10 Changes adding additional restrictions to the extended model not
represented by exclusions above

Exclude support for home finders and
finder operations

6.7.1, paragraph 2, 6.7.1.1, 6.7.3:
remove references to home finders
and finder operations
6.7.3.2: remove
6.7.3.3, 6.7.4, p aragraph 1, 6.7.5
(heterodox), 8.3.6, point 5, 9.3.2.1
(get_CCM_home), 9.5, 9.5.1,
point 4 and last paragraph, 9.5.1.1,
last point, 9.5.1.2: remove
references to home finders and
finder operations
9.5.1.3: remove
9.5.2.3: remove

Normative restriction Document Impact Comment(s)

CIDL is removed because
segmentation and persistence is
removed, and thus the “API type”
does not require specification.

9.1, 9.2.2: remove references to
CIDL as means to specifying API
type.
9.2.2.3: remove references to CIDL
as a means to specify threading
policies

Note that the distinction between service
components and session components and
threading policy is still reflected in the XML
descriptors.

Access to the POA is excluded to
provide proper containment and
enable container implementations
that integrate object adapter
capabilities.

9.1: remove references to using
implementation information to
program POA policies.
9.2.4: remove
9.4, 4.4.1.1: remove reference to
persistence: remove POA reference

Like all other container services, object
adapter services can be satisfied by the
standard service (e.g., POA), but, as with the
other services, using the standard one is not
mandated. Normative usage of the POA is
not necessary and precludes simpler and
more efficient container implementations.

Exclude self management of
components’ references

9.4.2: remove Such capabilities generally violate the
deployment and configuration role of the
container.
278 CORBA - Part 3: Component Model, v3.1

14 Deployment PSM for CCM

14.1 Introduction

This clause describes the mapping of the platform-independent model for Deployment and Configuration [D+C] to the
CORBA Component Model platform.

14.2 Overview

The D&C data models are used in two different ways, first for persistent storage and distribution of information, and
second for representing data at runtime. For persistent storage and distribution, the data models are mapped to XML
schemas [XSD], so that information can be stored in XML files [XML] according to the model. We frequently use the
term (and stereotype) description for the classes that define the data model. We use the term “descriptor” to refer to the
XML file that contains the data. For runtime, the data models are mapped to IDL data structures.

The management classes are runtime entities and mapped to IDL interfaces only.

This sub clause does not include XML schema and IDL files, since both are generated according to rules. However, these
files are supplied with this specification to show the results of this rule-based file generation. The rules that will be used
to auto-generate these files from the platform independent model use stereotype classes and associations appropriately
and then use rules set forth in the UML profile for CORBA.

This clause defines three transformations and two mappings.

Figure 14.1- Model Transformations and Mappings for CCM

PSM for CCM

PSM for CCM for
IDL

PSM for CCM for
XML

(T1)

(T2) (T3)

(M1) (M2)

Platform
Independent Model

XML SchemaIDL
CORBA - Part 3: Component Model, v3.1 279

The first transformation, T1 (PIM to PSM for CCM), takes the platform-independent model, and refines it into a platform
specific model for CCM. In this PSM for CCM, the abstract meta-concepts are concretized, and also some other classes
are aligned with the CORBA Component Model.

The second transformation T2 (PSM for CCM to PSM for IDL) takes the PSM for CCM and transforms it into a PSM for
CCM for IDL that can be used to generate concrete IDL from the model. The third transformation T3 (PSM for CCM to
PSM for CCM for XML) creates a PSM for CCM for XML that can be used to generate concrete XML schemas.

The motivation for transformations T2 and T3 is to transform the PIM into PSMs so that generic, rule-based mappings
M1 and M2 can be used. (Note that some classes have different representations in IDL and XML, for example the Any
class, prohibiting IDL and XML schema generation from the same model.) The motivation for transformation T1 is that
some CCM specific transformations are necessary that are independent of the mapping to IDL or XML.

The M1 mapping is realized using the UML Profile for CORBA [UPC], the M2 mapping is realized using the XML
Metadata Interchange (XMI) Version 2 [XMI] specification, “2, XML Schema Production.”

14.3 Definition of Meta-Concepts

This sub clause provides a concrete definition for the classes that are abstract in the PIM. This sub clause is unrelated to
the transformations, which will be described in the following sub clauses.

14.3.1 Component

The abstraction of Component in the PIM is mapped to both components and homes for the CCM platform. Components
in CCM have an interface, attributes and ports. Homes do not have ports, but an interface and attributes. Both components
and homes have explicitly “supported” interfaces in addition to the “equivalent” interface, that inherits all supported
interfaces, and includes attributes and explicit operations in the component and home interface definitions.

Viewing homes as a kind of component allows this specification’s model to deploy homes (by themselves or as part of an
assembly). Applications or other components in an assembly can then use the home to create component instances at
runtime. This supports the full feature set of CCM, without requiring explicit home implementations.

If a CCM home or component supports an interface, their ComponentInterfaceDescription has a special port named
“supports” that can be used in connections for any of the “supported” interfaces. If, in an assembly, a connection is to be
provided by any of the component’s or home’s supported interfaces, then the port name of the
ComponentExternalPortEndpoint or SubcomponentPortEndpoint class is “supports.” For CCM homes, this port also
provides their equivalent interface. The “supports” port for CCM components does not provide the equivalent interface,
since this would be problematic for assembly implementations of components. Home implementations are always
monolithic. (Note that in CCM 3.0, assemblies did not allow connections to a component’s equivalent interface either.)

Configuration properties of components, as described by the ComponentPropertyDescription class, are attributes in the
component or home interface or any inherited component or home interface, but not in any supported interface.

Note – The “supports” magic name has been chosen because it reflects the supported interface. Because it is an IDL
keyword, it has little likelihood of conflicting with other port names.
280 CORBA - Part 3: Component Model, v3.1

14.3.2 ImplementationArtifact

The meta-concept of ImplementationArtifact is mapped to a file accessible by URL. This PSM still treats files as opaque.
Agreement between the author of an implementation and the NodeManager over the contents of an implementation
artifact is assumed. This agreement, or “contract,” is expressed in terms of execution parameters and an implementation’s
dependencies on resources provided by the node.

14.3.3 Package

The meta-concept of a package is mapped to a ZIP file [ZIP] accessible by URI [URI], that includes implementation
artifacts and descriptors. Packages have the “.cpk” extension and must contain a single Toplevel Package Descriptor
containing a ToplevelPackageDescription element with the magic name “package.tpd.”

14.4 PIM to PSM for CCM Transformation

This sub clause defines transformation T1 (as described in the introduction for this clause). It takes the platform-
independent model from Clause 6 of the Deployment and Configuration [D+C] specification and aligns classes with the
CORBA Component Model. This involves changes to attributes, associations and semantics of some classes. All classes
from the PIM that are not refined here are imported into the PSM for CCM without change.

14.4.1 ComponentInterfaceDescription

Figure 14.2- ComponentInterfaceDescription and ComponentPortDescription

The ComponentInterfaceDescription and ComponentPortDescription classes are augmented to support CCM.

The idlFile attribute is added to the ComponentInterfaceDescription. The idlFile attribute, if present, contains
alternative URIs that reference an IDL file containing the component’s (or home’s) interface definition. The IDL file is
not used within the deployment infrastructure; it may be included in a package for convenience. Since deployable
applications have a component interface, some tools that deploy and execute such applications might need the IDL to
interact with the ports of the application’s component interface.

CCMComponentPortKind
<<enumeration>>

Facet
Simplex Rec eptacle
Mul tiplexReceptacle
EventEm it ter
EventPublisher
EventCons umer

ComponentPortDescription
<<Specifier>>

name : String
specificType : String
supportedType : S tring [1..*]
provider : Boolean
exclusiveProvider : Boolean
exclusiveUser : Boolean
optional : Boolean
kind : CCMCom ponentPortKind

Property
(from Comm...

<<Description>>

ComponentPropertyDescription
(from Component)

<<Specifier>>

ComponentInterfaceDescription
<<Specifier>>

label : String [0..1]
UUID : String [0..1]
specificType : String
supportedType : String [1..*]
idlFile : String [*]

*+port *

*

+configProperty

*

*
+property

*

CORBA - Part 3: Component Model, v3.1 281

The kind attribute is added to the ComponentPortDescription class and specifies the concrete port kind that is used. This
information is required by the NodeManager and by assembly tools. In CCM, EventConsumer and Facet ports are
considered providers, the other ports are users.

Repository Id strings are used to identify interface types, i.e. for the specificType and supportedType attributes.

For Facet ports, supportedType lists the Repository Id of the provided interface and any of its base interfaces that the
developer (or tool) chooses to expose for connections. For receptacles, supportedType lists the Repository Id of the
accepted interface. For EventEmitter and EventPublisher ports, supportedType lists the Repository Id of the accepted
consumer interface. For EventConsumer ports, supportedType lists the Repository Id of the consumer interface and any of
its base interfaces that the developer (or tool) chooses to expose for connections.

If the component or home supports one or more interfaces, this will be reflected by a ComponentPortDescription
element of kind Facet with the magic name “supports.” The specificType attribute is left empty, the supportedType
attribute lists the Repository Id of any of its supported interfaces and base interfaces that the developer wants to expose
for connections.

Initially, a ComponentInterfaceDescription can be generated from a component’s or home’s IDL description with a
defined set of configuration properties (from attributes) and default values for the exclusiveProvider, exclusiveUser
and optional attributes. If desired, a user can then adjust these three attributes for each port and also add configuration
property default values to the ComponentInterfaceDescription by adding Property elements to the configProperties
list.

14.4.2 PlanSubcomponentPortEndpoint

The kind attribute augments the provider attribute in the PlanSubcomponentPortEndpoint class and specifies the
concrete port kind that is used. This information is required by the various managers in the Execution Management
Model. The provider attribute still indicates a port which provides an object reference.

14.4.3 Application

The start operation on the Application class performs the configuration_complete operation in all component instances
that are part of the application.

CCM ComponentP ortK ind
<<enumeration>>

Facet
SimplexReceptacle
MultiplexReceptacle
EventEmitter
EventPublisher
EventConsumer

InstanceDeploymentDescript ion
(from Execution)

<<Planner>>

PlanSubcomponentPortEndpoint
<<Planner>>

portName : St ring
provider : Boolean
kind : CCMComponentPortKind

1+instance 1
282 CORBA - Part 3: Component Model, v3.1

14.4.4 RepositoryManager

When artifact files are included in the package (as opposed to referenced via URL outside the package), the
RepositoryManager must make its own copy of these artifacts during the installPackage operation. It must substitute an
URL that references this copy of the artifact in the location attribute of ImplementationArtifactDescription elements
delivered via its interface.

14.4.5 SatisfierProperty

This PSM has to define concrete types that are implied on the value of a SatisfierProperty by the SatisfierPropertyKind,
and on the value of the Property that is matched against the satisfier.

• For the Quantity kind, the value of the SatisfierProperty is of type unsigned long. The value of the Property is
ignored.

• For the Capacity kind, the value of the SatisfierProperty is of type unsigned long or double. The value of the
Property must be of the same type.

• For the Maximum and Minimum kinds, the value of the SatisfierProperty is of type long or double. The value of the
Property must be of the same type.

• For the Attribute kind, the value of the SatisfierProperty is of type long, double, string, or an enumeration type. In
the case of long, double or string, the value of the Property must be of the same type. If the value of the
SatisfierProperty is of enumeration type, the value of the Property is of type string, containing the enumeration
value that must compare equal to the SatisfierProperty value.

• For the Selection kind, the value of the SatisfierProperty is a sequence of type long, double, string, or an
enumeration type. The same rules as for the Attribute kind apply.

14.5 PSM for CCM to PSM for CCM for IDL Transformation

This sub clause defines transformation T2 (as described in the introduction). It transforms the PSM for CCM into a PSM
for CCM for IDL that can be used to generate concrete IDL using a rule-based mapping. Classes from the PSM for CCM
are transformed to match the UML Profile for CORBA. Its rules are then used to generate concrete IDL.

The first sub clause describes generic mapping rules that are applied to all classes that are part of the PSM for CCM. The
second sub clause defines special transformation rules for the classes that are abstract in the PIM.

All classes in the PSM for CCM for IDL are placed in the Deployment package, so that all resulting IDL structures and
interfaces will be part of the Deployment IDL module.

