
TheCommonObjectRequestBroker:
ArchitectureandSpecification

July 2002
Version 3.0

formal/02-06-33

AnAdoptedSpecificationof theObjectManagementGroup, Inc.

ons and
in any
Copyright © 1998, 1999, Alcatel
Copyright © 1997, 1998, 1999 BEA Systems, Inc.
Copyright © 1995, 1996 BNR Europe Ltd.
Copyright © 1998, Borland International
Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright © 2001, Concept Five Technologies
Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 2001, Eternal Systems, Inc.
Copyright © 1995, 1996, 1998, Expersoft Corporation
Copyright © 1996, 1997 FUJITSU LIMITED
Copyright © 1996, Genesis Development Corporation
Copyright © 1989- 2001, Hewlett-Packard Company
Copyright © 2001, HighComm
Copyright © 1998, 1999, Highlander Communications, L.C.
Copyright © 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright © 1998, 1999, Inprise Corporation
Copyright © 1996 - 2001, International Business Machines Corporation
Copyright © 1995, 1996 ICL, plc
Copyright © 1998 - 2001, Inprise Corporation
Copyright © 1998, International Computers, Ltd.
Copyright © 1995 - 2001, IONA Technologies, Ltd.
Copyright © 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright © 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright © 1996, 1997 Micro Focus Limited
Copyright © 1991, 1992, 1995, 1996 NCR Corporation
Copyright © 1998, NEC Corporation
Copyright © 1998, Netscape Communications Corporation
Copyright © 1998, 1999, Nortel Networks
Copyright © 1998, 1999, Northern Telecom Corporation
Copyright © 1995, 1996, 1998, Novell USG
Copyright © 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright © 1991- 2001 Object Management Group, Inc.
Copyright © 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright © 1998, 1999, Object-Oriented Concepts, Inc.
Copyright © 1998, 2001, Oracle Corporation
Copyright © 1998, PeerLogic, Inc.
Copyright © 1996, Siemens Nixdorf Informationssysteme AG
Copyright © 1991 - 2001, Sun Microsystems, Inc.
Copyright © 1995, 1996, SunSoft, Inc.
Copyright © 1996, Sybase, Inc.
Copyright © 1998, Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright © 1998, TIBCO, Inc.
Copyright © 1998, 1999, Tri-Pacific Software, Inc.
Copyright © 1996, Visual Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditi
notices set forth below. This document does not represent a commitment to implement any portion of this specification
company's products. The information contained in this document is subject to change without notice.

aid up,
ified
copyright
ving

y-paid
tion to
opy, and
 above
nal
resold
n

troy

ire use
 be
at are
otecting

ns and
rk
ical,
yright
LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, p
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a full
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specifica
create and distribute software and special purpose specifications that are based upon this specification, and to use, c
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informatio
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permissio
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will des
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for pr
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulatio
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this wo
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechan
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the cop
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

of The
f the
02-2 of

ons and
gh the

d
gos™,

d
el

ation

nees) is
se

only if
oftware
is

ers to
on the
RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) o
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-72
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulati
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted throu
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® an
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA lo
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unifie
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Mod
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identific
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its desig
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to u
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. S
developed only partially matching the applicable compliance points may claim only that the software was based on th
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
xxiii

1-1

1-1

1-2
1-2
1-3

1-4
1-4
1-6
1-6
1-7
1-7
-9

1-9
-9
10

2-1

2-1
2-6
2-7
2-7
2-8
-8
-8
2-9
-9

2-9
-10
Preface .

1. The Object Model .

1.1 Overview .

1.2 Object Semantics .
1.2.1 Objects. .
1.2.2 Requests. .
1.2.3 Object Creation and Destruction
1.2.4 Types .
1.2.5 Interfaces .
1.2.6 Value Types .
1.2.7 Abstract Interfaces. .
1.2.8 Operations .
1.2.9 Attributes . 1

1.3 Object Implementation .
1.3.1 The Execution Model: Performing Services 1
1.3.2 The Construction Model . 1-

2. CORBA Overview .

2.1 Structure of an Object Request Broker
2.1.1 Object Request Broker. .
2.1.2 Clients .
2.1.3 Object Implementations. .
2.1.4 Object References .
2.1.5 OMG Interface Definition Language 2
2.1.6 Mapping of OMG IDL to Programming Languages 2
2.1.7 Client Stubs .
2.1.8 Dynamic Invocation Interface 2
2.1.9 Implementation Skeleton .
2.1.10 Dynamic Skeleton Interface. 2
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 i

Contents

-10
-10
-11
-11

-11
11
-12
-12

-12

-12

-13

-15

-17
-17

-17

-1

3-2

3-3
3-6
3-6
-6

3-8
3-8

3-11

-12

18

-19

-20

-21
-21
21
-22
-22
-23
-26
-26

-27
-27
-29
-30
30
-31
2.1.11 Object Adapters . 2
2.1.12 ORB Interface . 2
2.1.13 Interface Repository . 2
2.1.14 Implementation Repository 2

2.2 Example ORBs. 2
2.2.1 Client- and Implementation-resident ORB 2-
2.2.2 Server-based ORB . 2
2.2.3 System-based ORB . 2
2.2.4 Library-based ORB . 2

2.3 Structure of a Client . 2

2.4 Structure of an Object Implementation. 2

2.5 Structure of an Object Adapter. 2

2.6 CORBA Required Object Adapter. 2
2.6.1 Portable Object Adapter . 2

2.7 The Integration of Foreign Object Systems 2

3. OMG IDL Syntax and Semantics . 3

3.1 Overview .

3.2 Lexical Conventions .
3.2.1 Tokens .
3.2.2 Comments .
3.2.3 Identifiers. 3
3.2.4 Keywords. .
3.2.5 Literals. .

3.3 Preprocessing .

3.4 OMG IDL Grammar. 3

3.5 OMG IDL Specification . 3-

3.6 Import Declaration . 3

3.7 Module Declaration . 3

3.8 Interface Declaration . 3
3.8.1 Interface Header . 3
3.8.2 Interface Inheritance Specification 3-
3.8.3 Interface Body . 3
3.8.4 Forward Declaration . 3
3.8.5 Interface Inheritance . 3
3.8.6 Abstract Interface . 3
3.8.7 Local Interface. 3

3.9 Value Declaration . 3
3.9.1 Regular Value Type . 3
3.9.2 Boxed Value Type . 3
3.9.3 Abstract Value Type. 3
3.9.4 Value Forward Declaration 3-
3.9.5 Valuetype Inheritance . 3
ii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-32
-32
-33

-36
-37
-39
-44
-46
-46
-47

-49

-50
51
-51
-52
-53

-53

-54
54
56

-56
-56
-57
-57
-57

-58
-58
-59
-60
-61
-62
-63

-63
-63
-64
-64

-66

3-67
-67
-69
-72

4-1

4-1
3.10 Constant Declaration . 3
3.10.1 Syntax . 3
3.10.2 Semantics . 3

3.11 Type Declaration . 3
3.11.1 Basic Types . 3
3.11.2 Constructed Types . 3
3.11.3 Template Types . 3
3.11.4 Complex Declarator. 3
3.11.5 Native Types . 3
3.11.6 Deprecated Anonymous Types 3

3.12 Exception Declaration . 3

3.13 Operation Declaration . 3
3.13.1 Operation Attribute . 3-
3.13.2 Parameter Declarations . 3
3.13.3 Raises Expressions . 3
3.13.4 Context Expressions . 3

3.14 Attribute Declaration . 3

3.15 Repository Identity Related Declarations. 3
3.15.1 Repository Identity Declaration. 3-
3.15.2 Repository Identifier Prefix Declaration 3-

3.16 Event Declaration. 3
3.16.1 Regular Event Type . 3
3.16.2 Abstract Event Type . 3
3.16.3 Event Forward Declaration 3
3.16.4 Eventtype Inheritance . 3

3.17 Component Declaration . 3
3.17.1 Component . 3
3.17.2 Component Header . 3
3.17.3 Component Body. 3
3.17.4 Event Sources—publishers and emitters 3
3.17.5 Event Sinks . 3
3.17.6 Basic and Extended Components. 3

3.18 Home Declaration . 3
3.18.1 Home . 3
3.18.2 Home Header. 3
3.18.3 Home Body . 3

3.19 CORBA Module. 3

3.20 Names and Scoping .
3.20.1 Qualified Names . 3
3.20.2 Scoping Rules and Name Resolution. 3
3.20.3 Special Scoping Rules for Type Names 3

4. ORB Interface .

4.1 Overview .
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 iii

Contents

4-2
-8

4-8
-9

4-9
4-9

4-12
14

-14
-15
-15
16
-16
-18
18

-20
21

21
-22
-22

4-23

24
24
27
29

-32
32
-32

-36

-37
7
38
-40
40
41
-43

-43
-43
-44
-44

-46
4.2 The ORB Operations .
4.2.1 ORB Identity . 4
4.2.2 Converting Object References to Strings
4.2.3 Getting Service Information 4
4.2.4 Creating a New Context. .
4.2.5 Thread-Related Operations .

4.3 Object Reference Operations .
4.3.1 Determining the Object Interface. 4-
4.3.2 Duplicating and Releasing Copies of

Object References . 4
4.3.3 Nil Object References . 4
4.3.4 Equivalence Checking Operation. 4
4.3.5 Probing for Object Non-Existence. 4-
4.3.6 Object Reference Identity . 4
4.3.7 Type Coercion Considerations. 4
4.3.8 Getting Policy Associated with the Object 4-
4.3.9 Overriding Associated Policies on an

Object Reference . 4
4.3.10 Validating Connection . 4-
4.3.11 Getting the Domain Managers Associated

with the Object . 4-
4.3.12 Getting Component Associated with the Object . . . 4
4.3.13 LocalObject Operations. 4

4.4 ValueBase Operations. .

4.5 ORB and OA Initialization and Initial References 4-
4.5.1 ORB Initialization . 4-
4.5.2 Obtaining Initial Object References. 4-
4.5.3 Configuring Initial Service References 4-

4.6 Context Object . 4
4.6.1 Introduction . 4-
4.6.2 Context Object Operations. 4

4.7 Current Object . 4

4.8 Policy Object . 4
4.8.1 Definition of Policy Object 4-3
4.8.2 Creation of Policy Objects. 4-
4.8.3 Usages of Policy Objects . 4
4.8.4 Policy Associated with the Execution Environment 4-
4.8.5 Specification of New Policy Objects 4-
4.8.6 Standard Policies . 4

4.9 Management of Policies . 4
4.9.1 Client Side Policy Management. 4
4.9.2 Server Side Policy Management 4
4.9.3 Policy Management Interfaces. 4

4.10 Management of Policy Domains . 4
iv Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-46
-49

4-52
-52
-57
-58

4-62
62
-63
-65
-72

5-1

5-1

5-2
5-3
5-3
5-4
5-4

5-5
-6
5-6
5-7

-7

5-9

5-9
5-9

5-9
5-9
10

-10
11
-11

-18

-1

6-1

6-1

6-3

6-3

6-4
6-4
4.10.1 Basic Concepts . 4
4.10.2 Domain Management Operations 4

4.11 TypeCodes .
4.11.1 The TypeCode Interface. 4
4.11.2 TypeCode Constants . 4
4.11.3 Creating TypeCodes. 4

4.12 Exceptions .
4.12.1 Definition of Terms . 4-
4.12.2 System Exceptions. 4
4.12.3 Standard System Exception Definitions 4
4.12.4 Standard Minor Exception Codes 4

5. Value Type Semantics .

5.1 Overview .

5.2 Architecture .
5.2.1 Abstract Values .
5.2.2 Operations .
5.2.3 Value Type vs. Interfaces .
5.2.4 Parameter Passing .
5.2.5 Substitutability Issues .
5.2.6 Widening/Narrowing . 5
5.2.7 Value Base Type .
5.2.8 Life Cycle issues .
5.2.9 .

Security Considerations . 5

5.3 Standard Value Box Definitions .

5.4 Language Mappings .
5.4.1 General Requirements .
5.4.2 Language Specific Marshaling.
5.4.3 Language Specific Value Factory Requirements . . .
5.4.4 Value Method Implementation. 5-

5.5 Custom Marshaling . 5
5.5.1 Implementation of Custom Marshaling 5-
5.5.2 Marshaling Streams . 5

5.6 Access to the Sending Context Run Time 5

6. Abstract Interface Semantics . 6

6.1 Overview .

6.2 Semantics of Abstract Interfaces .

6.3 Usage Guidelines .

6.4 Example .

6.5 Security Considerations .
6.5.1 Passing Values to Trusted Domains
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 v

Contents

7-1

7-1
7-2
7-4
7-4

7-4
7-5
7-7
7-8
7-8
7-8
7-9
7-9
-10
-10
-10

-11
-11

7-11

-12
-14
14
-14

-16
-17
-17
-18
-18
-18
-18

8-1

8-1

8-2

8-3

8-3

8-4
8-4
-5

9-1

9-1

9-3
7. Dynamic Invocation Interface. .

7.1 Overview .
7.1.1 Common Data Structures. .
7.1.2 Memory Usage .
7.1.3 Return Status and Exceptions

7.2 Request Operations .
7.2.1 create_request .
7.2.2 add_arg .
7.2.3 invoke .
7.2.4 delete .
7.2.5 send .
7.2.6 poll_response. .
7.2.7 get_response .
7.2.8 sendp . 7
7.2.9 prepare. 7
7.2.10 sendc . 7

7.3 ORB Operations . 7
7.3.1 send_multiple_requests . 7
7.3.2 get_next_response and poll_next_response

7.4 Polling . 7
7.4.1 Abstract Valuetype Pollable 7
7.4.2 Abstract Valuetype DIIPollable 7-
7.4.3 interface PollableSet . 7

7.5 List Operations . 7
7.5.1 create_list . 7
7.5.2 add_item . 7
7.5.3 free. 7
7.5.4 free_memory . 7
7.5.5 get_count . 7
7.5.6 create_operation_list . 7

8. Dynamic Skeleton Interface. .

8.1 Introduction .

8.2 Overview .

8.3 ServerRequestPseudo-Object .
8.3.1 ExplicitRequest State:

ServerRequestPseudo-Object.

8.4 DSI: Language Mapping .
8.4.1 ServerRequest’s Handling of Operation Parameters
8.4.2 Registering Dynamic Implementation Routines . . . 8

9. Dynamic Management of Any Values .

9.1 Overview .

9.2 DynAny API. .
vi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-9
11
-16
-17
-17
19
-22
23
24
-24
25

9-26
6
7

0-1

0-1

10-2

10-4
0-4

10-5
0-6
0-6

0-6

-8

-11
12
-13
-14
-16

-22
-22
-24
-25
-26
-26
-27
-28
-28
-29
-29
-30
-30
0-30
9.2.1 Creating a DynAny Object 9
9.2.2 The DynAny Interface . 9-
9.2.3 The DynFixed Interface . 9
9.2.4 The DynEnum Interface. 9
9.2.5 The DynStruct Interface . 9
9.2.6 The DynUnion Interface . 9-
9.2.7 The DynSequence Interface. 9
9.2.8 The DynArray Interface. 9-
9.2.9 The DynValueCommon Interface 9-
9.2.10 The DynValue Interface. 9
9.2.11 The DynValueBox Interface 9-

9.3 Usage in C++ Language .
9.3.1 Dynamic Creation of CORBA::Any Values. 9-2
9.3.2 Dynamic Interpretation of CORBA::Any Values. . . 9-2

10. The Interface Repository. 1

10.1 Overview . 1

10.2 Scope of an Interface Repository .

10.3 Implementation Dependencies .
10.3.1 Managing Interface Repositories 1

10.4 Basics .
10.4.1 Names and Identifiers . 1
10.4.2 Types and TypeCodes . 1
10.4.3 Interface Repository Objects 1
10.4.4 Structure and Navigation of the

Interface Repository . 10

10.5 Interface Repository Interfaces. 10
10.5.1 Supporting Type Definitions 10-
10.5.2 IRObject . 10
10.5.3 Contained . 10
10.5.4 Container . 10
10.5.5 IDLType. 10
10.5.6 Repository . 10
10.5.7 ModuleDef. 10
10.5.8 ConstantDef. 10
10.5.9 TypedefDef . 10
10.5.10 StructDef . 10
10.5.11 UnionDef . 10
10.5.12 EnumDef . 10
10.5.13 AliasDef . 10
10.5.14 PrimitiveDef . 10
10.5.15 StringDef . 10
10.5.16 WstringDef . 10
10.5.17 FixedDef . 10
10.5.18 SequenceDef . 1
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 vii

Contents

-31
-32
-32
33
-34
-36
-38
-39
-41
-41
-43
-43
-44
-48
-49
-50

-50
-50
-52
-53
-53
-54
-55
56
-56
-57
-57
-60
-61
-62

-64
65
-65
67
67
67
73
73
-73

75

-1

1-1

1-2
1-2
-4
10.5.19 ArrayDef . 10
10.5.20 ExceptionDef. 10
10.5.21 AttributeDef. 10
10.5.22 ExtAttributeDef . 10-
10.5.23 OperationDef . 10
10.5.24 InterfaceDef. 10
10.5.25 ExtInterfaceDef . 10
10.5.26 AbstractInterfaceDef . 10
10.5.27 ExtAbstractInterfaceDef . 10
10.5.28 LocalInterfaceDef . 10
10.5.29 ExtLocalInterfaceDef . 10
10.5.30 ValueMemberDef. 10
10.5.31 ValueDef . 10
10.5.32 ExtValueDef . 10
10.5.33 ValueBoxDef . 10
10.5.34 NativeDef . 10

10.6 Component Interface Repository Interfaces 10
10.6.1 ComponentIR::Container. 10
10.6.2 ComponentIR::Repository . 10
10.6.3 ComponentIR::ProvidesDef. 10
10.6.4 ComponentIR::UsesDef. 10
10.6.5 ComponentIR::EventDef . 10
10.6.6 ComponentIR::EventPortDef. 10
10.6.7 ComponentIR::EmitsDef . 10-
10.6.8 ComponentIR::PublishesDef 10
10.6.9 ComponentIR::ConsumesDef 10
10.6.10 ComponentIR::ComponentDef 10
10.6.11 ComponentIR::FactoryDef 10
10.6.12 ComponentIR::FinderDef . 10
10.6.13 ComponentIR::HomeDef. 10

10.7 RepositoryIds . 10
10.7.1 OMG IDL Format . 10-
10.7.2 RMI Hashed Format . 10
10.7.3 DCE UUID Format . 10-
10.7.4 LOCAL Format . 10-
10.7.5 Pragma Directives for RepositoryId 10-
10.7.6 For More Information . 10-
10.7.7 RepositoryIDs for OMG-Specified Types 10-
10.7.8 Uniqueness Constraints on Repository IDs 10

10.8 OMG IDL for Interface Repository 10-

11. The Portable Object Adapter . 11

11.1 Overview . 1

11.2 Abstract Model Description . 1
11.2.1 Model Components . 1
11.2.2 Model Architecture . 11
viii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

1-6
1-7

1-8
11-9
0

-11
-13
-14

1-14
-15
-15
-21
22
-24

-25
-27
-30
-34
-45

-46

-52

1-54
-54
-55
5
6

-57
-57
-59
-60
61
-61

64

-1

2-1
-2
-2
-3
-3

2-4

2-4

2-5
11.2.3 POA Creation . 1
11.2.4 Reference Creation . 1
11.2.5 Object Activation States . 1
11.2.6 Request Processing .
11.2.7 Implicit Activation. 11-1
11.2.8 Multi-threading . 11
11.2.9 Dynamic Skeleton Interface. 11
11.2.10 Location Transparency. 11

11.3 Interfaces . 1
11.3.1 The Servant IDL Type . 11
11.3.2 POAManager Interface . 11
11.3.3 POAManagerFactory Interface 11
11.3.4 AdapterActivator Interface 11-
11.3.5 ServantManager Interface . 11
11.3.6 ServantActivator Interface . 11
11.3.7 ServantLocator Interface . 11
11.3.8 POA Policy Objects . 11
11.3.9 POA Interface . 11
11.3.10 Current Operations . 11

11.4 IDL for PortableServer Module . 11

11.5 UML Description of PortableServer. 11

11.6 Usage Scenarios . 1
11.6.1 Getting the Root POA . 11
11.6.2 Creating a POA . 11
11.6.3 Explicit Activation with POA-assigned Object Ids . 11-5
11.6.4 Explicit Activation with User-assigned Object Ids . 11-5
11.6.5 Creating References before Activation 11
11.6.6 Servant Manager Definition and Creation 11
11.6.7 Object Activation on Demand 11
11.6.8 Persistent Objects with POA-assigned Ids 11
11.6.9 Multiple Object Ids Mapping to a Single Servant . . 11-
11.6.10 One Servant for All Objects. 11
11.6.11 Single Servant, Many Objects and Types,

Using DSI. 11-

12. Interoperability Overview . 12

12.1 Elements of Interoperability . 1
12.1.1 ORB Interoperability Architecture 12
12.1.2 Inter-ORB Bridge Support. 12
12.1.3 General Inter-ORB Protocol (GIOP) 12
12.1.4 Internet Inter-ORB Protocol (IIOP)® 12
12.1.5 Environment-Specific Inter-ORB Protocols

(ESIOPs) . 1

12.2 Relationship to Previous Versions of CORBA 1

12.3 Examples of Interoperability Solutions 1
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 ix

Contents

2-5
2-5
2-5
-5

2-8
-8
2-8
-9

2-9
-10

3-1
3-2
-2

13-3
3-3
3-3

3-4

3-5
-5
-6

3-7
3-7
3-7
3-8
10
11

-11
-12
-12

-14
14
-14
-15
-17
-18
-19
22
-22
-22
-24

3-28
-30
12.3.1 Example 1 . 1
12.3.2 Example 2 . 1
12.3.3 Example 3 . 1
12.3.4 Interoperability Compliance 12

12.4 Motivating Factors . 1
12.4.1 ORB Implementation Diversity 12
12.4.2 ORB Boundaries . 1
12.4.3 ORBs Vary in Scope, Distance, and Lifetime 12

12.5 Interoperability Design Goals. 1
12.5.1 Non-Goals . 12

13. ORB Interoperability Architecture . 13-1

13.1 Overview . 1
13.1.1 Domains . 1
13.1.2 Bridging Domains . 13

13.2 ORBs and ORB Services .
13.2.1 The Nature of ORB Services 1
13.2.2 ORB Services and Object Requests 1
13.2.3 Selection of ORB Services 1

13.3 Domains . 1
13.3.1 Definition of a Domain . 13
13.3.2 Mapping Between Domains: Bridging. 13

13.4 Interoperability Between ORBs . 1
13.4.1 ORB Services and Domains 1
13.4.2 ORBs and Domains . 1
13.4.3 Interoperability Approaches 1
13.4.4 Policy-Mediated Bridging . 13-
13.4.5 Configurations of Bridges in Networks 13-

13.5 Object Addressing . 13
13.5.1 Domain-relative Object Referencing 13
13.5.2 Handling of Referencing Between Domains 13

13.6 An Information Model for Object References 13
13.6.1 What Information Do Bridges Need? 13-
13.6.2 Interoperable Object References: IORs 13
13.6.3 IOR Profiles. 13
13.6.4 Standard IOR Profiles . 13
13.6.5 IOR Components . 13
13.6.6 Standard IOR Components 13
13.6.7 Profile and Component Composition in IORs 13-
13.6.8 IOR Creation and Scope . 13
13.6.9 Stringified Object References 13
13.6.10 Object URLs . 13

13.7 Service Context . 1
13.7.1 Standard Service Contexts . 13
x Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-31

3-32
-32
-34

3-35

3-37
-37
-40
-48
49
-50

-1

4-1

4-2
-3

4-3
4-4

14-5

4-6

4-6

4-7

4-7

15-1

5-2

5-2
5-3
5-3
5-4

5-4
5-5
11
-14
-15
-23
-30
-30

5-31
-31

5-34
-37

5-41
13.7.2 Service Context Processing Rules 13

13.8 Coder/Decoder Interfaces. 1
13.8.1 Codec Interface . 13
13.8.2 Codec Factory . 13

13.9 Feature Support and GIOP Versions. 1

13.10 Code Set Conversion . 1
13.10.1 Character Processing Terminology 13
13.10.2 Code Set Conversion Framework 13
13.10.3 Mapping to Generic Character Environments 13
13.10.4 Example of Generic Environment Mapping 13-
13.10.5 Relevant OSFM Registry Interfaces 13

14. Building Inter-ORB Bridges . 14

14.1 Introduction . 1

14.2 In-Line and Request-Level Bridging 1
14.2.1 In-line Bridging . 14
14.2.2 Request-level Bridging . 1
14.2.3 Collocated ORBs . 1

14.3 Proxy Creation and Management .

14.4 Interface-specific Bridges and Generic Bridges 1

14.5 Building Generic Request-Level Bridges 1

14.6 Bridging Non-Referencing Domains 1

14.7 Bootstrapping Bridges . 1

15. General Inter-ORB Protocol .

15.1 Goals of the General Inter-ORB Protocol. 1

15.2 GIOP Overview . 1
15.2.1 Common Data Representation (CDR) 1
15.2.2 GIOP Message Overview . 1
15.2.3 GIOP Message Transfer. 1

15.3 CDR Transfer Syntax . 1
15.3.1 Primitive Types . 1
15.3.2 OMG IDL Constructed Types 15-
15.3.3 Encapsulation . 15
15.3.4 Value Types . 15
15.3.5 Pseudo-Object Types . 15
15.3.6 Object References . 15
15.3.7 Abstract Interfaces. 15

15.4 GIOP Message Formats . 1
15.4.1 GIOP Message Header . 15
15.4.2 Request Message . 1
15.4.3 Reply Message. 15
15.4.4 CancelRequest Message . 1
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xi

Contents

5-41
-43
-45

5-45
5-45

5-47
-47
-49

-50

-51
-52
52
55

-56
58

60

-60
-60
-64
65

6-1

6-1

-2
6-2
6-3
6-4
6-5

6-5
6-6
6-8

6-11
-11
-12
-14
-15

-16
17
18
-19
-19
-20
-20

-21
15.4.5 LocateRequest Message. 1
15.4.6 LocateReply Message . 15
15.4.7 CloseConnection Message. 15
15.4.8 MessageError Message . 1
15.4.9 Fragment Message. 1

15.5 GIOP Message Transport . 1
15.5.1 Connection Management . 15
15.5.2 Message Ordering . 15

15.6 Object Location . 15

15.7 Internet Inter-ORB Protocol (IIOP) 15
15.7.1 TCP/IP Connection Usage . 15
15.7.2 IIOP IOR Profiles . 15-
15.7.3 IIOP IOR Profile Components 15-

15.8 Bi-Directional GIOP . 15
15.8.1 Bi-Directional IIOP . 15-

15.9 Bi-directional GIOP policy. 15-

15.10 OMG IDL. 15
15.10.1 GIOP Module . 15
15.10.2 IIOP Module . 15
15.10.3 BiDirPolicy Module . 15-

16. The DCE ESIOP . 1

16.1 Goals of the DCE Common Inter-ORB Protocol 1

16.2 DCE Common Inter-ORB Protocol Overview 16
16.2.1 DCE-CIOP RPC . 1
16.2.2 DCE-CIOP Data Representation 1
16.2.3 DCE-CIOP Messages . 1
16.2.4 Interoperable Object Reference (IOR). 1

16.3 DCE-CIOP Message Transport . 1
16.3.1 Pipe-based Interface . 1
16.3.2 Array-based Interface . 1

16.4 DCE-CIOP Message Formats. 1
16.4.1 DCE_CIOP Invoke Request Message 16
16.4.2 DCE-CIOP Invoke Response Message 16
16.4.3 DCE-CIOP Locate Request Message. 16
16.4.4 DCE-CIOP Locate Response Message 16

16.5 DCE-CIOP Object References . 16
16.5.1 DCE-CIOP String Binding Component 16-
16.5.2 DCE-CIOP Binding Name Component 16-
16.5.3 DCE-CIOP No Pipes Component 16
16.5.4 Complete Object Key Component 16
16.5.5 Endpoint ID Position Component 16
16.5.6 Location Policy Component 16

16.6 DCE-CIOP Object Location. 16
xii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

22
-23
23
24

25

6-26

1

7-2
-2

7-3
-3
-4
-4

7-8

7-8
-9
-9
10
10

-11
11
-13
14
16

18
-19
20

-23
-23
23
24
-26
27
28
-28
30

-32
32
33

-34

34
-34
-36
16.6.1 Location Mechanism Overview 16-
16.6.2 Activation . 16
16.6.3 Basic Location Algorithm . 16-
16.6.4 Use of the Location Policy and the Endpoint ID . . . 16-

16.7 OMG IDL for the DCE CIOP Module 16-

16.8 References for this Chapter . 1

17. Interworking Architecture . 17-

17.1 Purpose of the Interworking Architecture 1
17.1.1 Comparing COM Objects to CORBA Objects. 17

17.2 Interworking Object Model . 1
17.2.1 Relationship to CORBA Object Model 17
17.2.2 Relationship to the OLE/COM Model 17
17.2.3 Basic Description of the Interworking Model 17

17.3 Interworking Mapping Issues . 1

17.4 Interface Mapping . 1
17.4.1 CORBA/COM . 17
17.4.2 CORBA/Automation . 17
17.4.3 COM/CORBA . 17-
17.4.4 Automation/CORBA . 17-

17.5 Interface Composition Mappings . 17
17.5.1 CORBA/COM . 17-
17.5.2 Detailed Mapping Rules . 17
17.5.3 Example of Applying Ordering Rules 17-
17.5.4 Mapping Interface Identity 17-

17.6 Object Identity, Binding, and Life Cycle 17-
17.6.1 Object Identity Issues . 17
17.6.2 Binding and Life Cycle . 17-

17.7 Interworking Interfaces . 17
17.7.1 SimpleFactory Interface. 17
17.7.2 IMonikerProvider Interface and Moniker Use 17-
17.7.3 ICORBAFactory Interface . 17-
17.7.4 IForeignObject Interface . 17
17.7.5 ICORBAObject Interface. 17-
17.7.6 ICORBAObject2 . 17-
17.7.7 IORBObject Interface . 17
17.7.8 Naming Conventions for View Components 17-

17.8 Distribution . 17
17.8.1 Bridge Locality . 17-
17.8.2 Distribution Architecture . 17-

17.9 Interworking Targets . 17

17.10 Compliance to COM/CORBA Interworking. 17-
17.10.1 Products Subject to Compliance 17
17.10.2 Compliance Points. 17
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xiii

Contents

-1

8-1

-2
8-2
8-2
8-3
-4
-5
-6
8-8
-9

8-9
-11
-26
-29
-32

33
-33
-34
-34
35
-37
38
40
1
-43
-44
49
49

1

-2
-2

9-3

9-3
-4
5

6

9-9
9-9
-10

-11

12

-12
18. Mapping: COM and CORBA . 18

18.1 Data Type Mapping . 1

18.2 CORBA to COM Data Type Mapping 18
18.2.1 Mapping for Basic Data Types 1
18.2.2 Mapping for Constants . 1
18.2.3 Mapping for Enumerators . 1
18.2.4 Mapping for String Types . 18
18.2.5 Mapping for Struct Types . 18
18.2.6 Mapping for Union Types . 18
18.2.7 Mapping for Sequence Types. 1
18.2.8 Mapping for Array Types . 18
18.2.9 Mapping for the any Type . 1
18.2.10 Interface Mapping . 18
18.2.11 Inheritance Mapping . 18
18.2.12 Mapping for Pseudo-Objects 18
18.2.13 Interface Repository Mapping 18

18.3 COM to CORBA Data Type Mapping 18-
18.3.1 Mapping for Basic Data Types 18
18.3.2 Mapping for Constants . 18
18.3.3 Mapping for Enumerators . 18
18.3.4 Mapping for String Types . 18-
18.3.5 Mapping for Structure Types 18
18.3.6 Mapping for Union Types . 18-
18.3.7 Mapping for Array Types . 18-
18.3.8 Mapping for VARIANT. 18-4
18.3.9 Mapping for Pointers . 18
18.3.10 Interface Mapping . 18
18.3.11 Mapping for Read-Only Attributes 18-
18.3.12 Mapping for Read-Write Attributes. 18-

19. Mapping: Automation and CORBA . 19-

19.1 Mapping CORBA Objects to Automation 19
19.1.1 Architectural Overview . 19
19.1.2 Main Features of the Mapping. 1

19.2 Mapping for Interfaces . 1
19.2.1 Mapping for Attributes and Operations 19
19.2.2 Mapping for OMG IDL Single Inheritance 19-
19.2.3 Mapping of OMG IDL Multiple Inheritance 19-

19.3 Mapping for Basic Data Types . 1
19.3.1 Basic Automation Types . 1
19.3.2 Special Cases of Basic Data Type Mapping. 19
19.3.3 Mapping for Strings. 19

19.4 IDL to ODL Mapping. 19-
19.4.1 A Complete IDL to ODL Mapping for the

Basic Data Types . 19
xiv Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-15
-15

16

-17

9-18

-19
-20
21
-22
-24
-25
-25
26
27

30
w

s,
-36

36
38
-38

-38
38
-39
-40
-40
-40
41
42
-43
-43

-44
-46
-47
-48
-48
8

49

-49

49
19.5 Mapping for Object References . 19
19.5.1 Type Mapping . 19
19.5.2 Object Reference Parameters

and IForeignObject . 19-

19.6 Mapping for Enumerated Types . 19

19.7 Mapping for Arrays and Sequences 1

19.8 Mapping for CORBA Complex Types 19
19.8.1 Mapping for Structure Types 19
19.8.2 Mapping for Union Types . 19-
19.8.3 Mapping for TypeCodes . 19
19.8.4 Mapping for anys. 19
19.8.5 Mapping for Typedefs . 19
19.8.6 Mapping for Constants . 19
19.8.7 Getting Initial CORBA Object References 19-
19.8.8 Creating Initial in Parameters for Complex Types . . 19-
19.8.9 Mapping CORBA Exceptions to

Automation Exceptions . 19-
19.8.10 ConventionsforNamingComponentsoftheAutomationVie

19-36
19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Union

and Pseudo-Exceptions . 19
19.8.12 Automation View Interface as a Dispatch

Interface (Nondual) . 19-
19.8.13 Aggregation of Automation Views 19-
19.8.14 DII and DSI . 19

19.9 Mapping Automation Objects as CORBA Objects. 19
19.9.1 Architectural Overview . 19-
19.9.2 Main Features of the Mapping. 19
19.9.3 Getting Initial Object References 19
19.9.4 Mapping for Interfaces . 19
19.9.5 Mapping for Inheritance . 19
19.9.6 Mapping for ODL Properties and Methods 19-
19.9.7 Mapping for Automation Basic Data Types. 19-
19.9.8 Conversion Errors . 19
19.9.9 Special Cases of Data Type Conversion. 19
19.9.10 A Complete OMG IDL to ODL Mapping

for the Basic Data Types . 19
19.9.11 Mapping for Object References 19
19.9.12 Mapping for Enumerated Types. 19
19.9.13 Mapping for SafeArrays . 19
19.9.14 Mapping for Typedefs . 19
19.9.15 Mapping for VARIANTs . 19-4
19.9.16 Mapping Automation Exceptions to CORBA 19-

19.10 Older Automation Controllers . 19
19.10.1 Mapping for OMG IDL Arrays and Sequences

to Collections. 19-
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xv

Contents

9-51

51
1

55

0-1
-2

20-2
0-3

0-3
-3

0-4

0-5
0-6
0-6
0-7

20-8

20-9
-10
-11

-11

11

12
-12
12

-12
-12
13
13
13
13
14
15
-15

-16
16
-17

0-19
-19
-20
19.11 Example Mappings. 1
19.11.1 Mapping the OMG Naming Service

to Automation . 19-
19.11.2 Mapping a COM Service to OMG IDL 19-5
19.11.3 Mapping an OMG Object Service to Automation . . 19-

20. Interoperability with non-CORBA Systems 20-1

20.1 Introduction . 2
20.1.1 COM/CORBA Part A . 20

20.2 Conformance Issues .
20.2.1 Performance Issues . 2
20.2.2 Scalability Issues . 2
20.2.3 CORBA Clients for DCOM Servers 20

20.3 Locality of the Bridge . 2

20.4 Extent Definition . 2
20.4.1 Marshaling Constraints . 2
20.4.2 Marshaling Key . 2
20.4.3 Extent Format . 2

20.5 Request/Reply Extent Semantics .

20.6 Consistency .
20.6.1 IValueObject . 20
20.6.2 ISynchronize and DISynchronize 20

20.7 DCOM Value Objects. 20
20.7.1 Passing Automation Compound Types as

DCOM Value Objects . 20-
20.7.2 Passing CORBA-Defined Pseudo-Objects

as DCOM Value Objects . 20-
20.7.3 IForeignObject. 20
20.7.4 DIForeignComplexType . 20-
20.7.5 DIForeignException . 20
20.7.6 DISystemException . 20
20.7.7 DICORBAUserException . 20-
20.7.8 DICORBAStruct . 20-
20.7.9 DICORBAUnion . 20-
20.7.10 DICORBATypeCode and ICORBATypeCode 20-
20.7.11 DICORBAAny. 20-
20.7.12 ICORBAAny . 20-
20.7.13 User Exceptions In COM. 20

20.8 Chain Avoidance . 20
20.8.1 CORBA Chain Avoidance . 20-
20.8.2 COM Chain Avoidance . 20

20.9 Chain Bypass . 2
20.9.1 CORBA Chain Bypass. 20
20.9.2 COM Chain Bypass . 20
xvi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-21

1-1

1-1
1-2
1-3

21-4
1-4

1-5

1-5

21-6
1-6
1-7
-8
1-8

1-9
1-9
11
-14
-14
-17
-20
-21
-25
-29
-33

-33
-33
-34
-34
-35

-40
-40
40
-43

-45
-46

-50
-50

1-50
51
51
55
-57

-57
20.10 Thread Identification . 20

21. Portable Interceptors . 2

21.1 Introduction . 2
21.1.1 Object Creation . 2
21.1.2 Client Sends Request . 2
21.1.3 Server Receives Request .
21.1.4 Server Sends Reply . 2
21.1.5 Client Receives Reply . 2

21.2 Interceptor Interface . 2

21.3 Request Interceptors. .
21.3.1 Design Principles. 2
21.3.2 General Flow Rules . 2
21.3.3 The Flow Stack Visual Model 21
21.3.4 The Request Interceptor Points 2
21.3.5 Client-Side Interceptor . 2
21.3.6 Client-Side Interception Points 2
21.3.7 Client-Side Interception Point Flow 21-
21.3.8 Server-Side Interceptor . 21
21.3.9 Server-Side Interception Points 21
21.3.10 Server-Side Interception Point Flow 21
21.3.11 Request Information . 21
21.3.12 RequestInfo Interface . 21
21.3.13 ClientRequestInfo Interface. 21
21.3.14 ServerRequestInfo Interface 21
21.3.15 ForwardRequest Exception 21

21.4 Portable Interceptor Current . 21
21.4.1 Overview . 21
21.4.2 Obtaining the Portable Interceptor Current 21
21.4.3 Portable Interceptor Current Interface 21
21.4.4 Use of Portable Interceptor Current. 21

21.5 IOR Interceptor . 21
21.5.1 Overview . 21
21.5.2 An Abstract Model for Object Adapters 21-
21.5.3 Object Reference Template 21
21.5.4 IORInterceptor Interface . 21
21.5.5 IORInfo Interface . 21

21.6 PolicyFactory . 21
21.6.1 PolicyFactory Interface . 21

21.7 Registering Interceptors . 2
21.7.1 ORBInitializer Interface . 21-
21.7.2 ORBInitInfo Interface . 21-
21.7.3 register_orb_initializer Operation 21-
21.7.4 Notes about Registering Interceptors. 21

21.8 Dynamic Initial References . 21
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xvii

Contents

-57

-58
8

8

8

59

-59
-59
-59
-60

2-1

2-2

2-2
2-5
2-6
2-7
2-8
-10
-11

2-12
-12
-13
-13

-13

-15

-16
-16
-18

20

-21

2
23
-23

-24
-25
-25

2-25
-25
21.8.1 register_initial_reference . 21

21.9 Module Dynamic . 21
21.9.1 NVList PIDL Represented by ParameterList IDL . . 21-5
21.9.2 ContextList PIDL Represented by

ContextList IDL. 21-5
21.9.3 ExceptionList PIDL Represented by

ExceptionList IDL . 21-5
21.9.4 Context PIDL Represented by

RequestContext IDL . 21-

21.10 Consolidated IDL . 21
21.10.1 Dynamic . 21
21.10.2 Portions of IOP Relevant to Portable Interceptor. . . 21
21.10.3 PortableInterceptor . 21

22. CORBA Messaging . 2

22.1 Section I - Introduction . 2

22.2 Messaging Quality of Service . 2
22.2.1 Rebind Support . 2
22.2.2 Synchronization Scope . 2
22.2.3 Request and Reply Priority 2
22.2.4 Request and Reply Timeout. 2
22.2.5 Routing . 22
22.2.6 Queue Ordering . 22

22.3 Propagation of Messaging QoS . 2
22.3.1 Structures. 22
22.3.2 Messaging QoS Profile Component. 22
22.3.3 Messaging QoS Service Context 22

22.4 Section II - Introduction . 22

22.5 Running Example. 22

22.6 Async Operation Mapping . 22
22.6.1 Callback Model Signatures (sendc) 22
22.6.2 Polling Model Signatures (sendp) 22

22.7 Exception Delivery in the Callback Model. 22-
22.7.1 Messaging::ExceptionHolder valuetype. 22-20

22.8 Type-Specific ReplyHandler Mapping 22
22.8.1 ReplyHandler Operations for

NO_EXCEPTION Replies. 22-2
22.8.2 ReplyHandler Operations for Exceptional Replies . 22-
22.8.3 Example. 22

22.9 Generic Poller Value. 22
22.9.1 operation_target . 22
22.9.2 operation_name . 22
22.9.3 associated_handler. 2
22.9.4 is_from_poller . 22
xviii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-26
-26
-28
-29

2-30

30

-30
31
38
-44

-45

2-46

2-46
-48
-50
-52

-59
-62
-63
-63
-64

-65
-65
-68

-72

-84

-1

3-1
-1
3-2
3-3
-4
3-8

-11

3-12
-12
-13

-16
-18
-19
22.10 Type-Specific Poller Mapping . 22
22.10.1 Basic Type-Specific Poller. 22
22.10.2 Persistent Type-Specific Poller 22
22.10.3 Example. 22

22.11 Example Programmer Usage . 2
22.11.1 Example Programmer Usage (Examples

Mapped to C++) . 22-
22.11.2 Client-Side C++ Example for the

Asynchronous Method Signatures 22
22.11.3 Client-Side C++ Example of the Callback Model . . 22-
22.11.4 Client-Side C++ Example of the Polling Model . . . 22-
22.11.5 Server Side . 22

22.12 Section III - Introduction . 22

22.13 Routing Object References. 2

22.14 Message Routing . 2
22.14.1 Structures. 22
22.14.2 Interfaces . 22
22.14.3 Routing Protocol . 22

22.15 Router Administration . 22
22.15.1 Constants . 22
22.15.2 Exceptions . 22
22.15.3 Valuetypes . 22
22.15.4 Interfaces . 22

22.16 CORBA Messaging IDL. 22
22.16.1 Messaging Module . 22
22.16.2 MessageRouting Module . 22

Appendix A Overall Design Rationale 22

Appendix B Conformance and Compatibility Issues 22

23. Fault Tolerant CORBA. 23

23.1 Fault Tolerant CORBA. 2
23.1.1 Fault Tolerance for Diverse Applications 23
23.1.2 Objectives . 2
23.1.3 Basic Concepts . 2
23.1.4 Architectural Overview . 23
23.1.5 Requirements. 2
23.1.6 Limitations . 23

23.2 Basic Fault Tolerance Mechanisms 2
23.2.1 Overview . 23
23.2.2 Interoperable Object Group References. 23
23.2.3 Interoperable Object Group Reference

Operations . 23
23.2.4 Modes of Profile Addressing 23
23.2.5 Accessing Server Object Groups 23
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xix

Contents

-21
-22
-23
-27

-31
-31
-32
7

-37
-38
-44
-45
-49
-56

61
3-61

3-66
-66
-67
70
71
-72
73
3-79

-81
-81
-81
-82
-84

3-87

-88
88

-96

105

-1

4-1
4-3

4-4
-4
4-5
10
11
-14
23.2.6 Extensions to CORBA Failover Semantics 23
23.2.7 Most Recent Object Group Reference 23
23.2.8 Transparent Reinvocation . 23
23.2.9 Transport Heartbeats . 23

23.3 Replication Management . 23
23.3.1 Overview . 23
23.3.2 Fault Tolerance Properties . 23
23.3.3 FaultMonitoringIntervalAndTimeout. 23-3
23.3.4 CheckpointInterval . 23
23.3.5 Common Types . 23
23.3.6 Replication Manager . 23
23.3.7 PropertyManager . 23
23.3.8 ObjectGroupManager . 23
23.3.9 GenericFactory . 23
23.3.10 Obtaining the Reference for the

Replication Manager . 23-
23.3.11 Use Cases . 2

23.4 Fault Management . 2
23.4.1 Overview . 23
23.4.2 Architecture . 23
23.4.3 Connecting Fault Detectors to Applications 23-
23.4.4 Pull-Based Monitoring . 23-
23.4.5 Fault Event Types . 23
23.4.6 Fault Notifier . 23-
23.4.7 Use Cases . 2

23.5 Logging & Recovery Management. 23
23.5.1 Overview . 23
23.5.2 Logging Mechanism . 23
23.5.3 Recovery Mechanism . 23
23.5.4 Checkpointable and Updateable Interfaces 23
23.5.5 Use Case . 2

23.6 Consolidated IDL . 23
23.6.1 OMG IDL . 23-

Appendix A Glossary . 23

Appendix B Compliance. 23-

24. Secure Interoperability. 24

24.1 Overview . 2
24.1.1 Assumptions . 2

24.2 Protocol Message Definitions. 2
24.2.1 The Security Attribute Service Context Element . . . 24
24.2.2 SAS context_data Message Body Types 2
24.2.3 Authorization Token Format 24-
24.2.4 Client Authentication Token Format 24-
24.2.5 Identity Token Format . 24
xx Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

-15

-16
-16
4-21
-23
-27
-30

-31
31
-31

4-32
-32
-43
44

4-45
-45
-47
-47
-48

4-48

-49

-51

on
53

56

4-57

-58

58
59

63

1

 1
24.2.6 Principal Names and Distinguished Names 24

24.3 Security Attribute Service Protocol 24
24.3.1 Compound Mechanisms . 24
24.3.2 Session Semantics . 2
24.3.3 TSS State Machine . 24
24.3.4 CSS State Machine . 24
24.3.5 ContextError Values and Exceptions 24

24.4 Transport Security Mechanisms . 24
24.4.1 Transport Layer Interoperability 24-
24.4.2 Transport Mechanism Configuration 24

24.5 Interoperable Object References . 2
24.5.1 Target Security Configuration 24
24.5.2 Client-side Mechanism Selection 24
24.5.3 Client-Side Requirements and Location Binding. . . 24-

24.6 Conformance Levels. 2
24.6.1 Conformance Level 0. 24
24.6.2 Conformance Level 1. 24
24.6.3 Conformance Level 2. 24
24.6.4 Stateful Conformance . 24

24.7 Sample Message Flows and Scenarios 2
24.7.1 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection 24
24.7.2 Confidentiality and Trust in Server Established in the

Connection - Stateless Trust in Client Established in
Service Context . 24

24.7.3 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Trust Associati
Established in Service Context 24-

24.7.4 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Forward Trust
Association Established in Service Context. 24-

24.8 References for this Chapter . 2

24.9 IDL. 24
24.9.1 Module GSSUP - Username/Password

GSSAPI Token Formats. 24-
24.9.2 Module CSI - Common Secure Interoperability . . . 24-
24.9.3 Module CSIIOP - CSIv2 IOR Component

Tag Definitions . 24-

Appendix A - OMG IDL Tags . A-

Glossary .
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xxi

Contents
xxii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Preface
nical
iew

rted
and
nted

de a
,
ous
p a

d.

g

About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Tech
Standard. The collaboration between OMG and The Open Group ensures joint rev
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 600 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provi
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
More information is available athttp://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integratin
new technology across the enterprise.
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 xxiii

n

ing

nd

of

tion
n of

Open

tial

he

uted,

vides

e

ive
The mission of The Open Group is to drive the creation of boundaryless informatio
flow achieved by:

• Working with customers to capture, understand and address current and emerg
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus a
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certifica
programs and has extensive experience developing and facilitating industry adoptio
test suites used to validate conformance to an open standard or specification. The
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essen
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in t
development cycle, saving costs in development and quality assurance.

More information is available athttp://www.opengroup.org/ .

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distrib
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide,the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB pro
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Referenc
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.
xxiv Common Object Request Broker Architecture (CORBA), v3.0 July 2002

o
n

g,

d in

,
tem
y.

nd
.

ls.
n

sts

nly

at.
ns,
• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are containe
CORBAservices: Common Object Services Specification.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
Information about Common Facilities will be contained inCORBAfacilities:
Common Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspo
to the traditional notion of applications, so they are not standardized by OMG
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving cal
Combined with the Object Services, it ensures meaningful communication betwee
CORBA-compliant applications.

Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guidedefines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and
accepted.

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specificationcontains specifications
for the Object Services.

• CORBAfacilities: Common Facilities Architecturecontains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Reque
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards o
when representatives of the OMG membership accept them as such by vote.

OMG formal documents are available from our web site in PostScript and PDF form
To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:
July 2002 CORBA, v3.0: Associated Documents xxv

g is

ey
,

g

d

ore
OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappin
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, th
must adhere to theCORBAspecifications to be called CORBA-compliant. For instance
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindin
specified in theC++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in theOMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body ofCORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAcore specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-11

CORBA Interoperability , as specified in Chapters 12-16

CORBA Interworking , as specified in Chapters 17-21

CORBA Quality of Service, as specified in Chapters 22-24

Note – The CORBA Language Mappings have been separated from the CORBA C
and each language mapping is its own separate book. Refer to the Specifications
Catalog for this information.
xxvi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

g.
e,

e

ient

t

y

oes
is

uch
dge

s

Structure of This Manual

This manual is divided into the categories of Core, Interoperability, and Interworkin
These divisions reflect the compliance points of CORBA. In addition to this prefac
CORBA: Common Object Request Broker Architecture and Specificationcontains the
following chapters:

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architectur
and includes information about CORBA interfaces and implementations.

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that cl
objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and objec
implementations.

Chapter 5 - Value Type Semanticsdescribes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semanticsexplains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed b
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interfacedescribesthe DSI, the server’s-side
interface that can deliver requests from an ORB to an object implementation that d
not have compile-time knowledge of the type of the object it is implementing. DSI
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Management of Any Valuesdetails the interface for the
Dynamic Any type. This interface allows statically-typed programming languages s
as C and Java to create or receive values of type Any without compile-time knowle
that the typer contained in the Any.

Chapter 10 - Interface Repositoryexplains the component of the ORB that manage
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.
July 2002 CORBA, v3.0: Structure of This Manual xxvii

ral
-

es

l
t,
-

ing

of

ht
dix

h

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; gene
and Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inter
ORB protocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Servic
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protoco
(GIOP) and includes information about the GIOP’s goals, syntax, format, transpor
and object location. This chapter also includes information about the Internet inter
ORB protocol (IIOP).

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (includ
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors mig
implement to support existing and older OLE Automation controllers and an appen
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services suc
as security to be inserted in the invocation path.
xxviii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ss
and

g
es or

at
Quality of Service (QoS)

Chapter 22 - CORBA Messagingincludes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery
management.

Chapter 24 - Common Secure Interoperabilitydefines the CORBA Security
Attribute Service (SAS) protocol and its use within the CSIv2 architecture to addre
the requirements of CORBA security for interoperable authentication, delegation,
privileges.

Typographical Conventions

The type styles shown below are used in this document to distinguish programmin
statements from ordinary English. However, these conventions are not used in tabl
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear initalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgements

The following companies submitted and/or supported parts of the specifications th
were approved by the Object Management Group to becomeCORBA:

• Adiron, LLC

• Alcatel

• BEA Systems, Inc.

• BNR Europe Ltd.

• Borland International, Inc.

• Compaq Computer Corporation

• Concept Five Technologies

• Cooperative Research Centre for Distributed Systems Technology (DSTC)

• Defense Information Systems Agency

• Digital Equipment Corporation

• Ericsson

• Eternal Systems, Inc.
July 2002 CORBA, v3.0: Typographical Conventions xxix

• Expersoft Corporation

• France Telecom

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• Hewlett-Packard Company

• HighComm

• Highlander Communications, L.C.

• Humboldt-University

• HyperDesk Corporation

• ICL, Plc.

• Inprise Corporation

• International Business Machines Corporation

• International Computers, Inc.

• IONA Technologies, Plc.

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• Micro Focus Limited

• MITRE Corporation

• Motorola, Inc.

• NCR Corporation

• NEC Corporation

• Netscape Communications Corporation

• Nortel Networks

• Northern Telecom Corporation

• Novell, Inc.

• Object Design, Inc.

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Oracle Corporation

• PeerLogic, Inc.

• Persistence Software, Inc.

• Promia, Inc.

• Siemens Nixdorf Informationssysteme AG

• SPAWAR Systems Center

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• TIBCO, Inc.
xxx Common Object Request Broker Architecture (CORBA), v3.0 July 2002

k

,

C

-

S.
• Tivoli Systems, Inc.

• Tri-Pacific Software, Inc.

• University of California, Santa Barbara

• University of Rhode Island

• Visual Edge Software, Ltd.

• Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mar
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version),
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
July 2002 CORBA, v3.0: References xxxi

xxxii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

TheObjectModel 1
the

t

ject

e,
es.
This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by
Object Management Group in theObject Management Architecture Guide.
(Information about theOMA Guideand other books in the CORBA documentation se
is provided in this document’s preface.)

Contents

This chapter contains the following sections.

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG ob
model isabstractin that it is not directly realized by any particular technology. The
model described here is aconcreteobject model. A concrete object model may differ
from the abstract object model in several ways:

• It may elaboratethe abstract object model by making it more specific, for exampl
by defining the form of request parameters or the language used to specify typ

• It may populatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

Section Title Page

“Overview” 1-1

“Object Semantics” 1-2

“Object Implementation” 1-9
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 1-1

1

n

n

uch
tures.

epts

l to
t of
s

of the
e are

epts
ded
nd

-
nor

hat
or

tion

the

cepts
• It may restrict the model by eliminating entities or placing additional restrictions o
their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. I
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including s
concepts as object creation and identity, requests and operations, types and signa
It then describes concepts related to object implementations, including such conc
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningfu
clients. The discussion of object implementation is more suggestive, with the inten
allowing maximal freedom for different object technologies to provide different way
of implementing objects.

There are some other characteristics of object systems that are outside the scope
object model. Some of these concepts are aspects of application architecture, som
associated with specific domains to which object technology is applied. Such conc
are more properly dealt with in an architectural reference model. Examples of exclu
concepts are compound objects, links, copying of objects, change management, a
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single
threaded or multi-threaded, and does not specify how event loops are programmed
how threads are created, destroyed, or synchronized.

This object model is an example of aclassical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide w
service to perform. In the classical model, a message identifies an object and zero
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpreta
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. Aclient of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the con
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. Anobject is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.
1-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

iated

or

zero

ple

ate
e

t

n

may
. A

for

is

d to
1.2.2 Requests

Clients request services by issuing requests.

The termrequestis broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally assoc
with that initiation. For example:

• the client receives the final response associated with thatrequestfrom the server,

• the server carries out the associated operation in case of a oneway request,

• the sequence of events associated with therequestterminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object,
or more (actual) parameters, and an optional request context.

A request formis a description or pattern that can be evaluated or performed multi
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to cre
an invocation structure, add arguments to the invocation structure, and to issue th
invocation (refer to theDynamic Invocation Interfacechapter for descriptions of these
request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-objec
values, as well as values that reference objects.

An object referenceis a value that reliably denotes a particular object. Specifically, a
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it
also have a request context that provides additional information about the request
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined
the request.

If an abnormal condition occurs during the performance of a request, an exception
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singlereturn result value, as well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guarantee
be preserved.
July 2002 CORBA, v3.0: Object Semantics 1-3

1

ters

4,

ecial
d as
lient

e.
• The order in which aliased output parameters are written is not guaranteed.

• The return result and the values stored into the output and input-output parame
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no sp
mechanism for creating or destroying an object. Objects are created and destroye
an outcome of issuing requests. The outcome of object creation is revealed to the c
in the form of an object reference that denotes the new object.

1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An entitysatisfiesa
type if the predicate is true for that entity. An entity that satisfies a type is called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a typeis the set of entities that satisfy the type at any particular tim

An object typeis a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

1.2.4.1 Basic types

• 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

• Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

• Fixed-point decimal numbers of up to 31 significant digits.

• Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

• A boolean type taking the values TRUE and FALSE.

• An 8-bit opaque detectable, guaranteed tonot undergo any conversion during
transfer between systems.

• Enumerated types consisting of ordered sequences of identifiers.
1-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

of
y

nd

ype.

airs.

is
tor

le

ype

e of

legal
• A string type, which consists of a variable-length array of characters; the length
the string is a non-negative integer, and is available at run-time. The length ma
have a maximum bound defined.

• A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, a
is available at run-time. The length may have a maximum bound defined.

• A container type “any,” which can represent any possible basic or constructed t

• Wide characters that may represent characters from any wide character set.

• Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

1.2.4.2 Constructed types

• A record type (called struct), which consists of an ordered set of (name,value) p

• A discriminated union type, which consists of a discriminator (whose exact value
always available) followed by an instance of a type appropriate to the discrimina
value.

• A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

• An array type, which consists of a fixed-shape multidimensional array of a sing
type.

• An interface type, which specifies the set of operations that an instance of that t
must support.

• A value type, which specifies state as well as a set of operations that an instanc
that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The
entities are shown in . No particular representation for entities is defined.
July 2002 CORBA, v3.0: Object Semantics 1-5

1

t of
ce
ns.

e

ce

n

of

here

d
of

rete
Figure 1-1 Legal Values

1.2.5 Interfaces

An interfaceis a description of a set of possible operations that a client may reques
an object, through that interface. It provides a syntactic description of how a servi
provided by an object supporting this interface, is accessed via this set of operatio
An objectsatisfiesan interface if it provides its service through the operations of th
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

The interface typefor a given interface is an object type, such that an object referen
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the compositio
mechanism for permitting an object to support multiple interfaces. Theprincipal
interfaceis simply the most-specific interface that the object supports, and consists
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used w
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value typeis an entity, which shares many of the characteristics of interfaces an
structs. It is a description of both a set of operations that a client may request and
state that is accessible to a client. Instances of a value type are always local conc
implementations in some programming language.

Short
Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed
Char
Wchar
String
Wstring
Boolean
Octet
Enum
Any

Struct
Sequence
Union
Array

Basic ValueEntity

Constructed Values

Object Reference

Value Type

Abstract Interface
1-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

erit

s-by-

as

ers

he

n.

y

L

of
ion
A value type, in addition to the operations and state defined for itself, may also inh
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value typesdescribes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interfaceis an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see
Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pas
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operationis an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to
invoking the operation. An operation is identified by anoperation identifier.

An operation has asignaturethat describes the legitimate values of request paramet
and returned results. In particular, asignatureconsists of:

• A specification of the parameters required in requests for that operation.

• A specification of the result of the operation.

• An identification of the user exceptions that may be raised by an invocation of t
operation.

• A specification of additional contextual information that may affect the invocatio

• An indication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentially)generic, meaning that a single operation can be uniforml
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in ID
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
[raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optionaloneway keyword indicates that best-effort semantics are expected
requests for this operation; the default semantics are exactly-once if the operat
successfully returns results or at-most-once if an exception is returned.
July 2002 CORBA, v3.0: Object Semantics 1-7

1

ot

l

in

lly.

ions

ctly
• The <op_type_spec> is the type of the return result.

• The <identifier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the
modifiers in , out , or inout to indicate the direction in which the information flows
(with respect to the object performing the request).

• The optionalraises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is n
provided, no user-defined exceptions will be signaled.

• The optionalcontext expression indicates which request context information wil
be available to the object implementation; no other contextual information is
required to be transported with the request.

1.2.8.1 Parameters

A parameter is characterized by its mode and its type. Themodeindicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value, which may be passed
the directions dictated by the mode.

1.2.8.2 Return Result

The return result is a distinguishedout parameter.

1.2.8.3 Exceptions

An exceptionis an indication that an operation request was not performed successfu
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on
page 1-4.

All signatures implicitly include the system exceptions; the standard system except
are described in Section 4.12.2, “System Exceptions,” on page 4-63.

1.2.8.4 Contexts

A request contextprovides additional, operation-specific information that may affect
the performance of a request.

1.2.8.5 Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed exa
once; if it returns an exception indication, it was performed at-most-once.
1-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

urn
the

vents

air
alue

ded
ng
l

The

at

e the

ine.

e

• Best-effort: a best-effort operation is a request-only operation (i.e., it cannot ret
any results and the requester never synchronizes with the completion, if any, of
request).

The execution semantics to be expected is associated with an operation. This pre
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a p
of accessor functions: one to retrieve the value of the attribute and one to set the v
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities nee
to effect the behavior of requested services. These activities may include computi
the results of the request and updating the system state. In the process, additiona
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed.
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code th
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may chang
state of the system.

Code that is executed to perform a service is called amethod. A method is an
immutable description of a computation that can be interpreted by an execution eng
A method has an immutable attribute called amethod formatthat defines the set of
execution engines that can interpret the method. Anexecution engineis an abstract
machine (not a program) that can interpret methods of certain formats, causing th
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called amethod
activation.
July 2002 CORBA, v3.0: Object Implementation 1-9

1

input-
assed

n an
ible
an

ods,
and
s.
ith

ng
also
When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and
output parameters and return result value (or exception and its parameters) are p
back to the requestor.

Performing a requested service causes a method to execute that may operate upo
object’s persistent state. If the persistent form of the method or state is not access
to the execution engine, it may be necessary to first copy the method or state into
execution context. This process is calledactivation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of meth
and definitions of how the object infrastructure is to select the methods to execute
to select the relevant portions of object state to be made accessible to the method
Mechanisms must also be provided to describe the concrete actions associated w
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, amo
other things, definitions of the methods that operate upon the state of an object. It
typically includes information about the intended types of the object.
1-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

CORBAOverview 2
res
cies,
mes

e
ct
The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the featu
may not be apparent at first, but as we discuss the range of implementations, poli
optimizations, and usages we expect to encompass, the value of the flexibility beco
more clear.

Contents

This chapter contains the following sections.

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. Th
Client is the entity that wishes to perform an operation on the object and the Obje
Implementation is the code and data that actually implements the object.

Section Title Page

“Structure of an Object Request Broker” 2-1

“Example ORBs” 2-11

“Structure of a Client” 2-12

“Structure of an Object Implementation” 2-13

“Structure of an Object Adapter” 2-15

“CORBA Required Object Adapter” 2-17

“The Integration of Foreign Object Systems” 2-17
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 2-1

2

e
ient

t’s

r
cate
Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive th
request, and to communicate the data making up the request. The interface the cl
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the objec
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broke
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indi
whether the ORB is called or performs an up-call across the interface.

Client Object Implementation

ORB

Request
2-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

ific

G
n
mes.

be

ing

cts,
Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the spec
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OM
IDL generated skeleton or through a dynamic skeleton. The Object Implementatio
may call the Object Adapter and the ORB while processing a request or at other ti

Definitions of the interfaces to objects can be defined in two ways. Interfaces can
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects accord
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as obje
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

Client Object Implementation

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-3

2

ect
e
by

ed.

ic
the
ome
,

The client performs a request by having access to an Object Reference for an obj
and knowing the type of the object and the desired operation to be performed. Th
client initiates the request by calling stub routines that are specific to the object or
constructing the request dynamically (see Figure 2-3).

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invok

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynam
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and
object adapter. In performing the request, the object implementation may obtain s
services from the ORB through the Object Adapter. When the request is complete
control and output values are returned to the client.

Client

Dynamic

Invocation

IDL
Stubs

ORB Core

Interface identical for all ORB implementations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
equest

R
equest
2-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

n is

de
L

bs
Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decisio
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is ma
available to clients and object implementations. The interface is defined in OMG ID
and/or in the Interface Repository; the definition is used to generate the client Stu
and the object implementation Skeletons.

Object Implementation

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-5

2

in

ent,

s:

ith
ices
es.

s to
Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single compon
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categorie

1. Operations that are the same for all ORB implementations.

2. Operations that are specific to particular types of objects.

3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together w
the IDL compilers, repositories, and various Object Adapters, provide a set of serv
to clients and implementations of objects that have different properties and qualiti

There may be multiple ORB implementations (also described as multiple ORBs),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have acces

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
2-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

Bs
t

ects

RB
.

ss
nt
e a

uage
lly
orts
d

ject

ior
cts

ort

kes
ces
two object references managed by different ORB implementations. When two OR
are intended to work together, those ORBs must be able to distinguish their objec
references. It is not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of obj
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the O
Core, which provide interfaces that can mask the differences between ORB Cores

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or proce
initiating requests on an object, it is important to recognize that something is a clie
relative to a particular object. For example, the implementation of one object may b
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a lang
mapping, bringing the ORB right up to the programmer’s level. Clients are maxima
portable and should be able to work without source changes on any ORB that supp
the desired language mapping with any object instance that implements the desire
interface. Clients have no knowledge of the implementation of the object, which ob
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behav
of the object. In some cases, the primary function of the object is to have side-effe
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to supp
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invo
the object. Object implementations may select interfaces to ORB-dependent servi
by the choice of Object Adapter.
July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-7

2

.
es

ect

ly

f the
s

t

y
the

for
ent
ry,

ts

r to

f the

ge

stub
2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB
Both clients and object implementations have an opaque notion of object referenc
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Obj
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usual
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent o
particular ORB. The language mapping may also provide additional ways to acces
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all objec
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects b
specifying their interfaces. An interface consists of a set of named operations and
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary
there to be IDL source code available for the ORB to work. As long as the equival
information is available in the form of stub routines or a run-time interface reposito
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clien
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefe
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation o
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Langua
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.
2-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

he

es

on
ith
e

e the

all or
be

m an
on
her.

there
ce
es

stub

ns
A language mapping also defines the interaction between object invocations and t
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routin
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

Generally, the client stubs will present access to the OMG IDL-defined operations
an object in a way that is easy for programmers to predict once they are familiar w
OMG IDL and the language mapping for the particular programming language. Th
stubs make calls on the rest of the ORB using interfaces that are private to, and
presumably optimized for, the particular ORB Core. If more than one ORB is
available, there may be different stubs corresponding to the different ORBs. In this
case, it is necessary for the ORB and language mapping to cooperate to associat
correct stubs with the particular object reference.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a c
sequence of calls. The client code must supply information about the operation to
performed and the types of the parameters being passed (perhaps obtaining it fro
Interface Repository or other run-time source). The nature of the dynamic invocati
interface may vary substantially from one programming language mapping to anot

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter,
will be an interface to the methods that implement each type of object. The interfa
will generally be an up-call interface, in that the object implementation writes routin
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementatio
dynamically for languages such as Smalltalk.
July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-9

2

is,
tion,
the

ic
r
also

s to

tput
e of
age

mic

ices

n
,
to

nd
is

le

for
most
on,
l
ts.
2.1.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That
rather than being accessed through a skeleton that is specific to a particular opera
an object’s implementation is reached through an interface that provides access to
operation name and parameters in a manner analogous to the client side’s Dynam
Invocation Interface. Purely static knowledge of those parameters may be used, o
dynamic knowledge (perhaps determined through an Interface Repository) may be
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameter
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any ou
parameters, or an exception, to the ORB after performing the operation. The natur
the dynamic skeleton interface may vary substantially from one programming langu
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dyna
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses serv
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generatio
and interpretation of object references, method invocation, security of interactions
object and implementation activation and deactivation, mapping object references
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, a
other properties make it difficult for the ORB Core to provide a single interface that
convenient and efficient for all objects. Thus, through Object Adapters, it is possib
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same
all ORBs and does not depend on the object’s interface or object adapter. Because
of the functionality of the ORB is provided through the object adapter, stubs, skelet
or dynamic invocation, there are only a few operations that are common across al
objects. These operations are useful to both clients and implementations of objec
2-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

t the
n
the

e

es

n.

the

is
f

e

B

nted
er

nts.
2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represen
IDL information in a form available at run-time. The Interface Repository informatio
may be used by the ORB to perform requests. Moreover, using the information in
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determin
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routin
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such informatio
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository
a common place to store additional information associated with implementations o
ORB objects. For example, debugging information, administrative control, resourc
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common OR
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be impleme
in routines resident in the clients and implementations. The stubs in the client eith
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clie
July 2002 CORBA, v3.0: Example ORBs 2-11

2

s to

h the

a
e
e
ons,

tual
data

a.

n on
d,
rned

tion
an
at

rmal

en
s

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from client
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate wit
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as
basic service of the underlying operating system. Object references could be mad
unforgeable, reducing the expense of authentication on each request. Because th
operating system could know the location and structure of clients and implementati
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the ac
methods. This assumes that it is possible for a client program to get access to the
for the objects and that the implementation trusts the client not to damage the dat

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocatio
a different object. Invocation of an object involves specifying the object to be invoke
the operation to be performed, and parameters to be given to the operation or retu
from it.

The ORB manages the control transfer and data transfer to the object implementa
and back to the client. In the event that the ORB cannot complete the invocation,
exception response is provided. Ordinarily, a client calls a routine in its program th
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the no
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client th
passes that object reference to the stub routines to initiate an invocation. The stub
2-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

rform

hod
itiate

en a
on
a
and
tring.
have access to the object reference representation and interact with the ORB to pe
the invocation. (See the C Language Mapping specification for additional, general
information on language mapping of object references.)

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the met
being invoked, and performs a sequence of calls to specify the parameters and in
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. Wh
client is also an implementation, it receives object references as input parameters
invocations to objects it implements. An object reference can also be converted to
string that can be stored in files or preserved or communicated by different means
subsequently turned back into an object reference by the ORB that produced the s

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
July 2002 CORBA, v3.0: Structure of an Object Implementation 2-13

2

n-
, as

ays
s. It

ive
le

hat a

data
ion.
procedures for activating and deactivating objects and will use other objects or no
object facilities to make the object state persistent, to control access to the object
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of w
to establish its identity, to create new objects, and to obtain ORB-dependent service
primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definit
about how an object implementation is structured. See the chapters on the Portab
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange t
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the
for the object. Additional parameters are supplied according to the skeleton definit
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Object Implementation

ORB object references

Methods for
Interface A

Library Routines

Object data

Skeleton for
Interface A

Object adapter
routines

U
p-

ca
ll

to
M

et
ho

d

Dynamic
Skeleton

br
2-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

find
f as

e
ides
ly
red
is
ice,
m.

ct
bject
face

ts
sks.
When a new object is created, the ORB may be notified so that it knows where to
the implementation for that object. Usually, the implementation also registers itsel
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to th
ORB and object adapter. For example, although the Portable Object Adapter prov
some persistent data associated with an object (its OID or Object ID), that relative
small amount of data is typically used as an identifier for the actual object data sto
in a storage service of the object implementation’s choosing. With this structure, it
not only possible for different object implementations to use the same storage serv
it is also possible for objects to choose the service that is most appropriate for the

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an obje
implementation to access ORB services such as object reference generation. An o
adapter exports a public interface to the object implementation, and a private inter
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional componen
necessary. Often, an object adapter will maintain its own state to accomplish its ta
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.
July 2002 CORBA, v3.0: Structure of an Object Adapter 2-15

2

e
bject

ce

asy

le to
oes
ge

it is

le,
nds
ld
Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter is implicitly involved in invocation of th
methods, although the direct interface is through the skeletons. For example, the O
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of servi
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for e
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be ab
store them in the object reference for those ORBs that permit it. If the ORB Core d
not provide this feature, the Object Adapter would record the value in its own stora
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For examp
an object-oriented database system may wish to implicitly register its many thousa
of objects without doing individual calls to the Object Adapter. In such a case, it wou

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
2-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

tate.
ions,

here
ct

ces

B

n

be a
ct, or
be

and

ne.

ing

ge

be
may
be impractical and unnecessary for the object adapter to maintain any per-object s
By using an object adapter interface that is tuned towards such object implementat
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that t
be as few as practical. Most object adapters are designed to cover a range of obje
implementations, so only when an implementation requires radically different servi
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most OR
objects with conventional implementations. (See thePortable Object Adapterchapter
for more information.) The intent of the POA, as its name suggests, is to provide a
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can
servant started and ended for a single method call, a separate servant for each obje
a shared servant for all instances of the object type. It allows for groups of objects to
associated by means of being registered with different instances of the POA object
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start o
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapp
is the definition of the Servant type.)

2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide ran
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to
accessible via the ORB. For those object systems that are ORBs themselves, they
be connected to other ORBs through the mechanisms described throughout this
manual.
July 2002 CORBA, v3.0: CORBA Required Object Adapter 2-17

2

eive
ar to

a

ect
in
r

a
red
Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and rec
invocations through the ORB, one approach is to have those object systems appe
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA obj
implementation. An object adapter could be designed for objects that are created
conjunction with the ORB and that are primarily invoked through the ORB. Anothe
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such
case, a more appropriate object adapter might allow objects to be implicitly registe
when they are passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
2-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

OMGIDLSyntaxandSemantics 3
ves
This chapter describes OMG Interface Definition Language (IDL) semantics and gi
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Lexical Conventions” 3-3

“Preprocessing” 3-11

“OMG IDL Grammar” 3-12

“OMG IDL Specification” 3-18

“Module Declaration” 3-20

“Interface Declaration” 3-20

“Value Declaration” 3-27

“Constant Declaration” 3-32

“Type Declaration” 3-36

“Exception Declaration” 3-49

“Operation Declaration” 3-50

“Attribute Declaration” 3-53

“Repository Identity Related Declarations” 3-55

“Event Declaration” 3-57
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 3-1

3

e

ded

ht

ifiers
on

G
this

d by

mat
3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe th
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information nee
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception mig
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL’s lexical conventions is presented in Section 3.2,
“Lexical Conventions,” on page 3-3. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-11. The scope rules for ident
in an OMG IDL specification are described in Section 3.20, “Names and Scoping,”
page 3-67.

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “OM
IDL Grammar,” on page 3-12 and associated semantics is described in the rest of
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constraine
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this for
and their meaning.

“Component Declaration” 3-58

“Home Declaration” 3-63

“CORBA Module” 3-66

“Names and Scoping” 3-67

Table 3-1 IDL EBNF

Symbol Meaning
::= Is defined to be

| Alternatively

Section Title Page
3-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ion.

kens.
unit.

als,

lank)
3.2 Lexical Conventions

This section1 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitut
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of to
Such a sequence of tokens, that is, a file after preprocessing, is called a translation

OMG IDL uses the ASCII character set, except for string literals and character liter
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (b
character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

1. This section is an adaptation ofThe Annotated C++ Reference Manual, Chapter 2; it
differs in the list of legal keywords and punctuation.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description
Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Table 3-1 IDL EBNF (Continued)

Symbol Meaning
July 2002 CORBA, v3.0: Lexical Conventions 3-3

3

Table 3-3 lists the decimal digit characters.

Table 3-4 shows the graphic characters.

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 3-3 Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description
! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

Table 3-2 The 114 Alphabetic Characters (Letters)(Continued)

Char. Description Char. Description
3-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

The formatting characters are shown in Table 3-5.

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ˚ ring above, degree sign

; semicolon plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark m micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde ¥ multiplication sign

division sign

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value
alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

Table 3-4 The 65 Graphic Characters(Continued)

Char. Description Char. Description
July 2002 CORBA, v3.0: Lexical Conventions 3-5

3

nts
o

oken
n.

end
cial
he
ents
d,

re

e 3-3

ly

me
r.
3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comme
(collective, “white space”), as described below, are ignored except as they serve t
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next t
is taken to be the longest string of characters that could possibly constitute a toke

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the
of the line on which they occur. The comment characters //, /*, and */ have no spe
meaning within a // comment and are treated just like other characters. Similarly, t
comment characters // and /* have no special meaning within a /* comment. Comm
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form fee
and newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and undersco
(“_”) characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 3-2 on pag
defines the equivalence mapping of upper- and lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identical
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the sa
identifier for a constant and an interface, for example, produces a compilation erro

For example:

module M {
typedef long Foo;
const long thing = 1;
interface thing { // error: reuse of identifier

void doit (
in Foo foo // error: Foo and foo collide and refer to

different things
);
3-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

tly

age
es

at
s

ces
ewly

nly
ally
readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

};
};

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadverten
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The langu
mapping rules for the renamed IDL identifiers will cause the mapped identifier nam
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention th
ONLY turns off keyword checking. The resulting identifier follows all the other rule
for identifier processing. For example, the identifier_AnIdentifier is treated as if it
wereAnIdentifier .

The following is a non-exclusive list of implications of these rules:

• The underscore does not appear in the Interface Repository.

• The underscore is not used in the DII and DSI.

• The underscore is not transmitted over “the wire.”

• Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {

attribute boolean abstract; // error: abstract collides with
// keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier
};

};

To avoid unnecessary confusion for readers of IDL, it is recommended that interfa
only use the escaped form of identifiers when the unescaped form clashes with a n
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are o
recommended for IDL that expresses legacy interface, or for IDL that is mechanic
generated.
July 2002 CORBA, v3.0: Lexical Conventions 3-7

3

e

e
le,
3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not b
used otherwise, unless escaped with a leading underscore.

Keywords must be written exactly as shown in the above list. Identifiers that collid
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For examp
“boolean ” is a valid keyword; “Boolean ” and “BOOLEAN ” are illegal identifiers.

For example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with

// the keyword boolean;
};

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

Table 3-6 Keywords

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

Table 3-7 Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 3-8 Preprocessor Tokens

! || &&
3-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

n)
be
f
he

C.

l).
l
rd
he
of

elow in
d

• Character

• Floating-point

• String

• Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base te
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence o
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). T
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0X

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x.’
Character literals have typechar .

A character is an 8-bit quantity with a numerical value between 0 and 255 (decima
The value of a space, alphabetic, digit, or graphic character literal is the numerica
value of the character as defined in the ISO Latin-1 (8859.1) character set standa
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). T
value of a null is 0. The value of a formatting character literal is the numerical value
the character as defined in the ISO 646 standard (see Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined b
Table 3-9. Note that escape sequences must be used to represent single quote an
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo
July 2002 CORBA, v3.0: Lexical Conventions 3-9

3

its
sts of
en

by
ral.

e of

nce

not
t is

time

the

n e
th
tion
nd

ter
If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal dig
that are taken to specify the value of the desired character. The escape \xhh consi
the backslash followed by x followed by one or two hexadecimal digits that are tak
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed
one, two, three or four hexadecimal digits. This represents a unicode character lite
Thus the literal “\u002E” represents the unicode period ‘.’ character and the literal
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Because a wide string literal is defined as a sequenc
wide character literals a sequence of \u literals can be used to define a wide string
literal. Attempts to set a char type to a \u defined literal or a string type to a seque
of \u literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is
an octal digit or a hexadecimal digit, respectively. The value of a character constan
implementation dependent if it exceeds that of the largest char.

Wide character literals have anL prefix, for example:

const wchar C1 = L'X';

Attempts to assign a wide character literal to a non-wide character constant or to
assign a non-wide character literal to a wide character constant result in a compile-
diagnostic.

Both wide and non-wide character literals must be specified using characters from
ISO 8859-1 character set.

3.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, a
or E, and an optionally signed integer exponent. The integer and fraction parts bo
consist of a sequence of decimal (base ten) digits. Either the integer part or the frac
part (but not both) may be missing; either the decimal point or the letter e (or E) a
the exponent (but not both) may be missing.

3.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Charac
Literals,” on page 3-9), with the exception of the character with numeric value 0,
surrounded by double quotes, as in “...”.

hexadecimal number \xhh

unicode character \uhhhh

Table 3-9 Escape Sequences(Continued)

Description Escape Sequence
3-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ept

s,

.

ISO

art
base
the

the
on.”

or.
e rest
the
f

rce
nd
the
Adjacent string literals are concatenated. Characters in concatenated strings are k
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quote
after concatenation. Within a string, the double quote character" must be preceded by
a \.

A string literal may not contain the character ‘\0’.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic

Both wide and non-wide string literals must be specified using characters from the
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction p
and a d or D. The integer and fraction parts both consist of a sequence of decimal (
10) digits. Either the integer part or the fraction part (but not both) may be missing;
decimal point (but not the letter d (or D)) may be missing.

3.3 Preprocessing

OMG IDL is preprocessed according to the specification of the preprocessor in
“International Organization for Standardization. 1998. ISO/IEC 14882 Standard for
C++ Programming Language. Geneva: International Organization for Standardizati
The preprocessor may be implemented as a separate process or built into the IDL
compiler.

Lines beginning with # (also called “directives”) communicate with this preprocess
White space may appear before the #. These lines have syntax independent of th
of OMG IDL; they may appear anywhere and have effects that last (independent of
OMG IDL scoping rules) until the end of the translation unit. The textual location o
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a sou
file by placing a backslash character (“\”), immediately before the newline at the e
of the line to be continued. The preprocessor effects the continuation by deleting
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.
July 2002 CORBA, v3.0: Preprocessing 3-11

3

if

y

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-6), a file name as in a#include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
it appeared in the including file, except thatRepositoryId related pragmas are
handled in a special way. The special handling of these pragmas is described in
Section 10.7, “RepositoryIds,” on page 10-64.

Note that whether a particular IDL compiler generates code for included files is an
implementation-specific issue. To support separate compilation, IDL compilers ma
not generate code for included files, or do so only if explicitly instructed.

3.4 OMG IDL Grammar
(1) <specification> ::= <import>* <definition> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”
(4) <interface> ::= <interface_dcl>

| <forward_dcl>
(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>
3-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

(13) <value> ::= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19)<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)

<type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>

“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”
(27) <const_dcl> ::= “const” <const_type>

<identifier> “=” <const_exp>
(28) <const_type> ::= <integer_type>

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>
July 2002 CORBA, v3.0: OMG IDL Grammar 3-13

3

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>
(42) <type_dcl> ::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec> ::= <sequence_type>
3-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } ∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member> +

(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case> +
July 2002 CORBA, v3.0: OMG IDL Grammar 3-15

3

(75) <case> ::= <case_label> + <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{” <enumerator> { “,” <enumerator> } ∗ “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

(83) <array_declarator> ::= <identifier> <fixed_array_size> +

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
(85) <attr_dcl> ::= <readonly_attr_spec>

| <attr_spec>
(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”
(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”

| “(” “)”
(91) <param_dcl> ::= <param_attribute> <param_type_spec>

<simple_declarator>
(92) <param_attribute> ::= “in”

| “out”
| “inout”

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } ∗ “)”

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } ∗ “)”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<positive_int_const> “>”

(97) <fixed_pt_const_type> ::= “fixed”
(98) <value_base_type> ::= “ValueBase”
(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>
3-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ule
(100) <import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>
(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>
(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>

<readonly_attr_declarator>
(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ “,” <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec>
<attr_declarator>

(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator>

 { “,” <simple_declarator> }*
(108) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]

| <set_excep_expr>
(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list> ::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

Note –Grammar rules 1 through 111 with the exception of the last three lines of r
2 constitutes the portion of IDL that is not related to components.

(112) <component> ::= <component_dcl>
| <component_forward_dcl>

(113)<component_forward_dcl>::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

 “{” <component_body> “}”
(115) <component_header> ::= “component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

(116)<supported_interface_spec>::= “supports” <scoped_name>
 { “,” <scoped_name> }*

(117)<component_inheritance_spec>::= “:” <scoped_name>
(118) <component_body> ::= <component_export>*
(119) <component_export> ::= <provides_dcl> “;”

| <uses_dcl> “;”
| <emits_dcl> “;”
| <publishes_dcl> “;”
| <consumes_dcl> “;”
| <attr_dcl> “;”

(120) <provides_dcl> ::= “provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”
(122) <uses_dcl> ::= “uses” [“multiple”]

< interface_type> <identifier>
July 2002 CORBA, v3.0: OMG IDL Grammar 3-17

3

(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header> <home_body>
(127) <home_header> ::= “home” <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]

(128)<home_inheritance_spec> ::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>
(130) <home_body> ::= “{” <home_export>* “}”
(131) <home_export ::= <export>

| <factory_dcl> “;”
| <finder_dcl> “;”

(132) <factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

(134) <event> ::= (<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)

(135) <event_forward_dcl> ::= [“abstract”] “eventtype” <identifier>
(136) <event_abs_dcl> ::= “abstract” “eventtype” <identifier>

[<value_inheritance_spec>]
“{” <export>* “}”

(137) <event_dcl> ::= <event_header> “{” <value_element> * “}”
(138) <event_header> ::= [“custom”] “eventtype”

<identifier> [<value_inheritance_spec>]

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

(1) <specification> ::= <import>* <definition> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”
3-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

rt>.

>.

49

cl>.

n
om

in

n of
ly

ell-
ich
any
he
is
See Section 3.6, “Import Declaration,” on page 3-19, for the specification of <impo

See Section 3.7, “Module Declaration,” on page 3-20, for the specification of
<module>.

See Section 3.8, “Interface Declaration,” on page 3-20, for the specification of
<interface>.

See Section 3.9, “Value Declaration,” on page 3-27, for the specification of <value

See Section 3.10, “Constant Declaration,” on page 3-32, Section 3.11, “Type
Declaration,” on page 3-36, and Section 3.12, “Exception Declaration,” on page 3-
respectively for specifications of<const_dcl> , <type_dcl> , and<except_dcl> .

See Section 3.15, “Repository Identity Related Declarations,” on page 3-55, for
specification of Repository Identity declarations which include <type_id_dcl> and
<type_prefix_dcl>.

See Section 3.16, “Event Declaration,” on page 3-57, for specification of <event>.

See Section 3.17, “Component Declaration,” on page 3-58, for specification of
<component>.

See Section 3.18, “Home Declaration,” on page 3-63, for specification of <home_d

3.6 Import Declaration

The grammar for the import statement is described by the following BNF:

(100) <import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name
denoting an IDL name scope, or a string containing the interface repository ID of a
IDL name scope, i.e., a definition object in the repository whose interface derives fr
CORBA::Container .

The definition of import obviates the need to define the meaning of IDL constructs
terms of “file scopes”. This specification defines the concepts of aspecificationas a
unit of IDL expression. In the abstract, aspecificationconsists of a finite sequence of
ISO Latin-1 characters that form a legal IDL sentence. The physical representatio
the specification is of no consequence to the definition of IDL, though it is general
associated with a file in practice.

Any scoped name that begins with the scope token (“:: ”) is resolved relative to the
global scope of the specification in which it is defined. In isolation, the scope token
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a w
defined set of IDL specifications whose union constitutes the space from within wh
name scopes are imported. By “a well-defined set of IDL specifications,” we mean
identifiable representation of IDL specifications, such as an interface repository. T
specific representation from which name scopes are imported is not specified, nor
July 2002 CORBA, v3.0: OMG IDL Specification 3-19

3

lar
text

ting

uent

.

y-

ed

pes

ny
r

the means by which importing is implemented, nor is the means by which a particu
set of IDL specifications (such as an interface repository) is associated with the con
in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

• The contents of the specified name scope are visible in the context of the impor
specification. Names that occur in IDL declarations within the importing
specification may be resolved to definitions in imported scopes.

• Imported IDL name scopes exist in the same space as names defined in subseq
declarations in the importing specification.

• IDL module definitions may re-open modules defined in imported name scopes

• Importing an inner name scope (i.e., a name scope nested within one or more
enclosing name scopes) does not implicitly import the contents of any of the
enclosing name scopes.

• When a name scope is imported, the names of the enclosing scopes in the full
qualified pathname of the enclosing scope areexposedwithin the context of the
importing specification, but their contents are not imported. An importing
specification may not re-define or re-open a name scope which has been expos
(but not imported) by an import statement.

• Importing a name scope recursively imports all name scopes nested within it.

• For the purposes of this specification, name scopes that can be imported (i.e.,
specified in an import statement) include the following:modules , interfaces ,
valuetypes , andeventtypes .

• Redundant imports (e.g., importing an inner scope and one of its enclosing sco
in the same specification) are disregarded. The union of all imported scopes is
visible to the importing program.

• This specification does not define a particular form for generated stubs and
skeletons in any given programming language. In particular, it does not imply a
normative relationship between units specification and units of generation and/o
compilation for any language mapping.

3.7 Module Declaration

A module definition satisfies the following syntax:

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”

The module construct is used to scope OMG IDL identifiers; see Section 3.19,
“CORBA Module,” on page 3-66 for details.

3.8 Interface Declaration

An interface definition satisfies the following syntax:

(4) <interface> ::= <interface_dcl>
| <forward_dcl>
3-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

in

ame

ces
ce

also

s,
(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_decl> “;”
| <type_prefix_decl> “;”

3.8.1 Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keywordinterface , and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described
the next section.

The<identifier> that names an interface defines a legal type name. Such a type n
may be used anywhere an<identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold referen
to an object, the meaning of a parameter or structure member, which is an interfa
type is as areferenceto an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular”
interfaces, as described in Section 3.8.6, “Abstract Interface,” on page 3-26. They
follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interface
as described in Section 3.8.7, “Local Interface,” on page 3-26. They also follow
different language mapping rules.

3.8.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>
July 2002 CORBA, v3.0: Interface Declaration 3-21

3

23

” on

ype
6.

and
s of
lt of

n,”

rface

ly

t

Each<scoped_name> in an <interface_inheritance_spec> must denote a
previously defined interface. See Section 3.8.5, “Interface Inheritance,” on page 3-
for the description of inheritance.

3.8.3 Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.10, “Constant Declaration,
page 3-32.

• Type declarations, which specify the type definitions that the interface exports; t
declaration syntax is described in Section 3.11, “Type Declaration,” on page 3-3

• Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.12, “Exception
Declaration,” on page 3-49.

• Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.14, “Attribute
Declaration,” on page 3-53.

• Operation declarations, which specify the operations that the interface exports
the format of each, including operation name, the type of data returned, the type
all parameters of an operation, legal exceptions that may be returned as a resu
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.13, “Operation Declaratio
on page 3-50.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the inte
body.

3.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optional
either the keywordabstract or the keywordlocal , followed by the keyword
interface , followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not ye
been seen:

module Example {
interface base; // Forward declaration

// ...
3-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

re
n,

nce

hat
0,

a

re

ore
ing
interface derived : base {}; // Error
interface base {}; // Define base
interface derived : base {}; // OK

};

3.8.5 Interface Inheritance

An interface can be derived from another interface, which is then called abase
interface of the derived interface. A derived interface, like all interfaces, may decla
new elements (constants, types, attributes, exceptions, and operations). In additio
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits refere
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names t
have been inherited; the scope rules for such names are described in Section 3.2
“Names and Scoping,” on page 3-67.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec> .

An interface may be derived from any number of base interfaces. Such use of mo
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface m
than once; it may be an indirect base interface more than once. Consider the follow
example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }
interface E: A, B { ... }; // OK
July 2002 CORBA, v3.0: Interface Declaration 3-23

3

”

ase
ption
e

n or

is

is a
The relationships between these interfaces is shown in Figure 3-1. This “diamond
shape is legal, as is the definition of E on the right.

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a b
interface element is ambiguous if the name is declared as a constant, type, or exce
in more than one base interface. Ambiguities can be resolved by qualifying a nam
with its interface name (that is, using a<scoped_name>). It is illegal to inherit from
two interfaces with the same operation or attribute name, or to redefine an operatio
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 l_1);

};

interface B {
typedef short L1;
L1 opB(in long l);

};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC(in L3 l_3); // all OK no ambiguities

};

References to constants, types, and exceptions are bound to an interface when it
defined (i.e., replaced with the equivalent global<scoped_name> s). This guarantees
that the syntax and semantics of an interface are not changed when the interface
base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {

A

B C

D

A

B C

D

E

3-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

tees

nd

nd

fined

ect

tes
typedef float coord[L]:
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A { }; // what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guaran
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations a
attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct a
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be rede
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thus in

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As a result, all operations attributes that might apply to a particular obj
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attribu
with the same name.

interface A {
void make_it_so();

};

interface B: A {
July 2002 CORBA, v3.0: Interface Declaration 3-25

3

ong

ong

o as

r,

ted
tion

ong
short make_it_so(in long times); // Error: redefinition of make_it_so
};

For a complete summary of allowable inheritance and supporting relationships am
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.6 Abstract Interface

An interface declaration containing the keywordabstract in its header, declares an
abstract interface. The following special rules apply to abstract interfaces:

• Abstract interfaces may only inherit from other abstract interfaces.

• Value types may support any number of abstract interfaces.

See Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for CORBA
implementation semantics associated with abstract interfaces.

For a complete summary of allowable inheritance and supporting relationships am
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.7 Local Interface

An interface declaration containing the keywordlocal in its header, declares a local
interface. An interface declaration not containing the keywordlocal is referred to as
an unconstrained interface. An object implementing a local interfaces is referred t
a local object. The following special rules apply to local interfaces:

• A local interface may inherit from other local or unconstrained interfaces.

• An unconstrained interface may not inherit from a local interface. An interface
derived from a local interface must be explicitly declared local.

• A valuetype may support a local interface.

• Any IDL type, including an unconstrained interface, may appear as a paramete
attribute, return type, or exception declaration of a local interface.

• A local interface is a local type, as is any non-interface type declaration construc
using a local interface or other local type. For example, a struct, union, or excep
with a member that is a local interface is also itself a local type.

• A local type may be used as a parameter, attribute, return type, or exception
declaration of a local interface or of a valuetype.

• A local type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

For a complete summary of allowable inheritance and supporting relationships am
interfaces and valuetypes see Table 3-10 on page 3-32.

See Section 4.3.13, “LocalObject Operations,” on page 4-22 for CORBA
implementation semantics associated with local objects.
3-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

lue

ses

is

of

ype

m

3.9 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed va
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.9.1 Regular Value Type

A regular value type satisfies the following syntax:

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(21) <value_element> ::= <export>

| < state_member> |
| <init_dcl>

3.9.1.1 Value Header

The value header consists of two elements:

1. The value type’s name and optional modifier specifying whether the value type u
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification
described in the next section.

3.9.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition
state members, and initializers for that state.