14.5.1 Generic Transformation Rules

The mapping to IDL is accomplished using the rules set forth in the UML Profile for CORBA. To apply these rules, the
stereotypes used in the platform-independent model are mapped to stereotypes for which a mapping is defined in the
profile. The «Description» stereotype and all that inherit from it are mapped to the «CORBAStruct» stereotype; these
classes are therefore mapped to CORBA structures. The «Exception» stereotype is mapped to the «CORBAException»
stereotype; such classes become CORBA exceptions. The «Enumeration» stereotype is mapped to the «CORBAEnum»

stereotype in order to become enum types in IDL. The «Manager» stereotype is mapped to the «CORBAInterface»
stereotype so that these classes become CORBA interfaces.
CORBA - Part 3: Component Model, v3.1 283

To avoid redundancy and circular graphs, non-composite associations between classes with a common owner are
expressed by an ordinal attribute at the source (navigating) end, with the name of the attribute being the role name plus
the suffix “Ref,” and the type “unsigned long.” The value of this attribute is the index of the target element in its
container, with the index of the first element being 0 (zero). To enable the usage of an index, the composition of the target
element in its container is qualified with the “ordered” constraint.

Wherever the multiplicity of an attribute, parameter or return value is not exactly one (but 0..1, 1..* or *), a new class is
introduced to represent a sequence of the type of the attribute, parameter or return value. The sequence class has the
«CORBASequence» stereotype, and its name is the english plural of the name of the type. The sequence class has a
composition association with the element class that is navigable from the sequence to the element. The composition is
qualified with the index of the sequence. The attribute, parameter or return value is then replaced with an attribute,
parameter or return value, respectively, with the same name as before, but with the type being the newly introduced
sequence class and the exactly one (1..1) multiplicity.

A similar rule is applied to all navigable association or composition ends whose multiplicity is not exactly one (but 0..1,
1..* or *): a new class is introduced to represent a sequence of the class at the navigable end; this sequence class is
defined as describe above. The original association or composition end is then replaced with a navigable association or
composition end, with the same role name as before, at the new sequence class, with a multiplicity of exactly one (1..1).
According to the rules in the UML Profile for CORBA, these associations and compositions will then map to a structure
member in IDL, its type being a named sequence of the referenced type.

Excepted from the two rules above are attributes, parameters, return values or navigable association or composition ends
where the type is String, unsigned long or Endpoint. Instead of defining new sequence types, the existing types in the
CORBA package are being used; see below. Note that in combination, these rules map non-composite associations
between classes with a common owner and a multiplicity other than 1 to sequence of “unsigned long” type.

Another exception from the rule above are attributes of type String with the 0..1 (zero or one) multiplicity. In this case,
the multiplicity is updated to 1..1 (exactly one). If the value is missing in an XML representation of the model, the empty
string is used as default value.

The inheritance relationships of classes with the «Description» stereotype (SharedResource, Resource and Capability)
classes are removed; all attributes and associations of the base class are attached to the derived class. Associations of
classes with the «Manager» stereotype are removed from the PSM for CCM for IDL.
284 CORBA - Part 3: Component Model, v3.1

14.5.2 Special Transformation Rules

14.5.2.1 Sequence of String

A type representing a sequence of strings already exists in the CORBA package and can be re-used. Wherever the String
type is used with a multiplicity other than exactly one, it is mapped to the StringSeq class from the CORBA package as
shown above. It then maps to the CORBA::StringSeq type in IDL (from the orb.idl file).

14.5.2.2 Sequence of unsigned long

A type representing a sequence of the unsigned long type already exists in the CORBA package and can be re-used.
Wherever the unsigned long type is used with a multiplicity other than exactly one, it is mapped to the ULongSeq class
from the CORBA package as shown above. It then maps to the CORBA::ULongSeq type in IDL (from the orb.idl file).
Sequences of the unsigned long type occur when a non-composite association between classes with a common owner with
a multiplicity other than one occurs, according to the generic rule above.

14.5.2.3 Endpoint

The abstract Endpoint class is mapped to the Object class from the CORBA package. It will therefore map to the Object
type in IDL.

s tr ing
(f ro m C O R B A)

< < C O R B A P rim it ive > >

S t rin g S eq
(f ro m C O R B A)

< <C O R B AS eq ue n c e >>

1

in d ex : lo n g {*}

1

in d ex : lo n g {*}

unsigned long
(from CORBA)

<<CORBAPrimitive>>

ULongSeq
(from CORBA)

<<CORBASequence>>

1

index : long {*}

1

index : long {*}

Object
(f rom C ORBA)

<<CORBAInterface>>
CORBA - Part 3: Component Model, v3.1 285

14.5.2.4 DataType

The abstract DataType class is mapped to the typecode class from the CORBAProfile package. It then maps to the
TypeCode type in IDL.

14.5.2.5 Any

The abstract Any class is mapped to the any class from the CORBAProfile package. It will then map to the any type in
IDL.

14.5.2.6 Primitive Types

The UML data types String, Integer and Boolean are mapped to the classes string, long and boolean in the
CORBAProfile package, respectively. They will then map to the string, long and boolean types in IDL, respectively.

14.5.3 Mapping to IDL

After applying the transformations defined in this sub clause, IDL is generated by applying the rules set forth in the UML
Profile for CORBA specification [UPC].

14.6 PSM for CCM to PSM for CCM for XML Transformation

This sub clause defines transformation T3 (as described in the introduction). It transforms the PSM for CCM into a PSM
for CCM for XML that can be used to generate a concrete XML schema using the mapping rules described in “2, XML
Schema Production” of the XML Metadata Interchange (XMI) Version 2 [XMI] specification.

14.6.1 Generic Transformation Rules

Data model elements, annotated with the «Description» or «enumeration» stereotype (or a stereotype that inherits from
it), are used to generate an XML schema for representing metadata in XML documents for distribution, interchange or
persistence. The only normative use of such XML-based metadata in this specification is for installing component
packages using the RepositoryManager’s installPackage operation.

Management model elements, annotated with the «Manager» or «Exception» stereotype, are not part of the PSM for
CCM for XML, they are mapped to IDL only.

All classes in the PSM for CCM for XML are annotated with the “org.omg.xmi.contentType” tag set to the value
“complex.”

typecode
(f ro m CORBAProfi le)

<<CORBAPrimitive>>

any
(from CORBAProf ile)

<<CORBAPrimitive>>
286 CORBA - Part 3: Component Model, v3.1

All attributes are annotated with the “org.omg.xmi.element” tag set to “true.”

All packages are annotated with the “org.omg.xmi.nsURI” tag set to “http://www.omg.org/Deployment” and the
“org.omg.xmi.nsPrefix” tag set to the value “Deployment.”

14.6.2 Special Transformation Rules

14.6.2.1 ToplevelPackageDescription

The ToplevelPackageDescription is introduced to point to the PackageConfiguration element for the top-level
component package in a package.

The motivation for this element is that a package may include component packages for sub-components. A selection
mechanism is necessary to distinguish the top-level component package. This is accomplished by including a single
Toplevel Package Descriptor with the magic name “package.tpd” into the package.

14.6.2.2 Any

An Any instance describes a typed value. It is mapped to a class that contains a DataType and a DataValue, which are
elaborated below.

PackageConfiguration
(f ro m Com po nent)

<<Description>>

ToplevelPackageDescription

1
+package
1

DataValueDataType

Any

1
+value

11

+type

1

CORBA - Part 3: Component Model, v3.1 287

14.6.2.3 DataType

A DataType instance describes a type. It is mapped to a hierarchical structure as shown above, describing available types
in IDL.

The DataType class contains a kind field that indicates the IDL type described by a DataType instance. The kind is of the
enumeration type CORBA::TCKind, as defined in sub clause 4.11 of the CORBA specification.

If the kind is tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_longlong, tk_ulonglong, tk_longdouble or tk_wchar, the DataType element does not
contain any other elements.

If the kind is tk_string or tk_wstring, then the DataType may optionally contain a BoundedStringType element
indicating the upper bound for the string length. If the DataType does not contain a BoundedStringType, an unbounded
string is assumed.

DataValue

St ructType

name : String [0..1]
typeId : String

StructMemberType

name : String

*

+member

*

{ordered}

SequenceType

bound : Integer [0..1]

ArrayType

length : Integer [1..*]

EnumType

name : String [0..1]
typeId : String
member : String [1..*]

ValueType

name : String [0..1]
typeId : String
modifier : Integer

ValueMemberType

name : String
visibility : Integer

*
+mem ber

*

{ordered}

UnionType

name : String [0..1]
typeId : String

UnionMemberType

name : String

*
+mem ber

*
{ordered}

0..1

+default

0..1

*
+label

*

Al iasType

name : String [0..1]
typeId : String

ObjrefType

name : String [0..1]
typeId : String

FixedType

digits : Integer
scale : Integer

BoundedStringType

bound : Integer

DataType

kind : CORBA: :TCKind

0..1
+struct

0..1

1
+type
1

0..1
+value
0..1

0..1
+sequence

0..1

1
+elementType

1

0..1
+array
0..1

1
+elementType

1

0..1
+enum

0..1

0..1

+baseType

0..1

1

+type

1

0..1
+union

0..1 1
+discriminatorType

1

1
+type

1

0.. 1

+alias

0.. 1
1
+contentType
1

0..1
+objref
0..1

0..1

+fixed

0..1
1

+boundedSt ring
1

A DataType instanc e contains at mos t one element,
as discriminated by the value of the kind at tribute.
288 CORBA - Part 3: Component Model, v3.1

If the kind is tk_objref, tk_component or tk_home, then the DataType may optionally contain an ObjrefType element
describing the object reference's type (using its Repository Id). If the DataType does not contain an ObjrefType element,
then an untyped object reference (Repository Id "IDL:omg.org/CORBA/Object:1.0") is assumed.

If the kind is tk_struct or tk_except, then the DataType contains a StructType element, which in turn describes a list of
struct members.

If the kind is tk_union, then the DataType contains a UnionType element. UnionType contains the type of the
discriminator and a number of typed elements, one of which may be the default member. Each member may be identified
with multiple case labels. No label is associated with the default member.

If the kind is tk_enum, then the DataType contains an EnumType element describing the enumeration values.

If the kind is tk_sequence, then the DataType contains a SequenceType element. Its optional bound attribute indicates
the sequence's upper bound. If the bound attribute is absent, the sequence is unbounded.

If the kind is tk_array, then the DataType contains an ArrayType element. Its length attribute indicates the length of the
array. For multi-dimensional arrays, the multiplicity of the length attribute is greather than one, and the most significant
dimension is listed first ("left to right" in IDL).

If the kind is tk_alias or tk_value_box, then the DataType contains an AliasType element.

If the kind is tk_fixed, then the DataType contains a FixedType element.

If the kind is tk_value, then the DataType contains a ValueType element. ValueType contains the type code of the
concrete base type, if any, a type modifier (with values as defined by CORBA::ValueModifier), and a number of members.
Each member has a name, type and visibility (with values as defined by CORBA::Visibility).

In StructType, ValueType and EnumType, the name attribute contains the name of the struct, valuetype or enum IDL
type, and the typeId attribute contains its Repository Id.
CORBA - Part 3: Component Model, v3.1 289

14.6.2.4 DataValue

The DataValue class describes a value. It is mapped to a hierarchical structure as above, fully describing a value that can
be described by an IDL type. A DataValue cannot exist by itself, it needs a matching DataType to describe its structure
(see the Any class).

If the type's kind is tk_null or tk_void, DataValue is empty.

If the type's kind is tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_octet, tk_string,
tk_longlong, tk_ulonglong, or tk_longdouble, DataValue contains a single short, long, ushort, ulong, float, double,
boolean, octet, string, longlong, ulonglong or longdouble attribute, respectively. If the type's kind is tk_wstring, then
DataValue also contains a string element.

If the type's kind is tk_char or tk_wchar, the DataValue contains a string attribute containing a string of length 1.

If the type's kind is tk_enum, the DataValue contains the enumeration value in the enum attribute.

If the type's kind is tk_objref, tk_component or tk_home, the DataValue contains a stringified object reference in the
objref attribute.

If the type's kind is tk_fixed, the DataValue contains a fixed attribute holding a fixed-point decimal literal.

for tk _sequenc e and tk_array, if
content type is not primitive

for tk_struct and
tk_value

for tk_union

for
tk_value_box

DataType

Any

NamedValue

name : String

DataValue

short : xsd:short [*]
long : xsd:int [*]
ushort : xsd:unsignedShort [*]
ulong : xsd:unsignedInt [*]
float : xsd:float [*]
double : xsd:double [*]
boolean : xsd:boolean [*]
octet : xsd:unsignedByte [*]
opaque : xsd:base64Binary [0..1]
objref : String [*]
enum : String [*]
string : String [*]
longlong : xsd:long [*]
ulonglong : xsd:unsignedLong [*]
longdouble : xsd:double [*]
fixed : String [*]

1+value 1
0..1

+typecode
0..1

0..1

+any

0..1 *
+member

*

*

+element

*

0..1

+discriminator

0..1 0..1
+boxedValue
0..10..1

+value

0..1

for tk_TypeCode

for tk_any

A DataValue instance contains at most
one kind of attribute or element, as implied
by the kind attribute of an associated
DataType instance.
290 CORBA - Part 3: Component Model, v3.1

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to (i.e. not
considering aliased types) tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_octet,
tk_objref, tk_enum, tk_string, tk_longlong, tk_longlong, tk_ulonglong, tk_longdouble, tk_wstring, tk_fixed,
tk_component or tk_home, then the respective attribute has a multiplicity equal to the length of the sequence or array. In
the case of multi-dimensional arrays, the least significant dimension is enumerated first.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to tk_char or
tk_wchar, then the DataValue contains a single string attribute. Each character in this string is used as an element of the
sequence or array.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to tk_octet, then
the DataValue contains a single opaque attribute.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element is not of the types enumerated above,
then the DataValue contains the elements of the sequence or array as DataType elements, using the element association.

If the type's kind is tk_TypeCode or tk_any, the DataValue contains a DataType or Any element, respectively.

If the type's kind is tk_struct or tk_value, the DataValue contains a NamedValue for each member of the structure or
valuetype.

If the type's kind is tk_union, the DataValue contains a single DataValue as the union's discriminator, and zero or one
DataValue elements, using the value association, as the member of the union.

If the type's kind is tk_value_box, the DataValue contains zero or one DataValue elements using the boxedValue
association. If the boxedValue element is missing, a null value is implied.

14.6.2.5 Others

The PackageConfiguration, DomainUpdateKind, Connection and Endpoint classes are used by the runtime models
only and are not part of the PSM for XML.

14.6.3 Transformation Exceptions and Extensions

Metadata for a component package is usually spread out across several XML files, which are called descriptors. Certain
associations are expected to be expressed by links within the same document, others are expected to link across
documents. XMI takes care of both patterns by way of “proxies,” which do not contain nested elements but a link
attribute (either “href” or “xlink:href”) referencing the target element by URI. A schema produced using the XMI rules
for schema production allows proxies to appear anywhere.

Composition associations in UML express that the class at the composite end (the containing class) owns and contains the
class at the part end (the contained class). It is typical, in XML documents, for instances of contained classes to be
embedded within the instance of the containing class. However, it is also possible to store contained instances by
themselves in a separate file by using a proxy (using "href" or "xlink:href") to reference the contained instance in a
separate file. Since the multiplicity on the composite end of a composite association is always one to one in this
specification, contained instances can only have a single such proxy reference.

For non-composite associations between classes with a common owner (composite end of composition), the definition of
the class at the source end of the association must contain a proxy linking to the element at the target end of the
association. The definition of the class at the source end cannot contain the definition of the element at the target end,
because it is owned by the common owner, and its identity cannot be duplicated.
CORBA - Part 3: Component Model, v3.1 291

Non-composite associations between classes that do not have a common owner are usually expressed by the element
defining the class at the source end containing a proxy that links to an external document. Direct containment is possible
but may result in duplicated data.

While tools can decide to either combine information into a single XML document or to place information into arbitrary
files, using XMI proxies to link to that information, it is expected that some model elements usually appear as the
outermost document element of a standalone XML file. These commonly used descriptors are assigned descriptive terms
and standard file extensions.

• A Component Package Descriptor contains a ComponentPackageDescription document element; it has the “.cpd”
file extension.

• A Component Implementation Descriptor contains a ComponentImplementationDescription document element; it
has the “.cid” file extension.

• An Implementation Artifact Descriptor contains an ImplementationArtifactDescription document element; it has the
“.iad” file extension.

• A Component Interface Descriptor contains a ComponentInterfaceDescription document element; it has the “.ccd”
(CORBA Component Descriptor) file extension.

• A Domain Descriptor contains a Domain document element; it has the “.cdd” (Component Domain Descriptor) file
extension.

• A Deployment Plan Descriptor contains a DeploymentPlan document element; it has the “.cdp” (Component
Deployment Plan) file extension.

• A Package Configuration Descriptor contains a PackageConfiguration document element; it has the “.pcd” file
extension.

• A Toplevel Package Descriptor contains a ToplevelPackageDescription document element; it has the “package.tpd”
file name.

• Package files use the “.cpk” extension.

Spreading information across files according to these patterns allow better reuse, for example by extracting an
implementation from a package.

Proxies follow the linking semantics specified by XMI [XMI]. If a URI reference [URI] does not contain a fragment
identifier (the “#id_value” part), then the target of the reference is the outermost document element of an descriptor file.

14.6.4 Interpretation of Relative References

URI references [URI] are used by proxies and appear in the location attribute of the ImplementationArtifactDescription
and ArtifactDeploymentDescription classes and the idlFile attribute of the ComponentInterfaceDescription class.

XML documents that are part of a Component Package can use relative-path references (i.e., URIs that do not begin with
a scheme name or a slash character) to reference documents and other artifacts within the same package.

The interpretation of relative URIs that are not relative-path references (i.e., network-path references that start with two
slash characters, or absolute-path references that start with a single slash character), the interpretation of relative-path
references that reference documents outside the package (by way of “..” path segments), and the interpretation of
292 CORBA - Part 3: Component Model, v3.1

relative-path references in documents that are not contained in a Component Package (e.g., a Deployment Plan
Descriptor) is implementation-specific. (Note: this allows XML processors to supply arbitrary Base URIs that do not
necessarily relate to any file system but that must expose the Component Package’s hierarchical structure.)

14.6.5 Mapping to XML

After applying the transformations defined in this sub clause, an XML schema is generated by applying the rules set forth
in the XML Metadata Interchange specification, “2, XML Schema Production.” [XMI]

14.7 Miscellaneous

14.7.1 Entry Points

This specification defines the interaction between an implementation artifact and the node manager as implementation-
dependent, in order to not restrict the forms that an implementation artifact might have – executable files, loadable
libraries, source files or scripts, for example.

However, to ensure source code compatibility in the common case without restricting implementation choice, entry points
are defined here if the language is C++ and the implementation artifact is a shared library, or if the language is Java and
the implementation artifact is a class file. In these two cases, there must be a specific execution parameter associated with
the Monolithic Implementation Description.

If the instance to be deployed is a component, then the name of the execution parameter shall be “component factory.”
The parameter is of type String, and its name is the name of an entry point that has no parameters and that returns a
pointer of type Components::EnterpriseComponent.

If the instance to be deployed is a home, then the name of the execution parameter shall be “home factory.” The
parameter is of type String, and its name is the name of an entry point that has no parameters and that returns a pointer
of type Components::HomeExecutorBase.

For backwards compatibility, it is recommended that the name of the entry point should be the name of the component or
home, prefixed with “create_” (e.g., “create_Account” for an Account component).

If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

These well-defined entry points ensure that the user code for the entry point does not need to be changed when building
components for different target environments. These definitions do not enable interoperability between containers and
DLLs (even assuming the same compiler and ORB), thus additional interfaces are still required that are specific to
container implementations. This implies that, as in CCM 3.0, component and home implementation DLLs are specific to
the container implementation (and the code generation tools). Since there was and is no normative interoperability
interfaces within a node, thus further implies that there is no vendor segmentation boundary within a node at all.

14.7.2 Homes

Note that this specification does not depend on the existence of homes; using the entry points defined above, a container
is able to create component instances directly, without the need of creating a home first, and then using it as a factory for
the component instance.
CORBA - Part 3: Component Model, v3.1 293

This is no loss in comparison to the Packaging and Deployment clause of CCM in CORBA 3.0. If a component instance
is to be deployed as part of an assembly, the container has no way of providing a user-defined home with any parameters,
and is therefore limited to keyless homes. However, a factory operation for the component instance as defined above can
do its job as well as the parameter-challenged create operation that is part of a keyless home.

In contrast to the Packaging and Deployment clause, this specification recognizes homes as instances that can be
deployed, and therefore enables the full range of home features.

14.7.3 Valuetype Factories

If an ImplementationArtifact contains valuetype factories, then its list of execution parameters shall include an element
with the name “valuetype factories” and of type ValuetypeFactoryList, which is defined as

module Deployment {
struct ValuetypeFactory {

string repid;
string valueentrypoint;
string factoryentrypoint;

};
typedef sequence<ValuetypeFactory>

ValuetypeFactoryList;
};

Each element of that sequence describes a valuetype factory that needs to be registered with the ORB in order to
demarshal user-defined valuetypes. The repid field specifies the Repository Id of the valuetype created by the valuetype
factory. The factoryentrypoint field specifies the name of an entry point that can be be used to create an instance of the
valuetype factory. If valueentrypoint is not the empty string, it specifies an entry point that can be used to create an
instance of the valuetype.

If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

14.7.4 Discovery and Initialization

The ExecutionManager must be able to find the NodeManager instances for all nodes in the Domain, so that it is able to
deploy applications according to deployment plans that are based on the current contents of the Target Data Model. This
is accomplished using the Naming Service.

• The user of the deployment system creates a naming context for a domain. Note that a naming context is expressible by
a URL representation (e.g., a “corbaname:“ reference).

• Implementations of the ExecutionManager interface must accept the address of the naming context as a configuration
parameter, and use it to publish its own reference with the name “ExecutionManager” and the empty string as the id in
that context.

• Implementations of the TargetManager interface must accept the address of the naming context as a configuration
parameter, and use it to publish its own reference with the name “TargetManager” and the empty string as the id in that
context.

• Implementations of the NodeManager interface must accept the address of the naming context as a configuration
parameter, and use it to publish their own reference with the node’s name as the name and the id “NodeManager.” The
node’s name must match the name attribute of the node in the Target Data Model.
294 CORBA - Part 3: Component Model, v3.1

Upon startup, the ExecutionManager finds the TargetManager in the Naming Service, and accesses the current Domain
information. Based on the Node elements that are contained in the Domain, the ExecutionManager then calls the
joinDomain operation of each NodeManager.

An ExecutionManager may offer functionality to “add” new nodes to the domain, or to remove nodes from the domain.
In that case, the ExecutionManager looks up a NodeManager with a user-provided name in the Naming Service and then
calls its joinDomain or leaveDomain operation, respectively. In addition, an ExecutionManager may offer to scan the
Naming Service context for previously unregistered nodes, calling the joinDomain operation on each associated
NodeManager.

Note that there is no direct relationship between domains and repositories. Therefore, implementations of the
RepositoryManager interface are not registered in the Naming Service.

14.7.5 Location

URI references [URI] are handled by the RepositoryManager and NodeManager interfaces: the RepositoryManager
receives URLs to packages as a parameter to the installPackage operation and must generate URLs pointing to itself in
ImplementationArtifactDescription elements. The NodeManager receives URLs as attributes of the
ArtifactDeploymentDescription elements that are part of the DeploymentPlan.

Both RepositoryManager and NodeManager shall be able to interpret URLs according to the http scheme. Additional
schemes may optionally be supported.

Note – This requires RepositoryManager implementations to include both an http server and an http client [HTTP].
NodeManager need to implement http clients only, in order to download implementation artifacts from the repository.

The RepositoryManager must supply a “http” URI as part of the location attribute in the
ImplementationArtifactDescription elements. A RepositoryManager may optionally include other alternative locations
to provide NodeManager implementations with a choice of transports to use for downloading artifacts.

14.7.6 Segmentation

This specification obsoletes CCM’s idea of component segmentation. In the original CCM, assemblies provided just a
single level of decomposition. Segments then offered a second level to split the implementation of a component into
several independent pieces of code. This specification allows composition and decomposition on any level, and therefore
the ability to add another level of decomposition on the lowest level is redundant. However, no parts of this specification
inhibit a component author from using this feature of the CCM Implementation Framework.

14.8 Migration Issues

This sub clause deals with the issues of migrating from the Packaging and Deployment model that existed in version 3.0
of the CCM specification to the deployment model defined in this specification.