3.9.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>
{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>

Each<value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.9.5, “Valuet
Inheritance,” on page 3-30 for the description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custo
value.
July 2002 CORBA, v3.0: Value Declaration 3-27

3

nt
either
the
tate

d to

the
ly

be
me

ved
ved

of
e

A valuetype that supports a local interface does not itself becomelocal (i.e.
unmarshalable) as a result of that support.

3.9.1.4 State Members

(22) <state_member> ::= (“public” | “private”)
<type_spec> <declarators> “;”

Each<state_member> defines an element of the state, which is marshaled and se
to the receiver when the value type is passed as a parameter. A state member is
public or private. The annotation directs the language mapping to hide or expose
different parts of the state to the clients of the value type. The private part of the s
is only accessible to the implementation code and the marshaling routines.

A valuetype that has a state member that islocal (i.e. non-marshalable like a local
interface), is itself renderedlocal. That is, such valuetypes behave similar to local
interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities neede
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

3.9.1.5 Initializers

(23) <init_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define
signatures of initializers (or constructors) for non abstract value types. Syntactical
these look like local operation signatures except that they are prefixed with the
keywordfactory , have no return type, and must use only in parameters. There may
any number of factory declarations. The names of the initializers are part of the na
scope of the value type. Initializers defined in a valuetype are not inherited by deri
valuetypes, and hence the names of the initializers are free to be reused in a deri
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way
creating a runtime instance of its type. There is no default initializer. This allows th
definition of IDL value types, which are not intended to be directly instantiated by
client code.

3.9.1.6 Value Type Example

interface Tree {
void print()
3-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ith
ue

an

ave
e.
};

valuetype WeightedBinaryTree {
// state definition

private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};
valuetype WTree: WeightedBinaryTree supports Tree {};

3.9.2 Boxed Value Type

(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and w
a single state member. A shorthand IDL notation is used to simplify the use of val
types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is
error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not h
to create what is in effect an additional namespace that will contain only one nam

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1);
};

};

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
};
interface Bar {
July 2002 CORBA, v3.0: Value Declaration 3-29

3

ction

d
tion.

alue
d.
tion

efer

et

s to
e,”
void doIt (in FooSeq seq);
};

};

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a constru
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be use
subsequent to its initial use and prior to the completion of the boxed value declara

3.9.3 Abstract Value Type

(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“{“ <export>* “}”

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. No <state_member> or <initializers> may be specifie
However, local operations may be specified. Essentially they are a bundle of opera
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.9.4 Value Forward Declaration

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keywordvaluetype followed by an<identifier> that names the value
type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would r
to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not y
been seen.

3.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogou
that used to describe interface inheritance (see Section 3.8.5, “Interface Inheritanc
on page 3-23).
3-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

r
a
nce.

of

mber

nly

nt
y
at it

the
aces

e -

eiving

se.
The name scoping and name collision rules for valuetypes are identical to those fo
interfaces. In addition, no valuetype may be specified as a direct abstract base of
derived valuetype more than once; it may be an indirect abstract base more than o
See Section 3.8.5, “Interface Inheritance,” on page 3-23 for a detailed description
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any nu
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may o
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first eleme
specified in the inheritance list of the value declaration’s IDL. It may be followed b
other abstract values from which it inherits. The interface and abstract interfaces th
supports are listed following thesupports keyword.

While a valuetype may only directly support one interface, it is possible for the
valuetype to support other interfaces as well through inheritance. In this case, the
supported interface must be derived, directly or indirectly, from each interface that
valuetype supports through inheritance. This rule does not apply to abstract interf
that the valuetype supports. For example:

interface I1 { };
interface I2 { };
interface I3: I1, I2 { };

abstract valuetype V1 supports I1 { };
abstract valuetype V2 supports I2 { };
valuetype V3: V1, V2 supports I3 { }; // legal
valuetype V4: V1 supports I2 { }; // illegal

A stateful value that derives from another stateful value may specify that it is
truncatable . This means that it is to “truncate” (see Section 5.2.5.3, “Value instanc
> Value type,” on page 5-5) an instance to be an instance of any of its truncatable
parent (stateful) value types under certain conditions. Note that all the intervening
types in the inheritance hierarchy must be truncatable in order for truncation to a
particular type to be allowed.

Because custom values require an exact type match between the sending and rec
context,truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything el
July 2002 CORBA, v3.0: Value Declaration 3-31

3

These rules are summarized in the following table:

3.10 Constant Declaration

This section describes the syntax for constant declarations.

3.10.1 Syntax

The syntax for a constant declaration is:

(27) <const_dcl> ::= “const” <const_type>
<identifier> “=” <const_exp>

(28) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

Table 3-10 Allowable Inheritance Relationships

May inherit
from:

Interface Abstract
Interface

Abstract
Value Stateful Value

Boxed
value

Interface multiple multiple no no no

Abstract
Interface

no multiple no no no

Abstract Value
supports
single

supports
multiple

multiple no no

Stateful Value
supports
single

supports
multiple

multiple single (may be
truncatable)

no

Boxed Value no no no no no
3-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

o

an
the
(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>

3.10.2 Semantics

The<scoped_name> in the<const_type> production must be a previously defined
name of an<integer_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet_type> , or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned t
integer type (short , long , long long) constants. Only positive integer values can be
assigned to unsigned integer type constants. If the value of the right hand side of
integer constant declaration is too large to fit in the actual type of the constant on
left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

 const octet o = -54;

it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point type (float , double , long double) constants. If the value of
the right hand side is too large to fit in the actual type of the constant to which it is
being assigned it shall be flagged as a compile time error.
July 2002 CORBA, v3.0: Constant Declaration 3-33

3

to
nd
de,

e.

eral

r

s
n,
Fixed point literals have fixed point values. Only fixed point values can be assigned
fixed point type constants. If the fixed point value in the expression on the right ha
side is too large to fit in the actual fixed point type of the constant on the left hand si
then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of thes
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant islong or unsigned long , then each subexpression
of the associated constant expression is treated as anunsigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of typeunsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant islong long or unsigned long long , then each
subexpression of the associated constant expression is treated as anunsigned long
long by default, or a signedlong long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant isdouble , then each subexpression of the
associated constant expression is treated as adouble. It is an error if any
subexpression value exceeds the precision ofdouble .

If the type of a floating-point constant islong double , then each subexpression of the
associated constant expression is treated as along double . It is an error if any
subexpression value exceeds the precision oflong double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point lit
has the apparent number of total and fractional digits. For example,0123.450d is
considered to befixed<7,3> and3000.00d is fixed<6,2> . Prefix operators do not
affect the precision; a prefix+ is optional, and does not change the result. The uppe
bounds on the number of digits and scale of the result of an infix expression,
fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

A quotient may have an arbitrary number of decimal places, denoted by a scale ofinf.
The computation proceeds pairwise, with the usual rules for left-to-right associatio
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf , sinf>
3-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

n
ted.

h it
re 2’s

on
e

; if

ted
.

ted
ts.

ft
fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation the
proceeds as one literal operand of the next pair of fixed-point literals to be compu

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are
applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to whic
is applied should be generated. For the purposes of such expressions, the values a
complement numbers. As such, the complement can be generated as follows:

The “%” binary operator yields the remainder from the division of the first expressi
by the second. If the second operand of “%” is 0, the result is undefined; otherwis

 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative
not, the sign of the remainder is implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shif
left the number of bits specified by the right operand, with 0 fill for the vacated bits
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shif
right the number of bits specified by the right operand, with 0 fill for the vacated bi
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the le
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

 const octet O1 = 0x1;

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
July 2002 CORBA, v3.0: Constant Declaration 3-35

3

rror.

he
mes

one

e-

ata
 const long L = 3;
 const octet O2 = 5 + L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time e

An enum constant can only be defined using a scoped name for the enumerator. T
scoped name is resolved using the normal scope resolution rules Section 3.20, “Na
and Scoping,” on page 3-67. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {
enum Size { small, medium, large };

};
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote
of the enumerators defined for the enumerated type of the constant. For example:

const Color col = red; // is OK but
const Color another = M::medium; // is an error

3.11 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C languag
like declarations that associate an identifier with a type. OMG IDL uses thetypedef
keyword to associate a name with a data type; a name is also associated with a d
type via thestruct , union , enum , andnative declarations; the syntax is:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

(44) <type_spec> ::= <simple_type_spec>
| <constr_type_spec>

(45) <simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
3-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

sign
cted
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } ∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type
introduced by an interface declaration (<interface_dcl> - see Section 3.8, “Interface
Declaration), a value declaration (<value_dcl> , <value_box_dcl> or
<abstract_value_dcl> - see Section 3.9, “Value Declaration) or a type declaration
(<type_dcl> - see Section 3.11, “Type Declaration). Note that exceptions are not
considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to as
data types to operation parameters. The next sections describe basic and constru
type specifiers.

3.11.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type> ::= “float”
| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
July 2002 CORBA, v3.0: Type Declaration 3-37

3

age

ion.
may
al

t 15

n.

e-
des a

is
to
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate langu
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocat
The invocation mechanism (client stub, dynamic invocation engine, and skeletons)
signal an exception condition to the client if an attempt is made to convert an illeg
value. The standard system exceptions that are to be raised in such situations are
defined in Section 4.12, “Exceptions,” on page 4-63.

3.11.1.1 Integer Types

OMG IDL integer types areshort , unsigned short , long , unsigned long , long
long andunsigned long long , representing integer values in the range indicated
below in Table 3-11.

3.11.1.2 Floating-Point Types

OMG IDL floating-point types arefloat , double and long double . Thefloat type
represents IEEE single-precision floating point numbers; thedouble type represents
IEEE double-precision floating point numbers.Thelong double data type represents
an IEEE double-extended floating-point number, which has an exponent of at leas
bits in length and a signed fraction of at least 64 bits. SeeIEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specificatio

3.11.1.3 Char Type

OMG IDL defines achar data type that is an 8-bit quantity that (1) encodes a singl
byte character from any byte-oriented code set, or (2) when used in an array, enco
multi-byte character from a multi-byte code set. In other words, an implementation
free to use any code set internally for encoding character data, though conversion
another form may be required for transmission.

Table 3-11 Range of integer types

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
3-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

tation
git
nd

a
ional

ter
y for
ired

n

pe.

n

The ISO 8859-1 (Latin1) character set standard defines the meaning and represen
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, di
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, a
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example,
character may be converted to and from the appropriate representation in internat
character sets.

3.11.1.4 Wide Char Type

OMG IDL defines awchar data type that encodes wide characters from any charac
set. As with character data, an implementation is free to use any code set internall
encoding wide characters, though, again, conversion to another form may be requ
for transmission. The size ofwchar is implementation-dependent.

3.11.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of the
valuesTRUE andFALSE .

3.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversio
when transmitted by the communication system.

3.11.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL ty

An any logically contains aTypeCode (see Section 4.11, “TypeCodes,” on
page 4-53) and a value that is described by theTypeCode . Each IDL language
mapping provides operations that allow programers to insert and access theTypeCode
and value contained in an any.

3.11.2 Constructed Types

Structs , unions andenums are the constructed types. Their syntax is presented i
this section:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
July 2002 CORBA, v3.0: Type Declaration 3-39

3

o

e

ield

y

| “native” <simple_declarator>
| <constr_forward_decl>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(99) <constr_forward_decl> ::= “struct” <identifier>
| “union” <identifier>

3.11.2.1 Structures

The syntax forstruct type is

(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member> +

(71) <member> ::= <type_spec> <declarators> “;”

The<identifier> in <struct_type> defines a new legal type. Structure types may als
be named using atypedef declaration.

Name scoping rules require that the member declarators in a particular structure b
unique. The value of astruct is the value of all of its members.

3.11.2.2 Discriminated Unions

The discriminatedunion syntax is:

(72) <union_type> ::= “union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case> +

(75) <case> ::= <case_label> + <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the Cunion andswitch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag f
that determines which union member to use for the current instance of a call. The
<identifier> following theunion keyword defines a new legal type. Union types ma
also be named using atypedef declaration. The<const_exp> in a <case_label>
must be consistent with the<switch_type_spec> . A default case can appear at most
once. The<scoped_name> in the <switch_type_spec> production must be a
previously definedinteger , char , boolean or enum type.
3-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

lar

he

h

e

tion
ven
ype.

ent.

P or
d

,
he

ers
ion

e a
ted
Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules require that the element declarators in a particu
union be unique. If the<switch_type_spec> is an<enum_type> , the identifier for
the enumeration is in the scope of the union; as a result, it must be distinct from t
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together wit
one of the following:

• If the discriminator value was explicitly listed in acase statement, the value of the
element associated with thatcase statement;

• If a defaultcase label was specified, the value of the element associated with th
defaultcase label;

• No additional value.

The values of the constant expressions for the case labels of a single union defini
must be distinct. A union type can contain a default label only where the values gi
in the non-default labels do not cover the entire range of the union's discriminant t

Access to the discriminator and the related element is language-mapping depend

Note – While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in a union definition whose discriminator type ischar , not all of these
characters are present in all transmission code sets that may be negotiated by GIO
in all native code sets that may be used by implementation language compilers an
runtimes. When an attempt is made to marshal to CDR aunion whose discriminator
value ofchar type is not available in the negotiated transmission code set, or to
demarshal from CDR aunion whose discriminator value ofchar type is not available
in the native code set, aDATA_CONVERSION system exception is raised. Therefore
to ensure portability and interoperability, care must be exercised when assigning t
<case_label> for a union member whose discriminator type ischar . Due to these
issues, use ofchar types as the discriminator type forunion s is not recommended.

3.11.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via memb
that have a sequence type. The element type of a recursive sequence struct or un
member must identify a struct, union, or valuetype. (A valuetype is allowed to hav
member of its own type either directly or indirectly through a member of a construc
type—see Section 3.9.1.6, “Value Type Example,” on page 3-28.) For example, the
following is legal:

struct Foo {
long value;
sequence<Foo> chain; // Deprecated (see Section 3.11.6)

}

July 2002 CORBA, v3.0: Type Declaration 3-41

3

s
.
ymous

pe

is

st

re

rsive
See Section 3.11.3.1, “Sequences,” on page 3-44 for details of thesequence template
type.

IDL supports recursive types via a forward declaration for structures and unions (a
well as for valuetypes—see Section 3.9.1.6, “Value Type Example,” on page 3-28)
Because anonymous types are deprecated (see Section 3.11.6, “Deprecated Anon
Types,” on page 3-47), the previous example is better written as:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;
FooSeq chain;

};

The forward declaration for the structure enables the definition of the sequence ty
FooSeq , which is used as the type of the recursive member.

Forward declarations are legal for structures and unions.A structure or union type
termed incomplete until its full definition is provided; that is, until the scope of the
structure or union definition is closed by a terminating "}". For example:

struct Foo; // Introduces Foo type name,
// Foo is incomplete now
// ...

struct Foo {
// ...

}; // Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union mu
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if this rule is violated. Multiple forward declarations of the same structu
or union are legal.

If a recursive structure or union member is used, sequence members that are recu
must refer to an incomplete type currently under definition. For example

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Bar {

long value;
FooSeq chain; //Illegal, Foo is not an enclosing struct or union

};

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define incomplete union

case 0:
3-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

A

ence,
long l_mem;
case 1:

struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing

// incomplete type
} s_mem;

};

An incomplete type can only appear as the element type of a sequence definition.
sequence with incomplete element type is termed anincomplete sequence type:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // incomplete

An incomplete sequence type can appear only as the element type of another sequ
or as the member type of a structure or union definition. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // OK
typedef sequence<FooSeq> FooTree; // OK

interface I {
FooSeq op1(); // Illegal, FooSeq is incomplete
void op2(// Illegal, FooTree is incomplete

in FooTree t
);

};

struct Foo { // Provide definition of Foo
long l_mem;
FooSeq chain; // OK
FooTree tree; // OK

};

interface J {
FooSeq op1(); // OK, FooSeq is complete
void op2(

in FooTree t // OK, FooTree is complete
);

};

Compilers shall issue a diagnostic if this rule is violated.

3.11.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

(78) <enum_type> ::= “enum” <identifier>
“{” <enumerator> { “,” <enumerator> } ∗ “}”

(79) <enumerator> ::= <identifier>
July 2002 CORBA, v3.0: Type Declaration 3-43

3

a

ation.
d

a

he
ence
ce is

a
-

be

For

g.”
e the
n.
A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering rel
The <identifier> following the enum keyword defines a new legal type. Enumerate
types may also be named using atypedef declaration.

3.11.3 Template Types

The template types are:

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

3.11.3.1 Sequences

OMG IDL defines the sequence typesequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and
length (which is determined at run time).

The syntax is:

(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of t
sequence. If a positive integer constant is specified for the maximum size, the sequ
is termed a bounded sequence. If no maximum size is specified, size of the sequen
unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as
field in a structure or union), the length of the sequence must be set in a language
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type.
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of lon
Note that for nested sequence declarations, white space must be used to separat
two “>” tokens ending the declaration so they are not parsed as a single “>>” toke
3-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

e,
n),
e

tive

uilt-in
pe
be

null.
ar
d

t
ber
ays

e
t

o

3.11.3.2 Strings

OMG IDL defines the string typestring consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any typ
prior to passing a string as a function argument (or as a field in a structure or unio
the length of the string must be set in a language-mapping dependent manner. Th
syntax is:

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a posi
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special b
functions or standard library functions for string manipulation. A separate string ty
may permit substantial optimization in the handling of strings compared to what can
done with sequences of general types.

3.11.3.3 Wstrings

Thewstring data type represents a sequence of wchar, except the wide character
The type wstring is similar to that of type string, except that its element type is wch
instead of char. The actual length of a wstring is set at run-time and, if the bounde
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

3.11.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significan
digits. The scale factor is a non-negative integer less than or equal to the total num
of digits (note that constants with effectively negative scale, such as 10000, are alw
permitted).

The fixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then th
IDL mapping for that language will provide a fixed point data type. Applications tha
use the IDL fixed point type across multiple programming languages must take int
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed type is:

(96) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<positive_int_const> “>”
July 2002 CORBA, v3.0: Type Declaration 3-45

3

es

d as

y

pe
r.

r to

the

ions.
ing
only

t

(97) <fixed_pt_const_type> ::= “fixed”

3.11.4 Complex Declarator

3.11.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit siz
for each dimension.

The syntax for arrays is:

(83) <array_declarator> ::= <identifier> <fixed_array_size> +

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passe
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an arra
index as a parameter may yield incorrect results.

3.11.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque ty
whose representation is specified by the language mapping for that object adapte

The syntax is:

(42) <type_dcl> ::= “native” <simple_declarator>
(51) <simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is simila
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how
native type is mapped into that programming language.

A native type may be used only to define operation parameters, results and except
If a native type is used for an exception, it must be mapped to a type in a programm
language that can be used as an exception. Native type parameters are permitted
in operations oflocal interface s orvaluetype s. Any attempt to transmit a value of a
native type in a remote invocation may raise theMARSHAL standard system
exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in tha
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
3-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

r
f

s to
to

ple:

ef to
struct

ule

ption,
Object activate_object(in Servant x);
};

};

The IDL type Servant would map toHypotheticalObjectAdapter::Servant in C++
and theactivate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ typeHypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.

Note – The native type declaration is provided specifically for use in object adapte
interfaces, which require parameters whose values are concrete representations o
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapter
define new primitive types without requiring changes to the OMG IDL language or
OMG IDL compiler.

3.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For exam

struct Foo {
long value;
sequence<Foo> chain; // Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and use a typed
name such types instead. Compilers need not issue a warning if a deprecated con
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous
types.

Anonymous bounded string and bounded wide string types are deprecated. This r
affects constant definitions, attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exce
and valuetype member declarations. For example

const string<5> GREETING = “Hello”; // Deprecated

interface Foo {
readonly attribute wstring<5> name; // Deprecated
wstring<5> op(in wstring<5> param); // Deprecated
July 2002 CORBA, v3.0: Type Declaration 3-47

3

s,
tions,
};
typedef sequence<wstring<5> > WS5Seq; // Deprecated
typedef wstring<5> NameVector [10]; // Deprecated
struct A {

wstring<5> mem; // Deprecated
};
// Anonymous member type in unions, exceptions,
// and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {

readonly attribute ShortWName name;
ShortWName op(in ShortWName param);

};
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {

GreetingType mem;
};

Anonymous fixed-point types are deprecated. This rule affects attribute declaration
return value and parameter type declarations, sequence and array element declara
and structure, union, exception, and valuetype member declarations.

struct Foo {
fixed<10,5> member; // Deprecated

};

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {

MyType member;
};

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {
case 1:

long array_mem[10]; // Deprecated
case 2:

sequence<long> seq_mem; // Deprecated
case 3:

string<5> bstring_mem;
};
3-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

r a

le is

ay
This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {

case 1:
LongArray array_mem;

case 2:
LongSeq seq_mem;

case 3:
ShortName bstring_mem;

};

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;
typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, fo
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following examp
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long l_mem;
double d_mem;

} bar_mem_1; // OK, not anonymous
Bar bar_mem_2; // OK, not anonymous

};
typedef sequence<Foo::Bar> FooBarSeq; // Scoped names are OK

3.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which m
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
July 2002 CORBA, v3.0: Exception Declaration 3-49

3

e
ich

e
d, no

e

tax

n

a

text
ions
Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the<member>
in its declaration). If an exception is returned as the outcome to a request, then th
value of the exception identifier is accessible to the programmer for determining wh
particular exception was raised.

If an exception is declared with members, a programmer will be able to access th
values of those members when an exception is raised. If no members are specifie
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-tim
errors, which may occur during the execution of a request. These standard system
exceptions are documented in Section 4.12, “Exceptions,” on page 4-63.

3.13 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syn
is:

(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operatio
attributes are described in Section 3.13.1, “Operation Attribute,” on page 3-51.

• The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specify thevoid
type.

• An identifier that names the operation in the scope of the interface in which it is
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.13.2, “Parameter
Declarations,” on page 3-51.

• An optional raises expression that indicates which exceptions may be raised as
result of an invocation of this operation. Raises expressions are described in
Section 3.13.3, “Raises Expressions,” on page 3-52.

• An optional context expression that indicates which elements of the request con
may be consulted by the method that implements the operation. Context express
are described in Section 3.13.4, “Context Expressions,” on page 3-53.
3-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

is

t

m

n
rns

tax:

e

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.13.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute
optional. The syntax for its specification is as follows:

(88) <op_attribute> ::= “oneway”

When a client invokes an operation with theoneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effor
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify avoid
return type. An operation defined with theoneway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard syste
exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if a
exception is raised; the semantics are exactly-once if the operation invocation retu
successfully.

3.13.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syn

(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”
| “(” “)”

(91) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

(92) <param_attribute> ::= “in”
| “out”
| “inout”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which th
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.
July 2002 CORBA, v3.0: Operation Declaration 3-51

3

and

ly

, the

hese
It is expected that an implementation willnot attempt to modify anin parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result
any out and inout parameters are undefined.

3.13.3 Raises Expressions

There are two kinds of raises expressions as described in this section.

3.13.3.1 Raises Expression

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation or accessing (invoking the _get operation of) a readon
attribute. The syntax for its specification is as follows:

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } ∗ “)”

The <scoped_name> s in theraises expression must be previously defined
exceptions or native types. If a native type is used as an exception for an operation
operation must appear in either a local interface or a valuetype.

In addition to any operation-specific exceptions specified in theraises expression,
there are a standard set of system exceptions that may be signalled by the ORB. T
standard system exceptions are described in Section 4.12.3, “Standard System
Exception Definitions,” on page 4-66. However, standard system exceptions maynot be
listed in araises expression.

The absence of araises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

3.13.3.2 getraises and setraises Expressions

getraises andsetraises expressions specify which exceptions may be raised as a
result of an invocation of the accessor (_get) and a mutator (_set) functions of an
attribute. The syntax for its specification is as follows:

(108) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list ::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

The <scoped_name> s in thegetraises andsetraises expressions must be
previously defined exceptions.
3-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

d by
stem

n

he
s:

ed as
of
e of
In addition to any attribute-specific exceptions specified in thegetraises and
setraises expressions, there are a standard set of exceptions that may be signalle
the ORB. These standard exceptions are described in Section 4.12.3, “Standard Sy
Exception Definitions,” on page 4-66. However, standard exceptions maynot be listed
in a getraises or setraises expression.

The absence of agetraises or setraises expression on an attribute implies that there
are no accessor-specific or mutator-exceptions respectively. Invocations of such a
accessor or mutator are still liable to receive one of the standard exceptions.

Note – The exceptions associated with the accessor operation corresponding to a
readonly attribute is specified using a simpleraises expression as specified in
Section 3.13.3.1, “Raises Expression,” on page 3-52. Thegetraises andsetraises
expressions are used only inattribute s that are notreadonly .

3.13.4 Context Expressions

A context expression specifies which elements of the client’s context may affect t
performance of a request by the object. The syntax for its specification is as follow

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } ∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contextduring request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is a non-empty string. If the character '*' appears in
string_literal , it must appear only once, as the last character ofstring_literal , and
must be preceded by one or more characters other than '*'.

The mechanism by which a client associates values with the context identifiers is
described in Section 4.6, “Context Object,” on page 4-32.

3.14 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defin
part of an interface. An attribute definition is logically equivalent to declaring a pair
accessor functions; one to retrieve the value of the attribute and one to set the valu
the attribute.

The syntax forattribute declaration is:

(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>
July 2002 CORBA, v3.0: Attribute Declaration 3-53

3

3-7:

name
(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>
| <simple_declarator>

{ “,” <simple_declarator> }*
(106) <attr_spec> ::= “attribute” <param_type_spec>

<attr_declarator>
(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
 { “,” <simple_declarator> }*

The optionalreadonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_’s is removed by application of the
Escaped Identifier rule described in Section 3.2.3.1, “Escaped Identifiers,” on page

• • •
float __get_radius ();
void __set_radius (in float r);
material_t __get_material ();
void __set_material (in material_t m);
position_t __get_position ();
• • •

The actual accessor function names are language-mapping specific. The attribute
is subject to OMG IDL’s name scoping rules; the accessor function names are
guaranteednot to collide with any legal operation names specifiable in OMG IDL.

Attributes are inherited. An attribute namecannotbe redefined to be a different type.
See Section 3.19, “CORBA Module,” on page 3-66 for more information on
redefinition constraints and the handling of ambiguity.
3-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

d

ed
3.15 Repository Identity Related Declarations

Two constructs that are provided for specifying information related to Repository I
are described in this section.

3.15.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:

(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• the keywordtypeid

• a <scoped_name>that denotes the named IDL construct to which the repository
identifier is assigned

• a string literal that must contain a valid repository identifier value

The<scoped_name>is resolved according to normal IDL name resolution rules, bas
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

• module

• interface

• component

• home

• facet

• receptacle

• event sink

• event source

• finder

• factory

• event type

• value type

• value type member

• value box

• constant

• typedef

• exception

• attribute

• operation

• enum

• local
July 2002 CORBA, v3.0: Attribute Declaration 3-55

3

ype

s
n the

n.
ss

ry
d

in

ed

ed

is
at

ng

ers
the
The value of the string literal is assigned as the repository identity of the specified t
definition. This value will be returned as theRepositoryId by the interface repository
definition object corresponding to the specified type definition. Language mapping
constructs, such as Java helper classes, that return repository identifiers shall retur
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definitio
An attempt to redefine the repository identity for a type definition is illegal, regardle
of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the reposito
identifier for the type definition shall be an IDL format repository identifier, as define
in Section 10.7.1, “OMG IDL Format,” on page 10-65.

3.15.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:

(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• the keywordtypeprefix

• a <scoped_name>that denotes an IDL name scope to which the prefix applies

• a string literal that must contain the string to be prefixed to repository identifiers
the specified name scope

The<scoped_name>is resolved according to normal IDL name resolution rules, bas
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

• module

• interface (including abstract or local interface)

• value type (including abstract, custom, and box value types)

• event type (including abstract and custom value types)

• specification scope (::)

The specified string is prefixed to the body of all repository identifiers in the specifi
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier,” we mean that the specified string
inserted into the default IDL format repository identifier immediately after the form
name and colon (“IDL:”) at the beginning of the identifier. A forward slash
(‘/’) character is inserted between the end of the specified string and the remaini
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly
assigned by a typeid declaration. The prefix is applied to all such repository identifi
in the specified name scope, including the identifier of the construct that constitutes
name scope.
3-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

t
t

e

e

.1.2,
ers).

vent
d.
tion
3.16 Event Declaration

Event type is a specialization of value type dedicated to asynchronous componen
communication. There are several kinds of event type declarations: “regular” even
types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134) <event> ::= (<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)

3.16.1 Regular Event Type

A regular event type satisfies the following syntax:

(137) <event_dcl> ::= <event_header> “{” <value_element> * “}”
(138) <event_header> ::= [“custom”] “eventtype”

<identifier> [<value_inheritance_spec>]

3.16.1.1 Event Header

The event header consists of two elements:

• The event type’s name and optional modifier specifying whether the event typ
uses custom marshaling.

• An optional value inheritance specification described in Section 3.9.1.3, “Valu
Inheritance Specification,” on page 3-27.

3.16.1.2 Event Element

An event can contain all the elements that a value can as described in Section 3.9
“Value Element,” on page 3-27 (i.e., attributes, operations, initializers, state memb

3.16.2 Abstract Event Type

(136) <event_abs_dcl> ::= “abstract” “eventtype” <identifier>
[<value_inheritance_spec>]
“{” <export>* “}”

Event types may also be abstract. They are called abstract because an abstract e
type may not be instantiated. No <state_member> or <initializers> may be specifie
However, local operations may be specified. Essentially they are a bundle of opera
signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.

3.16.3 Event Forward Declaration

(135) <event_forward_dcl> ::= [“abstract”] “eventtype” <identifier>
July 2002 CORBA, v3.0: Attribute Declaration 3-57

3

et

tly
on,”
). In
ype,

it

are

nent

n.
A forward declaration declares the name of an event type without defining it. This
permits the definition of event types that refer to each other. The syntax consists
simply of the keywordeventtype followed by an<identifier> that names the event
type.

Multiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type whose definition has not y
been seen.

3.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is direc
analogous to value inheritance (see Section 3.9.1.3, “Value Inheritance Specificati
on page 3-27 for a detailed description of the analogous properties for valuetypes
addition, an event type could inherit from a single immediate base concrete event t
which must be the first element specified in the inheritance list of the event
declaration’s IDL. It may be followed by other abstract values or events from which
inherits.

3.17 Component Declaration

3.17.1 Component

A component declaration describes an interface for a component. The salient
characteristics of a component declaration are as follows:

• A component declaration specifies the name of the component.

• A component declaration may specify a list of interfaces that the component
supports.

• Component declarations support single inheritance from other component
definitions.

• Component declarations may include in its body any attribute declarations that
legal in normal interface declarations, together with declarations of facets and
receptacles of the component, and the event sources and sinks that the compo
defines.

3.17.1.1 Syntax

The syntax for declaring a component is as follows:

(112) <component> ::= <component_dcl>
| <component_forward_dcl>

(113)<component_forward_dcl>::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

 “{” <component_body> “}”

<component_forward_dcl> is described in Section 3.17.1.2, “Forward Declaratio
3-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

et
<component_header> is described in Section 3.17.2, “Component Header.

<component_body> is described in Section 3.17.3, “Component Body.

3.17.1.2 Forward Declaration

A forward declaration declares the name of a component without defining it. This
permits the definition of components that refer to each other. The syntax consists
simply of the keywordcomponent followed by an<identifier> that names the
component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component whose definition has not y
been seen.

3.17.2 Component Header

A <component_header> declares the primary characteristics of a component
interface.

3.17.2.1 Syntax

The syntax for declaring a component header is as follows:

(115) <component_header> ::= “component” <identifier>
[<component_inheritance_spec>]
[<supported_interface_spec>]

(116)<supported_interface_spec>::= “supports” <scoped_name>
 { “,” <scoped_name> }*

(117)<component_inheritance_spec>::= “:” <scoped_name>

A component header comprises the following elements:

• the keywordcomponent.

• an <identifier> that names the component type.

• an optional<inheritance_spec>, consisting of a colon and a single<scoped_name>
that must denote a previously-defined component type.

• an optional<supported_interface_spec>that must denote one or more previously-
defined IDL interfaces.

3.17.2.2 Supported interfaces

A component may optionally support one or more interfaces. When a component
definition header includes a supports clause as follows:

component < component_name> supports <interface_name> { … };

For further detail see theCORBA Componentsspecification, chapter 1, section 1.4.5
(Supported Interfaces).
July 2002 CORBA, v3.0: Attribute Declaration 3-59

3

ase

nent

nent
3.17.2.3 Component Inheritance

A component may optionally inherit from a component that supports one or more
interfaces. This is specified by using the inheritance construct that looks like:

component <component_name> : <component_name> { ... };

The following rules apply to component inheritance:

• A derived component type may not directly support an interface.

• The interface for a derived component type is derived from the interface of its b
component type.

• A component type may have at most one base component type.

• The features of a component that are inherited by the derived component are:

• the provides statements

• the uses statements

• the emits statements

• the publishes statements

• the consumes statements

• attributes

See Section 3.17.2.3, “Component Inheritance,” on page 3-60 for details of compo
inheritance.

3.17.3 Component Body

(118) <component_body> ::= <component_export>*
(119) <component_export> ::= <provides_dcl> “;”

| <uses_dcl> “;”
| <emits_dcl> “;”
| <publishes_dcl> “;”
| <consumes_dcl> “;”
| <attr_dcl> “;”

A component forms a naming scope, nested within the scope in which the compo
is declared. A component body can contain the following kinds of declarations:

• Facet declarations (provides)

• Receptacle declarations (uses)

• Event source declarations (emits or publishes)

• Event sink declarations (consumes)

• Attribute declarations (attribute and readonly attribute)

These declarations and their meanings are described in detail in theCORBA
Componentsspecification, Component Model chapter, “Facets and Navigation”
through “Events” sections.
3-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

orm
nt

the

ich
rence
alled

a

rent

e

3.17.3.1 Facets and Navigation

A component type may provide several independent interfaces to its clients in the f
of facets. Facets are intended to be the primary vehicle through which a compone
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

3.17.3.1.1 Syntax

A facet is declared with the following syntax:

(120) <provides_dcl> ::= “provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”

The interface type shall be either the keywordObject , or a scoped name that denotes
a previously-declared interface type which is not a component interface, i.e., is not
interface corresponding to a component definition. The identifier names the facet
within the scope of the component, allowing multiple facets of the same type to be
provided by the component.

See theCORBA Componentsspecification, Component Model chapter, “Facets and
Navigation” for further details.

3.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon wh
the component may invoke operations. When a component accepts an object refe
in this manner, the relationship between the component and the referent object is c
a connection; they are said to beconnected. The conceptual point of connection is
called areceptacle. A receptacle is an abstraction that is concretely manifested on
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

3.17.3.2.2 Syntax

The syntax for describing a receptacle is as follows:

(122) <uses_dcl> ::= “uses” [“multiple”]
< interface_type> <identifier>

A receptacle declaration comprises the following elements:

• The keyworduses .

• The optional keywordmultiple . The presence of this keyword indicates that the
receptacle may accept multiple connections simultaneously, and results in diffe
operations on the component’s associated interface.

• An <interface_type>, which must be either the keywordObject or a scoped name
that denotes the interface type that the receptacle will accept. The scoped nam
must denote a previously-defined non-component interface type.

• An <identifier> that names the receptacle in the scope of the component.
July 2002 CORBA, v3.0: Attribute Declaration 3-61

3

”

.

annel

nent
See theCORBA Componentsspecification, Component Model chapter, “Receptacles
section for further details.

3.17.4 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources

There are two categories of event sources,publishersandemitters. Both are
implemented using event channels supplied by the container. An emitter can be
connected to at most one consumer. A publisher can be connected through the ch
to an arbitrary number of consumers, who are said tosubscribeto the publisher event
source. A component may exhibit zero or more emitters and publishers.

3.17.4.1 Publishers

3.17.4.1.3 Syntax

The syntax for an event publisher is as follows:

(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>

A publisher declaration consists of the following elements:

• the keywordpublishes

• a <scoped_name>that denotes a previously-defined event type

• an<identifier> that names the publisher event source in the scope of the compo

See theCORBA Componentsspecification, Component Model chapter, “Publisher”
section for further details.

3.17.4.2 Emitters

3.17.4.2.4 Syntax

The syntax for an emitter declaration is as follows:

(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:

• the keywordemits

• a <scoped_name>that denotes a previously-defined event type

• an <identifier> that names the event source in the scope of the component.

See theCORBA Componentsspecification, Component Model chapter, “Emitters”
section for further details.
3-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ified
t
he
3.17.5 Event Sinks

An event sink embodies the potential for the component to receive events of a spec
type. An event sink is, in essence, a special-purpose facet whose type is an even
consumer. External entities, such as clients or configuration services, can obtain t
reference for the consumer interface associated with the sink.

A component may exhibit zero or more consumers.

See theCORBA Componentsspecification, Component Model chapter, “Event Sinks”
section for further details.

3.17.5.1 Syntax

The syntax for an event sink declaration is as follows:

(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>

An event sink declaration contains the following elements:

• the keywordconsumes

• a <scoped_name>that denotes a previously-defined event type

• an <identifier> that names the event sink in the component’s scope

See theCORBA Componentsspecification, Component Model chapter, “Event Sinks”
section for further details.

3.17.6 Basic and Extended Components

A component that satisfies the following properties is known as aBasic Component:

• It does not inherit from another component.

• Its declaration does not contain any provides statements.

• Its declaration does not contain any uses statements.

• Its declaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of aBasic Componentfits the pattern:

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr_dcl> “;”}* “}”

A component that is not aBasic Componentis referred to as anExtended Component.

3.18 Home Declaration

A home declaration describes an interface for managing instances of a specified
component type.
July 2002 CORBA, v3.0: Attribute Declaration 3-63

3

ces
rom

ce

ect
3.18.1 Home

The salient characteristics of a home declaration are as follows:

• A home declaration must specify exactly one component type that it manages.
Multiple homes may manage the same component type.

• A home declaration may specify a primary key type. Primary keys are values
assigned by the application environment that uniquely identify component instan
managed by a particular home. Primary key types must be value types derived f
Components::PrimaryKeyBase . There are more specific constraints placed on
primary key types, which are specified in theCORBA Componentsspecification,
Component Model chapter, “Primary key type constraints” section.

• Home declarations may include any declarations that are legal in normal interfa
declarations.

• Home declarations support single inheritance from other home definitions, subj
to a number of constraints that are described in theCORBA Components
specification, Component Model chapter, “Home inheritance” section.

• Home declarations may specify a list of interfaces that the home supports.

3.18.1.1 Syntax

The syntax for a home definition is as follows:

(126) <home_dcl> ::= <home_header> <home_body>

<home_header > is described in Section 3.18.2, “Home Header.

<home_body> is described in Section 3.18.3, “Home Body.

3.18.2 Home Header

A <home_header>describes fundamental characteristics of a home interface.

3.18.2.1 Syntax

The syntax for a home header declaration is as follows:

(127) <home_header> ::= “home” <identifier>
[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]

(128)<home_inheritance_spec> ::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>

A <home_header>consists of the following elements:

• The keywordhome .

• An <identifier> that names the home in the enclosing name scope.
3-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

s

on

ion
• An optional<home_inheritance_spec>, consisting of a colon “:” and a single
<scoped_name>that denotes a previously defined home type.

• An optional<supported_interface_spec>that must denote one or more previously
defined IDL interfaces.

• The keywordmanages .

• A <scoped_name>that denotes a previously defined component type.

• An optional primary key definition, consisting of the keywordprimarykey
followed by a<scoped_name>that denotes a previously defined value type that i
derived from the abstract value typeComponents::PrimaryKeyBase . Additional
constraints on primary keys are described in theCORBA Componentsspecification,
Component Model chapter, “Primary key type constraints” section.

Details of semantics can be found in theCORBA Componentsspecification,
Component Model chapter, “Homes” section.

3.18.3 Home Body

(130) <home_body> ::= “{” <home_export>* “}”
(131) <home_export ::= <export>

| <factory_dcl> “;”
| <finder_dcl> “;”

3.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operati
may be afactory operation, afinder operation, or a normal operation or attribute.

3.18.3.1.1 Factory operations

The syntax of a factory operation is as follows:

(132) <factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

A factor operation declaration consists of the following elements:

• the keywordfactory

• an <identifier> that names the operation in the scope of the home declaration

• an optional list of initialization parameters (<init_param_decls>) enclosed in
parentheses

• an optional<raises_expr>declaring exceptions that may be raised by the operat

A factory declaration has an implicit return value of type reference to component.

See theCORBA Componentsspecification, Component Model chapter, “Factory
operations” section for further details.
July 2002 CORBA, v3.0: Attribute Declaration 3-65

3

tion

ion

,

3.18.3.1.2 Finder operations

The syntax of a finder operation is as follows:

(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

A finder operation declaration consists of the following elements:

• the keywordfinder

• an identifier that names the operation in the scope of the storage home declara

• an optional list of initialization parameters (<init_param_decls>) enclosed in
parentheses

• an optional<raises_expr>declaring exceptions that may be raised by the operat

A finder declaration has an implicit return value of type reference to component.

See theCORBA Componentsspecification, Component Model chapter, “Finder
operations” section for further details.

3.19 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such asObject must not be
preceded by a “CORBA:: ” prefix. Other interface names such asTypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
typedef CORBA::TypeCode TypeCode;// OK

};

The file orb.idl contains the IDL definitions for theCORBA module. Except for
CORBA::TypeCode , the file orb.idl must be included in IDL files that use names
defined in theCORBA module. IDL files that useCORBA::TypeCode may obtain its
definition by including either the fileorb.idl or the file TypeCode.idl .

The exact contents ofTypeCode.idl are implementation dependent. One possible
implementation ofTypeCode.idl may be:

// PIDL
#ifndef _TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {
3-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

e

s are

e

s

interface TypeCode;
};
#endif // _TYPECODE_IDL_

For IDL compilers that implicitly defineCORBA::TypeCode , TypeCode.idl could
consist entirely of a comment as shown below:

// PIDL
// CORBA::TypeCode implicitly built into the IDL compiler
// Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets th
requirement for compliance.

The version ofCORBA specified in this release of the specification is version<x.y> ,
and this is reflected in the IDL for theCORBA module by including the following
pragma version (see Section 10.7.5.3, “The Version Pragma,” on page 10-71):

#pragma version CORBA <x.y>

as the first line immediately following the very firstCORBA module introduction line,
which in effect associates that version number with theCORBA entry in theIR. The
version number in that version pragma line must be changed whenever any change
made to any remotely accessible parts of theCORBA module in an officially released
OMG standard.

3.20 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in th
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. Thi
allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; // Error: Long clashes with keyword long
typedef long TheThing;
interface I {

typedef long MyLong;
myLong op1(// Error: inconsistent capitalization

in TheThing thething; // Error: TheThing clashes with thething
);

};
};
July 2002 CORBA, v3.0: Names and Scoping 3-67

3

t
n of

.

ed in

e
ty

f

e of

t

other
ed.

,

t, to
the

ults
r.

.

3.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by firs
resolving the qualifier <scoped-name> to a scope S, and then locating the definitio
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule describ
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of th
current root is initially empty (“”) and the name of the current scope is initially emp
(“”). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of themodule , the trailing “::” and identifier are deleted from the name o
the current root. Whenever aninterface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the nam
the current scope; upon detection of the termination of theinterface , struct , union ,
or exception , the trailing “::” and identifier are deleted from the name of the curren
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate
identifiers; when parameter processing has completed, the unnamed scope is exit

The global name of an OMG IDL definition is the concatenation of the current root
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-12).

Inheritance causes all identifiers defined in base interfaces, both direct and indirec
be visible in derived interfaces. Such identifiers are considered to be semantically
same as the original definition. Multiple paths to the same original identifier (as res
from the diamond shape in Figure 3-1 on page 3-24) do not conflict with each othe

Inheritance introduces multiple global OMG IDL names for the inherited identifiers
Consider the following example:

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);
3-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

le:

s.

ed
de a
e of

nt,

s

};

In this example, the exception is known by the global names::A::E and ::B::E .

Ambiguity can arise in specifications due to the nested naming scopes. For examp

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

The declaration of attributeTitle in interfaceC is ambiguous, since the compiler does
not know whichstring_t is desired. Ambiguous declarations yield compilation error

3.20.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenc
by #include statements, forms a naming scope. Definitions that do not appear insi
scope are part of the global scope. There is only a single global scope, irrespectiv
the number of source files that form a specification.

The following kinds of definitions form scopes:

• module

• interface

• valuetype

• struct

• union

• operation

• exception

• eventtype

• component

• home

The scope for module, interface, valuetype, struct, exception, eventtype, compone
and home begins immediately following its opening ‘{‘ and ends immediately
preceding its closing ‘}’. The scope of an operation begins immediately following it
‘(‘ and ends immediately preceding its closing ‘)’. The scope of a union begins
July 2002 CORBA, v3.0: Names and Scoping 3-69

3

n

ned
its
the

t be

t

f the
immediately following the ‘(‘ following the keywordswitch , and ends immediately
preceding its closing ‘}’. The appearance of the declaration of any of these kinds i
any scope, subject to semantic validity of such declaration, opens a nested scope
associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefi
in nested scopes. An identifier declaring a module is considered to be defined by
first occurrence in a scope. Subsequent occurrences of a module declaration with
same identifier within the same scope reopens the module and hence its scope,
allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may no
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

module M {
typedef short M; // Error: M is the name of the module

 // in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a surrounding scope is introduced into a scope if it is used in tha
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope o
scoped name. For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK

};
}

The declaration ofInner2::inner1 is OK because the identifierInner1 , while visible
in moduleInner2 , has not been introduced into moduleInner2 by actual use of it. On
the other hand, if moduleInner2 were:

module Inner2{
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK

};
3-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

is

eated

In
e

to
The definition ofinner1 is now an error because the identifierInner1 referring to the
module Inner1 has been introduced in the scope of moduleInner2 in the first line of
the module declaration. Also, the declaration ofS1 in the last line is OK since the
identifier S1 was not introduced into the scope by the use ofInner1::S1 in the first
line.

Only the first identifier in a qualified name is introduced into the current scope. This
illustrated byInner1::S1 in the example above, which introduces “Inner1 ” into the
scope of “Inner2 ” but does not introduce “S1.” A qualified name of the form
“ ::X::Y::Z ” does not cause “X” to be introduced, but a qualified name of the form
“X::Y::Z ” does.

Enumeration value names are introduced into the enclosing scope and then are tr
like any other declaration in that scope. For example:

interface A {
enum E { E1, E2, E3 }; // line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
// into the A scope in line 1 above

};

interface C {
enum AnotherE { E1, E2, E3 };

};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b;// OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding

// the switch type specification!!)
};

};

Type names defined in a scope are available for immediate use within that scope.
particular, see Section 3.11.2, “Constructed Types,” on page 3-39 on cycles in typ
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking in
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2

};
};
July 2002 CORBA, v3.0: Names and Scoping 3-71

3

r

f its
module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration ofArgType used online l5 :

1. Scope ofN::Y before the use ofArgType .

2. Scope ofN::Y ’s base interfaceM::B . (inherited scope)

3. Scope ofmodule N before the definition ofN::Y.

4. Global scope before the definition ofN.

M::B::ArgType is found instep 2 in line l3 , and that is the definition that is used in
line l5 , henceArgType in line l5 is string . It should be noted thatArgType is not
char in line l5 . Now if line l3 were removed from the definition of interfaceM::B
thenArgType on line l5 would bechar from line l4 , which is found instep 3 .

Following analogous search steps for the types used in the operationM::B::opb on
line l2 , the type ofAType used online l2 is long from thetypedef in line l1 and the
return typeArgType is string from line l3.

3.20.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface o
valuetype, it may not be redefined except within the scope of a nested module,
interface or valuetype, or within the scope of a derived interface or valuetype. For
example:

typedef short TempType; // Scope of TempType begins here

module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {

::M::ArgType a1; // Nothing introduced here
M::ArgType a2; // M introduced here
::TempType temp; // Nothing introduced here

}; // Scope of (introduced) M ends here
// ...

}; // Scope of ArgType ends here

// Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end o
enclosing scope.
3-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

ope,

s in
However, if atypename isintroducedinto a scope that is nested in a non-module
scope definition, itspotentialscope extends over all its enclosing scopes out to the
enclosing non-module scope. (For types that are defined outside an inon-module sc
the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced
long y; // a new y is defined, the existing Y

// is not used
} m;

};
typedef string ArgType; // Error: ArgType redefined
enum I { I1, I2 }; // Error: I redefined
typedef short Y; // OK

}; // Potential scope of ArgType and I ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { // OK, redefined in derived interface

ArgType x; // x is a long
A::ArgType y; // y is a string

};
};

};

A type may not be redefined within its scope or potential scope, as shown in the
preceding example. This rule prevents type names from changing their meaning
throughout a non-module scope definition, and ensures that reordering of definition
the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition ofM::A::U::I is legal because it is outside
the potential scope of the I introduced in the definition ofM::A::S::T::ArgType .
However, the definition ofM::A::I is still illegal because it is within the potential scope
of the I introduced in the definition ofM::A::S::T::ArgType .

module M {
typedef long ArgType;
const long I = 10;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced

} m;
July 2002 CORBA, v3.0: Names and Scoping 3-73

3

};
struct U {

long I; // OK, I is not a type name
};
enum I { I1, I2 }; // Error: I redefined

}; // Potential scope of ArgType and I ends here
};

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long

};

typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
};

};
3-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ORBInterface 4
d

face
e

Contents

This chapter contains the following sections.

4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, an
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the inter
to those ORB functions that do not depend on which object adapter is used. Thes

Section Title Page

“Overview” 4-1

“The ORB Operations” 4-2

“Object Reference Operations” 4-12

“ValueBase Operations” 4-23

“ORB and OA Initialization and Initial References” 4-24

“Context Object” 4-32

“Current Object” 4-36

“Policy Object” 4-37

“Management of Policies” 4-43

“Management of Policy Domains” 4-46

“TypeCodes” 4-52

“Exceptions” 4-62
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 4-1

4

cit
that
Base

not
or
ke

ecific
operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Object interface
contains operations that are implemented by the ORB, and are accessed as impli
operations of the Object Reference. The ValueBase interface contains operations
are implemented by the ORB, and are accessed as implicit operations of the Value
Reference.

Because the operations in this section are implemented by the ORB itself, they are
in fact operations on objects, although they are described that way for the Object
ValueBase interface operations and the language binding will, for consistency, ma
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any sp
object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration

typedef short PolicyErrorCode;

// for the definition of consts see “PolicyErrorCode” on page 4-39

typedef unsigned long PolicyType;

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

// StructMemberSeq defined in Chapter 10
// UnionMemberSeq defined in Chapter 10
// EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;
4-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

native ValueFactory;

typedef string ORBid;

interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ORBid id();

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);
July 2002 CORBA, v3.0: The ORB Operations 4-3

4

void send_multiple_requests_deferred(
in RequestSeq req

);

boolean poll_next_response();

void get_next_response(
out Request req

);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);
4-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type
July 2002 CORBA, v3.0: The ORB Operations 4-5

4

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_component_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_home_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_event_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);
4-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

in

. The
void destroy();

// Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations

// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory_factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);

void register_initial_reference(
in ObjectId id,
in Object obj

) raises (InvalidName);
};

};

All types defined in this chapter are part of the CORBA module. When referenced
OMG IDL, the type names must be prefixed by “CORBA:: ”.

The operationsobject_to_string andstring_to_object are described in
“Converting Object References to Strings” on page 4-8.

For a description of thecreate_list andcreate_operation_list operations, see
Section 7.4, “Polling” on page 7-12. Theget_default_context operation is described
in Section 4.2.4.1, “get_default_context” on page 4-9. The
send_multiple_requests_oneway andsend_multiple_requests_deferred
operations are described in Section 7.3.1, “send_multiple_requests” on page 7-11
poll_next_response andget_next_response operations are described in Section
7.3.2, “get_next_response and poll_next_response” on page 7-11.

The list_intial_services andresolve_initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References” on page 4-27.

The Type code creation operations with names of the formcreate_<type>_tc are
described in Section 4.11.3, “Creating TypeCodes” on page 4-58.

The work_pending , perform_work , shutdown , destroy andrun operations are
described in Section 4.2.5, “Thread-Related Operations” on page 4-9.
July 2002 CORBA, v3.0: The ORB Operations 4-7

4

ific

s
ng,

ct
tent
ms
can
ned
The create_policy operations is described in Section 4.8.2.3, “Create_policy” on
page 4-39.

The register_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Spec
Value Factory Requirements” on page 5-9.

The register_initial_reference operation is described in Section 21.8.1,
“register_initial_reference” on page 21-57

4.2.1 ORB Identity

4.2.1.1 id

ORBid id();

The id operation returns the identity of the ORB. The returnedORBid is the string
that was passed toORB_init (see Section 4.5.1, “ORB Initialization” on page 4-24) a
theorb_identifier parameter when the ORB was created. If that was the empty stri
the returned string is the value associated with the-ORBid tag in thearg_list
parameter. Callingid on the default ORB returns the empty string.

4.2.2 Converting Object References to Strings

4.2.2.1 object_to_string

string object_to_string (
in Object obj

);

4.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the obje
reference itself is not a convenient value for storing references to objects in persis
storage or communicating references by means other than invocation. Two proble
must be solved: allowing an object reference to be turned into a value that a client
store in some other medium, and ensuring that the value can subsequently be tur
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, thestring_to_object operation will
accept a string produced byobject_to_string and return the corresponding object
reference.
4-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

that

on

ble

e is
RB).

the
To guarantee that an ORB will understand the string form of an object reference,
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, ifobj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed
different ORBs.

4.2.3 Getting Service Information

4.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameterservice_type , the
values defined by constants in the CORBA module. If service information is availa
for that type, that is returned in the out parameterservice_information , and the
operation returns the value TRUE. If no information for the requested services typ
available, the operation returns FALSE (i.e., the service is not supported by this O

4.2.4 Creating a New Context

4.2.4.1 get_default_context

void get_default_context(// PIDL
out Context ctx // context object

);

This operation creates a new empty Context object every time it is called. The
operation is defined in theORB interface.

4.2.5 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both
ORB::run andORB::shutdown are useful in fully multi-threaded programs.
July 2002 CORBA, v3.0: The ORB Operations 4-9

4

the
ing

ters,

ork

t of

ded
These operations are defined on the ORB rather than on an object adapter to allow
main thread to be used for all kinds of asynchronous processing by the ORB. Defin
these operations on the ORB also allows the ORB to support multiple object adap
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.

4.2.5.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some w
and a result of FALSE indicates that the ORB does not need the main thread.

4.2.5.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined uni
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

Thework_pending() andperform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multi-threa
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

};

Once the ORB has shutdown,work_pending andperform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.2.5.3 run

void run();
4-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

d
rly.

ted

nnot

d
leted

an

(or

An
This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threade
ORB implementations, need the use of the main thread in order to function prope
For maximum portability, an application should call eitherrun or perform_work on
its main thread.run may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initia
when some thread callsshutdown .

4.2.5.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they ca
exist in the absence of an ORB.

In the case of thePOA, all POAManager s are deactivated prior to destruction of all
POAs. The deactivation that the ORB performs should be the equivalent of calling
deactivate with the valueTRUE for etherealize_objects and with the
wait_for_completion parameter same as whatshutdown was called with.

Shut down is complete when all ORB processing (including request processing an
object deactivation or other operations associated with object adapters) has comp
and the object adapters have been destroyed. In the case of thePOA, this means that
all object etherealizations have finished and rootPOA has been destroyed (implying
that all descendentPOAs have also been destroyed).

If the wait_for_completion parameter isTRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing
invocation, the ORB will not shutdown, and theBAD_INV_ORDER system
exception will be raised with the OMG minor code 3, and completion status
COMPLETED_NO, since blocking would result in a deadlock.

If the wait_for_completion parameter isFALSE , thenshutdown may not have
completed upon return. An ORB implementation may require the application to call
have a pending call to)run or perform_work after shutdown has been called with
its parameter set toFALSE , in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11)
shutdown behaves as ifPOA::destroy is called on the RootPOA with its first
parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter thatshutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed.
implementation may impose a time limit for requests to complete while ashutdown
is pending.
July 2002 CORBA, v3.0: The ORB Operations 4-11

4

ll

wn

a

call

ons in
n to
ct
ove,
Once an ORB has shutdown, only object reference management operations(duplicate ,
release and is_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise theBAD_INV_ORDER system exception
with the OMG minor code 4.

4.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another ca
to ORB_init with the sameORBid will return a reference to a newly constructed
ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut do
process and block until the ORB has shut down before it destroys the ORB. The
behavior is similar to that achieved by callingshutdown with the
wait_for_completion parameter set toTRUE. If an application callsdestroy in a
thread that is currently servicing an invocation, theBAD_INV_ORDER system
exception will be raised with the OMG minor code 3, since blocking would result in
deadlock.

For maximum portability and to avoid resource leaks, an application should always
shutdown anddestroy on all ORB instances before exiting.

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operati
the normal sense, in that they are implemented directly by the ORB, not passed o
the object implementation. We will describe these as being operations on the obje
reference, although the interfaces actually depend on the language binding. As ab
where we used interfaceObject to represent the object reference, we define an
interface forObject :

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef sequence<PolicyType> PolicyTypeSeq;
exception InvalidPolicies { sequence <unsigned short> indices; };

interface Context; // forward declaration

typedef string Identifier;
4-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

interface Request; // forward declaration
interface NVList; // forward declaration
struct NamedValue{}; // an implicitly well known type
typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in RepositoryId logical_type_id

);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type

);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
July 2002 CORBA, v3.0: Object Reference Operations 4-13

4

ss to

st
ry
ion
t.
Policy get_client_policy(
in PolicyType type

);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

boolean validate_connection(
out PolicyList inconsistent_policies

);

Object get_component ();
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require acce
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

get_interface , returns an object in the Interface Repository that describes the mo
derived type of the object addressed by the reference. See the Interface Reposito
chapter for a definition of operations on the Interface Repository. The implementat
of this operation may involve contacting the ORB that implements the target objec

If the interface repository is not available,get_interface raisesINTF_REPOS with
standard minor code 1. If the interface repository does not contain an entry for the
object's (most derived) interface,get_interface raisesINTF_REPOS with standard
minor code 2.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();
4-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

lients
fined

te,
was

t
by

ver

if

l at

his
Because object references are opaque and ORB-dependent, it is not possible for c
or implementations to allocate storage for them. Therefore, there are operations de
to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplica
and that the implementation cannot distinguish whether the original or a duplicate
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of therelease operation. Note that the object implementation is no
involved, and that neither the object itself nor any other references to it are affected
the release operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An object reference whose value isOBJECT_NIL denotes no object. An object
reference can be tested for this value by theis_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.3.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references o
the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId).
The operation returns true if the object is really an instance of that type, including
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible with thelogical_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fai
either the local or the remote end. Ifis_a cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. T
enables the application to distinguish among theTRUE, FALSE , and indeterminate
cases.
July 2002 CORBA, v3.0: Object Reference Operations 4-15

4

pe

her

t
” to
as a
,

the
-

s,
not

joint
e
ance
This operation exposes to application programmers functionality that must already
exist in ORBs that support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain ty
safety.

This operation always returnsTRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rat
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, even
channels, and base relationship services, might use this operation in their “idle time
sift through object tables for objects that no longer exist, deleting them as they go,
form of garbage collection. In the case of proxies, this kind of activity can cascade
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements
target object. Such an attempt may fail at either the local or the remote end. If non
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object reference
services need to support a notion of object reference identity. Such services include
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into dis
groups of potentially equivalent references, and the other supports more expensiv
pairwise equivalence testing. Together, these operations support efficient mainten
and search of tables keyed by object references.

4.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(
4-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

be

h

h
use

e

ould
t

ject

ct

an

re
cts.
the
in unsigned long maximum
);

Object references are associated with ORB-internal identifiers that may indirectly
accessed by applications using thehash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references has
differently, applications can determine that the two object references arenot identical.

Themaximum parameter to thehash operation specifies an upper bound on the has
value returned by the ORB. The lower bound of that value is zero. Since a typical
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and th
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there c
be many proxy objects representing a given “real” object. Those proxies would no
necessarily hash to the same value.

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target ob
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references that in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distin
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, c
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references a
distinct, and not necessarily an indication that the references indicate distinct obje
Setting of local policies on the object reference is not taken into consideration for
purposes of determining object reference equivalence.
July 2002 CORBA, v3.0: Object Reference Operations 4-17

4

ble.

ers

to a
the
ion

cked
ided

on

d
of

pt
A typical application use of this operation is to match object references in a hash ta
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, oth
during idle time.

4.3.7 Type Coercion Considerations

Many programming languages mapObject to programming constructs that support
inheritance. Mappings to languages (such as C++ and Java) typically provide a
mechanism for narrowing (down-casting) an object reference from a base interface
more derived interface. To do such down-casting in a type safe way, knowledge of
full inheritance hierarchy of the target interface may be required. The implementat
of down-cast must either contact an interface repository or the target itself, to
determine whether or not it is safe to down-cast the clientís object reference. This
requirement is not acceptable when a client is expecting only asynchronous
communication with the target. Therefore, for the appropriate languages an unche
down-cast operation (also referred to as unchecked narrow operation) shall be prov
in the mapping of Object. This unchecked narrow always returns a stub of the
requested type without checking that the target really implements that interface.

4.3.8 Getting Policy Associated with the Object

4.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Secti
4.8, “Policy Object” on page 4-37), which applies to this object. It returns theeffective
Policy for the object reference. The effectivePolicy is the one that would be used if a
request were made.

This Policy is determined first by obtaining the effective override for thePolicyType
as returned byget_client_policy . The effective override is then compared with the
Policy as specified in theIOR. The effectivePolicy is determined by reconciling the
effective override and theIOR-specifiedPolicy (see Section 4.9.2, “Server Side Policy
Management” on page 4-44). If the two policies cannot be reconciled, the standar
system exceptionINV_POLICY is raised with standard minor code 1. The absence
a Policy value in theIOR implies that any legal value may be used.

Invoking non_existent on an object reference prior toget_policy ensures the
accuracy of the returned effectivePolicy . If get_policy is invoked prior to the object
reference being bound, the returned effectivePolicy is implementation dependent. In
that situation, a compliant implementation may do any of the following: raise the
standard system exceptionBAD_INV_ORDER, return some value for that
PolicyType which may be subject to change once a binding is performed, or attem
a binding and then return the effectivePolicy . Note that if the effectivePolicy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (
4-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ct of

n

” at
in PolicyType policy_type
);

Parameter(s)
policy_type - The type of policy to be obtained.

Return Value

A Policy object of the type specified by thepolicy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy obje
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operatio
(e.g.,DomainManager::get_domain_policy for some security policies) for some
policy types.

4.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type

);

Returns theeffective overridingPolicy for the object reference. The effective override
is obtained by first checking for an override of the givenPolicyType at theObject
scope, then at theCurrent scope, and finally at the ORB scope. If no override is
present for the requestedPolicyType , the system-dependent default value for that
PolicyType is used. Portable applications are expected to set the desired “defaults
the ORB scope since defaultPolicy values are not specified.

4.3.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

Returns the list ofPolicy overrides (of the specified policy types) set at theObject
scope. If the specified sequence is empty, allPolicy overrides at this scope will be
returned. If none of the requestedPolicyTypes are overridden at theObject scope,
an empty sequence is returned.
July 2002 CORBA, v3.0: Object Reference Operations 4-19

4

r

ride

of
ore

e

ce.

d

ot
4.3.9 Overriding Associated Policies on an Object Reference

4.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameterpolicies
is a sequence of references toPolicy objects. The second parameterset_add of type
SetOverrideType indicates whether these policies should be added onto any othe
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to over
any other policy will result in the raising of theCORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter(s)

policies - a sequence ofPolicy objects that are to be associated with the new copy
the object reference returned by this operation. If the sequence contains two or m
Policy objects with the samePolicyType value, the operation raises the standard
system exceptionBAD_PARAM with minor code 30.

set_add - whether the association is in addition to (ADD_OVERRIDE) or as a
replacement of (SET_OVERRIDE) any existing overrides already associated with th
object reference. If the value of this parameter isSET_OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object referen
If the value of this parameter isADD_OVERRIDE, the suppliedpolicies are added to
the existing overrides associated with the object reference, except that if a supplie
Policy object has the samePolicyType value as an existing override, the supplied
Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides frompolicies associated with it in
accordance with the value ofset_add .

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cann
be overridden.
4-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

as

bind

it

to

e

ain
th at

nts
4.3.10 Validating Connection

4.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for theObject will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a re
will be attempted regardless of the setting of anyRebindPolicy override. The
validate_connection operation is the only way to force such a rebind when implic
rebinds are disallowed by the current effectiveRebindPolicy . The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB.

Returns the value FALSE if the current effective policies would cause an invocation
raise the standard system exceptionINV_POLICY. If the current effective policies are
incompatible, the out parameterinconsistent_policies contains those policies
causing the incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy overrides, th
appropriate standard system exception is raised.

4.3.11 Getting the Domain Managers Associated with the Object

4.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies” on page 4-43), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one dom
manager is always returned in the list since by default each object is associated wi
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that impleme
the target object.
July 2002 CORBA, v3.0: Object Reference Operations 4-21

4

e
get

nd
.

4.3.12 Getting Component Associated with the Object

4.3.12.1 get_component

Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the
component itself), theget_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference th
get_component operation returns an object reference for the component. If the tar
reference is neither a component reference nor a provided reference,get_component
returns a nil reference.

4.3.13 LocalObject Operations

Local interfaces are implemented by usingCORBA::LocalObject , which derives
from CORBA::Object and provides implementations of Object pseudo operations a
any other ORB specific support mechanisms that are appropriate for such objects
Object implementation techniques are inherently language mapping specific.
Therefore, theLocalObject type is not defined in IDL, but is specified by each
language mapping.

• The LocalObject type provides implementations of the followingObject pseudo-
operations that raise theNO_IMPLEMENT system exception with standard minor
code 3:

• get_interface
• get_domain_managers
• get_policy
• get_client_policy
• set_policy_overrides
• get_policy_overrides
• validate_connection
• get_component

• The LocalObject type provides implementations of the following pseudo-
operations:

• non_existent - always returns false.

• hash - returns a hash value that is consistent for the lifetime of the object.

• is_equivalent - returns true if the references refer to the sameLocalObject
implementation.

• is_a - returnsTRUE if the LocalObject derives from or is itself the type
specified by thelogical_type_id argument.

• Attempting to use a LocalObject to create a DII request shall result in a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify a LocalObject shall result in aMARSHAL system exception
with standard minor code 4. Narrowing and widening of references to
LocalObject s must work as for regular object references.
4-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

erted
base

ses

y
text

ible

as

by

alue
ally
• Local types cannot be marshaled and references to local objects cannot be conv
to strings. Any attempt to marshal a local object, such as via an unconstrained
interface, as anObject , or as the contents of anany, or to pass a local object to
ORB::object_to_string , shall result in aMARSHAL system exception with
OMG minor code 4.

• The DII is not supported on local objects, nor are asynchronous invocation
interfaces.

• Language mappings shall specify server side mechanisms, including base clas
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

• The usage of client side language mappings for local types shall be identical to
those of equivalent unconstrained types.

• Invocations on local objects are not ORB mediated. Specifically, parameter cop
semantics are not honored, interceptors are not invoked, and the execution con
of a local object does not have ORB serviceCurrent object contexts that are
distinct from those of the caller. Implementations of local interfaces are respons
for providing the parameter copy semantics expected by clients.

• Local objects have no inherent identities beyond their implementations’ identities
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

• Instances of local objects defined as part of OMG specifications to be supplied
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained fromresolve_initial_references .

4.4 ValueBase Operations

ValueBase serves a similar role for value types thatObject serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all v
types. Any operations that are required to be supported for all values are conceptu
defined onValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of theObject interface for implicit operations of object
references, the implicit operations ofValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def() operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.31, “ValueDef” on page 10-44).
July 2002 CORBA, v3.0: ValueBase Operations 4-23

4

.

.

A

ce
ge

the
oot
d

re

ion
is is
The
d.

nces

the

is
4.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environments

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects)

The following operations are provided to initialize applications and obtain the
appropriate object references:

• Operations providing access to the ORB. These operations reside in the CORB
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization” on page 4-24.

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interfa
and are described in Section 4.5.2, “Obtaining Initial Object References” on pa
4-27.

4.5.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get
ORB pseudo-object reference and possibly an OA object reference (such as the r
POA). This serves two purposes. First, it initializes an application into the ORB an
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring befo
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an applicat
in the ORB and get its pseudo-object reference is not performed on an object. Th
because applications do not initially have an object on which to invoke operations.
ORB initialization operation is an application’s bootstrap call into the CORBA worl
The ORB_init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other refere
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call theORB_init
operation. The parameters to the call comprise an identifier for the ORB for which
pseudo-object reference is required, and anarg_list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization
as follows:

// PIDL
module CORBA {

typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};
4-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ot
ier.

the

r

This

sary
eters

n. If

ny

me
t

The identifier for the ORB will be a name of typeCORBA::ORBid . All ORBid
strings other than the empty string are allocated by ORB administrators and are n
managed by the OMG. ORB administration is the responsibility of each ORB suppl
ORB suppliers may optionally delegate this responsibility.ORBid strings other than
the empty string are intended to be used to uniquely identify each ORB used within
same address space in a multi-ORB application. These specialORBid strings are
specific to each ORB implementation and the ORB administrator is responsible fo
ensuring that the names are unambiguous.

If an emptyORBid string is passed toORB_init , then thearg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned.
is achieved by searching thearg_list parameters for one preceded by “-ORBid ” for
example, “-ORBid example_orb ” (the white space after the “-ORBid ” tag is
ignored) or “-ORBidMyFavoriteORB ” (with no white space following the “-ORBid ”
tag). Alternatively, two sequential parameters with the first being the string “-ORBid ”
indicates that the second is to be treated as anORBid parameter. If an empty string is
passed and noarg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified inarg_list , for
example, “Hostname ,” “ SpawnedServer ,” and so forth. To allow for other
parameters to be specified without causing applications to be re-written, it is neces
to specify the parameter format that ORB parameters may take. In general, param
shall be formatted as either one singlearg_list parameter:

–ORB<suffix><optional white space> <value>

or as two sequentialarg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-emptyORBid string is passed toORB_init ,
thearg_list arguments are examined to determine if any ORB parameters are give
a non-emptyORBid string is passed toORB_init , all ORBid parameters in the
arg_list are ignored. All other-ORB<suffix> parameters in thearg_list may be of
significance during the ORB initialization process.

BeforeORB_init returns, it will remove from thearg_list parameter all strings that
match the-ORB<suffix> pattern described above and that are recognized by that
ORB implementation, along with any associated sequential parameter strings. If a
strings inarg_list that match this pattern are not recognized by the ORB
implementation,ORB_init will raise theBAD_PARAM system exception instead.

TheORB_init operation may be called any number of times and shall return the sa
ORB reference when the sameORBid string is passed, either explicitly as an argumen
to ORB_init or through thearg_list . All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent calls toORB_init .
July 2002 CORBA, v3.0: ORB and OA Initialization and Initial References 4-25

4

e

ked

o

Note – Whenever anORB_init argument of the form-ORBxxx is specified, it is
understood that the argument may be represented in different ways in different
languages. For example, in Java-ORBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx .

4.5.1.1 Server ID

A Server ID must uniquely identify a server to an IMR. This specification only
requires unique identification using a string of some kind. We do not intend to mak
more specific requirements for the structure of a server ID.

The server ID may be specified by anORB_init argument of the form

-ORBServerId

The value assigned to this property is astring . All templates created in thisORB will
return this server ID in theserver_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific
environments may choose to implement-ORBServerId in ways that automatically
enforce this requirement.

For example, theorg.omg.CORBA.ServerId system property may be set to the
server ID in Java when a Java server is activated. This system property is then pic
up as part of theORB_init call for everyORB created in the server.

4.5.1.2 Server Endpoint

The server endpoint information is passed intoORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this
specification is that each timeORB_init is called with the same value for this
argument, the resultingORB will listen for requests on the same set of endpoints, s
that persistent object references for theORB will continue to function correctly.

4.5.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.
4-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

es.

e

e

ion
ject

et of
be a

ents

ain

the
h

4.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object referenc
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) Th
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service b
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local vers
of the Naming Service that applications can use to obtain a small, defined set of ob
references that are essential to its operation. Because only a small well-defined s
objects are expected with this mechanism, the naming context can be flattened to
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than
the Naming Service’sNamingContext . The interface differs from the Naming
Service’s resolve in thatObjectId (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the compon
of the name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maint
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, theObjectId name space requires careful management. To achieve this,
OMG may, in the future, define which services are required by applications throug
this interface and specify names for those services.

resolve_initial_references never returns anil reference. Instead, the non-
availability of a particular reference is indicated by throwing anInvalidName
exception (even if anil reference is explicitly configured for anObjectId).
July 2002 CORBA, v3.0: ORB and OA Initialization and Initial References 4-27

4

Currently, reservedObjectIds areRootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent,
DynAnyFactory, ORBPolicyManager, PolicyCurrent , NotificationService,
TypedNotificationService, CodecFactory, PICurrent,
ComponentHomeFinder andPSS.

.

Table 4-1 ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.9, “POA Interface” on
page 11-34

POACurrent PortableServer::Current Section 11.3.9, “POA Interface” on
page 11-34

InterfaceRepository CORBA::Repository
CORBA::ComponentIR::Repository

Section 10.5.6, “Repository” on
page 10-22
Section 10.6.2,
“ComponentIR::Repository” on
page 10-52

NameService CosNaming::
NamingContext

Naming Servicespecification
(formal/01-02-65), the CosNaming
Module section.

TradingService CosTrading::Lookup Trading Object Service
specification (formal/00-06-27), the
Functional Interfaces section.

SecurityCurrent SecurityLevel1::Current or
SecurityLevel2::Current

Security Servicespecification
(formal/02-03-11), the Security
Operations on Current section.

TransactionCurrent CosTransaction::Current Transaction Servicespecification
(formal/01-11-03), the Transaction
Service Interfaces section.

DynAnyFactory DynamicAny::
DynAnyFactory

Section 9.2.1, “Creating a DynAny
Object” on page 9-9

ORBPolicyManager CORBA::PolicyManager Section 4.9.3, “Policy Management
Interfaces” on page 4-44

PolicyCurrent CORBA::PolicyCurrent Section 4.9.3, “Policy Management
Interfaces” on page 4-44

NotificationService CosNotifyChannelAdmin::
EventChannelFactory

Notification Servicespecification
(formal/00-06-20)

TypedNotificationService CosTypedNotifyChannelAdmin::Typed
EventChannelFactory

Notification Servicespecification
(formal/00-06-20)
4-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

he

e at
he

ther

ry
To allow an application to determine which objects have references available via t
initial references mechanism, thelist_initial_services operation (also a call on the
ORB) is provided. It returns anObjectIdList , which is a sequence ofObjectIds .
ObjectIds are typed as strings. Each object, which may need to be made availabl
initialization time, is allocated a string value to represent it. In addition to defining t
id, the type of object being returned must be defined; that is, “InterfaceRepository ”
returns an object of typeRepository , or ComponentIR::Repository , which is
derived fromRepository , depending on whether the ORB supports components or
not, and “NameService ” returns aCosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type that was requested in the ObjectId. For
example, forInterfaceRepository the object returned would be narrowed to
Repository type orComponentIR::Repository type, depending on whether the
ORB supports components.

Specifications for Object Services (see individual service specifications) state whe
it is expected that a service’s initial reference be made available via the
resolve_initial_references operation or not; that is, whether the service is necessa
or desirable for bootstrap purposes.

4.5.3 Configuring Initial Service References

4.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary
object reference fromCORBA::ORB::resolve_initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

CodecFactory IOP::CodecFactory Section 13.8.2, “Codec Factory” on
page 13-34

PICurrent PortableInterceptors::Current Section 21.4.3, “Portable
Interceptor Current Interface” on
page 21-34

ComponentHomeFinder Components::HomeFinder CORBA Componentsspecification.

PSS CosPersistentState::
ConnectorRegistry

Persistent Statespecification
(ptc/01-12-02).

Table 4-1 ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference
July 2002 CORBA, v3.0: ORB and OA Initialization and Initial References 4-29

4

,

lid

a

4.5.3.2 ORBInitRef

The ORB initial reference argument,-ORBInitRef , allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB ...

-ORBInitRef NotificationService=corbaloc::555objs.com/NotificationService

-ORBInitRef TradingService=corbaname::555objs.com#Dev/Trade r

<ObjectID> represents the well-knownObjectID for a service defined in the CORBA
specification, such asNameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Section 13.6.10, “Object URLs” on page 13-24)
with the exception of the corbaloc URL scheme with the rir protocol (i.e.,
corbaloc:rir...). If a URL is syntactically malformed or can be determined to be inva
in an implementation defined manner,ORB_init raises aBAD_PARAM exception.

4.5.3.3 ORBDefaultInitRef

The ORB default initial reference argument,-ORBDefaultInitRef , assists in
resolution of initial references not explicitly specified with-ORBInitRef .
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::555objs.com

A call to resolve_initial_references (see the “NotificationService”) with this
argument results in a new URL:

corbaloc::555objs.com/NotificationService

That URL is passed toCORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
corbaname URLs
4-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

des

.

t
m

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference fromstring_to_object . (In this example,
Prod/Local/NameService represents a stringifiedCosNaming::Name).

Section 13.6.7, “Profile and Component Composition in IORs” on page 13-22 provi
details of thecorbaloc andcorbaname URL schemes. The-ORBDefaultInitRef
argument naturally extends to URL schemes that may be defined in the future,
provided the final part of the URL is an object key.

4.5.3.4 Configuration Effect onresolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given<ObjectID> is:

1. Resolve withregister_initial_reference entry if possible.

1. Resolve with-ORBInitRef for this <ObjectID> if possible

2. Resolve with pre-configured ORB settings if possible.

3. Resolve with an-ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of-ORBDefaultInitRef may have unintended resolution side effects
For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a clien
from unknowingly diverting the ORB’s reference to an implementation repository fro
another vendor. To prevent this, an ORB is allowed to ignore the-ORBDefaultInitRef
argument for any or all<ObjectID> s for those services that are not OMG-specified
services with a well-known service name as accepted byresolve_initial_references .
An ORB can only ignore the-ORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

4.5.3.5 Configuration Effect on list_initial_services

The <ObjectID> s of all -ORBInitRef argument s to ORB_init appear in the list of
tokens returned bylist_initial_services as well as all ORB-configured<ObjectID> s.
Any other tokens that may appear are implementation-dependent.

The list of <ObjectID> s returned bylist_initial_services can be a subset of the
<ObjectID> s recognized as valid byresolve_initial_references .
July 2002 CORBA, v3.0: ORB and OA Initialization and Initial References 4-31

4

ng

ssed

t is
ple,

r

s (if
oose
mple

the
no
he

s.

re no
ase
inct
4.6 Context Object

4.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a stri
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are pa
as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application's environment tha
meant to be propagated to (and made available to) a server's environment (for exam
a window identifier, or user preference information). Once an operation has been
invoked in the server, the operation implementation may query its context object fo
these properties.

An operation definition may contain a context clause that specifies the context
properties that may be of interest to a particular operation. These context propertie
present for the actual call) are propagated to the server. A client-side ORB may ch
to pass more properties than are specified by an operation's context clause. An exa
of an operation with a context clause is

interface Example {
void op() context("USER", "X*");

};

This context clause specifies that the "USER" property is to be made available to
server, as well as all properties with names beginning with "X". Note that there is
obligation on the client to actually pass values for these properties at run time; if t
client omits one or more properties, the call proceeds normally and the operation
implementation simply will not be able to retrieve the corresponding property value

Property names are non-empty strings that cannot contain the character '*'; there a
other syntactic restrictions on property names. Property names that differ only in c
are distinct names, so the following is a legal context clause that transmits two dist
properties:

interface Example2 {
void op() context("FOO", "foo");

};

Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed via theContext interface. AContext
object represents a collection of property values.Context objects may be connected
into hierarchies; properties defined in childContext objects lower in the hierarchy
override properties in parentContext objects higher in the hierarchy.

4.6.2 Context Object Operations

Properties are represented as named value lists.
4-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

f

module CORBA {
 interface Context { // PIDL

void set_one_value(
 in Identifier prop_name, // property name to set
 in string value // property value to set

);
void set_values(

in NVList values // property values to set
);
 void get_values(

in Identifier start_scope, // search scope
in Flags op_flags, // operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);
void delete_values(

in Identifie prop_name // name of property(s) to delete
);
 void create_child(

in Identifier ctx_name, // name of context object
out Context child_ctx // newly created context object

);
void delete(

 in Flags del_flags // flags controlling deletion
);

};
};

4.6.2.1 set_one_value

void set_one_value(
in Identifier prop_name, // property name to set
in string value // property value to set

);

This operation sets a single context object property. Ifprop_name is the empty string
or contains the character '*', the operation raisesBAD_PARAM with minor code 35.

4.6.2.2 set_values

void set_values(
in NVLis values // property values to set

);

This operation sets one or more property values in its context object. If a property
name appears more than once in theNVList , the value with higher index (later in the
list) overwrites the value with lower index.

Theflags field of each passedNVList element must be zero. A non-zero flag in any o
the NVList elements raisesINV_FLAGS .
July 2002 CORBA, v3.0: Context Object 4-33

4

g

y

le

ing

r,
The property name of eachNVList element must be a non-empty string not containin
the character '*'; otherwise, the operation raisesBAD_PARAM with minor code 35.

The value of each property of the passedNVList must be a (possibly empty)
unbounded string. Property values other than unbounded strings raise
BAD_TYPECODE with minor code 3.

4.6.2.3 get_values

void get_values(
in Identifie start_scope, // search scope
in Flags op_flags, // operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);

This operation returns anNVList with those properties that match theprop_name
parameter. Legal values forprop_name are:

• a non-empty string that does not contain the character '*'

In this case, thevalues parameter returns the property with the name specified b
prop_name .

• a string beginning with one or more characters other than '*', followed by a sing
'*' at the end, such as "XYZ*"

In this case, thevalues parameter contains the properties that have names beginn
with "XYZ" (such as "XYZABC" or "XYZ").

If prop_name is the empty string, the string "*", contains more than one '*' characte
or contains a '*' anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36.

The start_scope parameter controls thecontext object level at which to initiate the
search for the specified properties as follows:

• Thestart_scope parameter specifies the name of thecontext object in which the
search for properties is to start.

• If the context object on whichget_values is invoked has a name equal to
start_scope , that context object becomes the startingcontext object for the
search.

• If start_scope is "", the context object on whichget_values is invoked becomes
the startingcontext object for the search.

• If the context object on whichget_values is invoked does not have a name
equal tostart_scope (andstart_scope is not ""), the parent context object is
retrieved and its name compared tostart_scope ; this process repeats until
either a startingcontext object whose name equalsstart_scope is found, or
the search terminates because it runs out of parent objects.
4-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ified

r,

me
e

ation
The name of the rootcontext object created byget_default_context is
"RootContext".

If no startingcontext object can be found, the operation raises
BAD_CONTEXT with minor code 1.

• Once a startingcontext object is found,get_values searches for properties in
the matchingcontext object.

• If op_flags isCORBA::CTX_RESTRICT_SCOPE , get_values searches only
the startingcontext object for properties that matchprop_name . (The value
of CTX_RESTRICT_SCOPE is 15.)

• If op_flags is zero,get_values searches the startingcontext and its parent
contexts for properties that matchprop_name . The property values that are
returned are taken from the firstcontext object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matchesprop_name , the operation raises
BAD_CONTEXT with minor code 2.

4.6.2.4 delete_values

void delete_values(
 in Identifie prop_name // name of property(s) to delete

);

This operation deletes the properties that matchprop_name . prop_name may have
a trailing '*' character, in which case all properties whose name matches the spec
prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one '*' characte
or contains a '*' anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36. The operation only affects the context object on
which it is invoked (that is, parent contexts are never affected bydelete_values).

If no property name matchesprop_name , the operation raisesBAD_CONTEXT with
minor code 2.

4.6.2.5 create_child

void create_child(
 in Identifier ctx_name, // name of context object
out Context child_ctx // newly created context object

);

This operation creates an empty child context object. The child context has the na
ctx_name . ctx_name may not be the empty string or "RootContext"; otherwise, th
operation raisesBAD_PARAM with minor code 37. Callingcreate_child more than
once with the same name on the same parent context is legal and results in the cre
of a new, empty child context for each call.
July 2002 CORBA, v3.0: Context Object 4-35

4

;

ts.

is

the

ose

d

and

ll
o

4.6.2.6 delete

void delete(
in Flags del_flags // flags controlling deletion

);

This operation deletes the context object on which it is invoked:

• If del_flags is zero, the context object is deleted only if it has no child contexts
otherwise, ifdel_flags is zero and the context object has child contexts, the
operation raisesBAD_PARAM with minor code 38.

• If del_flags is CORBA::CTX_DELETE_DESCENDANTS , the context object on
which delete is invoked is destroyed, together with (recursively) its child contex
The value ofCTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero orCTX_DELETE_DESCENDANTS , the
operation raisesINV_FLAGS .

4.7 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information
accessed in a structured manner using interfaces derived from theCurrent interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from
CORBA module'sCurrent . Users of the service can obtain an instance of the
appropriateCurrent interface by invokingORB::resolve_initial_references . For
example the Security service obtains theCurrent relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may cho
to do so.

module CORBA {
// interface for the Current object
 local interface Current {
};

};

Operations on interfaces derived fromCurrent access state associated with the threa
in which they are invoked, not state associated with the thread from which theCurrent
was obtained. This prevents one thread from manipulating another thread's state,
avoids the need to obtain and narrow a newCurrent in each method's thread context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation wi
raise aMARSHAL system exception.Current s are per-process singleton objects, s
no destroy operation is needed.
4-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

fect

to do

e

4.8 Policy Object

4.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that af
its operation. This information is accessed in a structured manner using interfaces
derived from thePolicy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose
so. TheSecurity Servicein particular uses this technique for associatingSecurity Policy
with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;

};

PolicyType defines the type ofPolicy object. In general the constant values that ar
allocated are defined in conjunction with the definition of the correspondingPolicy
object. The values ofPolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bitVendor PolicyType Valueset ID(VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bitVPVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits. TheVPVIDs 0
through \xfare reserved for OMG. All values for the standardPolicyTypes are
allocated within this range by OMG. Additionally, theVPVIDs \xfffff is reserved for
experimental use andOMGVMCID (Section 4.12.3, “Standard System Exception
Definitions” on page 4-65) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocation ofVPVID by sending mail to tag-
request@omg.org.

When aVMCID (Section 4.12, “Exceptions” on page 4-62) is allocated to a vendor
automatically the same value ofVPVID is reserved for the vendor and vice versa. So
once a vendor gets either aVMCID or a VPVID registered they can use that value for
both their minor codes and their policy types.

4.8.1.1 Copy

Policy copy();
July 2002 CORBA, v3.0: Policy Object 4-37

4

that

to

as
Return Value

This operation copies the policy object. The copy does not retain any relationships
the policy had with any domain, or object.

4.8.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it
cannot be destroyed.

4.8.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of typePolicyType that corresponds
to the type of thePolicy object.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided
described in this section.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
4-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

tly

d to

d

};
};

4.8.2.1 PolicyErrorCode

A request to create aPolicy may be invalid for the following reasons:

BAD_POLICY - the requestedPolicy is not understood by the ORB.

UNSUPPORTED_POLICY - the requestedPolicy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for thePolicy is not valid
for that PolicyType .

BAD_POLICY_VALUE - The value requested for thePolicy is of a valid type but
is not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for thePolicy is of a
valid type and within the valid range for that type, but this valid value is not curren
supported.

4.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passe
the ORB::create_policy operation. Possible reasons are described above.

4.8.2.3 Create_policy

The ORB operationcreate_policy can be invoked to create new instances of policy
objects of a specific type with specified initial state. Ifcreate_policy fails to
instantiate a newPolicy object due to its inability to interpret the requested type an
content of the policy, it raises thePolicyError exception with the appropriate reason
as described in Section 4.8.2.1, “PolicyErrorCode” on page 4-39.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - thePolicyType of the policy object to be created.

val - the value that will be used to set the initial state of thePolicy object that is created.

ReturnValue

Reference to a newly createdPolicy object of type specified by thetype parameter
and initialized to a state specified by theval parameter.
July 2002 CORBA, v3.0: Policy Object 4-39

4

itial

is

icy,

t

ad of
ct

jects

ith

the

-

said
a

ated

ies
th a
Exception(s)

PolicyError - raised when the requested policy is not supported or a requested in
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it
expected that the IDL type and the valid values that can be passed tocreate_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific pol
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with tha
object.

Objects with which policy objects are typically associated are Domain Managers,
POA, the execution environment, both the process/capsule/ORB instance and thre
execution (Current object) and object references. Only certain types of policy obje
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual ob
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in thePortable Object Adapterchapter. The use of
Policy objects in the context of the Security services, involving their association w
Domain Managers as well as with the Execution Environment are discussed in the
Security Servicespecification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies” on page 4-43
use of Policy objects in association with Domain Managers is discussed.

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism,
invocation credentials, etc.) are associated by default with the process/capsule(RM
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the
capsule. The Security service provides operations for modulating these policies on
per-execution thread basis using operations in theCurrent interface. Certain of these
policies (e.g., invocation credentials, qop, mechanism, etc.) which pertain to the
invocation of an operation through a specific object reference can be further modul
at the client end, using theset_policy_overrides operation of theObject reference.
For a description of this operation see Section 4.3.9, “Overriding Associated Polic
on an Object Reference” on page 4-20. It associates a specified set of policies wi
newly created object reference that it returns.
4-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ocal

ence

ates
ject
with

.

en

le is
t of

e

al

ill
The association of these overridden policies with the object reference is a purely l
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object refer
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplic
of this new object reference apply to all invocations that are done through these ob
references. The overridden policies apply even when the default policy associated
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation
These are listed in the Security specification. Attempts to override any other policy
will result in the raising of theCORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so th
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsu
used. For policies that matter, the ORB ensures that there is a default policy objec
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Specification of New Policy Objects

When newPolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy ar
legal and which are not:

• Specify the assignedCORBA::PolicyType and the policy's interface definition.

• If the Policy can be created throughCORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the initi
state/behavior of thatPolicy (such as initial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy w
receive some complex data for the implementation to initialize the state of the
specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
July 2002 CORBA, v3.0: Policy Object 4-41

4

f

to
th

ice

re
act

e
As

res.

d.

r
be

se,
 readonly attribute long high;
};

If this sampleMyPolicy can be constructed via create_policy, the specification o
MyPolicy will have a statement such as: “When instances ofMyPolicy are created,
a value of typeMyPolicyRang e is passed toCORBA::ORB::create_policy and
the resulting MyPolicy’s attribute ‘low’ has the same value as theMyPolicyRange
member ‘low’ and attribute ‘high’ has the same value as theMyPolicyRange
member ‘high.’

• If the Policy can be passed as an argument toPOA::create_POA , specify the
effects of the new policy on thatPOA. Specifically define incompatibilities (or
inter-dependencies) with otherPOA policies, effects on the behavior of invocations
on objects activated with thePOA, and whether or not presence of the POA policy
implies someIOR profile/component contents for object references created with
that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

• If the component that is used to carry this information can be set within a client
tune the client’s behavior, specify the policy’s effects on the client specifically wi
respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of serv
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies a
stated. For policies that cause service contexts to be added to requests, the ex
details of this addition are given.

• If the Policy can be used withPOA creation to tuneIOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy’s presenc
from both the client and server. It is strongly recommended to avoid this case!
an exercise in completeness, mostPOA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful featu
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be describe

• Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (o
policies change due to rebind). If the newly specified policy is mutable, it must
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the ca
the policy specification must clearly state what happens if such overrides are
attempted.
4-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ed.

ies
B

o

ugh
ide
sors

ct
es

are
4.8.6 Standard Policies

Note – See Appendix A for a list of the standard policy types that are defined by
various parts of CORBA and CORBAservices in this version of CORBA.

4.9 Management of Policies

4.9.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the
following contexts:

• ORB-level Policies - A locality-constrainedPolicyManager is accessible through
the ORB interface. ThisPolicyManager has operations through which a set of
Policies can be applied and the current overriding Policy settings can be obtain
Policies applied at the ORB level override any system defaults. The ORB’s
PolicyManager is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of
“ORBPolicyManager.”

• Thread-level Policies - A standardPolicyCurrent is defined with operations for
the querying and applying of quality of service values specific to a thread. Polic
applied at the thread level override any system defaults or values set at the OR
level. The locality-constrainedPolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of “PolicyCurrent.”
When accessed from a newly spawned thread, thePolicyCurrent initially has no
overridden policies. ThePolicyCurrent also has no overridden values when a
POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation
to a servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to have n
overridden values.

• Object-level Policies - Operations are defined on the base Object interface thro
which a set of Policies can be applied. Policies applied at the Object level overr
any system defaults or values set at the ORB or Thread levels. In addition, acces
are defined for querying the currentoverriding Policies set at the Object level, and
for obtaining the currenteffective client-sidePolicy of a givenPolicyType . The
effective client-sidePolicy is the value of aPolicyType that would be in effect if
a request were made. This is determined by checking for overrides at the Obje
level, then at the Thread level, and finally at the ORB level. If no overriding polici
are set at any level, the system-dependent default value is returned. Portable
applications are expected to override the ORB-level policies since default values
not specified in most cases.
July 2002 CORBA, v3.0: Management of Policies 4-43

4

A.

the
tes.

ence
at

but
e
t at
cy
ism
e

et of
4.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a PO
Since all policy objects are derived from interfacePolicy , those that are applicable to
server-side behavior can be passed as arguments toPOA::create_POA . Any such
Policies that affect the behavior of requests (and therefore must be accessible to
ORB at the client side) are exported within the Object references that the POA crea
It is clearly noted in a POAPolicy definition when thatPolicy is of interest to the
Client. For those policies that can be exported within an Object reference, the abs
of a value for that policy type implies that the target supports any legal value of th
PolicyType .

Most Policies are appropriate only for management at either the Server or Client,
not both. For those Policies that can be established at the time of Object referenc
creation (through POA Policies) and overridden by the client (through overrides se
the ORB, thread, or Object reference scopes), reconciliation is done on a per-Poli
basis. Such Policies are clearly noted in their definitions and describe the mechan
of reconciliation between the Policies that are set by the POA and overridden in th
client. Furthermore, obtaining the effectivePolicy of some PolicyTypes requires
evaluating the effectivePolicy of other types of Policies. Such hierarchicalPolicy
definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current s
policies and for overriding these settings are encapsulated in thePolicyManager
interface.