Note – The Packaging and Deployment clause of CCM 3.0, in its Component Deployment sub clause, defined interfaces
that are involved in the deployment of components onto nodes. Similar interfaces might be useful in implementing the
NodeManager, however, this specification does not prescribe any such node-level interfaces.
CORBA - Part 3: Component Model, v3.1 295

14.8.1 Component Implementations

The portable parts of CCM component implementation source code remains untouched. The generated code to enable
interactions with the containers may change, requiring recompilation and linking. The non-portable hand written code in
some implementations which was written assuming a particular container implementation would likely have to change —
similar to porting the component to a different CCM system.

14.8.2 Component and Assembly Packages and Metadata

The metadata is changed to be based on XML schemas, and the basic models are different. Many lower level elements are
not different, and it is expected that meta-data transformation (forward migration) will be able to be automated in the
common cases where all the features used are supported.

This specification is kept simple in anticipation that broad (and necessarily complex) software packaging and distribution
standards do not exist, and the W3C OSD specification (by Microsoft and Marinba in 1997) referenced by the original
CCM specification did not become a standard. Future RFPs may want to consider mappings from such comprehensive
standards into this simpler model that focuses on CCM applications.

The component data model stays within the scope of deployment and configuration and does not bring forward all the
metadata aspects in the previous CCM specification that were not relevant to deployment and configuration. Furthermore,
much of the metadata for informing containers of the requirements of component instances was not defined as part of an
intervendor boundary. Thus this specification assumes the use of two “private” channels of information between the
development tools (and code generation) and the runtime environment (NodeManager). These are the resource
requirements of the MonolithicImplementationDescription and the execParameters of the
ImplementationArtifactDescription. The submitters believe standardizing this metadata should be part of a true effort at
vendor segmentation between CCM development tools and CCM runtime environments (assuming the same compiler and
ORB), which does not exist and was not the mandate of this RFP.

Beyond the necessity of validating configuration and connection among components, the one other metadata
interoperability issue is to standardize the vocabulary for selection criteria, which is interoperation between users and
implementers of component software. This is currently deferred due to the concurrence of the other specification for this
language with this specification (see below).

14.8.3 Component Deployment Systems

Deployment systems need to be changed to support this specification. Most aspects of container implementations should
be reusable.

14.9 Metadata Vocabulary

14.9.1 Implementation Selection Requirements

Selection requirements, part of both the PackageConfiguration and SubcomponentInstantiationDescription classes,
express requirements that are meant to drive the selection among alternative implementations. The user of an
implementation (creator of a package configuration or an assembly) is requesting services to be satisfied by a component
implementation. The mechanism defined in this specification requires agreement of the vocabulary of these services on
both sides, but there is no interoperable vocabulary defined. The currently active RFP entitled “UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and Mechanisms” should result in, among other things, “a
Definition of Individual QoS Characteristics,” which should provide an appropriate vocabulary to drive this mechanism.
296 CORBA - Part 3: Component Model, v3.1

When this QoS-driven vocabulary is connected to the CCM PSM, some other component metadata requirements, such as
“humanlanguage” may also be added to the selection criteria language.

14.9.2 Monolithic Implementation Resource Requirements

As mentioned above, this vocabulary is a private communication channel between development tools and the
NodeManager, since no other interoperability boundary exists between these two. Obviously some standardization could
be easily done, based on previous CCM-defined metadata such as container supported persistence, transactions, and POA
policies. If this limited scoping is not accepted by the Task Force, data model classes containing this type of information
can easily be added to support both a defined resource vocabulary and even a separate container-services vocabulary for
information that would never be part of a “resource finding” matching process with the target nodes, but needs to be
conveyed to the runtime environment for component instances.

CORBA - Part 3: Component Model, v3.1 297

298 CORBA - Part 3: Component Model, v3.1

15 Deployment IDL for CCM

This clause describes interfaces and meta-data to facilitate the deployment of CORBA component based applications, and
a process of generating concrete IDL for the interfaces and meta-data, by using the rules defined by the UML Profile for
CORBA [UPC] specification on the Deployment PSM for CCM, which is derived from the PIM in the Deployment and
Configuration [D+C] specification. With these rules, this clause contains the normative definition.

This clause contains IDL that has been produced by using these rules. It is non-normative, so in the case of discrepancies,
this clause is relevant.

#include <orb.idl>

module Deployment {

 enum SatisfierPropertyKind {
 Quantity,
 Capacity,
 Minimum,
 Maximum,
 _Attribute,
 Selection
 };

 struct SatisfierProperty {
 string name;
 SatisfierPropertyKind kind;
 boolean dynamic;
 any value;
 };

 typedef sequence < SatisfierProperty > SatisfierProperties;

 struct SharedResource {
 string name;
 ::CORBA::StringSeq resourceType;
 ::CORBA::ULongSeq nodeRef;
 SatisfierProperties property;
 };

 typedef sequence < SharedResource > SharedResources;

 struct Resource {
 string name;
 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence < Resource > Resources;

 struct Node {
 string name;
 string label;
 ::CORBA::ULongSeq sharedResourceRef;
CORBA - Part 3: Component Model, v3.1 299

 ::CORBA::ULongSeq connectionRef;
 Resources resource;
 };

 typedef sequence < Node > Nodes;

 struct Interconnect {
 string name;
 string label;
 ::CORBA::ULongSeq connectionRef;
 ::CORBA::ULongSeq connectRef;
 Resources resource;
 };

 typedef sequence < Interconnect > Interconnects;

 struct Bridge {
 string name;
 string label;
 ::CORBA::ULongSeq connectRef;
 Resources resource;
 };

 typedef sequence < Bridge > Bridges;

 struct Property {
 string name;
 any value;
 };

 typedef sequence < Property > Properties;

 struct Domain {
 string UUID;
 string label;
 SharedResources sharedResource;
 Nodes node;
 Interconnects interconnect;
 Bridges bridge;
 Properties infoProperty;
 };

 struct ResourceAllocation {
 string elementName;
 string resourceName;
 Properties property;
 };

 typedef sequence < ResourceAllocation > ResourceAllocations;

 exception ResourceCommitmentFailure {
 string reason;
 long index;
 string propertyName;
 ::CORBA::AnySeq propertyValue;
300 CORBA - Part 3: Component Model, v3.1

 };

 interface ResourceCommitmentManager {
 void commitResources (in ResourceAllocations resources)
 raises (ResourceCommitmentFailure);
 void releaseResources (in ResourceAllocations resources)
 raises (ResourceCommitmentFailure);
 };

 enum DomainUpdateKind {
 Add,
 Delete,
 UpdateAll,
 UpdateDynamic
 };

 interface TargetManager {
 Domain getAllResources ();
 Domain getAvailableResources ();
 ResourceCommitmentManager commitResources (in ResourceAllocations resources)
 raises (ResourceCommitmentFailure);
 void destroyResourceCommitment (in ResourceCommitmentManager manager);
 void updateDomain (in ::CORBA::StringSeq elements, in Domain domainSubset, in DomainUpdateKind update-
Kind);
 };

 typedef sequence < Object > Endpoints;

 struct Connection {
 string name;
 Endpoints endpoint;
 };

 typedef sequence < Connection > Connections;

 exception StartError {
 string name;
 string reason;
 };

 exception InvalidConnection {
 string name;
 string reason;
 };

 interface Application {
 void finishLaunch (in Connections providedReference, in boolean start)
 raises (StartError, InvalidConnection);
 void start ()
 raises (StartError);
 };

 exception ResourceNotAvailable {
 string name;
 string resourceType;
CORBA - Part 3: Component Model, v3.1 301

 string propertyName;
 string elementName;
 string resourceName;
 };

 exception InvalidProperty {
 string name;
 string reason;
 };

 exception InvalidNodeExecParameter {
 string name;
 string reason;
 };

 exception InvalidComponentExecParameter {
 string name;
 string reason;
 };

 exception StopError {
 string name;
 string reason;
 };

 interface ApplicationManager {
 Application startLaunch (in Properties configProperty, out Connections providedReference)
 raises (ResourceNotAvailable, StartError, InvalidProperty, InvalidNodeExecParameter, InvalidComponentExecPa-
rameter);
 void destroyApplication (in Application app)
 raises (StopError);
 };

 typedef sequence < Application > Applications;

 enum CCMComponentPortKind {
 Facet,
 SimplexReceptacle,
 MultiplexReceptacle,
 EventEmitter,
 EventPublisher,
 EventConsumer
 };

 struct ComponentPortDescription {
 string name;
 string specificType;
 ::CORBA::StringSeq supportedType;
 boolean provider;
 boolean exclusiveProvider;
 boolean exclusiveUser;
 boolean optional;
 CCMComponentPortKind kind;
 };

302 CORBA - Part 3: Component Model, v3.1

 typedef sequence < ComponentPortDescription > ComponentPortDescriptions;

 struct ComponentPropertyDescription {
 string name;
 CORBA::TypeCode type;
 };

 typedef sequence < ComponentPropertyDescription > ComponentPropertyDescriptions;

 struct ComponentInterfaceDescription {
 string label;
 string UUID;
 string specificType;
 ::CORBA::StringSeq supportedType;
 ::CORBA::StringSeq idlFile;
 Properties configProperty;
 ComponentPortDescriptions port;
 ComponentPropertyDescriptions property;
 Properties infoProperty;
 };

 struct Requirement {
 string name;
 string resourceType;
 Properties property;
 };

 typedef sequence < Requirement > Requirements;

 struct MonolithicDeploymentDescription {
 string name;
 ::CORBA::StringSeq source;
 ::CORBA::ULongSeq artifactRef;
 Properties execParameter;
 Requirements deployRequirement;
 };

 typedef sequence < MonolithicDeploymentDescription > MonolithicDeploymentDescriptions;

 enum ResourceUsageKind {
 None,
 InstanceUsesResource,
 ResourceUsesInstance,
 PortUsesResource,
 ResourceUsesPort
 };

 struct InstanceResourceDeploymentDescription {
 ResourceUsageKind resourceUsage;
 string requirementName;
 string resourceName;
 Properties property;
 };

 typedef sequence < InstanceResourceDeploymentDescription > InstanceResourceDeploymentDescriptions;
CORBA - Part 3: Component Model, v3.1 303

 struct InstanceDeploymentDescription {
 string name;
 string node;
 ::CORBA::StringSeq source;
 unsigned long implementationRef;
 Properties configProperty;
 InstanceResourceDeploymentDescriptions deployedResource;
 InstanceResourceDeploymentDescriptions deployedSharedResource;
 };

 typedef sequence < InstanceDeploymentDescription > InstanceDeploymentDescriptions;

 struct ComponentExternalPortEndpoint {
 string portName;
 };

 typedef sequence < ComponentExternalPortEndpoint > ComponentExternalPortEndpoints;

 struct PlanSubcomponentPortEndpoint {
 string portName;
 boolean provider;
 CCMComponentPortKind kind;
 unsigned long instanceRef;
 };

 typedef sequence < PlanSubcomponentPortEndpoint > PlanSubcomponentPortEndpoints;

 struct ExternalReferenceEndpoint {
 string location;
 boolean provider;
 string portName;
 ::CORBA::StringSeq supportedType;
 };

 typedef sequence < ExternalReferenceEndpoint > ExternalReferenceEndpoints;

 struct ConnectionResourceDeploymentDescription {
 string targetName;
 string requirementName;
 string resourceName;
 Properties property;
 };

 typedef sequence < ConnectionResourceDeploymentDescription > ConnectionResourceDeploymentDescriptions;

 struct PlanConnectionDescription {
 string name;
 ::CORBA::StringSeq source;
 Requirements deployRequirement;
 ComponentExternalPortEndpoints externalEndpoint;
 PlanSubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 ConnectionResourceDeploymentDescriptions deployedResource;
 };
304 CORBA - Part 3: Component Model, v3.1

 typedef sequence < PlanConnectionDescription > PlanConnectionDescriptions;

 struct PlanSubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence < PlanSubcomponentPropertyReference > PlanSubcomponentPropertyReferences;

 struct PlanPropertyMapping {
 string name;
 ::CORBA::StringSeq source;
 string externalName;
 PlanSubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence < PlanPropertyMapping > PlanPropertyMappings;

 struct ImplementationDependency {
 string requiredType;
 };

 typedef sequence < ImplementationDependency > ImplementationDependencies;

 struct ResourceDeploymentDescription {
 string requirementName;
 string resourceName;
 Properties property;
 };

 typedef sequence < ResourceDeploymentDescription > ResourceDeploymentDescriptions;

 struct ArtifactDeploymentDescription {
 string name;
 ::CORBA::StringSeq location;
 string node;
 ::CORBA::StringSeq source;
 Properties execParameter;
 Requirements deployRequirement;
 ResourceDeploymentDescriptions deployedResource;
 };

 typedef sequence < ArtifactDeploymentDescription > ArtifactDeploymentDescriptions;

 enum PlanLocalityKind {
 SameProcess,
 DifferentProcess,
 NoConstraint
 };

 struct PlanLocality {
 PlanLocalityKind constraint;
 ::CORBA::ULongSeq constrainedInstanceRef;
 };
CORBA - Part 3: Component Model, v3.1 305

 typedef sequence < PlanLocality > PlanLocalities;

 struct DeploymentPlan {
 string label;
 string UUID;
 ComponentInterfaceDescription realizes;
 MonolithicDeploymentDescriptions implementation;
 InstanceDeploymentDescriptions instance;
 PlanConnectionDescriptions connection;
 PlanPropertyMappings externalProperty;
 ImplementationDependencies dependsOn;
 ArtifactDeploymentDescriptions artifact;
 Properties infoProperty;
 PlanLocalities localityConstraint;
 };

 interface DomainApplicationManager :
 ApplicationManager
 {
 Applications getApplications ();
 DeploymentPlan getPlan ();
 };

 exception PlanError {
 string name;
 string reason;
 };

 typedef sequence < DomainApplicationManager > DomainApplicationManagers;

 interface ExecutionManager {
 DomainApplicationManager preparePlan (in DeploymentPlan plan, in ResourceCommitmentManager resourceCom-
mitment)
 raises (ResourceNotAvailable, PlanError, StartError);
 DomainApplicationManagers getManagers ();
 void destroyManager (in DomainApplicationManager manager)
 raises (StopError);
 };

 interface Logger {
 };

 interface NodeApplicationManager :
 ApplicationManager
 {
 };

 interface NodeManager {
 void joinDomain (in Domain theDomain, in TargetManager manager, in Logger log, in long updateInterval);
 void leaveDomain ();
 NodeApplicationManager preparePlan (in DeploymentPlan plan, in ResourceCommitmentManager resourceCommit-
ment)
 raises (StartError, PlanError);
 void destroyManager (in NodeApplicationManager appManager)
306 CORBA - Part 3: Component Model, v3.1

 raises (StopError);
 Resources getDynamicResources ();
 };

 interface NodeApplication :
 Application
 {
 };

 interface DomainApplication :
 Application
 {
 };

 exception NameExists {
 };

 exception PackageError {
 string source;
 string reason;
 };

 exception NoSuchName {
 };

 exception LastConfiguration {
 };

 exception InvalidReference {
 };

 struct ComponentPackageDescription;

 typedef sequence < ComponentPackageDescription > ComponentPackageDescriptions;

 struct PackageConfiguration;

 typedef sequence < PackageConfiguration > PackageConfigurations;

 struct ComponentPackageReference {
 string requiredUUID;
 string requiredName;
 ComponentInterfaceDescription requiredType;
 };

 typedef sequence < ComponentPackageReference > ComponentPackageReferences;

 struct ComponentPackageImport {
 ::CORBA::StringSeq location;
 };

 typedef sequence < ComponentPackageImport > ComponentPackageImports;

 struct SubcomponentInstantiationDescription {
 string name;
CORBA - Part 3: Component Model, v3.1 307

 ComponentPackageDescriptions basePackage;
 PackageConfigurations specializedConfig;
 Requirements selectRequirement;
 Properties configProperty;
 ComponentPackageReferences referencedPackage;
 ComponentPackageImports importedPackage;
 };

 typedef sequence < SubcomponentInstantiationDescription > SubcomponentInstantiationDescriptions;

 struct SubcomponentPortEndpoint {
 string portName;
 unsigned long instanceRef;
 };

 typedef sequence < SubcomponentPortEndpoint > SubcomponentPortEndpoints;

 struct AssemblyConnectionDescription {
 string name;
 Requirements deployRequirement;
 ComponentExternalPortEndpoints externalEndpoint;
 SubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 };

 typedef sequence < AssemblyConnectionDescription > AssemblyConnectionDescriptions;

 struct SubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence < SubcomponentPropertyReference > SubcomponentPropertyReferences;

 struct AssemblyPropertyMapping {
 string name;
 string externalName;
 SubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence < AssemblyPropertyMapping > AssemblyPropertyMappings;

 enum LocalityKind {
 SameNodeAnyProcess,
 SameNodeSameProcess,
 SameNodeDifferentProcess,
 DifferentNode,
 DifferentProcess,
 NoConstraint
 };

 struct Locality {
 LocalityKind constraint;
 ::CORBA::ULongSeq constrainedInstanceRef;
 };
308 CORBA - Part 3: Component Model, v3.1

 typedef sequence < Locality > Localities;

 struct ComponentAssemblyDescription {
 SubcomponentInstantiationDescriptions instance;
 AssemblyConnectionDescriptions connection;
 AssemblyPropertyMappings externalProperty;
 Localities localityConstraint;
 };

 typedef sequence < ComponentAssemblyDescription > ComponentAssemblyDescriptions;

 struct NamedImplementationArtifact;

 typedef sequence < NamedImplementationArtifact > NamedImplementationArtifacts;

 struct ImplementationArtifactDescription {
 string label;
 string UUID;
 ::CORBA::StringSeq location;
 Properties execParameter;
 Requirements deployRequirement;
 NamedImplementationArtifacts dependsOn;
 Properties infoProperty;
 };

 struct NamedImplementationArtifact {
 string name;
 ImplementationArtifactDescription referencedArtifact;
 };

 typedef sequence < ResourceUsageKind > ResourceUsageKinds;

 struct ImplementationRequirement {
 ResourceUsageKinds resourceUsage;
 string resourcePort;
 string componentPort;
 string name;
 string resourceType;
 Properties property;
 };

 typedef sequence < ImplementationRequirement > ImplementationRequirements;

 struct MonolithicImplementationDescription {
 Properties nodeExecParameter;
 NamedImplementationArtifacts primaryArtifact;
 ImplementationRequirements deployRequirement;
 Properties componentExecParameter;
 };

 typedef sequence < MonolithicImplementationDescription > MonolithicImplementationDescriptions;

 struct Capability {
 string name;
CORBA - Part 3: Component Model, v3.1 309

 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence < Capability > Capabilities;

 struct ComponentImplementationDescription {
 string label;
 string UUID;
 ComponentInterfaceDescription implements;
 ComponentAssemblyDescriptions assemblyImpl;
 MonolithicImplementationDescriptions monolithicImpl;
 Properties configProperty;
 Capabilities capability;
 ImplementationDependencies dependsOn;
 Properties infoProperty;
 };

 struct PackagedComponentImplementation {
 string name;
 ComponentImplementationDescription referencedImplementation;
 };

 typedef sequence < PackagedComponentImplementation > PackagedComponentImplementations;

 struct ComponentPackageDescription {
 string label;
 string UUID;
 ComponentInterfaceDescription realizes;
 Properties configProperty;
 PackagedComponentImplementations implementation;
 Properties infoProperty;
 };

 struct PackageConfiguration {
 string label;
 string UUID;
 ComponentPackageDescriptions basePackage;
 PackageConfigurations specializedConfig;
 Requirements selectRequirement;
 Properties configProperty;
 ComponentPackageReferences referencedPackage;
 ComponentPackageImports importedPackage;
 };

 interface RepositoryManager {
 void installPackage (in string installationName, in string location, in boolean replace)
 raises (NameExists, PackageError);
 void createPackage (in string installationName, in PackageConfiguration package, in string baseLocation, in bool-
ean replace)
 raises (NameExists, PackageError);
 PackageConfiguration findPackageByName (in string name)
 raises (NoSuchName);
 PackageConfiguration findPackageByUUID (in string UUID)
 raises (NoSuchName);
310 CORBA - Part 3: Component Model, v3.1

 ::CORBA::StringSeq findNamesByType (in string type);
 ::CORBA::StringSeq getAllNames ();
 ::CORBA::StringSeq getAllTypes ();
 void deletePackage (in string installationName)
 raises (NoSuchName);
 };

 struct ComponentUsageDescription {
 ComponentPackageDescriptions basePackage;
 PackageConfigurations specializedConfig;
 Requirements selectRequirement;
 Properties configProperty;
 ComponentPackageReferences referencedPackage;
 ComponentPackageImports importedPackage;
 };

 struct RequirementSatisfier {
 string name;
 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };
};

CORBA - Part 3: Component Model, v3.1 311

312 CORBA - Part 3: Component Model, v3.1

16 XML Schema for CCM

This clause describes interfaces and meta-data to facilitate the deployment of CORBA component based applications, and
a process of generating a concrete XML schema for the meta-data, by using the rules defined by the XML Metadata
Interchange (XMI) version 2 [XMI] specification on the Deployment PSM for CCM, which is derived from the PIM in
the Deployment and Configuration [D+C] specification. With these rules, this clause contains the normative definition.

This clause contains an XML schema that has been produced by using these rules. It is non-normative, so in the case of
discrepancies, this clause is relevant.

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:Deployment="http://www.omg.org/Deployment"
 targetNamespace="http://www.omg.org/Deployment"
 >
 <xsd:import namespace="http://www.omg.org/XMI"/>
 <xsd:complexType name="Any">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Any" type="Deployment:Any"/>
 <xsd:complexType name="DataType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="kind" type="Deployment:TCKind"/>
 <xsd:element name="enum" type="Deployment:EnumType"/>
 <xsd:element name="objref" type="Deployment:ObjrefType"/>
 <xsd:element name="boundedString" type="Deployment:BoundedStringType"/>
 <xsd:element name="fixed" type="Deployment:FixedType"/>
 <xsd:element name="array" type="Deployment:ArrayType"/>
 <xsd:element name="sequence" type="Deployment:SequenceType"/>
 <xsd:element name="alias" type="Deployment:AliasType"/>
 <xsd:element name="struct" type="Deployment:StructType"/>
 <xsd:element name="value" type="Deployment:ValueType"/>
 <xsd:element name="union" type="Deployment:UnionType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DataType" type="Deployment:DataType"/>
 <xsd:complexType name="DataValue">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="short" type="xsd:short"/>
 <xsd:element name="long" type="xsd:int"/>
 <xsd:element name="ushort" type="xsd:unsignedShort"/>
 <xsd:element name="ulong" type="xsd:unsignedInt"/>
 <xsd:element name="float" type="xsd:float"/>
CORBA - Part 3: Component Model, v3.1 313

 <xsd:element name="double" type="xsd:double"/>
 <xsd:element name="boolean" type="xsd:boolean"/>
 <xsd:element name="octet" type="xsd:unsignedByte"/>
 <xsd:element name="opaque" type="xsd:base64Binary"/>
 <xsd:element name="objref" type="xsd:string"/>
 <xsd:element name="enum" type="xsd:string"/>
 <xsd:element name="string" type="xsd:string"/>
 <xsd:element name="longlong" type="xsd:long"/>
 <xsd:element name="ulonglong" type="xsd:unsignedLong"/>
 <xsd:element name="longdouble" type="xsd:double"/>
 <xsd:element name="fixed" type="xsd:string"/>
 <xsd:element name="any" type="Deployment:Any"/>
 <xsd:element name="typecode" type="Deployment:DataType"/>
 <xsd:element name="element" type="Deployment:DataValue"/>
 <xsd:element name="discriminator" type="Deployment:DataValue"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element name="boxedValue" type="Deployment:DataValue"/>
 <xsd:element name="member" type="Deployment:NamedValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DataValue" type="Deployment:DataValue"/>
 <xsd:complexType name="EnumType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="member" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="EnumType" type="Deployment:EnumType"/>
 <xsd:complexType name="ObjrefType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ObjrefType" type="Deployment:ObjrefType"/>
 <xsd:complexType name="BoundedStringType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bound" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="BoundedStringType" type="Deployment:BoundedStringType"/>
 <xsd:complexType name="FixedType">
314 CORBA - Part 3: Component Model, v3.1

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="digits" type="xsd:string"/>
 <xsd:element name="scale" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="FixedType" type="Deployment:FixedType"/>
 <xsd:complexType name="ArrayType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="length" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ArrayType" type="Deployment:ArrayType"/>
 <xsd:complexType name="SequenceType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bound" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SequenceType" type="Deployment:SequenceType"/>
 <xsd:complexType name="AliasType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AliasType" type="Deployment:AliasType"/>
 <xsd:complexType name="StructType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="member" type="Deployment:StructMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="StructType" type="Deployment:StructType"/>
 <xsd:complexType name="StructMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
CORBA - Part 3: Component Model, v3.1 315