4.9.3 Policy Management Interfaces

module CORBA {

local interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

local interface PolicyCurrent : PolicyManager, Current {
};

};
4-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

re

at

s.
4.9.3.1 interface PolicyManager

ThePolicyManager operations are used for setting and accessingPolicy overrides at
a particular scope. For example, an instance of thePolicyCurrent is used for
specifyingPolicy overrides that apply to invocations from that thread (unless they a
overridden at the Object scope as described in Section 4.9.1, “Client Side Policy
Management” on page 4-43).

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter
ts a sequence of overridden policy types identifying the policies th

are to be retrieved.

Return Value
policy list the list of overridden policies of the types specified by ts.

Exceptions

none

Returns aPolicyList containing the overridden Polices for the requested PolicyType
If the specified sequence is empty, allPolicy overrides at this scope will be returned.
If none of the requested PolicyTypes are overridden at the targetPolicyManager , an
empty sequence is returned. This accessor returns only thosePolicy overrides that
have been set at the specific scope corresponding to the targetPolicyManager (no
evaluation is done with respect to overrides at other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter
policies a sequence ofPolicy objects that are to be associated with the

PolicyManager object. If the sequence contains two or more
Policy objects with the samePolicyType value, the operation
raises the standard system exceptionBAD_PARAM with standard
minor code 30.

set_add whether the association is in addition to (ADD_OVERRIDE) or as
a replacement of (SET_OVERRIDE) any existing overrides
already associated with thePolicyManager object. If the value of
this parameter isSET_OVERRIDE, the suppliedpolicies
completely replace all existing overrides associated with the
July 2002 CORBA, v3.0: Management of Policies 4-45

4

t

at
er

this
ibing
PolicyManager object. If the value of this parameter is
ADD_OVERRIDE, the suppliedpolicies are added to the
existing overrides associated with thePolicyManager object,
except that if a suppliedPolicy object has the samePolicyType
value as an existing override, the suppliedPolicy object replaces
the existing override.

Return Value
none.

Exceptions
InvalidPolicies a list of indices identifying the position in the input policies list tha

are occupied by invalid policies.

Modifies the current set of overrides with the requested list ofPolicy overrides. The
first parameter policies is a sequence of references toPolicy objects. The second
parameterset_add of typeSetOverrideType indicates whether these policies should
be added onto any other overrides that already exist (ADD_OVERRIDE) in the
PolicyManager , or they should be added to a cleanPolicyManager free of any
other overrides (SET_OVERRIDE). Invoking set_policy_overrides with an empty
sequence of policies and a mode ofSET_OVERRIDE removes all overrides from a
PolicyManager . Only certain policies that pertain to the invocation of an operation
the client end can be overridden using this operation. Attempts to override any oth
policy will result in the raising of theCORBA::NO_PERMISSION exception. If
the request would put the set of overriding policies for the targetPolicyManager in
an inconsistent state, no policies are changed or added, and the exception
InvalidPolicies is raised. There is no evaluation of compatibility with policies set
within otherPolicyManagers .

4.9.3.2 interface PolicyCurrent

This specificPolicyManager provides access to policies overridden at the Thread
scope. A reference to a thread’sPolicyCurrent is obtained through an invocation of
CORBA::ORB::resolve_initial_references .

4.10 Management of Policy Domains

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate
aspect of management is described in this section together with the section descr
Policy objects.
4-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

in
nd
ct
ore

ale
er

in
ain
dd

ibly

a
e

ch.
icy
ted
cy,

ject

on
nces
in

at

r
his
to
g

4.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that doma
apply. These objects are the domain members. The policies represent the rules a
criteria that constrain activities of the objects which belong to the domain. On obje
reference creation, the ORB implicitly associates the object reference with one or m
policy domains. Policy domains provide leverage for dealing with the problem of sc
in policy management by allowing application of policy at a domain granularity rath
than at an individual object instance granularity.

4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the doma
manager, which has associated with it the policy objects for that domain. The dom
manager also records the membership of the domain and provides the means to a
and remove members. The domain manager is itself a member of a domain, poss
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in
policy object is associated with the domain by associating the policy object with th
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for ea
There is at most one policy of each type associated with a policy domain. The pol
objects are thus shared between objects in the domain, rather than being associa
with individual objects. Consequently, if an object needs to have an individual poli
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating ob
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the applicati
that is creating object references using POA operations to ensure that object refere
to the same object are not created by the server of that object with different doma
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In th
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap fo
the same type of policy (for example, be subject to overlapping access policies). T
would require conflicts among policies defined by the multiple overlapping domains
be resolved. The specification does not include explicit support for such overlappin
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.
July 2002 CORBA, v3.0: Management of Policy Domains 4-47

4

ay

nd
licy
n

to

pe of

em;
d to

nts

ion
ly be

with a

o be
d
y is
t

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), a
then uses the policy object returned to enforce the policy. The caller finding a po
and then enforcing it does not see the domain manager objects and the domai
structure.

• The administrative interfaces used to set policies (e.g., specifying which events
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the sco
what he is administering.

Note – This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between th
changing the domain structure and adding, changing, and removing policies applie
the domains.

4.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following eleme
forming its environment:

• One or morePolicy Domains, defining all the policies to which the object
associated with the object reference is subject.

• The Technology Domains,characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creat
operations of the POA is called. Some or all of these associations may subsequent
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain; that is, a domain manager object t
created whenever an object reference of that type is created and the newly create
object reference associated with the new domain manager. This construction polic
enforced at the same time as the domain membership; that is, by the POA when i
creates an object reference.
4-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

e
one

ject,

in to
d

are
et, it

ded,
ct. A

the
ay

he
ain
no
ns.

ains
be

it is
that

s and

re
4.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating th
object proceeds as follows. The application (which may be a generic factory) calls
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating ob
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the doma
which the parent belongs. Non-object applications on the client side are associate
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with theconstr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified type
to be associated their own separate domains. Once such a construction policy is s
can be reversed by invokingmake_domain_manager again with the
constr_policy parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is nee
the ORB creates both the requested object reference and a domain manager obje
reference to this domain manager can be found by callingget_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized,
interface from the ORB to the policy object is assumed to be a private one, which m
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of t
enclosing domain. The ORB will always arrange to provide a default enclosing dom
with default ORB policies associated with it, in those cases where there would be
such domain as in the case of a non-object client invoking object creation operatio

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management interfaces, which will
defined in the future.

Since the ORB has control only over domain associations with object references,
the responsibility of the creator of new object to ensure that the object references
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain manager
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies a
associated with domains.
July 2002 CORBA, v3.0: Management of Policy Domains 4-49

4

to
e

r

ces
t

1,
This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related
these are part of the CORBA module, since other definitions in the CORBA modul
depend on these.

module CORBA {
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagersList;
};

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, fo
example, it must be possible to add new policies to a domain with a pre-existing
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfa
for adding new policies to domains or for changing domain memberships have no
currently been standardized.

All domain managers provide theget_domain_policy operation. By virtue of being
an object, the Domain Managers also have theget_policy and
get_domain_managers operations, which is available on all objects (see Section
4.3.8, “Getting Policy Associated with the Object” on page 4-18 and Section 4.3.1
“Getting the Domain Managers Associated with the Object” on page 4-21).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type
4-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ct of

ect

the

the
licy

y in

e

);

Parameter(s)

policy_type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described in theSecurity
Servicespecification, Security Policies Introduction section.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy obje
that type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in eff
in the domain with which thisConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by
input parameter is created, a new domain manager will be created and the newly
created object reference will respond toget_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate
newly created object reference with the domain associated with the creator. This po
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the polic
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

object_type - The type of the object references for which Domain Managers will b
created. If this is nil, the policy applies to all object references in the domain.
July 2002 CORBA, v3.0: Management of Policy Domains 4-51

4

ain.
s

s.

ace
itory

e

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this dom
If FALSE construction policy is set to associate the newly created object reference
with the domain of the creator or a default domain as described above.

4.11 TypeCodes

TypeCode s are values that represent invocation argument types and attribute type
They can be obtained from the Interface Repository or from IDL compilers.

TypeCode s have a number of uses. They are used in the dynamic invocation interf
to indicate the types of the actual arguments. They are used by an Interface Repos
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of theany type.

Abstractly,TypeCode s consist of a “kind” field, and a set of parameters appropriat
for that kind. For example, theTypeCode describing OMG IDL typelong has kind
tk_long and no parameters. TheTypeCode describing OMG IDL type
sequence<boolean,10> has kindtk_sequence and two parameters:10 and
boolean .

4.11.1 The TypeCode Interface

The PIDL interface forTypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {
4-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// tk_except and tk_event
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, tk_value,
// tk_except and tk_event
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value and tk_event
July 2002 CORBA, v3.0: TypeCodes 4-53

4

m

for

on

e

Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);

ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
};

With the above operations, anyTypeCode can be decomposed into its constituent
parts. TheBadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on anyTypeCode . Theequal operation returns
TRUE if and only if for the targetTypeCode and theTypeCode passed through the
parametertc, the set of legal operations is the same and invoking any operation fro
that set on the twoTypeCode s return identical results.

Theequivalent operation is used by the ORB when determining type equivalence
values stored in an IDLany. TypeCodes are considered equivalent based on the
following semantics:

• If the result of thekind operation on eitherTypeCode is tk_alias , recursively
replace theTypeCode with the result of callingcontent_type , until the kind is no
longer tk_alias .

• If results of thekind operation on each typecode differ,equivalent returns false.

• If the id operation is valid for theTypeCode kind , equivalent returnsTRUE if
the results ofid for both TypeCodes are non-empty strings and both strings are
equal. If both ids are non-empty but are not equal, thenequivalent returnsFALSE .
If either or both id is an empty string, or theTypeCode kind does not support the
id operation,equivalent will perform a structural comparison of theTypeCodes
by comparing the results of the otherTypeCode operations in the following bullet
items (ignoring aliases as described in the first bullet.). The structural comparis
only calls operations that are valid for the givenTypeCode kind . If any of these
operations do not return equal results, thenequivalent returnsFALSE . If all
comparisons are equal,equivalent returns true.

• The results of thename andmember_name operations are ignored and not
compared.

• The results of themember_count , default_index , length , digits , scale, and
type_modifier operations are compared.

• The results of themember_label operation for each member index of aunion
TypeCode are compared for equality. Note that this means thatunions whose
members are not defined in the same order are not considered structurally
equivalent.

• The results of thediscriminator_type, member_type , and
concrete_base_type operation and for each member index, and the result of th
content_type operation are compared by recursively callingequivalent .

• The results of themember_visibility operation are compared for each member
index.
4-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ype

,

s the
the
r a
Applications that need to distinguish between a type and different aliases of that t
can supplementequivalent by directly invoking theid operation and comparing the
results.

The get_compact_typecode operation strips out all optionalname andmember
name fields, but it leaves all alias typecodes intact.

The kind operation can be invoked on anyTypeCode . Its result determines what
other operations can be invoked on theTypeCode .

The id operation can be invoked on object reference, valuetype, boxed valuetype,
abstract interface, local interface, native, structure, union, enumeration, alias,
exception, component, home, and eventTypeCode s. It returns theRepositoryId
globally identifying the type. Object reference, valuetype, boxed valuetype, native,
exception, component, home, and eventTypeCode s always have aRepositoryId .
Structure, union, enumeration, and aliasTypeCode s obtained from the Interface
Repository or theORB::create_operation_list operation also always have a
RepositoryId . Otherwise, theid operation can return an empty string.

When theid operation is invoked on an object referenceTypeCode that contains a
baseObject , the returned value isIDL:omg.org/CORBA/Object:1.0 .

When it is invoked on a valuetypeTypeCode that contains aValueBase , the returned
value isIDL:omg.org/CORBA/ValueBase:1.0 .

When it is invoked on a componentTypeCode that contains a
Components::CCMObject , the returned value is
IDL:omg.org/Components/CCMObject:1.0 .

When it is invoked on a homeTypeCode that contains aComponents::CCMHome,
the returned value isIDL:omg.org/Components/CCMHome:1.0 .

When it is invoked on an eventtypeTypeCode that contains a
Components::EventBase , the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, abstract interface, local interface, value type, boxed valuetype
native, and exceptionTypeCode s. It returns the simple name identifying the type
within its enclosing scope. Since names are local to aRepository , the name returned
from aTypeCode may not match the name of the type in any particularRepository ,
and may even be an empty string.

The order in which members are presented in the interface repository is the same a
order in which they appeared in the IDL specification, and this ordering determines
index value for each member. The first member has index value 0. For example fo
structure definition:

struct example {
short member1;
short member2;
long member3;

};
July 2002 CORBA, v3.0: TypeCodes 4-55

4

.

on-

he
o

d

er

and
s, it

-

e

an
e

In this examplemember1 hasindex = 0, member2 hasindex = 1, andmember3
hasindex = 2. The value ofmember_count in this case is 3.

The member_count andmember_name operations can be invoked on structure,
union, non-boxed valuetype, non-boxed eventtype, exception, and enumeration
TypeCode s. Member_count returns the number of members constituting the type
Member_name returns the simple name of the member identified byindex . Since
names are local to aRepository , the name returned from aTypeCode may not match
the name of the member in any particularRepository , and may even be an empty
string.

The member_type operation can be invoked on structure, non-boxed valuetype, n
boxed eventtype, exception and unionTypeCode s. It returns theTypeCode
describing the type of the member identified byindex .

The member_label , discriminator_type , anddefault_index operations can only
be invoked on unionTypeCode s. Member_label returns the label of the union
member identified byindex . For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. T
default_index operation returns the index of the default member, or -1 if there is n
default member.

The member_visibility operation can only be invoked on non-boxed valuetype an
non-boxed eventtype,TypeCodes . It returns theVisibility of the valuetype/eventtype
member identified by index.

The member_name , member_type , member_label andmember_visibility
operations raiseBounds if the index parameter is greater than or equal to the numb
of members constituting the type.

Thecontent_type operation can be invoked on sequence, array, boxed valuetype
aliasTypeCode s. For sequences and arrays, it returns the element type. For aliase
returns the original type. For boxed valuetype, it returns the boxed type.

An arrayTypeCode only describes a single dimension of an OMG IDL array. Multi
dimensional arrays are represented by nestingTypeCode s, one per dimension. The
outermosttk_array Typecode describes the leftmost array index of the array as
defined in IDL. Itscontent_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

The type_modifier andconcrete_base_type operations can be invoked on non-
boxed valuetype and non-boxed eventtypeTypeCode s. Thetype_modifier operation
returns theValueModifier that applies to the valuetype/eventtype represented by th
targetTypeCode . If the valuetype/eventtype represented by the targetTypeCode has
a concrete base valuetype/eventtype, theconcrete_base_type operation returns a
TypeCode for the concrete base, otherwise it returns a nilTypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bound, with zero indicating
unbounded string or sequence. For arrays, it returns the number of elements in th
array. For wide strings, it returns the bound, or zero for unbounded wide strings.
4-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

the

ith

,

4.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a
TypeCode constant. See the language mapping rules for more information about
names of the generatedTypeCode constants.TypeCode constants include tk_alias
definitions wherever an IDL typedef is referenced. These constants can be used w
the dynamic invocation interface and other routines that requireTypeCode s.

The predefinedTypeCode constants, named according to the C language mapping
are:

TC_null
TC_void
TC_short
TC_long
TC_longlong
TC_ushort
TC_ulong
TC_ulonglong
TC_float
TC_double
TC_longdouble
TC_boolean
TC_char
TC_wchar
TC_octet
TC_any
TC_TypeCode
TC_Object = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{0}/// unbounded
TC_ValueBase = tk_value {ValueBase}
TC_Component = tk_component {CCMObject}
TC_Home = tk_home {CCMHome}
TC_EventBase = tk_event {EventBase}

For theTC_Object TypeCode constant, callingid returns
"IDL:omg.org/CORBA/Object:1.0 " and callingname returns "Object ."

For theTC_ValueBase TypeCode constant, callingid returns
"IDL:omg.org/CORBA/ValueBase:1.0 ," calling name returns "ValueBase ,"
calling member_count returns0, calling type_modifier returns
CORBA::VM_NONE , and callingconcrete_base_type returns anil TypeCode .

For theTC_Component TypeCode constant, callingid returns
"IDL:omg.org/Components/CCMObject:1.0 " and callingname returns
"CCMObject ."

For theTC_Home TypeCode constant, callingid returns
"IDL:omg.org/Components/CCMHome:1.0 " and callingname returns
"CCMHome ."
July 2002 CORBA, v3.0: TypeCodes 4-57

4

d in
For theTC_EventBase TypeCode constant, callingid returns
"IDL:omg.org/Components/EventBase:1.0 ," calling name returns
"EventBase ," calling member_count returns0, calling type_modifier returns
CORBA::VM_NONE , and callingconcrete_base_type returns anil TypeCode .

4.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specifie
terms of object references, and theTypeCode s describing them are generated
automatically.

In some situations, such as bridges between ORBs,TypeCode s need to be constructed
outside of any Interface Repository. This can be done using operations on theORB
pseudo-object.

module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id;
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
4-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);
July 2002 CORBA, v3.0: TypeCodes 4-59

4

pe

e

er
the
TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_component_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_home_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_event_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);
};

};

Most of these operations are similar to corresponding IR operations for creating ty
definitions.TypeCode s are used here instead ofIDLType object references to refer to
other types. In theStructMember , UnionMember andValueMember structures,
only the type is used, and thetype_def should be set to nil.

Typecode creation operations that takename as an argument shall check that the nam
is a valid IDL name or is a null string. If not, they shall raise theBAD_PARAM
exception with standard minor code 15. Operations that take aRepositoryId
argument shall check that the argument passed in is a string of the form
<format>:<string> and if not, then raise aBAD_PARAM exception with standard
minor code 16. Operations that takecontent or member types as arguments shall
check that they are legitimate (i.e., that they don’t have kindstk_null , tk_void or
tk_exception). If not, they shall raise theBAD_TYPECODE exception with
standard minor code 2. Operations that take members shall check that the memb
names are valid IDL names and that they are unique within the member list, and if
name is found to be incorrect, they shall raise aBAD_PARAM with standard minor
code 17.
4-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

. It

tion

f this

et

ple,

g

Thecreate_union_tc operation shall check that there are no duplicate label values
shall also check that each labelTypeCode compares equivalent to the discriminator
TypeCode . If a duplicate label is found, raiseBAD_PARAM with standard minor
code 18. If incompatibleTypeCode of label and discriminator is found, raise
BAD_PARAM with standard minor code 19. Thecreate_union_tc operation shall
also check that the supplied discriminator type is legitimate, and if the check fails,
raiseBAD_PARAM with standard minor code 20.

Note – The create_recursive_sequence_tc operation is deprecated. No new code
should make use of this operation. Its functionality is subsumed by the new opera
create_recursive_tc . Thecreate_recursive_sequence_tc operation will be
removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to createTypeCodes
describing recursive sequences that are members of structs or unions. The result o
operation should be used as the typecode in theStructMemberSeq or
UnionMemberSeq arguments of thecreate_struct_tc or create_union_tc
operations. Theoffset parameter specifies which enclosing struct or union is the targ
of the recursion, with the value1 indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions. For exam
the offset would be1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

};

Once the recursive sequenceTypeCode has been properly embedded in its enclosin
TypeCodes , it will function as a normal sequenceTypeCode . Invoking operations
on the recursive sequenceTypeCode before it has been embedded in the required
number of enclosingTypeCodes will result in undefined behavior. Attempt to
marshal incomplete typecodes shall raise theBAD_TYPECODE exception with
standard minor code 1. Attempt to use an incompleteTypeCode as a parameter of any
operation when detected shall cause theBAD_PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, theconcrete_base parameter is aTypeCode for
the immediate concrete valuetype base of the valuetype for which theTypeCode is
being created. If the valuetype does not have a concrete base, theconcrete_base
parameter is a nilTypeCode reference.

The create_recursive_tc operation is used to create a recursiveTypeCode , which
serves as a place holder for a concreteTypeCode during the process of creating
TypeCode s that contain recursion. Theid parameter specifies the repository id of the
type for which the recursiveTypeCode is serving as a place holder. Once the
recursiveTypeCode has been properly embedded in the enclosingTypeCode , which
corresponds to the specified repository id, it will function as a normalTypeCode .
Invoking operations on the recursiveTypeCode before it has been embedded in the
enclosingTypeCode will result in undefined behavior. For example, the following
IDL type declarations contain recursion:
July 2002 CORBA, v3.0: TypeCodes 4-61

4

rms
a list

gh
es
d

struct foo {
long value;
sequence<foo> chain;

};

valuetype V {
public V member;

};

To create aTypeCode for valuetype V , you would invoke theTypeCode creation
operations as shown below:

// C++
TypeCode_var recursive_tc

= orb->create_recursive_tc(“IDL:V:1.0”);

ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0].name = string_dup(“member”);
v_seq[0].type = recursive_tc;
v_seq[0].access = PUBLIC_MEMBER;
TypeCode_var v_val_tc

= orb->create_value_tc(“IDL:V:1.0”,
“V”,
VM_NONE,
TypeCode::_nil(),
v_seq);

For create_event_tc operation, theconcrete_base parameter is aTypeCode for
the immediate concrete base of the eventtype for which theTypeCode is being
created. If the eventtype does not have a concrete base, theconcrete_base parameter
is a nil TypeCode reference.

4.12 Exceptions

The terms “system” and “user” exception are defined in this section. Further the te
“standard system exception” and “standard user exception” are defined, and then
of “standard system exceptions” is provided.

4.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards
documents to refer to exceptions:

Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even thou
they are not declared in a raises clause. These exceptions cannot appear in a rais
clause. These have the structure defined in section 3.17.2 “System Exception,” an
they are of typeSYSTEM_EXCEPTION (see PIDL below).
4-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

ated

itly

f

d

ilar
due
nt
es
Standard System Exception: A System Exception that is part of the CORBA
Standard as enumerated in section 3.17. (e.g., BAD_PARAM). These are enumer
in Section 3.17.2 “Standard System Exceptions.”

Non-Standard System Exceptions: System exceptions that are proprietary to a
particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explic
declare them in the raises clause of their signature. These exceptions are of type
USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG
standard (e.g., WrongTransaction). These are documented in the documentation o
individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any publishe
OMG specification.

4.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many sim
exceptions. For example, an operation invocation can fail at many different points
to the inability to allocate dynamic memory. Rather than enumerate several differe
exceptions corresponding to the different ways that memory allocation failure caus
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION

};
};

Each system exception includes a minor code to designate the subcategory of the
exception.
July 2002 CORBA, v3.0: Exceptions 4-63

4

that

,

the

tion
tions

hen
n
in

ndard
ption
w

Minor exception codes are of typeunsigned long and consist of a 20-bit “Vendor
Minor Codeset ID”(VMCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the
VMCID assigned to OMG, defined as the unsigned long constant
CORBA::OMGVMCID , which has the VMCID allocated to OMG occupying the high
order 20 bits. The minor exception codes associated with the standard exceptions
are found in Appendix A, Section A.5, “Exception Codes” are or-ed withOMGVMCID
to get the minor code value that is returned in theex_body structure (see Section
4.12.3, “Standard System Exception Definitions” on page 4-65 and Section 4.12.4
“Standard Minor Exception Codes” on page 4-72).

Within a vendor assigned space, the assignment of values to minor codes is left to
vendor. Vendors may request allocation ofVMCIDs by sending email to tag-
request@omg.org.

TheVMCID 0 and0xfffff are reserved for experimental use. TheVMCID OMGVMCID
(Section 4.12.3, “Standard System Exception Definitions” on page 4-65) and1 through
0xf are reserved for OMG use.

Each standard system exception also includes acompletion_status code that takes
one of the values {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE}. These have the following meanings:

Client applications must be prepared to handle system exceptions other than the
standard system exception defined below in Section 4.12.3, “Standard System
Exception Definitions” on page 4-65, both because future versions of this specifica
may define additional standard system exceptions, and because ORB implementa
may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are
discouraged because they are non-portable. A non-standard system exception, w
passed to an ORB that does not recognize it, shall be presented by that ORB as a
UNKNOWN standard system exception. The completion status shall be preserved
the UNKNOWN exception, and the minor code shall be set to standard value 2 for
system exception and standard value 1 for user exception.

Non-standard system exceptions shall have the same structure as of standard sta
system exceptions as specified in section Section 4.12.3, “Standard System Exce
Definitions” on page 4-65 (i.e., they have the same ex_body). They also shall follo

COMPLETED_YES The object implementation has completed processing
prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated prior
to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is
indeterminate.
4-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

IDL,
ing
the same language mappings as standard system exceptions. Although they are P
vendors should ensure that their names do not clash with any other names follow
the normal naming and scoping rules as they apply to regular IDL exceptions.

4.12.3 Standard System Exception Definitions

The standard system exceptions are defined in this section.

module CORBA { // PIDL

exception UNKNOWN ex_body;
// the unknown exception

exception BAD_PARAM ex_body;
// an invalid parameter was passed

exception NO_MEMORY ex_body;
// dynamic memory allocation failure

exception IMP_LIMIT ex_body;
// violated implementation limit

exception COMM_FAILURE ex_body;
// communication failure

exception INV_OBJREF ex_body;
// invalid object reference

exception NO_PERMISSION ex_body;
// no permission for attempted op.

exception INTERNAL ex_body;
// ORB internal error

exception MARSHAL ex_body;
// error marshaling param/result

exception INITIALIZE ex_body;
// ORB initialization failure

exception NO_IMPLEMENT ex_body;
// operation implementation unavailable

exception BAD_TYPECODE ex_body;
// bad typecode

exception BAD_OPERATION ex_body;
// invalid operation

exception NO_RESOURCES ex_body;
// insufficient resources for req.

exception NO_RESPONSE ex_body;
// response to req. not yet available

exception PERSIST_STORE ex_body;
// persistent storage failure

exception BAD_INV_ORDER ex_body;
// routine invocations out of order

exception TRANSIENT ex_body;
// transient failure - reissue request

exception FREE_MEM ex_body;
// cannot free memory

exception INV_IDENT ex_body;
// invalid identifier syntax
July 2002 CORBA, v3.0: Exceptions 4-65

4

r
the
exception INV_FLAG ex_body;
// invalid flag was specified

exception INTF_REPOS ex_body;
// error accessing interface repository

exception BAD_CONTEXT ex_body;
// error processing context object

exception OBJ_ADAPTER ex_body;
// failure detected by object adapter

exception DATA_CONVERSION ex_body;
// data conversion error

exception OBJECT_NOT_EXIST ex_body;
// non-existent object, delete reference

exception TRANSACTION_REQUIRED ex_body;
// transaction required

exception TRANSACTION_ROLLEDBACK x_body;
// transaction rolled back

exception INVALID_TRANSACTION ex_body;
// invalid transaction

exception INV_POLICY ex_body;
// invalid policy

exception CODESET_INCOMPATIBLE ex_body
// incompatible code set

exception REBIND ex_body;
// rebind needed

exception TIMEOUT ex_body;
// operation timed out

exception TRANSACTION_UNAVAILABLE ex_body;
// no transaction

exception TRANSACTION_MODE ex_body;
// invalid transaction mode

exception BAD_QOS ex_body;
// bad quality of service

exception INVALID_ACTIVITY ex_body;
// bad quality of service

exception ACTIVITY_COMPLETED ex_body;
// bad quality of service

exception ACTIVITY_REQUIRED ex_body;
// bad quality of service

};

4.12.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expression.UNKNOWN is also raised if the server returns a system
exception that is unknown to the client. (This can happen if the server uses a late
version of CORBA than the client and new system exceptions have been added to
later version.)
4-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

RB
(for

n
hold
the
r

een

ple,

ing
d

4.12.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An O
may raise this exception if null values or null pointers are passed to an operation
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating requests with
incorrect parameters using the DII.

4.12.3.3 NO_MEMORY

The ORB run time has run out of memory.

4.12.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB ru
time. For example, an ORB may reach the maximum number of references it can
simultaneously in an address space, the size of a parameter may have exceeded
allowed maximum, or an ORB may impose a maximum on the number of clients o
servers that can run simultaneously.

4.12.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress,
after the request was sent by the client, but before the reply from the server has b
returned to the client.

4.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For exam
the repository ID may have incorrect syntax or the addressing information may be
invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect
them).INV_OBJREF is used to indicate this.

If the client invokes an operation that results in an attempt by the client ORB to
marshal wchar or wstring data for an in parameter (or to unmarshal wchar or wstr
data for an in/out parameter, out parameter or the return value), and the associate
object reference does not contain a codeset component, theINV_OBJREF standard
system exception is raised.

4.12.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.
July 2002 CORBA, v3.0: Exceptions 4-67

4

ply
ssage

re

has

n

an

ect

time
4.12.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has
detected corruption of its internal data structures.

4.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if a re
from the server indicates that the message contains 1000 bytes, but the actual me
is shorter or longer than 1000 bytes, the ORB raises this exception.MARSHAL can
also be caused by using the DII or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

4.12.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acqui
networking resources or detecting a configuration error.

4.12.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it
an IDL definition), no implementation for that operation exists.NO_IMPLEMENT
can, for example, be raised by an ORB if a client asks for an object's type definitio
from the interface repository, but no interface repository is provided by the ORB.

4.12.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with
invalid TCKind value).

4.12.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the obj
does not support the operation that was invoked.

4.12.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run
may have reached the maximum permissible number of open connections.

4.12.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.
4-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

sh a

For

not
r
This
use

ap

ed
DL

st).

ther

sed
4.12.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establi
database connection or corruption of a database.

4.12.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order.
example, it can be raised by an ORB if an application makes an ORB-related call
without having correctly initialized the ORB first.

4.12.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is
an indication that an object does not exist. Instead, it simply means that no furthe
determination of an object's status was possible because it could not be reached.
exception is raised if an attempt to establish a connection fails, for example, beca
the server or the implementation repository is down.

4.12.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of he
corruption or memory segments being locked.

4.12.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be rais
if, for example, an identifier passed to the interface repository does not conform to I
identifier syntax, or if an illegal operation name is used with the DII.

4.12.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII reque

4.12.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some o
failure relating to the interface repository is detected.

4.12.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the pas
context does not contain the context values required by the operation.
July 2002 CORBA, v3.0: Exceptions 4-69

4

er
er a

rs.

if

and

ld
n

hus,
use

ed

lity
4.12.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a serv
may have made an attempt to register itself with an implementation repository und
name that is already in use, or is unknown to the repository.OBJ_ADAPTER is also
raised by the POA to indicate problems with application-supplied servant manage

4.12.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character codeset conversion fails, or
an ORB cannot convert floating point values between different representations.

4.12.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a
deleted object was performed. It is an authoritative “hard” fault report. Anyone
receiving it is allowed (even expected) to delete all copies of this object reference
to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may ho
(for example, proxy objects used in reference translation). The clients could in tur
purge any of their own data structures.

4.12.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

4.12.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. T
the requested operation either could not be performed or was not performed beca
further computation on behalf of the transaction would be fruitless.

4.12.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurr
when trying to register a resource.

4.12.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibi
between Policy overrides that apply to the particular invocation.
4-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

een
n

e
QoS

t
ervice

of
s

4.12.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible betw
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” o
page 13-34.

4.12.3.32 REBIND

REBIND is raised when the current effectiveRebindPolicy , as described in Section
22.2.1.2, “interface RebindPolicy” on page 22-5, has a value ofNO_REBIND or
NO_RECONNECT and an invocation on a bound object reference results in a
LocateReply message with statusOBJECT_FORWARD or a Reply message with
statusLOCATION_FORWARD . This exception is also raised if the current effective
RebindPolicy has a value ofNO_RECONNECT and a connection must be re-
opened. The invocation can be retried once the effectiveRebindPolicy is changed to
TRANSPARENT or binding is re-established through an invocation of
CORBA::Object::validate_connection .

4.12.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-liv
period has been exceeded. It is a standard system exception because time-to-live
can be applied to any invocation.

4.12.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it canno
process a transaction service context because its connection to the Transaction S
has been abnormally terminated.

4.12.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a
mismatch between theTransactionPolicy in the IOR and the current transaction
mode.

4.12.3.36 BAD_QOS

TheBAD_QOS exception is raised whenever an object cannot support the quality
service required by an invocation parameter that has a quality of service semantic
associated with it.
July 2002 CORBA, v3.0: Exceptions 4-71

4

r
e
self

the

es
4.12.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services’ resume methods if a transaction or Activity is resumed in a
context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

4.12.3.38 ACTIVITY_COMPLETED

TheACTIVITY_COMPLETED system exception may be raised on any method fo
which Activity context is accessed. It indicates that the Activity context in which th
method call was made has been completed due to a timeout of either the Activity it
or a transaction that encompasses the Activity, or that the Activity completed in a
manner other than that originally requested.

4.12.3.39 ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for
which an Activity context is required. It indicates that an Activity context was
necessary to perform the invoked operation, but one was not found associated with
calling thread.

4.12.4 Standard Minor Exception Codes

Please refer to Appendix A for a table that specifies standard minor exception cod
that have been assigned for the standard system exceptions.
4-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ValueTypeSemantics 5
DL
ed
no

bject
’s
e a

ves a
t

Contents

This chapter contains the following sections.

5.1 Overview

Objects, more specifically, interface types that objects support, are defined by an I
interface, allowing arbitrary implementations. There is great value, which is describ
in great detail elsewhere, in having a distributed object system that places almost
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an o
by value, rather than by reference. This may be particularly useful when an object
primary “purpose” is to encapsulate data, or an application explicitly wishes to mak
“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value recei
description of the “state” of the object. It then instantiates a new instance with tha

Section Title Page

“Overview” 5-1

“Architecture” 5-2

“Standard Value Box Definitions” 5-9

“Language Mappings” 5-9

“Custom Marshaling” 5-10
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 5-1

5

eter
o

and

they

n

nal
ls be
me
s.
ings.

.
ys
ave

.

t
ame.
ped
to

ing:

lue
state but having a separate identity from that of the sending side. Once the param
passing operation is complete, no relationship is assumed to exist between the tw
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

• They support description of complex state (i.e., arbitrary graphs, with recursion
cycles)

• Their instances are always local to the context in which they are used (because
are always copied when passed as a parameter to a remote call)

• They support both public and private (to the implementation) data members.

• They can be used to specify the state of an object implementation (i.e., they ca
support an interface).

• They support single inheritance (ofvaluetype) and can support aninterface .

• They may be also beabstract .

5.2 Architecture

The basic notion is relatively simple. Avalue type is, in some sense, half way
between a “regular” IDL interface type and a struct. The use of a value type is a sig
from the designer that some additional properties (state) and implementation detai
specified beyond that of an interface type. Specification of this information puts so
additional constraints on the implementation choices beyond that of interface type
This is reflected in both the semantics specified herein, and in the language mapp

An essential property of value types is that their implementations are always local
That is, the explicit use of value type in a concrete programming language is alwa
guaranteed to use a local implementation, and will not require a remote call. They h
no identity (their value is their identity) and they are not “registered” with the ORB

There are two kinds of value types, concrete (or stateful) value types, and abstrac
(stateless) ones. As explained below the essential characteristics of both are the s
The differences between them result from the differences in the way they are map
in the language mappings. In this specification the semantics of value types apply
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by support

• single derivation (from other value types)

• supports a single non-abstract interface

• arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using va
types.
5-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

rshals
tiates
te. It

tate

alue
ally
er,
,
on

gs

hey
al

only
y a

assed

copy
not

es of
A

as a
• null value semantics

When an instance of such a type is passed as a parameter, the sending context ma
the state (data) and passes it to the receiving context. The receiving context instan
a new instance using the information in the GIOP request and unmarshals the sta
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e., only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back object (CodeBase) to the
sending context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty s
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. Only concrete types derived from them may be actu
instantiated and implemented. Their implementation, of course, is still local. Howev
because no state information may be specified (only local operations are allowed)
abstract value types are not subject to the single inheritance restrictions placed up
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappin
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. T
are considered to be stateful, may be instantiated, marshaled and passed as actu
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can
be local. Because these operations are local, they must be directly implemented b
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types p
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA object reference semantics) and that a
is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is
mediated by the ORB, although the API to be used is specified in the language
mapping.

The (copy) semantics for instances of value type are only guaranteed when instanc
these value types are passed as a parameter to an operation defined on a CORB
interface, and hence mediated by the ORB. If an instance of a value type is passed
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and
programming language reference semantics apply.
July 2002 CORBA, v3.0: Architecture 5-3

5

f the
ce no

es

pe

n a
e.,
.

e by
ng
ce

e

alue
by

IDL
sharing
an

non-
nce

are
there
Operations on the value type are supported in order to guarantee the portability o
client code for these value types. They have no representation on the wire and hen
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value typ
do not inherit fromCORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value ty
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter).

5.2.4 Parameter Passing

This section describes semantics when a value instance is passed as parameter i
CORBA invocation. It does not deal with the case of calling another non-CORBA (i.
local) programming method, which happens to have a parameter of the same type

5.2.4.1 Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is mad
examining the parameter’s formal type (i.e., the signature of the operation it is bei
passed to). If it is a value type then it is passed by value. If it is an ordinary interfa
then it is passed by reference (the case today for all CORBA objects). This rule is
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of th
rules.

5.2.4.2 Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., v
types support sharing and null semantics. Instances of a value type can be shared
others across or within other instances. They can also be null. This is unlike other
data types such as structs, unions, and sequences that can never be shared. The
of values within and between the parameters to an operation, is preserved across
invocation; that is, the graph that is reconstructed in the receiving context is
structurally isomorphic to the sending context’s.

5.2.4.3 Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a
local interface, the effect in all cases shall be as if an independent copy of the insta
is instantiated in the receiving context. While certain implementation optimizations
possible the net effect shall be as if the copy is a separate independent entity and
5-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

e

n is

t the

e

s
to be

ed as

d
ase
ered
ual

can

ing
m.
is no explicit or implicit sharing of state. This applies to all valuetypes involved in th
invocation, including those embedded in other IDL datatypes or in an any. This
notional copying occurs twice, once for in and inout parameters when the invocatio
initiated, and once again for inout, out and return parameters when the invocation
completes. Optimization techniques such as copy on write etc. must make sure tha
semantics of copying as described above is preserved.

5.2.4.4 Any parameter type

When an instance of a value type is passed to anany, as with all cases of passing
instances to anany, it is the responsibility of the implementor to insert and extract th
value according to the language mapping specification.

5.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happen
when an instance of a derived value type is passed as a parameter that is declared
a base value type or an instance of a value type that supports an interface is pass
a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the
parameter type is an abstract interface, and the parameter type is a value type.

5.2.5.1 Value instance -> Interface type

A value type that supports a regular interface is not a subtype of that interface, an
hence cannot be substituted for that interface in an invocation parameter. In this c
an object reference corresponding to the value type instance that has been regist
with the ORB must be obtained and this object reference must be used as the act
parameter. Different language mappings provide different facilities to aid in such
parameter passing.

5.2.5.2 Value Instance -> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and
be substituted for that interface in an invocation parameter.

5.2.5.3 Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiv
context currently has the appropriate implementation class then there is no proble

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:
July 2002 CORBA, v3.0: Architecture 5-5

5

ds,

an
e.
re-
eeds

other
tions

If

tion
1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succee
OK.

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because,
from a structural point view base types structurally subsume a derived type and
object created in the receiving context bears no relationship with the original on
However, it might be semantically puzzling, as the derived type may completely
interpret the meaning of the state of the base. For that reason a derived value n
to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception- If none of these work or are possible, then raise the
NO_IMPLEMENT exception with standard minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;
// initializer
factory init(in string name, in string SSN);

};

valuetype ManagerRecord: truncatable EmployeeRecord {
// state definition
private sequence<EmployeeRecord> direct_reports;

};

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to
value types. Each language mapping is responsible for specifying how these opera
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed.
the interface designer wants to allow the receiving context to create a local
implementation of the value type (i.e., a value representing the interface) an opera
that returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type calledValueBase . This is a type, which
fulfills a role that is similar to that played byObject . Conceptually it supports the
common operations available on all value types. See Section 4.4, “ValueBase
5-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

tting

iven
age”

ing

d by

with
t
licy
l”

and

as

ng
have
be

box

ose
Operations,” on page 4-23 for a description of those operations. In each language
mappingValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as ge
meta information about the type, may be found in the specifics for each language
mapping.

5.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a g
language mapping an instance of a value type is always created as a local “langu
object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiv
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passe
reference when the formal parameter type is an interface type (see Section 5.2.4,
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered
the ORB (e.g.,POA::activate_object() before they can be passed by reference. No
registering the value as a CORBA object and/or not associating an appropriate po
with it results in an exception when trying to use it as a remote object, the “norma
behavior. The exception raised shall beOBJECT_NOT_EXIST with standard
minor code 1.

5.2.8.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositoryID, which is passed over the wire
part of an invocation. The mapping between the type (as specified by the
RepositoryID) and the factory is language specific. In certain languages it may be
possible to specify default policies that are used to find the factory, without requiri
that specific routines be called. In others the runtime and/or generated code may
to explicitly specify the mapping on a per type basis. In others a combination may
used. In any event the ORB implementation is responsible for maintaining this
mapping See Section 5.4.3, “Language Specific Value Factory Requirements,” on
page 5-9 for more details on the requirements for each language mapping. Value
types do not need or use factories.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to th
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling
July 2002 CORBA, v3.0: Architecture 5-7

5

are

ue

sms

er,
er
g as

ly
f the

ype,
as

ny

the

en
es

he

The
the

the

a
an

low
not
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: how value types
manifest themselves as concrete programming language constructs and how they
transmitted.

To see this consider how value types are actually used. The IDL definition of a val
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechani
in the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adapt
etc. The programmer may manipulate this programming construct just like any oth
programming language construct. So far there are no security implications. As lon
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local,” non ORB-mediated calls to any local
implemented operations. Any assignments to the construct are the responsibility o
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation (i.e., calls a stub that uses it as a parameter t
or uses the DII). There are two cases to consider: 1) Value as Value and 2) Value
Object Reference.

5.2.9.1 Value as Value

The formal type of the parameter is a value. This case is no different from using a
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is th
unmarshaled to fill in the newly created construct. This is similar to using other valu
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to t
ORB’s skeleton/DSI engine.

5.2.9.2 Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value.
program must have “registered” the value with an object adapter and is really using
returned object reference (see for the specific rules.) Thus this case “reduces” to a
regular CORBA invocation, using a regular object reference. An IOR is passed to
receiving context. All the “normal” security considerations apply. From the point of
view of the receiving context, the IOR is a “normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimately
reference to an implementation that was created from instantiating and registering
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to al
the ORB-mediated invocation to proceed. The fact that a value type is involved is
material.
5-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

n of
to

Java,

Java,

n
s is

tion,

the

s are
e

ch

licit
an
tory,
5.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmissio
nulls are likely to be important, the following value box type definitions are added
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

};

5.4 Language Mappings

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each
programming language, plus possibly some helper classes where appropriate. In
C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementatio
classes with “extra” data members and methods. When an instance of such a clas
used as a parameter, only the portions that correspond directly to the IDL declara
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and
entry point for custom marshaling/unmarshaling.

5.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositoryID
used to find the appropriate factory for an instance of a value type so that it may b
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically
using RepositoryIDs that are in common formats to find the appropriate factory. Su
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both exp
and implicit. The registration must occur before an attempt is made to unmarshal
instance of a value type. If the ORB is unable to locate and use the appropriate fac
then aMARSHAL exception with standard minor code 1 is raised.
July 2002 CORBA, v3.0: Standard Value Box Definitions 5-9

5

as

uired
ge

heir
to

ons

in

ed
how

elp

re an
Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

// IDL
native ValueFactory;

};

5.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the req
IDL operations. The means by which this association is accomplished is a langua
mapping “detail” in much the same way that an IDL compiler is.

5.5 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide t
own way to encode/decode their state. Custom marshaling is intended to be used
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specificati
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly
the IDL. This explicit declaration has two goals:

• type safety- stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

• efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treat
the same as that of a non custom value type for mapping purposes (i.e., the fields s
up in the same fashion in the concrete programming language). It is provided to h
with application portability.

A custom marshaled value type is always a stateful value type.

// Example IDL

custom valuetype T {
// optional state definition

...
};

Custom value types can never be safely truncated to base (i.e., they always requi
exact match for their RepositoryId in the receiving context).
5-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

ation
the
a

he

use

ot
ugh
m

DL

B

ffers)

at.
Once a value type has been marked as custom, it needs to provide an implement
that marshals and unmarshals the valuetype. The marshaling code encapsulates
application code that can marshal and unmarshal instances of the value type over
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.

5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value type,CustomMarshal , as part of the
implementation of the value type.CustomMarshal encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream using t
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {

void marshal (in DataOutputStream os);
void unmarshal (in DataInputStream is);

};
};

CustomMarshal is an abstract value type that is meant to be used by the ORB, n
the user. Semantically it is treated as a custom valuetype’s implicit base class, altho
the custom valuetype does not actually inherit it in IDL. The implementor of a custo
value type provides an implementation of theCustomMarshal operations. The
manner in which this is done is specified for each language mapping. Each custom
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementor can use the skeletons generated by the I
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal , doing so will not make the type custom, nor will it cause the OR
to treat it as custom.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e., the marshal bu
have to be manipulated.

5.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR form
July 2002 CORBA, v3.0: Custom Marshaling 5-11

5

module CORBA {

typedef sequence<any> AnySeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;
typedef sequence<wchar> WCharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<short> ShortSeq;
typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<long double> LongDoubleSeq;

typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

};

abstract valuetype DataOutputStream {
void write_any(in any value);
void write_boolean(in boolean value);
void write_char(in char value);
void write_wchar(in wchar value);
void write_octet(in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong(in long long value);
void write_ulonglong(in unsigned long long value);
void write_float(in float value);

void write_double(in double value);
void write_longdouble(in long double value);
void write_string(in string value);
void write_wstring(in wstring value);
void write_Object(in Object value);
void write_Abstract(in AbstractBase value);

void write_Value(in ValueBase value);
void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
5-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

);
void write_boolean_array(

in BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_char_array(

in CharSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_wchar_array(

in WCharSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_octet_array(

in OctetSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_short_array(

in ShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ushort_array(

in UShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_long_array(

in LongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ulong_array(

in ULongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ulonglong_array(

in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_longlong_array(

in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
July 2002 CORBA, v3.0: Custom Marshaling 5-13

5

void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_double_array(

in DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_long_double_array(

in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_fixed(

in any fixed_value
) raises (BadFixedValue);
void write_fixed_array(

in AnySeq seq,
in unsigned long offset,
in unsigned long length

) raises (BadFixedValue);
};

abstract valuetype DataInputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
5-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

);
void read_boolean_array(

inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_char_array(

inout CharSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_wchar_array(

inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_octet_array(

inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_short_array(

inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_ushort_array(

inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_long_array(

inout LongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_ulong_array(

inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_ulonglong_array(

inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_longlong_array(

inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
July 2002 CORBA, v3.0: Custom Marshaling 5-15

5

tend

the
ns.

not
tten

l
nd

do

sary.)
void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_double_array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_long_double_array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
any read_fixed(

in unsigned short digits,
in short scale

) raises (BadFixedValue);
void read_fixed_array(

inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
in short scale

) raises (BadFixedValue);
};

};

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.

The read_* operations that have an inout parameter named seq are expected to ex
the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing
value’s encoding. The application marshaling code merely calls the above operatio
The details of writing the value tag, header information, end tag(s) are specifically
exposed to the application code. In particular the size of the custom data is not wri
by the application. This guarantees that the custom marshaling (and unmarshaling
code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exceptionMARSHAL is
raised.

A possible implementation might have the engine determine that a custom marsha
parameter is “next.” It would then write the value tag and other header information a
then return control back to the application defined marshaling policy, which would
the marshaling by calling theDataOutputStream operations to write the data as
appropriate. (Note the stream takes care of breaking the data into chunks, if neces
5-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

ities
is

te
.

RB

s a

th
When control was returned back to the engine, it performs any other cleanup activ
to complete the value type, and then proceeds onto the next parameter. How this
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropria
indirections or null encodings (even when used from the custom streaming policy)

There are no explicit operations for creating the streams. It is assumed that the O
implicitly acts as a factory. In a sense they are always available.

For write_fixed , thefixed_value parameter must be an "any" containing a fixed
value. If the "any" passed in does not contain a fixed value, then aBadFixedValue
exception is raised with the offset field set to 0.

For write_fixed_array , the elements of the seq parameter that are specified by the
offset and length parameters must be a sequence of "any"s each of which contain
fixed value. If any of these "any"s does not contain a fixed value, or if any of them
contains a fixed value whosedigits andscale (as specified by theTypeCode in the
"any") differ from those of the first of these "any"s (as specified by itsTypeCode),
then aBadFixedValue exception is raised with the offset field set to a zero-origin
ordinal number indicating the position of the first incorrect “any” within the
subsequence of fixed values written to the stream.

For bothwrite_fixed andwrite_fixed_array , theTypeCode within each “any”
being written specifies thedigits andscale to be used to write the fixed value
contained in the “any.” TheTypeCode itself is not written to the
DataOutputStream .

The read_fixed operation returns an “any” containing the fixed value that was read
from theDataInputStream . The digits and scale in theTypeCode of the returned
“any” are set to thedigits andscale parameters passed toread_fixed . If the fixed
value read from theDataInputStream is incompatible with thedigits andscale
parameters passed toread_fixed , then aBadFixedValue exception is raised with
the offset field set to 0.

The read_fixed_array operation sets the elements of theseq parameter that are
specified by theoffset and length parameters. These elements are set to "any"s wi
TypeCodes specifying a fixed value whosedigits andscale are the same as the
digits andscale parameters, and fixed values that were read from the
DataInputStream . The previous contents of these “any”s, including their
TypeCodes , are destroyed by theread_fixed_array operation. Other "any"s in the
seq parameter (if any) are left unchanged. NoTypeCode information is read from the
DataInputStream . If any of the fixed values read from theDataInputStream is
incompatible with thedigits andscale parameters, then aBadFixedValue
exception is raised with theoffset field set to a zero-origin ordinal number indicating
the position of the first incorrect “any” within the subsequence of fixed values read
from the stream.

The stream representation of a fixed value is considered incompatible if itsdigit and
scale values do not match thedigits andscale values being used to read it from the
stream.
July 2002 CORBA, v3.0: Custom Marshaling 5-17

5

y
ch a
the

IOR
5.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

• To attempt the downloading of some missing implementation for the value.

• To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It ma
optionally be supported by the sending context (it can be seen as a service). If su
callback object is supported its IOR may be added to an optional service context in
GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServiceIDSendingContextRunTime (see
Section 13.7, “Service Context,” on page 13-28) contains an encapsulation of the
for a SendingContext::RunTime object. Because ORBs are always free to skip a
service context they don’t understand, this addition does not impact IIOP
interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
// sending context run time
// services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence

<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

// Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

// Operations to obtain a location of the implementation code
URL implementation(in CORBA::RepositoryId x);
URLSeq implementations(in CORBA::RepositoryIdSeq x);

// Operations to obtain complete meta information about a Value
// This is just a performance optimization the IR can provide
// the same information
CORBA::FullValueDescription meta(in CORBA::RepositoryId x);
ValueDescSeq metas(in CORBA::RepositoryIdSeq x);

// To obtain a type graph for a value type
// same comment as before the IR can provide similar
// information
CORBA::RepositoryIdSeq bases(in CORBA::RepositoryId x);

};
};
5-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

f

e

ce

r

A
at
s)
ebase
lue

xt on
value
Supporting theCodeBase interface for a given ORB run time is an issue of quality o
service. The point here is that if the sending context does not support aCodeBase ,
then the receiving context will simply raise an exception with which the sending
context had to be prepared to deal. There will always be cases where a receiving
context will get a value type and won’t be able to interpret it because:

• It can’t get a legal implementation for it (even if it knows where it is, possibly du
to security and/or resource access issues).

• Its local version is so radically different that it cannot make sense out of the pie
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 4.12.4, “Standard Mino
Exception Codes,” on page 4-72).

Under certain conditions it is possible that when several values of the same CORB
type (same repository id) are sent in either a request or reply, that the reality is th
they have distinct implementations. In this case, in addition to the codebase URL(
sent in the service context, each value that has a different codebase may have cod
URL(s) associated with it. This is encoded by using a different tag to encode the va
on the wire.

The sending context does not need to resend the same value for this service conte
subsequent requests over the same underlying connection. Resending a different
for this service context is only necessary if the callback object reference in use is
changed by the sending context within the lifetime of the underlying connection.
July 2002 CORBA, v3.0: Access to the Sending Context Run Time 5-19

5

5-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Abstract InterfaceSemantics 6
this
ght
This chapter describes the semantics of abstract interfaces.

Contents

This chapter contains the following sections.

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides
capability. See Section 6.4, “Example,” on page 6-3 for an example of when this mi
be useful.

6.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

Section Title Page

“Overview” 6-1

“Semantics of Abstract Interfaces” 6-1

“Usage Guidelines” 6-3

“Example” 6-3

“Security Considerations” 6-4
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 6-1

6

the

ce
is a

t

ypes
bject

the

e

nd
.

on
1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type of
actual parameter (regular interface or value) is used to make this determination
using the following rules:

• The actual parameter is passed as an object reference if it is a regular interfa
type (or a subtype of a regular interface type), and that regular interface type
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

• The actual parameter is passed as a value if it cannot be passed as an objec
reference but can be passed as a value. Otherwise, aBAD_PARAM exception is
raised.

2. Abstract interfaces do not implicitly inherit fromCORBA::Object. This is because
they can represent either value types or CORBA object references, and value t
do not necessarily support the object reference operations (see Section 4.3, “O
Reference Operations,” on page 4-12). If an IDL abstract interface type can be
successfully narrowed to an object reference type (a regular IDL interface), then
CORBA::Object operations can be invoked on the narrowed object reference.

3. Abstract interfaces implicitly inherit fromCORBA::AbstractBase . This type is
defined as native. It is the responsibility of each language mapping to specify th
actual programming language type that is used for this type.

module CORBA {
// IDL

native AbstractBase;
};

4. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 a
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these differences

5. Special inheritance rules that apply to abstract interfaces are described in
Section 3.8.6, “Abstract Interface,” on page 3-26.

6. See Section 15.3.7, “Abstract Interfaces,” on page 15-30 for special considerati
when transmitting an abstract interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operationm1() in abstract interfacefoo .

abstract interface foo {
void m1(in AnInterfaceType x, in AnAbstractInterfaceType y,

in AValueType z);
};

x’s are always passed by reference,
6-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

6

e
lar
lace
ime

list
a

lays

ssed

of
he
;
e

we
z’s are:

• passed as copied values iffoo refers to an ordinary interface.

• passed as non-copied values iffoo refers to a value type

y’s are:

• passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractInterfaceType (registered with the ORB), no matter whatfoo ’s
concrete type is.

• passed as copied values if their concrete type is value andfoo ’s concrete type is
ordinary interface.

• passed as non-copied values if their concrete type is value andfoo ’s concrete type
is value.

6.3 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compil
time whether an object reference or a value will be passed. In other cases, a regu
interface or value type should be used. Abstract interfaces are not intended to rep
regular CORBA interfaces in situations where there is no clear need to provide runt
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

6.4 Example

For example, in a business application it is extremely common to need to display a
of objects of a given type, with some identifying attribute like account number and
translated text description such as “Savings Account.” A developer might define an
interface such asDescribable whose methods provide this information, and
implement this interface on a wide range of types. This allows the method that disp
items to take an argument of typeDescribable and query it for the necessary
information. TheDescribable objects passed in to thedisplay method may be either
CORBA interface types (passed in as object references) or CORBA value types (pa
in by value).

In this example,Describable is used as a polymorphic abstract type. No instances
type Describable exist, but many different instances have interfaces that support t
Describable type abstraction. In C++,Describable would be an abstract base class
in Java, an interface. In statically typed languages, the compiler can check that th
actual parameter type passed by callers ofdisplay is a valid subtype ofDescribable
and therefore supports the methods defined byDescribable . Thedisplay method can
simply invoke the methods ofDescribable on the objects that it receives, without
concern for any details of their implementation.

Describable could not be declared as a regular IDL interface. This is because
arguments of declared interface type are always passed as object references (see
Section 5.2.4, “Parameter Passing,” on page 5-4) and we also want thedisplay method
to be able to accept value type objects that can only be passed by value. Similarly
July 2002 CORBA, v3.0: Usage Guidelines 6-3

6

ject

:

,

ces
ause
or a

by
ity
n is
can
g
sing

cies
he
ss

nd
he
cannot defineDescribable as a value type because then thedisplay method would
not be able to accept actual parameter objects that only support passing as an ob
reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL

abstract interface Describable {
string get_description();

};

interface Example {
void display (in Describable anObject);

};

interface Account : Describable {// passed by reference
 // add Account methods here
};

valuetype Currency supports Describable {// passed by value
 // add Currency methods here
};

If Describable were defined as a regular interface instead of an abstract interface
then it would not be possible to pass aCurrency value to the display method, even
though theCurrency IDL type supports theDescribable interface.

6.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfa
and values (see Section 5.2.9, “Security Considerations,” on page 5-7). This is bec
an abstract interface formal parameter type allows either a regular interface (IOR)
value to be passed. Likewise, an operation defined in an abstract interface can be
implemented by either a regular interface (with “normal” security considerations) or
a value type (in which case it is a local call, not mediated by the ORB). The secur
implication of making the choice between these alternatives a runtime determinatio
that the programmer must ensure that for both alternatives, no security violations
occur. For example, a technique similar to that described in Section 6.5.1, “Passin
Values to Trusted Domains,” on page 6-4 could be used to avoid inadvertently pas
values outside a domain of trust.

6.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control poli
will apply to any attempt to access anything through that object reference. When t
underlying object is passed as a value, the granularity and level/semantics of acce
control are different. In the “by value” case, all the data for the object is passed, a
method invocations on the passed object are local calls that are not mediated by t
6-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

6

alue
said

y in
ng

be
level
ORB. Whether the server wants to use the (potentially more permissive) pass by v
access control or not could depend on the security domain, which is receiving the
object or object reference.

Consider the case where the server S has an object O that it is willing to pass onl
the form of an object reference Or' to a domain Du that it does not trust, but is willi
to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to
written to either always pass references or always pass values, irrespective of the
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter typeMyType can be declared as an
abstract interface and the method invocation can be coded along the lines of

myExample->foo(security_check(myExample,mydata));

where thesecurity_check function determines the level of trust of
myExample 's domain and returns an regular interface subtype ofMyType for
untrusted domains and a value subtype ofMyType for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.
July 2002 CORBA, v3.0: Security Considerations 6-5

6

6-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Dynamic Invocation Interface 7
hat
his

ains

The

ents
The Dynamic Invocation Interface (DII) describes the client’s side of the interface t
allows dynamic creation and invocation of request to objects. All types defined in t
chapter are part of the CORBA module.

Contents

This chapter contains the following sections.

7.1 Overview

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obt
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operation, and a list of parameters.
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elem
of a list. Each element is an instance of aNamedValue (see Section 7.1.1, “Common
Data Structures,” on page 7-2). Each parameter is passed in its native data form.

Section Title Page

“Overview” 7-1

“Request Operations” 7-4

“ORB Operations” 7-11

“Polling” 7-12

“List Operations” 7-16
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 7-1

7

ters

r
uest.

a
se

nted
.

ed to
in the

DL.
Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parame
defined for the operation in the Interface Repository.

The standard user exceptionWrongTransaction is defined in the CORBA module,
prior to the definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).

7.1.1 Common Data Structures

The typeNamedValue is a well-known data type in OMG IDL. It can be used eithe
as a parameter type directly or as a mechanism for describing arguments to a req
The types are described in OMG IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; // argument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};

};

For out parameters, applications can set theargument member of theNamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If
non-null storage pointer is provided for an out parameter, the ORB will attempt to u
the storage pointed to for holding the value of the out parameter. If the storage poi
to is not sufficient to hold the value of the out parameter, the behavior is undefined

A named value includes an argument name, argument value (as anany), length of the
argument, and a set of argument mode flags. When named value structures are us
describe arguments to a request, the names are the argument identifiers specified
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-10, anany
consists of aTypeCode and a pointer to the data value. TheTypeCode is a well-
known opaque type that can encode a description of any type specifiable in OMG I
See this section for a full description ofTypeCode s.
7-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

ge

are
For most data types,len is the actual number of bytes that the value occupies. For
object references,len is 1. Table 7-1shows the length of data values for the C langua
binding. The behavior of aNamedValue is undefined if thelen value is inconsistent
with the TypeCode.

Thearg_mode field is of typeFlags which is anunsigned long . This field is used
as follows in this structure. It should be noted thatFlags type is used as parameter
type in many operations and the meaning of the constants passed in those cases

Table 7-1 C Type Lengths

Data type: X Length (X)
short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of
elements */
July 2002 CORBA, v3.0: Overview 7-3

7

use
s

n

ed

ism

list is

, the

al

, the
specific to those operations. Those values should not be confused with the specific
of this type in the context of theNamedValue structure. These values are reserved, a
are the high order 16 bits of theunsigned long .:

The specific usage ofFlags in other contexts are described as part of the descriptio
of the operation that uses this type of parameters.

7.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbound
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a mechan
for grouping, or keeping track of, this memory. If so specified, out-arg memory is
associated with the argument list passed to the create request routine. When the
deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list
programmer is responsible for freeing each out parameter usingCORBA_free() ,
which is discussed in theC Language Mappingspecification (Mapping for Structure
Typessection).

7.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exception
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus
return type of these routines is void.

7.2 Request Operations

The request operations (exceptcreate_request) are defined in terms of theRequest
pseudo-object. TheRequest routines use theNVList definition defined in the
preceding section.

module CORBA {

native OpaqueValue;

interface Request { // PIDL

void add_arg (

CORBA::ARG_IN 1 The associated value is an input only
argument.

CORBA::ARG_OUT 2 The associated value is an output only
argument.

CORBA::ARG_INOUT 3 The associated value is an in/out argument.
7-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

of
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);

void invoke (
in Flags invoke_flags // invocation flags

);

void delete ();

void send (
in Flags invoke_flags // invocation flags

);

void get_response () raises (WrongTransaction);

boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
};

};

In IDL, The native type OpaqueValue is used to identify the type of the
implementation language representation of the value that is to be passed as a
parameter. For example in the C language this is the C language type(void *) .
Each language mapping specifies whatOpaqueValue maps to in that specific
language.

For eachRequest pseudo-object instance, only one call to either the invoke or the
send operations is legal during the lifetime of theRequest object. In addition, once
a Request object was passed to one of thesend_multiple_requests_* operations,
neither invoke nor send can be called, nor can it be passed in another invocation
send_multiple_request_* operation.Violations raiseBAD_INV_ORDER with
standard minor code 5.

7.2.1 create_request

Because it creates a pseudo-object, this operation is defined in theObject interface
(see Section 4.3, “Object Reference Operations,” on page 4-12 for the complete
interface definition). Thecreate_request operation is performed on theObject that
is to be invoked.
July 2002 CORBA, v3.0: Request Operations 7-5

7

is

-3.

sing

also
nd
ion.

w
me.

n

module CORBA{

interface Object{ // PIDL
.

void create_request (
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);
};

};

This operation creates an ORB request. The actual invocation occurs by callinginvoke
or by using thesend / get_response calls.

The operation name specified oncreate_request is the same operation identifier that
is specified in the OMG IDL definition for this operation. In the case of attributes, it
the name as constructed following the rules specified in theServerRequest interface
as described in the DSI in Section 8.3, “ServerRequestPseudo-Object,” on page 8

The arg_list , if specified, contains a list of arguments (input, output, and/or
input/output) that become associated with the request. Ifarg_list is omitted (specified
asNULL), the arguments (if any) must be specified using theadd_arg call below.

Arguments may be associated with a request by passing in an argument list or by u
repetitive calls toadd_arg . One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, thearg_list becomes associated with the request; until theinvoke call
has completed (or the request has been deleted), the ORB assumes thatarg_list (and
any values it points to) remains unchanged.

When specifying an argument list, thevalue and len for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may
be specified; if so indicated, arguments are validated for data type, order, name, a
usage correctness against the set of arguments expected for the indicated operat

An implementation of the request services may relax the order constraint (and allo
arguments to be specified out of order) by doing ordering based upon argument na

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context informatio
passed to it.

The operation result is placed in theresult argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following
flag values:
7-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

r

on
re

s

via

ns,

ted,
t the

w
ame.
CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated
with the argument list (NVList).

Setting theOUT_LIST_MEMORY flag controls the memory allocation mechanism fo
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must also have been specified
the create_request call. When output arguments of this type are allocated, they a
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remain
available until the programmer explicitly frees it with procedures provided by the
language mappings (see theC Language Mappingspecification,Argument Passing
Considerationssection;C++ Language Mappingspecification,NVListsection; and the
COBOL Language Mappingspecification,Argument Passing Considerationssection).

The implicit object reference operationsnon_existent , is_a , andget_interface may
be invoked using DII. No other implicit object reference operations may be invoked
DII.

To create a request for any one of these allowed implicit object reference operatio
create_request must be passed the name of the operation with a “_” prepended, in
the parameter “operation.” For example to create a DII request for “is_a ”, the name
passed tocreate_request must be “_is_a .” If the name of an implicit operation that
is not invocable through DII is passed tocreate_request with a “_” prepended,
create_request shall raise aBAD_PARAM standard system exception with the
standard minor code 32. For example, if “_is_equivalent ” is passed to
create_request as the “operation ” parameter will causecreate_request to raise
the BAD_PARAM standard system exception with the standard minor code 32.

7.2.2 add_arg

void add_arg (// PIDL
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally itsvalue andlen must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may also be specified. If so indica
arguments are validated for data type, order, name, and usage correctness agains
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allo
arguments to be specified out of order) by doing ordering based upon argument n
July 2002 CORBA, v3.0: Request Operations 7-7

7

n

on
n

d

by

.

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has bee
deleted).

Arguments may be associated with a request by specifying them on the
Object::create_request call or by adding them via calls toadd_arg . Using both
methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2,arg_flags may also take the flag valueIN_COPY_VALUE .
The argument passing flags defined in Section 7.1.1, “Common Data Structures,”
page 7-2 may be used here to indicate the intended parameter passing mode of a
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and use
instead. This flag is ignored for inout and out arguments.

7.2.3 invoke

void invoke (// PIDL
in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placed in theresult
argument specified oncreate_request . Calling invoke on aRequest after invoke ,
send , or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 10.

7.2.4 delete

void delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e.,
using theIN_COPY_VALUE flag) is also freed.

7.2.5 send

void send (// PIDL
in Flags invoke_flags // invocation flags

);

Send initiates an operation according to the information in theRequest . Unlike
invoke, send returns control to the caller without waiting for the operation to finish
To determine when the operation is done, the caller must use theget_response or
ORB::get_next_response operations described below. The out parameters and
return value must not be used until the operation is done.
7-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

ple,

will

his

quest

out

t had

t of
Although it is possible for some standard system exceptions to be raised by thesend
operation, there is no guarantee that all possible errors will be detected. For exam
if the object reference is not valid,send might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception
be raised whenget_response is called.

If the operation is defined to be oneway or ifINV_NO_RESPONSE is specified, and
the effectiveSyncScopePolicy does not have a value ofWITH_SERVER or
WITH_TARGET, thenget_response does not need to be called. In such cases,
some errors might go unreported, since if they are not detected beforesend returns
there is no way to inform the caller of the error.

The following invocation flags are currently defined forsend :

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to
be subject to the effectiveSyncScopePolicy . If the SyncScopePolicy has a
value ofNONE or WITH_TRANSPORT, the invoker will not receive a response,
nor does it expect any of the output arguments (in/out and out) to be updated. T
option may be specified even if the operation has not been defined to beoneway .

7.2.6 poll_response

// PIDL
boolean poll_response ();

poll_response determines whether the request has completed. ATRUE return
indicates that it has;FALSE indicates it has not.

Return is immediate, whether the response has completed or not. Values in the re
are not changed.

7.2.7 get_response

//PIDL
void get_response () raises (WrongTransaction);

get_response returns the result of a request. Ifget_response is called before the
request has completed, it blocks until the request has completed. Upon return, the
parameters and return values defined in theRequest are set appropriately and they
may be treated as if theRequest invoke operation had been used to perform the
request.

A request has an associated transaction context if the thread originating the reques
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise theWrongTransaction exception if the request
has an associated transaction context, and the thread invokingget_response either
has a null transaction context or a non-null transaction context that differs from tha
the request.
July 2002 CORBA, v3.0: Request Operations 7-9

7

s a

se to

d
ons

d

had
it in

(or

n

d
ons
7.2.8 sendp

sendp initiates an operation according to the information in the Request and return
reference to aMessageRouting::PersistentRequest as aCORBA::Object . As
with send , the results of invocations made withsendp will be available once the
caller usesget_response or get_next_response . The out parameters and return
value must not be used before the operation is done. A newCORBA::Request may
be constructed (in this same or a different process) and used to poll for the respon
this request by callingcreate_request , properly associating the out arguments and
return value with that request and then passing thePersistentRequest reference to
the new Request’sprepare (described below). The caller can then invoke
get_response or get_next_response to obtain the operation results.

As with send , sendc may raise a standard system exception if a failure is detecte
before control is returned to the client, but this is not guaranteed. All other excepti
will be raised whenget_response is called.

7.2.9 prepare

prepare is called to associate an initializedCORBA::Request with a previous
operation that was initiated viasendp . The Request must be created and associate
with the operation’s out arguments and return value prior to callingprepare . Once
prepare has been called, it is as if that prepared Request was the one that actually
sendp used. Each Request is subject only to one of these operations, which puts
a valid state for an invocation ofget_response : send , sendp , sendc , or
prepare . Invokingprepare on a Request that had previously been used for a send
one of its variants) raises the standard system exceptionBAD_INV_ORDER.
Invoking prepare with an object reference that was not previously returned from a
invocation ofsendp raises the standard system exceptionBAD_PARAM.

7.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike
send , the results of invocations made withsendc will be available through the
callbackMessaging::ReplyHandler passed intosendc as a base
CORBA::Object . A truly dynamic client can implement thisReplyHandler using
the DSI. Specifying a nilReplyHandler is equivalent to invokingsend with a flag of
CORBA::INV_NO_RESPONSE .

As with send , sendc may raise a standard system exception if a failure is detecte
before control is returned to the client, but this is not guaranteed. All other excepti
will be passed to theReplyHandler .
7-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

ion
7.3 ORB Operations

7.3.1 send_multiple_requests

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);
};

};

send_multiple_requests initiates more than one request in parallel. Likesend,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on a request afterinvoke , send , or send_multiple_requests for that
request was called raisesBAD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request afterinvoke , send , or
send_multiple_requests for that request was called raisesBAD_INV_ORDER
with standard minor code 10. Ifsend_multiple_requests raises
BAD_INV_ORDER, the actual number of requests that were sent is implementat
dependent.

7.3.2 get_next_response and poll_next_response

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.

boolean poll_next_response();

void get_next_response(
July 2002 CORBA, v3.0: ORB Operations 7-11

7

ere
y are

t had

ore

ngle

n)
the

rs.
out Request req
) raises (WrongTransaction);

};
};

Poll_next_response determines whether any request has completed. ATRUE return
indicates that at least one has;FALSE indicates that none have completed. Return is
immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, th
is no guaranteed ordering among the completed requests, so the order in which the
returned from successiveget_next_response calls is not necessarily related to the
order in which they finish.

A request has an associated transaction context if the thread originating the reques
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise theWrongTransaction exception if the
request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

Calling poll_response before send orsend_multiple_requests for that request
raisesBAD_INV_ORDER with standard minor code 11. Callingpoll_response
after callinginvoke raisesBAD_INV_ORDER with standard minor code 13.
Calling poll_response after callingget_response raisesBAD_INV_ORDER
with standard minor code 12. Callingpoll_response after that request was returned
by get_next_response raisesBAD_INV_ORDER with standard minor code 12.

Calling get_next_response or poll_next_response at a time when no requests are
outstanding raisesBAD_INV_ORDER with standard minor code 11. If concurrent
calls toget_next_response or poll_next_response are in progress, the exact
outcome is implementation dependent; however,get_next_response is guaranteed
not to return the same completed request to more than one caller.

7.4 Polling

There are two types of Polling model invocations that allow a client to proceed bef
the request finishes: The DII’ssend (which supports deferred synchronous
invocations) and the typedsendp variants of the interface stubs (which support both
deferred synchronous and asynchronous invocations). This section describes a si
mechanism that allows a client to query or block on the completion of outstanding
requests.

• For the typed polling model (sendp), a client invokes the request’s type-specific
Poller to receive the response. This poll can either block (wait for the completio
or return immediately if the request isn’t finished yet, depending on the value of
first parameter. Alternately, a client can simply query whether the request has
completed by using the generic non-blockingCORBA::Pollable::is_ready()
operation defined on the base interface that is inherited by all type-specific polle
7-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

c
ich

in
ilar

t or

.

For the sake of efficiency, it must be possible to query or block on multiple asyn
pollers in a single operation. To do this, it is necessary to identify precisely, wh
such pollers are to be polled.

• A client might want to mix deferred typed and dynamic operations. Deferred DII (
some unholy combination of language mappings) has operations somewhat sim
to those of the typedPoller: ORB::poll_next_response and
ORB::get_next_response . It should be possible to mix the two kinds of polling:
typed and dynamic.

• Other potential happenings might occur that are susceptible to polling in curren
future CORBA. This mechanism is designed for extensibility so that other ORB
services can perform a poll as a part of the single poll operation described here

The mechanism for generalized polling on multiple types of occurrences uses the
CORBA::PollableSet interface.

module CORBA {

local interface PollableSet;

abstract valuetype Pollable {
boolean is_ready(

in unsigned long timeout
);

PollableSet create_pollable_set();
};

abstract valuetype DIIPollable : Pollable { };

local interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DIIPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable get_ready_pollable(
in unsigned long timeout

) raises(NoPossiblePollable);

void remove(
in Pollable potential

) raises(UnknownPollable);
July 2002 CORBA, v3.0: Polling 7-13

7

with
gs

be

The
ave
unsigned short number_left();
};

};

7.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered
a pollable set to allow a single client thread to block on multiple potential happenin
at the same time.

7.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);

Returns the valueTRUE if and only if the specific happening represented by the
pollable is ready to be consumed. Returns the valueFALSE if the pollable is not yet
ready to be consumed. If thetimeout argument is the maximum value forunsigned
long , the operation will block until it can return the valueTRUE indicating that its
happening is ready to be consumed. If thetimeout argument is the value 0, the
operation returns immediately.

7.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is aPollable , it is possible to create a set of such pollables, which can
queried or upon which a client can block. Thecreate_pollable_set operation creates
a PollableSet object reference for an object with an empty set of pollable entities.

7.4.2 Abstract Valuetype DIIPollable

The specificPollable that indicates interest in DII requests. ADIIPollable can be
used in conjunction with a pollable set to allow a client to block or poll for the
completion of DII requests, similar to the use of
CORBA::ORB::get_next_response . When theDIIPollable is returned from
PollableSet::poll , the reply to some DII request must be ready for processing.

7.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed.
client adds potential happenings to the set and later queries the set to see if any h
occurred. PollableSet is a locality constrained object.
7-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

ss.

r

Note – There is a factory forPollableSet on the genericPollable interface. Some
implementation of this interface, such as a type-specific poller value, must first be
accessible before a client can create aPollableSet .

7.4.3.1 create_dii_pollable

DIIPollable create_dii_pollable();

Returns an instance ofDIIPollable that can subsequently be registered to indicate
interest in replies to DII requests.

7.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);

The add_pollable operation adds a potential happening to thePollableSet . The
suppliedPollable parameter is some implementation that can be polled for readine
To register interest in DII requests, an instance ofDIIPollable is added to the pollable
set.

7.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout

) raises(NoPossiblePollable);

The get_ready_pollable operation asks thePollableSet if any of its potential
happenings have occurred. Thetimeout parameter indicates how many milliseconds
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the standard system exception
TIMEOUT. Any delegated invocations used by the implementation of this polling
operation are subject to the singletimeout parameter, which supersedes any ORB o
thread-level timeout quality of service. Two specific values are of interest:

• 0 - the call is a non-blocking query that raises the standard system exception
NO_RESPONSE if the reply is not immediately available.

• 232-1 - the maximum value forunsigned long indicates no timeout should be
used. The query will not return until the reply is available.

If the PollableSet contains no potential happenings, theNoPossiblePollable
exception is raised. If an actual happening is returned, thePollableSet removes that
happening from the set. For the typedPoller , removing the happening is necessary
since its usefulness ends once thePoller completes. In the case of a DII happening,
there may still be deferred requests outstanding; if this is the case, the client
application must add theDIIPollable again to thePollableSet .
July 2002 CORBA, v3.0: Polling 7-15

7

gh its

for

ble
et, in

s.
When theget_ready_pollable operation blocks, the ORB has control of the thread
and can process any work it has (such as receiving and dispatching requests throu
Object Adapter). Theget_ready_pollable operation can be used in an “event-style
main loop” usingORB::work_pending andORB::perform_work .

If the ORB supports multiple threads, one thread may be blocking on aPollableSet
while another is adding and removing potential happenings from the set. It is valid
thePollableSet to change dynamically while apoll is in progress. If another thread’s
PollableSet::remove operation leaves thePollableSet empty, any blocked threads
raise theNoPossiblePollable exception.

7.4.3.4 remove

void remove(
in Pollable potential

) raises(UnknownPollable);

The remove operation deletes the potential happening identified by thepotential
parameter from thePollableSet . If it was not a member of the set, the
UnknownPollable exception is raised.

7.4.3.5 number_left

unsigned short number_left();

Thenumber_left operation returns the number of potential happenings in the polla
set. A returned value of zero means that there are no potential happenings in the s
which case a query on the set would raise theNoPossibleHappening exception.

7.5 List Operations

NVList is a pseudo-interface that facilitates manipulation of list of name value pair
The operations that createNVList objects are defined in theORB interface section of
Chapter 4, but are described in this section. TheNVList pseudo-interface is shown
below.

interface NVList { // PIDL
void add_item (

in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);
void free ();
void free_memory ();
7-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

d

he

te

d

void get_count (
out long count // number of entries in the list

);
};

InterfaceNVList is defined in the CORBA module.

7.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface an
excerpted below.

void create_list (//PIDL
in long count, // number of items to allocate for list
out NVList new_list // newly created list

);

This operation allocates a list and clears it for initial use. The specified count is a
“hint” to help with the storage allocation. List items may be added to the list using t
add_item routine. Items are added starting with the “slot() ,” in the next available
slot.

An NVList is a partially opaque structure. It may only be allocated via a call to
create_list.

7.5.2 add_item

void add_item (// PIDL
in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2,item_flags may also take the following flag values:
IN_COPY_VALUE , DEPENDENT_LIST. The argument passing flags defined in
Section 7.1.1, “Common Data Structures,” on page 7-2 may be used here to indica
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and use
instead.

If a list structure is added as an item (e.g., a “sublist”), theDEPENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.
July 2002 CORBA, v3.0: List Operations 7-17

7

to

e

fined
7.5.3 free

void free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call
the list free_memory operation is done).

7.5.4 free_memory

void free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with th
list. The list structure itself is not freed.

7.5.5 get_count

void get_count (// PIDL
out long count // number of entries in the list

);

This operation returns the total number of items added to the list.

7.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (// PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

);

This operation returns anNVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be used inDynamic
Invocationrequests. The arguments are returned in the same order as they were de
for the operation.

The list free operation is used to free the returned information.
7-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

DynamicSkeleton Interface 8
s.
lar
s
side’s
e
)

ject
t it

but
The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocation
That is, rather than being accessed through a skeleton that is specific to a particu
operation, an object’s implementation is reached through an interface that provide
access to the operation name and parameters in a manner analogous to the client
Dynamic Invocation Interface. Purely static knowledge of those parameters may b
used, or dynamic knowledge (perhaps determined through an Interface Repository
may also be used, to determine the parameters.

Contents

This chapter contains the following sections.

8.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an ob
implementation that does not have compile-time knowledge of the type of the objec
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons,
serves the same architectural role.

Section Title Page

“Introduction” 8-1

“Overview” 8-2

“ServerRequestPseudo-Object” 8-3

“DSI: Language Mapping” 8-4
July 2002 Common Object Request Broker Architecture (CORBA) , v3.0 8-1

8

is
ine
the

e
itors

ing
).
d be

ject
d in
d the
n
ect

ers
,

DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DII). Just as the implementation of an object cannot distinguish whether its client
using type-specific stubs or the DII, the client who invokes an object cannot determ
whether the implementation is using a type-specific skeleton or the DSI to connect
implementation to the ORB.

.

Figure 8-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses includ
interactive software development tools based on interpreters, debuggers and mon
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

8.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by hav
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR
Since in any language binding all DIRs have the same signature, a single DIR coul
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the ob
that was invoked and the operation that was requested. The information is encode
the request parameters. The DIR can use the invoked object, its object adapter, an
Interface Repository to learn more about the particular object and invocation. It ca
access and operate on individual parameters. It can make the same use of an obj
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapt
that provide a DSI. See Section 11.6.11, “Single Servant, Many Objects and Types
Using DSI,” on page 11-64 for the specification of the DSI for the Portable Object
Adapter.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
8-2 Common Object Request Broker Architecture (CORBA) , v3.0 July 2002

8

I,
n

t will

or

the

ill

nce

in

lues

tains
8.3 ServerRequestPseudo-Object

8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DS
analogous to the Request pseudo-object in the DII. The object adapter dispatches a
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {
...
interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
};

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target objec
typically be a proxy for an object in some other ORB.

Theoperation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's “most-derived” interface. Note that the operation names f
getting and setting attributes are_get_<attribute_name> and
set<attribute_name> , respectively. The operation attribute can be accessed by
DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values w
be retrieved, witharguments . Unless it callsset_exception , the DIR must call
arguments exactly once, even if the operation signature contains no parameters. O
arguments or set_exception has been called, callingarguments on the same
ServerRequest will result in aBAD_INV_ORDER system exception with standard
minor code 7. The DIR must pass in toarguments anNVList initialized with
TypeCodes and Flags describing the parameter types for the operation, in the order
which they appear in the IDL specification (left to right). A potentially-differentNVList
will be returned fromarguments , with the “in” and “inout” argument values supplied.
If it does not callset_exception , the DIR must supply the returnedNVList with return
values for any “out” arguments before returning, and may also change the return va
for any “inout” arguments.

When the operation is not an attribute access, and the operation's IDL definition con
a context expression,ctx will return the context information specified in IDL for the
operation. Otherwise it will return a nilContext reference. Callingctx before
July 2002 CORBA v3.0: ServerRequestPseudo-Object 8-3

8

a

er

on

of the

to it
the

its

l

not

d to
arguments has been called or afterctx , set_result , or set_exception has been
called will result in aBAD_INV_ORDER system exception with standard minor code
8.

Theset_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type,
set_result must be called exactly once before the DIR returns. If the operation has
void result type,set_result may optionally be called once with anAny whose type is
tk_void . Calling set_result beforearguments has been called or afterset_result
or set_exception has been called will result in aBAD_INV_ORDER system
exception with standard minor code 8. Calling set_result without having previously
called ctx when the operation IDL contains a context expression will result in a
MARSHAL system exception with standard minor code 2. If theNVList passed to
arguments did not describe all parameters passed by the client, it may result in a
MARSHAL system exception with standard minor code 3.

The DIR may callset_exception at any time to return an exception to the client. The
Any passed toset_exception must contain either a system exception or one of the us
exceptions specified in theraises expression of the invoked operation’s IDL definition.
Passing in anAny that does not contain an exception will result in aBAD_PARAM
system exception with standard minor code 21. Passing in an unlisted user excepti
will result in either the DIR receiving aBAD_PARAM system exception with standard
minor code 22 or in the client receiving anUNKNOWN system exception with
standard minor code 1.

See each language mapping for a description of the memory management aspects
parameters to theServerRequest operations.

8.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid
in the language mapping. This section provides general information about mapping
Dynamic Skeleton Interface to programming languages. Each language provides
own mapping for DSI.

8.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that aServerRequest pseudo-object be usable as a genera
argument in OMG IDL operations, or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applie
data passed from skeletons into statically typed implementation routines, and vice
versa.
8-4 Common Object Request Broker Architecture (CORBA) , v3.0 July 2002

8

ugh
ton
8.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely thro
the Object Adapter. An Object Adapter does not have to support the Dynamic Skele
Interface but, if it does, the Object Adapter is responsible for the details.
July 2002 CORBA v3.0: DSI: Language Mapping 8-5

8

8-6 Common Object Request Broker Architecture (CORBA) , v3.0 July 2002

DynamicManagementofAnyValues 9
e

ally

he
An any can be passed to a program that doesn’t have any static information for th
type of theany (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving theany
does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with anany at
runtime and extraction of the primitive constituents of the data value. This is especi
helpful for writing powerful generic servers (bridges, event channels supporting
filtering).

Similarly, this facility enables the construction of anany at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools).

Contents

This chapter contains the following sections.

9.1 Overview

Unless explicitly stated otherwise, all IDL presented in Section 9.1, “Overview,” on
page 9-1 through Section 9.3, “Usage in C++ Language,” on page 9-26 is part of t
DynamicAny module.

Section Title Page

“Overview” 9-1

“DynAny API” 9-3

“Usage in C++ Language” 9-26
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 9-1

9

ds

rrent

on

t

.

ta

ach
of
Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. ADynAny object is associated with a data value, which correspon
to a copy of the value inserted into anany.

A DynAny object may be viewed as an ordered collection of componentDynAny s.
For DynAny s representing a basic type, such aslong , or a type without components,
such as an empty exception, the ordered collection of components is empty. Each
DynAny object maintains the notion of a current position into its collection of
componentDynAny s. The current position is identified by an index value that runs
from 0 to n−1, where n is the number of components. The special index value−1
indicates a current position that points nowhere. For values that cannot have a cu
position (such as an empty exception), the index value is fixed at−1. If a DynAny is
initialized with a value that has components, the index is initialized to 0. After creati
of an uninitializedDynAny (that is, aDynAny that has no value but aTypeCode
that permits components), the current position depends on the type of value
represented by theDynAny . (The current position is set to 0 or−1, depending on
whether the newDynAny gets default values for its components.)

The iteration operationsrewind , seek , andnext can be used to change the current
position and thecurrent_component operation returns the component at the curren
position. Thecomponent_count operation returns the number of components of a
DynAny . Collectively, these operations enable iteration over the components of a
DynAny , for example, to (recursively) examine its contents.

A constructedDynAny object is aDynAny object associated with a constructed type
There is a different interface, inheriting from theDynAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

A constructedDynAny object exports operations that enable the creation of new
DynAny objects, each of them associated with a component of the constructed da
value.

As an example, aDynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for e
structure member. TheDynStruct object exports operations that enable the creation
new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (constructed)DynAny object,
such as aDynAny representing a structure member that was created from a
DynStruct , the memberDynAny is logically contained in theDynStruct .

Destroying a top-levelDynAny object (one that was not obtained as a component of
anotherDynAny) also destroys any componentDynAny objects obtained from it.
Destroying a non-top levelDynAny object does nothing. Invoking operations on a
destroyed top-levelDynAny or any of its descendants raises
OBJECT_NOT_EXIST. Note that simply releasing all references to aDynAny
object does not delete theDynAny or components; eachDynAny created with one of
the create operations or with thecopy operation must be explicitly destroyed to avoid
memory leaks.
9-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

reate

If the programmer wants to destroy aDynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first c
a DynAny for the component and, after that, make a copy of the createdDynAny
object.

The behavior ofDynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access.DynAny
objects are intended to be used for traversing values extracted fromanys or
constructing values ofanys at runtime. Their use for other purposes is not
recommended.

9.2 DynAny API

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

// IDL
// File: DynamicAny.idl
#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_

import ::CORBA;

module DynamicAny {
typeprefix DynamicAny “omg.org”;

local interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();
July 2002 CORBA, v3.0: DynAny API 9-3

9

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);

void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);

void insert_char(in char value)
raises(TypeMismatch, InvalidValue);

void insert_short(in short value)
raises(TypeMismatch, InvalidValue);

void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);

void insert_long(in long value)
raises(TypeMismatch, InvalidValue);

void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);

void insert_float(in float value)
raises(TypeMismatch, InvalidValue);

void insert_double(in double value)
raises(TypeMismatch, InvalidValue);

void insert_string(in string value)
raises(TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);

void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);

void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);

void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);

void insert_any(in any value)
raises(TypeMismatch, InvalidValue);

void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);

void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()
raises(TypeMismatch, InvalidValue);

octet get_octet()
raises(TypeMismatch, InvalidValue);

char get_char()
raises(TypeMismatch, InvalidValue);

short get_short()
raises(TypeMismatch, InvalidValue);

unsigned short get_ushort()
raises(TypeMismatch, InvalidValue);
9-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

long get_long()
raises(TypeMismatch, InvalidValue);

unsigned long get_ulong()
raises(TypeMismatch, InvalidValue);

float get_float()
raises(TypeMismatch, InvalidValue);

double get_double()
raises(TypeMismatch, InvalidValue);

string get_string()
raises(TypeMismatch, InvalidValue);

Object get_reference()
raises(TypeMismatch, InvalidValue);

CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);

long long get_longlong()
raises(TypeMismatch, InvalidValue);

unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);

long double get_longdouble()
raises(TypeMismatch, InvalidValue);

wchar get_wchar()
raises(TypeMismatch, InvalidValue);

wstring get_wstring()
raises(TypeMismatch, InvalidValue);

any get_any()
raises(TypeMismatch, InvalidValue);

DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);

ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count();
DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidValue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ushort_seq(in CORBA::UShortSeq value)
July 2002 CORBA, v3.0: DynAny API 9-5

9

raises(TypeMismatch, InvalidValue);
void insert_long_seq(in CORBA::LongSeq value)

raises(TypeMismatch, InvalidValue);
void insert_ulong_seq(in CORBA::ULongSeq value)

raises(TypeMismatch, InvalidValue);
void insert_float_seq(in CORBA::FloatSeq value)

raises(TypeMismatch, InvalidValue);
void insert_double_seq(in CORBA::DoubleSeq value)

raises(TypeMismatch, InvalidValue);
void insert_longlong_seq(in CORBA::LongLongSeq value)

raises(TypeMismatch, InvalidValue);
void insert_ulonglong_seq(in CORBA::ULongLongSeq value)

raises(TypeMismatch, InvalidValue);
void insert_longdouble_seq(in CORBA::LongDoubleSeq value)

raises(TypeMismatch, InvalidValue);
void insert_wchar_seq(in CORBA::WCharSeq value)

raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);

CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);

CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);

CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidValue);

CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongLongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidValue);

CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidValue);

};

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

};
9-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

};

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;
July 2002 CORBA, v3.0: DynAny API 9-7

9

local interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len) raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

local interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

};

local interface DynValueBox : DynValueCommon {
any get_boxed_value()

raises(InvalidValue);
void set_boxed_value(in any boxed)

raises(TypeMismatch, InvalidValue);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};
9-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

exception MustTruncate { };

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny

create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

DynAny create_dyn_any_without_truncation(in any value)
 raises(InconsistentTypeCode, MustTruncate);

DynAnySeq create_multiple_dyn_anys(
in AnySeq values,
in boolean allow_truncate)
raises(InconsistentTypeCode, MustTruncate);

AnySeq create_multiple_anys(in DynAnySeq values);
};

}; // module DynamicAny

#endif // _DYNAMIC_ANY_IDL_

9.2.1 Creating a DynAny Object

A DynAny object can be created as a result of:

• invoking an operation on an existingDynAny object

• invoking an operation on aDynAnyFactory object

A constructedDynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constituent.DynAny
objects also support thecopy operation for creating newDynAny objects.

In addition,DynAny objects can be created by invoking operations on the
DynAnyFactory object. A reference to theDynAnyFactory object is obtained by
calling CORBA::ORB::resolve_initial_references with the identifier parameter
set to“DynAnyFactory” .

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)

raises(InconsistentTypeCode);
};

The create_dyn_any operation creates a newDynAny object from anany value. A
copy of theTypeCode associated with theany value is assigned to the resulting
DynAny object. The value associated with theDynAny object is a copy of the value
in the original any. Thecreate_dyn_any operation sets the current position of the
July 2002 CORBA, v3.0: DynAny API 9-9

9

t

a

f

createdDynAny to zero if the passed value has components; otherwise, the curren
position is set to−1. The operation raisesInconsistentTypeCode if value has a
TypeCode with a TCKind of tk_Principal or tk_native.

The create_dyn_any_from_type_code operation creates aDynAny from a
TypeCode . Depending on theTypeCode , the created object may be of type
DynAny , or one of its derived types, such asDynStruct . The returned reference can
be narrowed to the derived type.

For bothcreate_dyn_any andcreate_dyn_any_from_type_code , the source type
code is copied into theDynAny object unchanged. This means that, after creation of
DynAny object, the source type code and the type code inside theDynAny must
compare equal as determined byTypeCode::equal . The same is true for type codes
extracted from aDynAny with the type operation and for type codes that are part o
any values that are constructed from aDynAny : such type codes compare equal to to
the type code that was originally used to create theDynAny . For a given parent
DynAny with its associatedTypeCode , theTypeCode of a componentDynAny
also compares equal to the corresponding results of themember_type or
component_type operation on the parentTypeCode .

The create_dyn_any_without_truncation operation has the same semantics as
create_dyn_any , but will raise theMustTruncate exception if it cannot avoid
truncating a valuetype.

The create_multiple_dyn_anys operation converts a sequence of anys into a
sequence ofDynAnys , ensuring that each reference to a valuetype instance is
converted consistently to the sameDynValue or DynValueBox instance. If the
allow_truncate parameter is false, the operation will raise theMustTruncate
exception if it cannot avoid truncating a valuetype.

The create_multiple_anys operation converts a sequence ofDynAnys into a
sequence ofanys , ensuring that eachDynValue or DynValueBox instance is
consistently converted to the same valuetype instance.

Creation ofDynAnys with TCKind tk_null and tk_void is legal and results in the
creation of aDynAny without a value and with zero components.