 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="StructMemberType" type="Deployment:StructMemberType"/>
 <xsd:complexType name="ValueType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="modifier" type="xsd:string"/>
 <xsd:element name="baseType" type="Deployment:DataType"/>
 <xsd:element name="member" type="Deployment:ValueMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ValueType" type="Deployment:ValueType"/>
 <xsd:complexType name="ValueMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="visibility" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ValueMemberType" type="Deployment:ValueMemberType"/>
 <xsd:complexType name="UnionType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="default" type="Deployment:UnionMemberType"/>
 <xsd:element name="discriminatorType" type="Deployment:DataType"/>
 <xsd:element name="member" type="Deployment:UnionMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="UnionType" type="Deployment:UnionType"/>
 <xsd:complexType name="UnionMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element name="label" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="UnionMemberType" type="Deployment:UnionMemberType"/>
 <xsd:complexType name="NamedValue">
316 CORBA - Part 3: Component Model, v3.1

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="NamedValue" type="Deployment:NamedValue"/>
 <xsd:complexType name="Bridge">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connect" type="Deployment:Interconnect"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Bridge" type="Deployment:Bridge"/>
 <xsd:complexType name="Interconnect">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connection" type="Deployment:Bridge"/>
 <xsd:element name="connect" type="Deployment:Node"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Interconnect" type="Deployment:Interconnect"/>
 <xsd:complexType name="Node">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connection" type="Deployment:Interconnect"/>
 <xsd:element name="sharedResource" type="Deployment:SharedResource"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Node" type="Deployment:Node"/>
 <xsd:complexType name="Resource">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
CORBA - Part 3: Component Model, v3.1 317

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Resource" type="Deployment:Resource"/>
 <xsd:complexType name="SharedResource">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="node" type="Deployment:Node"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SharedResource" type="Deployment:SharedResource"/>
 <xsd:complexType name="Domain">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="sharedResource" type="Deployment:SharedResource"/>
 <xsd:element name="node" type="Deployment:Node"/>
 <xsd:element name="interconnect" type="Deployment:Interconnect"/>
 <xsd:element name="bridge" type="Deployment:Bridge"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Domain" type="Deployment:Domain"/>
 <xsd:complexType name="ResourceAllocation">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="elementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ResourceAllocation" type="Deployment:ResourceAllocation"/>
 <xsd:complexType name="PlanPropertyMapping">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="externalName" type="xsd:string"/>
 <xsd:element name="delegatesTo" type="Deployment:PlanSubcomponentPropertyReference"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanPropertyMapping" type="Deployment:PlanPropertyMapping"/>
 <xsd:complexType name="PlanSubcomponentPropertyReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
318 CORBA - Part 3: Component Model, v3.1

 <xsd:element name="propertyName" type="xsd:string"/>
 <xsd:element name="instance" type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanSubcomponentPropertyReference" type="Deployment:PlanSubcomponentPropertyRefer-
ence"/>
 <xsd:complexType name="PlanSubcomponentPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element name="provider" type="xsd:string"/>
 <xsd:element name="kind" type="Deployment:CCMComponentPortKind"/>
 <xsd:element name="instance" type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanSubcomponentPortEndpoint" type="Deployment:PlanSubcomponentPortEndpoint"/>
 <xsd:complexType name="PlanConnectionDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="externalEndpoint" type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element name="internalEndpoint" type="Deployment:PlanSubcomponentPortEndpoint"/>
 <xsd:element name="externalReference" type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element name="deployedResource" type="Deployment:ConnectionResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanConnectionDescription" type="Deployment:PlanConnectionDescription"/>
 <xsd:complexType name="InstanceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="implementation" type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="deployedResource" type="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element name="deployedSharedResource" type="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="InstanceDeploymentDescription" type="Deployment:InstanceDeploymentDescription"/>
 <xsd:complexType name="MonolithicDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
CORBA - Part 3: Component Model, v3.1 319

 <xsd:element name="artifact" type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="MonolithicDeploymentDescription" type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:complexType name="ArtifactDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="deployedResource" type="Deployment:ResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ArtifactDeploymentDescription" type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:complexType name="DeploymentPlan">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="realizes" type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="implementation" type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element name="instance" type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element name="connection" type="Deployment:PlanConnectionDescription"/>
 <xsd:element name="externalProperty" type="Deployment:PlanPropertyMapping"/>
 <xsd:element name="dependsOn" type="Deployment:ImplementationDependency"/>
 <xsd:element name="artifact" type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element name="localityConstraint" type="Deployment:PlanLocality"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DeploymentPlan" type="Deployment:DeploymentPlan"/>
 <xsd:complexType name="ResourceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ResourceDeploymentDescription" type="Deployment:ResourceDeploymentDescription"/>
 <xsd:complexType name="InstanceResourceDeploymentDescription">
320 CORBA - Part 3: Component Model, v3.1

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="resourceUsage" type="Deployment:ResourceUsageKind"/>
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="InstanceResourceDeploymentDescription" type="Deployment:InstanceResourceDeployment-
Description"/>
 <xsd:complexType name="ConnectionResourceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="targetName" type="xsd:string"/>
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ConnectionResourceDeploymentDescription" type="Deployment:ConnectionResourceDeploy-
mentDescription"/>
 <xsd:complexType name="PlanLocality">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="constraint" type="Deployment:PlanLocalityKind"/>
 <xsd:element name="constrainedInstance" type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanLocality" type="Deployment:PlanLocality"/>
 <xsd:complexType name="Capability">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Capability" type="Deployment:Capability"/>
 <xsd:complexType name="ComponentPropertyDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
CORBA - Part 3: Component Model, v3.1 321

 <xsd:element name="ComponentPropertyDescription" type="Deployment:ComponentPropertyDescription"/>
 <xsd:complexType name="ComponentPortDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="specificType" type="xsd:string"/>
 <xsd:element name="supportedType" type="xsd:string"/>
 <xsd:element name="provider" type="xsd:string"/>
 <xsd:element name="exclusiveProvider" type="xsd:string"/>
 <xsd:element name="exclusiveUser" type="xsd:string"/>
 <xsd:element name="optional" type="xsd:string"/>
 <xsd:element name="kind" type="Deployment:CCMComponentPortKind"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPortDescription" type="Deployment:ComponentPortDescription"/>
 <xsd:complexType name="ComponentInterfaceDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="specificType" type="xsd:string"/>
 <xsd:element name="supportedType" type="xsd:string"/>
 <xsd:element name="idlFile" type="xsd:string"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="port" type="Deployment:ComponentPortDescription"/>
 <xsd:element name="property" type="Deployment:ComponentPropertyDescription"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentInterfaceDescription" type="Deployment:ComponentInterfaceDescription"/>
 <xsd:complexType name="ImplementationArtifactDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="dependsOn" type="Deployment:NamedImplementationArtifact"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationArtifactDescription" type="Deployment:ImplementationArtifactDescription"/>
 <xsd:complexType name="MonolithicImplementationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="nodeExecParameter" type="Deployment:Property"/>
 <xsd:element name="primaryArtifact" type="Deployment:NamedImplementationArtifact"/>
 <xsd:element name="deployRequirement" type="Deployment:ImplementationRequirement"/>
 <xsd:element name="componentExecParameter" type="Deployment:Property"/>
322 CORBA - Part 3: Component Model, v3.1

 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="MonolithicImplementationDescription" type="Deployment:MonolithicImplementationDescrip-
tion"/>
 <xsd:complexType name="AssemblyPropertyMapping">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="externalName" type="xsd:string"/>
 <xsd:element name="delegatesTo" type="Deployment:SubcomponentPropertyReference"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AssemblyPropertyMapping" type="Deployment:AssemblyPropertyMapping"/>
 <xsd:complexType name="SubcomponentPropertyReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="propertyName" type="xsd:string"/>
 <xsd:element name="instance" type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentPropertyReference" type="Deployment:SubcomponentPropertyReference"/>
 <xsd:complexType name="SubcomponentPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element name="instance" type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentPortEndpoint" type="Deployment:SubcomponentPortEndpoint"/>
 <xsd:complexType name="AssemblyConnectionDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="externalEndpoint" type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element name="internalEndpoint" type="Deployment:SubcomponentPortEndpoint"/>
 <xsd:element name="externalReference" type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AssemblyConnectionDescription" type="Deployment:AssemblyConnectionDescription"/>
 <xsd:complexType name="SubcomponentInstantiationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="basePackage" type="Deployment:ComponentPackageDescription"/>
CORBA - Part 3: Component Model, v3.1 323

 <xsd:element name="specializedConfig" type="Deployment:PackageConfiguration"/>
 <xsd:element name="selectRequirement" type="Deployment:Requirement"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="referencedPackage" type="Deployment:ComponentPackageReference"/>
 <xsd:element name="importedPackage" type="Deployment:ComponentPackageImport"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentInstantiationDescription" type="Deployment:SubcomponentInstantiationDe-
scription"/>
 <xsd:complexType name="ComponentAssemblyDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="instance" type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element name="connection" type="Deployment:AssemblyConnectionDescription"/>
 <xsd:element name="externalProperty" type="Deployment:AssemblyPropertyMapping"/>
 <xsd:element name="localityConstraint" type="Deployment:Locality"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentAssemblyDescription" type="Deployment:ComponentAssemblyDescription"/>
 <xsd:complexType name="ComponentImplementationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="implements" type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="assemblyImpl" type="Deployment:ComponentAssemblyDescription"/>
 <xsd:element name="monolithicImpl" type="Deployment:MonolithicImplementationDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="capability" type="Deployment:Capability"/>
 <xsd:element name="dependsOn" type="Deployment:ImplementationDependency"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentImplementationDescription" type="Deployment:ComponentImplementationDe-
scription"/>
 <xsd:complexType name="ComponentPackageReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requiredUUID" type="xsd:string"/>
 <xsd:element name="requiredName" type="xsd:string"/>
 <xsd:element name="requiredType" type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPackageReference" type="Deployment:ComponentPackageReference"/>
 <xsd:complexType name="ComponentPackageDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
324 CORBA - Part 3: Component Model, v3.1

 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="realizes" type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="implementation" type="Deployment:PackagedComponentImplementation"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPackageDescription" type="Deployment:ComponentPackageDescription"/>
 <xsd:complexType name="ComponentUsageDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="basePackage" type="Deployment:ComponentPackageDescription"/>
 <xsd:element name="specializedConfig" type="Deployment:PackageConfiguration"/>
 <xsd:element name="selectRequirement" type="Deployment:Requirement"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="referencedPackage" type="Deployment:ComponentPackageReference"/>
 <xsd:element name="importedPackage" type="Deployment:ComponentPackageImport"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentUsageDescription" type="Deployment:ComponentUsageDescription"/>
 <xsd:complexType name="PackagedComponentImplementation">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="referencedImplementation" type="Deployment:ComponentImplementationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PackagedComponentImplementation" type="Deployment:PackagedComponentImplementa-
tion"/>
 <xsd:complexType name="NamedImplementationArtifact">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="referencedArtifact" type="Deployment:ImplementationArtifactDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="NamedImplementationArtifact" type="Deployment:NamedImplementationArtifact"/>
 <xsd:complexType name="ImplementationRequirement">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="resourceUsage" type="Deployment:ResourceUsageKind"/>
 <xsd:element name="resourcePort" type="xsd:string"/>
 <xsd:element name="componentPort" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
CORBA - Part 3: Component Model, v3.1 325

 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationRequirement" type="Deployment:ImplementationRequirement"/>
 <xsd:complexType name="ComponentPackageImport">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPackageImport" type="Deployment:ComponentPackageImport"/>
 <xsd:complexType name="PackageConfiguration">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="basePackage" type="Deployment:ComponentPackageDescription"/>
 <xsd:element name="specializedConfig" type="Deployment:PackageConfiguration"/>
 <xsd:element name="selectRequirement" type="Deployment:Requirement"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="referencedPackage" type="Deployment:ComponentPackageReference"/>
 <xsd:element name="importedPackage" type="Deployment:ComponentPackageImport"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PackageConfiguration" type="Deployment:PackageConfiguration"/>
 <xsd:complexType name="Locality">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="constraint" type="Deployment:LocalityKind"/>
 <xsd:element name="constrainedInstance" type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Locality" type="Deployment:Locality"/>
 <xsd:complexType name="RequirementSatisfier">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="RequirementSatisfier" type="Deployment:RequirementSatisfier"/>
 <xsd:complexType name="SatisfierProperty">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
326 CORBA - Part 3: Component Model, v3.1

 <xsd:element name="kind" type="Deployment:SatisfierPropertyKind"/>
 <xsd:element name="dynamic" type="xsd:string"/>
 <xsd:element name="value" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SatisfierProperty" type="Deployment:SatisfierProperty"/>
 <xsd:complexType name="Requirement">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Requirement" type="Deployment:Requirement"/>
 <xsd:complexType name="Property">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Property" type="Deployment:Property"/>
 <xsd:complexType name="ExternalReferenceEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="provider" type="xsd:string"/>
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element name="supportedType" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ExternalReferenceEndpoint" type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:complexType name="ComponentExternalPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentExternalPortEndpoint" type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:complexType name="ImplementationDependency">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requiredType" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
CORBA - Part 3: Component Model, v3.1 327

 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationDependency" type="Deployment:ImplementationDependency"/>
 <xsd:complexType name="ToplevelPackageDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="package" type="Deployment:PackageConfiguration"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ToplevelPackageDescription" type="Deployment:ToplevelPackageDescription"/>
 <xsd:simpleType name="TCKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="tk_null"/>
 <xsd:enumeration value="tk_void"/>
 <xsd:enumeration value="tk_short"/>
 <xsd:enumeration value="tk_long"/>
 <xsd:enumeration value="tk_ushort"/>
 <xsd:enumeration value="tk_ulong"/>
 <xsd:enumeration value="tk_float"/>
 <xsd:enumeration value="tk_double"/>
 <xsd:enumeration value="tk_boolean"/>
 <xsd:enumeration value="tk_char"/>
 <xsd:enumeration value="tk_octet"/>
 <xsd:enumeration value="tk_any"/>
 <xsd:enumeration value="tk_TypeCode"/>
 <xsd:enumeration value="tk_Principal"/>
 <xsd:enumeration value="tk_objref"/>
 <xsd:enumeration value="tk_struct"/>
 <xsd:enumeration value="tk_union"/>
 <xsd:enumeration value="tk_enum"/>
 <xsd:enumeration value="tk_string"/>
 <xsd:enumeration value="tk_sequence"/>
 <xsd:enumeration value="tk_array"/>
 <xsd:enumeration value="tk_alias"/>
 <xsd:enumeration value="tk_except"/>
 <xsd:enumeration value="tk_longlong"/>
 <xsd:enumeration value="tk_ulonglong"/>
 <xsd:enumeration value="tk_longdouble"/>
 <xsd:enumeration value="tk_wchar"/>
 <xsd:enumeration value="tk_wstring"/>
 <xsd:enumeration value="tk_fixed"/>
 <xsd:enumeration value="tk_value"/>
 <xsd:enumeration value="tk_value_box"/>
 <xsd:enumeration value="tk_native"/>
 <xsd:enumeration value="tk_abstract_interface"/>
 <xsd:enumeration value="tk_local_interface"/>
 <xsd:enumeration value="tk_component"/>
 <xsd:enumeration value="tk_home"/>
 <xsd:enumeration value="tk_event"/>
 </xsd:restriction>
 </xsd:simpleType>
328 CORBA - Part 3: Component Model, v3.1

 <xsd:simpleType name="PlanLocalityKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SameProcess"/>
 <xsd:enumeration value="DifferentProcess"/>
 <xsd:enumeration value="NoConstraint"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ResourceUsageKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None"/>
 <xsd:enumeration value="InstanceUsesResource"/>
 <xsd:enumeration value="ResourceUsesInstance"/>
 <xsd:enumeration value="PortUsesResource"/>
 <xsd:enumeration value="ResourceUsesPort"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="LocalityKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SameNodeAnyProcess"/>
 <xsd:enumeration value="SameNodeSameProcess"/>
 <xsd:enumeration value="SameNodeDifferentProcess"/>
 <xsd:enumeration value="DifferentNode"/>
 <xsd:enumeration value="DifferentProcess"/>
 <xsd:enumeration value="NoConstraint"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="CCMComponentPortKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Facet"/>
 <xsd:enumeration value="SimplexReceptacle"/>
 <xsd:enumeration value="MultiplexReceptacle"/>
 <xsd:enumeration value="EventEmitter"/>
 <xsd:enumeration value="EventPublisher"/>
 <xsd:enumeration value="EventConsumer"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SatisfierPropertyKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Quantity"/>
 <xsd:enumeration value="Capacity"/>
 <xsd:enumeration value="Minimum"/>
 <xsd:enumeration value="Maximum"/>
 <xsd:enumeration value="Attribute"/>
 <xsd:enumeration value="Selection"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="Deployment">
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="Deployment:Any"/>
 <xsd:element ref="Deployment:DataType"/>
 <xsd:element ref="Deployment:DataValue"/>
 <xsd:element ref="Deployment:EnumType"/>
 <xsd:element ref="Deployment:ObjrefType"/>
 <xsd:element ref="Deployment:BoundedStringType"/>
CORBA - Part 3: Component Model, v3.1 329

 <xsd:element ref="Deployment:FixedType"/>
 <xsd:element ref="Deployment:ArrayType"/>
 <xsd:element ref="Deployment:SequenceType"/>
 <xsd:element ref="Deployment:AliasType"/>
 <xsd:element ref="Deployment:StructType"/>
 <xsd:element ref="Deployment:StructMemberType"/>
 <xsd:element ref="Deployment:ValueType"/>
 <xsd:element ref="Deployment:ValueMemberType"/>
 <xsd:element ref="Deployment:UnionType"/>
 <xsd:element ref="Deployment:UnionMemberType"/>
 <xsd:element ref="Deployment:NamedValue"/>
 <xsd:element ref="Deployment:Bridge"/>
 <xsd:element ref="Deployment:Interconnect"/>
 <xsd:element ref="Deployment:Node"/>
 <xsd:element ref="Deployment:Resource"/>
 <xsd:element ref="Deployment:SharedResource"/>
 <xsd:element ref="Deployment:Domain"/>
 <xsd:element ref="Deployment:ResourceAllocation"/>
 <xsd:element ref="Deployment:PlanPropertyMapping"/>
 <xsd:element ref="Deployment:PlanSubcomponentPropertyReference"/>
 <xsd:element ref="Deployment:PlanSubcomponentPortEndpoint"/>
 <xsd:element ref="Deployment:PlanConnectionDescription"/>
 <xsd:element ref="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element ref="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element ref="Deployment:DeploymentPlan"/>
 <xsd:element ref="Deployment:ResourceDeploymentDescription"/>
 <xsd:element ref="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element ref="Deployment:ConnectionResourceDeploymentDescription"/>
 <xsd:element ref="Deployment:PlanLocality"/>
 <xsd:element ref="Deployment:Capability"/>
 <xsd:element ref="Deployment:ComponentPropertyDescription"/>
 <xsd:element ref="Deployment:ComponentPortDescription"/>
 <xsd:element ref="Deployment:ComponentInterfaceDescription"/>
 <xsd:element ref="Deployment:ImplementationArtifactDescription"/>
 <xsd:element ref="Deployment:MonolithicImplementationDescription"/>
 <xsd:element ref="Deployment:AssemblyPropertyMapping"/>
 <xsd:element ref="Deployment:SubcomponentPropertyReference"/>
 <xsd:element ref="Deployment:SubcomponentPortEndpoint"/>
 <xsd:element ref="Deployment:AssemblyConnectionDescription"/>
 <xsd:element ref="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="Deployment:ComponentAssemblyDescription"/>
 <xsd:element ref="Deployment:ComponentImplementationDescription"/>
 <xsd:element ref="Deployment:ComponentPackageReference"/>
 <xsd:element ref="Deployment:ComponentPackageDescription"/>
 <xsd:element ref="Deployment:ComponentUsageDescription"/>
 <xsd:element ref="Deployment:PackagedComponentImplementation"/>
 <xsd:element ref="Deployment:NamedImplementationArtifact"/>
 <xsd:element ref="Deployment:ImplementationRequirement"/>
 <xsd:element ref="Deployment:ComponentPackageImport"/>
 <xsd:element ref="Deployment:PackageConfiguration"/>
 <xsd:element ref="Deployment:Locality"/>
 <xsd:element ref="Deployment:RequirementSatisfier"/>
 <xsd:element ref="Deployment:SatisfierProperty"/>
 <xsd:element ref="Deployment:Requirement"/>
330 CORBA - Part 3: Component Model, v3.1

 <xsd:element ref="Deployment:Property"/>
 <xsd:element ref="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element ref="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element ref="Deployment:ImplementationDependency"/>
 <xsd:element ref="Deployment:ToplevelPackageDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
CORBA - Part 3: Component Model, v3.1 331

332 CORBA - Part 3: Component Model, v3.1

Annex A
(normative)

Legal Information

A.1 Copyright Information

Copyright © 2002, Laboratoire d’Informatique Fond de Lille

Copyright © 2006, Object Management Group, Inc.

A.2 Use Of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

A.3 Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

A.4 Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.
CORBA - Part 3: Component Model, v3.1 333

A.5 General Use Restrictions

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

A.6 Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

A.7 Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

A.8 Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG Systems Modeling
Language (SysML)™ are trademarks of the Object Management Group. All other products or company names mentioned are
used for identification purposes only, and may be trademarks of their respective owners.

A.9 Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.
334 CORBA - Part 3: Component Model, v3.1

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

A.10 Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.
CORBA - Part 3: Component Model, v3.1 335

336 CORBA - Part 3: Component Model, v3.1

Annex B
(normative)

Acknowledgements

The following companies submitted and/or supported parts of the specifications that were approved by the Object
Management Group to become CORBA:

• Adiron, LLC

• Alcatel

• BEA Systems, Inc.

• BNR Europe Ltd.

• Borland International, Inc.

• Compaq Computer Corporation

• Concept Five Technologies

• Cooperative Research Centre for Distributed Systems Technology (DSTC)

• Defense Information Systems Agency

• Digital Equipment Corporation

• Ericsson

• Eternal Systems, Inc.

• Expersoft Corporation

• France Telecom

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• Hewlett-Packard Company

• HighComm

• Highlander Communications, L.C.

• Humboldt-University

• HyperDesk Corporation

• ICL, Plc.

• Inprise Corporation

• International Business Machines Corporation

• International Computers, Inc.

• IONA Technologies, Plc.

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• Micro Focus Limited
CORBA - Part 3: Component Model, v3.1 337

• MITRE Corporation

• Motorola, Inc.

• NCR Corporation

• NEC Corporation

• Netscape Communications Corporation

• Nortel Networks

• Northern Telecom Corporation

• Novell, Inc.

• Object Design, Inc.

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Oracle Corporation

• PeerLogic, Inc.

• Persistence Software, Inc.

• Promia, Inc.

• Siemens Nixdorf Informationssysteme AG

• SPAWAR Systems Center

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• TIBCO, Inc.

• Tivoli Systems, Inc.

• Tri-Pacific Software, Inc.

• University of California, Santa Barbara

• University of Rhode Island

• Visual Edge Software, Ltd.