In all cases, aDynAny constructed from aTypeCode has an initial default value. The
default values of basic types are:

• FALSE for Boolean

• zero for numeric types

• zero for typesoctet , char , andwchar

• the empty string forstring andwstring

• nil for object references

• a type code with aTCKind value of tk_null for type codes

• for any values, anany containing a type code with aTCKind value of tk_null
type and no value
9-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

r
t

e of
For complex types, creation of the correspondingDynAny assigns a default value as
follows:

• For DynSequence , the operation sets the current position to−1 and creates an
empty sequence.

• For DynEnum , the operation sets the current position to−1 and sets the value of
the enumerator to the first enumerator value indicated by theTypeCode .

• For DynFixed , operations set the current position to−1 and sets the value zero.

• For DynStruct , the operation sets the current position to−1 for empty exceptions
and to zero for all otherTypeCode s. The members (if any) are (recursively)
initialized to their default values.

• For DynArray , the operation sets the current position to zero and (recursively)
initializes elements to their default value.

• For DynUnion , the operation sets the current position to zero. The discriminato
value is set to a value consistent with the first named member of the union. Tha
member is activated and (recursively) initialized to its default value.

• DynValue andDynValueBox are initialized to a null value.

Dynamic interpretation of anany usually involves creating aDynAny object using
DynAnyFactory::create_dyn_any as the first step. Depending on the type of the
any, the resultingDynAny object reference can be narrowed to aDynFixed ,
DynStruct , DynSequence , DynArray , DynUnion , DynEnum , or DynValue
object reference.

Dynamic creation of anany involves creating aDynAny object using
DynAnyFactory::create_dyn_any_from_type_code , passing theTypeCode
associated with the value to be created. The returned reference is narrowed to on
the complex types, such asDynStruct , if appropriate. Then, the value can be
initialized by means of invoking operations on the resulting object. Finally, theto_any
operation can be invoked to create anany value from the constructedDynAny .

9.2.2 The DynAny Interface

The following operations can be applied to aDynAny object:

• Obtaining theTypeCode associated with theDynAny object.

• Generating anany value from theDynAny object.

• Comparing twoDynAny objects for equality.

• Destroying theDynAny object.

• Creating aDynAny object as a copy of theDynAny object.

• Inserting/getting a value of some basic type into/from theDynAny object.

• Iterating through the components of aDynAny .

• Initializing a DynAny object from anotherDynAny object.

• Initializing a DynAny object from anany value.
July 2002 CORBA, v3.0: DynAny API 9-11

9

9.2.2.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with aTypeCode value assigned to it. ThisTypeCode
value determines the type of the value handled through theDynAny object. Thetype
operation returns theTypeCode associated with aDynAny object.

Note that theTypeCode associated with aDynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime of theDynAny object.

9.2.2.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with aDynAny object with the
value associated with anotherDynAny object.

If the type of the passedDynAny is not equivalent to the type of targetDynAny , the
operation raisesTypeMismatch. The current position of the targetDynAny is set to
zero for values that have components and to−1 for values that do not have
components.

9.2.2.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

The from_any operation initializes the value associated with aDynAny object with
the value contained in anany.

If the type of the passedAny is not equivalent to the type of targetDynAny , the
operation raisesTypeMismatch. If the passedAny does not contain a legal value
(such as a null string), the operation raisesInvalidValue. The current position of the
targetDynAny is set to zero for values that have components and to−1 for values that
do not have components.

9.2.2.4 Generating an any value from a DynAny object

any to_any();

The to_any operation creates anany value from aDynAny object. A copy of the
TypeCode associated with theDynAny object is assigned to the resultingany. The
value associated with theDynAny object is copied into theany.
9-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

uses
es

f

s

ent
9.2.2.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares twoDynAny references for equality and returns true if
the DynAny s are equal, false otherwise. ForDynAny references that are not derived
from DynValueCommon , they are equal if theirTypeCode s are equivalent and,
recursively, all componentDynAny s are equal. ForDynAny references that are
derived fromDynValueCommon , they are equal only if they are exactly the same
reference. The current position of the twoDynAny s being compared has no effect on
the result of equal. To determine equality of object references, the equal operation
Object::is_equivalent . To determine equality of type codes, the equal operation us
TypeCode::equivalent .

Note – If two DynAny s happen to contain *values* of typeTypeCode , these values
are compared usingTypeCode::equal . The type codes that *describe* the values o
DynAny s are always compared usingTypeCode::equivalent , however. (In the case
of comparing twoDynAny s containing type code values, the type codes describing
these type code values aretk_TypeCode in eachDynAny , and will therefore always
compare as equivalent.)

9.2.2.6 Destroying a DynAny object

void destroy();

The destroy operation destroys aDynAny object. This operation frees any resource
used to represent the data value associated with aDynAny object.destroy must be
invoked on references obtained from one of the creation operations on the
DynAnyFactory interface or on a reference returned byDynAny::copy to avoid
resource leaks. Invokingdestroy on componentDynAny objects (for example, on
objects returned by thecurrent_component operation) does nothing.

Destruction of aDynAny object implies destruction of allDynAny objects obtained
from it. That is, references to components of a destroyedDynAny become invalid;
invocations on such references raiseOBJECT_NOT_EXIST.

It is possible to manipulate a component of aDynAny beyond the life time of the
DynAny from which the component was obtained by making a copy of the compon
with the copy operation before destroying theDynAny from which the component
was obtained.
July 2002 CORBA, v3.0: DynAny API 9-13

9

n

t

t

9.2.2.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a newDynAny object whose value is a deep copy of the
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it o
one of the types derived fromDynAny , such asDynStruct , creates the derived type
but returns its reference as theDynAny base type.

9.2.2.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values
into/from aDynAny object.

Both bounded and unbounded strings are inserted usinginsert_string and
insert_wstring . These operations raise theInvalidValue exception if the string
inserted is longer than the bound of a bounded string.

Calling an insert or get operation on aDynAny that has components but has a curren
position of−1 raisesInvalidValue .

Get operations raiseTypeMismatch if the accessed component in theDynAny is of
a type that is not equivalent to the requested type. (Note thatget_string and
get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value if itsTypeCode is equivalent to
theTypeCode contained in theDynAny or, if the DynAny has components, is
equivalent to theTypeCode of theDynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal withany
values that contain anotherany. The operations behave identically toget_any and
insert_any , but use parameters of typeDynAny (instead of any); they are useful to
avoid otherwise redundant conversions between any andDynAny .

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basicDynAny objects but are also helpful to
handle constructedDynAny objects. Inserting a basic data type value into a
constructedDynAny object implies initializing the current component of the
constructed data value associated with theDynAny object. For example, invoking
insert_boolean on aDynStruct implies inserting a boolean data value at the curren
position of the associated struct data value. Ifdyn_construct points to a
constructedDynAny object, then:

result = dyn_construct->get_boolean();

has the same effect as:

DynamicAny::DynAny_var temp =
dyn_construct->current_component();

result = temp->get_boolean();
9-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

s

rns

rrent

tion
ise.
Calling an insert or get operation on aDynAny whose current component itself has
components raisesTypeMismatch.

In addition, availability of these operations enable the traversal ofanys associated with
sequences of basic data types without the need to generate aDynAny object for each
element in the sequence.

In the same way that basic types are inserted/extracted from aDynAny object, arrays
or sequences of basic types can be inserted/extracted from aDynAny . For example,
the get_boolean_seq operation extracts a sequence ofboolean s from aDynAny
that contains either a sequence or an array ofboolean s, and the
insert_boolean_seq operation stores the sequence back into theDynAny .

The TypeCode of the DynAny , or theTypeCode of the component at the current
position of theDynAny , must be equivalent to a sequence or arrayTypeCode with
the basic type as its element, otherwise the operations raiseTypeMismatch. For the
insert operations, if the length of the sequence is incompatible with a bounded
sequence or array represented by theDynAny , then the operations raise
InvalidValue.

9.2.2.9 Iterating through components of a DynAny

TheDynAny interface allows a client to iterate through the components of the value
pointed to byDynStruct , DynSequence , DynArray , DynUnion , DynAny , and
DynValue objects.

As mentioned previously, aDynAny object may be seen as an ordered collection of
components, together with a current position.

boolean seek(in long index);

Theseek operation sets the current position toindex . The current position is indexed
0 to n−1, that is, index zero corresponds to the first component. The operation retu
true if the resulting current position indicates a component of theDynAny and false if
index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current position to−1 to
indicate no component and returns false. Passing a non-negative index value for a
DynAny that does not have a component at the corresponding position sets the cu
position to−1 and returns false.

void rewind();

The rewind operation is equivalent to callingseek(0);

boolean next();

Thenext operation advances the current position to the next component. The opera
returns true while the resulting current position indicates a component, false otherw
A false return value leaves the current position at−1. Invokingnext on aDynAny
without components leaves the current position at−1 and returns false.
July 2002 CORBA, v3.0: DynAny API 9-15

9

he

res,
rays,
f the

ent
ence

a

trary
unsigned long component_count();

The component_count operation returns the number of components of aDynAny .
For aDynAny without components, it returns zero. The operation only counts the
components at the top level. For example, ifcomponent_count is invoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of t
member.

For sequences, the operation returns the current number of elements. For structu
exceptions, and valuetypes, the operation returns the number of members. For ar
the operation returns the number of elements. For unions, the operation returns 2 i
discriminator indicates that a named member is active; otherwise, it returns 1. For
DynFixed andDynEnum , the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns theDynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call torewind , next , or seek return the
same component.

The returnedDynAny object reference can be used to get/set the value of the curr
component. If the current component represents a complex type, the returned refer
can be narrowed based on theTypeCode to get the interface corresponding to the to
the complex type.

Calling current_component on aDynAny that cannot have components, such as
DynEnum or an empty exception, raisesTypeMismatch. Calling
current_component on aDynAny whose current position is−1 returns a nil
reference.

The iteration operations, together withcurrent_component , can be used to
dynamically compose anany value. After creating a dynamic any, such as a
DynStruct , current_component andnext can be used to initialize all the
components of the value. Once the dynamic value is completely initialized,to_any
creates the correspondingany value.

9.2.3 The DynFixed Interface

DynFixed objects are associated with values of the IDLfixed type.

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

Because IDL does not have a generic type that can represent fixed types with arbi
number of digits and arbitrary scale, the operations use the IDLstring type.

The get_value operation returns the value of aDynFixed .
9-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

s

ling

ses
Theset_value operation sets the value of theDynFixed . Theval string must contain
a fixed string constant in the same format as used for IDL fixed-point literals.
However, the trailingd or D is optional. Ifval has more fractional digits than specified
by the scale of theDynFixed , the extra digits are truncated. If the truncated value ha
more digits than theDynFixed , the operation raisesInvalidValue. If the value is not
too large,set_value returnsTRUE if no truncation was required,FALSE otherwise.
The return value isTRUE if val can be represented as theDynFixed without loss of
precision. Ifval has more fractional digits than can be represented in theDynFixed ,
fractional digits are truncated and the return value isFALSE . If val does not contain a
valid fixed-point literal or contains extraneous characters other than leading or trai
white space, the operation raisesTypeMismatch.

9.2.4 The DynEnum Interface

DynEnum objects are associated with enumerated values.

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};

Theget_as_string operation returns the value of theDynEnum as an IDL identifier.

Theset_as_string operation sets the value of theDynEnum to the enumerated value
whose IDL identifier is passed in thevalue parameter. Ifvalue contains a string that
is not a valid IDL identifier for the corresponding enumerated type, the operation rai
InvalidValue.

The get_as_ulong operation returns the value of theDynEnum as the enumerated
value’s ordinal value. Enumerators have ordinal values 0 to n−1, as they appear from
left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of theDynEnum as the enumerated
value’s ordinal value. Ifvalue contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation raisesInvalidValue.

The current position of aDynEnum is always−1.

9.2.5 The DynStruct Interface

DynStruct objects are associated with struct values and exception values.
July 2002 CORBA, v3.0: DynAny API 9-17

9

es

es

e

mbers
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If theDynStruct represents an empty exception, the operation rais
TypeMismatch. If the current position does not indicate a member, the operation
raisesInvalidValue.

This operation may return an empty string since theTypeCode of the value being
manipulated may not contain the names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns theTCKind associated with the member at the
current position. If theDynStruct represents an empty exception, the operation rais
TypeMismatch. If the current position does not indicate a member, the operation
raisesInvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing th
name and the value of each member in the struct associated with aDynStruct object.
The sequence contains members in the same order as the declaration order of me
9-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

rent
pty

that
s
with

e

as indicated by theDynStruct ’s TypeCode . The current position is not affected. The
member names in the returned sequence will be empty strings if theDynStruct ’s
TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the cur
position to zero if the passed sequences has non-zero length; otherwise, if an em
sequence is passed, the current position is set to−1.

Members must appear in theNameValuePairSeq in the order in which they appear in
the IDL specification of the struct. If one or more sequence elements have a type
is not equivalent to theTypeCode of the corresponding member, the operation raise
TypeMismatch. If the passed sequence has a number of elements that disagrees
the number of members as indicated by theDynStruct ’s TypeCode , the operation
raisesInvalidValue.

If member names are supplied in the passed sequence, they must either match th
corresponding member name in theDynStruct ’s TypeCode or must be empty
strings, otherwise, the operation raisesTypeMismatch. Members must be supplied in
the same order as indicated by theDynStruct ’s TypeCode . (The operation makes no
attempt to assign member values based on member names.)

The get_members_as_dyn_any andset_members_as_dyn_any operations
have the same semantics as theirAny counterparts, but accept and return values of
type DynAny instead ofAny .

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

9.2.6 The DynUnion Interface

DynUnion objects are associated with unions.

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d)

raises(TypeMismatch);
void set_to_default_member()

raises(TypeMismatch);
void set_to_no_active_member()

raises(TypeMismatch);
boolean has_no_active_member()

raises(InvalidValue);
CORBA::TCKind discriminator_kind();
DynAny member()

raises(InvalidValue);
FieldName member_name()

raises(InvalidValue);
July 2002 CORBA, v3.0: DynAny API 9-19

9

n

and
s a

r

er,
CORBA::TCKind member_kind()
raises(InvalidValue);

boolean is_set_to_default_member();
};

The DynUnion interface allows for the insertion/extraction of an OMG IDL union
type into/from aDynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active member. Thecomponent_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()

The get_discriminator operation returns the current discriminator value of the
DynUnion .

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of theDynUnion to the
specified value. If theTypeCode of the d parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation raisesTypeMismatch.

Setting the discriminator to a value that is consistent with the currently active unio
member does not affect the currently active member. Setting the discriminator to a
value that is inconsistent with the currently active member deactivates the member
activates the member that is consistent with the new discriminator value (if there i
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discriminato
value indicates a non-existent union member (has_no_active_member returns true
in this case). Otherwise, if the discriminator value indicates a named union memb
the current position is set to 1 (has_no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is
consistent with the value of thedefault case of a union; it sets the current position to
zero and causescomponent_count to return 2. Callingset_to_default_member
on a union that does not have an explicitdefault case raisesTypeMismatch.
9-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

s
and

tly

ive
s

he
er,

ase
void set_to_no_active_member()
raises(TypeMismatch);

Theset_to_no_active_member operation sets the discriminator to a value that doe
not correspond to any of the union’s case labels; it sets the current position to zero
causescomponent_count to return 1. Callingset_to_no_active_member on a
union that has an explicitdefault case or on a union that uses the entire range of
discriminator values for explicitcase labels raisesTypeMismatch.

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an explicitcase label). Calling this
operation on a union that has adefault case returns false. Calling this operation on a
union that uses the entire range of discriminator values for explicitcase labels returns
false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns theTCKind value of the discriminator’s
TypeCode .

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns theTCKind value of the currently active
member’sTypeCode . Calling this operation on a union that does not have a curren
active member raisesInvalidValue.

DynAny member()
raises(InvalidValue);

Themember operation returns the currently active member. If the union has no act
member, the operation raisesInvalidValue. Note that the returned reference remain
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

Themember_name operation returns the name of the currently active member. If t
union’s TypeCode does not contain a member name for the currently active memb
the operation returns an empty string. Callingmember_name on a union without an
active member raisesInvalidValue.

boolean is_set_to_default_member();

The is_set_to_default_member operation returns TRUE if a union has an explicit
default label and the discriminator value does not match any of the union's other c
labels.
July 2002 CORBA, v3.0: DynAny API 9-21

9

f a
sting

ed

es

ting
g the

e

9.2.7 The DynSequence Interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length o
sequence adds new elements at the tail without affecting the values of already exi
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-add
element if the previous current position was−1. Otherwise, if the previous current
position was not−1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound rais
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affec
the value of those elements that remain. The new current position after decreasin
length of a sequence is determined as follows:

• If the length of the sequence is set to zero, the current position is set to−1.

• If the current position is−1 before decreasing the length, it remains at−1.

• If the current position indicates a valid element and that element is not removed
when the length is decreased, the current position remains unaffected.

• If the current position indicates a valid element and that element is removed, th
current position is set to−1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.
9-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

es

, the
nt
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length ofvalue . The current position is set to zero if
value has non-zero length and to−1 if value is a zero-length sequence.

If value contains one or more elements whoseTypeCode is not equivalent to the
elementTypeCode of the DynSequence , the operation raisesTypeMismatch. If
the length of value exceeds the bound of a bounded sequence, the operation rais
InvalidValue.

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations have
the same semantics, but accept and return values of typeDynAny instead ofAny .

9.2.8 The DynArray Interface

DynArray objects are associated with arrays.

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

DynAnySeq get_elements();

The get_elements operation returns the elements of theDynArray .

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

Theset_elements operation sets theDynArray to contain the passed elements. If the
sequence does not contain the same number of elements as the array dimension
operation raisesInvalidValue. If one or more elements have a type that is inconsiste
with the DynArray ’s TypeCode , the operation raisesTypeMismatch.

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations have
the same semantics as theirAny counterparts, but accept and return values of type
DynAny instead ofAny .

Note that the dimension of the array is contained in theTypeCode , which is
accessible through thetype attribute. It can also be obtained by calling the
component_count operation.
July 2002 CORBA, v3.0: DynAny API 9-23

9

in
9.2.9 The DynValueCommon Interface

DynValueCommon provides operations supported by both theDynValue and
DynValueBox interfaces.

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

boolean is_null();

The is_null operation returnsTRUE if the DynValueCommon represents a null
valuetype.

void set_to_null();

The set_to_null operation changes the representation of aDynValueCommon to a
null valuetype.

void set_to_value();

If the DynValueCommon represents a null valuetype, thenset_to_value replaces it
with a newly constructed value, with its components initialized to default values as
DynAnyFactory::create_dyn_any_from_type_code . If the DynValueCommon
represents a non-null valuetype, then this operation has no effect.

A reference to aDynValueCommon interface (and interfaces derived from it) exhibit
the same sharing semantics as the underlyingvaluetype that it represents. This means
that the relationships betweenvaluetypes in a graph of valuetypes will remain
unchanged when converted intoDynAny form and vice versa. This is necessary to
ensure that applications that use theDII andDSI can correctly view and preserve the
semantics of thevaluetype graph.

9.2.10 The DynValue Interface

DynValue objects are associated with non-boxed valuetypes.
9-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

an
ess
local interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

The DynValue interface can represent both null and non-null valuetypes. For a
DynValue representing a non-null valuetype, theDynValue 's components comprise
the public and private members of the valuetype, including those inherited from
concrete base valuetypes, in the order of definition. ADynValue representing a null
valuetype has no components and a current position of-1.

The remaining operations on theDynValue interface generally have equivalent
semantics to the same operations onDynStruct . When invoked on aDynValue
representing a null valuetype,get_members andget_members_as_dyn_any raise
InvalidValue. When invoked on aDynValue representing a null valuetype,
set_members andset_members_as_dyn_any convert theDynValue to a non-
null valuetype.

Warning – Indiscriminately changing the contents of private valuetype members c
cause the valuetype implementation to break by violating internal constraints. Acc
to private members is provided to support such activities as ORB bridging and
debugging and should not be used to arbitrarily violate the encapsulation of the
valuetype.

9.2.11 The DynValueBox Interface

DynValueBox objects are associated with boxed valuetypes.

local interface DynValueBox : DynValueCommon {
any get_boxed_value()

 raises(InvalidValue);
void set_boxed_value(in any boxed)

raises(TypeMismatch, InvalidValue);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};
July 2002 CORBA, v3.0: DynAny API 9-25

9

If
s
s

e

The DynValueBox interface can represent both null and non-null valuetypes. For a
DynValueBox representing a non-null valuetype, theDynValueBox has a single
component of the boxed type. ADynValueBox representing a null valuetype has no
components and a current position of-1.

any get_boxed_value()
 raises(InvalidValue);

The get_boxed_value operation returns the boxed value as an any. If the
DynBoxedValue represents a null valuetype, the operation raisesInvalidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

Theset_boxed_value operation replaces the boxed value with the specified value.
the type of the passed Any is not equivalent to the boxed type, the operation raise
TypeMismatch . If the passedAny does not contain a legal value, the operation raise
InvalidValue . If the DynBoxedValue represents anull valuetype , it is converted to
a non-null value.

The get_boxed_value_as_dyn_any andset_boxed_value_as_dyn_any have
the same semantics as their any counterparts, but accept and return values of typ
DynAny instead of any.

9.3 Usage in C++ Language

9.3.1 Dynamic Creation of CORBA::Any Values

9.3.1.1 Creating an any that contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};

The following example illustrates how aCORBA::Any value may be constructed on
the fly containing a value of typeMyStruct :

// C++
CORBA::ORB_var orb = ...;
DynamicAny::DynAnyFactory_var dafact

= orb->resolve_initial_references(“DynAnyFactory”);
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::Long value1 = 99;
CORBA::Boolean value2 = 1;
9-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

,

nt
mems.length(2);
mems[0].name = CORBA::string_dup(“ member1”);
mems[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup(“ member2”);
mems[1].type

= CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
“ IDL:MyStruct:1.0”,
“ MyStruct”,
mems

);

// Construct the DynStruct object. Values for members are
// the value1 and value2 variables

DynamicAny::DynAny_ptr dyn_any
= dafact->create_dyn_any(new_tc);

DynamicAny::DynStruct_ptr dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);

CORBA::release(dyn_any);
dyn_struct->insert_long(value1);

dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

9.3.2 Dynamic Interpretation of CORBA::Any Values

9.3.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events
which correspond to a data structure containing a member calledis_urgent whose
value is true.

The following fragment of code corresponds to a method that determines if an eve
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

// C++
CORBA::Boolean Tester::eval_filter(

DynamicAny::DynAnyFactory_ptr dafact,
const CORBA::Any & event

)
{

CORBA::Boolean success = FALSE;
DynamicAny::DynAny_var;
try {
July 2002 CORBA, v3.0: Usage in C++ Language 9-27

9

// First, convert the event to a DynAny.
// Then attempt to narrow it to a DynStruct.
// The _narrow only returns a reference
// if the event is a struct.
dyn_var = dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct

= DynamicAny::DynStruct::_narrow(dyn_any);
if (!CORBA::is_nil(dyn_struct)) {

CORBA::Boolean found = FALSE;
do {

CORBA::String_var member_name
= dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
} while (!found && dyn_struct->next());
if (found) {

// We only create a DynAny object for the member
// we were looking for:
DynamicAny::DynAny_var dyn_member

= dyn_struct->current_component();
success = dyn_member->get_boolean();

}
}

}
catch(...) {};
if (!CORBA::is_nil(dyn_var))

dyn_var->destroy();
return success;

}

9-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

TheInterfaceRepository 10
rage

s

f the
f

Contents

This chapter contains the following sections.

10.1 Overview

The Interface Repository is the component of the ORB that provides persistent sto
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provide
for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions o
objects it is handling. Object definitions can be made available to an ORB in one o
two forms:

Section Title Page

“Overview” 10-1

“Scope of an Interface Repository” 10-2

“Implementation Dependencies” 10-4

“Basics” 10-5

“Interface Repository Interfaces” 10-11

“RepositoryIds” 10-64

“OMG IDL for Interface Repository” 10-75
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 10-1

10

hat

i.e.,

tory

nd

r).

8,

that
ce
the

ate
ons,
ple,

or
1. By incorporating the information procedurally into stub routines (e.g., as code t
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (
as interface objects accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Reposi
to interpret and handle the values provided in a request to:

• Provide type-checking of request signatures (whether the request was issued
through the DII or through a stub).

• Assist in checking the correctness of interface inheritance graphs.

• Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients a
services. For example, the Repository can be used to:

• Manage the installation and distribution of interface definitions.

• Provide components of a CASE environment (for example, an interface browse

• Provide interface information to language bindings (such as a compiler).

• Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 10.
“OMG IDL for Interface Repository,” on page 10-75; however, fragments of the
specification are used throughout this chapter as necessary.

10.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects
are accessible through a set of OMG IDL-specified interface definitions. An interfa
definition contains a description of the operations it supports, including the types of
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface and value definitions or might simply be defined for programmer
convenience and it stores TypeCodes [Section 4.11, “TypeCodes,” on page 4-52],
which are values that describe a type in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navig
through those groups by name. Modules can contain constants, typedefs, excepti
interface/component/home definitions, and other modules. Modules may, for exam
correspond to the organization of OMG IDL definitions. They may also be used to
represent organizations defined for administration or other purposes.

The Interface Repository consists of a set ofinterface repository objectsthat represent
the information in it. There are operations that operate on this apparent object
structure. It is an implementation’s choice whether these objects exist persistently
10-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

use

es.

for

.
a
.

are created when referenced in an operation on the repository. There are also
operations that extract information in an efficient form, obtaining a block of
information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur beca

• two ORBs have different requirements for the implementation of the Interface
Repository,

• an object implementation (such as an OODB) prefers to provide its own type
information, or

• it is desired to have different additional information stored in different repositori

The use of TypeCodes (Section 4.11, “TypeCodes,” on page 4-52) and repository
identifiers is intended to allow different repositories to keep their information
consistent.

As shown in Figure 10-1 on page 10-3, the same interfaceDoc is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use
Because it has the same repository id, even though the Doc interface is stored in
different repository and is nested in a different module, it is known to be the same

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

.

Figure 10-1 Using Repository IDs to establish correspondence between repositories

SoftCo, Inc., Repository

module softco {
interface Doc <id 123> {

void print();
};

};

module newrelease {
interface Doc <id 456> {

void print();
};

};

Customer, Inc., Repository

module testfirst {
module softco {

interface Doc <id 123> {
void print();

};
};

};
July 2002 CORBA, v3.0: Scope of an Interface Repository 10-3

10

es
will

l

er.
ry to

y

le
ace

ject

n a
le
ss

ded

r
s of
ency
y

the

t to

ms,
care
o

Not all interfaces will be visible in all repositories. For example, Customer employe
cannot see the new release of the Doc interface. However, widely used interfaces
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additiona
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs togeth
When an object is passed in a request from one ORB to another, it may be necessa
create a new object to represent the passed object in the receiving ORB. This ma
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in the sending ORB, it is possib
to look up the interface in a repository in the receiving ORB. To succeed, the interf
for that object must be installed in both repositories with the same repository id.

10.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent ob
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained o
single machine. Alternatively, if an OODB is used to provide object storage, multip
copies of interface definitions may be maintained each of which is distributed acro
several machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provi
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy pe
community of users. The object store may also determine whether or not all client
an interface set see exactly the same set at any given point in time or whether lat
in distributing copies of the set gives different users different views of the set at an
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

10.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attemp
access the interface repository at any time by using theget_interface operation on
the object reference. Once information has been installed in the repository, progra
stubs, and objects may depend on it. Updates to the repository must be done with
to avoid disrupting the environment. A variety of techniques are available to help d
so.
10-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

n of
ate
so
gh
pear

red

n
s.

heir
ome
ral

ult

ion,
tory
but
y or
the
that
ry

may

e

the
r
cy

he
s

rned.
ify
A coherent repository is one whose contents can be expressed as a valid collectio
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplic
operation names or other name collisions, all parameters have known types, and
forth. As information is added to the repository, it is possible that it may pass throu
incoherent states. Media failures or communication errors might also cause it to ap
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a sha
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository IDs, the repositories ca
establish the identity of the interfaces and other information across the repositorie

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to t
repositories, but administrators may control updates to widely used repositories. S
repository implementations might permit sharing of information, for example, seve
developers’ repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common information. In any case, the res
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent informat
and it may be possible to enter information that does not make sense. The reposi
will report errors that it detects (e.g., defining two attributes with the same name)
might not report all errors, for example, adding an attribute to a base interface ma
may not detect a name conflict with a derived interface. Despite these limitations,
expectation is that a combination of conventions, administrative controls, and tools
add information to the repository will work to create a coherent view of the reposito
information.

Transactions and concurrency control mechanisms defined by the Object Services
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update th
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as
Transaction interface, which contains the transaction management operations. (Fo
more information about Object Services, including the Transaction and Concurren
Control Services, refer to the individual CORBA Services specifications).

Often, rather than change the information, new versions will be created, allowing t
old version to continue to be valid. The new versions will have distinct repository ID
and be completely different types as far as the repository and the ORBs are conce
The IR provides storage for version identifiers for named types, but does not spec
any additional versioning mechanism or semantics.

10.4 Basics

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

• Names and Identifiers
July 2002 CORBA, v3.0: Basics 10-5

10

nd
s, and

lue

ltiple

data

re

pe

ts,
ns,
• Types and TypeCodes

• Interface Repository Objects

• Structure and Navigation of the Interface Repository

10.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface, struct,
union, exception and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, components, homes, value a
event types, value members, value boxes, constant, typedefs, exceptions, attribute
operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, components, homes, va
and event types, value members, value boxes, constants, typedefs, exceptions,
attributes, and operations. They can be used to synchronize definitions across mu
ORBs and Repositories.

10.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a
value called a TypeCode. From the TypeCode alone it is possible to determine the
complete structure of a type. See Section 4.11, “TypeCodes,” on page 4-52 for mo
information on the internal structure of TypeCodes.

10.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is
maintained as a collection ofinterface repository objectsof the following types:

• Repository : the top-level module for the repository name space; it contains
constants, typedefs, exceptions, interface , component, home, value or event ty
definitions, and modules.

• ModuleDef : a logical grouping of interfaces and value types; it contains constan
typedefs, exceptions, interface, component, home, value or event type definitio
and other modules.

• InterfaceDef : an interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

• ExtInterfaceDef : an extended version ofInterfaceDef that is capable of
accommodating attributes with exceptions.

• AbstractInterfaceDef : an abstract interface definition; it contains lists of
constants, types, exceptions, operations, and attributes.

• ExtAbstractInterfaceDef : an extended version ofAbstractInterfaceDef that is
capable of accommodating attributes with exceptions.
10-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

s,

ns,

e;

s

.

An
the
• LocalInterfaceDef : a local interface definition; it contains lists of constants, type
exceptions, operations, and attributes.

• ExtLocalInterfaceDef : an extended version ofLocalInterfaceDef that is capable
of accommodating attributes with exceptions.

• ValueDef : a value type definition that contains lists of constants, types, exceptio
operations, attributes and members

• ExtValueDef : an extended version ofValueDef that is capable of accommodating
attributes and initializers with exceptions.

• EventDef : an event type definition that contains lists of constants, types,
exceptions, operations, attributes and members.

• ValueBoxDef : the definition of a boxed value type.

• ValueMemberDef : the definition of a member of the value type.

• AttributeDef : the definition of an attribute of the interface or value type.

• ExtAttributeDef : an extended version ofAttributeDef that is capable of
accommodating attributes with exceptions.

• OperationDef : the definition of an operation of the interface, value or event typ
it contains lists of parameters and exceptions raised by this operation.

• TypedefDef : base interface for definitions of named types that are not interface
components, homes, or value and event types.

• ConstantDef : the definition of a named constant.

• ExceptionDef : the definition of an exception that can be raised by an operation

• ComponentDef : a component definition; it contains lists of provides, uses,
consumes, publishes, supports, emits and attributes.

• HomeDef : a home definition; it contains lists of constants, types, exceptions,
operations, attributes, factories and finders.

• FactoryDef : the definition of a factory; it is an operation that is specifically used
for creating new instances of components in a home.

• FinderDef : the definition of a finder; it is an operation that is specifically used to
find components within a home.

• ProvidesDef : the definition of an interface that is provided by a component.

• UsesDef : the definition of an interface that is used by a component.

• EmitsDef : the definition of events that are emitted by a component.

• PublishesDef : the definition of events that are published by a component.

• ConsumesDef : the definition of events that are consumed by a component.

The interface specifications for eachinterface repository objectlists the attributes
maintained by that object (see Section 10.5, “Interface Repository Interfaces,” on
page 10-11). Many of these attributes correspond directly to OMG IDL statements.
implementation can choose to maintain additional attributes to facilitate managing
July 2002 CORBA, v3.0: Basics 10-7

10

es,

ay
the
Repository or to record additional (proprietary) information about an interface.
Implementations that extend the IR interfaces shall do so by deriving new interfac
not by modifying the standard interfaces.

The CORBAspecification defines a minimal set of operations forinterface repository
objects. Additional operations that an implementation of the Interface Repository m
provide could include operations that provide for the versioning of entities and for
reverse compilation of specifications (i.e., the generation of a file containing an
object’s OMG IDL specification).

10.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set ofinterface
repository objects. These objects are structured the same way definitions are
structured—some objects (definitions) “contain” other objects.

The containment relationships for theinterface repository objectstypes in the Interface
Repository are shown in Figure 10-2.
10-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
Figure 10-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining anInterfaceDef object directly from the ORB.

Repository or ComponentIR::Repository

ConstantDef
TypedefDef
ExceptionDef
[Ext]InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
[Ext]AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The Repository IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

the scope of a module.

The Module IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

modules defined within the scope of the module.

An Interface IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation IR objects reference
exception objects.

[Ext]ValueDef

ValueBoxDef
ModuleDef

ConstantDef
TypedefDef
ExceptionDef

[Ext][Abstract | local]InterfaceDef

[Ext]ValueDef | EventDef - only in ComponentIR::Repository

ValueBoxDef
ModuleDef

value boxes and modules that are defined outside

value boxes, eventtypes, components, homes and other

ConstantDef
TypedefDef
ExceptionDef
[Ext]AttributeDef
OperationDef Operation IR objects reference

ExceptionDef exception objects.

A Valuetype IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

ValueMemberDef

ComponentDef - only in ComponentIR::Repository

A ComponentDef IR object represents the provides, uses,
emits, publishes, consumes and attributes

AttributeDef IR objects reference exception objects[Ext]AttributeDef

EmitsDef
PublishesDef
ConsumesDef

contained in the component.

ProvidesDef
UsesDef

Emits, publishes and consumes refers to event objects.
Provides and uses refers to interface objects.

HomeDef - only in ComponentIR::Repository

FactoryDef
FinderDef

A HomeDef IR object represents factory and finder
defined within or inherited by home.
Factory and finder refer to exception objects.

EventDef - only in ComponentIR::Repository

ComponentDef - only in ComponentIR::Repository
HomeDef - only in ComponentIR::Repository
July 2002 CORBA, v3.0: Basics 10-9

10

re

e

ible

ue.
e

ion
2. Navigating through the module name space using a sequence of names.

3. Locating theInterfaceDef object that corresponds to a particular repository
identifier.

There are four ways to locate a component in the Interface Repository, by:

1. Obtaining anComponentDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating theComponentDef object that corresponds to a particular repository
identifier.

4. Obtaining theComponentDef from theHomeDef object corresponding to its
home.

There are three ways to locate a home in the Interface Repository, by:

1. Obtaining anHomeDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating theHomeDef object that corresponds to a particular repository
identifier.

Note – It should be noted that given aComponentDef IR object, it is not possible to
obtain theHomeDef IR object for the home that manages this component, since the
could be multiple such homes, and the actual relation of a specific component to a
specific home is available only at runtime. To get to theHomeDef object
corresponding to the home of a given component, one needs to do a
CCMObject::get_home , and then do aCCMHome::get_home_def on the home
thus obtained.

Obtaining anInterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using theget_interface operation on
the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on th
object. Similarly, by using theCCMObject::get_component_def operation, it is
possible to retrieve the Component Repository information about a component.

Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is poss
to obtain entries by name.

Locating theInterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally uniq
By using the same identifier in two repositories, it is possible to obtain the interfac
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional informat
about the interface.

Analogous operations are provided for manipulating value and event types.
10-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

IR

ier

ry.

-1

ons

and
The ComponentIR module contains the IR Objects that were added to reflect new
IDL constructs that were added to support Components. These are built upon the
interfaces defined inCORBA module includingExtInterfaceDef , ExtValueDef , and
ExtAttributeDef and thus are backward compatible extensions of the 2.5 and earl
versions of the IR.

10.5 Interface Repository Interfaces

Several interfaces are used asbase interfacesfor objects in the IR. Thesebase
interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Reposito
These operations are defined in the interfacesIRObject , Container , andContained
described below. All IR objects inherit from theIRObject interface, which provides an
operation for identifying the actual type of the object. Objects that are containers
inherit navigation operations from theContainer interface. Objects that are contained
by other objects inherit navigation operations from theContained interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types. TheTypedefDef interface is
inherited by all named non-interface types.

The base interfacesIRObject , Contained , Container , IDLType , TypedefDef
ComponentIR::Container andComponentIR::EventPortDef are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859
coded character set.

Interface Repository operations indicate error conditions using the system excepti
BAD_PARAM andBAD_INV_ORDER with specific minor codes. The specific
operations that raise these exceptions are documented in the description of the
operations. For a description of how these minor codes are encoded in theex_body of
standard exceptions see Section 4.12.2, “System Exceptions,” on page 4-63 and
Section 4.12.4, “Standard Minor Exception Codes,” on page 4-72. The exceptions
minor codes that are used by Interface Repository interfaces are as follows:

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception Minor Code Explanation

BAD_PARAM 2 RID is already defined in IFR

3 Name already used in the context in IFR

4 Target is not a valid container

5 Name clash in inherited context
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-11

10

es,
ns,
L

10.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

};
};

Identifier s are the simple names that identify modules, interfaces, components, hom
value and event types, value members, value boxes, constants, typedefs, exceptio
attributes, operations, ports, and native types. They correspond exactly to OMG ID
identifiers. AnIdentifier is not necessarily unique within an entire Interface
Repository; it is unique only within a particularRepository, ModuleDef ,
InterfaceDef , ComponentDef , HomeDef , ValueDef , EventDef , OperationDef
FactoryDef , or FinderDef .

A ScopedName is a name made up of one or moreIdentifier s separated by the
characters “::”. They correspond to OMG IDL scoped names.

BAD_PARAM 31 Attempt to define a oneway operation with non-void
result, out or inout parameters or user exceptions.

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this
object

2 Attempt to destroy indestructible objects in IFR

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception Minor Code Explanation
10-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

tive

t is
mpt
use
An absoluteScopedName is one that begins with “::” and unambiguously identifies
a definition in aRepository . An absoluteScopedName in a Repository
corresponds to aglobal namein an OMG IDL file. A relativeScopedName does not
begin with “:: ” and must be resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module,
interface, component, home, value type, event type, value member, value box, na
type, constant, typedef, exception, attribute or operation. AsRepositoryId s are
defined as strings, they can be manipulated (e.g., copied and compared) using a
language binding’s string manipulation routines.

A DefinitionKind identifies the type of an IR object.

10.5.2 IRObject

The base interfaceIRObject represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};
};

10.5.2.1 Read Interface

The def_kind type_name attribute identifies the type of the definition.

10.5.2.2 Write Interface

The destroy operation causes the object to cease to exist. If the object is a
Container , destroy is applied to all its contents. If the object contains anIDLType
attribute for an anonymous type, thatIDLType is destroyed. If the object is currently
contained in some other object, it is removed. Ifdestroy is invoked on aRepository
or on aPrimitiveDef then theBAD_INV_ORDER exception is raised with minor
value 2. Implementations may vary in their handling of references to an object tha
being destroyed, but the Repository should not be left in an incoherent state. Atte
to destroy an object that would leave the repository in an incoherent state shall ca
BAD_INV_ORDER exception to be raised with the minor code 1.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-13

10

pt
10.5.3 Contained

The base interfaceContained is inherited by all Interface Repository interfaces that
are contained by other IR objects. All objects within the Interface Repository, exce
the root object (Repository) and definitions of anonymous (ArrayDef , StringDef,
WstringDef, FixedDef and SequenceDef), and primitive types are contained by
other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

};

10.5.3.1 Read Interface

An object that is contained by another object has anid attribute that identifies it
globally, and aname attribute that identifies it uniquely within the enclosing
Container object. It also has aversion attribute that distinguishes it from other
versioned objects with the samename . IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions will require mechanisms and policy not specified in this document.
10-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

ation

is

herit

ce.

d

e

Contained objects also have adefined_in attribute that identifies theContainer
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the oper
from another interface). If an object is contained through inheritance, thedefined_in
attribute identifies theInterfaceDef or ValueDef from which the object is inherited.

The absolute_name attribute is an absoluteScopedName that identifies a
Contained object uniquely within its enclosingRepository . If this object’s
defined_in attribute references aRepository , theabsolute_name is formed by
concatenating the string “::” and this object’sname attribute. Otherwise, the
absolute_name is formed by concatenating theabsolute_name attribute of the
object referenced by this object’sdefined_in attribute, the string “:: ”, and this
object’sname attribute.

The containing_repository attribute identifies theRepository that is eventually
reached by recursively following the object’sdefined_in attribute.

The within operation returns the list of objects that contain the object. If the object
an interface or module it can be contained only by the object that defines it. Other
objects can be contained by the objects that define them and by the objects that in
them.

Thedescribe operation returns a structure containing information about the interfa
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by name of the structure
returned is provided with the returned structure. Thekind field of the returned
Description struct shall give theDefinitionKind for the most derived type of the
object. For example, if thedescribe operation is invoked on an attribute object, the
kind field containsdk_Attribute name field contains “AttributeDescription” and the
value field contains anany, which contains theAttributeDescription structure. The
kind field in this must containdk_attribute and not the kind of anyIRObject from
which theattribute object is derived. For example returningdk_all would be an error.

10.5.3.2 Write Interface

Setting theid attribute changes the global identity of this definition. ABAD_PARAM
exception is raised with minor code 2 if an object with the specifiedid attribute
already exists within this object’sRepository .

Setting thename attribute changes the identity of this definition within itsContainer .
A BAD_PARAM exception is raised with minor code 1 if an object with the specifie
name attribute already exists within this object’sContainer . Theabsolute_name
attribute is also updated, along with any other attributes that reflect the name of th
object. If this object is aContainer , theabsolute_name attribute of any objects it
contains are also updated.

The move operation atomically removes this object from its currentContainer , and
adds it to theContainer specified bynew_container must satisfy the following
conditions:
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-15

10

re

e

• It must be in the sameRepository. If it is not, thenBAD_PARAM exception is
raised with minor code 4.

• It must be capable of containing this object’s type (see Section 10.4.4, “Structu
and Navigation of the Interface Repository,” on page 10-8). If it is not, then
BAD_PARAM exception is raised with minor code 4.

• It must not already contain an object with this object’s name (unless multiple
versions are supported by the IR). If this condition is not satisfied, then
BAD_PARAM exception is raised with minor code 3.

Thename attribute is changed tonew_name , and theversion attribute is changed to
new_version .

The defined_in andabsolute_name attributes are updated to reflect the new
container andname . If this object is also aContainer , theabsolute_name
attributes of any objects it contains are also updated.

10.5.4 Container

Thebase interfaceContainer is used to form a containment hierarchy in the Interfac
Repository. AContainer can contain any number of objects derived from the
Contained interface. AllContainer s, except forRepository , are also derived from
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};
10-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-17

10
);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,

);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

AbstractInterfaceDef create_abstract_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface(
in RepositoryId id,
10-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

with

.
cts

and
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);

ExtValueDef create_ext_value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

};

10.5.4.1 Read Interface

The lookup operation locates a definition relative to this container given a scoped
name using OMG IDL’s name scoping rules. An absolute scoped name (beginning
“::”) locates the definition relative to the enclosingRepository . If no object is found,
a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects
Starting with the Repository object, a client uses this operation to list all of the obje
contained by the Repository, all of the objects contained by the modules within the
Repository, and then all of the interfaces and value types within a specific module,
so on.

limit_type If limit_type is set to dk_all “all,” objects of all
interface types are returned. For example, if this is an
InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute
“AttributeDef”.

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-19

10

. If

es

t

e

contents anddescribe_contents return a list of elements in their original order
(i.e., the order in which the elements were created in or moved into the container)
exclude_inherited is false, the ordering of inherited elements is undefined.

10.5.4.2 Write Interface

The Container interface provides operations to createModuleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, InterfaceDef s, ValueDef s
ValueBoxDef s, andNativeDef s as contained objects. Thedefined_in attribute of a
definition created with any of these operations is initialized to identify theContainer
on which the operation is invoked, and thecontaining_repository attribute is
initialized to itsRepository .

The create_<type> operations all takeid andname parameters that are used to
initialize the identity of the created definition. ABAD_PARAM exception is raised
with minor code 2 if an object with the specifiedid already exists in theRepository .
A BAD_PARAM exception with minor code 3 is raised if the specifiedname already
exists within thisContainer and multiple versions are not supported.Certain interfac
derived fromContainer may restrict the types of definitions that they may contain.
Any create_<type> operation that would insert a definition that is not allowed by a
Container will raise theBAD_PARAM exception with minor code 4.

The lookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. Use of values of
levels_to_search of 0 or of negative numbers other than -1 is undefined.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well.

Setting levels_to_search to -1 searches the current object and all
contained objects. Setting levels_to_search to 1 searches only the curren
object. Use of values of levels_to_search of 0 or of negative numbers
other than -1 is undefined.

The describe_contents operation combines the contents operation and th
describe operation. For each object returned by the contents operation,
the description of the object is returned (i.e., the object’s describe
operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.
10-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

e

The create_module operation returns a new emptyModuleDef . Definitions can be
added usingContainer::create_<type> operations on the new module, or by using
the Contained::move operation.

Thecreate_constant operation returns a newConstantDef with the specifiedtype
andvalue .

The create_struct operation returns a newStructDef with the specifiedmembers .
The type member of theStructMember structures is ignored, and should be set to
TC_void . See Section 10.5.10, “StructDef,” on page 10-26 for more information.

The create_union operation returns a newUnionDef with the specified
discriminator_type andmembers . The type member of theUnionMember
structures is ignored, and should be set toTC_void . See Section 10.5.11, “UnionDef,”
on page 10-27 for more information.

The create_enum operation returns a newEnumDef with the specifiedmembers .
See Section 10.5.12, “EnumDef,” on page 10-28 for more information.

The create_alias operation returns a newAliasDef with the specified
original_type .

The create_interface operation returns a new emptyExtInterfaceDef with the
specifiedbase_interfaces . Type, exception, and constant definitions can be added
usingContainer::create_<type> operations on the newInterfaceDef .
OperationDefs can be added usingInterfaceDef::create_operation and
AttributeDefs can be added usingInterfaceDef::create_attribute . Definitions can
also be added using theContained::move operation.

The create_abstract_interface operation returns a new empty
ExtAbstractInterfaceDef with the specifiedbase_interfaces . Type, exception, and
constant definitions can be added usingContainer::create_<type> operations on the
new AbstractInterfaceDef . OperationDef s can be added using
AbstractInterfaceDef::create_operation andAttributeDef s can be added using
AbstractInterfaceDef::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_local_interface operation returns a new emptyExtLocalInterfaceDef
with the specifiedbase_interfaces . Type, exception, and constant definitions can b
added usingContainer::create_<type> operations on the newLocalInterfaceDef .
OperationDef s can be added usingLocalInterfaceDef::create_operation and
AttributeDef s can be added usingLocalInterfaceDef::create_attribute .
Definitions can also be added using theContained::move operation.

The create_value operation returns a new emptyValueDef with the specified base
interfaces and values (base_value , supported_interfaces , and
abstract_base_values) as well as the other information describing the new values
characteristics (is_custom , is_abstract , is_truncatable , and initializers). Type,
exception, and constant definitions can be added usingContainer::create_<type>
operations on the newValueDef . OperationDefs can be added using
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-21

10

sing

that

pes,
ValueDef::create_operation andAttributeDefs can be added using
ValueDef::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_value_box operation returns a newValueBoxDef with the specified
original_type_def .

The create_exception operation returns a newExceptionDef with the specified
members. Thetype member of theStructMember structures should be set to
TC_void .

The create_native operation returns a newNativeDef with the specifiedname .

The create_ext_value operation returns a new emptyExtValueDef with the
specified base interfaces and values (base_value , supported_interfaces , and
abstract_base_values) as well as the other information describing the new values
characteristics (is_custom , is_abstract , is_truncatable , and initializers). The
initializers argument is of typeExtInitializerSeq allowing one to specify user
exceptions for initializers. Type, exception, and constant definitions can be added u
Container::create_<type> operations on the newExtValueDef . OperationDef s
can be added usingExtValueDef::create_operation andExtAttributeDef s can be
added usingExtValueDef::create_ext_attribute . Definitions can also be added
using theContained::move operation.

10.5.5 IDLType

The base interfaceIDLType is inherited by all IR objects that represent OMG IDL
types. It provides access to theTypeCode describing the type, and is used in defining
other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

};

The type attribute describes the type defined by an object derived fromIDLType .

10.5.6 Repository

Repository is an interface that provides global access to the Interface Repository
does not support access to information related to CORBA Components. The
Repository object can contain constants, typedefs, exceptions, interfaces, value ty
value boxes, native types, and modules. As it inherits fromContainer , it can be used
to look up any definition (whether globally defined or defined within a module or
interface) either byname or by id .

SinceRepository derives only fromContainer and not fromContained , it does not
have aRepositoryId associated with it. By default it is deemed to have the
RepositoryId "" (the empty string) for purposes of assigning a value to the
10-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

t

f

defined_in field of the description structure ofModuleDef , InterfaceDef ,
ValueDef , ValueBoxDef, TypedefDef , ExceptionDef , andConstantDef that are
contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environmen
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.

module CORBA {
interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

);
};

};

10.5.6.1 Read Interface

The lookup_id operation is used to lookup an object in aRepository given its
RepositoryId . If the Repository does not contain a definition forsearch_id , a nil
object reference is returned. Thelookup_id operations always return a nil reference i
the value ofsearch_id is IDL:omg.org/CORBA/Object:1.0 , or
IDL:omg.org/CORBA/ValueBase:1.0 , signifying the fact that the implicit base
types are not contained in the Interface Repository.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-23

10

,

The get_canonical_typecode operation looks up theTypeCode in the Interface
Repository and returns an equivalentTypeCode that includes allrepository ids ,
names , andmember_names . If the top levelTypeCode does not contain a
RepositoryId , such as array and sequenceTypeCodes , or TypeCodes from older
ORBs, or if it contains aRepositoryId that is not found in the targetRepository ,
then a newTypeCode is constructed by recursively calling
get_canonical_typecode on each memberTypeCode of the originalTypeCode .

The get_primitive operation returns a reference to aPrimitiveDef (see
Section 10.5.14, “PrimitiveDef,” on page 10-29) with the specifiedkind attribute. All
PrimitiveDef s are immutable and are owned by theRepository .

10.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous
types. As these interfaces are not derived fromContained , it is the caller’s
responsibility to invokedestroy on the returned object if it is not successfully used in
creating a definition that is derived fromContained . Each anonymous type definition
must be used in defining exactly one other object.

1. Thecreate_string operation returns a newStringDef with the specifiedbound ,
which must be non-zero. Theget_primitive operation is used for unbounded
strings.

2. Thecreate_wstring operation returns a newWstringDef with the specified
bound , which must be non-zero. Theget_primitive operation is used for
unbounded strings.

3. Thecreate_sequence operation returns a newSequenceDef with the specified
bound andelement_type .

4. Thecreate_array operation returns a newArrayDef with the specifiedlength
andelement_type .

5. Thecreate_fixed operation returns a newFixedDef with the specified number of
digits and scale. The number of digits must be from 1 to 31, inclusive.

10.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types
value boxes, native types and other module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
10-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

ons

lue
VersionSpec version;
};

};

The inheriteddescribe operation for aModuleDef object returns a
ModuleDescription .

10.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};
};

10.5.8.1 Read Interface

The type attribute specifies theTypeCode describing the type of the constant. The
type of a constant must be one of the primitive types allowed in constant declarati
(see Section 3.10, “Constant Declaration,” on page 3-32). Thetype_def attribute
identifies the definition of the type of the constant.

Thevalue attribute contains the value of the constant, not the computation of the va
(e.g., the fact that it was defined as “1+2”).

The describe operation for aConstantDef object returns aConstantDescription .

10.5.8.2 Write Interface

Setting thetype_def attribute also updates thetype attribute.

When setting thevalue attribute, theTypeCode of the supplied any must be equal to
the type attribute of theConstantDef .
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-25

10

ted
10.5.9 TypedefDef

Thebase interfaceTypedefDef is inherited by all named non-object.types (structures,
unions, enumerations, and aliases). TheTypedefDef interface is not inherited by the
definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

The inheriteddescribe operation for interfaces derived fromTypedefDef returns a
TypeDescription .

10.5.10 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {

struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

};
};

10.5.10.1 Read Interface

Themembers attribute contains a description of each structure member. The inheri
type attribute is atk_struct TypeCode describing the structure.
10-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
10.5.10.2 Write Interface

Setting themembers attribute also updates thetype attribute. When setting the
members attribute, thetype member of theStructMember structure should be set
to TC_void .

A StructDef used as aContainer may only containStructDef , UnionDef , or
EnumDef definitions.

10.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

10.5.11.1 Read Interface

The discriminator_type anddiscriminator_type_def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member. Thelabel of
eachUnionMemberDescription is a distinct value of thediscriminator_type .
Adjacent members can have the samename . Members with the samename must also
have the sametype . A label with type octet and value 0 indicates the default union
member.

The inheritedtype attribute is atk_union TypeCode describing the union.

10.5.11.2 Write Interface

Setting thediscriminator_type_def attribute also updates thediscriminator_type
attribute and setting thediscriminator_type_def or members attribute also updates
the type attribute.

When setting themembers attribute, thetype member of theUnionMember
structure should be set toTC_void .
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-27

10
A UnionDef used as aContainer may only containStructDef , UnionDef , or
EnumDef definitions.

10.5.12 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};
};

10.5.12.1 Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inheritedtype attribute is atk_enum TypeCode describing the enumeration.

10.5.12.2 Write Interface

Setting themembers attribute also updates thetype attribute.

10.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};

10.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.

The inheritedtype attribute is atk_alias TypeCode describing the alias.

10.5.13.2 Write Interface

Setting theoriginal_type_def attribute also updates thetype attribute.
10-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
10.5.14 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived fromTypedefDef or Contained .

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};
};

The kind attribute indicates which primitive type thePrimitiveDef represents. There
are noPrimitiveDef s with kind pk_null . A PrimitiveDef with kind pk_string
represents an unbounded string. APrimitiveDef with kind pk_objref represents the
IDL type Object . A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase .

The inheritedtype attribute describes the primitive type.

All PrimitiveDef s are owned by the Repository. References to them are obtained
usingRepository::get_primitive .

10.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented as aPrimitiveDef . As string types are anonymous, this interface is not
derived fromTypedefDef or Contained .

module CORBA {
interface StringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of characters in the string and
must not be zero. The inheritedtype attribute is atk_string TypeCode describing
the string.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-29

10

s

ous,
10.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented as aPrimitiveDef . As wide string types are anonymous, this interface i
not derived fromTypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of wide characters in a wide
string, and must not be zero. The inheritedtype attribute is atk_wstring TypeCode
describing the wide string.

10.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {

attribute unsigned short digits;
attribute short scale;

};
};

The digits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. Thescale attribute specifies the position of the
decimal point.

The inheritedtype attribute is atk_fixed TypeCode , which describes a fixed-point
decimal number.

10.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonym
this interface is not derived fromTypedefDef or Contained .

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};
10-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

A

.

10.5.18.1 Read Interface

The bound attribute specifies the maximum number of elements in the sequence.
bound of zero indicates an unbounded sequence.

The type of the elements is described byelement_type and identified by
element_type_def . The inheritedtype attribute is atk_sequence TypeCode
describing the sequence.

10.5.18.2 Write Interface

Setting theelement_type_def attribute also updates theelement_type attribute.
Setting thebound or element_type_def attribute also updates thetype attribute.

10.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived fromTypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};

10.5.19.1 Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described byelement_type and identified by
element_type_def . Since anArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by multipleArrayDef objects, one
per array dimension. Theelement_type_def attribute of theArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to theArrayDef
representing the next index to the right, and so on. The innermostArrayDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array

The inheritedtype attribute is atk_array TypeCode describing the array.

10.5.19.2 Write Interface

Setting theelement_type_def attribute also updates theelement_type attribute.
Setting thebound or element_type_def attribute also updates thetype attribute.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-31

10

,

,

10.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions
and enums.

module CORBA {
interface ExceptionDef : Contained, Container {

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

10.5.20.1 Read Interface

The type attribute is atk_except TypeCode describing the exception. The members
attribute describes any exception members. Thedescribe operation for a
ExceptionDef object returns anExceptionDescription .

10.5.20.2 Write Interface

Setting themembers attribute also updates thetype attribute. When setting the
members attribute, thetype member of theStructMember structure is ignored and
should be set toTC_void .

An ExceptionDef used as aContainer may only containStructDef , UnionDef , or
EnumDef definitions.

10.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface
component, home, valuetype, or eventtype.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};
10-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

r

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};
};

10.5.21.1 Read Interface

The type attribute provides theTypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for anAttributeDef object returns an
AttributeDescription .

10.5.21.2 Write Interface

Setting thetype_def attribute also updates thetype attribute.

10.5.22 ExtAttributeDef

An ExtAttributeDef represents the information that defines an attribute of an
interface, component, home, valuetype, or eventtype that can potentially have use
exceptions associated with it.

module CORBA{
struct ExtAttributeDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

};

interface ExtAttributeDef : AttributeDef {

// read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-33

10

n

// read interface
ExtAttributeDescription describe_attribute();

};

10.5.22.1 Read Interface

The operations inherited fromAttributeDef behave exactly the same as in
AttributeDef . In particular, thedef_kind attribute that has the valuedk_Attribute ,
exactly as inAttributeDef.

The get_exceptions andset_exceptions attributes specify the list of exception
types that can be raised by the attribute.

The describe_attribute operation for anExtAttributeDef object returns an
ExtAttributeDescription . that contains information about user exceptions in additio
to the information that is available throughAttributeDescription .

10.5.22.2 Write Interface

Same as forAttributeDef .

10.5.23 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
10-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

of

r

the
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};
};

10.5.23.1 Read Interface

The result attribute is aTypeCode describing the type of the value returned by the
operation. Theresult_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence
ParameterDescription structures. The order of theParameterDescription s in the
sequence is significant. Thename member of each structure provides the paramete
name. Thetype member is aTypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. Themode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’smode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

Theexceptions attribute specifies the list of exception types that can be raised by
operation.

The inheriteddescribe operation for anOperationDef object returns an
OperationDescription .

10.5.23.2 Write Interface

Setting theresult_def attribute also updates theresult attribute.

The mode attribute can be set toOP_ONEWAY only if the result isTC_void and all
elements of params have a mode ofPARAM_IN , and the list of exceptions is empty. If
the mode is set toOP_ONEWAY when these conditions do not hold, a
BAD_PARAM exception is raised with minor code 31.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-35

10
10.5.24 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
10-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

r

If

e

in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};
};

10.5.24.1 Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits.

The is_a operation returnsTRUE if the interface on which it is invoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returnsFALSE . If the value ofinterface_id is
IDL:omg.org/CORBA/Object:1.0 , is_a returnsTRUE signifying the fact that all
interfaces are implicitly derived from the base typeObject .

The describe_interface operation returns aFullInterfaceDescription describing
the interface, including its operations and attributes. Theoperations andattributes
fields of theFullInterfaceDescription structure include descriptions of all of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

The inheriteddescribe operation for anInterfaceDef returns an
InterfaceDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thisInterfaceDef and the list of attributes and operations eithe
defined or inherited in thisInterfaceDef . If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned.
the exclude_inherited parameter is set toFALSE , all attributes and operations are
returned.

10.5.24.2 Write Interface

Setting thebase_interfaces attribute causes aBAD_PARAM exception with minor
code 5 to be raised if thename attribute of any object contained by thisInterfaceDef
conflicts with thename attribute of any object contained by any of the specified bas
InterfaceDef s.

The create_attribute operation returns a newAttributeDef contained in the
InterfaceDef on which it is invoked. Theid , name , version, type_def , andmode
attributes are set as specified. Thetype attribute is also set. Thedefined_in attribute
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-37

10

n

n

,

is initialized to identify the containingInterfaceDef . A BAD_PARAM exception
with standard minor code 2 is raised if an object with the specifiedid already exists in
theRepository . BAD_PARAM exception with standard minor code 3 is raised if a
object with the samename already exists in thisInterfaceDef .

The create_operation operation returns a newOperationDef contained in the
InterfaceDef on which it is invoked. Theid , name , version , result_def , mode ,
params , exceptions , andcontexts attributes are set as specified. Theresult
attribute is also set. Thedefined_in attribute is initialized to identify the containing
InterfaceDef . A BAD_PARAM exception with standard minor code 2 is raised if a
object with the specifiedid already exists in theRepository . BAD_PARAM
exception with standard minor code 3 is raised if an object with the samename
already exists in thisInterfaceDef .

An InterfaceDef used as aContainer may only containTypedefDef , (including
definitions derived fromTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.25 ExtInterfaceDef

An ExtInterfaceDef object represents interface definition. It can contain constants
typedefs, exceptions, operations, and attributes with exceptions.

module CORBA {

interface InterfaceAttrExtension {

// read interface

struct ExtFullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};
ExtFullInterfaceDescription describe_ext_interface();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
10-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

. Its
in ExceptionDefSeq set_exceptions
);

};

interface ExtInterfaceDef : InterfaceDef,
InterfaceAttrExtension {

};
};

10.5.25.1 Read Interface

All operations and attributes inherited fromInterfaceDef behave the same as for
InterfaceDef . In particular, thedef_kind attribute has the valuedk_Interface ,
exactly as inInterfaceDef .

The inheriteddescribe_ext_interfaces operation returns the
ExtFullInterfaceDescription structure that contains information about attributes
with exceptions, in addition to the information found inFullInterfaceDescription .

10.5.25.2 Write Interface

All operations and attributes inherited fromInterfaceDef behave the same as for
InterfaceDef .

The inheritedcreate_ext_attribute operation returns a newExtAttributeDef
contained in theExtInterfaceDef on which it is invoked. Theid , name , version ,
type_def , mode, get_exceptions andset_exceptions attributes are set as
specified. Thetype attribute is also set. Thedefined_in attribute is initialized to
identify the containingExtInterfaceDef . A BAD_PARAM exception with standard
minor code 2 is raised if an object with the specifiedid already exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the samename already exists in thisExtInterfaceDef .

10.5.26 AbstractInterfaceDef

An AbstractInterfaceDef object represents a CORBA 2.3 abstract interface
definition. It can contain constants, typedefs, exceptions, operations, and attributes
base interfaces can only containAbstractInterfaceDef s.

module CORBA {
interfaceAbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;

interface AbstractInterfaceDef : InterfaceDef {
};

};
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-39

10

ed

e

10.5.26.1 Read Interface

The inheritedbase_interfaces attribute returns a list of abstract interfaces from
which this abstract interface inherits.

Note – base_interfaces is of type InterfaceDefSeq , but since
AbstractInterfaceDef is derived fromInterfaceDef , a list of
AbstractInterfaceDefs can legitimately be returned in anInterfaceDefSeq .

The inheritedis_a operation returnsTRUE if the interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the abstract interface
identified by itsinterface_id parameter, or if the value ofinterface_id is
IDL:omg.org/CORBA/AbstractBase:1.0 . Otherwise it returnsFALSE .

The inheriteddescribe_interface operation returns aFullInterfaceDescription
describing the abstract interface, including its operations and attributes.

The inheriteddescribe operation for anAbstractInterfaceDef returns an
InterfaceDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thisAbstractInterfaceDef and the list of attributes and
operations either defined or inherited in thisAbstractInterfaceDef . If the
exclude_inherited parameter is set toTRUE, only attributes and operations defined
within this abstract interface are returned. If theexclude_inherited parameter is set
to FALSE , all attributes and operations are returned.

10.5.26.2 Write Interface

Setting the inheritedbase_interfaces attribute causes aBAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contain
by this AbstractInterfaceDef conflicts with the name attribute of any object
contained by any of the specified baseAbstractInterfaceDef s. If any of the
InterfaceDef s in base_interface are notAbstractInterfaceDef s then a
BAD_PARAM exception with standard minor code 11 is raised.

The inheritedcreate_attribute operation returns a newAttributeDef contained in
the AbstractInterfaceDef on which it is invoked. Theid , name , version ,
type_def , andmode attributes are set as specified. Thetype attribute is also set. The
defined_in attribute is initialized to identify the containingAbstractInterfaceDef .
A BAD_PARAM exception with standard minor code 2 is raised if an object with th
specifiedid already exists in theRepository . BAD_PARAM exception with
standard minor code 3 is raised if an object with the samename already exists in this
AbstractInterfaceDef .

The inheritedcreate_operation operation returns a newOperationDef contained in
the AbstractInterfaceDef on which it is invoked. Theid , name , version ,
result_def , mode , params , exceptions , andcontexts attributes are set as
specified. Theresult attribute is also set. Thedefined_in attribute is initialized to
identify the containingAbstractInterfaceDef . A BAD_PARAM exception with
10-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

n
. Its

only
standard minor code 2 is raised if an object with the specifiedid already exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the samename already exists in thisAbstractInterfaceDef .

10.5.27 ExtAbstractInterfaceDef

An ExtAbstractInterfaceDef object represents an abstract interface definition. It ca
contain constants, typedefs, exceptions, operations, and attributes with exceptions
base interfaces can only containExtAbstractInterfaceDef s.

module CORBA {

interface ExtAbstaractInterfaceDef : AbstractInterfaceDef,
InterfaceAttrExtension {

};
};

10.5.27.1 Read Interface

All operations and attributes inherited fromAbstractInterfaceDef behave the same
as forAbstaractInterfaceDef . In particular, thedef_kind attribute has the value
dk_AbstractInterface , exactly as inAbstaractInterfaceDef.

The inheriteddescribe_ext_interface operation returns the
ExtFullInterfaceDescription structure which contains information about attributes
with exceptions, in addition to the information found inFullInterfaceDescription .

10.5.27.2 Write Interface

All operations and attributes inherited fromAbstaractInterfaceDef behave the same
as forAbstractInterfaceDef .

The inheritedcreate_ext_attribute operation returns a newExtAttributeDef
contained in theExtAbstractInterfaceDef on which it is invoked. Theid , name ,
version , type_def , mode, get_exceptions andset_exceptions attributes are set
as specified. Thetype attribute is also set. Thedefined_in attribute is initialized to
identify the containingExtAbstractInterfaceDef . A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specifiedid already exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the samename already exists in thisExtAbstractInterfaceDef .

10.5.28 LocalInterfaceDef

An LocalInterfaceDef object represents a local interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes. Its base interfaces can
containInterfaceDefs or LocalInterfaceDefs .

module CORBA {
interfaceLocalInterfaceDef;
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-41

10

,

d

ed
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;

interface LocalInterfaceDef : InterfaceDef {
};

};

10.5.28.1 Read Interface

The inheritedbase_interfaces attribute returns a list of interfaces, local or otherwise
from which this local interface inherits.

Note –base_interfaces is of typeInterfaceDefSeq , but sinceLocalInterfaceDef
is derived fromInterfaceDef , a list that consists of some regularInterfaceDefs and
someLocalInterfaceDefs can legitimately be returned in anInterfaceDefSeq .

The inheritedis_a operation returnsTRUE if the local interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the local interface identifie
by its interface_id parameter, or if the value ofinterface_id is
IDL:omg.org/CORBA/LocalBase:1.0 . Otherwise it returnsFALSE .

The inheriteddescribe_interface operation returns aFullInterfaceDescription
describing the local interface, including its operations and attributes.

The inheriteddescribe operation for aLocalInterfaceDef returns an
InterfaceDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thisLocalInterfaceDef and the list of attributes and operations
either defined or inherited in thisLocalInterfaceDef . If the exclude_inherited
parameter is set toTRUE, only attributes and operations defined within this local
interface are returned. If theexclude_inherited parameter is set toFALSE , all
attributes and operations are returned.

10.5.28.2 Write Interface

Setting the inheritedbase_interfaces attribute causes aBAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contain
by this LocalInterfaceDef conflicts with the name attribute of any object contained
by any of the specified baseInterfaceDef s (local or otherwise).

The inheritedcreate_attribute operation returns a newAttributeDef contained in
the LocalInterfaceDef on which it is invoked. Theid , name , version , type_def ,
andmode attributes are set as specified. Thetype attribute is also set. The
defined_in attribute is initialized to identify the containingLocalInterfaceDef . A
BAD_PARAM exception with standard minor code 2 is raised if an object with the
specifiedid already exists in theRepository . BAD_PARAM exception with
standard minor code 3 is raised if an object with the samename already exists in this
LocalInterfaceDef .
10-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

in
se
The inheritedcreate_operation operation returns a newOperationDef contained in
the LocalInterfaceDef on which it is invoked. Theid , name , version , result_def ,
mode , params , exceptions , andcontexts attributes are set as specified. The
result attribute is also set. Thedefined_in attribute is initialized to identify the
containingLocalInterfaceDef . A BAD_PARAM exception with standard minor
code 2 is raised if an object with the specifiedid already exists in theRepository .
BAD_PARAM exception with standard minor code 3 is raised if an object with the
samename already exists in thisLocalInterfaceDef .

10.5.29 ExtLocalInterfaceDef

An ExtLocalInterfaceDef object represents a local interface definition. It can conta
constants, typedefs, exceptions, operations, and attributes with exceptions. Its ba
interfaces can only containExtInterfaceDef s or ExtLocalInterfaceDef s.

module CORBA {

interface ExtLocalInterfaceDef : LocalInterfaceDef,
InterfaceAttrExtension {

};
};

10.5.29.1 Read Interface

All operations and attributes inherited fromLocalInterfaceDef behave the same as
for LocalInterfaceDef . In particular, thedef_kind attribute has the value
dk_LocalInterface , exactly as inLocalInterfaceDef.

The inheriteddescribe_ext_interface operation returns the
ExtFullInterfaceDescription structure that contains information about attributes
with exceptions, in addition to the information found inFullInterfaceDescription .

10.5.29.2 Write Interface

All operations and attributes inherited fromLocalInterfaceDef behave the same as
for LocalInterfaceDef .

The inheritedcreate_ext_attribute operation returns a newExtAttributeDef
contained in theExtLocalInterfaceDef on which it is invoked. Theid , name ,
version , type_def , mode, get_exceptions andset_exceptions attributes are set
as specified. Thetype attribute is also set. Thedefined_in attribute is initialized to
identify the containingExtLocalInterfaceDef . A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specifiedid already exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the samename already exists in thisExtLocalInterfaceDef .

10.5.30 ValueMemberDef

A ValueMemberDef IR Object represents a value member.
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-43

10

,

module CORBA {
typedef short Visibility;

const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

};
};

10.5.30.1 Read Interface

The type attribute provides theTypeCode describing the type of this value member.
The type_def attribute identifies the object defining the type of this value member.
The access attribute specifies private or public access for this value member. The
describe operation for aValueMemberDef object returns aValueMember .

10.5.30.2 Write Interface

Setting thetype_def attribute also updates thetype attribute.

10.5.31 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs
exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};
10-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
typedef sequence<Initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

// write interface

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-45

10

s.
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};
};

10.5.31.1 Read Interface

Thesupported_interfaces attribute lists the interfaces that this value type support

The initializers attribute lists the initializers this value type supports.

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this
value inherits.

The is_abstract attribute isTRUE if the value is an abstract value type.

The is_custom attribute isTRUE if the value uses custom marshaling.

The is_truncatable attribute isTRUE if the value inherits “safely” (i.e., supports
truncation) from another value.
10-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

rs

e to
The is_a operation returnsTRUE if the value on which it is invoked either is identical
to or inherits, directly or indirectly, from the interface or value identified by itsid
parameter or if the value ofid is IDL:omg.org/CORBA/ValueBase:1.0. Otherwise
it returnsFALSE .

Thedescribe_value operation returns aFullValueDescription describing the value,
including its operations and attributes.

The inheriteddescribe operation for anValueDef returns anValueDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thisValueDef and the list of attributes, operations and membe
either defined or inherited in thisValueDef . If the exclude_inherited parameter is
set toTRUE, only attributes, operations and members defined within this value are
returned. If theexclude_inherited parameter is set toFALSE , all attributes,
operations and members are returned.

10.5.31.2 Write Interface

Setting thesupported_interfaces, base_value, or abstract_base_values
attribute causes aBAD_PARAM exception with minor code 5 to be raised if the
name attribute of any object contained by thisValueDef conflicts with thename
attribute of any object contained by any of the specified bases. If an attempt is mad
set thesupported_interfaces attribute to anInterfaceDefSeq that contains more
than oneInterfaceDef that is not anAbstractInterfaceDef , then the
BAD_PARAM exception shall be raised with standard minor code 12.

Thecreate_value_member operation returns a newValueMemberDef contained in
theValueDef on which it is invoked. Theid , name , version, type_def , andaccess
attributes are set as specified. Thetype attribute is also set. Thedefined_in attribute
is initialized to identify the containingValueDef . A BAD_PARAM exception with
minor code 2 is raised if an object with the specifiedid already exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the samename already exists in thisValueDef .

The create_attribute operation returns a newAttributeDef contained in the
ValueDef on which it is invoked. Theid , name , version, type_def , andmode
attributes are set as specified. Thetype attribute is also set. Thedefined_in attribute
is initialized to identify the containingValueDef . A BAD_PARAM exception with
minor code 2 is raised if an object with the specifiedid already exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the samename already exists in thisValueDef .

The create_operation operation returns a newOperationDef contained in the
ValueDef on which it is invoked. Theid , name , version , result_def , mode ,
params , exceptions , andcontexts attributes are set as specified. Theresult
attribute is also set. Thedefined_in attribute is initialized to identify the containing
ValueDef . A BAD_PARAM exception with minor code 2 is raised if an object with
the specifiedid already exists in theRepository . A BAD_PARAM exception with
minor code 3 is raised if an object with the samename already exists in this
ValueDef .
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-47

10

that
A ValueDef used as aContainer may only containTypedefDef , (including
definitions derived fromTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.32 ExtValueDef

An ExtValueDef object represents a value definition. It can contain constants,
typedefs, exceptions, operations, and attributes with exceptions. Value definitions
contain initializers with user exceptions can also be represented inExtValueDef
objects.

module CORBA {

struct ExtInitializer {
StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

};
typedef sequence <ExtInitializer> ExtInitializerSeq;

interface ExtValueDef : ValueDef {

// read/write interface
attribute ExtInitializerSeq ext_initializers;

// read interface

struct ExtFullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtInitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

ExtFullValueDescription describe_ext_value();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
10-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

e

n

L

in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

};

10.5.32.1 Read Interface

All operations and attributes inherited fromValueDef behave the same as for
ValueDef . In particular, thedef_kind attribute has the valuedk_Value , exactly as in
ValueDef.

The ext_initializers attribute lists the initializers with exceptions that this value typ
supports.

The inheritedinitializers attribute list the same initializers as inext_initializers but
does not have the exception information.

The describe_ext_value operation returns theExtFullValueDescription structure
which contains information about attributes with exceptions and initializers with
exceptions, in addition to the information found inFullValueDescription .

10.5.32.2 Write Interface

All operations and attributes inherited fromValueDef behave the same as for
ValueDef .

Thecreate_ext_attribute operation returns a newExtAttributeDef contained in the
ExtValueDef on which it is invoked. Theid , name , version , type_def , mode,
get_exceptions andset_exceptions attributes are set as specified. Thetype
attribute is also set. Thedefined_in attribute is initialized to identify the containing
ExtValueDef . A BAD_PARAM exception with standard minor code 2 is raised if a
object with the specifiedid already exists in theRepository . BAD_PARAM
exception with standard minor code 3 is raised if an object with the samename
already exists in thisExtValueDef .

10.5.33 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the ID
type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {

attribute IDLType original_type_def;
};

};
July 2002 CORBA, v3.0: Interface Repository Interfaces 10-49

10

a

10.5.33.1 Read Interface

The original_type_def attribute identifies the type being boxed. The inheritedtype
attribute is atk_value_box TypeCode describing the value box.

10.5.33.2 Write Interface

Setting theoriginal_type_def attribute also updates thetype attribute.

10.5.34 NativeDef

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

};

The inheritedtype attribute is atk_native TypeCode describing the native type.

10.6 Component Interface Repository Interfaces

The IRObject s that represent IDL concepts that are specific to the Components
extension are described in this section. These IRObjects can be contained only in
ComponentIR::Repository described in this section.

10.6.1 ComponentIR::Container

The base interfaceComponentIR::Container is used to form a containment
hierarchy in the Component Interface Repository.

module CORBA {
module ComponentIR {

interface Container {
ComponentDef create_component (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in HomeDef base_home,
in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
10-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

The
d

in ValueDef primary_key
);

EventDef create_event (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

};
};

10.6.1.1 Write Interface

The threecreate_<type> operations defined in theComponentIR::Container
interface create new empty IR objects defining component, home, and event types.
defined_in attribute of a definition created with any of these operations is initialize
to identify theComponentIR::Container on which the operation is invoked, and the
containing_repository attribute is initialized to itsComponentIR::Repository .

Thesecreate_<type> operations all takeid andname parameters that are used to
initialize the identity of the created definition.

• A BAD_PARAM exception is raised with minor code 2 if an object with the
specifiedid already exists in theComponentIR::Repository .

• A BAD_PARAM exception with minor code 3 is raised if the specifiedname
already exists within thisComponentIR::Container and multiple versions are not
supported.

The create_component operation returns a new emptyComponentDef with the
specifiedbase_component , and the specifiedsupports_interfaces .
AttributeDef s can be added usingComponentDef::create_attribute .
ComponentDef::create_provides , ComponentDef::create_uses ,
ComponentDef::create_emits , ComponentDef::create_publishes , and
ComponentDef::create_consumes can be used to addProvidesDef s,UsesDef s,
EmitsDef s, PublishesDef s andConsumesDef s respectively. Definitions can also
be added using theContained::move operation.

The create_home operation returns a newHomeDef with the specified
base_home , managed_component, supported_interfaces, andprimary_key .
Type, exception, and constant definitions can be added using
Container::create_<type> operations on the newHomeDef s. OperationDef s can
be added usingHomeDef::create_operation andAttributeDef s can be added using
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-51

10

s

sing

or
HomeDef::create_attribute . FinderDef s andFactoryDef s can be added using
HomeDef::create_finder andHomeDef::create_factory respectively. Definitions
can also be added using theContained::move operation.

The create_event operation returns a new emptyEventDef with the specified base
interfaces and events (base_value , supported_interfaces , and
abstract_base_values) as well as the other information describing the new event
characteristics (is_custom , is_abstract , is_truncatable , and initializers). The
initializers argument is of typeExtInitializerSeq allowing one to specify user
exceptions for initializers. Type, exception, and constant definitions can be added u
Container::create_<type> operations on the newEventDef . OperationDef s can
be added usingExtValueDef::create_operation andExtAttributeDef s can be
added usingExtValueDef::create_ext_attribute . Definitions can also be added
using theContained::move operation.

10.6.2 ComponentIR::Repository

ComponentIR::Repository is an interface that provides global access to the
Interface Repository that supports access to information related to CORBA
Components. TheComponentIR::Repository object can contain components,
home, and event definitions in addition to everything else that aRepository type can
contain. As it inherits fromContainer andComponentIR::Container , it can be
used to look up any definition (whether globally defined or defined within a module
interface) either by name or by id.

SinceComponentIR::Repository derives fromCORBA::Repository and hence
from Container and not fromContained , it does not have aRepositoryId
associated with it. By default it is deemed to have theRepositoryId "" (the empty
string) for purposes of assigning a value to thedefined_in field of the description
structure ofModuleDef , InterfaceDef , ValueDef , ValueBoxDef , ComponentDef ,
HomeDef , EventDef , TypedefDef , ExceptionDef , andConstantDef that are
contained immediately in theComponentIR::Repository object. Since
ComponentIR::Repository derives fromComponentIR::Container , it can
containComponentDef s, HomeDef s as well asEventDef s.

module CORBA {
module ComponentIR {

interface Repository : CORBA::Repository, Container {};
};

};

10.6.2.1 Read Interface

ComponentIR::Repository has the same read operations asRepository .
10-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

s

10.6.2.2 Write Interface

Write operations inherited fromComponentIR::Container behave the same way as
in ComponentIR::Container .

The rest of the write operations are inherited fromCORBA::Repository and behave
the same way as inCORBA::Repository .

10.6.3 ComponentIR::ProvidesDef

A ComponentIR::ProvidesDef object represents an interface that is provided by a
component.

module CORBA {
module ComponentIR {

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

};

struct ProvidesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;

};
};

};

10.6.3.1 Read Interface

The attributeinterface_type returns the object identifying the interface that is
provided by the component.

The inherited operationdescribe returns aProvidesDescription .

10.6.3.2 Write Interface

Setting the attributeinterface_type changes the object identifying the interface that i
provided by the component.

The rest of the write operations are inherited fromCORBA::Contained and behave
the same way as inCORBA::Contained .

10.6.4 ComponentIR::UsesDef

A ComponentIR::UsesDef object represents an interface that is used by a
component.
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-53

10

s

in
type
module CORBA {
module ComponentIR {

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

};

struct UsesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;
boolean is_multiple;

};
};

};

10.6.4.1 Read Interface

The attributeinterface_type returns the object identifying the interface that is used
by the component.

The attributeis_multiple is TRUE if the interface is used multiple times.

The inherited operationdescribe returns aUsesDescription .

10.6.4.2 Write Interface

Setting the attributeinterface_type changes the object identifying the interface that i
used by the component. Setting the attributeis_multiple changes the multiplicity of
the used interface.

The rest of the write operations are inherited fromCORBA::Contained and behave
the same way as inCORBA::Contained .

10.6.5 ComponentIR::EventDef

A ComponentIR::EventDef object represents an eventtype definition. It can conta
constants, typedefs, exceptions, operations, and attributes with exceptions. Event
definitions that contain initializers with user exceptions can also be represented in
ComponentIR::EventDef objects.

module CORBA {
module ComponentIR {

interface EventDef : ExtValueDef {};
};
10-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

s

pes

r

The read and write interfaces forComponentIR::EventDef have the same semantics
as the read and write interfaces forExtValueDef .

10.6.6 ComponentIR::EventPortDef

A ComponentIR::EventPortDef object represents an event port definition. It refer
to anEventDef object which contains the actual information about the event. This
interface is never instantiated as itself. It is instantiated only as one of its derived ty
(i.e., EmitsDef , PublishesDef , or ConsumesDef).

module CORBA {
module ComponentIR {

interface EventPortDef : Contained {

// read/write interface
attribute EventDef event;

// read interface
boolean is_a (in RepositoryId event_id);

};

struct EventPortDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId event;

};
};

};

10.6.6.1 Read Interface

The event attribute returns the object containing the definition of the event for this
event port.

The is_a operation returnsTRUE if the event value associated with this
EventPortDef is identical to or inherits from the event value associated with the
EventPortDef identified by theevent_id .

The inheriteddescribe operation returns anEventPortDescription .

10.6.6.2 Write Interface

Setting the attributeevent changes the object containing the definition of the event fo
this event port.

The rest of the write operations are inherited fromCORBA::Contained and behave
the same way as inCORBA::Contained .
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-55

10

t

for
10.6.7 ComponentIR::EmitsDef

A ComponentIR::EmitsDef object represents the port definition of an event that is
emitted by a component.

module CORBA {
module ComponentIR {

interface EmitsDef : EventPortDef {};
};

};

10.6.7.1 Read Interface

The read interface forEmitsDef has the same semantics as the read interface for
EventPortDef.

10.6.7.2 Write Interface

The write interface forEmitsDef has the same semantics as the write interface for
EventPortDef.

10.6.8 ComponentIR::PublishesDef

A ComponentIR::PublishesDef object represents the port definition of an event tha
is published by a component.

module CORBA {
module ComponentIR {

interface PublishesDef : EventPortDef {};
};

};

10.6.8.1 Read Interface

The read interface forPublishesDef has the same semantics as the read interface
EventPortDef .

10.6.8.2 Write Interface

The write interface forPublishesDef has the same semantics as the write interface
for EventPortDef .
10-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

for

e

.

10.6.9 ComponentIR::ConsumesDef

A ComponentIR::ConsumesDef object represents the port definition of an event
that is consumed by a component.

module CORBA {
module ComponentIR {

interface ConsumesDef : EventPortDef {};
};

};

10.6.9.1 Read Interface

The read interface forConsumesDef has the same semantics as the read interface
EventPortDef .

10.6.9.2 Write Interface

The write interface forConsumesDef has the same semantics as the write interfac
for EventPortDef .

10.6.10 ComponentIR::ComponentDef

A ComponentIR::ComponentDef object represents the definition of a component
It contains provides, uses, emits, publishes, consumes, and attributes.

module CORBA {
module ComponentIR {

interface ComponentDef : ExtInterfaceDef {
// read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

// write interface
ProvidesDef create_provides (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-57

10
in boolean is_multiple
);

EmitsDef create_emits (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);
};

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;
typedef sequence<EventPortDescription>

EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_component;
RepositoryIdSeq supported_interfaces;
ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};
10-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

s

,

10.6.10.1 Read Interface

The base_component attribute returns the component that this component derive
from.

The supported_interfaces attribute lists the interfaces which this component type
supports.

The inheritedis_a operation returnsTRUE if the component on which it is invoked
either is identical to or inherits from the component identified by itsid parameter.
Otherwise it returnsFALSE .

The inheriteddescribe operation for aComponentDef returns a
ComponentDescription .

The inheritedcontents operation returns the list of attributes, provides, uses, emits
publishes, and consumes either defined or inherited in thisComponentDef . If the
exclude_inherited parameter is set toTRUE, only attributes, provides, uses, emits,
publishes, and consumes defined within this object are returned. If the
exclude_inherited parameter is set toFALSE , all attributes, provides, uses, emits,
publishes, and consumes are returned.

10.6.10.2 Write Interface

Setting thebase_component attribute causes aBAD_PARAM exception with minor
code 5 to be raised if thename attribute of any object contained by this
ComponentDef conflicts with thename attribute of any object contained by the
specified baseComponentDef .

Setting thesupported_interfaces attribute changes the interfaces which this
component type supports.

The create_<type> operations defined in theComponentIR::ComponentDef
interface create new corresponding empty IR objects. Thedefined_in attribute is
initialized to identify the containingComponentDef , and the
containing_repository attribute is initialized to itsComponentIR::Repository .

Thesecreate_<type> operations all takeid andname parameters that are used to
initialize the identity of the created definition. ABAD_PARAM exception is raised
with minor code 2 if an object with the specifiedid already exists in the
ComponentIR::Repository . A BAD_PARAM exception with minor code 3 is
raised if the specifiedname already exists within thisComponentDef and multiple
versions are not supported.

The inheritedcreate_ext_attribute operation returns a newExtAttributeDef
contained in theComponentDef on which it is invoked. Theid , name , version ,
type_def , mode, get_exceptions andset_exceptions attributes are set as
specified. Thetype attribute is also set.

The inheritedcreate_operation , and all othercreate_* operations inherited from
Container andContained returnBAD_PARAM exception with minor code 4.
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-59

10

n

of

r

The create_provides operation returns a newProvidesDef contained in the
ComponentDef on which it is invoked. Theid , name , version andinterface_type
attributes are set as specified.

The create_uses operation returns a newUsesDef contained in the
ComponentDef on which it is invoked. Theid , name , version , interface_type
and is_multiple attributes are set as specified.

The create_emits , create_publishes andcreate_consumes operations
respectively return newEmitsDef , PublishesDef andConsumesDef contained in
the ComponentDef on which it is invoked. Theid , name , version , andevent
attributes are set as specified.

A ComponentDef used as aContainer may not contain anyTypedefDef (including
definitions derived fromTypedefDef) , ConstantDef , or ExceptionDef definitions.

A ComponentDef used as anInterfaceDef may only containExtAttributeDef
definitions.

10.6.11 ComponentIR::FactoryDef

A ComponentIR::FactoryDef object represents the definition of a factory operatio
in a home.

module CORBA {
module ComponentIR {

interface FactoryDef : OperationDef { // only PARAM_IN parameters
};

};
};

10.6.11.1 Read Interface

The result attribute is aTypeCode describing the type of the value returned by the
operation, which is alwaystk_component for FactoryDef . Theresult_def attribute
identifies the definition of the returned type, which is always aComponentDef in
case ofFactoryDef .

The params attribute describes the parameters of the operation. It is a sequence
ParameterDescription structures. The order of theParameterDescription s in the
sequence is significant. Thename member of each structure provides the paramete
name. Thetype member is aTypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. Themode
member indicates whether the parameter is an in, out, or inout parameter. For
FactoryDef the value of mode for all parameters isPARAM_IN .

The operation’smode is alwaysnormal for FactoryDef .

The kind attribute is alwaysOP_IDL for FactoryDef .
10-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

the

n

of

r

The contexts attribute specifies the list of context identifiers that apply to the
operation, and is an empty list forFactoryDef .

Theexceptions attribute specifies the list of exception types that can be raised by
operation.

The inheriteddescribe operation for aFactoryDef object returns an
OperationDescription .

10.6.11.2 Write Interface

Setting theresult_def attribute has no effect.

The mode andcontexts attributes cannot be changed.

10.6.12 ComponentIR::FinderDef

A ComponentIR::FinderDef object represents the definition of a finder operation i
a home.

module CORBA {
module ComponentIR {

interface FinderDef : OperationDef { // only PARAM_IN parameters
};

};
};

10.6.12.1 Read Interface

The result attribute is aTypeCode describing the type of the value returned by the
operation, which is alwaystk_component for FinderDef . The result_def attribute
identifies the definition of the returned type, which is always aComponentDef in
case of aFinderDef .

The params attribute describes the parameters of the operation. It is a sequence
ParameterDescription structures. The order of theParameterDescription s in the
sequence is significant. Thename member of each structure provides the paramete
name. Thetype member is aTypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. Themode
member indicates whether the parameter is an in, out, or inout parameter. For
FinderDef the value of mode for all parameters isPARAM_IN .

The operation’smode is alwaysnormal for FinderDef .

The kind attribute is alwaysOP_IDL for FinderDef .

The contexts attribute specifies the list of context identifiers that apply to the
operation, and is an empty list forFinderDef .
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-61

10

the
Theexceptions attribute specifies the list of exception types that can be raised by
operation.

The inheriteddescribe operation for anFinderDef object returns an
OperationDescription .

10.6.12.2 Write Interface

Setting theresult_def attribute has no effect.

The mode andcontexts attributes cannot be changed.

10.6.13 ComponentIR::HomeDef

A ComponentIR::HomeDef object represents the definition of a home. It contains
attributes, operations, factories, and finders.

module CORBA {
module ComponentIR {

interface HomeDef : ExtInterfaceDef {

// read/write interface
attribute HomeDef base_home;
attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

// write interface
FactoryDef create_factory (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);
};

struct HomeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
10-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

es.

e.

,

VersionSpec version;
RepositoryId base_home;
RepositoryId managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};

10.6.13.1 Read Interface

The base_home attribute returns the home that this home definition derives from.

The supported_interfaces attribute lists the interfaces which this home type
supports.

The managed_component attribute returns the component that this home manag

The primary_key attribute returns the primary key that is associated with this hom

The inheritedis_a operation returnsTRUE if the home on which it is invoked either is
identical to or inherits from the home identified by itsid parameter. Otherwise it
returnsFALSE .

The inheriteddescribe operation for aHomeDef returns aHomeDescription .

The inheritedcontents operation returns the list of constants, typedefs, exceptions
attributes, operations, finders and factories defined or inherited in thisHomeDef . If
the exclude_inherited parameter is set toTRUE, only objects defined within this
home are returned. If theexclude_inherited parameter is set toFALSE , all objects
are returned.

10.6.13.2 Write Interface

Setting thebase_home attribute causes aBAD_PARAM exception with minor code
5 to be raised if thename attribute of any object contained by thisHomeDef conflicts
with the name attribute of any object contained by the specified baseHomeDef .

The create_<type> operations defined in theHomeDef interface create new
corresponding empty IR objects. Thedefined_in attribute is initialized to identify the
containingHomeDef , and thecontaining_repository attribute is initialized to its
ComponentIR::Repository .

Thesecreate_<type> operations all takeid andname parameters that are used to
initialize the identity of the created definition. ABAD_PARAM exception is raised
with minor code 2 if an object with the specifiedid already exists in the
July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-63

10

in
e,
atter

G

ComponentIR::Repository . A BAD_PARAM exception with minor code 3 is
raised if the specifiedname already exists within thisHomeDef and multiple versions
are not supported.

The inheritedcreate_ext_attribute operation returns a newExtAttributeDef
contained in theHomeDef on which it is invoked. Theid , name, version ,
type_def , mode, get_exceptions , andset_exceptions attributes are set as
specified. Thetype attribute is also set.

The inheritedcreate_operation operation returns a newOperationDef contained in
the HomeDef on which it is invoked. Theid , name , version , result_def , mode ,
params , exceptions , andcontexts attributes are set as specified. Theresult
attribute is also set.

Thecreate_factory operation returns a newFactoryDef contained in theHomeDef
on which it is invoked. Theid , name, version, params , andexceptions attributes
are set as specified. The parameters in theparams attribute must all be of
PARAM_IN type.

Thecreate_finder operation returns a newFinderDef contained in theHomeDef on
which it is invoked. Theid , name, versions, params , andexceptions attributes
are set as specified. The parameters in theparams attribute must all be of
PARAM_IN type.

A HomeDef used as aContainer may only containTypedefDef (including
definitions derived fromTypedefDef) , ConstantDef , andExceptionDef definitions.

10.7 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information
the repository. ARepositoryId is represented as a string, allowing programs to stor
copy, and compare them without regard to the structure of the value. It does not m
what format is used for any particularRepositoryId . However, conventions are used
to manage the name space created by these IDs.

RepositoryId s may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OM
IDL source, or they might be supplied with the package to be installed. Ensuring
consistency ofRepositoryId s with the IDL source or the IR contents is the
responsibility of the programmer allocatingRepositoryid s.