• Washington University
338 CORBA - Part 3: Component Model, v3.1

INDEX

A
Abstract spec 64
Abstract Storage home binding 66
Application operation 117
ArtifactDef 261
Attributes 10

B
BaseIDL Package 175, 220
Basic components 11

C
Callback interfaces 171
CCM2Context interface 132
CCMContext interface 123
CCMHome interface 40
CCMObject interface 48
CIDL specification 56
CIF Package 259, 271
CIF package IDL 264
Classes and Associations 259
Client Programming Model 142
Comparing CCM and EJB 167
Compliance with the interoperability of integration views 167
Component 9
Component activation 112
Component body 13
Component categories 109
Component configuration 43
Component containers 110
Component executor 66
Component factory 112
Component home 66
Component homes 11
Component Identifiers 136
Component identity 11, 17
Component implementation 118
Component Implementation Definition Language (CIDL) 53
Component Implementation Framework (CIF) 65
Component inheritance 47
Component Interfaces 122, 169
Component levels 9, 118
Component Object References 95
Component type 9
Component-aware clients 142
ComponentId interface 139
ComponentIDL Package 186
ComponentImplDef 260
Component-unaware clients 146
Composition 66
Composition definition 56
Composition structure 67
Configuration phase 44
Configuration with attributes 44
Configurator interface 45
Conformance criteria 194, 263
Conformance requirements 50

Connect operations 20
Connection 29
Constraints on basic components 193
Container 26
Container API type 109
Container-managed Persistence 117
Containers and Contained Elements 187
Containment 179
Containment constraints 179
Context interfaces 172
Cookie values 22
CORBA component views for EJBs 151
CORBA Usage Model 109, 111

D
Delegation of feature state 93
Delegation specification 67
Disconnect operations 21

E
EJB to IDL mapping 153
EJB views for CORBA components 160
EnterpriseComponent interface 127
Entity component 121
Entity2Context interface 140
EntityComponent interface 130
EntityContext interface 130
Entry points 105
Equivalent IDL 12
Equivalent interface 10, 12
Event emitter operations 28
Event publisher operations 27
Event sink operations 29
Event sinks 9, 29
Event sources 9
Event types 24
EventBase 25
EventConsumer interface 25
Events 115, 145
Events interface 29
Exceptions 182
Executor 66
Executor definition 59, 87
Executor delegation specification 63
External API types 108

F
Facet 13
Facet declaration 61
Facets 9, 10
Factories 104
Factory design pattern 143
Factory operation 36
Factory-based configuration 45
Feature delegation specification 61
Finder design pattern 144
Finder operation 36
Finders 104

G
Grammar 54
CORBA - Part 3: Component Model, v3.1 339

H
Heterodox operations 39
Home 103
Home definitions with no primary key 33
Home definitions with primary keys 34
Home executor 66
Home executor definition 57
Home factories 105
Home implementation declaration 58
Home inheritance 37
Home interface 124
Home operations 38
Home persistence declaration 59
HomeConfiguration interface 46
HomeFinder 41
HomeImplDef 262
HomeRegistration interface 133
Homes 32

I
Implementations 65
Interface repository 9
Interfaces common to both Container API types 123
Interfaces supported by the Entity Container API type 130, 136
Interfaces supported by the Session Container API type 128, 134
issues/problems viii

J
Java Language to IDL mapping 152

K
KeylessCCMHome interface 41
Keywords 54

L
Language Mapping 97
Life cycle 57

M
Managed storage 73
Mapping EJB to Component IDL definitions 151
Mapping rules 98
Metadata interfaces 174

N
Naming 184
Navigation 14

O
Object Management Group vii
OMG specifications vii
Operational phase 44
Operations 185
Orthodox operations 39

P
Persistence 116
Persistent objects 111
Persistent State Definition Language 65
PersistentIdValue 138
Policies 116

Policy 261
Ports 9, 101
Primary key 35
Primary key binding 75
PrimaryKeyBase 36
Process component 120
Proxy home 67
Proxy home declaration 64
Proxy Homes 94
ProxyHomeRegistration interface 134
Publishers and Emitters 26

R
Receptacles 9, 19
Receptacles Interface 22
References 17
Relationship between Home Executor and Abstract Storage

Home 75

S
Security 115, 145
Segment definition 60
Segment persistence declaration 60
SegmentDef 261
SegmentDescr 139
Segmented executors 87
Self-managed Persistence 117
Servant lifetime management 112
Servant to ObjectId mapping 111
Server programming environment 110
Server Programming interfaces 122
Server programming interfaces - Extended Components 132
Service component 119
Session component 119
Session2Context interface 135
SessionComponent interface 128
SessionContext interface 128
SessionSynchronization interface 129
StandardConfigurator interface 45
StateIdFactory 138
StateIdValue type 138
Storage home binding 59
Storage home delegation specification 62
Subscription 29
Supported interfaces 17

T
Threading 112
Tools 51
Transaction interfaces 173
Transactions 113, 144
Transient objects 111
Translating CORBA Component requests into EJB requests 155
Translating EJB requests into CORBA component requests 162
Typedef and Type derivations 181
Typing 178
Typographical conventions viii

U
UserTransaction interface 124
340 CORBA - Part 3: Component Model, v3.1

V
Value types 183
ValueDef Constraints EventsDef 191

X
XMI DTD 195, 264
CORBA - Part 3: Component Model, v3.1 341

342 CORBA - Part 3: Component Model, v3.1

	Preface
	1 Scope
	2 Conformance and Compliance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols (and abbreviated terms)
	6 Component Model
	6.1 Component Model
	6.1.1 Component Levels
	6.1.2 Ports
	6.1.3 Components and Facets
	6.1.4 Component Identity
	6.1.5 Component Homes

	6.2 Component Definition
	6.3 Component Declaration
	6.3.1 Basic Components
	6.3.2 Equivalent IDL
	6.3.3 Component Body

	6.4 Facets and Navigation
	6.4.1 Equivalent IDL
	6.4.2 Semantics of Facet References
	6.4.3 Navigation
	6.4.4 Provided References and Component Identity
	6.4.5 Supported interfaces

	6.5 Receptacles
	6.5.1 Equivalent IDL
	6.5.2 Behavior
	6.5.3 Receptacles Interface

	6.6 Events
	6.6.1 Event types
	6.6.2 EventConsumer Interface
	6.6.3 Event Service Provided by Container
	6.6.4 Event Sources-Publishers and Emitters
	6.6.5 Publisher
	6.6.6 Emitters
	6.6.7 Event Sinks
	6.6.8 Events interface

	6.7 Homes
	6.7.1 Equivalent Interfaces
	6.7.2 Primary Key Declarations
	6.7.3 Explicit Operations in Home Definitions
	6.7.4 Home inheritance
	6.7.5 Semantics of Home Operations
	6.7.6 CCMHome Interface
	6.7.7 KeylessCCMHome Interface

	6.8 Home Finders
	6.9 Component Configuration
	6.9.1 Exclusive Configuration and Operational Life Cycle Phases

	6.10 Configuration with Attributes
	6.10.1 Attribute Configurators
	6.10.2 Factory-based Configuration

	6.11 Component Inheritance
	6.11.1 CCMObject Interface

	6.12 Conformance Requirements
	6.12.1 A Note on Tools
	6.12.2 Changes to Object Services

	7 OMG CIDL Syntax and Semantics
	7.1 Lexical Conventions
	7.1.1 Keywords

	7.2 OMG CIDL Grammar
	7.3 OMG CIDL Specification
	7.4 Composition Definition
	7.4.1 Life Cycle Category and Constraints

	7.5 Home Executor Definition
	7.6 Home Implementation Declaration
	7.7 Storage Home Binding
	7.8 Home Persistence Declaration
	7.9 Executor Definition
	7.10 Segment Definition
	7.11 Segment Persistence Declaration
	7.12 Facet Declaration
	7.13 Feature Delegation Specification
	7.14 Abstract Storage Home Delegation Specification
	7.15 Executor Delegation Specification
	7.16 Abstract Spec Declaration
	7.17 Proxy Home Declaration

	8 CCM Implementation Framework
	8.1 Introduction
	8.2 Component Implementation Framework (CIF) Architecture
	8.2.1 Component Implementation Definition Language (CIDL)
	8.2.2 Component persistence and behavior
	8.2.3 Implementing a CORBA Component
	8.2.4 Behavioral elements: Executors
	8.2.5 Unit of implementation : Composition
	8.2.6 Composition structure
	8.2.7 Compositions with Managed Storage
	8.2.8 Relationship between Home Executor and Abstract Storage Home
	8.2.9 Executor Definition
	8.2.10 Proxy Homes
	8.2.11 Component Object References

	8.3 Language Mapping
	8.3.1 Overview
	8.3.2 Common Interfaces
	8.3.3 Mapping Rules

	9 The Container Programming Model
	9.1 Introduction
	9.1.1 External API Types
	9.1.2 Container API Type
	9.1.3 CORBA Usage Model
	9.1.4 Component Categories

	9.2 The Server Programming Environment
	9.2.1 Component Containers
	9.2.2 CORBA Usage Model
	9.2.3 Component Factories
	9.2.4 Component Activation
	9.2.5 Servant Lifetime Management
	9.2.6 Transactions
	9.2.7 Security
	9.2.8 Events
	9.2.9 Persistence
	9.2.10 Application Operation Invocation
	9.2.11 Component Implementations
	9.2.12 Component Levels
	9.2.13 Component Categories

	9.3 Server Programming Interfaces - Basic Components
	9.3.1 Component Interfaces
	9.3.2 Interfaces Common to both Container API Types
	9.3.3 Interfaces Supported by the Session Container API Type
	9.3.4 Interfaces Supported by the Entity Container API Type

	9.4 Server Programming Interfaces - Extended Components
	9.4.1 Interfaces Common to both Container API Types
	9.4.2 Interfaces Supported by the Session Container API Type
	9.4.3 Interfaces Supported by the Entity Container API Type

	9.5 The Client Programming Model
	9.5.1 Component-aware Clients
	9.5.2 Component-unaware Clients

	10 Integrating with Enterprise JavaBeans
	10.1 Introduction
	10.2 Enterprise JavaBeans Compatibility Objectives and Requirements
	10.3 CORBA Component Views for EJBs
	10.3.1 Mapping of EJB to Component IDL definitions
	10.3.2 Translation of CORBA Component requests into EJB requests
	10.3.3 Interoperability of the View
	10.3.4 CORBA Component view Example

	10.4 EJB views for CORBA Components
	10.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications
	10.4.2 Translation of EJB requests into CORBA Component Requests
	10.4.3 Interoperability of the View
	10.4.4 Example

	10.5 Compliance with the Interoperability of Integration Views
	10.6 Comparing CCM and EJB
	10.6.1 The Home Interfaces
	10.6.2 The Component Interfaces
	10.6.3 The Callback Interfaces
	10.6.4 The Context Interfaces
	10.6.5 The Transaction Interfaces
	10.6.6 The Metadata Interfaces

	11 Interface Repository Metamodel
	11.1 Introduction
	11.1.1 BaseIDL Package
	11.1.2 ComponentIDL Package

	11.2 Conformance Criteria
	11.2.1 Conformance Points

	11.3 MOF DTDs and IDL for the Interface Repository Metamodel
	11.3.1 XMI DTD
	11.3.2 IDL for the BaseIDL Package
	11.3.3 IDL for the ComponentIDL Package

	12 CIF Metamodel
	12.1 CIF Package
	12.2 Classes and Associations
	12.2.1 ComponentImplDef
	12.2.2 SegmentDef
	12.2.3 ArtifactDef
	12.2.4 Policy
	12.2.5 HomeImplDef

	12.3 Conformance Criteria
	12.3.1 Conformance Points

	12.4 MOF DTDs and IDL for the CIF Metamodel
	12.4.1 XMI DTD
	12.4.2 IDL for the CIF Package

	13 Lightweight CCM Profile
	13.1 Summary
	13.2 Changes associated with excluding support for persistence
	13.3 Changes associated with excluding support for introspection, navigation and type-specific operations redundant with generic operations
	13.4 Changes associated with excluding support for segmentation
	13.5 Changes associated with excluding support for transactions
	13.6 Changes associated with excluding support for security
	13.7 Changes associated with excluding support for configurators
	13.8 Changes associated with excluding support for proxy homes
	13.9 Changes associated with excluding support for home finders
	13.10 Changes adding additional restrictions to the extended model not represented by exclusions above

	14 Deployment PSM for CCM
	14.1 Introduction
	14.2 Overview
	14.3 Definition of Meta-Concepts
	14.3.1 Component
	14.3.2 ImplementationArtifact
	14.3.3 Package

	14.4 PIM to PSM for CCM Transformation
	14.4.1 ComponentInterfaceDescription
	14.4.2 PlanSubcomponentPortEndpoint
	14.4.3 Application
	14.4.4 RepositoryManager
	14.4.5 SatisfierProperty

	14.5 PSM for CCM to PSM for CCM for IDL Transformation
	14.5.1 Generic Transformation Rules
	14.5.2 Special Transformation Rules
	14.5.3 Mapping to IDL

	14.6 PSM for CCM to PSM for CCM for XML Transformation
	14.6.1 Generic Transformation Rules
	14.6.2 Special Transformation Rules
	14.6.3 Transformation Exceptions and Extensions
	14.6.4 Interpretation of Relative References
	14.6.5 Mapping to XML

	14.7 Miscellaneous
	14.7.1 Entry Points
	14.7.2 Homes
	14.7.3 Valuetype Factories
	14.7.4 Discovery and Initialization
	14.7.5 Location
	14.7.6 Segmentation

	14.8 Migration Issues
	14.8.1 Component Implementations
	14.8.2 Component and Assembly Packages and Metadata
	14.8.3 Component Deployment Systems

	14.9 Metadata Vocabulary
	14.9.1 Implementation Selection Requirements
	14.9.2 Monolithic Implementation Resource Requirements

	15 Deployment IDL for CCM
	16 XML Schema for CCM
	Annex A - Legal Information
	Annex B - Acknowledgements