The format of the id is a short format name followed by a colon (“:”) followed by
characters according to the format. This specification defines four formats:

1. one derived from OMG IDL names,

2. one that uses Java class names and Java serialization version UIDs,

3. one that uses DCE UUIDs, and

4. another intended for short-term use, such as in a development environment.
10-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

G

d by

or

e

of

al

)

the
in

d
ay

a to
ed

is
Since new repository ID formats may be added from time to time, compliant IDL
compilers must accept any string value of the form

“<format>:<string>”

provided as the argument to the id pragma and use it as the repository ID. The OM
maintains a registry of allocated format identifiers. The<format> part of the ID may
not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generate
the IDL compiler using the IDL format.

10.7.1 OMG IDL Format

The OMG IDL format forRepositoryIds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and maj
and minor version numbers.

The RepositoryId consists of three components, separated by colons, (“:”)

1. The first component is the format name, “IDL.”

2. The second component is a list of identifiers, separated by “/” characters. Thes
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_”),
hyphen (“-”), and period (“.”) characters. Typically, the first identifier is a unique
prefix, and the rest are the OMG IDL Identifiers that make up the scoped name
the definition.

3. The third component is made up of major and minor version numbers, in decim
format, separated by a “.”. When two interfaces haveRepositoryId s differing only
in minor version number it can be assumed that the definition with the higher
version number is upwardly compatible with (i.e., can be treated as derived from
the one with the lower minor version number.

10.7.2 RMI Hashed Format

The OMG IDL format defined above does not include any structural information.
Identity of IDL types determined for this format depends upon the names used in
RepositoryID being correct. For interfaces, if stubs and skeletons are not actually
synch, even though theRepositoryIds report they are, the worst that can happen is
that the result of an invocation is aBAD_OPERATION exception. With value types,
these kinds of errors are more problematic. An inconsistency between the stub an
skeleton marshaling/unmarshaling code can confuse the marshaling engine and m
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Jav
IDL Mapping (see the Java/IDL Language Mapping document). It is computed bas
upon the structural information of the original Java definition. Whenever the Java
definition changes, the hash function will (statistically) produce a hash code, which
different from the previous one. When an ORB run time receives avalue with a
July 2002 CORBA, v3.0: RepositoryIds 10-65

10

en

ed

va
different hash from what is expected, it is free to raise aBAD_PARAM exception. It
may also try to resolve the incompatibility by some means. If it is not successful, th
it shall raise theBAD_PARAM exception.

An RMI HashedRepositoryId consists of either three or four components, separat
by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned by thegetName method of
java.lang.Class . Any characters not inISO Latin 1are replaced by “\U”
followed by the 4 hexadecimal characters (in upper case) representing theUnicode
value.

For classes that do not implementjava.io.Serializable , and for interfaces, the
hash code is always zero, and theRepositoryID does not contain aserial version
UID.

For classes that implementjava.io.Externalizable , the hash code is always
the 64-bit value 1.

For classes that implementjava.io.Serializable but not
java.io.Externalizable , the hash code is a64-bit hash of a stream of bytes.
(transcribed as a 16-digit upper case hex string). An instance of
java.lang.DataOutputStream is used to convert primitive data types to a
sequence of bytes. The sequence of items in the stream is as follows:

1. The hash code of the superclass, written as a 64-bit long.

2. The value 1 if the class has nowriteObject method, or the value 2 if the class
has awriteObject method, written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Ja
field name, in increasing order:

a. Java field name, inUTF encoding

b. field descriptor, as defined by theJava Virtual Machine Specification, in UTF
encoding

The National Institute of Standards and Technology(NIST) Secure Hash Algorithm
(SHA-1) is executed on the stream of bytes produced byDataOutputStream ,
producing a20 byte array of values, sha[0..19]. The hash code is assembled from the
first 8 bytesof this array as follows:

long hash = 0;
for (int i = 0; i < Math.min(8, sha.length); i++) {

hash += (long)(sha[i] & 255) << (i * 8);
}

10-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

ash

or

s
t to

e

t

For Serializable (including Externalizable) classes, the Java serialization versionUID,
transcribed as a 16 digit upper-case hex string, shall be appended to theRepositoryId
following the hash code and a colon. The Java serialization versionUID is defined in
the Java Object Serialization Specification.

Examples for the valuetype::foo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetype::foo::bar would be

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java classx\u03bCy that contains a Unicode character not in ISO Latin 1, an
exampleRepositoryId is

RMI:foo.x\U03BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard h
algorithm defined above.

10.7.3 DCE UUID Format

DCE UUID formatRepositoryId s start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number, f
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1”.

10.7.4 LOCAL Format

Local formatRepositoryId s start with the characters “LOCAL:” and are followed by
an arbitrary string. Local format IDs are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local ID
that are just consecutive integers might be used within a development environmen
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

10.7.5 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitraryRepositoryId formats and still support the OMG IDLRepositoryId format
with minimal annotation. The prefix and version pragma directives apply only to th
IDL format. An IDL compiler must interpret these annotations as specified.
Conforming IDL compilers may support additional non-standard pragmas, but mus
not refuse to compile IDL source containing non-standard pragmas that are not
understood by the compiler.
July 2002 CORBA, v3.0: RepositoryIds 10-67

10

ich

l be
e.

n of
d

d
.
d so

d
ile
f the
10.7.5.1 The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitraryRepositoryId string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within wh
the pragma is contained.The<id> must be a repository ID of the form described in
Section 10.7, “RepositoryIds,” on page 10-64.

An attempt to assign a repository ID to the same IDL construct a second time shal
an error unless the repository ID used in the attempt is identical to the previous on

interface A {};
#pragma ID A “IDL:A:1.1”
#pragma ID A “IDL:X:1.1” // Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1”
#pragma ID B “IDL:BB:1.1” // OK, same ID

It is also an error to apply an ID to a forward-declared IDL construct (interface,
valuetype, structure, and union) and then later assign a different ID to that IDL
construct.

10.7.5.2 The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>”

sets the current prefix used in generating OMG IDL formatRepositoryId s. For
example, theRepositoryId for the initial version of interfacePrinter defined on
moduleOffice by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0”.

This format makes it convenient to generate and manage a set of IDs for a collectio
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), an
the IDL compiler or other tool can synthesize all the needed IDs.

BecauseRepositoryId s may be used in many different computing environments an
ORBs, as well as over a long period of time, care must be taken in choosing them
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, an
forth, are preferable to generic names such as “document.”

The specified prefix applies toRepositoryId s generated after the pragma until the en
of the current scope is reached or another prefix pragma is encountered. An IDL f
forms a scope for this purpose, so a prefix resets to the previous prefix at the end o
scope of an included file:
10-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

// C.idl
interface C {};

// D.idl
#pragma prefix “D”
#include “C.idl”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly
resets to the empty prefix:

// E.idl
interface E {};

// F.idl
module M {

 #include <E.idl>
 };

The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a
prefix pragma, the included file's prefix takes precedence, for example:

// A.idl
#pragma prefix “A”
interface A {};
July 2002 CORBA, v3.0: RepositoryIds 10-69

10

have
xes

efix
// B.idl
#pragma prefix “B”
module M {
#include “A.idl”
};

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must
the same prefix in effect wherever they appear. Attempts to assign conflicting prefi
to a forward-declared construct result in a compile-time diagnostic. For example:

#pragma prefix “A”
interface A; // Forward decl.

#pragma prefix “B”
interface A; // Compile-time error

#pragma prefix “C”
interface A { // Compile-time error

void op();
};

A prefix pragma of the form

#pragma prefix “”

resets the prefix to the empty string. For example:

#pragma prefix “X”
interface X {};
#pragma prefix “”
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the pr
pragma does not affect the repository ID for an ID pragma, but does affect the
repository ID for a version pragma:

#pragma prefix “A”
interface A {};
interface B {};
interface C {};
#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9
10-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

me

ith

n

The repository IDs for this specification are

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a
#pragma prefix elsewhere has undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior
{
// ...

};

10.7.5.3 The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
RepositoryId for a specific OMG IDL name. The<name> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL na
lookup rules relative to the scope within which the pragma is contained. The<major>
and<minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified w
an ID pragma, a compliant compiler shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1”
#pragma version A 9.9 // Compile-time error

An attempt to assign a version to the same IDL construct a second time shall be a
error unless the version used in the attempt is identical to the existing one.

interface A {};
#pragma version A 1.1
#pragma version A 1.1 // OK
#pragma version A 1.2 // Error

interface B {};
#pragma ID B “IDL:myB:1.2”
#pragma version B 1.2 // OK
July 2002 CORBA, v3.0: RepositoryIds 10-71

10

nt
xt,
any

nally,

e.
.

es,

Ds
ven
10.7.5.4 Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - formatRepositoryId if no ID
pragma is encountered for it.

The ID string shall be generated by starting with the string "IDL:". Then, if the curre
prefix pragma is a non-empty string, it is appended, followed by a "/" character. Ne
the components of the scoped name of the definition, relative to the scope in which
prefix that applies was encountered, are appended, separated by “/” characters. Fi
a “:” and the version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};

specifies types with the following scoped names andRepositoryId s:

::M1::T1 IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be uniqu
Two non-colliding options are suggested: Internet domain names and DCE UUIDs

Furthermore, in a distributed world where different entities independently evolve typ
a convention must be followed to avoid the sameRepositoryId being used for two
different types. Only the entity that created the prefix has authority to create new I
by simply incrementing the version number. Other entities must use a new prefix, e
if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
10-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

ma

ut

the

ing
es,

the

or
module M3 {
#pragma prefix “P2”

typedef long T3;
};
typedef long T4;

#pragma version T4 2.4
};

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

See Section 10.7.5.2, “The Prefix Pragma,” on page 10-68 for further details of the
effects of various prefix pragma settings on the generatedRepositoryId s.

10.7.6 For More Information

Section 10.8, “OMG IDL for Interface Repository,” on page 10-75 shows the OMG
IDL specification of the IR, including the #pragma directive. Section 3.3,
“Preprocessing,” on page 3-11 contains additional, general information on the prag
directive.

10.7.7 RepositoryIDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including b
not limited to CORBA, CORBA Services, and CORBA Facilities, depends on
unambiguous specification ofRepositoryId s for all IDL-defined types in such
specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of
file (e.g., “w3c.org ”).

Revisions to existing OMG specifications must not change the definition of an exist
type in any way. Two types with different repository Ids are considered different typ
regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability
requires it to derive a new interface from the standard interface, rather than modify
standard definition.

10.7.8 Uniqueness Constraints on Repository IDs

Within an IDL definition, a module must have the same repository ID throughout. F
example:

#pragma prefix "A"
module M {
July 2002 CORBA, v3.0: RepositoryIds 10-73

10

Ds

unit.

ined
// ...
};

#pragma prefix "B"
module M { // Error, inconsistent repository ID

 // ...
};

This definition attempts to use the same type name M with two different repository I
in the same compilation unit. Compilers shall issue a diagnostic for this error.

The same error can arise through inclusion of source files in the same compilation
For example:

// File1.idl
module M {

module N {
 // ...

};
#pragma ID N "abc"
};

// File2.idl
module M {

module N {
// ...

};
};

// File3.idl
#include "File1.idl
#include "File2.idl // Error, inconsistent repository ID

Similarly:

// File1.idl
 module M {

 // ...
 };

// File2.idl
#include File1.idl
#pragma prefix "X"
module M { // Error, inconsistent repository ID

 // ...
};

Such errors are detectable only if they occur in a single compilation unit (or in files
included in a single compilation unit); if, in different compilation units, different
repository IDs are used for the same module, and these compilation units are comb
into a single executable, the behavior is undefined.
10-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
10.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

module CORBA {
 typeprefix CORBA “omg.org”;
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

};

interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {

// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-75

10
// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface InterfaceDef;
interface ExceptionDef;
interface NativeDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;
interface ValueBoxDef;
interface AbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;
interface LocalInterfaceDef;
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;
interface ExtInterfaceDef;
typedef sequence <ExtInterfaceDef> ExtInterfaceDefSeq;
interface ExtValueDef;
typedef sequence <ExtValueDef> ExtValueDefSeq;
interface ExtAbstractInterfaceDef;
typedef sequence <ExtAbstractInterfaceDef>

ExtAbstractInterfaceDefSeq;
interface ExtLocalInterfaceDef;
typedef sequence <ExtLocalInterfaceDef>

ExtLocalInterfaceDefSeq;
10-76 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};
typedef sequence <Initializer> InitializerSeq;

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

struct ExtInitializer {
StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

};
typedef sequence <ExtInitializer> ExtInitializerSeq;

 struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {
// read interface

Contained lookup (
in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-77

10
);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
10-78 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
in UnionMemberSeq members
);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-79

10
NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

AbstractInterfaceDef create_abstract_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);

ExtValueDef create_ext_value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

interface IDLType : IRObject {
readonly attribute TypeCode type;

};

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base
10-80 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
};

interface Repository : Container {
// read interface

Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed (
in unsigned short digits,
in short scale

);
};

interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-81

10
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};

interface TypedefDef : Contained, IDLType {

};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

};

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

};

interface NativeDef : TypedefDef {
};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};

interface StringDef : IDLType {
attribute unsigned long bound;

};

interface WstringDef : IDLType {
attribute unsigned long bound;

};
10-82 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

};

interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};

struct ExtAttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

};

interface ExtAttributeDef : AttributeDef {
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-83

10
// read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

// read interface
ExtAttributeDescription describe_attribute ();

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;
typedef sequence <ExceptionDef> ExceptionDefSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;
typedef sequence <ExtAttributeDescription> ExtAttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface
10-84 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (
in RepositoryId interface_id

);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface
AttributeDef create_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};

interface InterfaceAttrExtension {
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-85

10
// read interface

struct ExtFullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

ExtFullInterfaceDescription describe_ext_interface ();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

interface ExtInterfaceDef : InterfaceDef,
InterfaceAttrExtension {

};

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;
10-86 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
};

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

// write interface

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-87

10
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};

interface ExtValueDef : ValueDef {

// read/write interface
attribute ExtInitializerSeq ext_initializers;

// read interface

struct ExtFullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtInitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
10-88 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
RepositoryId base_value;
TypeCode type;

};

ExtFullValueDescription describe_ext_value ();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

};

interface AbstractInterfaceDef : InterfaceDef {
};

interface ExtAbstractInterfaceDef : AbstractInterfaceDef,
InterfaceAttrExtension {

};

interface LocalInterfaceDef : InterfaceDef {
};

interface ExtLocalInterfaceDef : LocalInterfaceDef,
InterfaceAttrExtension {

};

// __

module ComponentIR {
typeprefix ComponentIR “omg.org”;

interface ComponentDef;
interface HomeDef;

interface EventDef : ExtValueDef {};

interface Container{
ComponentDef create_component (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-89

10
in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in HomeDef base_home,
in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
in ValueDef primary_key

);

EventDef create_event (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

interface ModuleDef : CORBA::ModuleDef, Container{};

interface Repository : CORBA::Repository, Container{};

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

};

struct ProvidesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;

};

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

};

struct UsesDescription {
Identifier name;
10-90 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;
boolean is_multiple;

};

interface EventPortDef : Contained {

// read/write interface
attribute EventDef event;

// read interface
boolean is_a (in RepositoryId event_id);

};

struct EventPortDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId event;

};

interface EmitsDef : EventPortDef {};

interface PublishesDef : EventPortDef {};

interface ConsumesDef : EventPortDef {};

interface ComponentDef : ExtInterfaceDef {

// read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

// write interface
ProvidesDef create_provides (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,
in boolean is_multiple

);
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-91

10
EmitsDef create_emits (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);
};

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;
typedef sequence<EventPortDescription>

EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_component;
RepositoryIdSeq supported_interfaces;
ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};

interface FactoryDef : OperationDef {};

interface FinderDef : OperationDef {};

interface HomeDef : ExtInterfaceDef {

// read/write interface
10-92 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10
attribute HomeDef base_home;
attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

// write interface
FactoryDef create_factory (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);
};

struct HomeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_home;
RepositoryId managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};
July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-93

10
10-94 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ThePortableObjectAdapter 11
oals,
iled

en

is
e

This chapter describes the Portable Object Adapter, or POA. It presents the design g
a description of the abstract model of the POA and its interfaces, followed by a deta
description of the interfaces themselves.

Contents

This chapter contains the following sections.

11.1 Overview

The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable betwe
different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA
designed to allow programmers to build object implementations that can provid
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

Section Title Page

“Overview” 11-1

“Abstract Model Description” 11-2

“Interfaces” 11-14

“IDL for PortableServer Module” 11-46

“UML Description of PortableServer” 11-52

“Usage Scenarios” 11-54
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 11-1

11

.

r.
the

e
and

ts,
een
.

s

al
s that

ed

e of

t is
both
• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and
overhead.

• Provide support for implicit activation of servants with POA-allocated Object Ids

• Allow object implementations to be maximally responsible for an object’s behavio
Specifically, an implementation can control an object’s behavior by establishing
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of th
object’s state, providing the code that will be executed in response to requests,
determining whether or not the object exists at any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual objec
their identities, where their state is stored, whether certain identity values have b
previously used or not, whether an object has ceased to exist or not, and so on

• Provide an extensible mechanism for associating policy information with object
implemented in the POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computation
model. This section presents that model and defines terminology and basic concept
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intend
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and som
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

• Client—A client is a computational context that makes requests on an object
through one of its references.

• Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note thatclient and
serverare roles that programs play with respect to a given object. A program tha
a client for one object may be the server for another. The same process may be
client and server for a single object.
11-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

an
d in
ity,
e.

a
ORB
ct’s
ted

ied

aged
by
s

by

l

gh

A

ore
e, it
e
ly
e

the
cter

ild)

ects

o

• Object—In this discussion, we useobject to indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and
implementation. From a client’s perspective, the object’s identity is encapsulate
the object’s reference. This specification defines the server’s view of object ident
which is explicitly managed by object implementations through the POA interfac

• Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context of
server process. Requests made on an object’s references are mediated by the
and transformed into invocations on a particular servant. In the course of an obje
lifetime it may be associated with (that is, requests on its references will be targe
at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-suppl
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and man
by the implementation. Object Id values are hidden from clients, encapsulated
references. Object Ids have no standard form; they are managed by the POA a
uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device used
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logica
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application developer, althou
theSYSTEM_ID policy enables the POA to generate Object Id values for the
application.

• Object Reference—An object reference in this model is the same as in the CORB
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain m
information, such as the location of the server and POA in question. For exampl
might contain the full name of the POA (the names of all POAs starting from th
root and ending with the specific POA). The reference might not, in fact, actual
contain the Object Id, but instead contain more compact values managed by th
ORB that can be mapped to the Object Id. This is a description of the abstract
information model implied by the POA. Whatever encoding is used to represent
POA name and the Object Id must not restrict the ability to use any legal chara
in a POA name or any legal octet in an Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or ch
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for obj
within a server.

• Policy—A Policy is an object associated with a POA by an application in order t
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA’s threading model as well as a
July 2002 CORBA, v3.0: Abstract Model Description 11-3

11

ns
s

tate
ause
n also

s

r
s to
e
bject
or

e

er

st.

d the
the

e
ts.

OA
ation
variety of other options related to the management of objects. Other specificatio
may define other policies that affect how an ORB processes requests on object
implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing s
of one or more POAs. Using operations on a POA manager, the developer can c
requests for the associated POAs to be queued or discarded. The developer ca
use the POA manager to deactivate the POAs.

• POA Manger Factory --A POA Manager Factory allows explicit creation of POA
managers and lookup of existing POA managers. With explicit creation, the
developer can control the identity (the name) of a POA manager as well as pas
configuration policies to the factory operation.

• Servant Manager—A servant manager is an object that the application develope
can associate with a POA. The ORB will invoke operations on servant manager
activate servants on demand, and to deactivate servants. Servant managers ar
responsible for managing the association of an object (as characterized by its O
Id value) with a particular servant, and for determining whether an object exists
not. There are two kinds of servant managers, calledServantActivator and
ServantLocator ; the type used in a particular situation depends on policies in th
POA.

• Adapter Activator—An adapter activator is an object that the application develop
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exi
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, an
interactions between various components. The ORB is an abstraction visible to both
client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; mor
detail is provided below). Clients hold references upon which they can make reques
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

shows the detail of the relationship between the POA and the implementation.
Ultimately, a POA deals with an Object Id and an active servant. Byactive servant, we
mean a programming object that exists in memory and has been presented to the P
with one or more associated object identities. There are several ways for this associ
to be made.
11-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ive

an
t to

the

one

ry
to
.

Figure 11-1 Abstract POA Model

If the POA supports theRETAIN policy, it maintains a map, labeledActive Object Map,
that associates Object Ids with active servants, each association constituting an act
object. If the POA has theUSE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives for
object not present in the Active Object Map, the POA either uses the default servan
perform the request or it invokes the servant manager to obtain a servant to perform
request. If theRETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process the
request.

In this specification, the termactive is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an ent
that associates an Object Id with an existing servant. When this specification refers
active Object Idsandactive servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map. An Object Id can appear in a
POA's Active Object Map only once.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
July 2002 CORBA, v3.0: Abstract Model Description 11-5

11

OA

ct
if
Figure 11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a P
object. A distinguished POA object, called theroot POA, is managed by the ORB and
provided to the application using the ORB initialization interface under the initial obje
name “RootPOA.” The application developer can create objects using the root POA
those default policies are suitable. The root POA has the following policies.

• Thread Policy:ORB_CTRL_MODEL

• Lifespan Policy:TRANSIENT

• Object Id Uniqueness Policy:UNIQUE_ID

• Id Assignment Policy:SYSTEM_ID

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.

POAManager
Factory
11-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

on
nt
to

reted

with

RB. It
OA

A that
y,
iginal
e

he

rted to

tion
• Servant Retention Policy:RETAIN

• Request Processing Policy:USE_ACTIVE_OBJECT_MAP_ONLY

• Implicit Activation Policy: IMPLICIT_ACTIVATION

The developer can also create new POAs. Creating a new POA allows the applicati
developer to declare specific policy choices for the new POA and to provide a differe
adapter activator and servant manager (these are callback objects used by the POA
activate objects and nested POAs on demand). Creating new POAs also allows the
application developer to partition the name space of objects, as Object Ids are interp
relative to a POA. Finally, by creating new POAs, the developer can independently
control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using thecreate_POA operation on the
parent POA. When a POA is created, the POA is given a name that must be unique
respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the O
is the responsibility of the server application to create and initialize the appropriate P
objects during server initialization or to set anAdapterActivator to create POA objects
needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the PO
created the object reference as well as all of its ancestor POAs. To ensure portabilit
each POA must be created with the same name as the corresponding POA in the or
server process and with the same policies. (It is the user’s responsibility to create th
POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of t
ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of anORB_init call in an application has its
own separate root POA and POA namespace.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be expo
clients.

From this model’s perspective, object references encapsulate object identity informa
and information required by the ORB to identify and locate the server and POA with
which the object is associated (that is, in whose scope the reference was created.)
References are created in the following ways:

• The server application may directly create a reference with thecreate_reference
andcreate_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
July 2002 CORBA, v3.0: Abstract Model Description 11-7

11

to

ject

e
ated
may

ce

riety
be

ity of
that

ny
,
the

ation

ed
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object in
existence, but do not associate it with an active servant.

• The server application may explicitly activate a servant, associating it with an ob
identity using theactivate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using theservant_to_reference or id_to_reference
operations.

• The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object referenc
corresponding to an inactive servant, the POA may automatically assign a gener
unique Object Id to the servant and activate the resulting object. The reference
be obtained by invokingPOA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a referen
type in programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a va
of ways. It can be advertised through the OMG Naming and Trading Services. It can
converted to a string viaORB::object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the ident
the object from the client’s perspective. As long as the client program holds and uses
reference, requests made on the reference should be sent to the “same” object.

Note – The meaning of object identity and “sameness” is at present the subject of
debate in the OMG. This specification does not attempt to resolve that debate in a
way, particularly by defining a concrete notion of identity that is exposed to clients
beyond the existing notions of identity described in the CORBA specifications and
OMA guide.

The states of servers and implementation objects are opaque to clients. This specific
deals primarily with the view of the ORB from the server’s perspective.

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has theRETAIN policy, the servant and its associated Object Id are enter
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).
11-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

the
is

ly
a

with

a
int of
ot

the
es a
) and

o re-
r-
n a

The
at

rvant

the
• The server application instructs the POA to activate objects on demand by having
POA invoke a user-supplied servant manager. The server application registers th
servant manager withset_servant_manager .

• Under some circumstances (when theIMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implicit
activate an object when the server application attempts to obtain a reference for
servant that is not already active (that is, not associated with an Object Id).

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant
set_servant .

If the POA has theNON_RETAIN policy, for every request, the POA may use either
default servant or a servant manager to locate an active servant. From the POA’s po
view, the servant is active only for the duration of that one request. The POA does n
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as
identification of the POA that created the target object reference. When a client issu
request, the ORB first locates an appropriate server (perhaps starting one if needed
then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity t
create the required POA by using an adapter activator. An adapter activator is a use
implemented object that can be associated with a POA. It is invoked by the ORB whe
request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA.
further processing of that request depends both upon the policies associated with th
POA as well as the object's current state of activation.

If the POA has theRETAIN policy, the POA looks in the Active Object Map to find out
if there is a servant associated with the Object Id value from the request. If such a se
exists, the POA invokes the appropriate method on the servant.

If the POA has theNON_RETAIN policy or has theRETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

• If the POA has theUSE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception with standard minor code 3.

• If the POA has theUSE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invokeincarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on
July 2002 CORBA, v3.0: Abstract Model Description 11-9

11

ny
eply.
a

ted

d

an

an
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises theOBJ_ADAPTER system exception
with standard minor code 4.

• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility. A
system exception raised by the servant manager will be returned to the client in the r
In addition to standard system exceptions, a servant manager is capable of raising
ForwardRequest exception. This exception includes an object reference. The ORB
will process this exception as specified in section 11.3.5.1.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policy,IMPLICIT_ACTIVATION , also requires theSYSTEM_ID and
RETAIN policies.

When a POA supports implicit activation, an inactive servant may be implicitly activa
in that POA by certain operations that logically require anObject Idto be assigned to
that servant. (IMPLICIT_ACTIVATION does not disallow explicit activation; instead, it
enables both implicit and explicit activation.)

Implicit activation of an object involves allocating a system-generated Object Id and
registering the servant with thatObject Id in theActive Object Map. The interface
associated with the implicitly activated object is determined from the servant (using
static information from the skeleton, or, in the case of a dynamic servant, using the
_primary_interface() operation).

The operations that support implicit activation include:

• ThePOA::servant_to_reference operation, which takes a servant parameter an
returns a reference.

• ThePOA::servant_to_id operation, which takes a servant parameter and returns
Object Id.

• Operations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, the_this() servant member function in C++
returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant to
object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has theUNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).
11-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

in
the

r
t
(for

eded
vers
n a

vide
RB.
in a

in

y

. All
with
If the POA has theMULTIPLE_ID policy, theservant_to_reference and
servant_to_id operations willalwaysperform implicit activation, even if the servant is
already associated with an Object Id. The behavior of language mapping operations
theMULTIPLE_ID case is specified by the language mapping. For example, in C++,
_this() servant member function will not implicitly activate aMULTIPLE_ID
servant if the invocation of_this() is immediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

Note – The exact timing of implicit activation is ORB implementation-dependent. Fo
example, instead of activating the object immediately upon creation of a local objec
reference, the ORB could defer the activation until the Object Id is actually needed
example, when the object reference is exported outside the process).

11.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is ne
from a threads package. However, in order to allow the development of portable ser
that utilize threads, the behavior of the POA and related interfaces when used withi
multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does pro
support for multi-threading, these are the behaviors that will be supported by that O
This allows a programmer to take advantage of multiple ORBs that support threads
portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run , andshutdown .

11.2.8.1 POA Threading Models

The POA supports three models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled, single thread and main-thread
behavior. The three models can be used together or independently. All can be used
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created b
including aThreadPolicy object in the policies parameter of the POA’screate_POA
operation. Once a POA is created with one model, it cannot be changed to the other
uses of the POA within the server must conform to that threading model associated
the POA.
July 2002 CORBA, v3.0: Abstract Model Description 11-11

11

ded
This

ay

r
B.

of

shed

will

mer

de
11.2.8.2 Using the Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-threa
environment, upcalls made by this POA to servants shall not be made concurrently.
provides a degree of safety for code that is multi-thread-unaware.

Note – In a multi-threaded environment, requests to distinct single-threaded POAs m
be processed concurrently.

The POA will still allow reentrant calls from an object implementation to itself, or to
another object implementation managed by the same POA.

11.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the develope
wants the ORB/POA to control the use of threads in the manner provided by the OR
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction
threads used with one or more POAs.

11.2.8.4 Using the Main Thread Model

Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are made in a
manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distingui
"main" thread, servant upcalls will be processed on that thread. (See Section 4.2.5,
“Thread-Related Operations,” on page 4-9.)

Note –Not all environments have such a special requirement. If not, while requests
be processed sequentially they might not all be processed by the same thread.

11.2.8.5 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server program
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and co
with it in mind.
11-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

-
the

vant
be
ore,
e,

ng a
ces

g

ted

able

rent

to

le,

will

e

he
t
e

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by OMG IDL compilers, or

• dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as type
specific servants. Servants connected to dynamic skeletons are used to implement
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific ser
is transparent to its clients. Two CORBA objects supporting the same interface may
incarnated, one by a DSI servant and the other with a type-specific servant. Furtherm
a CORBA object may be incarnated by a DSI servant only during some period of tim
while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language providi
set of interfaces to the POA. These interfaces are used only by the POA. The interfa
required are the following.

• Take aCORBA::ServerRequest object from the POA and perform the processin
necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface suppor
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting diffe
interfaces.

The reason for the second interface can be understood by comparing DSI servants
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for examp
an IDL interfaceWindow in moduleGraphicalSystem will generate a type-specific
skeleton class calledWindow in namespacePOA_GraphicalSystem. A type-specific
servant that is directly derived from thePOA_GraphicalSystem::Window skeleton
class may incarnate several CORBA objects at a time, but all those CORBA objects
support theGraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting th
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, t
Interface Repository Id identifying the most-derived interface supported by the targe
CORBA object in a request. The POA should be able to determine this by asking th
servant that is going to serve the CORBA object.
July 2002 CORBA, v3.0: Abstract Model Description 11-13

11

-

less
lies

a
n if

ject

ire
nt in

tion
ot
In the case of type-specific servants, the POA obtains that information from the type
specific skeleton class from which the servant is directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

11.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Un
explicitly stated to the contrary, all POA behavior described in this specification app
regardless of whether the client is local (same process) or remote. For example, like
request from a remote client, a request from a local client may cause object activatio
the object is not active, block indefinitely if the target object's POA is in the holding
state, be rejected if the target object's POA is in the discarding or inactive states, be
delivered to a thread-unaware object implementation, or be delivered to a different ob
if the target object's servant manager raises theForwardRequest exception. The
Object Id and POA of the target object will also be available to the server via the
Current object, regardless of whether the client is local or remote.

Note – The implication of these requirements on the ORB implementation is to requ
the ORB to mediate all requests to POA-based objects, even if the client is co-reside
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specifica
does not prohibit (nonstandard) POA extensions to support object behavior that is n
location-transparent.

11.3 Interfaces

The POA-related interfaces are defined in a module separate from theCORBA module,
thePortableServer module. It consists of these interfaces:

• POA
• POAManager
• POAManagerFactory
• ServantManager
• ServantActivator
• ServantLocator
• AdapterActivator
• ThreadPolicy
• LifespanPolicy
• IdUniquenessPolicy
• IdAssignmentPolicy
• ImplicitActivationPolicy
• ServantRetentionPolicy
• RequestProcessingPolicy
• Current

In addition, the POA defines theServant native type.
11-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

by
Some

an
sed

ject

of

ss

ssing

cause
11.3.1 The Servant IDL Type

This specification defines a native typePortableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interfaces.
Each language mapping must specify howServant is mapped to the programming
language data type that corresponds to an object implementation. TheServant type has
the following characteristics and constraints.

• Values of typeServant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them
user programs. They can be passed as parameters to certain POA operations.
language mappings may allowServant values to be implicitly converted to object
references under appropriate conditions.

• Values of typeServant support a language-specific programming interface that c
be used by the ORB to obtain a default POA for that servant. This interface is u
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant provide default implementations of the standard object
reference operationsget_interface , is_a , andnon_existent . These operations can
be overridden by the programmer to provide additional behavior needed by the ob
implementation. The default implementations ofget_interface andis_a operations
use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default
implementation of thenon_existent operation returnsFALSE . These operations are
invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method
accessing the invocation context are available.

• Values of typeServant must be testable for identity.

• Values of typeServant have no meaning outside of the process context or addre
space in which they are generated.

11.3.2 POAManager Interface

Each POA object has an associatedPOAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the proce
state of the POAs it is associated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and can
the POAs to be deactivated.

EachPOAManager has a unique string as its identity. The scope of thePOAManager
identity is theORB, so no twoPOAManagers within the sameORB can have the
same identity (butPOAManagers in differentORBs can). ThePOAManager for the
RootPOA has the name "RootPOAManager ".
July 2002 CORBA, v3.0: Interfaces 11-15

11

and
rates
n,

OA or

tate
state
l

just
If a POAManager is created implicitly (as part of the creation of a newPOA), it is
assigned a unique identity by theORB run time. If aPOAManager is created explicitly
(using thePOAManagerFactory), its identity is the string passed to the factory
operation. (An empty identity string is legal.) APOAManager is destroyed implicitly,
when the last of itsPOAs is destroyed.

POAManager is a local interface.

11.3.2.1 Processing States

A POA manager has four possible processing states;active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAs
the disposition of requests received by those POAs. Figure 11-3 on page 11-17 illust
the processing states and the transitions between them. For simplicity of presentatio
this specification sometimes describes these states as POA states, referring to the P
POAs that have been associated with a particular POA manager. A POA manager is
created in theholdingstate. The root POA is therefore initially in theholdingstate.

For simplicity in the figure and the explanation, operations that would not cause a s
change are not shown. For example, if a POA is in “active” state, it does not change
due to an activate operation. Such operations complete successfully with no specia
notice.

The only exception is the inactive state: a “deactivate” operation raises an exception
the same as every other attempted state change operation.
11-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

te that
RB
nd/or

ent
Figure 11-3 Processing States

Active State

When a POA manager is in theactivestate, the associated POAs will receive and start
processing requests (assuming that appropriate thread resources are available). No
even in the active state, a POA may need to queue requests depending upon the O
implementation and resource limits. The number of requests that can be received a
queued is an implementation limit. If this limit is reached, the POA should return a
TRANSIENT system exception, with standard minor code 1, to indicate that the cli
should re-issue the request.

A user program can legally transition a POA manager from theactivestate to either the
discarding, holding, or inactivestate by calling thediscard_requests ,
hold_requests , or deactivate operations, respectively. The POA enters theactive
state through the use of theactivate operation when in thediscardingor holdingstate.

destroy

inactive

deactivate

active

holding

create_POA

discarding

activate

discard_requests

activate hold_requests

hold_requests

deactivate

deactivate

discard_requests
July 2002 CORBA, v3.0: Interfaces 11-17

11

ded,
to
may

e the

ded

g
this

ons

d
tion

the
in
ism

te the

e

Discarding State

When a POA manager is in thediscardingstate, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is discar
theTRANSIENT system exception, with standard minor code 1, must be returned
the client-side to indicate that the request should be re-issued. (Of course, an ORB
always reject a request for other reasons and raise some other system exception.)

In addition, when a POA manager is in thediscardingstate, the adapter activators
registered with the associated POAs will not get called. Instead, requests that requir
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of thediscardingstate is to provide an application with flow-control
capabilities when it determines that an object's implementation or POA is being floo
with requests. It is expected that the application will restore the POA manager to the
activestate after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from thediscardingstate to either theactive,
holding, or inactivestate by calling theactivate , hold_requests , or deactivate
operations, respectively. The POA enters thediscardingstate through the use of the
discard_requests operation when in theactiveor holdingstate.

Holding State

When a POA manager is in theholdingstate, the associated POAs will queue incomin
requests. The number of requests that can be queued is an implementation limit. If
limit is reached, the POAs may discard requests and return theTRANSIENT system
exception, with standard minor code 1, to the client to indicate that the client should
reissue the request. (Of course, an ORB may always reject a request for other reas
and raise some other system exception.)

In addition, when a POA manager is in theholdingstate, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invoca
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from theholdingstate to either theactive,
discarding, or inactivestate by calling theactivate , discard_requests , or
deactivate operations, respectively. The POA enters theholdingstate through the use
of thehold_requests operation when in theactiveor discardingstate. A POA manager
is created in the holding state.

Inactive State

The inactivestate is entered when the associated POAs are to be shut down. Unlike
discardingstate, theinactivestate is not a temporary state. When a POA manager is
the inactivestate, the associated POAs will reject new requests. The rejection mechan
used is specific to the vendor. The GIOP location forwarding mechanism and
CloseConnection message are examples of mechanisms that could be used to indica
rejection. If the client is co-resident in the same process, the ORB could raise the
OBJ_ADAPTER system exception, with standard minor code 1, to indicate that th
object implementation is unavailable.
11-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

e the

(if

ct.
e

ts that
the

A,
any
d
ed to

the
e

In addition, when a POA manager is in theinactivestate, the adapter activators
registered with the associated POAs will not get called. Instead, requests that requir
invocation of an adapter activator will be rejected, as described in the previous
paragraph.

The inactivestate is entered using thedeactivate operation. It is legal to enter the
inactivestate from either theactive, holding, or discardingstates.

If the transition into theinactivestate is a result of callingdeactivate with an
etherealize_objects parameter of

• TRUE - the associated POAs will calletherealize for each active object associated
with the POA once all currently executing requests have completed processing
the POAs have theRETAIN andUSE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the obje
If there are any queued requests that have not yet started executing, they will b
treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

11.3.2.2 activate

void activate()
raises (AdapterInactive);

This operation changes the state of the POA manager toactive. If issued while the POA
manager is in theinactivestate, theAdapterInactive exception is raised. Entering the
activestate enables the associated POAs to process requests.

11.3.2.3 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager toholding. If issued while the POA
manager is in theinactivestate, theAdapterInactive exception is raised. Entering the
holdingstate causes the associated POAs to queue incoming requests. Any reques
have been queued but have not started executing will continue to be queued while in
holdingstate.

If the wait_for_completion parameter isFALSE , this operation returns immediately
after changing the state. If the parameter isTRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this PO
this operation does not return until either there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were starte
prior to the state change have completed) or the state of the POA manager is chang
a state other thanholding. If the parameter isTRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA
BAD_INV_ORDER system exception with standard minor code 3 is raised and th
state is not changed.
July 2002 CORBA, v3.0: Interfaces 11-19

11

s. In
arded.

n
A,
any
d
ed to

the
e

ct

able

d is
this
any
d

11.3.2.4 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

This operation changes the state of the POA manager todiscarding. If issued while the
POA manager is in theinactivestate, theAdapterInactive exception is raised.
Entering thediscardingstate causes the associated POAs to discard incoming request
addition, any requests that have been queued but have not started executing are disc
When a request is discarded, aTRANSIENT system exception with standard minor
code 1 is returned to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in a
invocation context dispatched by some POA belonging to the same ORB as this PO
this operation does not return until either there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were starte
prior to the state change have completed) or the state of the POA manager is chang
a state other thandiscarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA
BAD_INV_ORDER system exception with standard minor code 3 is raised and th
state is not changed.

11.3.2.5 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

raises (AdapterInactive);

This operation changes the state of the POA manager toinactive. This operation has no
affect on the POA manager's state if it is already in theinactivestate, but may still block
if wait_for_completion is TRUE and another call todeactivate on the same POA
manager is pending. Entering the inactive state causes the associated POAs to reje
requests that have not begun to be executed as well as any new requests.

After changing the state, if theetherealize_objects parameter is

• TRUE - the POA manager will cause all associated POAs that have theRETAIN and
USE_SERVANT_MANAGER policies to perform theetherealize operation on the
associated servant manager for all active objects.

• FALSE - theetherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecover
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE and the current threa
not in an invocation context dispatched by some POA belonging to the same ORB as
POA, this operation does not return until there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were starte
prior to the state change have completed) and, in the case of a TRUE
11-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

g to

are

ay

the

un
ies

the

in
etherealize_objects , all invocations ofetherealize have completed for POAs having
theRETAIN andUSE_SERVANT_MANAGER policies. If the parameter isTRUE
and the current thread is in an invocation context dispatched by some POA belongin
the same ORB as this POA theBAD_INV_ORDER system exception with standard
minor code 3 is raised and the state is not changed.

If deactivate is called multiple times before destruction is complete (because there
active requests), theetherealize_objects parameter applies only to the first call of
deactivate; subsequent calls with conflictingetherealize_objects settings will use
the value of theetherealize_objects from the first call. Thewait_for_completion
parameter will be handled as defined above for each individual call (some callers m
choose to block, while others may not).

11.3.2.6 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

11.3.2.7 get_id

string get_id();

This operation returns thePOAManage r's unique identity. Theid of thePOAManager
for the Root POA is "RootPOAManager ".

11.3.3 POAManagerFactory Interface

POAManagers can be created implicitly, by passing a nil POAManager reference to
create_POA operation, or can be created explicitly using a POAManagerFactory.
Explicit creation of a POAManager permits application control of the POAManager's
identity, whereas implicit creation results in creation of a unique identity by the ORB r
time. Explicit creation of a POAManager also permits the application to assign polic
to the new POAManager.

11.3.3.1 create_POAManager

exception ManagerAlreadyExists {};

POAManager create_POAManager(
 in string id,
 in CORBA::PolicyList policies
) raises(ManagerAlreadyExists, CORBA::PolicyError);

This operation creates a new POAManager with the given id. If a POAManager with
given id exists already within the ORB, the operation raisesManagerAlreadyExists .
(Note that placing a POAManager into the inactive state does not necessarily result
July 2002 CORBA, v3.0: Interfaces 11-21

11

once

e

avior

s
are

at

with
hat

OAs
it is
ssing.

A

it
destruction of the POAManager because destruction of a POAManager only occurs
the last of its POAs has been destroyed.create_POAManager succeeds in creation of
a new POAManager with the same identity as a previous POAManager only once th
previous POAManager's POAs are destroyed.)

The policies parameter permits an arbitrary number of policies to be passed; these
policies can be used by an ORB implementation to influence the POAManager's beh
in some way; for example, an ORB may choose to use this mechanism to pass
configuration information to the factory. The policies passed tocreate_POAManager
are deep-copied during creation; modification of a policy sequence after creation ha
therefore no effect on already existing POAManagers. If one or more of the policies
invalid, create_POAManager raisesCORBA::PolicyError .

The newly created POAManager is in the Holding state.

11.3.3.2 list

typedef sequence<POAManager> POAManagerSeq;
POAManagerSeq list();

The list operation returns all POAManagers (whether created implicitly or explicitly) th
currently exist within the ORB.

11.3.3.3 find

POAManager find(in string id);

The find operation return the POAManager with the specified id. If no such
POAManager exists, find returns a nil reference.

11.3.4 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA
the ability to create child POAs on demand, as a side-effect of receiving a request t
names the child POA (or one of its children), or whenfind_POA is called with an
activate parameter value of TRUE. An application server that creates all its needed P
at the beginning of execution does not need to use or provide an adapter activator;
necessary only for the case in which POAs need to be created during request proce

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new PO
before requests are delivered to that POA.

An AdapterActivator object must be local to the process containing the POA objects
is registered with.AdapterActivator is a local interface.
11-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

that
ach

stor

t

urn
d

d

ke

t,
11.3.4.1 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference
identifies a target POA that does not exist. The ORB invokes this operation once for e
POA that must be created in order for the target POA to exist (starting with the ance
POA closest to the root POA). The operation is invoked on the adapter activator
associated with the POA that is the parent of the POA that needs to be created. Tha
parent POA is passed as theparent parameter. The name of the POA to be created
(relative to the parent) is passed as thename parameter.

The implementation of this operation should either create the specified POA and ret
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will procee
with processing the request. If the operation returns FALSE, the ORB will return
OBJECT_NOT_EXIST with standard minor code 2 to the client. If multiple POAs
need to be created, the ORB will invokeunknown_adapter once for each POA that
needs to be created. If the parent of a nonexistent POA does not have an associate
adapter activator, the ORB will return theOBJECT_NOT_EXIST system exception
with standard minor code 2.

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER system exception with standard minor code 1.

Note – It is possible for another thread to create the samePOA theAdapterActivator
is being asked to create ifAdapterActivator s are used in conjunction with other
threads callingcreate_POA with the samePOA name. Applications should be prepared
to deal with failures from either the manual or automatic (AdapterActivator) POA
creation request. There can be no guarantee of the order of such calls.

For example, if the target object reference was created by aPOA whose full name is “A,”
“B,” “C,” “D” and only POAs “A” and “B” currently exist, theunknown_adapter
operation will be invoked on the adapter activator associated withPOA “B” passing
POA “B” as the parent parameter and “C” as the name of the missingPOA. Assuming
that the adapter activator creates POA “C” and returns TRUE, the ORB will then invo
unknown_adapter on the adapter activator associated withPOA “C,” passingPOA
“C” as the parent parameter and “D” as the name.

Theunknown_adapter operation is also invoked whenfind_POA is called on the
POA with which theAdapterActivator is associated, the specified child does not exis
and theactivate_it parameter tofind_POA is TRUE. If unknown_adapter creates
the specifiedPOA and returns TRUE, that POA is returned fromfind_POA . If
unknown_adapter returns FALSE thenfind_POA raisesAdapterNonExistent. If
unknown_adapter raises any system exception thenfind_POA passes through the
system exception it gets back fromunknown_adapter .
July 2002 CORBA, v3.0: Interfaces 11-23

11

-

th the
n
be
ded
used

olicy

rn a
he

nd
Note – This allows the same code, theunknown_adapter implementation, to be used
to initialize aPOA whether thatPOA is created explicitly by the application or as a side
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to thePOA.

11.3.5 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA wi
ability to activate objects on demand when the POA receives a request targeted at a
inactive object. A servant manager is registered with a POA as a callback object, to
invoked by the POA when necessary. An application server that activates all its nee
objects at the beginning of execution does not need to use a servant manager; it is
only for the case in which an object must be activated during request processing.

TheServantManager interface is itself empty. It is inherited by two other interfaces,
ServantActivator andServantLocator .

The two types of servant managers correspond to the POA’sRETAIN policy
(ServantActivator) and to theNON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using each p
are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and retu
servant and the second to deactivate a servant. The operations differ according to t
amount of information usable for their situation.

ServantManager is a local interface. AServantManager object must be local to the
process containing thePOA objects it is registered with.

11.3.5.1 Common Information for Servant Manager Types

The two types of servant managers have certain semantics that are identical.

The incarnate andpreinvoke operation may raise any system exception deemed
appropriate (for example,OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).

Note – If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that
exception. It is the user’s responsibility to deactivate the object if it had been
previously activated.

The incarnate andpreinvoke operation may also raise aForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request a
subsequent requests to the object denoted in theforward_reference member of the
exception. The behavior of this mechanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exception
11-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ible

g)

n.

ply

ap

and
h
od,

.

should be returned to the client in a reply message withLOCATION_FORWARD reply
status. If some other protocol or delivery mechanism was used, the ORB is respons
for providing equivalent behavior, from the perspectives of the client and the object
denoted by the new reference.

If the ForwardRequest exception is raised anywhere else, it is passed through the
ORB as a normal user exception.

If a ServantManager returns a null servant (or the equivalent in a language mappin
as the result of anincarnate or preinvoke operation, thePOA returns the
OBJ_ADAPTER system exception with standard minor code 7 as the result of the
request. If the ServantManager returns the wrong type of servant, it is indeterminate
when that error is detected. AnORB that chooses to detect the error shall raise
OBJ_ADAPTER with standard minor code 2; anORB that does not explicitly check
for this error condition likely raisesBAD_OPERATION with standard minor code 2 or
a MARSHAL exception (with unspecified minor code) at the time of method invocatio

11.3.6 ServantActivator Interface

When the POA has theRETAIN policy it uses servant managers that are
ServantActivator s. When using such servant managers, the following statements ap
for a givenObjectId used in theincarnate andetherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object M
with objects they have activated.

• Invocations ofincarnate on the servant manager are serialized.

• Invocations ofetherealize on the servant manager are serialized.

• Invocations ofincarnate andetherealize on the servant manager are mutually
exclusive.

• Incarnations of a particular object may not overlap; that is,incarnate shall not be
invoked with a particularObjectId while, within the same POA, thatObjectId is
in use as theObjectId of an activated object or as the argument of a call to
incarnate or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactivation
the etherealization (during which outstanding requests are being processed) in whic
arriving requests on that object should not be passed to its servant. During this peri
requests targeted for such an object act as if the POA were inholdingstate until
etherealize completes. Ifetherealize is called as a consequence of adeactivate call
with anetherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs withincarnate . There may be a
period of time after the POA invokesincarnate and before that method returns in which
arriving requests bound for that object should not be passed to the servant.

A single servant manager object may be concurrently registered with multiple POAs
Invocations ofincarnate andetherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in whichetherealize is invoked.
July 2002 CORBA, v3.0: Interfaces 11-25

11

ject

d.

ating

ct

se
s do

the
11.3.6.1 incarnate

Servant incarnate (
in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an ob
that is not currently active, assuming the POA has theUSE_SERVANT_MANAGER
andRETAIN policies.

Theoid parameter contains theObjectId value associated with the incoming request.
Theadapter is an object reference for the POA in which the object is being activate

The user-supplied servant manager implementation is responsible for locating or cre
an appropriate servant that corresponds to theObjectId value if possible.incarnate
returns a value of typeServant , which is the servant that will be used to process the
incoming request (and potentially subsequent requests, since the POA has theRETAIN
policy).

The POA enters the returnedServant value into the Active Object Map so that
subsequent requests with the sameObjectId value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Obje
Id and if the POA also has theUNIQUE_ID policy, theincarnate has violated the POA
policy and is considered to be in error. The POA will raise anOBJ_ADAPTER
system exception for the request. In this case, etherealize is not called by the POA
because the servant was never added to the Active Object Map.

Note – If the same servant is used in two different POAs, it is legal for the POAs to u
that servant even if the POAs have different Object Id uniqueness policies. The POA
not interact with each other in this regard.

11.3.6.2 etherealize

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assuming
POA has theUSE_SERVANT_MANAGER andRETAIN policies. Note that an active
servant may be deactivated by the servant manager viaetherealize even if it was not
incarnated by the servant manager.
11-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

the

d.
be

ects

OA

t
ject

g

the

y

ble to
Theoid parameter contains the Object Id value of the object being deactivated. The
adapter parameter is an object reference for thePOA in whose scope the object was
active. Theserv parameter contains a reference to the servant that is associated with
object being deactivated. If the servant denoted by theserv parameter is associated with
other objects in thePOA denoted by theadapter parameter (that is, in thePOA's
Active Object Map) at the time thatetherealize is called, theremaining_activations
parameter has the valueTRUE. Otherwise, it has the valueFALSE .

If the cleanup_in_progress parameter isTRUE, the reason for theetherealize
operation is that either thedeactivate or destroy operation was called with an
etherealize_objects parameter ofTRUE. If the parameter isFALSE , the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

• When an object is deactivated explicitly by an invocation of
POA::deactivate_object .

• When the ORB or POA determines internally that an object must be deactivate
For example, an ORB implementation may provide policies that allow objects to
deactivated after some period of quiescence, or when the number of active obj
reaches some limit.

• If POAManager::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the P
can lead to undefined results.

In a multi-threaded environment, thePOA makes certain guarantees that allow servan
managers to safely destroy servants. Specifically, the servant’s entry in the Active Ob
Map corresponding to the target object is removed beforeetherealize is called. Because
calls to incarnate andetherealize are serialized, this prevents new requests for the
target object from being invoked on the servant during etherealization. After removin
the entry from the Active Object Map, if thePOA determines before invoking
etherealize that other requests for the same target object are already in progress on
servant, it delays the call toetherealize until all active methods for the target object
have completed. Therefore, whenetherealize is called, the servant manager can safel
destroy the servant if it wants to, unless theremaining_activations argument is
TRUE.

If the etherealize operation returns a system exception, thePOA ignores the exception.

11.3.7 ServantLocator Interface

When thePOA has theNON_RETAIN policy it uses servant managers that are
ServantLocators . Because thePOA knows that the servant returned by this servant
manager will be used only for a single request, it can supply extra information to the
servant manager’s operations and the servant manager’s pair of operations may be a
cooperate to do something different than aServantActivator .
July 2002 CORBA, v3.0: Interfaces 11-27

11

t

ct

ct
ult,
to

est
ServantLocator is a local interface. AServantLocator object must be local to the
process containing thePOA objects it is registered with.

When thePOA uses theServantLocator interface, immediately after performing the
operation invocation on the servant returned bypreinvoke , thePOA will invoke
postinvoke on the servant manager, passing theObjectId value and theServant value
as parameters (among others). The next request with thisObjectId value will then cause
preinvoke to be invoked again. This feature may be used to force every request for
objects associated with aPOA to be mediated by the servant manager.

When using such aServantLocator , the following statements apply for a given
ObjectId used in thepreinvoke andpostinvoke operations:

• The servant returned bypreinvoke is used only to process the single request tha
causedpreinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Obje
Map.

• When the invocation of the request on the servant is complete,postinvoke will be
invoked for the object.

• No serialization of invocations ofpreinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations ofpreinvoke for the sameObjectId .
(However, if theSINGLE_THREAD_MODEL policy is being used, that policy will
serialize these calls.)

• The same thread will be used topreinvoke the object, process the request, and
postinvoke the object.

• If preinvoke raises an exception,postinvoke is not called. Otherwise the
preinvoke andpostinvoke operations are always called in pairs in response to
any ORB activity. In particular, for a response to aGIOP Locate message aGIOP-
conforming ORB may (or may not) call preinvoke to determine whether the obje
could be served at this location. If the ORB makes such a call, whatever the res
the ORB does not invoke a method, but does call postinvoke before responding
the Locate message.

Note – The ServantActivator interface does not behave similarly with respect to a
GIOP Locate message since the etherealize operation is not associated with requ
processing.

11.3.7.1 preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)
raises (ForwardRequest

);
11-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ject

d.

ating

e
y

A has

the

as

is

the

an
ith a
This operation is invoked by the POA whenever the POA receives a request for an ob
that is not currently active, assuming the POA has theUSE_SERVANT_MANAGER
andNON_RETAIN policies.

Theoid parameter contains theObjectId value associated with the incoming request.
Theadapter is an object reference for the POA in which the object is being activate

The user-supplied servant manager implementation is responsible for locating or cre
an appropriate servant that corresponds to theObjectId value if possible.preinvoke
returns a value of typeServant , which is the servant that will be used to process the
incoming request.

TheCookie is a type opaque to thePOA that can be set by the servant manager for us
later bypostinvoke . The operation is the name of the operation that will be called b
thePOA when the servant is returned.

11.3.7.2 postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);

This operation is invoked whenever a servant completes a request, assuming the PO
theUSE_SERVANT_MANAGER andNON_RETAIN policies.

Thepostinvoke operation is considered to be part of a request on an object.That is,
request is not complete until postinvoke finishes. If the method finishes normally but
postinvoke raises a system exception, the method's normal return is overridden; the
request completes with the exception.

Theoid parameter contains the Object Id value of the object on which the request w
made. Theadapter parameter is an object reference for the POA in whose scope the
object was active. Thethe_servant parameter contains a reference to the servant that
associated with the object.

TheCookie is a type opaque to thePOA; it contains any value that was set by the
preinvoke operation. The operation is the name of the operation that was called by
POA for the request.

Destroying a servant that is known to thePOA can lead to undefined results.

11.3.7.3 ServantLocator and Location Determination

Under certain circumstances, an ORB may need to determine the actual location of
object's implementation. For objects that are managed by a POA that is configured w
ServantLocator , it may invokepreinvoke andpostinvoke or it may determine the
object’s location by some other means. If it invokespreinvoke andpostinvoke under
these circumstances it shall use the argument “_locate .”
July 2002 CORBA, v3.0: Interfaces 11-29

11

tory

ay
All

bute

B-
s

ed

hat is
lls

ust

ing
,
read

red by
11.3.8 POA Policy Objects

Interfaces derived fromCORBA::Policy are used with thePOA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using fac
operations on any pre-existing POA, such as the root POA, or by a call to
ORB::create_policy . Policy objects are specified when a POA is created. Policies m
not be changed on an existing POA. Policies are not inherited from the parent POA.
Policy interfaces defined in this section are local interfaces.

The POA shall preserve Policies whose types have been registered via
PortableInterceptor::ORBInitInfo::register_policy_factory , even if the POA
itself does not know about those policies.

11.3.8.1 Thread Policy

Objects with theThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to thePOA::create_POA
operation to specify the threading model used with the created POA. The value attri
of ThreadPolicy contains the value supplied to thePOA::create_thread_policy
operation from which it was obtained. The following values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an OR
controlled POA to threads. In a multi-threaded environment, concurrent request
may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are process
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner t
safe for code that is multi-thread-unaware. The POA will still allow reentrant ca
from an object implementation to itself, or to another object implementation
managed by the same POA.

• MAIN_THREAD_MODEL - Requests for all main-thread POAs are processed
sequentially. In a multi-threaded environment, all upcalls made by all POAs with
this policy to servants are made in a manner that is safe for code that is multi-
thread-unaware. If the environment has special requirements that some code m
run on a distinguished “main” thread, servant upcalls will be processed on that
thread. (See Section 4.2.5, “Thread-Related Operations,” on page 4-9.)

If no ThreadPolicy object is passed tocreate_POA , the thread policy defaults to
ORB_CTRL_MODEL .

Note – In some environments, calling multi-thread-unaware code safely (that is, us
theMAIN_THREAD_MODEL) may mean that the POA will use only the main thread
in which case the application programmer is responsible to ensure that the main th
is given to the ORB, usingORB::perform_work or ORB::run .

POAs using theSINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is sha
multiple single-threaded POAs.
11-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

e

the

y to

d

ct
These models presume that the ORB and the application are using compatible
threading primitives in a multi-threaded environment.

11.3.8.2 Lifespan Policy

Objects with theLifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to thePOA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. Th
following values can be supplied.

• TRANSIENT - The objects implemented in thePOA cannot outlive thePOA
instance in which they are first created. Once the POA’sPOAManager enters the
deactivated state, any requests received by thisPOA will cause thePOA to raise an
OBJECT_NOT_EXIST system exception with standard minor code 4.

• PERSISTENT - The objects implemented in thePOA can outlive the process in
which they are first created.

• Persistent objects have aPOA associated with them (thePOA that created them).
When the ORB receives a request on a persistent object, it first searches for
matchingPOA, based on the names of thePOA and all of its ancestors.

• Administrative action beyond the scope of this specification may be necessar
inform the ORB's location service of the creation and eventual termination of
existence of thisPOA, and optionally to arrange for on-demand activation of a
process implementing thisPOA.

• POA names must be unique within their enclosing scope (the parentPOA). A
portable program can assume thatPOA names used in other processes will not
conflict with its ownPOA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed tocreate_POA , the lifespan policy defaults to
TRANSIENT.

11.3.8.3 Object Id Uniqueness Policy

Objects with theIdUniquenessPolicy interface are obtained using the
POA::create_id_uniqueness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the create
POA must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Obje
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default isUNIQUE_ID.
July 2002 CORBA, v3.0: Interfaces 11-31

11

n

Note –Use ofUNIQUE_ID policy is meaningless in conjunction withNON_RETAIN
policy. A conforming application should not use this policy combination. A
conforming orb may, but need not, report an error duringcreate_POA if this
combination is used. If an orb permits this combination of policies to be used, the
resultingPOA shall not treat the use of the same servant for concurrent requests o
different object ids as an error.

11.3.8.4 Id Assignment Policy

Objects with theIdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the createdPOA are
generated by the application or by the ORB. The following values can be supplied.

• USER_ID - Objects created with thatPOA are assigned Object Ids only by the
application.

• SYSTEM_ID - Objects created with thatPOA are assigned Object Ids only by the
POA. If the POA also has thePERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default isSYSTEM_ID.

11.3.8.5 Servant Retention Policy

Objects with theServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the createdPOA retains active
servants in an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default isRETAIN.

Note –TheNON_RETAIN policy requires either theUSE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

11.3.8.6 Request Processing Policy

Objects with theRequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the created
POA. The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the
Active Object Map, anOBJECT_NOT_EXIST system exception with standard
minor code 2 is returned to the client. TheRETAIN policy is also required.
11-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

he

f

ect

e

to

r all

e

• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a default servant has been
registered with thePOA using theset_servant operation, the request is dispatched
to the default servant. If no default servant has been registered, an
OBJ_ADAPTER system exception with standard minor code 3 is returned to t
client. TheMULTIPLE_ID policy is also required.

• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a servant manager has been
registered with thePOA using theset_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If no
servant manager has been registered, anOBJ_ADAPTER system exception with
standard minor code 4 is returned to the client.

If no RequestProcessingPolicy is specified atPOA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining theUSE_ACTIVE_OBJECT_MAP_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number o
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where thePOA does no automatic object
activation (that is, thePOA searches only the Active Object Map).

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Obj
Map and aServantManager .

BecauseRETAIN is in effect, the application can callactivate_object or
activate_object_with_id to establish known servants in the Active Object Map for us
in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries
determine the servant by means of invoking incarnate in theServantManager
(specifically aServantActivator) registered with the POA. If noServantManager is
available, thePOA raises theOBJ_ADAPTER system exception with standard minor
code 4.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined fo
requests involving unknown objects.

BecauseRETAIN is in effect, the application can callactivate_object or
activate_object_with_id to establish known servants in the Active Object Map for us
in later requests.
July 2002 CORBA, v3.0: Interfaces 11-33

11

able,

ll.

or all

orts

ting
ThePOA first tries to find a servant in the Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. If no default servant is avail
thePOA raises theOBJ_ADAPTER system exception with standard minor code 3.

NON-RETAIN and USE_SERVANT_MANAGER

This combination represents the situation where one servant is used per method ca

ThePOA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call preinvoke on the
ServantManager (specifically aServantLocator) registered with thePOA. If no
ServantManager is available, thePOA will raise theOBJ_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant defined f
CORBA objects.

ThePOA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, thePOA will invoke the appropriate
operation on the default servant registered with thePOA. If no default servant is
available, thePOA will raise theOBJ_ADAPTER system exception.

11.3.8.7 Implicit Activation Policy

Objects with theImplicitActivationPolicy interface are obtained using the
POA::create_implicit_activation_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires theSYSTEM_ID andRETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION .

11.3.9 POA Interface

A POA object manages the implementation of a collection of objects. The POA supp
a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an exis
POA, which forms a hierarchy starting with the root POA.

The POA interface is a local interface.
11-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

vior.
tion

e

y

race
eive
en
tor
apter
d,
11.3.9.1 create_POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy

);

This operation creates a new POA as a child of the target POA. The specified name
identifies the new POA with respect to other POAs with the same parent POA. If the
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a newPOAManager object is created and
associated with the new POA. Otherwise, the specifiedPOAManager object is
associated with the new POA. ThePOAManager object can be obtained using the
attribute namethe_POAManager .

The specified policy objects are associated with the POA and used to control its beha
The policy objects are effectively copied before this operation returns, so the applica
is free to destroy them while the POA is in use. Policies arenot inherited from the parent
POA.

The POA shall preserve Policies whose types have been registered via
PortableInterceptor::ORBInitInfo::register_policy_factory , even if the POA
itself does not know about those policies.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects requir
prior administrative action that has not been performed, anInvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending polic
object.

Note –Creating a POA using a POA manager that is in the active state can lead to
conditions if the POA supports preexisting objects, because the new POA may rec
a request before its adapter activator, servant manager, or default servant have be
initialized. These problems do not occur if the POA is created by an adapter activa
registered with a parent of the new POA, because requests are queued until the ad
activator returns. To avoid these problems when a POA must be explicitly initialize
the application can initialize the POA by invokingfind_POA with a TRUE activate
parameter.

11.3.9.2 find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)
July 2002 CORBA, v3.0: Interfaces 11-35

11

s.

the

e

raises (AdapterNonExistent
);

If the targetPOA is the parent of a childPOA with the specified name (relative to the
targetPOA), that childPOA is returned. If a childPOA with the specified name does
not exist and the value of theactivate_it parameter isTRUE, the targetPOA's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the child
POA, that childPOA is returned. Otherwise, theAdapterNonExistent exception is
raised.

If find_POA receives a system exception in response to a call tounknown_adapter
on aPOA, find_POA raisesOBJ_ADAPTER system exception with standard minor
code 1

11.3.9.3 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion

);

This operation destroys thePOA and all descendantPOAs . All descendantPOAs are
destroyed (recursively) before the destruction of the containingPOA. ThePOA so
destroyed (that is, thePOA with its name) may be re-created later in the same proces
(This differs from thePOAManager::deactivate operation that does not allow a re-
creation of its associatedPOA in the same process. After a deactivate, re-creation is
allowed only if thePOA is later destroyed.)

Whendestroy is called thePOA behaves as follows:

• The POA assumes thediscardingstate except when itsPOAManager is in the
inactivestate in which case thePOA assumes theinactivestate. Any further
changes to thePOAManager 's state do not affect thisPOA.

• The POA disables thecreate_POA operation. Subsequent calls tocreate_POA
will result in a BAD_INV_ORDER system exception with standard minor code
17.

• The POA calls destroy on all of its immediate descendants.

• After all descendantPOAs have been destroyed and their servants etherealized,
POA continues to process requests until there are no requests executing in the
POA. At this point, apparent destruction of thePOA has occurred.

• After destruction has become apparent, thePOA may be re-created via either an
AdapterActivator or a call tocreate_POA .

• If the etherealize_objects parameter is TRUE, thePOA has theRETAIN policy,
and a servant manager is registered with thePOA, theetherealize operation on the
servant manager is called for eachactiveobject in theActive Object Map. The
apparent destruction of thePOA occurs before any calls toetherealize are made.
Thus, for example, anetherealize method that attempts to invoke operations on th
POA receives theOBJECT_NOT_EXIST exception.
11-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

d

ion

The
• If the POA has anAdapterActivator installed, any requests that would have
causedunknown_adapter to be called cause aTRANSIENT exception with
standard minor code 4 to be raised instead.

Thewait_for_completion parameter is handled as follows:

• If wait_for_completion is TRUE and the current thread is not in an invocation
context dispatched from somePOA belonging to the same ORB as thisPOA, the
destroy operation returns only after all active requests have completed and all
invocations ofetherealize have completed.

• If wait_for_completion is TRUE and the current thread is in an invocation
context dispatched from somePOA belonging to the same ORB as thisPOA, the
BAD_INV_ORDER system exception with standard minor code 3 is raised an
POA destruction does not occur.

• If wait_for_completion is FALSE , thedestroy operation destroys the POA and
its children but waits neither for active requests to complete nor for etherealizat
to occur. Ifdestroy is called multiple times before destruction is complete
(because there are active requests), theetherealize_objects parameter applies
only to the first call ofdestroy . Subsequent calls with conflicting
etherealize_objects settings use the value ofetherealize_objects from the first
call. Thewait_for_completion parameter is handled as defined above for each
individual call (some callers may choose to block, while others may not).

11.3.9.4 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value.
application is responsible for calling the inheriteddestroy operation on the returned
reference when it is no longer needed.

11.3.9.5 the_name

readonly attribute string the_name;
July 2002 CORBA, v3.0: Interfaces 11-37

11

he
elied

be

ted
the
This attribute identifies the POA relative to its parent. This name is assigned when t
POA is created. The name of the root POA is system-dependent and should not be r
upon by the application. In order to work properly with Portable Interceptors (see
Section 21.5.2.1, “Adapter Names,” on page 21-41) the name of the root POA must
the sequence containing only the string “RootPOA.”

11.3.9.6 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

11.3.9.7 the_children

readonly attribute POAList the_children;

This attribute identifies the current set of all child POAs of the POA. The set of child
POAs includes only the POA's immediate children, and not their descendants.

11.3.9.8 the_POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.

11.3.9.9 the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly crea
POA has no adapter activator (the attribute is null). It is system-dependent whether
root POA initially has an adapter activator; the application is free to assign its own
adapter activator to the root POA.

11.3.9.10 the_POAManagerFactory

 readonly attribute POAManagerFactory the_POAManagerFactory;

This attribute returns thePOAManagerFactory that created thePOA.

11.3.9.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires theUSE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.
11-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ation
ant

been

his
ct
This operation returns the servant manager associated with the POA. If no servant
manager has been associated with the POA, it returns a null reference.

11.3.9.12 set_servant_manager

void set_servant_manager(
in ServantManager imgr

) raises(WrongPolicy);

This operation requires theUSE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

If the ServantRetentionPolicy of thePOA is RETAIN, then theServantManager
argument (imgr) shall support theServantActivator interface (e.g., in C++imgr is
narrowable toServantActivator). If the ServantRetentionPolicy of thePOA is
NON_RETAIN, then theServantManager argument shall support the
ServantLocator interface. If the argument isnil , or does not support the required
interface, then theOBJ_ADAPTER system exception with standard minor code 4 is
raised.

This operation sets the default servant manager associated with the POA. This oper
may only be invoked once after a POA has been created. Attempting to set the serv
manager after one has already been set will result in theBAD_INV_ORDER system
exception with standard minor code 6 being raised.

11.3.9.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires theUSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has
associated with the POA, theNoServant exception is raised.

11.3.9.14 set_servant

void set_servant(
in Servant p_servan

) raises(WrongPolicy);

This operation requires theUSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. T
servant will be used for all requests for which no servant is found in the Active Obje
Map.
July 2002 CORBA, v3.0: Interfaces 11-39

11

e

ere

ect

t

nt
11.3.9.15 activate_object

ObjectId activate_object(
in Servant p_servant

) raises (ServantAlreadyActive, WrongPolicy);

This operation requires theSYSTEM_ID andRETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has theUNIQUE_ID policy and the specified servant is already in the Activ
Object Map, theServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and the
specified servant in the Active Object Map. The Object Id is returned.

11.3.9.16 activate_object_with_id

void activate_object_with_id(
in ObjectId oid,
in Servant p_servant

) raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires theRETAIN policy; if not present, theWrongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (th
is a servant bound to it in the Active Object Map), theObjectAlreadyActive
exception is raised. If the POA has theUNIQUE_ID policy and the servant is already in
the Active Object Map, theServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Obj
Id and the specified servant in the Active Object Map.

If the POA has theSYSTEM_ID policy and it detects that the Object Id value was no
generated by the system or for thisPOA, theactivate_object_with_id operation may
raise theBAD_PARAM system exception. An ORB is not required to detect all such
invalid Object Id values, but a portable application must not invoke
activate_object_with_id on aPOA that has theSYSTEM_ID policy with an Object
Id value that was not previously generated by the system for thatPOA, or, if thePOA
also has thePERSISTENT policy, for a previous instantiation of the samePOA. A
POA is not required to raise theBAD_PARAM exception in this case because, in the
general case, accurate rejection of an invalid Object Id requires unbounded persiste
memory of all previously generated Id values.

11.3.9.17 deactivate_object

void deactivate_object(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires theRETAIN policy; if not present, theWrongPolicy exception
is raised.
11-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

active

d

t

ect Id
y be
d
ces

ay be

ct Id
This operation causes theObjectId specified in theoid parameter to be deactivated. An
ObjectId that has been deactivated continues to process requests until there are no
requests for thatObjectId . Active requests are those requests that arrived before
deactivate_object was called. A deactivatedObjectId is removed from the Active
Object Map when all requests executing for thatObjectId have completed. If a servant
manager is associated with thePOA, ServantActivator::etherealize is invoked with
theoid and the associated servant after theObjectId has been removed from the Active
Object Map. Reactivation for theObjectId blocks until etherealization (if necessary) is
complete. This includes implicit activation (as described in etherealize) and explicit
activation viaPOA::activate_object_with_id . Once anObjectId has been removed
from the Active Object Map and etherealized (if necessary) it may then be reactivate
through the usual mechanisms.

The operation does not wait for requests or etherealization to complete and always
returns immediately after deactivating theObjectId .

Note – If the servant associated with theoid is serving multiple Object Ids,
ServantActivator::etherealize may be invoked multiple times with the same servan
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

11.3.9.18 create_reference

Object create_reference (
in CORBA::RepositoryId intf

) raises (WrongPolicy);

This operation requires theSYSTEM_ID policy; if not present, theWrongPolicy
exception is raised.

This operation creates an object reference that encapsulates a POA-generated Obj
value and the specified interface repository id. The specified repository id, which ma
a null string, will become thetype_id of the generated object reference. A repository i
that does not identify the most derived interface of the object or one of its base interfa
will result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference m
passed to clients, so that subsequent requests on those references will cause the
appropriate servant manager to be invoked, if one is available. The generated Obje
value may be obtained by invokingPOA::reference_to_id with the created reference.

11.3.9.19 create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf

);
July 2002 CORBA, v3.0: Interfaces 11-41

11

and
,
ot
t in

ay be
ject to

t

B
ust

is
icies
This operation creates an object reference that encapsulates the specified Object Id
interface repository Id values. The specified repository id, which may be a null string
will become thetype_id of the generated object reference. A repository id that does n
identify the most derived interface of the object or one of its base interfaces will resul
undefined behavior.

This operation does not cause an activation to take place. The resulting reference m
passed to clients, so that subsequent requests on those references will cause the ob
be activated if necessary, or the default servant used, depending on the applicable
policies.

If the POA has theSYSTEM_ID policy and it detects that the Object Id value was no
generated by the system or for this POA, thecreate_reference_with_id operation
may raise theBAD_PARAM system exception with standard minor code 14. An OR
is not required to detect all such invalid Object Id values, but a portable application m
not invoke this operation on a POA that has theSYSTEM_ID policy with an Object Id
value that was not previously generated by the system for thatPOA, or, if thePOA also
has thePERSISTENT policy, for a previous instantiation of the samePOA.

11.3.9.20 servant_to_id

ObjectId servant_to_id(
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires theUSE_DEFAULT_SERVANT policy or a combination of
theRETAIN policy and either theUNIQUE_ID or IMPLICIT_ACTIVATION policies if
invoked outside the context of an operation dispatched by this POA. If this operation
not invoked in the context of executing a request on the specified servant and the pol
specified previously are not present, theWrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both theRETAIN and theUNIQUE_ID policy and the specified
servant is active, the Object Id associated with that servant is returned.

2. If the POA has both theRETAIN and theIMPLICIT_ACTIVATION policy and
either the POA has theMULTIPLE_ID policy or the specified servant is not active,
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and that Object Id is returned.

3. If the POA has theUSE_DEFAULT_SERVANT policy, the servant specified is the
default servant, and the operation is being invoked in the context of executing a
request on the default servant, then the ObjectId associated with the current
invocation is returned.

4. Otherwise, theServantNotActive exception is raised.
11-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

t the

ivate

ied

p

d that

ive
11.3.9.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires theRETAIN policy and either theUNIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executing a
request on the specified servant and the policies specified previously are not presen
WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both theRETAIN and theUNIQUE_ID policy and the specified
servant is active, an object reference encapsulating the information used to act
the servant is returned.

2. If the POA has both theRETAIN and theIMPLICIT_ACTIVATION policy and
either thePOA has theMULTIPLE_ID policy or the specified servant is not active,
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the specif
servant, the reference associated with the current invocation is returned.

4. Otherwise, theServantNotActive exception is raised.

Note – The allocation of an Object Id value and installation in the Active Object Ma
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produce
will behave appropriately (that is, yield a consistent Object Id value when asked
politely).

11.3.9.22 reference_to_servant

Servant reference_to_servant (
in Object reference

) raises (ObjectNotActive, WrongAdapter, WrongPolicy);

This operation requires theRETAIN policy or theUSE_DEFAULT_SERVANT policy.
If neither policy is present, theWrongPolicy exception is raised.

If the POA has theRETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the Act
Object Map. Otherwise, if thePOA has theUSE_DEFAULT_SERVANT policy and a
default servant has been registered with thePOA, this operation returns the default
servant. Otherwise, theObjectNotActive exception is raised.

If the object reference was not created by thisPOA, theWrongAdapter exception is
raised.
July 2002 CORBA, v3.0: Interfaces 11-43

11

n is

for

ect

t.

se
11.3.9.23 reference_to_id

ObjectId reference_to_id(
in Object reference

) raises (WrongAdapter, WrongPolicy);

TheWrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specifiedreference . This
operation is valid only if the reference was created by the POA on which the operatio
being performed. If the reference was not created by that POA, aWrongAdapter
exception is raised. The object denoted by the reference does not have to be active
this operation to succeed.

11.3.9.24 id_to_servant

Servant id_to_servant(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires theRETAIN policy or theUSE_DEFAULT_SERVANT policy.
If neither policy is present, theWrongPolicy exception is raised.

If the POA has theRETAIN policy and the specifiedObjectId is in the Active Object
Map, this operation returns the servant associated with that object in the Active Obj
Map. Otherwise, if the POA has theUSE_DEFAULT_SERVANT policy and a default
servant has been registered with the POA, this operation returns the default servan
Otherwise theObjectNotActive exception is raised.

11.3.9.25 id_to_reference

Object id_to_reference(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires theRETAIN policy; if not present, theWrongPolicy exception
is raised.

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Object Id
value is not active in the POA, anObjectNotActive exception is raised.

11.3.9.26 id

readonly attribute CORBA::OctetSeq id;

This returns the unique id of the POA in the process in which it is created. It is for u
by portable interceptors.
11-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ent

ent

od

.

text

of
This id is guaranteed unique for the life span of the POA in the process. For persist
POAs, this means that if a POA is created in the same path with the same name as
another POA, these POAs are identical and, therefore, have the same id. For transi
POAs, each POA is unique.

11.3.10 Current Operations

ThePortableServer::Current interface, derived fromCORBA::Current , provides
method implementations with access to the identity of the object on which the meth
was invoked. TheCurrent interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use ofCurrent in the context of both locally and remotely invoked operations

An instance ofCurrent can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation. Thereafter,
it can be used within the context of a method dispatched by thePOA to obtain thePOA
andObjectId that identify the object on which that operation was invoked.

PortableServer::Curren t is a local interface.

11.3.10.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose con
it is called. If called outside the context of a POA-dispatched operation, aNoContext
exception is raised.

11.3.10.2 get_object_id

ObjectId get_object_id()
raises (NoContext);

This operation returns theObjectId identifying the object in whose context it is called.
If called outside the context of a POA-dispatched operation, aNoContext exception is
raised.

11.3.10.3 get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the context
which it is called. If called outside the context of a POA dispatched operation, a
NoContext exception is raised.
July 2002 CORBA, v3.0: Interfaces 11-45

11

e

ext it
Note – This reference is not guaranteed to be identical to the original reference th
client used to make the invocation, and calling theObject::is_equivalent operation
to compare the two references may not necessarily return true.

11.3.10.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose cont
is called. If called outside the context of a POA dispatched operation, aNoContext
exception is raised.

11.4 IDL for PortableServer Module

// IDL
// File: PortableServer.idl
#ifndef _PORTABLE_SERVER_IDL_
#define _PORTABLE_SERVER_IDL_

import ::CORBA;
module PortableServer {

typeprefix PortableServer “org.omg”;
local interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef CORBA::OctetSeq ObjectId;

exception ForwardRequest {
Object forward_reference;

};

// Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
11-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11
MAIN_THREAD_MODEL
};

 local interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

local interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

local interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

local interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};

local interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

local interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

};
July 2002 CORBA, v3.0: IDL for PortableServer Module 11-47

11
enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

local interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

// POAManager interface

local interface POAManager {
exception AdapterInactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

void hold_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion)
raises(AdapterInactive);

State get_state();
string get_id();

};

// PoaManagerFactory

local interface POAManagerFactory {
 typedef sequence<POAManager> POAManagerSeq;

exception ManagerAlreadyExists {};

POAManager create_POAManager(
in string id,
 in CORBA::PolicyList policies

) raises(ManagerAlreadyExists, CORBA::PolicyError);

POAManagerSeq list();
POAManager find(in string id);

};

// AdapterActivator interface
11-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11
local interface AdapterActivator {
boolean unknown_adapter(

in POA parent,
in string name);

};

// ServantManager interface

local interface ServantManager{ };

local interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

local interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};

// POA interface

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
July 2002 CORBA, v3.0: IDL for PortableServer Module 11-49

11
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

// POA creation and destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

// POA attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAList the_children;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

// Servant Manager registration:

ServantManager get_servant_manager()
raises (WrongPolicy);
11-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11
void set_servant_manager(
in ServantManager imgr)

raises (WrongPolicy);

// operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

// reference creation operations

Object create_reference (
in CORBA::RepositoryId intf)

raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf

);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, WrongAdapter, WrongPolicy);
July 2002 CORBA, v3.0: IDL for PortableServer Module 11-51

11

ith
on to
ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
readonly attribute POAManagerFactory the_POAManagerFactory;

};

// Current interface

local interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);

Servant get_servant()
raises(NoContext);

};
};

11.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated w
the cardinalities of the associations. They are intended to be an aid in comprehensi
those who enjoy such representations. They are not normative.
11-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11
Figure 11-4 UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

policy_type : CORBA::PolicyType

copy()

destroy()

the_name : string
the_parent : PortableServer::POA

the_POAmanager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

0..n 1

the_parent

1..1
the_POAmanager

1..n

0..n

0..n

0..1

0..1
get_state()

the_children : PortableServer::POAList

7
enforces

*

id : CORBA::OctetSeq
the_POAManagerFactory :

PortableServer::POAManagerFactory

1..n

the_POAmanagerFactory

1..1

PortableServer::POAManagerFactory
(from Portable Server)

create_POAManager()
list()
find()
July 2002 CORBA, v3.0: UML Description of PortableServer 11-53

11

ons.

itly

tly
tes
Figure 11-5 UML for PortableServer Policies

11.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in applicati

Note – In some of the following C++ examples, PortableServer names are not explic
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

11.6.1 Getting the Root POA

All server applications must obtain a reference to the root POA, either to use it direc
to manage objects, or to create new POA objects. The following example demonstra
how the application server can obtain a reference to the root POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
orb->resolve_initial_references(“RootPOA”);

= {USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

IdAssignmentPolicy

value:IdAssignmentPolicyValue
IdUniquessPolicy

value:IdUniquenessPolicyValue

ImplicitActivationPolicy

value:ImpliciActivationPolicyValue

LifespanPolicy

value:LifespanPolicyValue
RequestProcessingPolicy

value:RequestProcessingPolicyValue

ThreadPolicy

value:ThreadPolicyValue

ServantRetentionPolicy

value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

= {RETAIN, NON_RETAIN}

= {ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,

= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}= {UNIQUE_ID, MULTIPLE_ID}= {USER_ID, SYSTEM_ID}

= {TRANSIENT,
PERSISTENT}

MAIN_THREAD_MODEL}
11-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

OA
e

ch,

que

s to
in
e, the
.

ct Id
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

11.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The P
is created as a child of an existing POA. In this example, it is created as a child of th
root POA.

// C++
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
rootPOA->create_POA(“my_little_poa”,
PortableServer::POAManager::_nil(), policies);

11.6.3 Explicit Activation with POA-assigned Object Ids

By specifying theSYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this approa
objects are activated by performing theactivate_object operation on the POA with the
object in question. For this operation, the POA allocates, assigns, and returns a uni
identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id need
be valid only as long as the servant is active in the server. The Object Ids can rema
completely hidden and no servant manager need be provided. When this is the cas
identity and lifetime of the servant and the abstract object are essentially equivalent
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Obje
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that has theSYSTEM_ID,
USE_SERVANT_MANAGER , andRETAIN policies.

Assume this interface:

// IDL
interface Foo {

long doit();
};

This might result in the generation of the following skeleton:
July 2002 CORBA, v3.0: Usage Scenarios 11-55

11

may
jects
ther
icitly

this
er

n
rver
class POA_Foo : public ServantBase
{

public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{

public:
MyFooServant(POA_ptr poa, Long value)
: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() {CORBA::release(my_poa);}
virtual POA_ptr _default_POA()

{return POA::_duplicate(my_poa);}
virtual Long doit() {return my_value;}

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably inmain() :

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

11.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. This
be done for several reasons. For example, a programmer may know that certain ob
are commonly used, or act as initial points of contact through which clients access o
objects (for example, factories). The server could be implemented to create and expl
activate these objects during initialization, avoiding the need for a servant manager.

If an implementation has a reasonably small number of servants, the server may be
designed to keep them all active continuously (as long as the server is executing). If
is the case, the implementation need not provide a servant manager. When the serv
initializes, it could create all available servants, loading their state and identities from
some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operatio
would be used to activate all of the existing objects managed by the server during se
initialization. Assuming the POA has theUSE_SERVANT_MANAGER policy and no
11-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

m
A.
, and
ge

t Id.

own

se
ome
re
o

servant manager is associated with a POA, any request received by the POA for an
Object Id value not present in the Active Object Map will result in anOBJ_ADAPTER
exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate the
with well-known Object Id values during server initialization, before activating the PO
This approach ensures that the objects are always available when the POA is active
doesn’t require writing a servant manager. It has severe practical limitations for a lar
number of objects, though.

This example illustrates the explicit activation of an object using a user-chosen Objec
This example presumes a POA that has theUSER_ID, USE_SERVANT_MANAGER ,
andRETAIN policies.

The code is like the previous example, but replace the last portion of the example sh
above with the following code:

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(“myLittleFoo”);
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

11.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. This
example extends the previous example to illustrate this option:

// C++
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), “IDL:Foo:1.0”);
Foo_var foo = Foo::_narrow(obj);

// ...later...
MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

11.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the
requirements of object implementations necessary for their intended function. Becau
servant managers are local objects, and their use is limited to a single narrow role, s
simplifications in their implementation are possible. Note that these simplifications a
suggestions, not normative requirements. They are intended as examples of ways t
reduce the programming effort required to define servant managers.

A servant manager implementation must provide the following things:
July 2002 CORBA, v3.0: Usage Scenarios 11-57

11

lt

d that
cies

ry:
• implementation code for either

• incarnate() andetherealize() , or

• preinvoke() andpostinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the defau
servant manager on the root POA already supplies this implementation code. User-
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expecte
most servant managers can be activated on the root POA with its default set of poli
(see “POA Creation” on page 11-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy so that a servant manager can easily be activated.
Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that has theUSER_ID, USE_SERVANT_MANAGER , and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a
ServantActivator . The ORB supplies a servant activator skeleton class in a libra

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
};

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public

POA_PortableServer::ServantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

String_var s = PortbleServer::ObjectId_to_string
(oid);
11-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

the

d

from
lds a

or

est to

nt
the
rget

ulate
must
a

in
POA
if (strcmp(s, “myLittleFoo”) == 0) {
return new MyFooServant(poa, 27);

else {
throw CORBA::OBJECT_NOT_EXIST();

}
}

void etherealize(
const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};

11.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request on
reference. It is the responsibility of the ORB, in collaboration with the POA and the
server application to find or create an appropriate servant and perform the requeste
operation on it. Such an object is said to beincarnated(or incarnation) when it has an
active servant. Note that the client had to obtain the reference in question previously
some source. From the client’s perspective, the abstract object exists as long as it ho
reference, until it receives anOBJECT_NOT_EXIST system exception in a reply
from an attempted request on the object. Incarnation state does not imply existence
non-existence of the abstract object.

Note – This specification does not address the issues of communication or server
process activation, as they are immaterial to the POA interface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the requ
the appropriate POA.

To support object activation on demand, the server application must register a serva
manager with the appropriate POA. Upon receiving the request, if the POA consults
Active Object Map and discovers that there is no active servant associated with the ta
Object Id, the POA invokes theincarnate operation on the servant manager.

Note – An implication that this model has for GIOP is that the object key in the
request message must encapsulate the Object Id value. In addition, it may encaps
other values as necessitated by the ORB implementation. For example, the server
be able to determine to which POA the request should be directed. It could assign
different communication endpoint to each POA so that the POA identity is implicit
the request, or it could use a single endpoint for the entire server and encapsulate
July 2002 CORBA, v3.0: Usage Scenarios 11-59

11

in
t be
s the

t it
he

r

in

key
uld
tation
e

r
the

he

her
e a
identities in object key values.

Note that this is not a concrete requirement; the object key may not actually conta
any of those values. Whatever the concrete information is, the ORB and POA mus
able to use it to find the servant manager, invoke activate if necessary (that require
actual Object Id value), and/or find the active servant in some map.

The incarnate invocation passes the Object Id value to the servant manager. At this
point, the servant manager may take any action necessary to produce a servant tha
considers to be a valid incarnation of the object in question. The operation returns t
servant to the POA, which invokes the operation on it. Theincarnate operation may
alternatively raise anOBJECT_NOT_EXIST system exception that will be returned
to the invoking client. In this way, the user-supplied implementation is responsible fo
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id
the Active Object Map. (This example presumes theRETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a
for a record in a database that contains the object’s state. The servant manager wo
retrieve the state from the database, construct a servant of the appropriate implemen
class (assuming an object-oriented programming language), initialize it with the stat
from the database, and return it to the POA.

The example servant manager in the last section (Section 11.6.6, “Servant Manage
Definition and Creation,” on page 11-57) could be used for this scenario. Recall that
POA would have theUSER_ID, USE_SERVANT_MANAGER , andRETAIN
policies.

Given such aServantActivator , all that remains is initialization code such as the
following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);

CORBA::Object_var obj = poa->create_reference_with_id(
oid, “IDL:foo:1.0”);

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

11.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with t
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value, whet
it was assigned by the POA or the user. By doing this, an implementation may provid
11-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

ly
such

e

ame

d to
er

e

t
n
oded

e all
e

bal
servant manager that associates the POA-allocated Object Id values with persistent
stored state. It may also pass the POA-allocated Object Id values to POA operations
asactivate_object_with_id andcreate_reference_with_id .

A POA with thePERSISTENT policy may be destroyed and later reinstantiated in th
same or a different process. A POA with both theSYSTEM_ID andPERSISTENT
policies generates Object Id values that are unique across all instantiations of the s
POA.

11.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allowe
support multiple object identities simultaneously. If a POA allows multiple identities p
servant, the POA’s treatment of the servants is affected in the following ways:

• Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

• A servant cannot be mapped onto or converted to an individual object referenc
using that POA, since the identity is potentially ambiguous.

11.6.10 One Servant for All Objects

By using theUSE_DEFAULT_SERVANT policy, the developer can create a POA tha
will use a single servant to implement all of its objects. This approach is useful whe
there is very little data associated with each object, so little that the data can be enc
in the Object Id.

The following example illustrates this approach by using a single servant to incarnat
CORBA objects that export a given interface in the context of a server. This exampl
presumes a POA that has theUSER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

Two interfaces are defined in IDL. TheFileDescriptor interface is supported by objects
that will encapsulate access to operations in a file associated with a file system. Glo
operations in a file system, such as the ones necessary to createFileDescriptor objects,
are supported by objects that export theFileSystem interface.

// IDL
interface FileDescriptor {

typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (

in long num_bytes);
void destroy ();

};

interface FileSystem {
...
FileDescriptor open (
July 2002 CORBA, v3.0: Usage Scenarios 11-61

11

o

in string file_name,
in long flags);

...
};

Implementation of these two IDL interfaces may inherit from static skeleton classes
generated by an IDL to C++ compiler as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};

A single servant may be used to serve all requests issued to allFileDescriptor objects
created by aFileSystem object. The following fragment of code illustrates the steps t
perform when aFileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
{

fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

};
11-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

A
iptor

are

ing
after
e

ple,
l file

the
The following fragment of code illustrates howFileDescriptor objects are created as a
result of invoking an operation (open) exported by aFileSystem object. First, a local
file descriptor is created using the appropriate operating system call. Then a CORB
object reference is created and returned to the client. The value of the local file descr
will be used to distinguish the newFileDescriptor object from otherFileDescriptor
objects. Note thatFileDescriptor objects in the example are transient, since they use
the value of their file descriptors for their ObjectIds, and of course the file descriptors
only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

};

Any request issued to aFileDescriptor object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object is be
incarnated by invoking an operation that returns a reference to the target object and,
that, invokingPOA::reference_to_id . In C++, the operation used to obtain a referenc
to the target object is_this() . Typically, theObjectId value associated with the
reference will be used to retrieve the state of the target object. However, in this exam
such a step is not required since the only thing that is needed is the value for the loca
descriptor and that value coincides with theObjectId value associated with the
reference.

Implementation of theread operation is rather simple. The servant determines which
object it is incarnating, obtains the local file descriptor matching its identity, performs
appropriate operating system call, and returns the result in aDataBuffer sequence.

// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =

PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
July 2002 CORBA, v3.0: Usage Scenarios 11-63

11

t are
the

the

sn't

cy

OA

f
ntries
e of
ons
he

an
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

};

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs tha
not object-oriented (system calls in the Unix environment, as we have shown in
example).

• In another case, this technique is useful in handling scalability issues related to
number of CORBA objects that can be associated with a server. In the example
above, there may be a millionFileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA doe
introduce scalability problems but provides mechanisms to handle them.

11.6.11 Single Servant, Many Objects and Types, Using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to lega
systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes a P
that supports theUSER_ID, USE_DEFAULT_SERVANT , andRETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each o
them representing a separate entry in a Database. There may be several types of e
in the Database, representing different entity types in the Database model. Each typ
entry in the Database is associated with a separate interface that comprises operati
supported by the Database on entries of that type. All these interfaces inherit from t
DatabaseEntry interface. Finally, an object supporting theDatabaseAgent interface
supports basic operations in the database such as creating a new entry, destroying
existing entry, etc.

// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

};
...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
11-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);

void destroy_entry (
in string key);
...

};

Implementation of theDatabaseEntry interface may inherit from the standard dynamic
skeleton class as follows:

// C++
class DatabaseEntryImpl :

public PortableServer::DynamicImplementation
{

public:
DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _default_POA()
{

return poa;
}

};

On the other hand, implementation of theDatabaseAgent interface may inherit from a
static skeleton class generated by an IDL to C++ compiler as follows:

// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{

protected:
DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
virtual void destroy_entry (const char * key);
~DatabaseAgentImpl ();

};

A single servant may be used to serve all requests issued to allDatabaseEntry objects
created by aDatabaseAgent object. The following fragment of code illustrates the
steps to perform when aDatabaseAgent servant is created. First, access to the
July 2002 CORBA, v3.0: Usage Scenarios 11-65

11

is

g

mmon
database is initialized. As a result, some kind of descriptor (aDatabaseAccessPoint
local object) used to operate on the database is obtained. Finally, a servant will be
created and associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};

The code used to createDatabaseEntry objects representing entries in the database
similar to the one used for creatingFileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the correspondin
DatabaseEntry object. All requests issued to aDatabaseEntry object are handled by
the same servant because references to this type of object are associated with a co
POA created with theUSE_DEFAULT_SERVANT policy.

// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);

return entry;
};

Any request issued to aDatabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.
11-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

in
e

king

the

s
re is
Sometimes, a program may need to determine the type of an entry in the database
order to invoke operations on the entry. If that is the case, the servant may obtain th
type of an entry based on the interface supported by theDatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of invo
theget_interface operation exported by the reference to theDatabaseEntry object.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request

...
};

Note that in this example, we may have a billionDatabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the ORB at
server). No permanent storage is required for references toDatabaseEntry objects at
the server. Actually, references toDatabaseEntry objects will only occupy space:

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenario
where this scalability causes no penalty in terms of performance (basically, when the
no need to restore the state of an object, each time a request to it is being served).
July 2002 CORBA, v3.0: Usage Scenarios 11-67

11
11-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

InteroperabilityOverview 12
eous
its

ols
Contents

This chapter contains the following sections.

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heterogen
CORBA-compliant ORBs. The approach to “interORBability” is universal, because
elements can be combined in many ways to satisfy a very broad range of needs.

12.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB protoc
(ESIOPs) that are optimized for particular environments such as DCE.

Section Title Page

“Elements of Interoperability” 12-1

“Relationship to Previous Versions of CORBA” 12-4

“Examples of Interoperability Solutions” 12-5

“Motivating Factors” 12-8

“Interoperability Design Goals” 12-9
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 12-1

12

g

n
d to

of
Ps)

s”
and

.
ior

y

rse
from
B

ble
ge
r

l in
oses

.

12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for definin
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts ofimmediateandmediated
bridging of ORB domains. The Internet Inter-ORB Protocol (IIOP) forms the commo
basis for broad-scope mediated bridging. The inter-ORB bridge support can be use
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details
that ORB’s implementation, such as what particular IPC or protocols (such as ESIO
are used to implement theCORBAspecification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridge
that communicate using the IIOP. This approach works for both stand-alone ORBs,
networked ones that use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired
Since ORBs are not required to use the IIOP internally, the goal of not requiring pr
knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of aPrincipal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In man
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must trave
a bridge. The role of a bridge is to ensure that content and semantics are mapped
the form appropriate to one ORB to that of another, so that users of any given OR
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to ena
the easy construction of interoperability bridges between ORB domains. Such brid
products could be developed by ORB vendors, Sieves, system integrators, or othe
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely genera
nature, do not impact other ORB operation, and can be used for many other purp
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages, and dynamically generating implementations
12-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

12

n-
of
A

tax

ts a
PC
is

than

ch

ral
w).

tated
t

ng

by
sed
The inter-ORB bridge support can also be used to provide interoperability with no
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease
doing this will depend on the extent to which those systems conform to the CORB
Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syn
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that mee
minimal set of assumptions. It does not require or rely on the use of higher level R
mechanisms. The protocol is simple, scalable and relatively easy to implement. It
designed to allow portable implementations with small memory footprints and
reasonable performance, with minimal dependencies on supporting software other
the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between su
networking domains.

12.1.4 Internet Inter-ORB Protocol (IIOP)®

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neut
transport layer. It can also be used as the protocol between half-bridges (see belo

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessi
by the specific design center or intended operating environment of the ORB. In tha
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mappi
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol elements that are common to all such mappings. The GIOP
itself, however, does not provide complete interoperability, just as IDL cannot be u
to build complete programs. The IIOP and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 12-1 on page 12-4.
July 2002 CORBA, v3.0: Elements of Interoperability 12-3

12

cific

ific
to

ns

s to

ces

en
ed.

o

Figure 12-1 Inter-ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Spe
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the spec
environment, ESIOPs might support specialized capabilities such as those relating
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specificatio
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridge
be built between ORB domains that use the IIOP and ORB domains that use a
particular ESIOP.

12.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services and their domains. (ORB Servi
are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The
architecture defines the problem of ORB interoperability in terms of bridging betwe
those domains, and defines several ways in which those bridges can be construct
The bridges can be internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions t
previous versions ofCORBAto support request-level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request-level bridges. It is the server-side analogue of the Dynamic Invocation
Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to theDynamic Skeleton
Interfacechapter.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
12-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

12

rt
e

B
of

e

vide

ent-

or
GUI
will
ed to
port

a
hat
d to
C

by
alf-
• APIs for managing object references have been defined, building on the suppo
identified for the Relationship Service. The APIs are defined in Object Referenc
Operations in theORB Interfacechapter of this book. The Relationship Service is
described in the Relationship Service specification; refer to theCosObjectIdentity
Modulesection of that specification.

12.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-OR
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety
ways to satisfy particular product and customer needs. This section provides som
examples.

12.3.1 Example 1

ORB product A is designed to support objects distributed across a network and pro
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows bridges to be built between it and other ORBs that use environm
specific or proprietary protocols. To accomplish this, ORB A uses the IIOP and
provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support f
objects located on a single machine. For example, to support thousands of Fresco
objects operated on at near function-call speeds. In addition, some of the objects
need to be accessible from other machines and objects on other machines will ne
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to sup
the Internet IOP for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses
particular environment-specific protocol based on distributed computing services t
are commonly available at the target customer sites. In addition, ORB C is expecte
interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB
provides inter-ORB bridge support and a companion half-bridge product (supplied
the ORB vendor or some third-party) provides the connection to other ORBs. The h
bridge uses the IIOP to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:
July 2002 CORBA, v3.0: Examples of Interoperability Solutions 12-5

12

nd

half-

se
ere

, the
her
tion
ge
ay
s

eat
• In the CORBA Core part of this specification, standard APIs are provided by an
ORB to enable the construction of request-level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, a
by the object identity operations described in theInterface Repositorychapter of
this book.

• An Internet Inter-ORB Protocol (IIOP) (explained in theBuilding Inter-ORB
Bridgeschapter) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to u
the other protocols defined by the CORBA interoperability specifications must adh
to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example
standard APIs may be used to construct “half bridges” to the IIOP, relying on anot
“half bridge” to connect to another ORB. The standard APIs also support construc
of “full bridges,” without using the Internet IOP to mediate between separated brid
components. ORBs may also use the Internet IOP internally. In addition, ORBs m
use GIOP messages to communicate over other network protocol families (such a
Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to tr
it as an independent compliance point.
12-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

12
Figure 12-2 Examples of CORBA Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
July 2002 CORBA, v3.0: Examples of Interoperability Solutions 12-7

12

s. A
a
veral
e
on a

s to

to
ake

t
wo
ts
ven
rs

l to

r a

s,

by
12.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user need
large diversity of implementation techniques is evident. For example, the time for
request ranges over at least 5 orders of magnitude, from a few microseconds to se
seconds. The scope ranges from a single application to enterprise networks. Som
ORBs have high levels of security, others are more open. Some ORBs are layered
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reason
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible
access objects in one domain from another. For example, an “internet ORB” may m
public information widely available, but a “company ORB” will want to restrict wha
information can get out. Even if they used the same ORB implementation, these t
ORBs would be separate, so that the company could allow access to public objec
from inside the company without allowing access to private objects from outside. E
though individual objects should protect themselves, prudent system administrato
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractica
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until eithe
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configuration
resources, management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data) might also be done
creating sub-ORBs.
12-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

12

sons
s in
more

e

ate

ame
ess
the

to

ess
m,

is no

een

ocol

int,

d

12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are rea
why some of the objects an application might use would be in one ORB, and other
another ORB. Some objects and services are accessed over long distances, with
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementor sets expectations for the clients of th
objects.

One ORB might be used to retain links to information that is expected to accumul
over decades, such as library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the g
is over. Although while it is running, it makes sense for “chess ORB” objects to acc
the “archives ORB,” we would not expect the archives to try to keep a reference to
current board position.

12.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions ofCORBA
include:

• Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another.

• Reference Embedding, where invocation using a native object reference delegates
a special object whose job is to forward that invocation to another ORB.

• Alternative ORBs, where ORB implementations agree to coexist in the same addr
space so easily that a client or implementation can transparently use any of the
and pass object references created by one ORB to another ORB without losing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge betw
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common prot
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high-performance, small footpr
lightweight interoperability solutions.

• The design should scale, should not be unduly difficult to implement, and shoul
not unnecessarily restrict implementation choices.
July 2002 CORBA, v3.0: Interoperability Design Goals 12-9

12
• Interoperability solutions should be able to work with any vendors’ existing ORB
implementations with respect to their CORBA-compliant core feature set; those
implementations are diverse.

• All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on theCORBA:ORB pseudo-object and all the
operations onCORBA:Object) as well as type management (e.g., narrowing, as
needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
12-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ORBInteroperabilityArchitecture 13
n
B
nts
Contents

This chapter contains the following sections.

13.1 Overview

The original Interoperability RFP defines interoperability as the ability for a client o
ORB A to invoke an OMG IDL-defined operation on an object on ORB B, where OR
A and ORB B are independently developed. It further identifies general requireme
including in particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each
other’s implementation.

Section Title Page

“Overview” 13-1

“ORBs and ORB Services” 13-3

“Domains” 13-5

“Interoperability Between ORBs” 13-7

“Object Addressing” 13-11

“An Information Model for Object References” 13-14

“Service Context” 13-28

“Coder/Decoder Interfaces” 13-32

“Feature Support and GIOP Versions” 13-35

“Code Set Conversion” 13-37
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 13-1

13

e
ate

be
nts
lity

tion

de
e”
xes

RB
ore.
by

ins.
used

pping

ion
• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to b
independent of whether they are on the same or different ORBs, and not to mand
fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must
supported within a single ORB environment, such as location transparency. Eleme
of ORB functionality often correspond directly to such transparencies. Interoperabi
can be viewed as extending transparencies to span multiple ORBs.

In this architecture adomainis a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a distribu
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains inclu
naming domains, trust groups, resource management domains and other “run-tim
characteristics of a system. Technology domains identify common protocols, synta
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the O
itself: common object references, network addresses, security mechanisms, and m
However, it is possible for there to be multiple domains of the same type supported
a given ORB: internal representation on different machine types, or security doma
Conversely, a domain may span several ORBs: similar network addresses may be
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a ma
or bridging mechanismresides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destinat
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability.

• At ORB level, built into the ORB itself.
13-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

se

B’s
in

en
m,

and
s, or

ge
and
st.
s,

vices

RB
that

ce

.

d

13.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required byCORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. The
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an OR
core. It is an aim of this specification to allow for new ORB Services to be defined
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability betwe
ORBs, the ORB services used in the ORBs, and the correspondence between the
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolution
message encoding to advanced features such as support for security, transaction
replication.

An ORB Service is often related to a particular transparency. For example, messa
encoding – the marshaling and unmarshaling of the components of a request into
out of message buffers – provides transparency of the representation of the reque
Similarly, reference resolution supports location transparency. Some transparencie
such as security, are supported by a combination of ORB Services and Object Ser
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many O
Services include components which correspond to conventional Object Services in
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Servi
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies an
other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.
July 2002 CORBA, v3.0: ORBs and ORB Services 13-3

13

it is
ated

ct,
tain

t,
er

be
a
ple

ract

r is

lish
ight
true
nd
ne or

e
rder

ides

r to
mic
te,
d

In order to discuss how the relationships between ORB Services are established,
necessary to describe an abstract view of how an operation invocation is communic
from client to server object.

1. The client generates an operation request, using a reference to the server obje
explicit parameters, and an implicit invocation context. This is processed by cer
ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming reques
transforming it into a form directly suitable for invoking the operation on the serv
object.

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not
one-to-one and in some circumstances may be far more complex. For example, if
client application requests an operation on a replicated server, there may be multi
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may inte
with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a serve
replicated.

• Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

• Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to estab
which ORB Services are required and how they are provided. Service selection m
in general require negotiation to select protocols or protocol options. The same is
between different ORBs: it is necessary to agree which ORB Services are used, a
how each transforms the request. Ultimately, these choices become manifest as o
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of th
others and, in appropriately constructed ORBs, services could be layered in any o
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA prov
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in orde
invoke operations on a server object. Correspondingly, where a client requires dyna
attributes to be associated with specific invocations, or administrative policies dicta
it must be possible to cause the appropriate ORB Services to be used on client an
13-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ple,

ted

f

used

t of

by
nd

ains).

a

and

hem
er,
ent
server sides of the invocation path. Where this is not possible - because, for exam
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

13.3 Domains

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presen
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions o
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concep
domainsto describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding
common rules. It is a powerful modelling concept which can simplify the analysis a
description of complex systems. There may be many types of domains (e.g.,
management domains, naming domains, language domains, and technology dom

13.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modeled as an object
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within t
which characterize a domain. This information is disjoint between domains. Howev
an object may be a member of several domains, of similar kinds as well as of differ
kinds, and so the sets of members of domains may overlap.

Representation Representation

Reference Reference

Security

Networking
July 2002 CORBA, v3.0: Domains 13-5

13

n is

of

thin
d to

g

ion
ers

e

d,
the
rior

d to
t

ry,
The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domai
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protocol

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained wi
another domain, and federation, where two domains are joined in a manner agree
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mappin
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destinat
domain. Note that the use of the term “bridge” in this context is conceptual and ref
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these ar
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is require
or that if the bridge mechanism filters such a concept out, nothing is lost as far as
supported objects are concerned. In other words, one domain may support a supe
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains nee
be compatible. This specification assumes that both domains are strictly complian
with the CORBA Object Model and theCORBAspecifications. This includes the use of
OMG IDL when defining interfaces, the use of the CORBA Core Interface Reposito
and other modifications that were made toCORBA. Variances from this model could
easily compromise some aspects of interoperability.
13-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ive

RB
n

ust

.g.,
en
tly:

e
al

ture
d

nge

all

s
e

ich

ies
r

,
lly
13.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and rece
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” O
interoperability extends this definition to cases in which client and server objects o
different ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirement is that bridging m
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e
if one ORB could only be a client to another) then transparency would not have be
provided, because object references passed as parameters would not work correc
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only on
direction. This is purely to simplify discussions, and does not imply that unidirection
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architec
does not, however, prescribe any particular decomposition of ORB functionality an
interoperability into ORB Services and corresponding domain types. There is a ra
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is
CORBAimplies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain type
would be pre-determined and allowance made for additional domain types to b
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those wh
can arise with a single type of ORB (e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain boundar
will need to establish locally meaningful Principals for the caller identity, and fo
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types
and so requests crossing type domain boundaries would need to establish loca
meaningful type identifiers (and perhaps more).
July 2002 CORBA, v3.0: Interoperability Between ORBs 13-7

13

of a

ing

be

l
nd
s. It
ies

ls or

r
ed,

m, or
the

ing
tions.

een

ain

t

Conversely, not all of these problems need to appear when connecting two ORBs
different type (e.g., two different products). Examples include:

• They could be administered to share user visible naming domains, so that nam
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natura
mappings. CORBA only specifies the application level view of object interactions, a
requires that distribution transparencies conceal a whole range of lower level issue
follows that within any particular ORB, the mechanisms for supporting transparenc
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal mode
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse o
superficial to allow detailed analysis of interoperability issues between ORBs. Inde
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanis
bridge, is required to transform relevant elements of the interaction as they traverse
boundary. There are essentially two approaches to achieving this: mediated bridg
and immediate bridging. These approaches are described in the following subsec

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on betw
the two domains.

13.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that dom
and an agreed, common form.

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreemen
between two particular ORB/domain implementations to a universal standard.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging
13-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

tic

ach

are

one

ted
ut

n
ary

le

RB
chine
a

ms.
f
g to

n

n
s

• There can be more than one common form, each oriented or optimized for a
different purpose.

• If there is more than one possible common form, then which is used can be sta
(e.g., administrative policy agreed between ORB vendors, or between system
administrators) or dynamic (e.g., established separately for each object, or on e
invocation).

• Engineering of this approach can range from in-line specifically compiled (comp
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the common form.

13.4.3.2 Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of
domain and the internal form of the other.

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not media
via a third party, and can be specifically engineered for each pair of domains) b
sacrifices flexibility and generality of interoperability to achieve this.

• This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e., there is no change of technology). For example, whe
crossing security administration domains between similar ORBs, it is not necess
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishab
when private mechanisms are used between ORB/domain implementations.

13.4.3.3 Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span O
boundaries and ORBs can span machine and system boundaries; conversely, a ma
may support, or a process may have access to more than one ORB (or domain of
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or syste
It also means that the distinction between an ORB and a bridge can be a matter o
perspective: there is a duality between viewing inter-system messaging as belongin
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domai
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge betwee
two ORBs or domains is implemented wholly within a process or system which ha
access to both. In such cases, the engineering issues of inter-domain bridging are
July 2002 CORBA, v3.0: Interoperability Between ORBs 13-9

13

all
lely

an
vel”

not
ly
set
ing

d to

ain
hide
al

ses

ds of

affic
y-
ific,

of
ture
confined, possibly to a single system or process. If it were practical to implement
bridging in this way, then interactions between systems or processes would be so
within a single domain or ORB.

13.4.3.4 Bridging Level

As noted at the start of this section, bridges may be implemented both internally to
ORB and as layers above it. These are called respectively “in-line” and “request-le
bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton
Interface, to receive and issue requests. However, there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is
at this time exposed through general purpose public APIs. (Those APIs expose on
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent
with the Transaction Service is that special purpose APIs are defined to allow bridg
of each kind of context. This means that request-level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, an
make the appropriate API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of dom
boundaries should be transparent to requests: that the goal of interoperability is to
such boundaries. However, if this were always the goal, then there would be no re
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such ca
requirepolicy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kin
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the tr
being bridged. It could in general be an application-specific policy, and many polic
mediated bridges could be parts of applications. Those might be organization-spec
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition
policy mediation components, without loss of access to any other system infrastruc
that may be needed to identify or enforce the appropriate policies.
13-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

e

his
a

ble

full-

’t

ject
me

d by
13.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will b
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the IIOP is specifically expected to serve.) T
use of “backbone topology” is true both on a large scale and a small scale. While
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially availa
ORB as its backbone.

Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

13.5 Object Addressing

The Object Model (see Chapter 1, Requests) defines an object reference as an ob
name that reliably denotes a particular object. An object reference identifies the sa
object each time the reference is used in a request, and an object may be denote
multiple, distinct references.

Backbone ORB

ORB A

ORB CORB D

ORB B
July 2002 CORBA, v3.0: Object Addressing 13-11

13

to
ding
.

sents
ter-
is

er

the

eed

the
ject

e
ge
the

ges in
r,
ach

to

nd
The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need
distinguish between references to objects in a local ORB or in a remote one. Provi
this transparency can be quite involved, and naming models are fundamental to it

This section discusses models for naming entities in multiple domains, and
transformations of such names as they cross the domain boundaries. That is, it pre
transformations of object reference information as it passes through networks of in
ORB bridges. It uses the word “ORB” as synonymous with referencing domain; this
purely to simplify the discussion. In other contexts, “ORB” can usefully denote oth
kinds of domain.

13.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use
notationD0.R0to denote an object referenceR0 from domainD0; this is itself an
object reference. This is called “domain-relative” referencing (or addressing) and n
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since
bridge knows from which ORB each request (or response) came, including any ob
references embedded in it.

13.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s nativ
format. Also, in cases where that object originated from some other ORB, the brid
must associate each newly created “proxy” object reference with (what it sees as)
original object reference.

Several basic schemes to solve these two problems exist. These all have advanta
some circumstances; all can be used, and in arbitrary combination with each othe
since CORBA object references are opaque to applications. The ramifications of e
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference in
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, a
vice versa.
13-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

s
ple
still
eves
ary

llows:

jects

path
igh
2. Reference Encapsulation:The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
referenceD0.R, originating in domainD0, traversed domainsD1... D4 it could be
identified in D4 as proxy referenced3.d2.d1.d0.R, wheredn is the address ofDn
relative toDn+1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation:Like object reference translation, this scheme hold
some state in the bridge. However, it supports sharing that state between multi
object references by adding a domain-based route identifier to the proxy (which
holds the original reference, as in the reference encapsulation scheme). It achi
this by providing encoded domain route information each time a domain bound
is traversed; thus if a referenceD0.R, originating in domainD0, traversed domains
D1...D4 it would be identified inD4 as(d3, x3).R, and inD2 as(d1,x1).R, and so
on, wheredn is the address ofDn relative toDn+1, andxn identifies the pair(dn-1,
xn-1).

Figure 13-5 Domain Reference Translationsubstitutes domain referencesduring bridging.

4. Reference Canonicalization:This scheme is like domain reference translation,
except that the proxy uses a “well-known” (e.g., global) domain identifier rather
than an encoded path. Thus a referenceR, originating in domainD0 would be
identified in other domains asD0.R.

Observations about these approaches to inter-domain reference handling are as fo

• Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local ob
as alien references.

• A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any
traversing the same sequence of domains, such optimization has particularly h
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
July 2002 CORBA, v3.0: Object Addressing 13-13

13

g,
nce
PIs
e)

e
.

ame

d
f

ion.

uld

y
. It

ns,
• With the general purpose APIs defined inCORBA, object reference translation can
be supported even by ORBs not specifically intended to support efficient bridgin
but this approach involves the most state in intermediate bridges. As with refere
encapsulation, a topology service could optimize individual object references. (A
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interfac

• The chain of addressing links established with both object and domain referenc
translation schemes must be represented as state within the network of bridges
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical n
spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Model for Object References

This section provides a simple, powerful information model for the information foun
in an object reference. That model is intended to be used directly by developers o
bridging technology, and is used in that role by the IIOP, described in theGeneral
Inter-ORB Protocolchapter,Object Referencessection.

13.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocat

• What type is it?Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

• What protocols are supported?Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

• What ORB Services are available?As noted in Section 13.2.3, “Selection of ORB
Services” on page 13-4, several different ORB Services might be involved in an
invocation. Providing information about those services in a standardized way co
in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data
structure has been provided. This data structure need not be used internally to an
given ORB, and is not intended to be visible to application-level ORB programmers
should be used only when crossing object reference domain boundaries, within
bridges.

This data structure is designed to be efficient in typical single-protocol configuratio
while not penalizing multiprotocol ones.
13-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

to

e

meter

f
cy

as a

ls)
module IOP { // IDL

// Standard Protocol Profile tag values

typedef unsigned long ProfileId;

struct TaggedProfile {
ProfileId tag;
sequence <octet> profile_data;

};
typedef sequence <TaggedProfile> TaggedProfileSeq ;

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles;

};

// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.

typedef unsigned long ComponentId;
struct TaggedComponent {

ComponentId tag;
sequence <octet> component_data;

};
typedef sequence<TaggedComponent> TaggedComponentSeq;

};

13.6.3 IOR Profiles

Object references have at least onetagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports need
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of thos
profile entries are wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a para
in an IDL operation invocation (or reply), an IOR which reflects, in its contained
profiles, the full protocol understanding of the operation client (or server in case o
reply) may be sent. A receiving ORB which operates (based on topology and poli
information available to it) on profiles rather than the received IOR as a whole, to
create a derived reference for use in its own domain of reference, is placing itself
bridge between reference domains. Interoperability inhibiting situations can arise
when an orb sends an IOR with multiple profiles (using one of its supported protoco
July 2002 CORBA, v3.0: An Information Model for Object References 13-15

13

ject,

R
RB

l
gh

e

ed-

rk
in
able
an
r it

m

ere
5)

e
be
he

ng.
this
ious
e
son
to a receiving orb, and that receiving orb later returns a derived reference to that ob
which has had profiles or profile component data removed or transformed from the
original IOR contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of IO
conformance may be associated with the conformance requirements for a given O
interoperability protocol:

• Full IOR conformance requires that an orb which receives an IOR for an object
passed to it through that ORB interoperability protocol, shall recover the origina
IOR, in its entirety, for passing as a reference to that object from that orb throu
that same protocol

• Limited-Profile IOR conformance requires that an orb which receives an IOR
passed to it through a given ORB interoperability protocol, shall recover all of th
standard information contained in the IOR profile for that protocol, whenever
passing a reference to that object, using that same protocol, to another ORB.

Note –Conformance to IIOP versions 1.0, 1.1 and 1.2 only requires support of limit
Profile IOR conformance, specifically for the IIOP IOR profile. However, due to
interoperability problems induced by Limited-Profile IOR conformance, it is now
deprecated by the CORBA 2.4 specification for an orb to not support Full IOR
conformance. Some future IIOP versions could require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an IOR for various
reasons which may be broadly categorized as transient ones like temporary netwo
outage, and non-transient ones like unavailability of appropriate protocol software
the ORB. The decision about the category of outage that causes an ORB to be un
to use any profile from an IOR is left up to the ORB. At an appropriate point, when
ORB discovers that it is unable to use any profile in an IOR, depending on whethe
considers the reason transient or non-transient, it should raise the standard syste
exceptionTRANSIENT with standard minor code 2, orIMP_LIMIT with the
standard minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined h
are for the IIOP (see Section 15.7.3, “IIOP IOR Profile Components” on page 15-5
and for use in “multiple component profiles.” Profile tags in the range0x80000000
through0xffffffff are reserved for future use, and are not currently available for
assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” typ
ID (a string which contains only a single terminating character). Type IDs may only
“Null” in any message, requiring the client to use existing knowledge or to consult t
object, to determine interface types supported. The type ID is a Repository ID
identifying the interface type, and is provided to allow ORBs to preserve strong typi
This identifier is agreed on within the bridge and, for reasons outside the scope of
interoperability specification, needs to have a much broader scope to address var
problems in system evolution and maintenance. Type IDs support detection of typ
equivalence, and in conjunction with an Interface Repository, allow processes to rea
about the relationship of the type of the object referred to and any other type.
13-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ver
t
e
t the
ated
but
r

he

,

ts

R
een
in
This
t,
get

ing

s

The type ID, if provided by the server, indicates the most derived type that the ser
wishes to publish, at the time the reference is generated. The object’s actual mos
derived type may later change to a more derived type. Therefore, the type ID in th
IOR can only be interpreted by the client as a hint that the object supports at leas
indicated interface. The client can succeed in narrowing the reference to the indic
interface, or to one of its base interfaces, based solely on the type ID in the IOR,
must not fail to narrow the reference without consulting the object via the “_is_a” o
“_get_interface” pseudo-operations.

ORBs claiming to support the Full-IOR conformance are required to preserve all t
semantic content of any IOR (including the ordering of each profile and its
components), and may only apply transformations which preserve semantics (e.g.
changing Byte order for encapsulation).

For example, consider an echo operation for object references:

interface Echoer {Object echo(in Object o);};

Assume that the method body implementing this “echo” operation simply returns i
argument. When a client application invokes the echo operation and passes an
arbitrary object reference, if both the client and server ORBs claim support to Full IO
conformance, the reference returned by the operation is guaranteed to have not b
semantically altered by either client or server ORB. That is, all its profiles will rema
intact and in the same order as they were present when the reference was sent.
requirement for ORBs which claim support for Full-IOR conformance, ensures tha
for example, a client can safely store an object reference in a naming service and
that reference back again later without losing information inside the reference.

13.6.4 Standard IOR Profiles

module IOP {
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;
const ProfileId TAG_SCCP_IOP = 2;

typedef sequence <TaggedComponent> MultipleComponentProfile;
};

13.6.4.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB
Protocol. TheProfileBody of this profile, described in detail in Section 15.7.2, “IIOP
IOR Profiles” on page 15-52, contains a CDR encapsulation of a structure contain
addressing and object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOP profile also includes asequence<TaggedComponent> that
can contain additional information supporting optional IIOP features, ORB service
such as security, and future protocol extensions.
July 2002 CORBA, v3.0: An Information Model for Object References 13-17

13

r
the

f

s

s.
s
rent

in
Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with IIOP by encoding
their additional profile information as components in theTAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create o
understand any other profile, nor are they required to create or understand any of
components defined for other protocols that might share theTAG_INTERNET_IOP
profile with IIOP.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of
the IIOP::ProfileBody_1_1 type, described in Section 15.7.2, “IIOP IOR Profiles” on
page 15-52.

13.6.4.2 The TAG_MULTIPLE_COMPONENTS Profile

TheTAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is o
type MultipleComponentProfile . In this case, the profile consists of a list of
protocol components, the use of which must be specified by the protocol using thi
profile. This profile may be used to carry IOR components, as specified in Section
13.6.5, “IOR Components” on page 13-18.

The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of theMultipleComponentProfile type shown above.

13.6.4.3 The TAG_SCCP_IOP Profile

See the CORBA/IN Interworking specification (dtc/2000-02-02).

13.6.5 IOR Components

TaggedComponent s contained inTAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID:The compound tag that is obtained from OMG.

• Structure and encoding:The syntax of the component data and the encoding rule
If the component value is encoded as a CDR encapsulation, the IDL type that i
encapsulated and the GIOP version which is used for encoding the value, if diffe
than GIOP 1.0, must be specified as part of the component definition.

• Semantics:How the component data is intended to be used.

• Protocols:The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

• At most once:whether more than one instance of this component can be included
a profile.
13-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

In

ce

ese

ified
Specifications of protocols must describe how the components affect the protocol.
addition, a protocol definition must specify, for each TaggedComponent, whether
inclusion of the component in profiles supporting the protocol is required
(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB
claiming to support Full-IOR conformance shall not drop optional components, on
they have been added to a profile.

13.6.6 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP andTAG_MULTIPLE_COMPONENTS profiles, and may
apply to IIOP, other GIOPs, ESIOPs, or other protocols. An ORB must not drop th
components from an existing IOR.

module IOP {
const ComponentId TAG_ORB_TYPE = 0;
const ComponentId TAG_CODE_SETS = 1;
const ComponentId TAG_POLICIES = 2;
const ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3;

const ComponentId TAG_ASSOCIATION_OPTIONS = 13;
const ComponentId TAG_SEC_NAME = 14;
const ComponentId TAG_SPKM_1_SEC_MECH = 15;
const ComponentId TAG_SPKM_2_SEC_MECH = 16;
const ComponentId TAG_KerberosV5_SEC_MECH = 17;
const ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;
const ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
const ComponentId TAG_SSL_SEC_TRANS = 20;
const ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;
const ComponentId TAG_ GENERIC_SEC_MECH = 22;
const ComponentId TAG_FIREWALL_TRANS = 23;
const ComponentId TAG_SCCP_CONTACT_INFO = 24;
const ComponentId TAG_JAVA_CODEBASE = 25;
const ComponentId TAG_TRANSACTION_POLICY = 26;
const ComponentId TAG_MESSAGE_ROUTERS = 30;
const ComponentId TAG_OTS_POLICY = 31;
const ComponentId TAG_INV_POLICY = 32;
const ComponentId TAG_CSI_SEC_MECH_LIST = 33;
const ComponentId TAG_NULL_TAG = 34;
const ComponentId TAG_SECIOP_SEC_TRANS = 35;
const ComponentId TAG_TLS_SEC_TRANS = 36;
const ComponentId TAG_ACTIVITY_POLICY = 37;
const ComponentId TAG_INET_SEC_TRANS = 123;

};

The following additional components that can be used by other protocols are spec
in the DCE ESIOP chapter of this document andCORBAServices, Security Service, in
the Security Service for DCE ESIOP section:

const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;
July 2002 CORBA, v3.0: An Information Model for Object References 13-19

13

n
or

MG

ill
ill

e

rt

-

const ComponentId TAG_ENDPOINT_ID_POSITION = 6;
const ComponentId TAG_LOCATION_POLICY = 12;
const ComponentId TAG_DCE_STRING_BINDING = 100;
const ComponentId TAG_DCE_BINDING_NAME = 101;
const ComponentId TAG_DCE_NO_PIPES = 102;
const ComponentId TAG_DCE_SEC_MECH = 103; // Security Service

13.6.6.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB a
object reference is coming from, to work around problems with that particular ORB,
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of typeunsigned long ,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the O
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and w
receive a new ORB type ID in return. A list of ORB type descriptions and values w
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For
profiles supporting IIOP 1.1 or greater, it is optionally present.

13.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, th
following standard IOR Component is defined for support in IIOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of
type

struct {
string HostID,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of theTAG_ALTERNATE_IIOP_ADDRESS component type
may be included in a version 1.2TAG_INTERNET_IOP Profile. Each of these
alternative addresses may be used by the client orb, in addition to the host and po
address expressed in the body of the Profile. In cases where one or more
TAG_ALTERNATE_IIOP_ADDRESS components are present in a
TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

13.6.6.3 Other Components

The following standard components are specified in various OMG specifications:

• TAG_CODE_SETS - See Section 13.10.2.4, “CodeSet Component of IOR Multi
Component Profile” on page 13-43.
13-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ags

n

• TAG_POLICIES - See the CORBA Messaging chapter.

• TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section.

• TAG_ASSOCIATION_OPTIONS - See the Security Service specification, Tag
Association Options section.

• TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism T
section.

• TAG_GENERIC_SEC_MECH and all other tags with names in the form
TAG_*_SEC_MECH - See the Security Service specification, Mechanism Tags
section.

• TAG_FIREWALL_SEC - See the Firewall specification (orbos/98-05-04).

• TAG_SCCP_CONTACT_INFO - See the CORBA/IN Interworking specification
(telecom/98-10-03).

• TAG_JAVA_CODEBASE - See the Java to IDL Language Mapping specification
(formal/99-07-59), Codebase Transmission section.

• TAG_TRANSACTION_POLICY - See the Object Transaction Service specificatio
(formal/00-06-28).

• TAG_MESSAGE_ROUTERS - See the CORBA Messaging chapter.

• TAG_OTS_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

• TAG_INV_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

• TAG_INET_SEC_TRANS - See the Security Service specification
(formal/00-06-25).

• TAG_CSI_SEC_MECH_LIST, TAG_NULL_TAG, TAG_SECIOP_SEC_TRANS,
TAG_TLS_SEC_TRANS - See the Secure Interoperability chapter.

• TAG_ACTIVITY_POLICY - See the Additional Structuring Mechanisms for OTS
specification (orbos/01-11-08).

• TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key
Component” on page 16-19).

• TAG_ENDPOINT_ID_POSITION (See Section 16.5.5, “Endpoint ID Position
Component” on page 16-20).

• TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

• TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-CIOP String Binding
Component” on page 16-17).

• TAG_DCE_BINDING_NAME (See Section 16.5.2, “DCE-CIOP Binding Name
Component” on page 16-18).
July 2002 CORBA, v3.0: An Information Model for Object References 13-21

13

n

t

le

s

an

ns
te

e by

s.
will
• TAG_DCE_NO_PIPES (See Section 16.5.3, “DCE-CIOP No Pipes Component” o
page 16-19).

13.6.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall no
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a sing
profile, possibly with some information (e.g., components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profile
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile within
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using aTAG_MULTIPLE_COMPONENTS profile
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitio
are those whose tag and data format is specified in OMG documents. For priva
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for us
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tag
Neither allocation nor registration indicates any “standard” status, only that the tag
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

13.6.8 IOR Creation and Scope

IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whatever
form they find appropriate, including possibly using the IOR structure. Bridges will
normally use IORs to mediate transfers where that standard is appropriate.
13-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

e

se

t

This
13.6.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_string operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form mightnot
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than th
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and par
stringified IORs, so that in some cases an object reference stringified by one ORB
could be destringified by another.

To allow a stringified object reference to be internalized by what may be a differen
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format.
helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

(1) <oref> ::= <prefix> <hex_Octets>
(2) <prefix> ::= <i><o><r>“:”
(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
(4) <hex_Octet> ::= <hexDigit> <hexDigit>
(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

| “6” | “7” | “8” | “9”
(7) <a> ::= “a” | “A”
(8) ::= “b” | “B”
(9) <c> ::= “c” | “C”
(10) <d> ::= “d” | “D”
(11) <e> ::= “e” | “E”
(12) <f> ::= “f” | “F”
(13) <i> :: = “i” | “I”
(14) <o> :: = “o” | “O”
(15) <r> :: = “r” | “R”

Note – The case for characters in a stringified IOR is not significant.
July 2002 CORBA, v3.0: An Information Model for Object References 13-23

13

IOR,
IOP
.)

ur

of

P

The hexadecimal strings are generated by first turning an object reference into an
and then encapsulating the IOR using the encoding rules of CDR, as specified in G
1.0. (See Section 15.3, “CDR Transfer Syntax” on page 15-4 for more information
The content of the encapsulated IOR is then turned into hexadecimal digit pairs,
starting with the first octet in the encapsulation and going until the end. The high fo
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.10 Object URLs

To address the problem of bootstrapping and allow for more convenient exchange
human-readable object references,ORB::string_to_object allows URLs in the
corbaloc andcorbaname formats to be converted into object references.

If conversion fails, string_to_object raises aBAD_PARAM exception with one of
following standard minor codes, as appropriate:

• 7 - string_to_object conversion failed due to bad scheme name
• 8 - string_to_object conversion failed due to bad address
• 9 - string_to_object conversion failed due to bad bad schema specific part
• 10 - string_to_object conversion failed due to non specific reason

13.6.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more
easily manipulated by users thanIOR URLs. Currently,corbaloc URLs denote
objects that can be contacted by IIOP orresolve_initial_references . Other transport
protocols can be explicitly specified when they become available. Examples of IIO
and resolve_initial_references (rir:) based corbaloc URLs are:

corbaloc::555xyz.com/Prod/TradingService
corbaloc:iiop:1.1@555xyz.com/Prod/TradingService
corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService
corbaloc:rir:/TradingService
corbaloc:rir:/NameService

A corbaloc URL contains one or more:

• protocol identifiers

• protocol specific components such as address and protocol version information

When therir protocol is used, no other protocols are allowed.

After the addressing information, acorbaloc URL ends with a single object key.

The full syntax is:

<corbaloc> = “corbaloc:”<obj_addr_list>[“/”<key_string>]
<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>
13-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

n.
ject

L.

-

.

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = “:” | <iiop_prot_token>”:”
<iiop_prot_token> = “iiop”
<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_Host_Name | ip_address
<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>”:”
<future_prot_token> = possible examples: “atm” | “dce”
<future_prot_addr> = protocol specific address

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address informatio
This list is used in an implementation-defined manner to address the object An ob
may be contacted by any of the addresses and protocols.

Note – If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The
comma ‘,’ and ‘/’ characters are specifically prohibited in this component of the UR

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does
not have a version tag or address. See Section 13.6.10.2, “corbaloc:rir URL”.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS
style host name or IP address. See Section 13.6.10.3, “corbaloc:iiop URL”” for
the iiop specific definitions.

future_prot_addr : a placeholder for futurecorbaloc protocols.

future_prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop ” and “rir” are
defined.

future_prot_addr : a protocol specific address and possibly protocol version
information. An example of this foriiop is “1.1@555xyz.com ”.

key_string: a stringified object key.

The key_string corresponds to the octet sequence in theobject_key member of a
GIOPRequest or LocateRequest header as defined in section 15.4 of CORBA 2.3
The key_string uses the escape conventions described in RFC 2396 to map away
July 2002 CORBA, v3.0: An Information Model for Object References 13-25

13

r the

s

-

from octet values that cannot directly be part of a URL. US-ASCII alphanumeric
characters are not escaped. Characters outside this range are escaped, except fo
following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.

13.6.10.2 corbaloc:rir URL

The corbaloc:rir URL is defined to allow access to the ORB’s configured initial
references through a URL.

The protocol address syntax is:

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version
or address information whenrir is used.

rir_prot_token: The token “rir ” identifies this protocol..

For acorbaloc:rir URL, the <key_string> is used as the argument to
resolve_initial_references . An empty<key_string> is interpreted as the default
“NameService ”.

The rir protocol can not be used with any other protocol in a URL.

13.6.10.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environment
The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>”:”
<iiop_default> = “:”
<iiop_prot_token> = “iiop”
<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_Host_Name | ip_address
<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS
style host name or IP address.
13-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

.

f

s

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop ”

iiop_address:a single address

host: DNS-style host name or IP address. If not present, the local host is assumed

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. I
the version is absent, 1.0 is assumed.

ip_address:numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). Default is2809.

13.6.10.4 corbaloc Server Implementation

The only requirements on an object advertised by acorbaloc URL are that there
must be a software agent listening on the host and port specified by the URL. Thi
agent must be capable of handling GIOPRequest andLocateRequest messages
targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement
lightweight object location forwarding agents that respond to GIOPRequest
messages withReply messages with aLOCATION_FORWARD status, and respond
to GIOPLocateRequest messages withLocateReply messages.

13.6.10.5 corbaname URL

The corbaname URL scheme is described in the Naming Service specification. It
extends the capabilities of thecorbaloc scheme to allow URLs to denote entries in a
Naming Service. Resolvingcorbaname URLs does not require a Naming Service
implementation in the ORB core. Some examples are:

corbaname::555objs.com#a/string/path/to/obj

This URL specifies that at host555objs.com , a object of typeNamingContext
(with an object key ofNameService) can be found, or alternatively, that an agent is
running at that location which will return a reference to aNamingContext . The
(stringified) namea/string/path/to/obj is then used as the argument to aresolve
operation on thatNamingContext . The URL denotes the object reference that
results from that lookup.

corbaname:rir:#a/local/obj

This URL specifies that the stringified namea/local/obj is to be resolved relative to
the naming context returned byresolve_initial_references(“NameService”) .
July 2002 CORBA, v3.0: An Information Model for Object References 13-27

13

ed
r>

:

es

ly

xt
sts
13.6.10.6 Future corbaloc URL Protocols

This specification only defines use of iiop with corbaloc. New protocols can be add
to corbaloc as required. Each new protocol must implement the <future_prot_add
component of the URL and define a described in Section 13.6.10.1, “corbaloc
URL” on page 13-24.”

A possible example of a future corbaloc URL that incorporates an ATM address is

corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX

13.6.10.7 Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.
Implementations may choose to provide these or other URL schemes to support
additional ways of denoting objects with URLs.

Table 13-1 lists the required and some optional formats.

13.7 Service Context

Emerging specifications for Object Services occasionally require service-specific
context information to be passed implicitly with requests and replies. The
Interoperability specifications define a mechanism for identifying and passing this
service-specific context information as “hidden” parameters. The specification mak
the following assumptions:

• Object Service specifications that need additional context passed will complete
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume conte
information at appropriate points in the process of sending and receiving reque
and replies.

Table 13-1 URL formats

Scheme Description Status

IOR: Standard stringified IOR format Required

corbaloc: Simple object reference. rir: must be supported. Required

corbaname: CosName URL Required

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is
accessible via ftp protocol.

Optional

http:// Specifies an HTTP URL that returns an object
URL/IOR.

Optional
13-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

be

less

ny
e
and

h
ID

e-
in

t
ndle

ist.
that
• It is an ORB’s responsibility to determine when to send service-specific context
information, and what to do with such information in incoming messages. It may
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but neverthe
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service–specific information. It does not describe a
service-specific information. It only describes a mechanism for transmitting it in th
most general way possible. The mechanism is currently used by the DCE ESIOP
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB
Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed throug
GIOP will be allocated a unique service context ID value by OMG. Service context
values are of typeunsigned long . Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};
typedef sequence <ServiceContext>ServiceContextList;

};

The context data for a particular service will be encoded as specified for its servic
specific OMG IDL definition, and that encoded representation will be encapsulated
the context_data member ofIOP::ServiceContext . (See Section 15.3.3,
“Encapsulation” on page 15-14). Thecontext_id member contains the service ID
value identifying the service and data format. Context data is encapsulated in octe
sequences to permit ORBs to handle context data without unmarshaling, and to ha
unknown context data types.

During request and reply marshaling, ORBs will collect all service context data
associated with theRequestor Replyin a ServiceContextList , and include it in the
generated messages. No ordering is specified for service context data within the l
The list is placed at the beginning of those messages to support security policies
may need to apply to the majority of the data in a request (including the message
headers).
July 2002 CORBA, v3.0: Service Context 13-29

13

h
ext
for

ext
A

IDs
ice

for
-

t

.

Each Object Service requiring implicit service-specific context to be passed throug
GIOP will be allocated a unique service context ID value by the OMG. Service cont
ID values are of type unsigned long. Object service specifications are responsible
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The high-order 24 bits of a service context ID contain a 24-bit vendor service cont
codeset ID (VSCID); the low-order 8 bits contain the rest of the service context ID.
vendor (or group of vendors) who wishes to define a specific set of service context
should obtain a unique VSCID from the OMG, and then define a specific set of serv
context IDs using the VSCID for the high-order bits.

The VSCIDs of zero to 15 inclusive (0x000000 to 0x00000f) are reserved for use
OMG-defined standard service context IDs (i.e., service context IDs in the range 0
4095 are reserved as OMG standard service contexts).

13.7.1 Standard Service Contexts

module IOP { // IDL
const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;
const ServiceId ChainBypassCheck = 2;
const ServiceId ChainBypassInfo = 3;
const ServiceId LogicalThreadId = 4;
const ServiceId BI_DIR_IIOP = 5;
const ServiceId SendingContextRunTime = 6;
const ServiceId INVOCATION_POLICIES = 7;
const ServiceId FORWARDED_IDENTITY = 8;
const ServiceId UnknownExceptionInfo = 9;
const ServiceId RTCorbaPriority = 10;
const ServiceId RTCorbaPriorityRange = 11;
const ServiceId FT_GROUP_VERSION = 12;
const ServiceId FT_REQUEST = 13;
const ServiceId ExceptionDetailMessage = 14;
const ServiceId SecurityAttributeService = 15;
const ServiceId ActivityService = 16;

};

The standard ServiceIds currently defined are:

• TransactionService identifies a CDR encapsulation of the
CosTransactions::PropogationContext defined in the Object Transaction
Service specification (formal/01-11-03).

• CodeSets identifies a CDR encapsulation of the
CONV_FRAME::CodeSetContext defined in Section 13.10.2.5, “GIOP Code Se
Service Context” on page 13-44.

• DCOM-CORBA Interworking uses three service contexts as defined in “DCOM-
CORBA Interworking” in the “Interoperability with non-CORBA Systems” chapter
They are:
13-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

-19.

e

e

be
en
f

• ChainBypassCheck , which carries a CDR encapsulation of thestruct
CosBridging::ChainBypassCheck . This is carried only in aRequest
message as described in Section 20.9.1, “CORBA Chain Bypass” on page 20

• ChainBypassInfo , which carries a CDR encapsulation of thestruct
CosBridging::ChainBypassInfo . This is carried only in aReply message as
described in Section 20.9.1, “CORBA Chain Bypass” on page 20-19.

• LogicalThreadId , which carries a CDR encapsulation of thestruct
CosBridging::LogicalThreadId as described in Section 20.10, “Thread
Identification” on page 20-21.

• BI_DIR_IIOP identifies a CDR encapsulation of the
IIOP::BiDirIIOPServiceContext defined in Section 15.8, “Bi-Directional GIOP”
on page 15-56.

• SendingContextRunTime identifies a CDR encapsulation of the IOR of the
SendingContext::RunTime object (see Section 5.6, “Access to the Sending
Context Run Time” on page 5-18).

• For information onINVOCATION_POLICIES refer to the CORBA Messaging
chapter.

• For information onFORWARDED_IDENTITY refer to theFirewall specification
(orbos/98-05-04).

• UnknownExceptionInfo identifies a CDR encapsulation of a marshaled instanc
of a java.lang.throwable or one of its subclasses as described in Java to IDL
Language Mapping, “Mapping of UnknownExceptionInfo Service Context,”
section.

• For information onRTCorbaPriority refer to theReal-Time CORBAspecification.

• For information onRTCorbaPriorityRange refer to theReal-Time CORBA
specification.

• FT_GROUP_VERSION, FT_REQUEST - refer to the Fault Tolerant CORBA
chapter.

• ExceptionDetailMessage identifies a CDR encapsulation of a wstring, encoded
using GIOP 1.2 with a TCS-W of UTF-16. This service context may be sent on
Reply messages with a reply_status ofSYSTEM_EXCEPTION or
USER_EXCEPTION. The usage of this service context is defined by languag
mappings.

• SecurityAttributeService - refer to the Secure Interoperability chapter.

• ActivityService - refer to theAdditional Structuring Mechanisms for OTS
specification (orbos/01-11-08).

13.7.2 Service Context Processing Rules

Service context IDs are associated with a specific version of GIOP, but will always
allocated in the OMG service context range. This allows any ORB to recognize wh
it is receiving a standard service context, even if it has been defined in a version o
GIOP that it does not support.
July 2002 CORBA, v3.0: Service Context 13-31

13

tly

lable

,
ade

re
s.
L

The following are the rules for processing a received service context:

• The service context is in the OMG defined range:

• If it is valid for the supported GIOP version, then it must be processed correc
according to the rules associated with it for that GIOP version level.

• If it is not valid for the GIOP version, then it may be ignored by the receiving
ORB, however it must be passed on through a bridge and must be made avai
to interceptors. No exception shall be raised.

• The service context is not in the OMG-defined range:

• The receiving ORB may choose to ignore it, or process it if it “understands” it
however the service context must be passed on through a bridge and must m
available to interceptors.

13.8 Coder/Decoder Interfaces

The formats of IOR components and service context data used by ORB services a
often defined as CDR encapsulations encoding instances of IDL defined data type
The Codec provides a mechanism to transfer these components between their ID
data types and their CDR encapsulation representations.

A Codec is obtained from theCodecFactory . TheCodecFactory is obtained
through a call toORB::resolve_initial_references (“CodecFactory”) .

13.8.1 Codec Interface

module IOP {
local interface Codec {

exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::OctetSeq encode (in any data)
raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)
raises (FormatMismatch);

CORBA::OctetSeq encode_value (in any data)
raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,
in CORBA::TypeCode tc)
raises (FormatMismatch, TypeMismatch);

};
};
13-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ve

o

n

13.8.1.1 Exceptions

InvalidTypeForEncoding

This exception is raised byencode or encode_value when the type is invalid for the
encoding. For example, this exception is raised if the encoding is
ENCODING_CDR_ENCAPS version 1.0 and a type that does not exist in that
version, such as wstring, is passed to the operation.

FormatMismatch

This exception is raised bydecode or decode_value when the data in the octet
sequence cannot be decoded into anany.

TypeMismatch

This exception is raised bydecode_value when the givenTypeCode does not match
the given octet sequence.

13.8.1.2 Operations

encode

Convert the givenany into an octet sequence based on the encoding format effecti
for this Codec .

This operation may raiseInvalidTypeForEncoding .

Parameter

data The data, in the form of anany, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the encodedany. This octet
sequence contains both theTypeCode and the data of the type.

decode

Decode the given octet sequence into anany based on the encoding format effective
for this Codec .

This operation raisesFormatMismatch if the octet sequence cannot be decoded int
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into a
any.

Return Value

An any containing the data from the decoded octet sequence.
July 2002 CORBA, v3.0: Coder/Decoder Interfaces 13-33

13

ve

o

n

encode_value

Convert the givenany into an octet sequence based on the encoding format effecti
for this Codec . Only the data from theany is encoded, not theTypeCode .

This operation may raiseInvalidTypeForEncoding .

Parameter

data The data, in the form of anany, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the data from the encodedany.

decode_value

Decode the given octet sequence into anany based on the givenTypeCode and the
encoding format effective for thisCodec .

This operation raisesFormatMismatch if the octet sequence cannot be decoded int
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into a
any.

tc TheTypeCode to be used to decode the data.

Return Value

An any containing the data from the decoded octet sequence.

13.8.2 Codec Factory

module IOP {
typedef short EncodingFormat;
const EncodingFormat ENCODING_CDR_ENCAPS = 0;

struct Encoding {
EncodingFormat format;
octet major_version;
octet minor_version;

};

local interface CodecFactory {
exception UnknownEncoding {};
Codec create_codec (in Encoding enc)

raises (UnknownEncoding);
};

};
13-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13
13.8.2.1 Encoding Structure

The Encoding structure defines the encoding format of aCodec . It details the
encoding format, such as CDR Encapsulation encoding, and the major and minor
versions of that format.

The encodings which shall be supported are:

• ENCODING_CDR_ENCAPS, version 1.0;

• ENCODING_CDR_ENCAPS, version 1.1;

• ENCODING_CDR_ENCAPS, version 1.2;

• ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

Vendors are free to support additional encodings.

13.8.2.2 CodecFactory Interface

create_codec

Create aCodec of the given encoding.

This operation raisesUnknownEncoding if this factory cannot create aCodec of
the given encoding.

Parameter

enc TheEncoding for which to create aCodec .

Return Value

A Codec obtained with the given encoding.

13.9 Feature Support and GIOP Versions

The association of service contexts with GIOP versions, (along with some other
supported features tied to GIOP minor version), is shown in Table 13-2..

Table 13-2Feature Support Tied to Minor GIOP Version Number

Feature
Version
1.0

Version
1.1

Version
1.2

Version
1.3

TransactionService Service Context yes yes yes yes

CodeSets Service Context yes yes yes

DCOM Bridging Service Contexts:
ChainBypassCheck
ChainBypassInfo
LogicalThreadId

yes yes

Object by Value Service Context:
SendingContextRunTime

yes yes
July 2002 CORBA, v3.0: Feature Support and GIOP Versions 13-35

13
Bi-Directional IIOP Service Context:
BI_DIR_IIOP

yes yes

Asynch Messaging Service Context
INVOCATION_POLICIES

optional$ yes

Firewall Service Context
FORWARDED_IDENTITY

optional$ yes

Java Language Throwable Service
Context:
UnknownExceptionInfo

yes yes

Realtime CORBA Service Contexts
RTCorbaPriority
RTCorbaPriorityRange

optional
(Realtime
CORBA
only)

optional
(Realtime
CORBA
only)

ExceptionDetailMessage Service Context optional yes

FT_GROUP_VERSION optional$$ yes

FT_REQUEST optional$$ yes

SecurityAttributeService optional$$ yes

ActivityService optional$$ yes

IOR components in IIOP profile yes yes yes

TAG_ORB_TYPE yes yes yes

TAG_CODE_SETS yes yes yes

TAG_ALTERNATE_IIOP_ADDRESS yes yes

TAG_ASSOCIATION_OPTION yes yes yes

TAG_SEC_NAME yes yes yes

TAG_SSL_SEC_TRANS yes yes yes

TAG_GENERIC_SEC_MECH yes yes yes

TAG_*_SEC_MECH yes yes yes

TAG_JAVA_CODEBASE yes yes

TAG_FIREWALL_TRANS optional$ yes

TAG_SCCP_CONTACT_INFO optional$ yes

TAG_TRANSACTION_POLICY optional$ yes

TAG_MESSAGE_ROUTERS optional$ yes

TAG_OTS_POLICY optional$ yes

Table 13-2Feature Support Tied to Minor GIOP Version Number(Continued)

Feature
Version
1.0

Version
1.1

Version
1.2

Version
1.3
13-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

as
re is
to
ust

d the

trol
hip
e

Note – $, $$All features that have been added after CORBA 2.3 have been marked
optional in GIOP 1.2. These features cannot be compulsory in GIOP 1.2 since the
no way to incorporate them in deployed implementations of 1.2. However, in order
have the additional features of CORBA 2.4 work properly these optional features m
be supported by the GIOP 1.2 implementation connecting CORBA 2.4$ or CORBA 2.5
or 2.6$$ ORBs.

13.10 Code Set Conversion

13.10.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understan
character processing portions of this document.

13.10.1.1 Character Set

A finite set of different characters used for the representation, organization, or con
of data. In this specification, the term “character set” is used without any relations
to code representation or associated encoding. Examples of character sets are th

TAG_INV_POLICY optional$ yes

TAG_INET_SEC_TRANS optional$ yes

Extended IDL data types yes yes yes

Bi-Directional GIOP Features yes yes

Value types and Abstract Interfaces yes yes

TAG_CSI_SEC_MECH_LIST optional$$ yes

TAG_NULL_TAG optional$$ yes

TAG_SECIOP_SEC_TRANS optional$$ yes

TAG_TLS_SEC_TRANS optional$$ yes

TAG_ACTIVITY_POLICY optional$$ yes

_component yes

tk_abstract_interface
tk_local_interfacel

optional$$ yes

tk_component
tk_home
tk_event

yes

Table 13-2Feature Support Tied to Minor GIOP Version Number(Continued)

Feature
Version
1.0

Version
1.1

Version
1.2

Version
1.3
July 2002 CORBA, v3.0: Code Set Conversion 13-37

13

ic
erm

ji, etc.)

ters.”
gle-
ical

ese,
nd a
ter
tical

, 16-

cters
te-
English alphabet, Kanji or sets of ideographic characters, corporate character sets
(commonly used in Japan), and the characters needed to write certain European
languages.

13.10.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numer
value. In this specification, the term “code set” is used as an abbreviation for the t
“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which
includes Roman characters, Japanese hiragana, Greek characters, Japanese kan
and Unicode.

13.10.1.3 Code Set Classifications

Some language environments distinguish between byte-oriented and “wide charac
The byte-oriented characters are encoded in one or more 8-bit bytes. A typical sin
byte encoding is ASCII as used for western European languages like English. A typ
multi-byte encoding which uses from one to three 8-bit bytes for each character is
eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chin
Japanese, etc., where the number of combinations offered by 8 bits is insufficient a
fixed-width encoding is needed. A typical example is Unicode (a “universal” charac
set defined by the The Unicode Consortium, which uses an encoding scheme iden
to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended
encoding scheme for Unicode characters is UTF-16 (UCS Transformation Format
bit representations).

The C language has data typeschar for byte-oriented characters andwchar_t for
wide characters. The language definition for C states that the sizes for these chara
are implementation-dependent. Some environments do not distinguish between by
oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a
character is implementation-dependent. The following table illustrates code set
classifications as used in this document.

Table 13-3Code Set Classification

Orientation Code Element
Encoding

Code Set Examples C Data Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1),
EBCDIC, ...

char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big5, ... char[]

non-byte-
oriented

fixed-length ISO 10646 UCS-2 (Unicode), ISO
10646 UCS-4, UTF-16, ...

wchar_t
13-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

.

32-
er of

te
as

”

en

code

can

ts).
lti-

code

after

d.
13.10.1.4 Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters
Typically the narrow characters are considered to be 8-bit long and are used for
western European languages like English, while the wide characters are 16-bit or
bit long and are used for languages like Chinese, Japanese, etc., where the numb
combinations offered by 8 bits are insufficient. However, as noted above there are
common encoding schemes in which Asian characters are encoded using multi-by
code sets and it is incorrect to assume that Asian characters are always encoded
“wide” characters.

Within this specification, the general terms “narrow character” and “wide character
are only used in discussing OMG IDL.

13.10.1.5 Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose IDL types have be
specified aschar or string . Likewise “wchar data” refers to data whose IDL types
have been specified aswchar or wstring .

13.10.1.6 Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy one or more bytes. A byte as used in this specification is
synonymous with octet, which occupies 8 bits.

13.10.1.7 Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character
occupy one or more bytes is called a multi-byte character string. Typically, wide
characters are converted to this form from a (fixed-width) process code set before
transmitting the characters outside the process (see below about process code se
Care must be taken to correctly process the component bytes of a character’s mu
byte representation.

13.10.1.8 Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy fixed 16 or 32 bits.

13.10.1.9 Char and Wchar Transmission Code Set (TCS-C and TCS-W)

These two terms refer to code sets that are used for transmission between ORBs
negotiation is completed. As the names imply, the first one is used forchar data and
the second one forwchar data. Each TCS can be byte-oriented or non-byte oriente
July 2002 CORBA, v3.0: Code Set Conversion 13-39

13

rmat

, and

e

with

data
ode

sing
is
e set

ts

ity to
13.10.1.10 Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width fo
which allows for efficient representation and manipulation. This internal format is
called a “process code set.” The process code set is irrelevant outside the process
hence to the interoperation between CORBA clients and servers through their
respective ORBs.

When a process needs to write international character information out to a file, or
communicate with another process (possibly over a network), it typically uses a
different encoding called a “file code set.” In this specification, unless otherwise
indicated, all references to a program’s code set refer to the file code set, not the
process code set. Even when a client and server are located physically on the sam
machine, it is possible for them to use different file code sets.

13.10.1.11 Native Code Set

A native code set is the code set which a client or a server uses to communicate
its ORB. There might be separate native code sets forchar andwchar data.

13.10.1.12 Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character
transfer between a client’s ORB and a server’s ORB. There are two transmission c
sets established per session between a client and its server, one forchar data (TCS-C)
and the other forwchar data (TCS-W). Figure 13-6 illustrates these relationships:

Figure 13-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.
However, this specification does allow both types of characters to be transmitted u
the same transmission code set. That is, the selection of a transmission code set
orthogonal to the wideness or narrowness of the characters, although a given cod
may be better suited for either narrow or wide characters.

13.10.1.13 Conversion Code Set (CCS)

With respect to a particular ORB’snative code set, the set of other or target code se
for which an ORB can convert all code points or character encodings between the
native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the abil
use that code set for transmitted data in addition to the native code set.

ORB ORB
transmission

code set

native
client process server processcode sets

code set

native
13-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ich
t-JIS
ty
rsion

ically
ns.

by
),

set)

to
he

to
, if

IR)
d on
the

le.

te
ess

s a
le

text
13.10.2 Code Set Conversion Framework

13.10.2.1 Requirements

The file code set that an application uses is often determined by the platform on wh
it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shif
is used on PCs. Code set conversion is therefore required to enable interoperabili
across these platforms. This proposal defines a framework for the automatic conve
of code sets in such situations. The requirements of this framework are:

1. Backward compatibility. In previous CORBA specifications, IDL typechar was
limited to ISO 8859-1. The conversion framework should be compatible with
existing clients and servers that use ISO 8859-1 as the code set forchar .

2. Automatic code set conversion. To facilitate development of CORBA clients and
servers, the ORB should perform any necessary code set conversions automat
and efficiently. The IDL typeoctet can be used if necessary to prevent conversio

3. Locale support. An internationalized application determines the code set in use
examining the LOCALE string (usually found in the LANG environment variable
which may be changed dynamically at run time by the user. Example LOCALE
strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code
and ja_JP.ujis (Japanese, used in Japan with the EUC code set and X11R5
conventions for LOCALE). The conversion framework should allow applications
use the LOCALE mechanism to indicate supported code sets, and thus select t
correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough
allow conversion to be performed either on the client or server side. For example
a client is running in a memory-constrained environment, then it is desirable for
code set converters to reside in the server and for a Server Makes It Right (SM
conversion method to be used. On the other hand, if many servers are execute
one server machine, then converters should be placed in each client to reduce
load on the server machine. In this case, the conversion method used is Client
Makes It Right (CMIR).

13.10.2.2 Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a loca
The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale . The client and server use their native code set to communica
with their ORB. (Note that these native code sets are in general different from proc
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 13-7. The server-side ORB store
server’s code set information in a component of the IOR multiple-component profi
structure (see Section 13.6.2, “Interoperable Object References: IORs” on page
13-14)1. The code sets actually used for transmission are carried in the service con
field of an IOP (Inter-ORB Protocol) request header (see Section 13.7, “Service
July 2002 CORBA, v3.0: Code Set Conversion 13-41

13

on
for

on is

ts are

s

n
for
s
to

rse,

ted,

o

Context” on page 13-28 and Section 13.10.2.5, “GIOP Code Set Service Context”
page 13-44). Recall that there are two code sets (TCS-C and TCS-W) negotiated
each session.

Figure 13-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversi
performed. If the native code sets are different and the client-side ORB has an
appropriate converter, then the CMIR conversion method is used. In this case, the
server’s native code set is used as the transmission code set. If the native code se
different and the client-side ORB does not have an appropriate converter but the
server-side ORB does have one, then the SMIR conversion method is used. In thi
case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a nativechar code set
and a nativewchar code set, which determine the local encodings of IDL typeschar
andwchar , respectively. The conversion process outlined above is executed
independently for thechar code set and thewchar code set. In other words, the
algorithm that is used to select a transmission code set is run twice, once forchar data
and once forwchar data.

The rationale for selecting two transmission code sets rather than one (which is
typically inferred from the locale of a process) is to allow efficient data transmissio
without any conversions when the client and server have identical representations
char and/orwchar data. For example, when a Windows NT client talks to a Window
NT server and they both use Unicode for wide character data, it becomes possible
transmit wide character data from one to the other without any conversions. Of cou
this becomes possible only for those wide character representations that are well-
defined, not for any proprietary ones. If a single transmission code set was manda
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission code set would force conversion of all byte-oriented character data t
Unicode.)

1. Version 1.1 of the IIOP profile body can also be used to specify the server’s code set infor-
mation, as this version introduces an extra field that is a sequence of tagged components.

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information
13-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

e set
actly

de set
ally
a

tup

or

which
can

t is
l

erter

de

ents”
t

13.10.2.3 ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native cod
for a locale and to convert between code sets as necessary. While the details of ex
how these tasks are accomplished are implementation-dependent, the following
databases and code set converters might be used:

• Locale database. This database defines a native code set for a process. This co
could be byte-oriented or non-byte-oriented and could be changed programmatic
while the process is running. However, for a given session between a client and
server, it is fixed once the code set information is negotiated at the session’s se
time.

• Environment variables or configuration files. Since the locale database can only
indicate one code set while the ORB needs to know two code sets, one forchar
data and one forwchar data, an implementation can use environment variables
configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to
it can be converted. From this database, a set of “conversion code sets” (CCS)
be determined for a client and server. For example, if a server’s native code se
eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilatera
converters, then the server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the conv
database.

13.10.2.4 CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s nativechar code set and conversion code sets, and

• server’s nativewchar code set and conversion code sets.

Both char andwchar conversion code sets are listed in order of preference. The co
set component is identified by the following tag:

const IOP::ComponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See Section 13.6.6, “Standard IOR Compon
on page 13-19.). The following IDL structure defines the representation of code se
information within the component:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetComponent {

CodeSetId native_code_set;
sequence<CodeSetId> conversion_code_sets;

};
struct CodeSetComponentInfo {
July 2002 CORBA, v3.0: Code Set Conversion 13-43

13

et
0 for
ture
r

de

en
is
ata

t

,
the

ion:
CodeSetComponent ForCharData;
CodeSetComponent ForWcharData;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code S
Registry (See Section 13.10.5.1, “Character and Code Set Registry” on page 13-5
further information). Data within the code set component is represented as a struc
of type CodeSetComponentInfo , and is encoded as a CDR encapsulation. In othe
words, thechar code set information comes first, then thewchar information,
represented as structures of typeCodeSetComponent .

A null value should be used in thenative_code_set field if the server desires to
indicate no native code set (possibly with the identification of suitable conversion co
sets).

If the code set component is not present in a multi-component profile structure, th
the defaultchar code set is ISO 8859-1 for backward compatibility. However, there
no defaultwchar code set. If a server supports interfaces that use wide character d
but does not specify thewchar code sets that it supports, client-side ORBs will raise
exceptionINV_OBJREF, with standard minor code 1.

If a client application invokes an operation which results in an attempt by the clien
ORB to marshallwchar or wstring data for an in parameter (or to unmarshal
wchar or wstring data for an in/out parameter, out parameter or the return value)
and the associated Object Reference does not include a codeset component, then
client ORB shall raise theINV_OBJREF standard system exception with standard
minor code 2 as a response to the operation invocation.

13.10.2.5 GIOP Code Set Service Context

The code set GIOP service context contains:

• char transmission code set, and

• wchar transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

The following IDL structure defines the representation of code set service informat

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};
13-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

et
0 for

he

he
s a
nt
om

nt
ded

the

ta,
rlier,
via
Code sets are identified by a 32-bit integer id from the OSF Character and Code S
Registry (See Section 13.10.5.1, “Character and Code Set Registry” on page 13-5
further information).

Note – A server’schar andwchar Code set components are usually different, but
under some special circumstances they can be the same. That is, one could use t
same code set for bothchar data andwchar data. Likewise theCodesetId s in the
service context don’t have to be different.

13.10.2.6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from t
code set component in an IOR multi-component profile structure, and it determine
client’s native and conversion code sets from the locale setting (and/or environme
variables/configuration files) and the converters that are available on the client. Fr
this information, the client-side ORB chooseschar andwchar transmission code sets
(TCS-C and TCS-W). For both requests and replies, thechar TCS-C determines the
encoding ofchar andstring data, and thewchar TCS-W determines the encoding of
wchar andwstring data.

Code set negotiation is not performed on a per-request basis, but only when a clie
initially connects to a server. All text data communicated on a connection are enco
as defined by the TCSs selected when the connection is established.

Figure 13-8 illustrates, there are two channels for character data flowing between
client and the server. The first, TCS-C, is used forchar data and the second, TCS-W,
is used forwchar data. Also note that two native code sets, one for each type of da
could be used by the client and server to talk to their respective ORBs (as noted ea
the selection of the particular native code set used at any particular point is done
setlocale or some other implementation-dependent method).

Figure 13-8 Transmission Code Set Use

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C)

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wchar

for wchar (TCS-W)
Transmission code set

Client
Side Side

Server
July 2002 CORBA, v3.0: Code Set Conversion 13-45

13

rver

they
ersion
y.
e of

om
ll its

nd
Let us look at an example. Assume that the code set information for a client and se
is as shown in the table below. (Note that this example concerns onlychar code sets
and is applicable only for data described aschar s in the IDL.)

The client-side ORB first compares the native code sets of the client and server. If
are identical, then the transmission and native code sets are the same and no conv
is required. In this example, they are different, so code set conversion is necessar
Next, the client-side ORB checks to see if the server’s native code set, eucJP, is on
the conversion code sets supported by the client. It is, so eucJP is selected as the
transmission code set, with the client (i.e., its ORB) performing conversion to and fr
its native code set, SJIS, to eucJP. Note that the client may first have to convert a
data described aschar s (and possiblywchar_t s) from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set a
where conversions are performed. First, we introduce the following abbreviations:

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set;

• SCCS - Server Conversion Code Sets; and

• TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS));
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server
// from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE exception;
}

Client Server

Native code set: SJIS eucJP

Conversion code
sets:

eucJP, JIS SJIS, JIS
13-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ame.

are

r

one

e
sets
and
ible

the
t
y
ed

For
t is
a

6

ck
e,

,
er

ve
The algorithm first checks to see if the client and server native code sets are the s
If they are, then the native code set is used for transmission and no conversion is
required. If the native code sets are not the same, then the conversion code sets
examined to see if

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set, o

3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intermediate
conversion code set (i.e., the intersection of CCCS and SCCS contains more than
code set), then the one most preferable to the server is selected.2

If none of these conversions is possible, then the fallback code set (UTF-8 forchar
data and UTF-16 forwchar data— see below) is used. However, before selecting th
fallback code set, a compatibility test is performed. This test looks at the character
encoded by the client and server native code sets. If they are different (e.g., Korean
French), then meaningful communication between the client and server is not poss
and aCODESET_INCOMPATIBLE exception is raised. This test is similar to the
DCE compatibility test and is intended to catch those cases where conversion from
client native code set to the fallback, and the fallback to the server native code se
would result in massive data loss. (See Section 13.10.5, “Relevant OSFM Registr
Interfaces” on page 13-50 for the relevant OSF registry interfaces that could be us
for determining compatibility.)

A DATA_CONVERSION exception is raised when a client or server attempts to
transmit a character that does not map into the negotiated transmission code set.
example, not all characters in Taiwan Chinese map into Unicode. When an attemp
made to transmit one of these characters via Unicode, an ORB is required to raise
DATA_CONVERSION exception, with standard minor code 1.

In summary, thefallback code set is UTF-8 forchar data (identified in the Registry as
0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-1
for wchar data (identified in the Registry as 0x00010109, "ISO/IEC 10646-1:1993;
UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallba
code set is meaningfulonly when the client and server character sets are compatibl
and thefallback code set is distinguished from adefault code set used for backward
compatibility.

If a server’s nativechar code set is not specified in the IOR multi-component profile
then it is considered to be ISO 8859-1 for backward compatibility. However, a serv
that supports interfaces that use wide character data is required to specify its nati
wchar code set; if one is not specified, then the client-side ORB raises exception
INV_OBJREF, with standard minor code set to 1.

2.Recall that server conversion code sets are listed in order of preference.
July 2002 CORBA, v3.0: Code Set Conversion 13-47

13

xt,

ption

e
. The
e can

ach
ions

ents

use
and
e
et of
A in
c

ng
ct

trings

e
de
alls
t it
Similarly, if no char transmission code set is specified in the code set service conte
then thechar transmission code set is considered to be ISO 8859-1 for backward
compatibility. If a client transmits wide character data and does not specify itswchar
transmission code set in the service context, then the server-side ORB raises exce
BAD_PARAM, with standard minor code set to 23.

To guarantee “out-of-the-box” interoperability, clients and servers must be able to
convert between their nativechar code set and UTF-8 and their nativewchar code set
(if specified) and Unicode. Note that this does not require that all server native cod
sets be mappable to Unicode, but only those that are exported as native in the IOR
server may have other native code sets that aren’t mappable to Unicode and thos
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-box
interoperability and to reduce the number of code set converters that a CORBA-
compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for e
regional market. For example, in the Japanese marketplace, all ORB implementat
should support Japanese EUC, JIS and Shift JIS to be compatible with existing
business practices.

13.10.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide
characters. In such environments bothchar andwchar are mapped to the same
“generic” character representation of the language.String andwstring are likewise
mapped to generic strings in such environments. Examples of language environm
that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented
characters (e.g., C and C++), it is possible to mimic some generic behavior by the
of suitable macros and support libraries. For example, developers of Windows NT
Windows 95 applications can write portable code between NT (which uses Unicod
strings) and Windows 95 (which uses byte-oriented character strings) by using a s
macros for declaring and manipulating characters and character strings. Appendix
this chapter shows how to map wide and byte-oriented characters to these generi
macros.

Another way to achieve generic manipulation of characters and strings is by treati
them as abstract data types (ADTs). For example, if strings were treated as abstra
data types and the programmers are required to create, destroy, and manipulate s
only through the operations in the ADT interface, then it becomes possible to write
code that is representation-independent. This approach has an advantage over th
macro-based approach in that it provides portability between byte-oriented and wi
character environments even without recompilation (at runtime the string function c
are bound to the appropriate byte-oriented/wide library). Another way of looking a
is that the macro-based genericity gives compile-time flexibility, while ADT-based
genericity gives runtime flexibility.
13-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

NSI

in a

ts
code
ter

exist
eric
t

ith a

a
the

he

an
Yet another way to achieve generic manipulation of character data is through the A
C++ Strings library defined as a template that can be parameterized bychar ,
wchar_t , or other integer types.

Given that there can be several ways of treating characters and character strings
generic way, this standard cannot, and therefore does not, specify the mapping ofchar ,
wchar , string , andwstring to all of them. It only specifies the following normative
requirements which are applicable to generic character environments:

• wchar must be mapped to the generic character type in a generic character
environment.

• wstring must be mapped to a string of such generic characters in a generic
character environment.

• The language binding files (i.e., stubs) generated for these generic environmen
must ensure that the generic type representation is converted to the appropriate
sets (i.e., CNCS on the client side and SNCS on the server side) before charac
data is given to the ORB runtime for transmission.

13.10.3.1 Describing Generic Interfaces

To describe generic interfaces in IDL we recommend usingwchar andwstring .
These can be mapped to generic character types in environments where they do
and to wide characters where they do not. Either way interoperation between gen
and non-generic character type environments is achieved because of the code se
conversion framework.

13.10.3.2 Interoperation

Let us consider an example to see how a generic environment can interoperate w
non-generic environment. Let us say there is an IDL interface with bothchar and
wchar parameters on the operations, and let us say the client of the interface is in
generic environment while the server is in a non-generic environment (for example
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) nativechar code set (SNCS) is eucJP and the
client’s nativechar code set (CNCS) is SJIS. Further assume that the code set
negotiation led to the decision to use eucJP as thechar TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, t
client’s Smalltalk stubs are responsible for converting allchar data (however they are
represented inside Smalltalk) to SJIS and allwchar data to the client’swchar code set
before passing the data to the client-side ORB. Note that this conversion could be
identity mapping if the internal representation of narrow and wide characters is the
same as that of the native code set(s). The client-side ORB now converts allchar data
from SJIS to eucJP and allwchar data from the client’swchar code set to Unicode,
and then transmits to the server side.
July 2002 CORBA, v3.0: Code Set Conversion 13-49

13

+’s

y
e

not

e

” on

he

case

JIS,

de
o do

y

The server side ORB and stubs convert the eucJP data and Unicode data into C+
internal representation forchar s andwchar s as dictated by the IDL operation
signatures. Notice that when the data arrives at the server side it does not look an
different from data arriving from a non-generic environment (e.g., that is just like th
server itself). In other words, the mappings to generic character environments do
affect the code set conversion framework.

13.10.4 Example of Generic Environment Mapping

This section shows howchar , wchar , string , andwchar can be mapped to the
generic C/C++ macros of the Windows environment. This is merely to illustrate on
possibility. This section is not normative and is applicable only in generic
environments. See Section 13.10.3, “Mapping to Generic Character Environments
page 13-48.

13.10.4.1 Generic Mappings

Char andstring are mapped to C/C++char andchar* as per the standard C/C++
mappings.wchar is mapped to theTCHARmacro which expands to eitherchar or
wchar_t depending on whether_UNICODEis defined.wstring is mapped to
pointers toTCHARas well as to the string classCORBA::Wstring_var . Literal
strings in IDL are mapped to the_TEXT macro as in_TEXT(<literal>) .

13.10.4.2 Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping.
Consider an IDL interface operation with awstring parameter, a client for the
operation which is compiled and run on a Windows 95 machine, and a server for t
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCS forwchar representation) on the
Windows 95 client indicates the client’s native code set to be SJIS, and that the
corresponding server’s native code set is Unicode. The code set negotiation in this
will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with_UNICODEdefined. The IDL
typewstring will be represented as a string ofwchar_t on the client. However, since
the client’s locale or environment indicates that the CNCS for wide characters is S
the client side ORB will get thewstring parameter encoded as a SJIS multi-byte
string (since that is the client’s native code set), which it will then convert to Unico
before transmitting to the server. On the server side the ORB has no conversions t
since the TCS-W matches the server’s native code set for wide characters.

We therefore notice that the code set conversion framework handles the necessar
translations between byte-oriented and wide forms.
13-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ined

cter
this

d a

to

if the

ies
e set.
uzzy-

fer
e.

r set

ugh

hese
in
nd
dle
13.10.5 Relevant OSFM Registry Interfaces

13.10.5.1 Character and Code Set Registry

The OSF character and code set registry is defined inOSF Character and Code Set
Registry(see References in the Preface) and current registry contents may be obta
directly from the Open Software Foundation (obtain via anonymous ftp to
ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: chara
sets and code sets. For each listed code set, the set of character sets encoded by
code set is shown.

Each 32-bit code set value consists of a high-order 16-bit organization number an
16-bit identification of the code set within that organization. As the numbering of
organizations starts with 0x0001, a code set null value (0x00000000) may be used
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality,” meaning that a code set is shown as encoding a particular character set
code set can encode “most” of the characters.

“Compatibility” is determined with respect to two code sets by examining their entr
in the registry, paying special attention to the character sets encoded by each cod
For each of the two code sets, an attempt is made to see if there is at least one (f
defined) character set in common, and if such a character set is found, then the
assumption is made that these code sets are “compatible.” Obviously, applications
which exploit parts of a character set not properly encoded in this scheme will suf
information loss when communicating with another application in this “fuzzy” schem

The ORB is responsible for accessing the OSF registry and determining
“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the characte
and code set registries by email tocs-registry@opengroup.org; in particular, one range
of the code set registry (0xf5000000 through0xffffffff) is reserved for
organizations to use in identifying sets which are not registered with the OSF (altho
such use would not facilitate interoperability without registration).

13.10.5.2 Access Routines

The following routines are for accessing the OSF character and code set registry. T
routines map a code set string name to code set id and vice versa. They also help
determining character set compatibility. These routine interfaces, their semantics a
their actual implementation are not normative (i.e., ORB vendors do not have to bun
the OSF registry implementation with their products for compliance).

The following routines are adopted fromRPC Runtime Support For I18N Characters -
Functional Specification(see References in the Preface).
July 2002 CORBA, v3.0: Code Set Conversion 13-51

13

ue

le
data

t

ng

ther

fo.
dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set val
specified in the code set registry.

Synopsis
void dce_cs_loc_to_rgy(

idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

Parameters

Input

local_code_set_name - A string that specifies the name that the local host's loca
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31
bytes plus a terminating NULL character.

Output

rgy_code_set_value 0 - The registered integer value that uniquely identifies the
code set specified by local_code_set_name.

rgy_char_sets_number - The number of character sets that the specified code se
encodes. Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specifyi
NULL prevents this routine from returning this parameter. The routine dynamically
allocates this value.

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in

• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set name specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the name specified.

Description

The dce_cs_loc_to_rgy() routine maps operating system-specific names for
character/code set encodings to their unique identifiers in the code set registry.
13-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

c
ly
alue

nd the
LL

ant
ese
rom
rray

em-

e

le
data

t
is

ng

ther
The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specifi
“local name” of a code set and returns the corresponding integer value that unique
identifies that code set, as registered in the host's code set registry. If the integer v
does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes a
registered integer values that uniquely identify those character sets. Specifying NU
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a code set value from the code set registry can specify NULL for th
parameters in order to improve the routine's performance. If the value is returned f
the routine, application developers should free the array after it is used, since the a
is dynamically allocated.

dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local syst
specific name for a code set.

Synopsis
void dce_cs_rgy_to_loc(

 unsigned32 *rgy_code_set_value,
 idl_char **local_code_set_name,
 unsigned16 *rgy_char_sets_number,
 unsigned16 **rgy_char_sets_value,
 error_status_t *status);

Parameters

Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies th
code set.

Output

local_code_set_name - A string that specifies the name that the local host's loca
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31
bytes and a terminating NULL character.

rgy_char_sets_number - The number of character sets that the specified code se
encodes. Specifying NULL in this parameter prevents the routine from returning th
value.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specifyi
NULL in this parameter prevents the routine from returning this value. The routine
dynamically allocates this value.

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
13-53 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

fo.

set

set

set
the

e set
code

s

nd the
LL

ant
for
rned
y

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in

• dce_cs_c_unknown – The requested code set value was not found in the code
registry.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the specific code set registry ID value. This implies that the code
is not supported in the local system environment.

Description

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code
registry to the operating system-specific string name for the code set, if it exists in
code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a cod
and returns a string that holds the operating system-specific, or local name, of the
set.

If the code set identifier does not exist in the registry, the routine returns the statu
dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes a
registered integer values that uniquely identify those character sets. Specifying NU
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a local code set name from the code set registry can specify NULL
these parameters in order to improve the routine's performance. If the value is retu
from the routine, application developers should free the rgy_char_sets_value arra
after it is used.

rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

Synopsis
void rpc_cs_char_set_compat_check(

 unsigned32 client_rgy_code_set_value,
 unsigned32 server_rgy_code_set_value,
 error_status_t *status);

Parameters

Input

client_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the client is using as its local code set.

server_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the server is using as its local code set.

Output
13-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ther

d

et is
t

e

pport.
and

ther
ders

from

e

his
status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Successful status.

• rpc_s_ss_no_compat_charsets – No compatible code set found. The client an
server do not have a common encoding that both could recognize and convert.

• The routine can also return status codes from the dce_cs_rgy_to_loc() routine.

Description

The rpc_cs_char_set_compat_check() routine provides a method for determining
character set compatibility between a client and a server; if the server's character s
incompatible with that of the client, then connecting to that server is most likely no
acceptable, since massive data loss would result from such a connection.

The routine takes the registered integer values that represent the code sets that th
client and server are currently using and calls the code set registry to obtain the
registered values that represent the character set(s) that the specified code sets su
If both client and server support just one character set, the routine compares client
server registered character set values to determine whether or not the sets are
compatible. If they are not, the routine returns the status message
rpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines whe
at least two of the sets are compatible. If two or more sets match, the routine consi
the character sets compatible, and returns a success status code to the caller.

rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character
the code set registry on a host

Synopsis
void rpc_rgy_get_max_bytes(

unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

Parameters

Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies th
code set.

Output

rgy_max_bytes - The registered decimal value that indicates the number of bytes t
code set uses to encode one character.
13-55 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

13

ther

fo.

t. It
and
s to

e

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in

• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set value specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the value specified.

Description

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local hos
takes the specified registered code set value, uses it as an index into the registry,
returns the decimal value that indicates the number of bytes that the code set use
encode one character.

This information can be used for buffer sizing as part of the procedure to determin
whether additional storage needs to be allocated for conversion between local and
network code sets.
13-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Building Inter-ORBBridges 14
e

Contents

This chapter contains the following sections.

14.1 Introduction

This chapter provides an implementation-oriented conceptual framework for the
construction of bridges to provide interoperability between ORBs. It focuses on th
layeredrequest level bridgesthat the CORBA Core specifications facilitate, although
ORBs may always be internally modified to support bridges.

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another.

• Provides support for managing tables keyed by object references.

Section Title Page

“Introduction” 14-1

“In-Line and Request-Level Bridging” 14-2

“Proxy Creation and Management” 14-5

“Interface-specific Bridges and Generic Bridges” 14-6

“Building Generic Request-Level Bridges” 14-6

“Bridging Non-Referencing Domains” 14-7

“Bootstrapping Bridges” 14-7
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 14-1

14

t to

the
e the

is

s;

,
en
as

ed
ta

rt
BA

est-
In

ss to

n
ls.
)

The OMG IDL specification for interoperable object references, which are importan
inter-ORB bridging, is shown in Section 13.6.2, “Interoperable Object References:
IORs,” on page 13-14.

14.2 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in
another domain can be mediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whether
bridging uses a standardized mechanism. There are two possible options for wher
bridge components are located:

1. Code inside the ORB may perform the necessary translation or mappings; this
termedin-line bridging.

2. Application style code outside the ORB can perform the translation or mapping
this is termedrequest-level bridging.

Request-level bridges that mediate through a common protocol (using networking
shared memory, or some other IPC provided by the host operating system) betwe
distinct execution environments will involve components, one in each ORB, known
“half bridges.”

When that mediation is purely internal to one execution environment, using a shar
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined da
types, this is known as a “full bridge”1. From outside the execution environment this
will appear identical to some kinds of in-line bridging, since only that environment
knows the construction techniques used. However, full bridges more easily suppo
portable policy mediation components, because of their use of only standard COR
programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between requ
level half bridges. The General Inter-ORB Protocol can be used in either manner.
addition, this specification provides for Environment Specific Inter-ORB Protocols
(ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request-level half-bridges can be built by anyone who has acce
an ORB, without needing information about the internal construction of that ORB.
Immediate-mode request-level half-bridges (i.e., ones using nonstandard mediatio
mechanisms) can be built similarly without needing information about ORB interna
Only in-line bridges (using either standard or nonstandard mediation mechanisms
need potentially proprietary information about ORB internals.

1. Special initialization supporting object referencing domains (e.g., two protocols) to be
exposed to application programmers to support construction of this style bridge.
14-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

14

is

ting
ew
such

ion
14.2.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. It
structurally similar to the engineering commonly used to bridge between systems
within a single ORB (e.g., mediating using some common inter-process
communications scheme, such as a network protocol). This means that implemen
in-line bridges involves as fundamental a set of changes to an ORB as adding a n
inter-process communications scheme. (Some ORBs may be designed to facilitate
modifications, though.)

In this approach, the required bridging functionality can be provided by a combinat
of software components at various levels:

• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

Figure 14-1 In-Line bridges are built usingORB internal APIs.

14.2.2 Request-level Bridging

The general principle of request-level bridging is as follows:

1. The original request is passed to a proxy object in the client ORB.

2. The proxy object translates the request contents (including the target object
reference) to a form that will be understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
July 2002 CORBA , v3.0: In-Line and Request-Level Bridging 14-3

14

t
plicit
olve

f the

he
e
izes
en
th
Figure 14-2 Request-Level bridges are built usingpublic ORB APIs.

The request translation involves performing object reference mapping for all objec
references involved in the request (the target, explicit parameters, and perhaps im
ones such as transaction context). As elaborated later, this translation may also inv
mappings for other domains: the security domain ofCORBA::Principal parameters,
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all
dynamic typing APIs (e.g.,Any, NamedValue) support such manipulation of
parameters even when the bridge was not created with compile-time knowledge o
data types involved.

14.2.3 Collocated ORBs

In the case of immediate bridging (i.e., not via a standardized, external protocol) t
means of communication between the client-side bridge component and that on th
server-side is an entirely private matter. One possible engineering technique optim
this communication by coalescing the two components into the same system or ev
the same address space. In the latter case, accommodations must be made by bo
ORBs to allow them to share the same execution environment.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
14-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

14

d
ing

ging
each
hat
p,”

and

apter

ters

do
A

RB
e,

r

ll
Similar observations apply to request-level bridges, which in the case of collocate
ORBs use a common binary interface to all OMG IDL-defined data as their mediat
data format.

Figure 14-3 When the two ORBs are collocated in a bridge execution environment, network
communications will be purely intra-ORB. If the ORBs are not collocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external messa
can be arranged to be intra-ORB, using whatever message-passing mechanisms
ORB uses to achieve distribution within a single ORB, multiple machine system. T
is, for bridges between networked ORBs such a bridge would add only a single “ho
a cost analogous to normal routing.

14.3 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. The key schemes for creating
managing proxies arereference translationandreference encapsulation, as discussed
in Section 13.5.2, “Handling of Referencing Between Domains,” on page 13-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the Basic Object Ad
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for
knowledge of more than one ORB. Some ORBs could provide other object adap
that support such encapsulation.

Note that from the perspective of clients, they only deal with local objects; clients
not need to distinguish between proxies and other objects. Accordingly, all CORB
operations supported by the local ORB are also supported through a bridge. The O
used by the client might, however, be able to recognize that encapsulation is in us
depending on how the ORB is implemented.

Also, note that theCORBA::InterfaceDef used when creating proxies (e.g., the one
passed toCORBA::BOA::create) could be either a proxy to one in the target ORB, o
could be an equivalent local one. When the domains being bridged include a type
domain, then theInterfaceDef objects cannot be proxies since type descriptions wi
not have the same information. When bridging CORBA-compliant ORBs, type
domains by definition do not need to be bridged.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
July 2002 CORBA , v3.0: Proxy Creation and Management 14-5

14

s,
I).

ould
ut the
an

re

d
ues,

nces,

d

ame
ID

ch as

by
14.4 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built
using IDL-compiler generated stub and skeleton interfaces.

• Generic: capable of bridging requests to server objects of arbitrary IDL interface
using the interface repository and other dynamic invocation support (DII and DS

Interface-specific bridges may be more efficient in some cases (a generic bridge c
conceivably create the same stubs and skeletons using the interface repository), b
requirement for prior compilation means that this approach offers less flexibility th
using generic bridges.

14.5 Building Generic Request-Level Bridges

The CORBA Core specifications define the following interfaces. These interfaces a
of particular significance when building a generic request-level bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on
object references whose types may not have been known when the bridge was
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy
object references that it implements, even when their types may not have been
known when the bridge was developed or deployed.

• Interface Repositoriesare consulted by the bridge to acquire the information use
to drive DII and DSI, such as the type codes for operation parameters, return val
and exceptions.

• Object Adapters(such as the Basic Object Adapter) are used to create proxy object
references both when bootstrapping the bridge and when mapping object refere
which are dynamically passed from one ORB to the other.

• CORBA Object Referencessupport operations to fully describe their interfaces an
to create tables mapping object references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the s
information, though of course the information associated with any given repository
(e.g., an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism su
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used
some mediating protocol such as IIOP (see theGeneral Inter-ORB Protocol
chapter).

• Translate requests made using such a mediating protocol into DII requests on
objects in the ORB.
14-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

14

pping
ed

d
r

t, an
-
ng

ed
e
tical
will

ous
t
eed
s

ay
xt

ch
e

o
s as
ibed

ing
ess
As noted in Section 14.2, “In-Line and Request-Level Bridging,” on page 14-2,
translating requests and responses (including exceptional responses) involves ma
object references (and other explicit and implicit parameter data) from the form us
by the ORB to the form used by the mediating protocol, and vice versa. Explicit
parameters, which are defined by an operation’s OMG-IDL definition, are presente
through DII or DSI and are listed in the Interface Repository entry for any particula
operation.

Operations on object references such ashash() and is_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exis
object adapter is used to create ORB-specific proxy object references, and bridge
internal interfaces are used to create the analogous data structure for the mediati
protocol.

14.6 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defin
data, and bridges only object reference domains. In this case, a proxy object in th
client ORB acts as a representative of the target object and is, in almost any prac
sense, indistinguishable from the target server object - indeed, even the client ORB
not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultane
bridging. The transformation and encapsulation schemes described above may no
apply in the same way to Principal or type identifiers. Request-level bridges may n
to translate such identifiers, in addition to object references, as they are passed a
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs m
need to convey with any particular request, such as transaction and security conte
information. Such parameters are not defined as part of an operation’s OMG-IDL
signature, hence are “implicit” in the invocation context. Bridging the domains of su
implicit parameters could involve additional kinds of work, needing to mediate mor
policies than bridging the object reference, Principal, and type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and
dynamic invocations) to expose such implicit context information.

14.7 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for tw
Naming Service naming contexts (one in each ORB) and then install those proxie
naming contexts in the other ORB’s naming service. (The Naming Service is descr
in the Naming Service specification.) This will allow clients in either ORB to
transparently perform naming context lookup operations on the other ORB, retriev
(proxy) object references for other objects in that ORB. In this way, users can acc
July 2002 CORBA , v3.0: Bridging Non-Referencing Domains 14-7

14

g
ults
fined
facilities that have been selectively exported from another ORB, through a naming
context, with no administrative action beyond exporting those initial contexts. (See
Section 4.7, “Current Object,” on page 4-36 for additional information).

This same approach may be taken with other discovery services, such as a tradin
service or any kind of object that could provide object references as operation res
(and in “out” parameters). While bridges can be established that only pass a prede
set of object references, this kind of minimal connectivity policy is not always
desirable.
14-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

General Inter-ORBProtocol 15
ity,
a
OP,
ol
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperabil
which can be mapped onto any connection-oriented transport protocol that meets
minimal set of assumptions. This chapter also defines a specific mapping of the GI
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protoc
(IIOP). The IIOP must be supported by conforming networked ORB products
regardless of other aspects of their implementation. Such support does not require
using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains the following sections.

Section Title Page

“Goals of the General Inter-ORB Protocol” 15-2

“GIOP Overview” 15-2

“CDR Transfer Syntax” 15-4

“GIOP Message Formats” 15-30

“GIOP Message Transport” 15-46

“Object Location” 15-49

“Internet Inter-ORB Protocol (IIOP)” 15-51

“Bi-Directional GIOP” 15-56

“Bi-directional GIOP policy” 15-60

“OMG IDL” 15-60
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 15-1

15

st

her

ld

s

ts

col,
lf-
d of
e

n-

tate

y be
15.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-co
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability- The GIOP and IIOP are based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), and
defines the minimum additional protocol layers necessary to transfer CORBA
requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting ot
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design shou
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality- While the IIOP is initially defined for TCP/IP, GIOP message format
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions
about the architecture of agents that will support it. The GIOP specification trea
ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal proto
it could choose to externalize IIOP as much as possible by implementing it in a ha
bridge, or it could choose a strategy between these two extremes. All that is require
a conforming ORB is that some entity or entities in, or associated with, the ORB b
able to send and receive IIOP messages.

15.2 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “o
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facili
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used to
transfer GIOP messages. The specification also describes how connections ma
managed, and constraints on GIOP message ordering.
15-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

n

OP
ific
ings

d

nt

IOP
byte

ntly

are

ating

ct
ion
ses,

t

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents ope
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GI
to a specific transport (TCP/IP). The GIOP specification (without the transport-spec
IIOP element) may be considered as a separate conformance point for future mapp
to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in
Section 15.10, “OMG IDL,” on page 15-60. Fragments of the specification are use
throughout this chapter as necessary.

15.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering- Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have differe
byte order, the message originator determines the message byte order, and the
receiver is responsible for swapping bytes to match its native ordering. Each G
message (and CDR encapsulation) contains a flag that indicates the appropriate
order.

• Aligned primitive types- Primitive OMG IDL data types are aligned on their
natural boundaries within GIOP messages, permitting data to be handled efficie
by architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping- CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations
undefined or implementation-dependent in the CORBA Core specifications.

15.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-oper
ORBs. GIOP message formats have the following features:

• Few, simple messages.With only seven message formats, the GIOP supports full
CORBA functionality between ORBs, with extended capabilities supporting obje
location services, dynamic migration, and efficient management of communicat
resources. GIOP semantics require no format or binding negotiations. In most ca
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location.Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and may
allow objects to migrate dynamically. GIOP messages provide support for objec
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.
July 2002 CORBA, v3.0: GIOP Overview 15-3

15

rs
nd

ext

with

port
P
in

t

.0
f a
to
een

ely
r a

al.
te
ide
y

idle

e

that
k
(but
s in
• Full CORBA support- GIOP messages directly support all functions and behavio
required by CORBA, including exception reporting, passing operation context, a
remote object reference operations (such asCORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction cont
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specifications). This mechanism is designed
to support any service that requires service related context to be implicitly passed
requests.

15.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented trans
protocol that meets a minimal set of assumptions (described in Section 15.5, “GIO
Message Transport,” on page 15-46). GIOP uses underlying transport connections
the following ways:

• Asymmetrical connection usage- The GIOP defines two distinct roles with respec
to connections, client, and server. The client side of a connection originates the
connection, and sends object requests over the connection. In GIOP versions 1
and 1.1, the server side receives requests and sends replies. The server side o
connection may not send object requests. This restriction, which was included
make GIOP 1.0 and 1.1 much simpler and avoid certain race conditions, has b
relaxed for GIOP version 1.2 and 1.3, as specified in the BiDirectional GIOP
specification, see Section 15.8, “Bi-Directional GIOP,” on page 15-56.

• Request multiplexing- If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniqu
identifies its target object. Multiple independent requests for different objects, o
single object, may be sent on the same connection.

• Overlapping requests- In general, GIOP message ordering constraints are minim
GIOP is designed to allow overlapping asynchronous requests; it does not dicta
the relative ordering of requests or replies. Unique request/reply identifiers prov
proper correlation of related messages. Implementations are free to impose an
internal message ordering constraints required by their ORB architectures.

• Connection management- GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse
connection resources.

15.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which th
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer
is to be sent to another process or machine over some IPC mechanism or networ
transport. For the purposes of this discussion, an octet stream is an arbitrarily long
finite) sequence of eight-bit values (octets) with a well-defined beginning. The octet
15-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

.

l in

L

as
be

he
clude
lations

any
is

f

e
ry of

tum.
e

or
the stream are numbered from0 to n-1, wheren is the size of the stream. The numeric
position of an octet in the stream is called itsindex. Octet indices are used to calculate
alignment boundaries, as described in Section 15.3.1.1, “Alignment,” on page 15-5

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in detai
Section 15.4, “GIOP Message Formats,” on page 15-30.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a data
structure has been encapsulated, theoctet stream can be represented as the OMG ID
opaque data typesequence<octet> , which can be marshaled subsequently into a
message or another encapsulation. Encapsulations allow complex constants (such
TypeCodes) to be pre-marshaled; they also allow certain message components to
handled without requiring full unmarshaling. Whenever encapsulations are used in
CDR or the GIOP, they are clearly noted.

15.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. T
message formats (see Section 15.4, “GIOP Message Formats,” on page 15-30) in
tags in message headers that indicate the byte ordering in the message. Encapsu
include an initial flag that indicates the byte ordering within the encapsulation,
described in Section 15.3.3, “Encapsulation,” on page 15-14. The byte ordering of
encapsulation may be different from the message or encapsulation within which it
nested. It is the responsibility of the message recipient to translate byte ordering i
necessary. Primitive data types are encoded in multiples of octets. Anoctet is an 8-bit
value.

15.3.1.1 Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitiv
data types must be aligned on their natural boundaries (i.e., the alignment bounda
a primitive datum is equal to the size of the datum inoctets). Any primitive of sizen
octets must start at an octet stream index that is a multiple ofn. In CDR,n is one of 1,
2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive da
The value ofoctets in alignment gaps is undefined. A gap must be the minimum siz
necessary to align the following primitive. Table 15-1 gives alignment boundaries f
CDR/OMG-IDL primitive types.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-5

15

he
g at

an
(See
Alignment is defined above as being relative to the beginning of an octet stream. T
first octet of the stream is octet index zero (0); any data type may be stored startin
this index. Such octet streams begin at the start of a GIOP message header (see
Section 15.4.1, “GIOP Message Header,” on page 15-31) and at the beginning of
encapsulation, even if the encapsulation itself is nested in another encapsulation.
Section 15.3.3, “Encapsulation,” on page 15-14).

15.3.1.2 Integer Data Types

Figure 15-1 on page 15-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

• short
• unsigned short
• long
• unsigned long
• long long
• unsigned long long

Table 15-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET
ALIGNMENT

char 1

wchar 1, 2 or 4 for GIOP 1.1 |
1 for GIOP 1.2 and 1.3

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4
15-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

are

ese

erent
The figure illustrates bit ordering and size. Signed types (short , long , andlong long)
are represented as two’s complement numbers; unsigned versions of these types
represented as unsigned binary numbers.

Figure 15-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

15.3.1.3 Floating Point Data Types

Figure 15-2 on page 15-9 illustrates the representation of floating point numbers. Th
exactly follow the IEEE standard formats for floating point numbers1, selected parts of
which are abstracted here for explanatory purposes. The diagram shows three diff
components for floating points numbers, the sign bit (s), the exponent (e) and the
fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing
positive and negative numbers, respectively.

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-7

15

in
as

, f1
ber

the

<
ed

e1
For single-precision float values the exponent is 8 bits long, comprising e1 and e2
the figure, where the 7 bits in e1 are most significant. The exponent is represented
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.0
being most significant and f3 being least significant. The value of a normalized num
is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in
figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m
2.0, f1 being most significant and f7 being least significant. The value of a normaliz
number is described by:

For double-extended floating-point values the exponent is 15 bits long, comprising
and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The
value of along double is determined by:

1
sign

2
exponent 127–()× 1 fraction+()×–

1
sign

2
exponent 1023–()× 1 fraction+()×–

1
sign

2
exponent 16383–()× 1 fraction+()×–
15-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

L
Figure 15-2 Sizes and bit ordering in big-endian and little-endian representations of OMG ID
single, double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5
f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-9

15

rgo

lues.

on of
ined
. In

of

d or

ctets,

as

ine
e

f the
ce,
15.3.1.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to unde
any conversion during transmission. For the purposes of describing possibleoctet
values in this specification, octets may be considered as unsigned 8-bit integer va

15.3.1.5 Boolean

Boolean values are encoded as single octets, whereTRUE is the value 1, andFALSE
as 0.

15.3.1.6 Character Types

An IDL character is represented as a single octet; the code set used for transmissi
character data (e.g., TCS-C) between a particular client and server ORBs is determ
via the process described in Section 13.10, “Code Set Conversion,” on page 13-37
the case of multi-byte encodings of characters, a single instance of thechar type may
only hold one octet of any multi-byte character encoding.

Note – Full representation of multi-byte characters will require the use of an array
IDL char variables.

For GIOP version 1.1, the transfer syntax for an IDL wide character depends on
whether the transmission code set (TCS-W, which is determined via the process
described in Section 13.10, “Code Set Conversion,” on page 13-37) is byte-oriente
non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Character and Code Set Registry may be examined using the interfaces in
Section 13.10.5, “Relevant OSFM Registry Interfaces,” on page 13-50 to determ
the maximum length (max_bytes) of any character codepoint. For example, if th
TCS-W is ISO 10646 UCS-2 (Universal Character Set containing 2 bytes), then
wide characters are represented asunsigned shorts . For ISO 10646 UCS-4, they
are represented asunsigned longs .

For GIOP version 1.2, and 1.3wchar is encoded as an unsigned binary octet value,
followed by the elements of the octet sequence representing the encoded value o
wchar . The initial octet contains a count of the number of elements in the sequen
and the elements of the sequence of octets represent thewchar , using the negotiated
wide character encoding.
15-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

se

1.2

n or
he
n.

ent

ll

he

of
ithin
truct
the
tion
Note –The GIOP 1.2 and 1.3 encoding ofwchar is similar to the encoding of an octet
sequence, except for its use of a single octet to encode the value of the length.

For GIOP versions prior to 1.2 and 1.3, interoperability for wchar is limited to the u
of two- octet fixed-length encoding.

Wchar values in encapsulations are assumed to be encoded using GIOP version
and 1.3 CDR.

If UTF-16 is selected as the TCS-W the CDR encoding purposes can be big endia
little endian, but defaults to big endian. By placing a BOM (byte order marker) at t
front of the wstring or wchar encoding, it can be sent either big-endian or little-endia
In particular, the CDR rules for endian-ness of UTF-16 encoded wstring or wchar
values are as follows:

• If the first two bytes (after the length indication) are FE FF, it's big-endian.
• If the first two bytes (after the length indication) are FF FE, it's little-endian.
• If the first two bytes (after the length indication) are neither, it's big-endian.

If an ORB decides to use BOM to indicate endianness, it shall add the BOM to the
beginning of wchar or wstring values when encoding the value, since it is not pres
in wchar or wstring values passed by the user.

If a BOM is present at the beginning of a wchar or wstring received in a GIOP
message, the ORB shall remove the BOM before passing the value to the user.

If a client orb erroneously sendswchar or wstring data in a GIOP 1.0 message, the
server shall generate aMARSHAL standard system exception, with standard minor
code 5.

If a server erroneously sendswchar data in a GIOP 1.0 response, the client ORB sha
raise aMARSHAL exception to the client application with standard minor code 6.

15.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by t
OMG IDL language.

15.3.2.1 Alignment

Constructed types have no alignment restrictions beyond those of their primitive
components. The alignment of those primitive types is not intended to support use
marshaling buffers as equivalent to the implementation of constructed data types w
any particular language environment. GIOP assumes that agents will usually cons
structured data types by copying primitive data between the marshaled buffer and
appropriate in-memory data structure layout for the language mapping implementa
involved.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-11

15

type

d, no
e
t
kly.

he
nce.

enum

num

e of

ngth
e

ax
a

15.3.2.2 Struct

The components of a structure are encoded in the order of their declaration in the
structure. Each component is encoded as defined for its data type.

15.3.2.3 Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as its
indicates.

15.3.2.4 Array

Arrays are encoded as the array elements in sequence. As the array length is fixe
length values are encoded. Each element is encoded as defined for the type of th
array. In multidimensional arrays, the elements are ordered so the index of the firs
dimension varies most slowly, and the index of the last dimension varies most quic

15.3.2.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of t
sequence. The initial unsigned long contains the number of elements in the seque
The elements of the sequence are encoded as specified for their type.

15.3.2.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive e
identifiers take ascending numeric values, in order of declaration from left to right.

15.3.2.7 Strings and Wide Strings

A string is encoded as anunsigned long indicating the length of the string in octets,
followed by the string value in single- or multi-byte form represented as a sequenc
octets. The string contents include a single terminating null character. The string
length includes the null character, so an empty string has a length of 1.

For GIOP version 1.1, 1.2, and 1.3, when encoding a string, always encode the le
as the total number of bytes used by the encoding string, regardless of whether th
encoding is byte-oriented or not.

For GIOP version 1.1, a wide string is encoded as anunsigned long indicating the
length of the string in octets or unsigned integers (determined by the transfer synt
for wchar) followed by the individual wide characters. The string contents include
single terminating null character. The string length includes the null character. The
terminating null character for a wstring is also a wide character.
15-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

f 0

1.2

ble

ost
e
e

tive

in
For GIOP version 1.2 and 1.3, when encoding awstring , always encode the length as
the total number of octets used by the encoded value, regardless of whether the
encoding is byte-oriented or not. For GIOP version 1.2 and 1.3 awstring is not
terminated by a null character. In particular, in GIOP version 1.2 and 1.3 a length o
is legal forwstring .

Note –For GIOP versions prior to 1.2 and 1.3, interoperability forwstring is limited to
the use of two-octet fixed-length encoding.

Wstring values in encapsulations are assumed to be encoded using GIOP version
and 1.3 CDR.

15.3.2.8 Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in Ta
15-4 on page 15-14. Eachoctet contains (up to) two decimal digits. If thefixed type
has an odd number of decimal digits, then the representation begins with the first (m
significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero, and th
first digit is in the second half-octet — d1 in the figure. The sign configuration, in th
last half-octet of the representation, is 0xD for negative numbers and 0xC for posi
and zero values.

The number of digits present must equal the number of significant digits specified
the IDL definition for the fixed type being marshalled, with the exception of the
inclusion of a leading 0x0 half octet when there are an even number of significant
digits.

Decimal digits are encoded as hexadecimal values in each half-octet as follows:

Figure 15-3 Decimal Digit Encoding for Fixed Type

0

1

2
...

9

0x0

0x1

0x2

...

0x9

Decimal Digit Half-Octet Value
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-13

15

e

R

Bs

the

P
This
ding

the

does
Figure 15-4 IDL Fixed Type Representation

15.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL typ
sequence<octet> , which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places:TypeCodes(see
Section 15.3.5.1, “TypeCode,” on page 15-23), the IIOP protocol profile inside an IO
(see Section 15.3.6, “Object References,” on page 15-30), and in service-specific
context (see Section 13.7, “Service Context,” on page 13-28). In addition, some OR
may choose to use an encapsulation to hold theobject_key (see Section 15.7.2, “IIOP
IOR Profiles,” on page 15-52), or in other places that asequence<octet> data type is
in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If
value isFALSE (0), the encapsulated data is encoded in big-endian order; ifTRUE
(1), the data is encoded in little-endian order, exactly like the byte order flag in GIO
message headers (see Section 15.4.1, “GIOP Message Header,” on page 15-31).
value is not part of the data being encapsulated, but is part of the octet stream hol
the encapsulation. Following the byte order flag, the data to be encapsulated is
marshaled into the buffer as defined by CDR encoding rules. Marshaled data are
aligned relative to the beginning of the octet stream (the first octet of which is
occupied by the byte order flag).

When the encapsulation is encoded as typesequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to
octet stream, as prescribed for sequences (see Section 15.3.2.5, “Sequence,” on
page 15-12). The length value is not part of the encapsulation’s octet stream, and
not affect alignment of data within the encapsulation.

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

15-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

ta

ion
CS-

wide

nd

roach

P
.

ing
stom

aph
ue
ce

ed.

e

r

-

Note that this guarantees a four-octet alignment of the start of all encapsulated da
within GIOP messages and nested encapsulations.2

Whenever the use of an encapsulation is specified, the GIOP version to use for
encoding the encapsulation, if different than GIOP version 1.0, shall be explicitly
defined (i.e., the default is GIOP 1.0).

If a parameter with IDL char or string type is defined to be carried in an encapsulat
using GIOP version greater than 1.0, the transmission Code Set for characters (T
C), to be used when encoding the encapsulation, shall also be explicitly defined.

If a parameter with IDL wchar or wstring type is defined to be carried in an
encapsulation using GIOP version greater than 1.0, the transmission Code Set for
characters (TCS-W), to be used when encoding the encapsulation shall also be
explicitly defined.

15.3.4 Value Types

Value types are built from OMG IDL’s value type definitions. Their representation a
encoding is defined in this section.

Value types may be used to transmit and encode complex state. The general app
is to support the transmission of the data (state) and type information encoded as
RepositoryID s.

The loading (and possible transmission) of code is outside of the scope of the GIO
definition, but enough information is carried to support it, via the CodeBase object

The format makes a provision for the support of custom marshaling (i.e., the encod
and transmission of state using application-defined code). Consistency between cu
encoders and decoders is not ensured by the protocol

The encoding supports all of the features of value types as well as supporting the
“chunking” of value types. It does so in a compact way.

At a high level the format can be described as the linearization of a graph. The gr
is the depth-first exploration of the transitive closure that starts at the top-level val
object and follows its “reference to value objects” fields (an ordinary remote referen
is just written as an IOR). It is a recursive encoding similar to the one used for
TypeCodes. An indirection is used to point to a value that has already been encod

The data members are written beginning with the highest possible base type to th
most derived type in the order of their declaration.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greate
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. For example, an appropriate way to deal with long long discriminator
type in an encapsulation for a union TypeCode is to encode the body of the encapsulation as
if it was aligned at the 8 byte boundary, and then copy the encoded value into the encapsula
tion. This may result in long long data values inside the encapsulation being aligned on
only a 4 byte boundary when viewed from outside the encapsulation.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-15

15

he
n is

:

.

the

ted in
eed

ich

t

15.3.4.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in t
receiving context. However the encoding has been designed so that this informatio
only required when “advanced features” such as truncation are used.

The presence (or absence) of type information and codebase URL information is
indicated by flags within the <value_tag>, which is along in the range between
0x7fffff00 and0x7fffffff inclusive. The last octet of this tag is interpreted as follows

• The least significant bit (<value_tag> &0x00000001) is the value1 if a
<codebase_URL> is present. If this bit is0, no <codebase_URL> follows in the
encoding. The <codebase_URL> is a blank-separated list of one or more URLs

• The second and third least significant bits (<value_tag> &0x00000006) are:

• the value0 if no type information is present in the encoding. This indicates the
actual parameter is the same type as the formal argument.

• the value2 if only a single repository id is present in the encoding, which
indicates the most derived type of the actual parameter (which may be either
same type as the formal argument or one of its derived types).

• the value6 if the partial type information list of repository ids is present in the
encoding as a list of repository ids.

When a list ofRepositoryIDs is present, the encoding is along specifying the
number ofRepositoryIDs , followed by theRepositoryIDs . The firstRepositoryID
is the id for the most derived type of the value. If this type has any base types, the
sending context is responsible for listing theRepositoryIDs for all the base types to
which it is safe to truncate the value passed. These truncatable base types are lis
order, going up the derivation hierarchy. The sending context may choose to (but n
not) terminate the list at any point after it has sent aRepositoryID for a type well-
known to the receiving context. A well-known type is any of the following:

• a type that is a formal parameter, result of the method call, or exception, for wh
this GIOP message is being marshaled

• a base type of a well-known type

• a member type of a well-known type

• an element type of a well known type

For value types that have an RMI:RepositoryId , ORBs must include at least the mos
derivedRepositoryId , in the value type encoding.

For value types marshaled as abstract interfaces (see Section 15.3.7, “Abstract
Interfaces,” on page 15-30),RepositoryId information must be included in the value
type encoding.

If the receiving context needs more typing information than is contained in a GIOP
message that contains a codebase URL information, it can go back to the sending
context and perform a lookup based on thatRepositoryID to retrieve more typing
information (e.g., the type graph).
15-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

r

ible

e the

t of

s a
CORBA RepositoryIDs may contain standard version identification (major and mino
version numbers or a hash code information). The ORB run time may use this
information to check whether the version of the value being transmitted is compat
with the version expected. In the event of a version mismatch, the ORB may apply
product-specific truncation/conversion rules (with the help of a local interface
repository or theSendingContext::RunTime service). For example, the Java
serialization model of truncation/conversion across versions can be supported. Se
JDK 1.1 documentation for a detailed specification of this model.

15.3.4.2 Example

The following examples demonstrate legal combinations of truncatability, actual
parameter types and GIOP encodings. This is not intended to be an exhaustive lis
legal possibilities.

The following example uses valuetypesanimal andhorse , wherehorse is derived
from animal . The actual parameters passed to the specified operations arean_animal
of runtime typeanimal anda_horse of runtime typehorse .

The following combinations of truncatability, actual parameter types and GIOP
encodings are legal.

1. If there is a single operation:

 op1(in animal a);

a) If the typehorse cannot be truncated toanimal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that if the type horse is not available to the receiver, then the receiver throw
demarshaling exception.

b). If the typehorse can be truncated toanimal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below

Actual Invocation Legal Encoding

op1(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

op1(a_horse) 6 2 horse animal
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-17

15

s to
Note that if the type horse is not available to the receiver, then the receiver trie
truncate to animal.

c) Regardless of the truncation relationships, when the exact type of the formal
argument is sent, then the encoding is as shown below:

2. Given the additional operation:

 op2(in horse h);

(i.e., the sender knows that both typeshorse andanimal and their derivation
relationship are known to the receiver)

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that the demarshaling exception of case 1 will not occur, since horse is
available to the receiver.

b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below:

Note that truncation will not occur, since horse is available to the receiver.

Actual Invocation Legal Encoding

op1(an_animal) 0

2 animal

6 1 animal

Actual Invocation Legal Encoding

op2(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal
15-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

o

n
or

the
led

at
n

y
ns

y of

e.

r

n

eing
an
15.3.4.3 Scope of the Indirections

The special value0xffffffff introduces an indirection (i.e., it directs the decoder to g
somewhere else in the marshaling buffer to find what it is looking for). This can be
codebase URL information that has already been encoded, aRepositoryID that has
already been encoded, a list of repository IDs that has already been encoded, or
another value object that is shared in a graph.0xffffffff is always followed by along
indicating where to go in the buffer. A repositoryID or URL, which is the target of a
indirection used for encoding a valuetype must have been introduced as the type
codebase information for a valuetype.

It is not permissible for a repositoryID marshalled for some purpose other than as
type information of a valuetype to use indirection to reference a previously marsha
value. The encoding used to indicate an indirection is the same as that used for
recursive TypeCodes (i.e., a0xffffffff indirection marker followed by along offset (in
units ofoctets) from the beginning of the long offset). As an example, this means th
an offset of negative four (-4) is illegal, because it is self-indirecting to its indirectio
marker. Indirections may refer to any preceding location in the GIOP message,
including previous fragments if fragmentation is used. This includes any previousl
marshaled parameters. Non-negative offsets are reserved for future use. Indirectio
may not cross encapsulation boundaries.

Fragmentation support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibilit
a header for aFragmentMessage being marshaled between the target of an
indirection and the start of the encapsulation containing the indirection. The octets
occupied by any such headers are not included in the calculation of the offset valu

15.3.4.4 Null Values

All value types have a distinguished “null.” All null values are encoded by the
<null_tag> (0x0). The CDR encoding of null values includes no type information.

15.3.4.5 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The heade
contains a tag and codebase URL information if appropriate, followed by the
RepositoryID and an octet flag of bits. Because the sameRepositoryID (and
codebase URL information) could be repeated many times in a single request whe
sending a complex graph, they are encoded as a regular string the first time they
appear, and use an indirection for later occurrences.

15.3.4.6 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is b
transmitted. Hence the encoding supports the breaking up of the serialization into
arbitrary number of chunks in order to facilitate incremental processing.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-19

15

eeds
a

tom
ty of

nd
OP

stly
ded
t
for

e
d
s as
dded
to

>.

for

the

rt of

out

sed

nges

e

ting
hat
th
Values with truncatable base types need a length indication in case the receiver n
to truncate them to a base type. Value types that are custom marshaled also need
length indication so that the ORB run time can know exactly where they end in the
stream without relying on user-defined code. This allows the ORB to maintain
consistency and ensure the integrity of the GIOP stream when the user-written cus
marshaling and demarshaling does not marshal the entire value state. For simplici
encoding, we use a length indication for all values whether or not they have a
truncatable base type or use custom marshaling.

If limited space is available for marshaling, it may be necessary for the ORB to se
the contents of a marshaling buffer containing a partially marshaled value as a GI
fragment. At that point in the marshaling, the length of the entire value being
marshaled may not be known. Calculating this length may require processing as co
as marshaling the entire value. It is therefore desirable to allow the value to be enco
as multiple chunks, each with its own length. This allows the portion of a value tha
occupies a marshaling buffer to be sent as a chunk of known length with no need
additional length calculation processing.

The data may be split into multiple chunks at arbitrary points except within primitiv
CDR types, arrays of primitive types, strings, and wstrings, or between the tag an
offset of indirections. It is never necessary to end a chunk within one of these type
the length of these types is known before starting to marshal them so they can be a
to the length of the currently open chunk. It is the responsibility of the CDR stream
hide the chunking from the marshaling code.

The presence (or absence) of chunking is indicated by flags within the <value_tag
The fourth least significant bit (<value_tag> &0x00000008) is the value 1 if a
chunked encoding is used for the value’s state. The chunked encoding is required
custom marshaling and truncation. If this bit is 0, the state is encoded as <octets >.

Each chunk is preceded by a positive long, which specifies the number of octets in
chunk.

A chunked value is terminated by an end tag that is a non-positive long so the sta
the next value can be differentiated from the start of another chunk. In the case of
values that contain other values (e.g., a linked list) the “nested” value is started with
there being an end tag. The absolute value of an end tag (when it finally appears)
indicates the nesting level of the value being terminated. A single end tag can be u
to terminate multiple nested values. The detailed rules are as follows:

• End tags, chunk size tags, and value tags are encoded using non-overlapping ra
so that the unmarshaling code can tell after reading each chunk whether:

• another chunk follows (positive tag).

• one or multiple value types are ending at a given point in the stream (negativ
tag).

• a nested value follows (special large positive tag).

• The end tag is a negative long whose value is the negation of the absolute nes
depth of the value type ending at this point in the CDR stream. Any value types t
have not already been ended and whose nesting depth is greater than the dep
indicated by the end tag are also implicitly ended. The end tag value0 is reserved
15-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

h.

type

an

e

,

type
the
so
or

d as

er
e
nd
he

ys
its

ed
k to
lue
for future use (e.g., supporting a nesting depth of more than2^31). The outermost
value type will always be terminated by an end tag with a value of-1. Enclosing
non-chunked valuetypes are not considered when determining the nesting dept

The following example describes how end tags may be used. Consider a value
declaration that contains two member values:

// IDL
valuetype simpleNode{ ... };
valuetype node truncatable simpleNode {
public node node1;
public node node2;

};

When an instance of type ‘node ’ is passed as a parameter of type ‘simpleNode ’ a
chunked encoding is used. In all cases, the outermost value is terminated with
end tag with a value of-1. The nested value ‘node1 ’ is terminated with an end tag
with a value of-2 since only the second-level value ‘node1 ’ ends at that point.
Since the nested value ‘node2 ’ coterminates with the outermost value, either of th
following end tag layouts is legal:

• A single end tag with a value of-1 marks the termination of the outermost value
implying the termination of the nested value, ‘node2 ’as well. This is the most
compact marshaling.

• An end tag with a value of-2 marks the termination of the nested value, ‘node2 .’
This is then followed by an end tag with a value of-1 to mark the termination of
the outermost value.

Because data members are encoded in their declaration order, declaring a value
data member of a value type last is likely to result in more compact encoding on
wire because it maximizes the number of values ending at the same place and
allows a single end tag to be used for multiple values. The canonical example f
that is a linked list.

• For the purposes of chunking, values encoded as indirections or null are treate
non-value data.

• Chunks are never nested. When a value is nested within another value, the out
value’s chunk ends at the place in the stream where the inner value starts. If th
outer value has non-value data to be marshaled following the inner value, the e
tag for the inner value is followed by a continuation chunk for the remainder of t
outer value.

• Regardless of the above rules, any value nested within a chunked value is alwa
chunked. Furthermore, any such nested value that is truncatable must encode
type information as a list ofRepositoryIDs (see Section 15.3.4.1, “Partial Type
Information and Versioning,” on page 15-16).

Truncating a value type in the receiving context may require keeping track of unus
nested values (only during unmarshaling) in case further indirection tags point bac
them. These values can be held in their “raw” GIOP form, as fully unmarshaled va
objects, or in any other product-specific form.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-21

15

ORB
d

the

me

is
Value types that are custom marshaled are encoded as chunks in order to let the
run-time know exactly where they end in the stream without relying on user-define
code.

15.3.4.7 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to
ones used to define IDL syntax.The terminals of the grammar are to be interpreted
differently. We are describing a protocol format. Although the terminals have the sa
names as IDL tokens they represent either:

• constant tags, or

• the GIOP CDR encoding of the corresponding IDL construct.

For example,long is a shorthand for the GIOP encoding of the IDLlong data type -
with all the GIOP alignment rules. Similarlystruct is a shorthand for the GIOP CDR
encoding of astruct .

A (type) constant means that an instance of the given type having the given value
encoded according to the rules for that type. So that(long) 0 means that a CDR
encoding for a long having the value0 appears at that location.

15.3.4.8 The Format

(1) <value> ::= <value_tag> [<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref> ::= <indirection_tag> <indirection> | <null_tag>
(3) <value_tag> ::= long// 0x7fffff00 <= value_tag <= 0x7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <state> ::= <octets> |<value_data>* [<end_tag>]
(6) <value_data> ::= <value_chunk> | <value>
(7) <rep_ids> ::= long <repository_id>+

| <indirection_tag> <indirection>
(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size_tag> <octets>
(10) <null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long) 0xffffffff
(12) <codebase_URL> ::= string | <indirection_tag> <indirection>
(13) <chunk_size_tag> ::= long

// 0 < chunk_size_tag < 2^31-256 (0x7fffff00)
(14) <end_tag> ::= long // -2^31 < end_tag < 0
(15) <indirection> ::= long // -2^31 < indirection < 0
(16) <octets> ::= octet | octet <octets>

The concatenated octets of consecutive value chunks within a value encode state
members for the value according to the following grammar:
15-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

f this

ings
rve
(1) <state members> ::= <state_member>
| <state_member> <state members>

(2) <state_member> ::= <value_ref>
// All legal IDL types should be here

| octet
| boolean
| char
| short
| unsigned short
| long
| unsigned long
| float
| wchar
| wstring
| string
| struct
| union
| sequence
| array
| Object
| any
| long long
| unsigned long long
| double
| long double
| fixed

15.3.5 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

15.3.5.1 TypeCode

In general, TypeCodes are encoded as theTCKind enum value, potentially followed by
values that represent the TypeCode parameters. Unfortunately,TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 15-2 on page 15-25. Theinteger value
column of this table gives theTCKind enum value corresponding to the given
TypeCode, and lists the parameters associated with such a TypeCode. The rest o
section presents the details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is theTCKind enum value (encoded, like allenum
values, using four octets), followed by zero or more parameter values. The encod
of the parameter lists fall into three general categories, and differ in order to conse
space and to support efficient traversal of the binary representation:
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-23

15

le”
that

lumn

ation

-25.
.11,
in

n
r

• Typecodes with anempty parameter listare encoded simply as the corresponding
TCKind enum value.

• Typecodes withsimple parameter listsare encoded as theTCKind enum value
followed by the parameter value(s), encoded as indicated in Table 15-2. A “simp
parameter list has a fixed number of fixed length entries, or a single parameter
has its length encoded first.

• All other typecodes havecomplex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
Section 15.3.3, “Encapsulation,” on page 15-14) containing the encapsulated,
marshaled parameters. The order of these parameters is shown in the fourth co
of Table 15-2.

The third column of Table 15-2 shows whether each parameter list isempty, simple, or
complex. Also, note that an internal indirection facility is needed to represent some
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 15-28. This indirection does not need to be exposed to applic
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 15-2 on page 15
The ordering and meaning of parameters is a superset of those given in Section 4
“TypeCodes,” on page 4-52; more information is needed by CDR’s representation
order to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the formtype (name),wheretypedescribes the
parameter’s type, andnamedescribes the parameter’s meaning.

• The encoding of some parameter lists (specifically,tk_struct, tk_union,
tk_enum , andtk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written in the formcount {parameters}, where
count is the number of tuples in the encoded form, and theparametersenclosed in
braces are available in each tuple instance. First thecount, which is anunsigned
long , and then eachparameterin each tuple (using the noted type), is encoded i
the CDR representation of the typecode. Each tuple is encoded, first paramete
followed by second, before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifyingstruct , union,exception , andenum members must
be in the order defined in the OMG IDL definition text. Also, that the types of
discriminant values in encodedtk_union TypeCodes are established by the second
encoded parameter (discriminant type), and cannot be specified except with reference
to a specific OMG IDL definition.3

3. This means that, for example, two OMG IDL unions that are textually equivalent, except
that one uses a “char” discriminant, and the other uses a “long” one, would have different
size encoded TypeCodes.
15-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
Table 15-2TypeCodeenum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID), string(name)

tk_struct 15 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_union 16 complex string (repository ID),
string(name),
TypeCode (discriminant type),
long (default used),
ulong (count)
{ discriminant type1 (label value),
string (member name),
TypeCode (member type)}

tk_enum 17 complex string (repository ID),
string (name),
ulong (count)
{string (member name)}
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-25

15
tk_string 18 simple ulong (max length2)

tk_sequence 19 complex TypeCode (element type),
ulong (max length3)

tk_array 20 complex TypeCode (element type),
ulong (length)

tk_alias 21 complex string (repository ID),
string (name),
TypeCode

tk_except 22 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_longlong 23 empty – none –

tk_ulonglong 24 empty – none –

tk_longdouble 25 empty – none –

tk_wchar 26 empty – none –

tk_wstring 27 simple ulong(max length or zero if
unbounded)

tk_fixed 28 simple ushort(digits), short(scale)

tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),

TypeCode(of concrete base)4,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

tk_value_box 30 complex string (repository ID),
string(name),
TypeCode

tk_native 31 complex string (repository ID), string(name)

tk_abstract_interface 32 complex string(RepositoryId), string(name)

tk_local_interface 33 complex string(RepositoryId), string(name)

Table 15-2TypeCodeenum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
15-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

he
Encoded Identifiers and Names

The Repository ID parameters intk_objref , tk_struct , tk_union , tk_enum ,
tk_alias , tk_except , tk_native , tk_value , tk_value_box and
tk_abstract_interface TypeCodes are Interface RepositoryRepositoryId values,
whose format is described in the specification of the Interface Repository.

For GIOP 1.2 onwards, repositoryID values are required to be sent, if known by t
ORB4. For GIOP 1.2 and 1.3 an empty repositoryID string is only allowed if a
repositoryID value is not available to the ORB sending the type code.

For GIOP 1.0 and 1.1,RepositoryId values are required fortk_objref and
tk_except TypeCodes; fortk_struct , tk_union , tk_enum , andtk_alias TypeCodes
RepositoryIds are optional and encoded as empty strings if omitted.

tk_component 34 complex string (repository ID), string(name)

tk_home 35 complex string (repository ID), string(name)

tk_event 36 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),

TypeCode(of concrete base)5,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

– none – 0xffffffff simple long (indirection6)

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. Should betk_null if there is no concrete base.

5. Should betk_null if there is no concrete base.

6.See “Indirection: Recursive and Repeated TypeCodes” on page 15-28.

4. A type code passed via a GIOP 1.2 connection shall contain non-empty repositoryID
strings, unless a repositoryID value is not available to the sending ORB for a specific type
code. This situation can arise, for example, if an ORB receives a type code containing
empty repository IDs via a GIOP 1.0 or 1.1 connection and passes that type code on via a
GIOP 1.2 connection).

Table 15-2TypeCodeenum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-27

15

e

d in

e

n
n the
x of

,
r

for

for

me

use
ing

tely
The name parameters intk_objref, tk_struct, tk_union, tk_enum, tk_alias,
tk_value, tk_value_box, tk_abstract_interface, tk_native and tk_except
TypeCodes and the member name parameters intk_struct, tk_union, tk_enum ,
tk_value and tk_except TypeCodes are not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these nam
values; only the structural information (includingRepositoryId values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplie
the OMG IDL definition text. If omitted, they are encoded as empty strings.

When a reference to a baseObject is encoded, there are two allowed encodings for th
Repository ID: either "IDL:omg.org/CORBA/Object:1.0 " or "" may be used.

Encoding the tk_union Default Case

In tk_union TypeCodes, thelong default used value is used to indicate which tuple i
the sequence describes the union’s default case. If this value is less than zero, the
union contains no default case. Otherwise, the value contains the zero-based inde
the default case in the sequence of tuples describing union members.

The discriminant value used in the actual typecode parameter associated with the
default member position in the list, may be any valid value of the discriminant type
and has no semantic significance (i.e., it should be ignored and is only included fo
syntactic completeness of union type code marshaling).

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes
multi-dimensional arrays are constructed by nestingtk_array TypeCodes within other
tk_array TypeCodes, one per array dimension. The outermost (or top-level)tk_array
TypeCode describes the leftmost array index of the array as defined in IDL; the
innermost nestedtk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g.,struct foo {sequence <foo> bar;}) must also contain
an indirection. Such an indirection is also useful to reduce the size of encodings;
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top-level”
TypeCode. Indirected TypeCodes are not “freestanding,” but only exist inside so
other encoded TypeCode.

• Only the second (and subsequent) references to a TypeCode in that scope may
the indirection facility. The first reference to that TypeCode must be encoded us
the normal rules. In the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be comple
encoded.
15-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

de

et

y of

e.

y the

r

ring
the
pty
The indirection is a numeric octet offset within the scope of the “top-level” TypeCo
and points to theTCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may well
cross encapsulation boundaries, but this is not problematic because of the first
constraint identified above. Because of the second constraint, the value of the offs
will always be negative.

Fragmentation support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibilit
a header for aFragmentMessage being marshaled between the target of an
indirection and the start of the encapsulation containing the indirection. The octets
occupied by any such headers are not included in the calculation of the offset valu

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has
the special value 232-1 (0xffffffff , all ones). Such typecodes have a single (simple)
parameter, which is thelong offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4) is illegal because it will be self-
indirecting.)

15.3.5.2 Any

Any values are encoded as a TypeCode (encoded as described above) followed b
encoded value. ForAny values containing atk_null or tk_void TypeCode , the
encoded value shall have zero length (i.e., shall be absent).

15.3.5.3 Principal

Principal pseudo objects are encoded assequence<octet> . In the absence of a
Security service specification,Principal values have no standard format or
interpretation, beyond serving to identify callers (and potential callers). This
specification does not prescribe any usage ofPrincipal values.

By representingPrincipal values assequence<octet> , GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate o
interpret these identifiers as needed when forwarding requests between different
security domains.

15.3.5.4 Context

Context pseudo objects are encoded assequence<string> . The strings occur in
pairs. The first string in each pair is the context property name, and the second st
in each pair is the associated value. If an operation has an IDL context clause but
client does not supply any properties matching the context clause at run time, an em
sequence is marshaled.
July 2002 CORBA, v3.0: CDR Transfer Syntax 15-29

15

ring

.

user
ll be
or

t

s
).

er

.

he

s

e, it

ing
t
,” on
rver

OP is
as
15.3.5.5 Exception

Exceptions are encoded as a string followed by exception members, if any. The st
contains the RepositoryId for the exception, as defined in the Interface Repository
chapter. Exception members (if any) are encoded in the same manner as a struct

If an ORB receives a non-standard system exception that it does not support, or a
exception that is not defined as part of the operation's definition, the exception sha
mapped toUNKNOWN, with standard minor code set to 2 for a system exception,
set to 1 for a user exception.

15.3.6 Object References

Object references are encoded in OMG IDL (as described in Section 13.5, “Objec
Addressing,” on page 13-11). IOR profiles contain transport-specific addressing
information, so there is no general-purpose IOR profile format defined for GIOP.
Instead, this specification describes the general information model for GIOP profile
and provides a specific format for the IIOP (see “IIOP IOR Profiles” on page 15-52

In general, GIOP profiles include at least these three elements:

1. The version number of the transport-specific protocol specification that the serv
supports.

2. The address of an endpoint for the transport protocol being used.

3. An opaque datum (anobject_key , in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the object

15.3.7 Abstract Interfaces

Abstract interfaces are encoded as a union with aboolean discriminator. Theunion
has anobject reference(see Section 15.3.6, “Object References,” on page 15-30) if t
discriminator isTRUE, and avalue type(see Section 15.3.4, “Value Types,” on
page 15-15) if the discriminator isFALSE . The encoding of value types marshaled a
abstract interfaces always includesRepositoryId information. If there is no indication
whether a nil abstract interface represents a nil object reference or a null valuetyp
shall be encoded as a null valuetype.

15.4 GIOP Message Formats

GIOP has restriction on client and server roles with respect to initiating and receiv
messages. For the purpose of GIOP versions 1.0 and 1.1, a client is the agent tha
opens a connection (see more details in Section 15.5.1, “Connection Management
page 15-47) and originates requests. Likewise, for GIOP versions 1.0 and 1.1, a se
is an agent that accepts connections and receives requests.When Bidirectional GI
in use for GIOP protocol version 1.2 and 1.3, either side may originate messages,
specified in Section 15.8, “Bi-Directional GIOP,” on page 15-56.
15-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

used

GIOP message types are summarized in Table 15-3, which lists the message type
names, whether the message is originated by client, server, or both, and the value
to identify the message type in GIOP message headers.

15.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3
struct Version {

octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType

Table 15-3GIOP Message Types and Originators

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1, 1.2, 1.3

Request Both 0 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

Reply Server 1 1.0, 1.1, 1.2, 1.3

Reply Both 1 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

CancelRequest Client 2 1.0, 1.1, 1.2, 1.3

CancelRequest Both 2 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateRequest Client 3 1.0, 1.1, 1.2, 1.3

LocateRequest Both 3 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateReply Server 4 1.0, 1.1, 1.2, 1.3

LocateReply Both 4 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

CloseConnection Server 5 1.0, 1.1, 1.2, 1.3

CloseConnection Both 5 1.2, 1.3

MessageError Both 6 1.0, 1.1, 1.2, 1.3

Fragment Both 7 1.1, 1.2, 1.3
July 2002 CORBA, v3.0: GIOP Message Formats 15-31

15

he
.

he
f this
s is
ect

ne
Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1 {

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // GIOP_1_1

// GIOP 1.0
struct MessageHeader_1_0 { // Renamed from MessageHeader

char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2, 1.3
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

};

The message header clearly identifies GIOP messages and their byte-ordering. T
header is independent of byte ordering except for the field encoding message size

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in t
message. The version number applies to the transport-independent elements o
specification (i.e., the CDR and message formats) that constitute the GIOP. Thi
not equivalent to the IIOP version number (as described in Section 15.3.6, “Obj
References,” on page 15-30) though it has the same structure. The major GIOP
version number of this specification is one (1); the minor versions are zero (0), o
(1), and two (2).
15-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

0
l
g a

d

er
.

tes

OP

se

he

der.

rs to

nt
r
was

nt
ion,
at is
ately
A server implementation supporting a minor GIOP protocol version 1.n (with n >
and n < 3), must also be able to process GIOP messages having minor protoco
version 1.m, with m less than n. A GIOP server, which receives a request havin
greater minor version number than it supports, should respond with an error
message having the highest minor version number that that server supports, an
then close the connection.

A client should not send a GIOP message having a higher minor version numb
than that published by the server in the tag Internet IIOP Profile body of an IOR

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (includingmessage_size). A value ofFALSE (0)
indicates big-endian byte ordering, andTRUE (1) indicates little-endian byte
ordering.

• flags (in GIOP 1.1, 1.2, and 1.3) is an 8-bit octet. The least significant bit indica
the byte ordering used in subsequent elements of the message (including
message_size). A value ofFALSE (0) indicates big-endian byte ordering, and
TRUE (1) indicates little-endian byte ordering. The byte order for fragment
messages must match the byte order of the initial message that the fragment
extends.

The second least significant bit indicates whether or not more framents follow. A
value ofFALSE (0) indicates this message is the last fragment, andTRUE (1)
indicates more fragments follow this message.

The most significant 6 bits are reserved. These 6 bits must have value 0 for GI
version 1.1, 1.2, and 1.3.

• message_type indicates the type of the message, according to Table 15-3; the
correspond to enum values of typeMsgType .

• message_size contains the number of octets in the message following the
message header, encoded using the byte order specified in the byte order bit (t
least significant bit) in theflags field (or using the byte_order field in GIOP 1.0). It
refers to the size of the message body, not including the 12-byte message hea
This count includes any alignment gaps and must match the size of the actual
request parameters (plus any final padding bytes that may follow the paramete
have a fragment message terminate on an 8-byte boundary).

A MARSHAL exception with minor code 7 indicates that fewer bytes were prese
in a message than indicated by the count. (This condition can arise if the sende
sends a message in fragments, and the receiver detects that the final fragment
received but contained insufficient data for all parameters to be unmarshaled.).

A MARSHAL exception with minor code 8 indicates that more bytes were prese
in a message than indicated by the count. Depending on the ORB implementat
this condition may be reported for the current message or the next message th
processed (when the receiver detects that the previous message is not immedi
followed by the GIOP magic number).
July 2002 CORBA, v3.0: GIOP Message Formats 15-33

15

ng

r

The use of a message size of 0 with aRequest , LocateRequest , Reply , or
LocateReply message is reserved for future use.

For GIOP version 1.2, and 1.3, if the second least significant bit ofFlags is 1, the
sum of themessage_size value and 12 must be evenly divisible by 8.

Messages with different GIOP minor versions may be mixed on the same underlyi
transport connection.

15.4.2 Request Message

Request messages encode CORBA object invocations, including attribute accesso
operations, andCORBA::Object operationsget_interface and
get_implementation . Requests flow from client to server.

Requestmessages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body

15.4.2.1 Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, 1.3
15-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

ing

of

re
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
// requesting_principal not in GIOP 1.2 and 1.3

};
typedef RequestHeader_1_2 RequestHeader_1_3;

};

The members have the following definitions:

• request_id is used to associate reply messages with request messages (includ
LocateRequest messages). The client (requester) is responsible for generating
values so that ambiguity is eliminated; specifically, a client must not re-use
request_id values during a connection if:(a) the previous request containing that
ID is still pending, or(b) if the previous request containing that ID was canceled
and no reply was received. (See the semantics of the Section 15.4.4,
“CancelRequest Message,” on page 15-41).

• response_flags is set to 0x0 for aSyncScope of NONE and
WITH_TRANSPORT. The flag is set to 0x1 for aSyncScope of
WITH_SERVER. A non exception reply to a request message containing a
response_flags value of 0x1 should contain an empty body, i.e. the equivalent
a void operation with no out/inout parameters. The flag is set to 0x3 for a
SyncScope of WITH_TARGET. These values ensure interworking compatibility
between this and previous versions ofGIOP.

For GIOP 1.0 and 1.1 aresponse_expected value ofTRUE is treated like a
response_flags value of \x03, and aresponse_expected value ofFALSE is
treated like aresponse_flags value of \x00.

• reserved is always set to0 in GIOP 1.1. These three octets are reserved for futu
use.
July 2002 CORBA, v3.0: GIOP Message Formats 15-35

15

is

is

te

cified

d to

of

P

.

ld

sage
• For GIOP 1.0 and 1.1,object_key identifies the object that is the target of the
invocation. It is theobject_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value
only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, 1.3,target identifies the object that is the target of the invocation.
The possible values of the union are:

• KeyAddr is theobject_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value
only meaningful to the server and is not interpreted or modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB. The first profile has an index of zero.

• operation is the IDL identifier naming, within the context of the interface (not a
fully qualified scoped name), the operation being invoked. In the case of attribu
accessors, the names are_get_<attribute> and_set_<attribute> . The case of
the operation or attribute name must match the case of the operation name spe
in the OMG IDL source for the interface being used.

In the case ofCORBA::Object operations that are defined in the CORBA Core
(Section 4.3, “Object Reference Operations,” on page 4-12) and that correspon
GIOP request messages, the operation names are_interface , _is_a ,
_non_existent , _domain_managers, and_component .

Note – The name_get_domain_managers is not used, to avoid conflict with a get
operation invoked on a user defined attribute with namedomain_managers .

For GIOP 1.2 and later versions, only the operation name_non_existent shall be
used.

The correct operation name to use for GIOP 1.0 and 1.1 is_non_existent . Due to
a typographical error in CORBA 2.0, 2.1, and 2.2, some legacy implementations
GIOP 1.0 and 1.1 respond to the operation name_not_existent . For maximum
interoperability with such legacy implementations, new implementations of GIO
1.0 and 1.1 may wish to respond to both operation names,_non_existent and
_not_existent .

• service_context contains ORB service data being passed from the client to the
server, encoded as described in Section 13.7, “Service Context,” on page 13-28

• requesting_principal contains a value identifying the requesting principal. It is
provided to support theBOA::get_principal operation. The usage of the
requesting_principal field is deprecated for GIOP versions 1.0 and 1.1. The fie
is not present in the request header for GIOP version 1.2, 1.3.

There is no padding after the request header when an unfragmented request mes
body is empty.
15-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

r. In
ary.

,
may
15.4.2.2 Request Body

In GIOP versions 1.0 and 1.1, request bodies are marshaled into the CDR
encapsulation of the containing Message immediately following the Request Heade
GIOP version 1.2 and 1.3, the Request Body is always aligned on an 8-octet bound
The fact that GIOP specifies the maximum alignment for any primitive type is 8
guarantees that the Request Body will not require remarshaling if the Message or
Request header are modified. The data for the request body includes the following
items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optionalContext pseudo object, encoded as described in Section 15.3.5.4,
“Context,” on page 15-29. This item is only included if the operation’s OMG IDL
definition includes a context expression, and only includes context members as
defined in that expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout long p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
long p; // ... to the rightmost

};

15.4.3 Reply Message

Reply messages are sent in response toRequest messages if and only if the response
expected flag in the request is set toTRUE. Replies include inout and out parameters
operation results, and may include exception values. In addition, Reply messages
provide object location information. In GIOP versions 1.0 and 1.1, replies flow only
from server to client.

Replymessages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

15.4.3.1 Reply Header

The reply header is defined as follows:

module GIOP { // IDL extended for 1.2 and 1.3

#ifndef GIOP_1_2
July 2002 CORBA, v3.0: GIOP Message Formats 15-37

15

o

r

// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 { // Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 { // Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, 1.3
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,// new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context;

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // GIOP_1_2
};

The members have the following definitions:

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and als
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value isNO_EXCEPTION and the body
contains return values. Otherwise the body

• contains an exception, or

• directs the client to reissue the request to an object at some other location, o

• directs the client to supply more addressing information.
15-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

e

body

n of
1.2
IOP

d

L

des

tem
• service_context contains ORB service data being passed from the server to th
client, encoded as described in Section 15.2.3, “GIOP Message Transfer,” on
page 15-4.

There is no padding after the reply header when an unfragmented reply message
is empty.

15.4.3.2 Reply Body

In GIOP version 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulatio
the containing Message immediately following the Reply Header. In GIOP version
and 1.3, the Reply Body is always aligned on an 8-octet boundary. The fact that G
specifies the maximum alignment for any primitive type is 8 guarantees that the
ReplyBody will not require remarshaling if the Message or the Reply Header are
modified. The data for the reply body is determined by the value ofreply_status .
There are the following types of reply body:

• If the reply_status value isNO_EXCEPTION, the body is encoded as if it were
a structure holding first any operation return value, then anyinout andout
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

• If the reply_status value isUSER_EXCEPTION or
SYSTEM_EXCEPTION, then the body contains the exception that was raise
by the operation, encoded as described in Section 15.3.5.5, “Exception,” on
page 15-30. (Only the user-defined exceptions listed in the operation’s OMG ID
definition may be raised.)

When a GIOP Reply message contains a `reply_status ' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the
following structure:

module GIOP { // IDL
struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;
unsigned long completion_status;
};

};

The high-order 20 bits ofminor_code_value contain a 20-bit “Vendor Minor
Codeset ID” (VMCID); the low-order 12 bits contain a minor code. A vendor (or
group of vendors) wishing to define a specific set of system exception minor co
should obtain a uniqueVMCID from the OMG, and then use those 4096 minor
codes as they see fit; for example, defining up to 4096 minor codes for each sys
exception. Any vendor may use the specialVMCID of zero (0) without previous
reservation, but minor code assignments in this codeset may conflict with other
vendor's assignments, and use of the zeroVMCID is officially deprecated.
July 2002 CORBA, v3.0: GIOP Message Formats 15-39

15

is

ces,”
t to
g

or

ing is

t

.

Note – OMG standard minor codes are identified with the 20 bitVMCID \x4f4d0 .
This appears as the characters ‘O’ followed by the character ‘M’ on the wire, which
defined as a 32-bit constant calledOMGVMCID \x4f4d0000 (see Section 4.12.4,
“Standard Minor Exception Codes,” on page 4-72) so that allocated minor code
numbers can be or-ed with it to obtain theminor_code_value .

• If the reply_status value isLOCATION_FORWARD , then the body contains an
object reference (IOR) encoded as described in Section 15.3.6, “Object Referen
on page 15-30. The client ORB is responsible for re-sending the original reques
that (different) object. This resending is transparent to the client program makin
the request.

• The usage of thereply_status valueLOCATION_FORWARD_PERM behaves
like the usage ofLOCATION_FORWARD , but when used by a server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred f
future use.

• If the reply_status value isNEEDS_ADDRESSING_MODE then the body
contains aGIOP::AddressingDisposition . The client ORB is responsible for re-
sending the original request using the requested addressing mode. The resend
transparent to the client program making the request.

Note – Usage of LOCATATION_FORWARD_PERM is now deprecated, due to
problems it causes with the semantics of the Object::hash() operation.
LOCATATION_FORWARD_PERM features could be removed from some future
GIOP versions if solutions to these problems are not provided.

For example, the reply body for a successful response (the value ofreply_status is
NO_EXCEPTION) to theRequestexample shown on page 15-37 would be equivalen
to the following structure:

struct example_reply {
double return_value; // return value
string str;
long p; // ... to the rightmost

};

Note that theobject_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, theobject_key
field embedded in the new object reference’s GIOP profile may not have the same
value as theobject_key in the GIOP profile of the original object reference. For
details on location forwarding, see Section 15.6, “Object Location,” on page 15-49
15-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

only.
send
ply

ct

ges
15.4.4 CancelRequest Message

CancelRequest messages may be sent, in GIOP versions 1.0 and 1.1, only from
clients to servers.CancelRequest messages notify a server that the client is no
longer expecting a reply for a specified pendingRequest or LocateRequest
message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

15.4.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

unsigned long request_id;
};

};

The request_id member identifies theRequest or LocateRequest message to
which the cancel applies. This value is the same as therequest_id value specified in
the originalRequest or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity
The server is not required to acknowledge the cancellation, and may subsequently
the corresponding reply. The client should have no expectation about whether a re
(including an exceptional one) arrives.

15.4.5 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference:

• whether the current server is capable of directly receiving requests for the obje
reference, and if not,

• to what address requests for the object reference should be sent.

Note that this information is also provided through theRequest message, but that
some clients might prefer not to support retransmission of potentially large messa
that might be implied by aLOCATION_FORWARD status in aReply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader
July 2002 CORBA, v3.0: GIOP Message Formats 15-41

15

.4.2,

te

s of

is
15.4.5.1 LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL extended for version 1.2 and 1.3

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2, 1.3
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

};

The members are defined as follows:

• request_id is used to associateLocateReply messages withLocateRequest
ones. The client (requester) is responsible for generating values; see Section 15
“Request Message,” on page 15-34 for the applicable rules.

• For GIOP 1.0 and 1.1,object_key identifies the object being located. In an IIOP
context, this value is obtained from theobject_key field from the encapsulated
IIOP::ProfileBody in the IIOP profile of the IOR for the target object. When GIOP
is mapped to other transports, their IOR profiles must also contain an appropria
corresponding value. This value is only meaningful to the server and is not
interpreted or modified by the client.

• For GIOP 1.2, 1.3, target identifies the object being located. The possible value
this union are:

• KeyAddr is theobject_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value
only meaningful to the server and is not interpreted or modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB.

See Section 15.6, “Object Location,” on page 15-49 for details on the use of
LocateRequest .
15-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
15.4.6 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages. In GIOP versions 1.0 and 1.1 theLocateReply message
is only sent from the server to the client.

A LocateReply message has three elements, encoded in this order:

1. A GIOP message header

2. A LocateReplyHeader

3. The locate reply body

15.4.6.1 Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL extended for GIOP 1.2 and 1.3
#ifndef GIOP_1_2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader

unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, 1.3
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;
July 2002 CORBA, v3.0: GIOP Message Formats 15-43

15

the

t

r.
};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;

#endif // GIOP_1_2
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains
samerequest_id value as the correspondingLocateRequest message.

• locate_status - the value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJECT_HERE - this server (the originator of theLocateReply message) can
directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD andOBJECT_FORWARD_PERM - a LocateReply
body exists.

• LOC_SYSTEM_EXCEPTION - a LocateReply body exists.

• LOC_NEEDS_ADDRESSING_MODE - a LocateReply body exists.

15.4.6.2 LocateReply Body

The body is empty, except for the following cases:

• If the LocateStatus value isOBJECT_FORWARD or
OBJECT_FORWARD_PERM , the body contains an object reference (IOR) that
may be used as the target for requests to the object specified in the
LocateRequest message. The usage ofOBJECT_FORWARD_PERM behaves
like the usage ofOBJECT_FORWARD , but when used by the server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. When usingOBJECT_FORWARD_PERM , both the old IOR and the new
IOR are valid, but the new IOR is preferred for future use.

• If the LocateStatus value isLOC_SYSTEM_EXCEPTION, the body contains a
marshaledGIOP::SystemExceptionReplyBody .

• If the LocateStatus value isLOC_NEEDS_ADDRESSING_MODE , then the
body contains aGIOP::AddressingDisposition . The client ORB is responsible
for re-sending theLocateRequest using the requested addressing mode.

Note –Usage ofOBJECT_FORWARD_PERM is now deprecated, due to problems i
causes with the semantics of theObject::hash operation.
OBJECT_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.

LocateReply bodies are marshaled immediately following the LocateReply heade
15-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

.0
ust
ests
ued
may

sion
ose

g

that

der

P
n
sage
the

n

.,
15.4.6.3 Handling ForwardRequest Exception from ServantLocator

If the ServantLocator in a POA raises aForwardRequest exception the ORB
shall send aLocateReply message to the client withlocate_status set to
OBJECT_FORWARD , and with the body containing the object reference from the
ForwardRequest exception'sforward_reference field.

15.4.7 CloseConnection Message

CloseConnection messages are sent only by servers in GIOP protocol versions 1
and 1.1. They inform clients that the server intends to close the connection and m
not be expected to provide further responses. Moreover, clients know that any requ
for which they are awaiting replies will never be processed, and may safely be reiss
(on another connection). In GIOP version 1.2 and 1.3 both sides of the connection
send theCloseConnection message.

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage ofCloseConnection messages, see Section 15.5.1,
“Connection Management,” on page 15-47.

15.4.8 MessageError Message

The MessageError message is sent in response to any GIOP message whose ver
number or message type is unknown to the recipient or any message received wh
header is not properly formed (e.g., has the wrong magic value). Error handling is
context-specific.

The MessageError message consists only of the GIOP message header, identifyin
the message type.

15.4.9 Fragment Message

This message is added in GIOP 1.1.

TheFragment message is sent following a previous request or response message
has the more fragments bit set toTRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this hea
is themessage_size field, a 32-bit unsigned number giving the number of bytes in
the message following the header. Unfortunately, when actually constructing a GIO
Request or Reply message, it is sometimes impractical or undesirable to ascertai
the total size of the message at the stage of message construction where the mes
header has to be written. GIOP 1.1 provides an alternative indication of the size of
message, for use in those cases.

In GIOP 1.1, aRequest or Reply message can be broken into multiple fragments. I
GIOP 1.2 and 1.3, aRequest , Reply , LocateRequest , or LocateReply message
can be broken into multiple fragment. The first fragment is a regular message (e.g
July 2002 CORBA, v3.0: GIOP Message Formats 15-45

15

to

he
ill

ion

a
e a

ing.

quest
ge

t of

The

pe
Request or Reply) with themore fragments bit in theflags field set toTRUE. This
initial fragment can be followed by one or more messages using the fragment
messages. The last fragment shall have the more fragment bit in the flag field set
FALSE .

A CancelRequest message may be sent by the client before the final fragment of t
message being sent. In this case, the server should assume no more fragments w
follow.

Note –A GIOP client that fragments the header of aRequest message before sending
the request ID may not send aCancelRequest message pertaining to that request ID
and may not send anotherRequest message until after the request ID is sent.

A primitive data type of 8 bytes or smaller should never be broken across two
fragments.

In GIOP 1.1, the data in a fragment is marshaled with alignment relative to its posit
in the fragment, not relative to its position in the whole unfragmented message.

For GIOP version 1.2 and 1.3, the total length (including the message header) of
fragment other than the final fragment of a fragmented message are required to b
multiple of 8 bytes in length, allowing bridges to defragment and/or refragment
messages without having to remarshal the encoded data to insert or remove padd

For GIOP version 1.2 and 1.3, a fragment header is included in the message,
immediately after the GIOP message header and before the fragment data. The re
ID, in the fragment header, has the same value as that used in the original messa
associated with the fragment.

The byte order and GIOP protocol version of a fragment shall be the same as tha
the message it continues.

module GIOP {// IDL extension for GIOP 1.2 and 1.3
// GIOP 1.2, 1.3
struct FragmentHeader_1_2 {

unsigned long request_id;
};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

15.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols.
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the sco
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.
15-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

ions,

s. If
a

l
r)

n

ts to
e

).
,
on

w.

ws:

in

nts

P

est

ns
IOP
tion,
n

• The transport can be viewed as a byte stream. No arbitrary message size limitat
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection los
the peer process aborts, the peer host crashes, or network connectivity is lost,
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the genera
connection model of TCP/IP. Specifically, an agent (described herein as a serve
publishes a known network address in an IOR, which is used by the client whe
initiating a connection.

The server does not actively initiate connections, but is prepared to accept reques
connect (i.e., itlistensfor connections in TCP/IP terms). Another agent that knows th
address (called a client) can attempt to initiate connections by sendingconnectrequests
to the address. The listening server mayacceptthe request, forming a new, unique
connection with the client, or it mayreject the request (e.g., due to lack of resources
Once a connection is open, either side mayclosethe connection. (See Section 15.5.1
“Connection Management,” on page 15-47 for semantic issues related to connecti
closure.) A candidate transport might not directly support this specific connection
model; it is only necessary that the transport’s model can be mapped onto this vie

15.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follo

• A client initiates the connection, presumably using addressing information found
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any
implications for ORB or application architectures.

In GIOP protocol versions 1.0 and 1.1, connections are not symmetrical. Only clie
can sendRequest , LocateRequest , andCancelRequest messages over a
connection, in GIOP 1.0 and 1.1. In all GIOP versions, a server can sendReply ,
LocateReply , andCloseConnection messages over a connection; however, in GIO
1.2, 1.3 the client can send them as well. Either client or server can send
MessageError messages, in GIOP 1.0 and 1.1.

If multiple GIOP versions are used on an underlying transport connection, the high
GIOP version used on the connection can be used for handling the close. A
CloseConnection message sent using any GIOP version applies to all GIOP versio
used on the connection (i.e., the underlying transport connection is closed for all G
versions). In particular, if GIOP version 1.2 or higher has been used on the connec
the client can send theCloseConnection message by using the highest GIOP versio
in use.

Only GIOP messages are sent over GIOP connections.
July 2002 CORBA, v3.0: GIOP Message Transport 15-47

15

and
the
n
rate

.

ther

e

tion

t
ived
Request IDs must unambiguously associate replies with requests within the scope
lifetime of a connection. Request IDs may be re-used if there is no possibility that
previous request using the ID may still have a pending reply. Note that cancellatio
does not guarantee no reply will be sent. It is the responsibility of the client to gene
and assign request IDs. Request IDs must be unique among bothRequest and
LocateRequest messages.

15.5.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect

For GIOP versions 1.0, and 1.1:

• Orderly shutdown is initiated by servers sending aCloseConnection message, or
by clients just closing down a connection.

• Orderly shutdown may be initiated by the client at any time.

• A server may not initiate shutdown if it has begun processing any requests for
which it has not either received aCancelRequest or sent a corresponding reply.

• If a client detects connection closure without receiving aCloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

For GIOP Version 1.2, 1.3:

• Orderly shutdown is initiated by either the originating client ORB (connection
initiator) or by the server ORB (connection responder) sending a
CloseConnection message

• If the ORB sending theCloseConnection is a server, or bidirectional GIOP is in
use, the sending ORB must not currently be processing any Requests from the o
side.

• The ORB that sends theCloseConnection must not send any messages after th
CloseConnection .

• If either ORB detects connection closure without receiving aCloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

• If bidirectional GIOP is in use, the conditions of Section 15.8, “Bi-Directional
GIOP,” on page 15-56 apply.

For all uses ofCloseConnection (for GIOP versions 1.0, 1.1, 1.2, and 1.3):

• If there are any pending non-oneway requests, which were initiated on a connec
by the ORB shutting down that connection, the connection-peer ORB should
consider them as canceled.

• If an ORB receives aCloseConnection message from its connection-peer ORB, i
should assume that any outstanding messages (i.e., without replies) were rece
after the connection-peer ORB sent the CloseConnection message, were not
processed, and may be safely re-sent on a new connection.
15-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

e
to be

age
for
ed.

a

ures

ing
• After issuing aCloseConnection message, the issuing ORB may close the
connection. Some transport protocols (not including TCP) do not provide an
“orderly disconnect” capability, guaranteeing reliable delivery of the last messag
sent. When GIOP is used with such protocols, an additional handshake needs
provided as part of the mapping to that protocol's connection mechanisms, to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

15.5.1.2 Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource us
by reusing connections, if it wishes. If not, the client may open a new connection
each active object supported by the server, although this behavior should be avoid

15.5.2 Message Ordering

Only the client (connection originator) may sendRequest, LocateRequest, and
CancelRequest messages, if Bi-Directional GIOP is not in use.

Clients may have multiple pending requests. A client need not wait for a reply from
previous request before sending another request.

Servers may reply to pending requests in any order.Reply messages are not required
to be in the same order as the correspondingRequests .

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issueCloseConnection
messages whenReply messages have been sent in response to all receivedRequest
messages that require replies.

15.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol feat
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as anobject adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the follow
roles with respect to a particular object reference:
July 2002 CORBA, v3.0: Object Location 15-49

15

urn
be
cess
t

tead

ide

in
e

an
an

n

d

t to

to
• The agent may be able to accept object requests directly for the object and ret
replies. The agent may or may not own the actual object implementation; it may
an Inter-ORB bridge that transforms the request and passes it on to another pro
or ORB. From GIOP’s perspective, it is only important that requests can be sen
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts ins
as a location service. AnyRequest messages sent to the agent would result in
either exceptions or replies withLOCATION_FORWARD status, providing new
addresses to which requests may be sent. Such agents would also respond to
LocateRequest messages with appropriateLocateReply messages.

• The agent may directly respond to some requests (for certain objects) and prov
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point
time, and provide a forwarding location at a later time (perhaps during the sam
connection).

Agents are not required to implement location forwarding mechanisms. An agent c
be implemented with the policy that a connection either supports direct access to
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with eitherOBJECT_HERE or UNKNOWN_OBJECT
status, and neverOBJECT_FORWARD status.

Clients must, however, be able to accept and processReply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a locatio
service. Whether a client chooses to sendLocateRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always sendLocateRequest messages to objects for which it has no recorde
forwarding address. If a client sendsLocateRequest messages, it should be prepared
to acceptLocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned byLOCATION_FORWARD (OBJECT_FORWARD) mechanisms. Once a
connection based on location-forwarding information is closed, a client can attemp
reuse the forwarding information it has, but, if that fails, it shall restart the location
process using the original address specified in the initial object reference.

For GIOP version 1.2 and 1.3, the usage ofLOCATION_FORWARD_PERM
(OBJECT_FORWARD_PERM) behaves like the usage ofLOCATION_FORWARD
(OBJECT_FORWARD), but when used by the server it also provides an indication
the client that it may replace the old IOR with the new IOR. When using
LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM), both the old IOR
and the new IOR are valid, but the new IOR is preferred for future use.
15-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

e

tion
on

fer to

1.2
An
ions.

IOP
ns.

n

ded
t of
Note – Usage ofLOCATION_FORWARD_PERM and
OBJECT_FORWARD_PERM is now deprecated, due to problems it causes with th
semantics of theObject::hash operation.LOCATION_FORWARD_PERM and
OBJECT_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.

Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returnsUNKNOWN_OBJECT , the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discre
of ORBs, available to be used for optimization and to support flexible object locati
and migration behaviors.

15.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP5. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message trans
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must support
GIOP 1.1, and may also support GIOP 1.0. An IIOP 1.1 server must support
processing both GIOP 1.0 and GIOP 1.1 messages.

IIOP 1.2 can be based on any of the GIOP minor versions 1.0, 1.1, or 1.2. An IIOP
client must support GIOP 1.2, and may also support lesser GIOP minor versions.
IIOP 1.2 server must also support processing messages with all lesser GIOP vers

IIOP 1.3 can be based on any of the GIOP minor versions 1.0, 1.1, 1.2, or 1.3. An I
1.3 client must support GIOP 1.3, and may also support lesser GIOP minor versio
An IIOP 1.3 server must also support processing messages with all lesser GIOP
versions.

Conformance to IIOP versions 1.1, 1.2, and 1.3 requires support of Limited-Profile
IOR conformance (see Section 13.6.2, “Interoperable Object References: IORs,” o
page 13-14), specifically for the IIOP IOR Profile. As of CORBA 2.4, this limited IOR
conformance is deprecated, and ORBs implementing IIOP are strongly recommen
to support Full IOR conformance. Some future IIOP versions could require suppor
Full IOR conformance.

5. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981
July 2002 CORBA, v3.0: Internet Inter-ORB Protocol (IIOP) 15-51

15

ects
IIOP

for

ld

age).

n.

o

ility

and
also

s
ta on
ot

ume.
ing

re
vior.

B

15.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for obj
(i.e., servers) publish TCP/IP addresses in IORs, as described in Section 15.7.2, “
IOR Profiles,” on page 15-52. A TCP/IP address consists of an IP host address,
typically represented by a host name, and a TCP port number. Servers must listen
connection requests.

A client needing an object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers shou
accept connection requests if possible, but ORBs are free to establish any desired
policy for connection acceptance (e.g., to enforce fairness or optimize resource us

Once a connection is accepted, the client may sendRequest, LocateRequest , or
CancelRequest messages by writing to the TCP/IP socket it owns for the connectio
The server may sendReply, LocateReply , andCloseConnection messages by
writing to its TCP/IP connection. In GIOP 1.2, and 1.3, the client may send the
CloseConnection message, and if BiDirectional GIOP is in use, the client may als
sendReply andLocateReply messages.

After receiving aCloseConnection message, an ORB must close the TCP/IP
connection. After sending aCloseConnection , an ORB may close the TCP/IP
connection immediately, or may delay closing the connection until it receives an
indication that the other side has closed the connection. For maximum interoperab
with ORBs using TCP implementations that do not properly implement orderly
shutdown, an ORB may wish to only shutdown the sending side of the connection,
then read any incoming data until it receives an indication that the other side has
shutdown, at which point the TCP connection can be closed completely.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situation
between clients and servers if both sides of a connection send large amounts of da
a connection (or two different connections between the same processes) and do n
read incoming data. Both processes may block on write operations, and never res
It is the responsibility of both clients and servers to avoid creating deadlock by read
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs a
free to adopt any desired implementation strategy, but should provide robust beha

15.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-OR
Protocol, have the following form:

module IIOP { // IDL extended for version 1.1, 1.2, and 1.3
struct Version {

octet major;
octet minor;

};
15-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

r

tet

,

est
he

hen
fined
ly

ore
struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2 and 1.3
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2 and 1.3
sequence <IOP::TaggedComponent> components;

};
};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher mino
version number by using only the information defined in the lower minor version
protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use theProfileBody_1_0 structure, while
those supporting IIOP version 1.1 or 1.2 or 1.3 use theProfileBody_1_1 structure.
An instance of one of these structure types is marshaled into an encapsulation oc
stream. This encapsulation (asequence <octet>) becomes theprofile_data
member of theIOP::TaggedProfile structure representing the IIOP profile in an IOR
and the tag has the valueTAG_INTERNET_IOP (as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the high
GIOP minor version number that the server supports at the time of publication of t
IOR.

If the major revision number is 1, and the minor revision number is greater than 0, t
the length of the encapsulated profile may exceed the total size of components de
in this specification for profiles with minor revision number 0. ORBs that support on
revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the
object_key . If the revision of the profile is 1.0, there shall be no extra data in the
profile (i.e., the length of the encapsulated profile must agree with the total size of
components defined for version 1.0).

For Version 1.2 and 1.3 of IIOP, no order of use is prescribed in the case where m
than one TAG Internet IOP Profile is present in an IOR.

The members ofIIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as
follows:
July 2002 CORBA, v3.0: Internet Inter-ORB Protocol (IIOP) 15-53

15

ss
ular
n or
n

d 2.
le

ed
,
ents

ct
ct
r
s,

ent

st is
alue

this

nts
s
ls. If
ured
• iiop_version describes the version of IIOP that the agent at the specified addre
is prepared to receive. When an agent generates IIOP profiles specifying a partic
version, it must be able to accept messages complying with the specified versio
any previous minor version (i.e., any smaller version number). The major versio
number of this specification is 1; the minor versions defined to date are 0, 1, an
Compliant ORBs must generate version 1.1 profiles, and must accept any profi
with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by theProfileBody_1_0
structure. If the minor version number is 1 or 2, the encapsulation is fully describ
by theProfileBody_1_1 structure. If the minor version number is greater than 2
then the length of the encapsulated profile may exceed the total size of compon
defined in this specification for profiles with minor version number 1 or 2. ORBs
that support only version 1.1 or 1.2 IIOP profiles must ignore, but preserve, any
data in the profile that occurs after thecomponents member, for IIOP profiles
with minor version greater than 1.2.

Note – As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor
version in theTAG_INTERNET_IOP profile signals the highest minor revision of
GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified obje
may be sent. In order to promote a very large (Internet-wide) scope for the obje
reference, this will typically be the fully qualified domain name of the host, rathe
than an unqualified (or partially qualified) name. However, per Internet standard
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target ag
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the reque
directed. An agent that generates an object key value must be able to map the v
unambiguously onto the corresponding object when routing requests internally.

• components is a sequence ofTaggedComponent , which contains additional
information that may be used in making invocations on the object described by
profile. TaggedComponent s that apply to IIOP 1.2 are described below in
Section 15.7.3, “IIOP IOR Profile Components,” on page 15-55. Other compone
may be included to support enhanced versions of IIOP, to support ORB service
such as security, and to support other GIOPs, ESIOPs, and proprietary protoco
an implementation puts a non-standard component in an IOR, it cannot be ass
that any or all non-standard components will remain in the IOR.

The relationship between the IIOP protocol version and component support
conformance requirements is as follows:
15-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

ce
and
s,

C

e

• Each IIOP version specifies a set of standard components and the conforman
rules for that version. These rules specify which components are mandatory
which are optional. A conformant implementation has to conform to these rule
and is not required to conform to more than these rules.

• New components can be added, but they do not become part of the versions
conformance rules.

• When there is a need to specify conformance rules that include the new
components, there will be a need to create a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.

Agents may freely choose TCP port numbers for communication; IIOP supports
multiple agents per host.

15.7.3 IIOP IOR Profile Components

The following components are part of IIOP 1.1, 1.2, and 1.3 conformance. All thes
components are optional.

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_SPKM_1_SEC_MECH

• TAG_SPKM_2_SEC_MECH

• TAG_KerberosV5_SEC_MECH

• TAG_CSI_ECMA_Secret_SEC_MECH

• TAG_CSI_ECMA_Hybrid_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_CSI_ECMA_Public_SEC_MECH

• TAG_FIREWALL_TRANS

• TAG_JAVA_CODEBASE

• TAG_TRANSACTION_POLICY

• TAG_MESSAGE_ROUTERS

• TAG_INET_SEC_TRANS

The following components are part of IIOP 1.2, and 1.3 conformance. All these
components are optional.
July 2002 CORBA, v3.0: Internet Inter-ORB Protocol (IIOP) 15-55

15

nd

can

g
pt
TP
ire
,
l

in
no

m

• TAG_ALTERNATE_IIOP_ADDRESS

• TAG_POLICIES

• TAG_DCE_STRING_BINDING

• TAG_DCE_BINDING_NAME

• TAG_DCE_NO_PIPES

• TAG_DCE_MECH

• TAG_COMPLETE_OBJECT_KEY

• TAG_ENDPOINT_ID_POSITION

• TAG_LOCATION_POLICY

• TAG_OTS_POLICY

• TAG_INV_POLICY

• TAG_CSI_SEC_MECH_LIST

• TAG_NULL_TAG

• TAG_SECIOP_SEC_TRANS

• TAG_TLS_SEC_TRANS

• TAG_ACTIVITY_POLICY

15.8 Bi-Directional GIOP

The specification of GIOP connection management, in GIOP minor versions 1.0 a
1.1, states that connections are not symmetrical. For example, only clients that
initialize connections can send requests, and only servers that accept connections
receive them.

This GIOP 1.0 and 1.1 restriction gives rise to significant difficulties when operatin
across firewalls. It is common for firewalls not to allow incoming connections, exce
to certain well-known and carefully configured hosts, such as dedicated HTTP or F
servers. For most CORBA-over-the-internet applications it is not practicable to requ
that all potential client firewalls install GIOP proxies to allow incoming connections
or that any entities receiving callbacks will require prior configuration of the firewal
proxy.

An applet, for example, downloaded to a host inside such a firewall will be restricted
that it cannot receive requests from outside the firewall on any object it creates, as
host outside the firewall will be able to connect to the applet through the client's
firewall, even though the applet in question would typically only expect callbacks fro
the server it initially registered with.
15-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

or
lient
)
any

r
to

ble,
use

ay
-

bi-

at
und

new
list

the
ived.

age

ly
In order to circumvent this unnecessary restriction, GIOP minor protocol version 1.2
1.3 specifies that the asymmetry stipulation above be relaxed in cases where the c
and the server agree on it. In these cases, the client (the applet in the above case
would still initiate the connection to the server, but any requests from the server on
objects.

The client creates an object for exporting to a server, and arranges that the serve
receive an IOR for the object. The most common use case would be for the client
pass the IOR as a parameter in a GIOP request, but other mechanisms are possi
such as the use of a Name Service. If the client ORB policy permits bi-directional
of a connection, a Request message should contain anIOP::ServiceContext
structure in its Request header, which indicates that this GIOP connection is bi-
directional. The service context may provide additional information that the server m
need to invoke the callback object. To determine whether an ORB may support bi
directional GIOP new policies has been defined (Section 15.9, “Bi-directional GIOP
policy,” on page 15-60).

Each mapping of GIOP to a particular transport should define a transport-specific
directional service context, and have anIOP::ServiceId allocated by the OMG. It is
recommended that names for this service context follows the pattern
BiDir<protocolname>, where <protocol name> identifies a mapping of GIOP to a
transport protocol (e.g., for IIOP the name isBiDirIIOP). The service context for bi-
directional IIOP is defined in Section 15.8.1, “Bi-Directional IIOP,” on page 15-58.

The server receives the Request, which contains a bi-directional
IOP::ServiceContext . If the server supports bi-directional connections for that
protocol, it may now send invocations along the same connection to any object th
supports the particular protocol and matches the particular location information fo
in the bi-directional service context. If the server does not support bi-directional
connections for that protocol, the service context can be ignored.

The data encapsulated in theBiDirIIOPServiceContext structure (see below), which
is identified by theServiceId BI_DIR_IIOP as defined in Section 13.7, “Service
Context,” on page 13-28, allows the ORB to determine whether it needs to open a
connection in order to invoke on an object. If a host and port pair in a listen_point
matches a host and port of an object to which it does not yet have a connection (a
callback object newly received, for instance), rather than open a new connection,
server may re-use any of the connections on which the listen_point data was rece

A server talking to a client on a bi-directional GIOP connection can use any mess
type traditionally used by clients only, so it can useRequest , LocateRequest ,
CancelRequest , MessageError , andFragment (for a Request or
LocateRequest). Similarly the client can use message types traditionally used on
by servers:Reply , LocateReply , MessageError , CloseConnection , and
Fragment (for a Reply or LocateReply).

CloseConnection messages are a special case however. Either ORB may send a
CloseConnection message, but the conditions in Section 15.5.1, “Connection
Management,” on page 15-47 apply.
July 2002 CORBA, v3.0: Bi-Directional GIOP 15-57

15

d
cope
ts
for

ued

the
n
t

ed.
ame

In

it
ost.

and

at
Bi-directional GIOP connections modify the behavior of Request IDs. In the GIOP
specification, Section 15.5.1, “Connection Management,” on page 15-47, it is note
that “Request IDs must unambiguously associate replies with requests within the s
and lifetime of a connection.” This property of unambiguous association of reques
and replies must be preserved while permitting each end to generate Request Ids
new requests independently. To ensure this, on a connection that is used bi-
directionally in GIOP 1.2, and 1.3, the connection originator shall assign only even
valued Request IDs and the other side of the connection shall assign only odd val
Request IDs. This requirement applies to the full lifetime of the connection, even
before aBiDirIIOPServiceContext is transmitted. A connection on which this
regime of Request ID assignment is not used, shall never be used to transmit bi-
directional GIOP 1.2, or 1.3 messages.

It should be noted that a single-threaded ORB needs to perform event checking on
connection, in case aRequest from the other endpoint arrives in the window betwee
it sending its ownRequest and receiving the corresponding reply; otherwise a clien
and server could sendRequest s simultaneously, resulting in deadlock. If the client
cannot support event checking, it must not indicate that bi-directionality is support
If the server cannot support event checking, it must not make callbacks along the s
connection even if the connection indicates it is supported.

A server making a callback to a client cannot specify its own bi-directional service
context – only the client can announce the connection's bi-directionality.

An important security issue should be observed in the use of bi-directional GIOP.
the absence of other security mechanisms, a malicious client may claim that its
connection is Bi-Directional for use with any host and port it chooses. In particular
may specify the host and port of security sensitive objects not even resident on its h
All the client has to do is pass the host and port in the listen data service context
the server may then invoke a masquerading object instead. In general, and in the
absence of other security mechanisms, a server that has accepted an incoming
connection has no way to discover the identity or verify the integrity of the client th
initiated the connection. If the server has doubts in the integrity of the client, it is
recommended that bi-directional GIOP is not used.

15.8.1 Bi-Directional IIOP

The IOP::ServiceContext used to support bi-directional IIOP contains a
BiDirIIOPServiceContext structure as defined below:

// IDL
module IIOP {

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;
15-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15

oint

e in

tion
R,

, and

e a

ss.

nt
d the
e to
struct BiDirIIOPServiceContext {
ListenPointList listen_points;

};
};

The data encapsulated in theBiDirIIOPServiceContext structure, which is identified
by the ServiceIdBI_DIR_IIOP as defined in Section 13.7, “Service Context,” on
page 13-28, allows the ORB, which intends to open a new connection in order to
invoke on an object, to look up its list of active client-initiated connections and
examine the structures associated with them, if any. If ahost andport pair in a
listen_points list matches a host and port, which the ORB intends to open a
connection to, rather than open a new connection to thatlisten_point , the server may
re-use any of the connections that were initiated by the client on which the listen p
data was received.

Thehost element of the structure should contain whatever values the client may us
the IORs it creates. The rules forhost andport are identical to the rules for the IIOP
IOR ProfileBody_1_1 host andport elements; see Section 15.7.2, “IIOP IOR
Profiles,” on page 15-52. Note that if the server wishes to make a callback connec
to the client in the standard way, it must use the values from the client object's IO
not the values from thisBiDirIIOPServiceContext structure; these values are only to
be used for bi-directional GIOP support.

The BI_DIR_IIOP service context may be sent by a client at any point in a
connection's lifetime. Thelisten_points specified therein must supplement any
listen_points already sent on the connection, rather than replacing the existing
points.

If a client supports a secure connection mechanism, such as SECIOP or IIOP/SSL
sends aBI_DIR_IIOP service context over an insecure connection, thehost andport
endpoints listed in theBI_DIR_IIOP should not contain the details of the secure
connection mechanism if insecure callbacks to the client's secure objects would b
violation of the client's security policy.

It is the ORB's responsibility to ensure that an IOR contains an appropriate addre

15.8.1.1 IIOP/SSL considerations

Bi-directional IIOP can operate over IIOP/SSL (see CORBAservices Chapter 15)
without defining any additions to the IIOP/SSL or the bi-directional GIOP
mechanisms. However, if the client wants to authenticate the server when the clie
receives a callback this cannot be done unless the client has already authenticate
server. This has to be performed during the initial SSL handshake. It is not possibl
do this at any point after the initial handshake without establishing a new SSL
connection (which defeats the purpose of the bi-directional connections).
July 2002 CORBA, v3.0: Bi-Directional GIOP 15-59

15

nts
le to
bi-
is

f

e
alue
15.9 Bi-directional GIOP policy

In GIOP protocol versions 1.0 and 1.1, there are strict rules on which side of a
connection can issue what type of messages (for example version 1.0 and 1.1 clie
can not issue GIOP reply messages). However, as documented above, it is sensib
relax this restriction if the ORB supports this functionality and policies dictate that
directional connection are allowed. To indicate a bi-directional policy, the following
defined.

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};

A BidirectionalPolicyValue of NORMAL states that the usual GIOP restrictions o
who can send what GIOP messages apply (i.e., bi-directional connections are not
allowed). A value ofBOTH indicates that there is a relaxation in what party can issu
what GIOP messages (i.e., bi-directional connections are supported). The default v
of a BidirectionalPolicy is NORMAL .

In the absence of aBidirectionalPolicy being passed in the
PortableServer::POA::create_POA operation, aPOA will assume a policy value of
NORMAL .

A client and a serverORB must each have aBidirectionalPolicy with a value of
BOTH for bi-directional communication to take place.

To create aBidirectionalPolicy , theORB::create_policy operation is used.

15.10 OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

15.10.1 GIOP Module

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3

struct Version {
octet major;
octet minor;
15-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError
};

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageHeader_1_0 {// Renamed from MessageHeader

char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2 and 1.3
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

// GIOP 1.0
struct RequestHeader _1_0 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};
July 2002 CORBA, v3.0: OMG IDL 15-61

15
// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, and 1.3
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
// requesting_principal not in GIOP 1.2 and 1.3
IOP::ServiceContextList service_context; // 1.2 change

};

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
15-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
ReplyStatusType_1_0 reply_status;
};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, and 1.3
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM, // new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context; // 1.2 change

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // GIOP_1_2
struct SystemExceptionReplyBody {

string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;

};

struct CancelRequestHeader {
unsigned long request_id;

};

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2 and 1.3
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;
July 2002 CORBA, v3.0: OMG IDL 15-63

15
};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {

// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, and 1.3
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;

#endif // GIOP_1_2

// GIOP 1.2, and 1.3
struct FragmentHeader_1_2 {

unsigned long request_id;
};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

15.10.2 IIOP Module

module IIOP { // IDL extended for version 1.1, 1.2, and 1.3
15-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
struct Version {
octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2, and 1.3
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2, and 1.3
sequence <IOP::TaggedComponent> components;

};

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {// BI_DIR_IIOP Service Context
ListenPointList listen_points;

};
};

15.10.3 BiDirPolicy Module

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};
15-65 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

15
15-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

TheDCEESIOP 16
.

This chapter specifies an Environment-Specific Inter-ORB Protocol (ESIOP) for the
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

Contents

This chapter contains the following sections.

16.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Section Title Page

“Goals of the DCE Common Inter-ORB Protocol” 16-1

“DCE Common Inter-ORB Protocol Overview” 16-2

“DCE-CIOP Message Transport” 16-5

“DCE-CIOP Message Formats” 16-11

“DCE-CIOP Object References” 16-16

“DCE-CIOP Object Location” 16-21

“OMG IDL for the DCE CIOP Module” 16-25

“References for this Chapter” 16-26
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 16-1

16

t,

ats
e. It
ow
and

is

ted

e

two
ce:
DCE CIOP achieves these goals by using DCE-RPC to provide message transpor
while leaving the ORB responsible for message formatting, data marshaling, and
operation dispatch.

16.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet form
defined by DCE-RPC to enable independently implemented ORBs to communicat
defines the message formats that are exchanged using DCE-RPC, and specifies h
information in object references is used to establish communication between client
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 16.7, “OMG
IDL for the DCE CIOP Module,” on page 16-25. Fragments are used throughout th
chapter as necessary.

16.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC, which is interoperable with the DCE connection-orien
and/or connectionless protocols as specified in the X/OpenCAE Specification C309
and the OSFAES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the sam
connection.

• Supports fragmentation of messages. This provides for buffer management by
ORBs of CORBA requests, which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of
well-known DCE-RPC interfaces. Two DCE operations are provided in each interfa

• invoke- for invoking CORBA operation requests, and

• locate- for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1.DCEmaybeoperation semantics cannot be used for CORBAonewayoperations because
they are idempotent as opposed to at-most-once.

2.The deferred synchronous DII API can be implemented on top of synchronous RPCs by
using threads.
16-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

f the

rrays
-
PC

,

pes.
client

1.
Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of
uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message
transmission.

• Encoding of messages and marshaling of data is completely under the control o
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

Using the other DCE-RPC interface, the messages are transmitted as conformant a
of uninterpreted bytes. This interface does not offer all the advantages of the pipe
based interface, but is provided to enable interoperability with ORBs using DCE-R
implementations that do not adequately support pipes.

16.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer syntax
which is defined in Section 15.2.1, “Common Data Representation (CDR),” on
page 15-3. DCE-CIOP message headers and bodies are specified as OMG IDL ty
These are encoded using CDR, and the resulting messages are passed between
and server processes via DCE-RPC pipes or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL.
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDL primitive types identically to the NDR representation of
corresponding DCE IDL primitive types.

The corresponding OMG IDL and DCE IDL primitive types are shown in Table 16-

Table 16-1Relationship between CDR and NDR primitive data types

OMG IDL type DCE IDL type with NDR representation equivalent to
CDR representation of OMG IDL type

char byte

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

octet byte

short short

unsigned short unsigned short

long long

unsigned long unsigned long
July 2002 CORBA, v3.0: DCE Common Inter-ORB Protocol Overview 16-3

16

oes

.1
tets

DR

ts and

be
The CDR representation of OMG IDL constructed types and pseudo-object types d
not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conformant array of octets in DCE 1
NDR. This consists of an unsigned long of four octets, specifying the number of oc
in the array, followed by that number of octets, with no null terminator.

The NDR representation of OMG IDL fixed-point type,fixed , will be proposed as an
addition to the set of DCE IDL types.

As new data types are added to OMG IDL, NDR can be used as a model for their C
representations.

16.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clien
servers via theinvoke and locate RPCs:

• Invoke Requestidentifies the target object and the operation and contains the
principal, the operation context, aServiceContext, and thein and inout
parameter values.

• Invoke Responseindicates whether the operation succeeded, failed, or needs to
reinvoked at another location, and returns aServiceContext . If the operation
succeeded, the result and theout and inout parameter values are returned. If it
failed, an exception is returned. If the object is at another location, new RPC
binding information is returned.

long long hyper

unsigned long long unsigned hyper

float float1

double double2

long double long double3

boolean byte4

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Restricted to IEEE format.

4. Values restricted to 0 and 1.

Table 16-1Relationship between CDR and NDR primitive data types

OMG IDL type DCE IDL type with NDR representation equivalent to
CDR representation of OMG IDL type
16-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

R

.

sary
n

P
er

or
or it

t

oke

n
ile

nd
• Locate Requestidentifies the target object and the operation.

• Locate Responseindicates whether the location is in the current process, is
elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the CD
encoding of the remainder of the message. The CDR byte order of a message is
required to match the NDR byte order used by DCE-RPC to transmit the message

16.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information neces
to reference an object via DCE-CIOP must be included in an IOR. This informatio
can coexist with the information needed for other protocols such as IIOP. DCE-CIO
information is stored in an IOR as a set of components in a profile identified by eith
TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS . Components are
defined for the following purposes:

• To identify a server process via a DCE string binding, which can be either fully
partially bound. This process may be a server process implementing the object,
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an agen
capable of locating it.

• In the TAG_MULTIPLE_COMPONENTS profile, to identify the target object
when request messages are sent to the server. In theTAG_INTENET_IOP profile,
the object_key profile member is used instead.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an inv
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to
reference the CORBA object.

16.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages betwee
client ORBs and server ORBs3. One interface uses pipes to convey the messages, wh
the other uses conformant arrays.

The pipe-based interface is the preferred interface, since it allows messages to be
transmitted without precomputing the message length. But not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client a
server ORBs implementing DCE-CIOP must support the array-based interface4.
July 2002 CORBA, v3.0: DCE-CIOP Message Transport 16-5

16

it is
to

.
ing
ize

to
While server ORBs may provide both interfaces or just the array-based interface,
up to the client ORB to decide which to use for an invocation. If a client ORB tries
use the pipe-based interface and receives anrpc_s_unknown_if error, it should fall
back to the array-based interface.

16.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */
uuid(d7d99f66-97ee-11cf-b1a0-0800090b5d3e),/* 2nd revision
*/
version(1.0)
]
interface dce_ciop_pipe
{
typedef pipe byte message_type;

void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

ORBs can implement thedce_ciop_pipe interface by using DCE stubs generated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

Thedce_ciop_pipe interface is identified by the UUID and version number shown
To provide maximal performance, all server ORBs and location agents implement
DCE-CIOP should listen for and handle requests made to this interface. To maxim
the chances of interoperating with any DCE-CIOP client, servers should listen for
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE
RPCs on thedce_ciop_pipe interface. Thedce_ciop_pipe interface is made up
of two DCE-RPC operations,invoke and locate . The first parameter of each of
these RPCs is a DCE binding handle, which identifies the server process on which

3.Previous DCE-CIOP revisions used different DCE RPC interface UUIDs and had
incompatible message formats. These previous revisions are deprecated, but
implementations can continue to support them in conjunction with the current interface
UUIDs and message formats.

4.A future DCE-CIOP revision may eliminate the array-based interface and require support of
the pipe-based interface.
16-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

E-
”

.

he
ge

col

n is
his

unk
that
perform the RPC. See “DCE-CIOP String Binding Component” on page 16-17, “DC
CIOP Binding Name Component” on page 16-18, and “DCE-CIOP Object Location
on page 16-21 for discussion of how these binding handles are obtained. The
remaining parameters of thedce_ciop_pipe RPCs are pipes of uninterpreted bytes
These pipes are used to convey messages encoded using CDR. The
request_message input parameters send a request message from the client to t
server, while theresponse_message output parameters return a response messa
from the server to the client.

Figure 16-1 illustrates the layering of DCE-CIOP messages on the DCE-RPC proto
as NDR pipes:

Figure 16-1 Pipe-based Interface Protocol Layering

The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authenticatio
performed, are concatenated by the DCE-RPC run-time to form an NDR stream. T
stream is then interpreted as the NDR representation of a DCE IDL pipe.

A pipe is made up of chunks, where each chunk consists of a chunk length and ch
data. The chunk length is an unsigned long indicating the number of pipe elements
make up the chunk data. The pipe elements are DCE IDL bytes, which are
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe
chunks are concatenated to form a DCE-CIOP message.

PDU

Chunk Chunk Data Chunk ChunkChunk Data

PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body
July 2002 CORBA, v3.0: DCE-CIOP Message Transport 16-7

16

at.
lso

at.

ss
s

16.3.1.1 Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by thebinding_handle
parameter. Therequest_message pipe transmits a DCE-CIOP invoke request
message, encoded using CDR, from the client to the server. See Section 16.4.1,
“DCE_CIOP Invoke Request Message,” on page 16-11 for a description of its form
Theresponse_message pipe transmits a DCE-CIOP invoke response message, a
encoded using CDR, from the server to the client. See Section 16.4.2, “DCE-CIOP
Invoke Response Message,” on page 16-12 for a description of the response form

16.3.1.2 Locate

The locate RPC is used by a DCE-CIOP client process to query the server proce
identified by thebinding_handle parameter for the location of the server proces
where requests should be sent. Therequest_message andresponse_message
parameters are used similarly to the parameters of theinvoke RPC . See
Section 16.4.3, “DCE-CIOP Locate Request Message,” on page 16-14 and
Section 16.4.4, “DCE-CIOP Locate Response Message,” on page 16-15 for
descriptions of their formats. Use of thelocate RPC is described in detail in
Section 16.6, “DCE-CIOP Object Location,” on page 16-21.

16.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */
uuid(09f9ffb8-97ef-11cf-9c96-0800090b5d3e),/* 2nd revision
*/
version(1.0)
]
interface dce_ciop_array
{
 typedef struct {
 unsigned long length;

[size_is(length),ptr] byte *data;
 } message_type;

 void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

 void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

16-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

or

on
DR-
ge
ORBs can implement thedce_ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDL specification,
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and
handle requests made to thedce_ciop_array interface, and to maximize
interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing
locate and invoke RPCs on thedce_ciop_array interface.

As with thedce_ciop_pipe interface, the first parameter of each
dce_ciop_array RPC is a DCE binding handle that identifies the server process
which to perform the RPC. The remaining parameters are structures containing C
encoded messages. Therequest_message input parameters send a request messa
from the client to the server, while theresponse_message output parameters return
a response message from the server to the client.

The message_type structure used to convey messages is made up of alength
member and adata member:

• length- This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array
containing the message.
July 2002 CORBA, v3.0: DCE-CIOP Message Transport 16-9

16

in

DR

is
by
h is
ber
The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated
Figure 16-2:

Figure 16-2 Array-based Interface Protocol Layering

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the N
representation of the DCE IDLmessage_type structure. Thelength member is
encoded first, followed by thedata member. Thedata member is a full pointer,
which is represented in NDR as a referent ID. In this case, this non-NULL pointer
the first (and only) pointer to the referent, so the referent ID is 1 and it is followed
the representation of the referent. The referent is a conformant array of bytes, whic
represented in NDR as an unsigned long indicating the length, followed by that num
of bytes. The bytes form the DCE-CIOP message.

16.3.2.1 Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by thebinding_handle
parameter. Therequest_message input parameter contains a DCE-CIOP invoke
request message. Theresponse_message output parameter returns a DCE-CIOP
invoke response message from the server to the client.

PDU PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body

length ref ID length bytes
16-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

ss
s

rmats
-

ader
L

der
E

16.3.2.2 Locate

The locate RPC is used by a DCE-CIOP client process to query the server proce
identified by thebinding_handle parameter for the location of the server proces
where requests should be sent. Therequest_message andresponse_message
parameters are used similarly to the parameters of theinvoke RPC.

16.4 DCE-CIOP Message Formats

This section defines the message formats used by DCE-CIOP. These message fo
are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE
RPC as either pipes or arrays of bytes as described in Section 16.3, “DCE-CIOP
Message Transport,” on page 16-5.

16.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations andCORBA::Object operations such as
get_interface andget_implementation . Invoke requests are passed from
client to server as therequest_message parameter of aninvoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The he
has a fixed format, while the format of the body is determined by the operation’s ID
definition.

16.4.1.1 Invoke request header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.
July 2002 CORBA, v3.0: DCE-CIOP Message Formats 16-11

16

the

of

he
• object_key contains opaque data used to identify the object that is the target of
operation5. Its value is obtained from theobject_key field of the
TAG_INTERNET_IOP profile or theTAG_COMPLETE_OBJECT_KEY
component of theTAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. The case
the operation name must match the case of the operation name specified in the
OMG IDL source for the interface being used.

Attribute accessors have names as follows:

• Attribute selector: operation name is “_get_<attribute>”

• Attribute mutator: operation name is “_set_<attribute>”

CORBA::Object pseudo-operations have operation names as follows:
• get_interface - operation name is “_interface”
• get_implementation - operation name is “_implementation”
• is_a - operation name is “_is_a”
• non_existent- operation name is “_non_existent”

• Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value. It is provided to support t
BOA::get_principal operation.

16.4.1.2 Invoke request body

The invoke request body contains the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in Section 15.3.5.4,
“Context,” on page 15-306. This item is only included if the operation’s OMG IDL
definition includes a context expression, and only includes context members as
defined in that expression.

16.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the
response_message parameter of aninvoke RPC.

5.Previous revisions of DCE-CIOP included an endpoint_id member, obtained from an
optional TAG_ENDPOINT_ID component, as part of the object identity. The endpoint ID,
if used, is now contained within the object key, and its position is specified by the optional
TAG_ENDPOINT_ID_POSITION component.

6.Previous revisions of DCE-CIOP encoded the Context in the InvokeRequestHeader. It has
been moved to the body for consistency with GIOP.
16-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

er and
e

der
E

Like invoke request messages, an invoke response message is made up of a head
a body. The header has a fixed format, while the format of the body depends on th
operation’s OMG IDL definition and the outcome of the invocation.

16.4.2.1 Invoke response header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.

• status indicates the completion status of the associated request, and also
determines the contents of the body.

16.4.2.2 Invoke Response Body

The contents of the invoke response body depends on the value of thestatus
member of the invoke response header, as well as the OMG IDL definition of the
operation being invoked. Its format is one of the following:
July 2002 CORBA, v3.0: DCE-CIOP Message Formats 16-13

16

der

d

is
his

ct

ould
• If the status value isINVOKE_NO_EXCEPTION, then the body contains the
operation result value (if any), followed by all inout and out parameters, in the or
in which they appear in the operation signature, from left to right.

• If the status value isINVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encode
as in GIOP.

• If the status value isINVOKE_LOCATION_FORWARD , then the body contains
a new IOR containing aTAG_INTERNET_IOP or
TAG_MULTIPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the invoke request message7. This profile
must provide at least one new DCE-CIOP binding component. The client ORB
responsible for resending the request to the server identified by the new profile. T
operation should be transparent to the client program making the request. See
“DCE-CIOP Object Location” on page 16-21 for more details.

• If the status value isINVOKE_TRY_AGAIN , then the body is empty and the
client should reissue theinvoke RPC, possibly after a short delay8.

16.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the
request_message parameter of alocate RPC, to determine the following
regarding a specified object reference:

• Whether the object reference is valid.

• Whether the current server is capable of directly receiving requests for the obje
reference.

• If not capable, to solicit an address to which requests for the object reference sh
be sent.

For details on the usage of thelocate RPC, see Section 16.6, “DCE-CIOP Object
Location,” on page 16-21.

Locate request messages contain a fixed-format header, but no body.

16.4.3.1 Locate Request Header

DCE-CIOP locate request headers have the following format:

module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;

7.Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR is
now returned to allow either a TAG_INTERNET_IOP or a
TAG_MULTIPLE_COMPONENTS profile to be used.

8.An exponential back-off algorithm is recommended, but not required.
16-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

der
E

the

ed

der
E

sequence <octet> object_key;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target of
operation. Its value is obtained from theobject_key field of the
TAG_INTERNET_IOP profile or theTAG_COMPLETE_OBJECT_KEY
component of theTAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. It is encod
as in the invoke request header.

16.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the
response_message parameter of alocate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

16.4.4.1 Locate Response Header

DCE-CIOP locate response headers have the following format:

module DCE_CIOP { // IDL
enum LocateResponseStatus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};
struct LocateResponseHeader {

boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.
July 2002 CORBA, v3.0: DCE-CIOP Message Formats 16-15

16

er.

ate

r

ile

nd

r

file.
ted

ple,
the

of
her
• status indicates whether the object is valid and whether it is located in this serv
It determines the contents of the body.

16.4.4.2 Locate Response Body

The contents of the locate response body depends on the value of thestatus member
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specified
in the corresponding locate request message is unknown to the server. The loc
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originato
of the locate response message) can directly receive requests for the specified
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate
response body contains a new IOR containing aTAG_INTERNET_IOP or
TAG_MULTIPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the locate request message. This prof
must provide at least one new DCE-CIOP binding component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty a
the client should reissue thelocate RPC, possibly after a short delay9.

16.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified either byTAG_INTERNET_IOP or by
TAG_MULTIPLE_COMPONENTS . Theprofile_data for the
TAG_INTERNET_IOP profile is a CDR encapsulation of the
IIOP::ProfileBody_1_1 type, described in Section 15.7.2, “IIOP IOR Profiles,” on
page 15-52. Theprofile_data for theTAG_MULTIPLE_COMPONENTS profile is a
CDR encapsulation of theMultipleComponentProfile type, which is a sequence of
TaggedComponent structures, described in Section 13.6, “An Information Model fo
Object References,” on page 13-14.

DCE-CIOP defines a number of IOR components that can be included in either pro
Each is identified by a unique tag, and the encoding and semantics of the associa
component_data are specified.

Either IOR profile can contain components for other protocols in addition to DCE-
CIOP, and can contain components used by other kinds of ORB services. For exam
an ORB vendor can define its own private components within this profile to support
vendor’s native protocol. Several of the components defined for DCE-CIOP may be
use to other protocols as well. The following component descriptions will note whet

9.An exponential back-off algorithm is recommended, but not required.
16-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

,
han

erved
ied

self,

ing
IOP.

for
ing

out
the component is intended solely for DCE-CIOP or can be used by other protocols
whether the component is required or optional for DCE-CIOP, and whether more t
one instance of the component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and
recognize the components defined here. Unrecognized components should be pres
but ignored. Implementations should also be prepared to encounter profiles identif
by TAG_INTERNET_IOP or by TAG_MULTIPLE_COMPONENTS that do not
support DCE-CIOP.

16.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING , contains a fully or partially bound string binding. A
string binding provides the information necessary for DCE-RPC to establish
communication with a server process that can either service the client’s requests it
or provide the location of another process that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert a string binding to
the DCE binding handle required to communicate with a server as described in
Section 16.3, “DCE-CIOP Message Transport,” on page 16-5.

This component is intended to be used only by DCE-CIOP. At least one string bind
or binding name component must be present for an IOR profile to support DCE-C

Multiple string binding components can be included in a profile to define endpoints
different DCE protocols, or to identify multiple servers or agents capable of servic
the request.

The string binding component is defined as follows:

module DCE_CIOP { \\ IDL
const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComponent structure is built for the string binding component by setting
the tag member toTAG_DCE_STRING_BINDING and setting the
component_data member to the value of a DCE string binding. The string is
represented directly in the sequence of octets, including the terminating NUL, with
further encoding.

The format of a string binding is defined in Chapter 3 of the OSFAES/Distributed
Computing RPC Volume. The DCE API function
rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as the first parameter to theinvoke and
locate RPCs.

A string binding contains:

• A protocol sequence

• A network address

• An optional endpoint
July 2002 CORBA, v3.0: DCE-CIOP Object References 16-17

16

tain

icate

ling
t for

ry
• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC
run-time uses an endpoint mapper to complete a partial binding, and multiple ORB
servers might be located on the same host, partially bound string bindings must con
object UUIDs to distinguish different endpoints at the same network address.

16.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME . It contains a name that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle needed to commun
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name
components can be included to identify multiple servers or agents capable of hand
a request. At least one binding name or string binding component must be presen
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:

module DCE_CIOP { // IDL
const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComponent structure is built for the binding name component by setting
the tag member toTAG_DCE_BINDING_NAME and setting thecomponent_data
member to a CDR encapsulation of aBindingNameComponent structure.

16.5.2.1 BindingNameComponent

TheBindingNameComponent structure contains the information necessary to que
a DCE nameservice such as CDS. A client ORB can use theentry_name_syntax,
entry_name, andobject_uuid members of theBindingName structure with the
rpc_ns_binding_import_ * or rpc_ns_binding_lookup_ * families of DCE
API routines to obtain binding handles to communicate with a server. If the
object_uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.
16-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

rface

as the

rver
16.5.3 DCE-CIOP No Pipes Component

The optional component identified byTAG_DCE_NO_PIPES indicates to an ORB
client that the server does not support thedce_ciop_pipe DCE-RPC interface. It is
only a hint, and can be safely ignored. As described in Section 16.3, “DCE-CIOP
Message Transport,” on page 16-5, the client must fall back to the array-based inte
if the pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::ComponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComponent structure with atag member ofTAG_DCE_NO_PIPES
must have an emptycomponent_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.

16.5.4 Complete Object Key Component

An IOR profile supporting DCE-CIOP must include an object key that identifies the
object the IOR represents. The object key is an opaque sequence of octets used
object_key member in invoke and locate request message headers. In a
TAG_INTERNET_IOP profile, theobject_key member of the
IIOP::ProfileBody_1_1 structure is used. In aTAG_MULTIPLE_COMPONENTS
profile supporting DCE-CIOP10, a singleTAG_COMPLETE_OBJECT_KEY
component must be included to identify the object.

The TAG_COMPLETE_OBJECT_KEY component is available for use by all
protocols that use theTAG_MULTIPLE_COMPONENTS profile. By sharing this
component, protocols can avoid duplicating object identity information. This
component should never be included in aTAG_INTERNET_IOP profile.

module IOP { // IDL
const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;

};

The sequence of octets comprising thecomponent_data of this component is not
interpreted by the client process. Its format only needs to be understood by the se
process and any location agent that it uses.

10.Previous DCE-CIOP revisions used a different component.
July 2002 CORBA, v3.0: DCE-CIOP Object References 16-19

16

ble
ges.
oint

int
ex

t

r

e
an
n
on
16.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in IOR profiles to ena
client ORBs to minimize resource utilization and to avoid redundant locate messa
It can be used by other protocols as well as by DCE-CIOP. No more than one endp
ID position component can be included in a profile.

module IOP { // IDL
const ComponentId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionComponent {
unsigned short begin;
unsigned short end;

};
};

An endpoint ID position component, identified byTAG_ENDPOINT_ID_POSITION,
indicates the portion of the profile’s object key that identifies the endpoint at which
operations on an object can be invoked. Thecomponent_data is a CDR
encapsulation of anEndpointIdPositionComponent structure. Thebegin member
of this structure specifies the index in the object key of the first octet of the endpo
ID. The end member specifies the index of the last octet of the endpoint ID. An ind
value of zero specifies the first octet of the object key. The value ofend must be
greater than the value ofbegin , but less than the total number of octets in the objec
key. The endpoint ID is made up of the octets located between these two indices
inclusively.

The endpoint ID should be unique within the domain of interoperability. A binary o
stringified UUID is recommended.

If multiple objects have the same endpoint ID, they can be messaged to at a singl
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients c
use a single binding handle to invoke requests on all of the objects with a commo
endpoint ID. See Section 16.6.4, “Use of the Location Policy and the Endpoint ID,”
page 16-24.

16.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIOP client ORB should perform alocate RPC before attempting to
perform aninvoke RPC. No more than one location policy component should be
included in a profile, and it can be used by other protocols that have location
algorithms similar to DCE-CIOP.

module IOP { // IDL
const ComponentId TAG_LOCATION_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER = 0
#define LOCATE_OBJECT = 1
16-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

a

n

int is

e

or

an
#define LOCATE_OPERATION = 2
#define LOCATE_ALWAYS = 3

};

A TaggedComponent structure for a location policy component is built by setting
the tag member toTAG_LOCATION_POLICY and setting thecomponent_data
member to a sequence containing a single octet, whose value isLOCATE_NEVER ,
LOCATE_OBJECT, LOCATE_OPERATION , or LOCATE_ALWAYS .

If a location policy component is not present in a profile, the client should assume
location policy ofLOCATE_OBJECT .

A client should interpret the location policy as follows:

• LOCATE_NEVER - Perform only theinvoke RPC. Nolocate RPC is
necessary.

• LOCATE_OBJECT - Perform alocate RPC once per object. Theoperation
member of the locate request message will be ignored.

• LOCATE_OPERATION - Perform a separatelocate RPC for each distinct
operation on the object. This policy can be used when different methods of a
object are located in different processes.

• LOCATE_ALWAYS - Perform a separatelocate RPC for each invocation on
the object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessarylocate RPCs
and to avoidinvoke RPCs that returnINVOKE_LOCATION_FORWARD status. It
is not needed to provide correct semantics, and can be ignored. Even when this h
utilized, aninvoke RPC might result in anINVOKE_LOCATION_FORWARD
response. See Section 16.6, “DCE-CIOP Object Location,” on page 16-21 for mor
details.

A client does not need to implement all location policies to make use of this hint. A
location policy with a higher value can be substituted for one with a lower value. F
instance, a client might treatLOCATE_OPERATION asLOCATE_ALWAYS to avoid
having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perform alocate RPC for the
first object with a particular endpoint ID, and then just perform aninvoke RPC for
other objects with the same endpoint ID. When a location policy ofLOCATE_NEVER
is combined with an endpoint ID component, onlyinvoke RPCs need be performed.
The LOCATE_ALWAYS andLOCATE_OPERATION policies should not be
combined with an endpoint ID component in a profile.

16.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that c
perform operations on an object via theinvoke RPC.
July 2002 CORBA, v3.0: DCE-CIOP Object Location 16-21

16

ures

ess,
ay

ct

turn
ay

s or

t

sages

vide

t in

n
s to

end

.6,
a

16.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol feat
are based on the following observations:

• A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, server process, ORB proc
locator, etc.). It merely implies the existence of some agent to which requests m
be sent.

• The “agent” (receiver of an RPC) may have one of the following roles with respe
to a particular object reference:

• The agent may be able to accept object requests directly for the object and re
replies. The agent may or may not own the actual object implementation; it m
be a gateway that transforms the request and passes it on to another proces
ORB. From DCE-CIOP’s perspective, it is only important that invoke request
messages can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts
instead as a location service. Any invoke request messages sent to the agen
would result in either exceptions or replies with
INVOKE_LOCATION_FORWARD status, providing new addresses to which
requests may be sent. Such agents would also respond to locate request mes
with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and pro
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one poin
time, and provide a forwarding location at a later time.

• Server ORBs are not required to implement location forwarding mechanisms. A
ORB can be implemented with the policy that servers either support direct acces
an object, or return exceptions. Such a server ORB would always return locate
response messages with eitherLOCATE_OBJECT_HERE or
LOCATE_UNKNOWN_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages withINVOKE_LOCATION_FORWARD status.

• Client ORBs must, however, be able to accept and process invoke response
messages withINVOKE_LOCATION_FORWARD status, since any server ORB
may choose to implement a location service. Whether a client ORB chooses to s
locate request messages is at the discretion of the client.

• Client ORBs that send locate request messages can use the location policy
component found in DCE-CIOP IOR profiles to decide whether to send a locate
request message before sending an invoke request message. See Section 16.5
“Location Policy Component,” on page 16-20. This hint can be safely ignored by
client ORB.
16-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16

rned

to
d in

s,

an
r be

.

er
le of

s

ng

th

P
ed,
• A client should not make any assumptions about the longevity of addresses retu
by location forwarding mechanisms. If a binding handle based on location
forwarding information is used successfully, but then fails, subsequent attempts
send requests to the same object should start with the original address specifie
the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORB
available to be used for optimization and to support flexible object location and
migration behaviors.

16.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless
IOR refers to a transient object, the agent addressed by the IOR profile should eithe
permanently active, or should be activated on demand by DCE’s endpoint mapper

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB serv
environments using rpcd, the agent addressed by an IOR must not only be capab
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatic activation, but client ORB implementation
do not need to be aware of this distinction.

16.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handli
the invoke RPC for a particular operation:

1. Pick a profile withTAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS
from the IOR. Make this theoriginal profile and thecurrent profile. If no profiles
with either tag are available, operations cannot be invoked using DCE-CIOP wi
this IOR.

2. Get a binding handle to try from thecurrent profile. See Section 16.5.1, “DCE-
CIOP String Binding Component,” on page 16-17 and Section 16.5.2, “DCE-CIO
Binding Name Component,” on page 16-18. If no binding handles can be obtain
the server cannot be located using thecurrent profile, so go to step 1.

3. Perform either alocate or invoke RPC using the object key from thecurrent
profile.

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returnsINVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN , try the
same RPC again, possibly after a delay.

• If the RPC returns eitherINVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD , make the new IOR profile returned in the
response message body thecurrent profile and go to step 2.

• If the RPC returnsLOCATE_UNKNOWN_OBJECT , and theoriginal profile
was used, the object no longer exists.

• Otherwise, the server has been successfully located.
July 2002 CORBA, v3.0: DCE-CIOP Object Location 16-23

16

RB

if

D
to

r

s on
er

e
bject.

ith
Any invoke RPC might returnINVOKE_LOCATION_FORWARD , in which case
the client ORB should make the returned profile thecurrent profile, and re-enter the
location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client O
should start over at step 1.

16.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB,
possible, so that operations can be invoked using DCE-CIOP. But unnecessary
locate RPCs may be performed, andinvoke RPCs may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint I
position components can be used by the client ORB, if present in the IOR profile,
optimize this algorithm.

16.6.4.1 Current location policy

The client ORB can decide whether to perform alocate RPC or aninvoke RPC in
step 3 based on the location policy of thecurrent IOR profile. If thecurrentprofile has
a TAG_LOCATION_POLICY component with a value ofLOCATE_NEVER , the
client should perform aninvoke RPC. Otherwise, it should perform alocate RPC.

16.6.4.2 Original location policy

The client ORB can use the location policy of theoriginal IOR profile as follows to
determine whether it is necessary to perform the location algorithm for a particula
invocation:

• LOCATE_OBJECT or LOCATE_NEVER - A binding handle previously used
successfully to invoke an operation on an object can be reused for all operation
the same object. The client only needs to perform the location algorithm once p
object.

• LOCATE_OPERATION - A binding handle previously used successfully to invok
an operation on an object can be reused for that same operation on the same o
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS - Binding handles should not be reused. The client needs to
perform the location algorithm once per invocation.

16.6.4.3 Original Endpoint ID

If a component withTAG_ENDPOINT_ID_POSITION is present in theoriginal IOR
profile, the client ORB can reuse a binding handle that was successfully used to
perform an operation on another object with the same endpoint ID. The client only
needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile w
a location policy ofLOCATE_OPERATION or LOCATE_ALWAYS .
16-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

16
16.7 OMG IDL for the DCE CIOP Module

This section shows theDCE_CIOP module andDCE_CIOP additions to theIOP
module.

module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

enum InvokeResponseStatus {
INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};
struct InvokeResponseHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string operation;

// no body follows
};

enum LocateResponseStatus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN
July 2002 CORBA, v3.0: OMG IDL for the DCE CIOP Module 16-25

16
};
struct LocateResponseHeader {

boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::IOR follows

};

const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};

const IOP::ComponentId TAG_DCE_NO_PIPES = 102;
};

module IOP {
const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;

const ComponentId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionComponent {
unsigned short begin;
unsigned short end;

};

const ComponentId TAG_LOCATION_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER 0
#define LOCATE_OBJECT 1
#define LOCATE_OPERATION 2
#define LOCATE_ALWAYS 3

};

16.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company
Limited, Reading, UK
16-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

InterworkingArchitecture 17
o

m
this
The Interworking chapters describe a specification for communication between tw
similar but very distinct object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA. An optimal specification would allow objects from
either system to make their key functionality visible to clients using the other syste
as transparently as possible. The architecture for Interworking is designed to meet
goal.

Contents

This chapter contains the following sections.

Section Title Page

“Purpose of the Interworking Architecture” 17-2

“Interworking Object Model” 17-3

“Interworking Mapping Issues” 17-8

“Interface Mapping” 17-8

“Interface Composition Mappings” 17-11

“Object Identity, Binding, and Life Cycle” 17-18

“Interworking Interfaces” 17-23

“Distribution” 17-32

“Interworking Targets” 17-34

“Compliance to COM/CORBA Interworking” 17-34
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 17-1

17

ts

red

of
lly

ard

lly
rgely
vide

,

inly

ite
p,
cut-

the

w
(and

d

e

17.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way
communication between CORBA objects and COM objects. The goal is that objec
from one object model should be able to be viewed as if they existed in the other
object model. For example, a client working in a CORBA model should be able to
view a COM object as if it were a CORBA object. Likewise, a client working in a
COM object model should be able to view a CORBA object as if it were a COM
object.

There are many similarities between the two systems. In particular, both are cente
around the idea that an object is a discrete unit of functionality that presents its
behavior through a set of fully-described interfaces. Each system hides the details
implementation from its clients. To a large extent COM and CORBA are semantica
isomorphic. Much of the COM/CORBA Interworking specification simply involves a
mapping of the syntax, structure and facilities of each to the other — a straightforw
task.

There are, however, differences in the CORBA and COM object models. COM and
CORBA each have a different way of describing what an object is, how it is typica
used, and how the components of the object model are organized. Even among la
isomorphic elements, these differences raise a number of issues as to how to pro
the most transparent mapping.

17.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an application
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certa
not exclusively) tied to some visual presentation metaphor. Historically, the typical
domain of a COM object is a single-user, multitasking visual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to exped
collaboration- and information-sharing among applications using the same deskto
largely through user manipulation of visual elements (for example, drag-and-drop,
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparently to any
CORBA client regardless of the location (or implementation) of either the object or
client. Most CORBA objects focus on distributed control in a heterogeneous
environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable distributed network. In its current form, the main goal of CORBA is to allo
these independent components to be shared among a wide variety of applications
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both models are growing and evolving, an
will probably overlap in functionally in the future. Therefore, a good interworking
model must map the functionality of two systems to each other while preserving th
flavor of each system as it is typically presented to a developer.
17-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

d

on

ity
n,

on a
by

t
ces
are

brary.

n
e

age

ces
The most obvious similarity between these two systems is that they are both base
architecturally onobjects. The Interworking Object Model describes the overlap
between the features of the CORBA and COM object models, and how the comm
features map between the two models.

Figure 17-1 Interworking Object Model

17.2 Interworking Object Model

17.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functional
that presents itself through a published interface described in terms of a well-know
fully described set of interface semantics. An interface (and its underlying
functionality) is accessed through at least one well-known, fully described form of
request. Each request in turn targets a specific object—an object instance—based
reference to its identity. That target object is then expected to service the request
invoking the expected behavior in its own particular implementation. Request
parameters are object references or nonobject data values described in the objec
model’s data type system. Interfaces may be composed by combining other interfa
according to some well-defined composition rules. In each object system, interfaces
described in a specialized language or can be represented in some repository or li

In CORBA, the Interworking Object Model is mapped to an architectural abstractio
known as the Object Request Broker (ORB). Functionally, an ORB provides for th
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Langu
(OMG IDL).

• Instance identities, from which the ORB can then construct appropriate referen
to each object for interested clients.

Object

Interface

Request

Parameters

Identity

Implementation
July 2002 CORBA, v3.0: Interworking Object Model 17-3

17

its
uest

ing

ws

of a
wn
cific
.

n-
lly

ial

ies
ay be
ported
s

ed

hly
A CORBA object may thereafter receive requests from interested clients that hold
object reference and have the necessary information to make a properly formed req
on the object’s interface. This request can be statically defined at compile time or
dynamically created at run-time based upon type information available through an
interface type repository.

While CORBA specifies the existence of an implementation type description called
ImplementationDef (and an Implementation Repository, which contains these type
descriptions), CORBA does not specify the interface or characteristics of the
Implementation Repository or the ImplementationDef. As such, implementation typ
and descriptions vary from ORB to ORB and are not part of this specification.

17.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstraction known as the Component Object Model (COM). Functionally, COM allo
an object to expose its interfaces in a well-defined binary form (that is, a virtual
function table) so that clients with static compile-time knowledge of the interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).

COM supports an implementation typing mechanism centered around the concept
COM class. A COM class has a well-defined identity and there is a repository (kno
as the system registry) that maps implementations (identified by class IDs) to spe
executable code units that embody the corresponding implementation realizations

COM also provides an extension called Automation. Interfaces that are Automatio
compatible can be described in Object Definition Language (ODL) and can optiona
be registered in a binary Type Library. Automation interfaces can be invoked
dynamically by a client having no compile-time interface knowledge through a spec
COM interface (IDispatch). Run-time type checking on invocations can be
implemented when a Type Library is supplied. Automation interfaces have propert
and methods, whereas COM interfaces have only methods. The data types that m
used for properties and as method parameters comprise a subset of the types sup
in COM. Automation, for example, does not support user-defined constructed type
such as structs or unions.

Thus, use of and interoperating with objects exposing Automation interfaces is
considerably different from other COM objects. Although Automation is implement
through COM, for the purposes of this document, Automation and COM are
considered to be distinct object models. Interworking between CORBA and
Automation will be described separately from interworking with the basic COM
model.

17.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite
similar. Roughly speaking, COM interfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are very roug
17-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

o

M

ject

ct
d to

he
rom

B,
een
equivalent to CORBA object references. Assuming that lower-level design details
(calling conventions, data types, and so forth) are more or less semantically
isomorphic, a reasonable level of interworking is probably possible between the tw
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking
Model, shown in Figure 17-2. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA object to be visible to a CO
client is a CORBA/COM mapping.

Figure 17-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target ob
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an obje
in system A that presents the identity and interface of the target in system B mappe
the vernacular of system A, and is described as an A View of a B target.

The View exposes an interface, called the View Interface, which is isomorphic to t
target’s interface in system B. The methods of the View Interface convert requests f
system A clients into requests on the target’s interface in system B. The View is a
component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and
and may be implemented using any mechanism that permits communication betw
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

Object System A Object System B

Object reference in A

View in A of target in B
(object in system A)

Bridge

Object reference in B

Target object
implementation in B
July 2002 CORBA, v3.0: Interworking Object Model 17-5

17

e
the
that
ance

,
t.
A

t

ers.
The client treats the View as though it is the real object in system A, and makes th
request in the vernacular request form of system A. The request is translated into
vernacular of object system B, and delivered to the target object. The net effect is
a request made on an interface in A is transparently delivered to the intended inst
in B.

The Interworking Model works in either direction. For example, if system A is COM
and system B is CORBA, then the View is called the COM View of the CORBA targe
The COM View presents the target’s interface to the COM client. Similarly if system
is CORBA and system B is COM, then the View is called theCORBA Viewof the
COM target. The CORBA View presents the target’s interface to the CORBA clien.

Figure 17-3 shows the interworking mappings discussed in the Interworking chapt
They represent the following:

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
17-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

does
ew

ge
ay
Figure 17-3 Interworking Mapping

Note that the division of the mapping process into these architectural components
not infer any particular design or implementation strategy. For example, a COM Vi
and its encapsulated CORBA reference could be implemented in COM as a single
component or as a system of communicating components on different hosts.

Likewise, Figure 17-3 does not define any particular location of the bridge. The brid
is conceptually between the two object models. The implementation of the bridge m
be located on the client or the server or on an intermediate machine.

CORBA client COM server

CORBA object reference

CORBA View
(a real CORBA object)

Bridge

COM interface pointer

Target COM object

CORBA server COM client

CORBA object reference COM View
(a real COM object)

Bridge COM interface pointerTarget CORBA object

CORBA client Automation server

CORBA object reference

CORBA View
(a real CORBA object)

Bridge

Automation interface pointer

Target Automation object

CORBA server Automation client

CORBA object reference Automation View
(a real Automation object)

Bridge
Automation interface pointerTarget CORBA object

(IDispatch pointer)

(IDispatch pointer)

a)

b)

c)

d)
July 2002 CORBA, v3.0: Interworking Object Model 17-7

17

t

ws
et
, but
c

ted

ms.

al.

t

ed

ll

sts
ce

e

The architecture allows for a range of implementation strategies, including, but no
limited to generic and interface-specific mapping.

• Generic Mappingassumes that all interfaces can be mapped through a dynamic
mechanism supplied at run-time by a single set of bridge components. This allo
automatic access to new interfaces as soon as they are registered with the targ
system. This approach generally simplifies installation and change management
may incur the run-time performance penalties normally associated with dynami
mapping.

• Interface-Specific Mappingassumes that separate bridge components are genera
for each interface or for a limited set of related interfaces (for example, by a
compiler). This approach generally improves performance by “precompiling”
request mappings, but may create installation and change management proble

17.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite many similarities, there are some
significant differences between CORBA and COM that complicate achieving this go
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distinc
forms of interfaces, Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped to
COM single inheritance/aggregation. COM interface aggregation must be mapp
to the CORBA multiple inheritance model.

• Identity Mapping. The explicit notion of an instance identity in CORBA must be
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility. It may be desirable for the object model mappings to be
invertible, but the Interworking specification does not guarantee invertibility in a
situations.

17.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the reque
that an object supports. OLE provides two distinct and somewhat disjointed interfa
models: COM and Automation. Each has its own respective request form, interfac
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
17-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

he

.

BA
y
s.

e

ly

.

ted
).

l

r
uld

,

for
We must also consider the bidirectional impact of a third, hybrid form of interface, t
Dual Interface, which supports both an Automation and a COM-like interface. The
succeeding sections summarize the main issues facing each of these mappings.

17.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interfaces

This mapping is perhaps the most natural way to represent the interfaces of COR
objects in the COM environment. In practice, however, many COM clients can onl
bind to Automation Interfaces and cannot bind to the more general COM Interface
Therefore, providing only a mapping of CORBA to the COM Interfaces would not
satisfy many COM/OLE clients.

17.4.2 CORBA/Automation

There is a limited fit between Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, ther
are primitives in both systems (for example, the OLE CURRENCY type and the
CORBA unsigned integral types) that must be mapped as special cases (possib
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation constructs
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially construc
interfaces (for example, viewing a struct as an OLE object with its own interface

• CORBA Interface Repositories can be mapped dynamically to Automation Type
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to Automation interfaces. Al
methods of the multiply-inherited interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering ove
the methods if [dual] interfaces are to be supported. An alternative approach wo
be to map multiple inheritance to multiple Automation interfaces. This mapping
however, would require that an interface navigation mechanism be exposed to
Automation controllers. Currently Automation does not provide a canonical way
clients (such as Visual Basic) to navigate between multiple interfaces.
July 2002 CORBA, v3.0: Interface Mapping 17-9

17

nt
rred

A-

g,
tly

.

es:

h

ing.
tom

BA

ed
• CORBA attributes may be mapped to get and put properties in Automation
interfaces.

This form of interface mapping will place some restrictions on the types of argume
passing that can be mapped, and/or the cost (in terms of run-time translations) incu
in those mappings. Nevertheless, it is likely to be the most popular form of CORB
to-COM interworking, since it will provide dynamic access to CORBA objects from
Visual Basic and other Automation client development environments.

17.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long lon
and wide char) and constructed types (for example, wide string) are not curren
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

• Some unions, pointer types and the SAFEARRAY type require special handling

The COM/CORBA mapping is somewhat further complicated, by the following issu

• Though it is less common, COM objects may be built directly in C and C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interface can be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to suc
a form before any formal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformation, and so forth) must be
custom-built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not
supported on certain Windows platforms; for example, MIDL is not available on
Win16 platforms.

17.4.4 Automation/CORBA

The Automation interface model and type system are designed for dynamic script
The type system is a reduced set of the COM type system designed such that cus
marshaling and demarshaling code is not necessary for invoking operations on
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to COR
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain
Automation types (for example, CURRENCY) do not have corresponding
predefined CORBA types, but can easily be mapped onto isomorphic construct
types.

• Automation properties map to CORBA attributes.
17-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

ct

le

es

is,
that
an

d”

LE

face
ce

nce

t’s

ear
tion
le
the
’s
s to
the
17.5 Interface Composition Mappings

CORBA provides a multiple inheritance model for aggregating and extending obje
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possib
by deriving new interfaces from existing ones. Any given CORBA object reference
refers to a CORBA object that exposes, at any point in time, a single most-derived
interface in which all ancestral interfaces are joined. The CORBA object model do
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (that
the QueryInterface method). In addition, COM anticipates that the set of interfaces
an object supports will vary at run-time. The only way to know if an object supports
interface at a particular instant is to ask the object.

Automation objects typically provide all Automation operations in a single “flattene
IDispatch interface. While an analogous mechanism to QueryInterface could be
supported in Automation as a standard method, it is not the current use model for O
Automation services.2

17.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicates two common uses of inter
inheritance, extending and mixing in. Inheritance may be used to extend an interfa
linearly, creating a specialization or new version of the inherited interface. Inherita
(particularly multiple inheritance) is also commonly used to mix in a new capability
(such as the ability to be stored or displayed) that may be orthogonal to the objec
basic application function.

Ideally, extension maps well into a single inheritance model, producing a single lin
connection of interface elements. This usage of CORBA inheritance for specializa
maps directly to COM; a unique CORBA interface inheritance path maps to a sing
COM interface vtable that includes all of the elements of the CORBA interfaces in
inheritance path.3 The use of inheritance to mix in an interface maps well into COM
aggregation mechanism; each mixed-in inherited interface (or interface graph) map
a separate COM interface, which can be acquired by invoking QueryInterface with
interface’s specific UUID.

1. This is established in the CORBA specification, Chapter 1, Interfaces Section, and in the
Object Management Architecture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-
class. The “Dim A as new Z” statement in Visual Basic 4.0 can be used to invoke a Query-
Interface for the Z interface. Many Automation controllers, however, do not use the dual
interface mechanism.
July 2002 CORBA, v3.0: Interface Composition Mappings 17-11

17

d in
ake
ns

ings
to

the
o

y

it.

rface

M
e are

eter
apply
Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determine whether a particular inherited interface is being extended or being mixe
(or used with some other possible design intent). Therefore it is not possible to m
ideal mappings mechanically from CORBA multiply-inherited interfaces to collectio
of COM interfaces without some additional annotation that describes the intended
design. Since extending OMG IDL (and the CORBA object model) to support
distinctions between different uses of inheritance is undesirable, alternative mapp
require arbitrary decisions about which nodes in a CORBA inheritance graph map
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The
mapping described in Section 17.5.2, “Detailed Mapping Rules,” on page 17-13 for
CORBA->MIDL Transformation, describes a compromise that balances the need t
preserve linear interface extensions with the need to keep the number of resulting
COM interfaces manageably small. It satisfies the primary requirement for
interworking in that it describes a uniform, deterministic mapping from any CORBA
inheritance graph to a composite set of COM interfaces.

17.5.1.1 COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA b
providing a set of CORBA interfaces that can be used to manage a collection of
multiple CORBA objects with different disjoint interfaces as a single composite un
The mechanism described in OMG IDL in Section 17.4, “Interface Mapping,” on
page 17-8, is sufficiently isomorphic to allow composite COM interfaces to be
uniformly mapped into composite OMG IDL interfaces with no loss of capability.

17.5.1.2 CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on
ordering in a virtual function table. The target object implements the IDispatch
interface as a mini interpreter and exposes what amounts to a flattened single inte
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are CO
interfaces whose operations are restricted to the Automation data types. Since thes
COM interfaces, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interpr
is being bypassed, the same ordering problems discussed in the previous section
for OLE Automation dual interfaces.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic
mapping from the OMG IDL interface to a COM vtable. The current ordering is to sort the
operations based on the byte-by-byte comparison of the ISO-Latin-1 encoding values of
their respective names (e.g., operation ‘A’ comes before operation ‘B’).
17-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

IDL-

to

to

r

the
e-by-
.g.,

ed
y,
>

ace

to

to
he
en

ames
in-1
re

tes.

n the
17.5.1.3 Automation/CORBA

Automation interfaces are simple collections of operations, with no inheritance or
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG
described interface.

17.5.2 Detailed Mapping Rules

17.5.2.1 Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping fo
attributes.

• The resulting mapping of operations within an interface are ordered based upon
operation name. The current ordering is to sort the operations based on the byt
byte comparison of the ISO-Latin-1 encoding values of their respective names (e
operation ‘A’ comes before operation ‘B.’

• Similarly, the resulting mapping of attributes within an interface are ordered bas
upon the ISO-Latin-1 encoding of attribute name. If the attribute is not read-onl
the get <attribute name> method immediately precedes the set <attribute name
method.

17.5.2.2 Ordering Rules for the CORBA->Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL interf
deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an ODL interface, which derives using single inheritance from the mapping for t
first parent interface. The first parent interface is defined as the first interface wh
the immediate parent interfaces are sorted based upon interface idname. The n
are put in ascending order based upon the byte-by-byte comparison of ISO-Lat
encoding values of the interface names (for example, interface ‘AZ’ comes befo
interface ‘BA’).

• Within an interface, the mapping for operations precede the mapping for attribu

• An OMG IDL interface’s operations are ordered in the resulting mapping based
upon the operation name. The operations are put in ascending order based upo
ISO-Latin-1 encoding values of the operation names.
July 2002 CORBA, v3.0: Interface Composition Mappings 17-13

17

od

s or
are

that
for

e

• Similarly, the mapping of an OMG IDL interface’s attributes are ordered in the
resulting mapping based upon the byte-by-byte comparison of the ISO-Latin-1
encoding of the attribute name. For non-read-only attributes, the [propget] meth
immediately precedes the [propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the new
interface is mapped as deriving from the mapping of its first parent.

• Then for each subsequent parent interface, the new interface will repeat the
mapping of all operations and attributes of that parent excluding any operation
attributes that have already been mapped; that is, these operations/attributes
grouped per interface and each group is internally ordered using the rules
described above.

• After all the parent interfaces are mapped, the new operations and attributes
were introduced in the new interface are then mapped using the ordering rules
operations and attributes.

17.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 17-4.

Following the rules in Section 17.5.2, “Detailed Mapping Rules,” on page 17-13 th
interface description would map to the Microsoft MIDL definition shown in
Figure 17-5 and would map to the ODL definition shown in Figure 17-6.

interface A { // OMG
IDL

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 17-4 OMG IDL Description with Multiple Inheritance

A

B C

D
E

F

17-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17
[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{ // Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 17-5 MIDL Description

A

B C

D E FA

IU IU IU IU IU
July 2002 CORBA, v3.0: Interface Composition Mappings 17-15

17

ate
an

e
r
a

17.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interoper
across client/server boundaries (for example, a COM View created by product A c
invoke a CORBA server created with product B, given that they both share the sam
IDL interface). To interoperate in this way, all COM Views mapped from a particula
CORBA interface must share the same COM Interface IDs. This section describes
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29),
oleautomation, dual]
interface DA : IDispatch { // Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571),
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 17-6 Example: ODL Mapping for Multiple Inheritance

IDispatch

A

B C

D

F

IDispatch

E

17-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

8-
is

re

in

a

is
.

ion
tical

Bs.
17.5.4.1 Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 12
bit hash identifier. The least significant byte is byte 0 and the most significant byte
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)
10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01 generated COM IID
10 generated Automation IID
11 generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They a
used only to avoid collisions in the name spaces when generating IIDs for multiple
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (stored
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of
CORBA interface except when the repository ID is a DCE UUID and the IID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (th
is done to allow CORBA server developers to implement existing COM interfaces)

This mechanism requires no change to IDL. However, there is an implicit assumpt
that repository IDs should be unique across ORBs for different interfaces and iden
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across OR

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security,
Inc., April 1992.
July 2002 CORBA, v3.0: Interface Composition Mappings 17-17

17

r,
ere

his

tely

ct)
17.5.4.2 Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor-specific. Howeve
the mapping should be the same as if the CORBA mapping of the COM interface w
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DCE:f4f2f07c-3a95-11cf-affb-08000970dac7”
...
};

17.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 17-2 on page 17-5 and Figure 17-3 on
page 17-7 maps a View in one object system to a reference in the other system. T
relationship raises questions:

• How do the concepts of object identity and object life cycle in different object
models correspond, and to the extent that they differ, how can they be appropria
mapped?

• How is a View in one system bound to an object reference (and its referent obje
in the other system?

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in
the hash value and its popularity for creating unique keys for input text. The algorithm is
designed such that on average, half of the output bits change for each bit change in the
input. The original algorithm provides a key with uniform distribution in 128 bits. The mod-
ification used in this specification selects 118 bits. With a uniform distribution, the probabil-

ity of drawingk distinct keys (usingk distinct inputs) isn!/((n-k)!* nk), wheren is the

number of distinct key values (i.e.,n=2118). If a million (i.e.,k=106) distinct interface repos-
itory IDs are passed through the algorithm, the probability of a collision in any of the keys is

less than 1 in 1023.
17-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

of
ting
g
ther.

citly
bject
bject.

a
fail
tuitive

t

o

ject’s
on a

r is

ithin

ther
UE

rly
ive
ce
se
17.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impact
the differences between the two object models affects the transparency of presen
CORBA objects as COM objects or COM objects as CORBA objects. The followin
sections discuss the issues involved in mapping identities from one system to ano
They also describe the architectural mechanics of identity mapping and binding.

17.6.1.1 CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that expli
embodies an abstraction characterized by the behavior of relevant requests. An o
reference is defined as a name that reliably and consistently denotes a particular o
A useful description of a particular object in CORBA terms is an entity that exhibits
consistency of interface, behavior, and state over its lifetime. This description may
in many boundary cases, but seems to be a reasonable statement of a common in
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is a
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used t
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted ob
state or location; if an object is passively stored when a client makes a request
reference to the object, the ORB is responsible for transparently locating and
activating the object.

• There is no notion of “connectedness” between object reference and object, no
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere w
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine whe
both references identify the same object instance), although only a result of TR
for the test is guaranteed to be reliable.

17.6.1.2 COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less clea
defined than under CORBA. In practice, this notion typically corresponds to an act
instance of an implementation, but not a particular persistent state. A COM instan
can be most precisely defined as “the entity whose interface (or rather, one of who
interfaces) is returned by an invocation ofIClassFactory::CreateInstance .”
July 2002 CORBA, v3.0: Object Identity, Binding, and Life Cycle 17-19

17

;

r to
n

is

and
ent,
f a

M

ls.
by

this
ts in

an
ptible
ld
client

to
the
ed
its
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (for example, a
document or drawing with no contents), or they are initialized to arbitrary states
IClassFactory::CreateInstance has no parameters for describing initial
state.

• The only inherently available identity or reference for a COM instance is its
Unknown pointer. COM specifies an invariant that two interface references refe
the same object if QueryInterface (IID IUnknown) returns the same pointer whe
applied to both interfaces.6 Individual COM class types may establish a strong
notion of persistent identity (for example, through the use of Monikers), but this
not the responsibility of the COM model itself.

• The identity and management of state are generally independent of the identity
life cycle of COM class instances. Files that contain document state are persist
and are identified within the file system’s name space. A single COM instance o
document type may load, manipulate, and store several different document files
during its lifetime; a single document file may be loaded and used by multiple CO
class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of a particular class’s
implementation, or the user’s imagination.

17.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in
defining binding and life cycle management mechanisms in the Interworking mode
Binding refers to the way in which an existing object in one system can be located
clients in the other system and associated with an appropriate View. Life cycle, in
context, refers to the way objects in one system are created and destroyed by clien
the other system.

17.6.2.1 Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the
lifetimes of its clients. That is, in COM, when there are no more clients attached to
object, it is destroyed. COM objects are reference-counted and as such are susce
to certain problems: most notably, circular reference counts (where two objects ho
references to each other and thus neither can die) and dangling servers (where a
has crashed without releasing its references).

Detecting circular reference counts is not handled by COM and is currently left up
the application code. To help detect dangling servers, COM has added support in
infrastructure for client machines to ping server machines. If the ping is not receiv
by the server within a negotiated time period, the client will be assumed dead and
references released.

6. This invariant appears to be true in DCOM as well as COM. A combination of IPID and
OXID is used to create a unique identity for remote IUnknown pointers.
17-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

e
BA
he
es
s
but
ing
n to

ld

ng

d.

ve

n.

nd
be

hat
in
The CORBA Life Cycle model decouples the lifetime of the clients from the lifetim
of the active (in-memory) representation of the persistent server object. The COR
model allows clients to maintain references to CORBA server objects even when t
clients are no longer running. Server objects can deactivate and remove themselv
from memory whenever they become idle. This behavior allows resources (such a
memory and networking addresses) to be released from active use for long-lived (
generally idle) services. The advantage of this model is that it does not require ping
or maintaining reference counts. The disadvantage is that it requires the applicatio
explicitly decide when an object has been made obsolete and its references shou
become invalid. Activation and deactivation in COM can, to some degree, be
accomplished using Monikers (persistent interface references). However, unlike
CORBA, the client must be programmed to explicitly use this alternate form of bindi
to allow the server the opportunity to pacify its state.

In both the COM and CORBA lifecycle models, it is possible for a client to have an
invalid reference to a server object. This can occur in COM because a server has
crashed, or in CORBA because the target of the reference was explicitly destroye
Thus, in both models, applications should be written to check for error codes
indicating invalid references.

17.6.2.2 Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing acti
objects. A single instance of a COM class can be registered in the active object
registry. COM or Automation clients can obtain an IUnknown pointer for an active
object with the COM GetActiveObject function or the Automation GetObject functio
The most natural way for COM or Automation clients to access existing CORBA
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object a
place them in the active object registry, so that the View (and thus, the object) can
accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking
solutions will not be able to map objects efficiently through the registry. This
specification defines an interface, ICORBAFactory, which allows interworking
solutions to provide alternate location and registration mechanisms7 through which
CORBA objects can be made available to COM and Automation clients in a way t
is similar to OLE’s native mechanism (GetObject). This interface is described fully
Section 17.7.3, “ICORBAFactory Interface,” on page 17-24.

7. For example, using ICORBAFactory, an interworking solution can provide an active object
registry that is distributed, federated, and fault-tolerant.
July 2002 CORBA, v3.0: Object Identity, Binding, and Life Cycle 17-21

17

s

e

ry
g
the
not

ry

le
.
re
er,

d

cts

h as
ir
s

To
tion

g
the
e
in
17.6.2.3 Binding COM Objects to CORBA Views

As described in Section 17.6.1, “Object Identity Issues,” on page 17-19, COM clas
instances are inherently transient. Clients typically manage COM and Automation
objects by creating new class instances and subsequently associating them with a
desired stored state. Thus, COM objects are made available through factories. Th
SimpleFactory OMG IDL interface (described in Section 17.7.1, “SimpleFactory
Interface,” on page 17-23) is designed to map onto COM class factories, allowing
CORBA clients to create (and bind to) COM objects. A single CORBA SimpleFacto
maps to a single COM class factory. The manner in which a particular interworkin
solution maps SimpleFactories to COM class factories is not specified. Moreover,
manner in which mapped SimpleFactory objects are presented to CORBA clients is
specified.

17.6.2.4 COM View of CORBA Life Cycle

The SimpleFactory interface (Section 17.7.1, “SimpleFactory Interface,” on
page 17-23) provides a create operation without parameters. CORBA SimpleFacto
objects can be wrapped with COM IClassFactory interfaces and registered in the
Windows registry. The process of building, defining, and registering the factory is
implementation-specific.

To allow COM and Automation developers to benefit from the robust CORBA lifecyc
model, the following rules apply to COM and Automation Views of CORBA objects
When a COM or Automation View of a CORBA object is dereferenced and there a
no longer any clients for the View, the View may delete itself. It should not, howev
delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the interface is supported) on the
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is controlle
by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM obje
(equivalent to CORBA externalization). However, unlike CORBA, COM currently
provides no general-purpose mechanism for clients to deal with server objects, suc
databases, which are inherently persistent; that is, they store their own state -- the
state is not stored through an outside interface such as IPersistStorage. COM doe
provide monikers, which are conceptually equivalent to CORBA persistent object
references. However, monikers are currently only used for OLE graphical linking.
enable COM developers to use CORBA objects to their fullest extent, the specifica
defines a mechanism that allows monikers to be used as persistent references to
CORBA objects, and a new COM interface, IMonikerProvider, that allows clients to
obtain an IMoniker interface pointer from COM and Automation Views. The resultin
moniker encapsulates, stores, and loads the externalized string representation of
CORBA reference managed by the View from which the moniker was obtained. Th
IMonkierProvider interface and details of object reference monikers are described
Section 17.7.2, “IMonikerProvider Interface and Moniker Use,” on page 17-23.
17-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

.

he
r

n

so

e

M,

o
e

17.6.2.5 CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interfaces
These SimpleFactory Views of COM IClassFactories can then be installed in the
naming service or used via factory finders. The mechanisms used to register or
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObject interface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the View unless t
COM or Automation objects supports the IMonikerProvider interface. If the COM o
Automation object supports the IMonikerProvider interface, then the CORBA View
can safely be deactivated and reactivated provided it stores the object’s moniker i
persistent storage between activations. Interworking solutions are not required to
support deactivation and activation of CORBA View objects, but are enabled to do
by the IMonikerProvider interface.

17.7 Interworking Interfaces

17.7.1 SimpleFactory Interface

Although a general instance factory interface can be defined in either COM or
CORBA, it is the common practice in COM to have factories, which support only th
IClassFactory of ICoassfactory2 interfaces. These interfaces only support
parameterless object constructors; that is, theCreateInstance() operation takes no
parameters. To allow CORBA objects to be created under this factory model in CO
the SimpleFactory interface is defined. TheSimpleFactory interface is supported
by all CORBA Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with n
initial state. CORBA objects that can be created with no initial state should provid
factories that implement theSimpleFactory interface.

17.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the
IMonikerProvider interface. COM clients may use QueryInterface for this
interface.
July 2002 CORBA, v3.0: Interworking Interfaces 17-23

17

out
ust

ng

a

he

nd

uent
[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use with
needing to keep the View in memory. The moniker returned by IMonikerProvider m
support at least theIMoniker and IPersistStorage interfaces. To allow
CORBA object reference monikers to be created with one COM/CORBA interworki
solution and later restored using another,IPersist::GetClassID must return the
following CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’sIPersistStorage interface must be
four 0 (null) bytes followed by the length in bytes of the stringified IOR (stored as
little endian 4-byte unsigned integer value) followed by the stringified IOR itself
(without null terminator).

17.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose t
ICORBAFactory interface. This interface is designed to support general, simple
mechanisms for creating new CORBA object instances and binding to existing
CORBA object references by name.

interface ICORBAFactory: IUnknown
{

HRESULT CreateObject([in] LPWSTR factoryName,
[out, retval] IUknown ** val);

HRESULT GetObject([in] LPWSTR objectName,
[out, retval] IUknown ** val);

}

The UUID for theICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementingICORBAFactory must be registered in the Windows
System Registry on the client machine using the following class id, class id tag, a
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory,
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53,
0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object (i.e., subseq
calls to create the object may return the same interface pointer).
17-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

f

lling

ns.

e

,

ated
the

s
t of

ice-
ry

,

We define a similar interface,DICORBAFactory , that supports creating new
CORBA object instances and binding to existing CORBA objects for Automation
clients.DICORBAFactory is an Automation Dual Interface. (For an explanation o
Automation Dual interfaces, see theMapping: Automation and CORBAchapter.)

interface DICORBAFactory: IDispatch
{

HRESULT CreateObject([in] BSTR factoryName,
[out,retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for theDICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by ca
on the client machine using the Program Id “CORBA.Factory.”

The CreateObject andGetObject methods are intended to approximate the
usage model and behavior of the Visual Basic CreateObject and GetObject functio

The first method,CreateObject , causes the following actions:

• A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (and likely) implementation is that th
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryName
identifies the type of CORBA object to be created. Since theCreateObject
method does not accept any parameters, the CORBA object must either be cre
by a null factory (a factory whose creation method requires no parameters), or
View must supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created,
and thus implicitly identifies (directly or indirectly) the interface supported by the
View. In general, the factoryName string takes the form of a sequence of identifier
separated by period characters (“.”), such as “personnel.record.person.” The inten
this name form is to provide a mechanism that is familiar and natural for COM and
Automation programmers by duplicating the form of OLE ProgIDs. The specific
semantics of name resolution are determined by the implementation of the
interworking solution. The following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameServ
based factory finder. The CORBA object would be created by invoking the facto
create method. Internally, the interworking solution would map the
factoryName onto the appropriate COM class ID for the View, create the View
and bind it to the CORBA object.
July 2002 CORBA, v3.0: Interworking Interfaces 17-25

17

the
r

by

to a
g

g

e
o an

to

els
this
s
oid
for

so,

ect
ect
• The creation could be delegated directly to a COM class factory by interpreting
factoryName as a COM ProgID. The ProgID would map to a class factory fo
the COM View, and the View’s implementation would invoke the appropriate
CORBA factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a
CORBA object reference. The specific mechanism for associating names with
references is not specified. In order to appear familiar to COM and Automation
users, this parameter shall take the form of a sequence of identifiers separated
periods (.), in the same manner as the parameter toCreateObject . An
implementation could, for example, choose to map the objectName parameter
name in the OMG Naming Service implementation. Alternatively, an interworkin
solution could choose to put precreated COM Views bound to specific CORBA
object references in the active object registry, and simply delegateGetObject
calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and
returned to the caller.

Another name form that is specialized to CORBA is a single name with a precedin
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in th
ORB Initialization interface. Specifically, the name shall be used as the parameter t
invocation of theCORBA::ORB::ResolveInitialReferences method on the
ORB pseudo-object associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned
the caller.

17.7.4 IForeignObject Interface

As object references are passed back and forth between two different object mod
through a bridge, and the references are mapped through Views (as is the case in
specification), the potential exists for the creation of indefinitely long chains of View
that delegate to other Views, which in turn delegate to other Views, and so on. To av
this, the Views of at least one object system must be able to expose the reference
the “foreign” object managed by the View. This exposure allows other Views to
determine whether an incoming object reference parameter is itself a View and, if
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridge can avoid creating View chains.

This problem potentially exists for any View representing an object in a foreign obj
system. The IForeignObject interface is specified to provide bridges access to obj
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

long *pValue;
17-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

n.

s

ill

ck
rm

f

ard

o so

o

,
es,
} objSystemIDs;
interface IForeignObject : IUnknown {

HRESULT GetForeignReference([in[objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetUniqueId([out] LPSTR *id

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to
specific object systems. These values must be positive, unique, and publicly know
The OMG will manage the allocation of identifier values in this space to guarantee
uniqueness. The value for the CORBA object system is the long value 1. The
systemIDs array contains a list of IDs for object systems for which the caller is
interested in obtaining a reference. The order of IDs in the list indicates the caller’
order of preference. If the View can produce a reference for at least one of the
specified object systems, then the second parameter (systemID) is the ID of the first
object system in the incoming array that it can satisfy. The objRef out parameter w
contain the object reference converted to a string form. Each object system is
responsible for providing a mechanism to convert its references to strings, and ba
into references. For the CORBA object system, the string contains the IOR string fo
returned byCORBA::ORB::object_to_string , as defined in the CORBA
specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation o
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed Automation parameter type.

• The object reference being returned fromGetForeignObject may be from a
different ORB than the caller. IORs in string form are the only externalized stand
form of object reference supported by CORBA.

The purpose of theGetRepositoryID method is to support the ability of
DICORBAAny(see Section 19.8.4, “Mapping for anys,” on page 19-24) when it
wraps an object reference, to produce a type code for the object when asked to d
via DICORBAAny’s readonlytypeCode property.

It is not possible to provide a similar inverse interface exposing COM references t
CORBA clients through CORBA Views because of limitations imposed by COM’s
View of object identity and use of interface pointer as references.

17.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views
allowing COM clients to have access to operations on the CORBA object referenc
defined on theCORBA::Object pseudo-interface. TheICORBAObject interface
can be obtained by COM clients throughQueryInterface . ICORBAObject is
defined as follows:
July 2002 CORBA, v3.0: Interworking Interfaces 17-27

17
interface ICORBAObject: IUnknown
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID,

[out] boolean *val);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,

[out] boolean * val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}

Automation controllers gain access to operations on the CORBA object reference
interface through the Dual InterfaceDIORBObject::GetCORBAObject method
described next.

interface DICORBAObject: IDispatch
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval]

VARIANT BOOL *val);
HRESULT IsNil([out, retval] VARIANT BOOL *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

VARIANT BOOL * val);
HRESULT NonExistent([out,retval] VARIANT BOOL *val);
HRESULT Hash([out, retval] long *val);

};

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

The UUID for DCORBAObject is:

{7271ff40-21f6-11d1-9d47-00a024a73e4f}

17.7.6 ICORBAObject2

ICORBAObject 2 is the direct mapping following the COM mapping rules for the
CORBA::Object interface.

17.7.7 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to
the operations on the ORB pseudo-object.
17-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

:

is
The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj,
[out] LPSTR *val);

HRESULT StringToObject[in] LPTSTR ref,
[out] IUnknown *val);

HRESULT GetInitialReferences(
[out], CORBA_ORBObjectIdList *val);

HRESULT ResolveInitialReference([in] LPTSTR name,
[out] IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling
ICORBAFactory::GetObject(”CORBA.ORB.2”) .

The methods ofDIORBObject delegate their function to the similarly-named
operations on the ORB pseudo-object associated with theIORBObject .

Automation clients access operations on the ORB via the following Dual Interface

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj,

[out,retval] BSTR *val);
HRESULT StringToObject([in] BSTR ref,[out,retval]
IDispatch * val);
HRESULT GetInitialReferences([out, retval] VARIANT *val);
HRESULT ResolveInitialReference ([in] BSTR name,

[out retval] IDispatch * val);
HRESULT GetCORBAObject ([in] IDispatch* obj,

[out, retval] DICORBAObject ** val);
}

A reference to this interface is obtained by calling
DICORBAFactory::GetObject(“CORBA.ORB.2”) .

This interface is very similar toIORBObject , except for the additional method
GetCORBAObject . This method returns anIDispatch pointer to the
DICORBAObject interface associated with the parameter Object. This operation
primarily provided to allow Automation controllers (i.e., Automation clients) that
cannot invokeQueryInterface on theView object to obtain the
ICORBAObject interface.
July 2002 CORBA, v3.0: Interworking Interfaces 17-29

17

ult

t.

not
The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

The UUID for DORBObject is:

{adff0da0-21f6-11d1-9d47-00a024a73e4f}

17.7.8 Naming Conventions for View Components

17.7.8.1 Naming the COM View Interface

The default name for the COM View’s Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule ” and the interface name is
“MyInterface ,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the defa
name should be:

I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule ” were nested within module
“OuterModule ,” then the default name shall be:

IOuterModule_MyModule_MyInterface

17.7.8.2 Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client
programs written in Automation controller environments such as Visual Basic are
expected to explicitly use the UUID value.

17.7.8.3 Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule ” and the interface name is
“MyInterface ,” then the default name should be:
17-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

ult

t.

ult

t.

ram

t. In
DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the defa
name should be:

D<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule ” were nested within module
“OuterModule ,” then the default name shall be:

DOuterModule_MyModule_MyInterface

17.7.8.4 Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

DI<module name>_<interface name>

For example, if the module name is “MyModule ” and the interface name is
“MyInterface ,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the defa
name should be:

DI<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule ” were nested within module
“OuterModule ,” then the default name will be:

DIOuterModule_MyModule_MyInterface

17.7.8.5 Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Prog
Id for that class will be:

<module name> “.” <module name> “.” ...<module name> “.”
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default Program Id will be:
July 2002 CORBA, v3.0: Interworking Interfaces 17-31

17

the

t. In

its

)
d

ant
ject
n

“OuterModule.MyModule.MyInterface”

17.7.8.6 Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then
default tag for the COM Class Id (CLSID) for that class should be:

CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

17.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in
currently released form) does not include any mechanism for distribution. CORBA
specifications define a distribution architecture, including a standard protocol (IIOP
for request messaging. Consequently, the CORBA architecture, specifications, an
protocols shall be used for distribution.

17.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking
mechanism delivered on a COM client node to interoperate correctly with any
CORBA-compliant components that use the same interface specifications. Compli
interworking solutions must appear, for all intents and purposes, to be CORBA ob
implementations and/or clients to other CORBA clients, objects, and services on a
attached network.
17-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

g
on

be

t

d

jects

ny

the
Figure 17-7 Bridge Locality

Figure 17-7 illustrates the required locality for interworking components. All of the
transformations between CORBA interfaces and COM interfaces described in this
specification will take place on the node executing the COM environment. Mappin
agents (COM views, CORBA views, and bridging elements) will reside and execute
the COM client node. This requirement allows compliant interworking solutions to
localized to a COM client node, and to interoperate with any CORBA-compliant
networking ORB that shares the same view of interfaces with the interworking
solution.

17.8.2 Distribution Architecture

External communications between COM client machines, and between COM clien
machines and machines executing CORBA environments and services, will follow
specifications contained inCORBA. Figure 17-7 on page 17-33 illustrates the require
distribution architecture. The following statements articulate the responsibilities of
compliant solutions.

• All externalized CORBA object references will followCORBAspecifications for
Interoperable Object References (IORs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

• The mechanisms for negotiating protocols and binding references to remote ob
will follow the architectural model described inCORBA.

• A product component acting as a CORBA client may bind to an object by using a
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

• Any components that implement CORBA interfaces for remote use must support
IIOP.

COM Node

COM Object

COM View

CORBA Nodes

Any compliant
interworking
bridge

CORBA
object

CORBA
client
object
reference

ORB X

ORB Y

IIOP
communications

CORBA
View
July 2002 CORBA, v3.0: Distribution 17-33

17

d

l for
l

n

that

are

rm
17.9 Interworking Targets

This specification is targeted specifically at interworking between the following
systems and versions:

• CORBA as described inCORBA: Common Object Request Broker Architecture an
Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries.

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage mode
Automation Views follows the Automation controller behavior established by Visua
Basic 4.0.

17.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general informatio
about compliance toCORBAspecifications, refer to thePreface, Definition of CORBA
Compliance.

17.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide
range of products. This specification is not intended to cover all possible products
facilitate or use COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

17.10.1.1 Interworking solutions

Products that facilitate the development of software that will bidirectionally transfo
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into
Automation interfaces and which also parses Automation ODL and automatically
generates code for libraries that map the OLE Automation interfaces into CORBA
17-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

n

rm

nd

hat
e

g
pped

a

ss
ion

ped
interfaces. Another example would be a generic bridging component that, based o
run-time interface descriptions, interpretively maps both COM and CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specification, and if the mapped
interfaces support all of the features and interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA
Interworking Solution.

17.10.1.2 Mapping solutions

Products that facilitate the development of software that will unidirectionally transfo
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are described asMapping Solutions. An example of this kind
of software would be a language processor that parses OMG IDL specifications a
automatically generates code for libraries that map the OMG IDL interfaces into
Automation interfaces. Another example would be a generic bridging component t
interpretively maps Automation invocations onto CORBA objects based on run-tim
interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the resultin
mapped interfaces are transformed as described in this specification, and if the ma
interfaces support all of the features and interface components required in this
specification.

A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution,
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

17.10.1.3 Mapped components

Applications, components or libraries that expose a specific, fixed set of interfaces
mapped from CORBA to COM or Automation (and/or vice versa) are described as
Mapped Components. An example of this kind of product would be a set of busine
objects defined and implemented in CORBA that also expose isomorphic Automat
interfaces.

This type of product will be considered a compliant Mapped Component if the
interfaces it exposes are mapped as described in this specification, and if the map
interfaces support all of the features and interface components required in this
specification.
July 2002 CORBA, v3.0: Compliance to COM/CORBA Interworking 17-35

17

fit

ilar

s

uct
s

he

to

it

ct

any

o
,”

e
w

al
17.10.2 Compliance Points

The intent of this specification is to allow the construction of implementations that
in the design space described in Section 17.2, “Interworking Object Model,” on
page 17-3, and yet guarantee interface uniformity among implementations with sim
or overlapping design centers. This goal is achieved by the following compliance
statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM
and/or Automation interfaces, the mapping of COM and/or Automation interface
onto isomorphic CORBA interfaces, or when a product offers the ability to
automatically generate components that perform such mappings, then the prod
must use the interface mappings defined in this specification. Note that product
may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or Automation objects. These interfaces are not in t
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject,
defined in Section 17.7.5, “ICORBAObject Interface,” on page 17-27 and
Section 17.7.7, “IORBObject Interface,” on page 17-28, respectively.

• Interworking solutions that expose Automation Views of CORBA objects are
required to expose the CORBA-specific Automation Dual interfaces
DICORBAObject and DIORBObject, defined in Section 17.7.5, “ICORBAObject
Interface,” on page 17-27 and Section 17.7.7, “IORBObject Interface,” on
page 17-28, respectively.

• OMG IDL interfaces exposed as COM or Automation Views are not required to
provide type library and registration information in the COM client environment
where the interface is to be used. If such information is provided; however, then
must be provided in the prescribed manner.

• Each COM and Automation View must map onto one and only one CORBA obje
reference, and must also expose the IForeignObject interface, described in
Section 17.7.4, “IForeignObject Interface,” on page 17-26. This constraint
guarantees the ability to obtain an unambiguous CORBA object reference from
COM or Automation View via the IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall d
so as specified in Section 17.7.2, “IMonikerProvider Interface and Moniker Use
on page 17-23.

• All COM interfaces specified in this specification have associated COM Interfac
IDs. Compliant interworking solutions must use the IIDs specified herein, to allo
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the
CORBA Internet Inter-ORB Protocol (IIOP), and use the interoperability
architecture described in CORBA in the manner prescribed in Section 17.8,
“Distribution,” on page 17-32. Interworking solutions are free to use any addition
proprietary or public protocols desired.
17-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

17

to
ry

s

ife
• Interworking solutions that expose COM Views of CORBA objects are required
provide the ICORBAFactory object as defined in Section 17.7.3, “ICORBAFacto
Interface,” on page 17-24.

• Interworking solutions that expose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in Section 17.7.3,
“ICORBAFactory Interface,” on page 17-24.

• Interworking solutions that expose CORBA Views of COM or Automation object
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, as described under Section 17.6.2, “Binding and L
Cycle,” on page 17-20.
July 2002 CORBA, v3.0: Compliance to COM/CORBA Interworking 17-37

17
17-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Mapping:COMandCORBA 18
M
tools
to be

m-

ce
This chapter describes the data type and interface mapping between COM and
CORBA. The mappings are described in the context of both Win16 and Win32 CO
due to the differences between the versions of COM and between the automated
available to COM developers under these environments. The mapping is designed
fully implemented by automated interworking tools.

Contents

This chapter contains the following sections.

18.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL (a
derivative of DCE IDL). COM interfaces using “custom marshaling” must be hand-
coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and custo
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL sin
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

Section Title Page

“Data Type Mapping” 18-1

“CORBA to COM Data Type Mapping” 18-2

“COM to CORBA Data Type Mapping” 18-33
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 18-1

18

for
to

pes.
Note that although the MIDL and ODL data type models are used as the reference
the data model mapping, there is no requirement that either MIDL or ODL be used
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data ty
However, in cases without exact mappings, run-time conversion errors may occur.
Conversion errors will be discussed in Mapping for Exception Types under
Section 18.2.10, “Interface Mapping,” on page 18-11.

18.2 CORBA to COM Data Type Mapping

18.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 18-1.

Note – midl and mktyplib disagree about the size of boolean when used in an ODL
specification. To avoid this ambiguity, we make the mapping explicit and use the
VARIANT BOOL type instead of the built-in boolean type.

18.2.2 Mapping for Constants

The mapping of the OMG IDL keywordconst to Microsoft IDL and ODL is almost
exactly the same. The following are the OMG IDL definitions for constants:

Table 18-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1
character set

wchar WCHAR WCHAR wide character

boolean boolean boolean 8-bit quantity that is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not
undergo any conversion during transfer between
systems.
18-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

nd
that

f the

BA

g
nion.
// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

that map to the following Microsoft IDL and ODL definitions for constants:

// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

18.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL a
ODL support enumerators that are explicitly tagged with values. The constraint is
any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering o
enumerators as specified in the OMG IDL.

// OMG IDL
interface MyInft {

enum A_or_B_or_C {A, B, C};
};

CORBA enumerators are mapped to COM enumerations directly according to COR
C language binding. The Microsoft IDL keywordv1_enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this
keyword be used on 32-bit platforms, since it increases the efficiency of marshallin
and unmarshalling data when such an enumerator is embedded in a structure or u

// Microsoft IDL and ODL
uuid(...),
interface IMyIntf {

typedef [v1_enum]
enum tagA or B or C {MyIntf A = O,

MyInft B,
MyIntf C }
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-3

18

d on

e

MyIntf A or B or C;
};

A maximum of 232 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 216 identifiers, and
therefore, truncation may result.

18.2.4 Mapping for String Types

CORBA currently defines the data typestring to represent strings that consist of
8-bit quantities, which are NULL-terminated.

Microsoft IDL and ODL define a number of different data types, which are used to
represent both 8-bit character strings and strings containing wide characters base
Unicode.

Table 18-2 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

OMG IDL supports two different types of strings:boundedandunbounded. Bounded
strings are defined as strings that have a maximum length specified; whereas,
unbounded strings do not have a maximum length specified.

18.2.4.1 Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UNBOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the typ
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of typeUNBOUNDED_STRINGis a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Table 18-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

string LPSTR
[string,unique]
char *

LPSTR Null-terminated 8-bit character string

wstring LPWSTR
[string,unique]
wchar t *

LPWSTR Null-terminated Unicode string
18-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ft

ber

set
ed in
r

18.2.4.2 Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL and ODL. The following OMG IDL definition for a bounded string:

// OMG IDL
const long N = ...;
typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”

// Microsoft IDL and ODL
 const long N = ... ;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of typeBOUNDED_STRINGis that of a null-
terminated array of characters whose extent is known at compile time, and the num
of valid characters can vary at run-time.

18.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordered
of name-value pairs representing the member types and names. A structure defin
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each membe
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE
{

T0 m0;
T1 ml;
T2 m2;

...
Tn mN;

};

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as
follows.

// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-5

18

or

r
h or
...
typedef ... Tn;
typedef struct

{
T0 m0;
Tl ml;
T2 m2;
...
TN mN;

} STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
sequence<A> v1;

};

is mapped as

typedef struct A {
struct { // MIDL

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;

} v1;
} A;

18.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminat
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The
discriminator tag must be a previously definedlong , short , unsigned long ,
unsigned short , char , boolean , or enum constant. The default case can appea
at most once in the definition of a discriminated union, and case labels must matc
be automatically castable to the defined type of the discriminator.
18-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18
The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR

{
dChar=0,
dShort,
dLong,
dFloat,
dDouble

};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{

case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[;8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum [v1 enum]

{
dchar=0,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITH
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-7

18

th

e is

e

ft
re

ds

T

18.2.7 Mapping for Sequence Types

OMG IDL defines the keywordsequence to be a one-dimensional array with two
characteristics: an optional maximum size that is fixed at compile time, and a leng
that is determined at run-time. Like the definition of strings, OMG IDL allows
sequences to be defined in one of two ways: bounded and unbounded. A sequenc
bounded if a maximum size is specified, else it is considered unbounded.

18.2.7.1 Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of typT

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct

{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microso
IDL or ODL struct containing a unique pointer to a conformant array of type U, whe
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsoft
IDL/ODL mapping is necessary to provide a scope in which extent and data boun
can be defined.

18.2.7.2 Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type
that can grow to be N size:

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:

// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
18-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

of

U
L

y
wn

e

G
e

typedef struct
{
unsigned long reserved;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

Note – The maximum size of the bounded sequence is declared in the declaration
the array and therefore a [size is ()] attribute is not needed.

18.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and
ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG ID
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the nameARRAY_OF_Udenotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of an
integral type, and const means (as in OMG IDL) that the value of N is fixed and kno
at IDL compilation time. The generalization to multidimensional arrays follows the
obvious mapping of syntax.

Note that if the ellipsis wereoctet in the OMG IDL, then the ellipsis would have to
be byte in Microsoft IDL or ODL. That is why the types of the array elements hav
different names in the two texts.

18.2.9 Mapping for theany Type

The CORBAany type permits the specification of values that can express any OM
IDL data type. There is no direct or simple mapping of this type into COM, thus w
map it to the following interface definition:

// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-9

18

ANT,
anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

In most cases, a COM client can use the_get_value() or _put_value()
method to set and get the value of a CORBAany . However, the data types supported
by a VARIANT are too restrictive to support all values representable in anany , such
as structs and unions. In cases where the data types can be represented in a VARI
they will be; in other cases, they will optionally be returned as anIStream pointer
18-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

n

s.
r

es

on

on.

ed
or a

of

d
e

code,
n

ata
ion
rors
in
be

is
in the VARIANT. An implementation may choose not to represent these types as a
IStream , in which case an SCODE value of E_DATA_CONVERSION is returned
when the VARIANT is requested.

18.2.10 Interface Mapping

18.2.10.1 Mapping for interface identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interface
These allow the client code to retrieve information about, or to inquire about, othe
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)
known as an IID. As with CORBA, COM specifies that the textual names of interfac
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorithm
for creating the mapping is detailed in Section 17.5.4, “Mapping Interface Identity,”
page 17-16.

18.2.10.2 Mapping for exception types

The CORBA object model uses the concept of exceptions to report error informati
Additional, exception-specification information may accompany the exception. The
exception-specific information is a specialized form of a record. Because it is defin
as a record, the additional information may consist of any of the basic data types
complex data type constructed from one or more basic data types. Exceptions are
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return result
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specifie
as being the same as the HRESULT on Win32 platforms). The SCODE can then b
examined to determine whether the call succeeded or failed. The error or success
also contained within the SCODE, is composed of a “facility” major code (13 bits o
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception d
to the client. Also, there is no standard mechanism in COM to specify the complet
status of an invocation. In addition, it is not possible to predetermine what set of er
a COM interface might return based on the definition of the interface as specified
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can
returned from a COM operation must be fixed when the operation is defined, there
currently no machine-readable way to discover the set of valid codes.
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-11

18

or

hen

A
rs
,

rating
g

w
ons
16
y

tus
ete,
Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility, n
does it require any changes to COM. To return the User Exception data to a COM
client, an optional parameter is added to the end of a COM operation signature w
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORB
specification and are used by the Object Request Broker (ORB) and object adapte
(OA). Standard exceptions may be returned as a result of any operation invocation
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is gene
an appropriate HRESULT for the operation to return. The other aspect is conveyin
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM Vie
when a CORBA System Exception is raised. Each of the CORBA System Excepti
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower
bits) of the HRESULT. Because these errors are interface-specific, the COM facilit
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion sta
of the CORBA request. The bit value 00 indicates that the operation did not compl
a bit value of 01 indicates that the operation did complete, and a bit value of 02
indicates that the operation may have completed. Table 18-3 lists the HRESULT
constants and their values.

Table 18-3Standard Exception to SCODE Mapping

HRESULT Constant HRESULT Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202

ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203
18-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18
ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

Table 18-3Standard Exception to SCODE Mapping(Continued)
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-13

18
ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

Table 18-3Standard Exception to SCODE Mapping(Continued)
18-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

he
ing
It is not possible to map a System Exception’s minor code and RepositoryId into t
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writ
the exception information to an OLE Error Object is optional. However, if the Error
Object is used for this purpose, it must be done according to the following
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo
such that the View can respond affirmatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo
pointer parameter when the mapped CORBA operation is completed without an
exception being raised. CallingSetErrorInfo in this fashion assures that the
Error Object on that thread is thoroughly destroyed.

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

ITF_E_OBJ_NOT_EXIST_NO 0X40219

ITF_E_OBJ_NOT_EXIST_MAYBE 0X41219

ITF_E_OBJ_NOT_EXIST_YES 0X42219

ITF_E_TRANSACTION_REQUIRED_NO 0x40220

ITF_E_TRANSACTION_REQUIRED_MAYBE 0x41220

ITF_E_TRANSACTION_REQUIRED_YES 0x42220

ITF_E_TRANSACTION_ROLLEDBACK_NO 0x40221

ITF_E_TRANSACTION_ROLLEDBACK_MAYBE 0x41221

ITF_E_TRANSACTION_ROLLEDBACK_YES 0x42221

ITF_E_INVALID_TRANSACTION_NO 0x40222

ITF_E_INVALID_TRANSACTION_MAYBE 0x41222

ITF_E_INVALID_TRANSACTION_YES 0x42222

Table 18-3Standard Exception to SCODE Mapping(Continued)
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-15

18

g

.

The properties of the OLE Error Object must be set according to Table 18-4.

A COM View supporting error objects would have code, which approximates the
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error
object
try
{

// Call the CORBA operation
}
catch(...)
{

...

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo
->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

...
}

A client to a COM View would access the OLE Error Object with code approximatin
the following.

Table 18-4Error Object Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status>
is “YES,” “NO,” or “MAYBE” based upon the value of the
system exception’s CORBA completion status. Spaces and
square brackets are literals and must be included in the string

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface
18-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

is

ribe
The

e

s.”
// After obtaining a pointer to an interface on
// the COM View, the
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
&pISupportErrorInfo);

hr = pISupportErrorInfo
->InterfaceSupportsError-

Info(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hrOperation
(above)

// has the completion status encoded into it.
pIErrorInfo->GetDescription(...);

}
}

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in an
object server to report operation-specific errors. The definition of a User Exception
identified in an OMG IDL file with the keyword exception. The body of a User
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to desc
various information about the exception — hereafter called an Exception structure.
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interfac
pointers to User Exceptions. If an interface raises a user exception, a structure is
constructed whose name is the interface name [fully scoped] followed by “Exception
For example, if an operation inMyModule::MyInterface raises a user
exception, then there will be a structure created named
MyModule_MyInterfaceExceptions .

A template illustrating this naming convention is as follows.
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-17

18

e last
a

ture
s

the

ed.

e is
y

he

nds
// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}

ExceptionType;

typedef struct
{

ExceptionType type;
LPTSTR repositoryId;
I<ModuleName_InterfaceName>UserException

*....piUserException;

} <ModuleName_InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as th
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises
User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions struc
as an output parameter by indirect reference allows the parameter to be treated a
optional by the callee1. The following example illustrates this point.

// Microsoft IDL
interface IBANKAccount

{
HRESULT Withdraw([in] float fAmount,

[out] float pfNewBalance,
[out] BANk_AccountExceptions

** pException);
};

The caller can indicate that no exception information should be returned, if an
exception occurs, by specifying NULL as the value for the Exceptions parameter of
operation. If the caller expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to be plac
COM’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the calle
to return exception information, the callee is responsible for allocating any memor
used to hold the exception information being returned. If no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of t
HRESULT to the callee, indicating the operation succeeded. The value of the
HRESULT returned to the callee when a CORBA exception has been raised depe
upon the type of exception being raised and whether an Exception structure was
specified by the caller.

1. Vendors that map the MIDL definition directly to C++ should map the exception struct
parameter as defaulting to a NULL pointer.
18-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18
The following OMG IDL statements show the definition of the format used to
represent User Exceptions.

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };
...
interface Account

{
exception NotAuthorized { };
float Deposit(in float Amount)

raises(InvalidAmount);
float Withdraw(in float Amount)

raises(InvalidAmount, NotAuthorized);
};

};

and map to the following statements in Microsoft IDL and ODL.

// Microsoft IDL and ODL
struct Bank_InsufFunds

{
float balance;
};

struct Bank_InvalidAmount
{
float amount;
};

struct BANK_Account_NotAuthorized
{
};

interface IBANK_AccountUserExceptions : IUnknown
{

HRESULT _get_InsufFunds([out] BANK_InsufFunds
* exceptionBody);

HRESULT _get_InvalidAmount([out] BANK_InvalidAmount
* exceptionBody);

HRESULT _get_NotAuthorized([out]
BANK_Account_NotAuthorized

 * exceptionBody);
};

typedef struct
{

July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-19

18

body
r
ame
om

to
g

face
n is

y of
is a

the

e

e

eter

.

ExceptionType type;
LPTSTR repositoryId;
IBANK_AccountUserExceptions * piUserException;

} BANK_AccountExceptions;

User exceptions are mapped to a COM interface and a structure that describes the
of information to be returned for the User Exception. A COM interface is defined fo
each CORBA interface containing an operation that raises a User Exception. The n
of the interface defined for accessing User Exception information is constructed fr
the fully scoped name of the CORBA interface on which the exception is raised. A
structure is defined for each User Exception, which contains the body of information
be returned as part of that exception. The name of the structure follows the namin
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA inter
is mapped into an operation on the Exception interface. The name of the operatio
constructed by prefixing the name of the exception with the string “_get_”. Each
accessor operation defined takes one output parameter in which to return the bod
information defined for the User Exception. The data type of the output parameter
structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, th
callee must allocate the memory to hold the exception information and fill in the
Exceptions structure as in Table 18-5.

When data conversion errors occur while mapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with th
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to
the client.

Mapping User Exceptions: A Special Case

If a CORBA operation raises only one (COM_ERROR or COM_ERROREX)
user exception (defined under Section 18.3.10.2, “Mapping for COM Errors,” on
page 18-44), then the mapped COM operation should not have the additional param

Table 18-5User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that is being raised
Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the exception
definition.

piUserException Points to an interface with which to obtain information
about the User Exception raised.
18-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

M
l

on

r

e
be
for exceptions. This proviso enables a CORBA implementation of a preexisting CO
interface to be mapped back to COM without altering the COM operation’s origina
signature.

COM_ERROR (and COM_ERROREX) is defined as part of the CORBA to
COM mapping. However, this special rule in effect means that aCOM_ERROR
raises clause can be added to an operation specifically to indicate that the operati
was originally defined as a COM operation.

18.2.10.3 Mapping for Nested Types

OMG IDL and Microsoft MIDL/ODL do not agree on the scoping level of types
declared within interfaces. Microsoft, for example, considers all types in a MIDL o
ODL file to be declared at global scope. OMG IDL considers a type to be scoped
within its enclosing module or interface. This means that to prevent accidental nam
collisions, types declared within OMG IDL modules and OMG IDL interfaces must
fully qualified in Microsoft IDL or ODL.

The OMG IDL construct:

Module BANK{
interface ATM {

enum type {CHECKS, CASH};
Struct DepositRecord {

string account;
float amount;
type kind;

};
void deposit (in DepositRecord val);

};

Must be mapped in Microsoft MIDL as:

[uuid(...), object]
interface IBANK ATM : IUnknown {

typedef [v1 enum] enum
{BANK ATM CHECKS,
BANK ATM CASH} BANK ATM type;

typedef struct {
LPSTR account;
BANK ATM type kind;

} BANK ATM DepositRecord;
HRESULT deposit (in BANK ATM DepositRecord *val);

};

and to Microsoft ODL as:

[uuid(...)]
library BANK {
...
[uuid(...), object]
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-21

18

rn
at
th of

G

he

e
e.

ng
interface IBANK ATM : IUnknown {
typedef enum { BANK ATM CHECKS,

 {BANK ATM CASH} BANK ATM type;
typedef struct {

LPSTR struct;
float amount;
BANK ATM type kind;

} BANK ATM DepositRecord;
HRESULT deposit (in BANK ATM DepositRecord *val);

};

18.2.10.4 Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The definition of an operation constitutes the operations signature. An
operation signature consists of the operation’s name, parameters (if any), and retu
value. Optionally, OMG IDL allows the operation definition to indicate exceptions th
can be raised, and the context to be passed to the object as implicit arguments, bo
which are considered part of the operation.

OMG IDL parameter directional attributesin , out , inout map directly to Microsoft
IDL and ODL parameter direction attributes[in] , [out] , [in,out] . Operation
request parameters are represented as the values ofin or inout parameters in OMG
IDL, and operation response parameters are represented as the values ofinout or out
parameters. An operation return result can be any type that can be defined in OM
IDL, or void if a result is not returned.

The OMG IDL sample (shown below) illustrates the definition of two operations on t
Bank interface. The names of the operations are bolded to make them stand out.
Operations can return various types of data as results, including nothing at all. Th
operationBank::Transfer is an example of an operation that does not return a valu
The operationBank::Open Account returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank”IDL:BANK/Bank:1,2”

interface Bank
{
Account OpenAccount(in float StartingBalance,

in AccountTypes Account(Type);
void Transfer(in Account Account1,

in Account Account2,
in float Account)
raises(InSufFunds);

};

The operations defined in the preceding OMG IDL code are mapped to the followi
lines of Microsoft IDL code:

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
18-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

soft

for

, if
interface IBANK Teller: IUnknown
 {
 HRESULT OpenAccount(

[in] float StartingBalance,
[in] BANK_AccountTypes AccountType,
[out] IBANK_Account ** ppiNewAccount);

 HRESULT Transfer(
[in] IBANK_Account * Account1,
[in] IBANK_Account * Account2,
[in] float Amount,
[out] BANK_TellerExceptions

** ppException);
 };

and to the following statements in Microsoft ODL

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000) odl]
interface IBANK_Teller: IUnknown
 {
 HRESULT OpenAccount(

[in] float StartingBalance,
[in] BANK_AccountTypes AccountType,
[out, retval] IBANK_Account

** ppiNewAccount);
 HRESULT Transfer(

[in] IBANK_Account * Account1,
[in] IBANK_Account * Account2,
[in] float Amount,
[out]BANK_TellerExceptions

** ppException);
 };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is
identical to the order in which parameters are specified in the text of the operation
definition in OMG IDL. The COM mapping of all CORBA operations must obey the
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Micro
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result value
becomes an HRESULT. Without an HRESULT return value, there would be no way
COM to signal errors to clients when the client and server are not collocated. The
value of the HRESULT is determined based on a mapping of the CORBA exception
any, that was raised.
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-23

18

e

h
her

gh

does

y
e no

is not
he

lly
e
te

of
ute
-

is
d

It is also important to note that if any user’s exception information is defined for th
operation, an additional parameter is added as the last argument of the operation
signature. The user exception parameter follows the return value parameter, if bot
exist. See Section 18.2.10.2, “Mapping for exception types,” on page 18-11 for furt
details.

18.2.10.5 Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the
communication service must provide for an operation. This indication is done throu
the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which
not guarantee delivery of the request. Best-effort implies that the operation will be
invoked, at most, once. Along with the invocation semantics, the use of the onewa
operation attribute restricts an operation from having output parameters, must hav
result value returned, and cannot raise any user-defined exceptions.

It may seem that the Microsoft IDLmaybe operation attribute provides a closer
match since the caller of an operation does not expect any response. However,
Microsoft RPC maybe does not guarantee at most once semantics, and therefore
sufficient. Because of this, the mapping of an operation defined in OMG IDL with t
oneway operation attribute maps the same as an operation that has no output
arguments.

18.2.10.6 Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentia
a short-hand for a pair of accessor functions to an object’s data; one to retrieve th
value and possibly one to set the value of the attribute. The definition of an attribu
must be contained within an interface definition and can indicate whether the value
the attribute can be modified or just read. In the example OMG IDL next, the attrib
Profile is defined for the Customer interface and the read-only attribute is Balance
defined for the Account interface. The keyword attribute is used by OMG IDL to
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor function
limited to only raising system exceptions. The value of the HRESULT is determine
based on a mapping of the CORBA exception, if any, that was raised.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};
18-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

e

ith

to
only
#pragma ID::BANK::Account "IDL:BANK/Account:3.1"

interface Account
{
readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount);
float Withdrawal(in float amount) raises(InsufFunds, InvalidAmount);
float Close();
};

#pragma ID::BANK::Customer "IDL:BANK/Customer:1.2"

interface Customer
 {
 attribute CustomerData Profile;
 };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the nam
of the get accessor is the same as the name of the attribute prefixed with _get_ in
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL.
The name of the put accessor is the same as the name of the attribute prefixed w
put in Microsoft IDL and contains the operation attribute [propput] in Microsoft
ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: one
retrieve the value and one to set the value of the attribute, unless the keyword read
precedes the attribute keyword. In the preceding example, the attribute Profile is
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IUnknown
 {
 HRESULT _get_Profile([out] CustomerData * Profile);
 HRESULT _put_Profile([in] CustomerData * Profile);
 };

Profile is mapped to these statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBANK_Customer : IUnknown
 {
 [propget] HRESULT Profile(

[out] BANK_CustomerData * val);
 [propput] HRESULT Profile(

[in] BANK_CustomerData * val);
 };
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-25

18

ft

the

in]

nd

ce for

al).
Note – The attribute is actually mapped as two different operations in both Microso
IDL and ODL. TheIBANK_Customer::get_profile operation (in Microsoft
IDL) and the [propget] Profile operation (in Microsoft ODL) are used to retrieve
the value of the attribute. TheIBANK_Customer::put_profile operation is
used to set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keywordreadonly is interpreted as only
supporting a single accessor function used to retrieve the value of the attribute. In
previous example, the mapping of the attributeBalance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 HRESULT _get_Balance([out] float Balance);
 };

and the following statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 [propget] HRESULT Balance([out] float *val);
 };

Note that only a single operation was defined since the attribute was defined to be
read-only.

18.2.10.7 Indirection Levels for Operation Parameters

• For integral types (such as long, enum, char,...) these are passed by value as [
parameters and by reference as out parameters.

• string/wstring parameters are passed as LPSTR/LPWSTR as an in parameter a
LPSTR*/LPWSTR* as an out parameter.

• composite types (such as unions, structures, exceptions) are passed by referen
both [in] and [out] parameters.

• optional parameters are passed using double indirection (e.g., IntfException ** v

18.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.
18-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

port

n
A

A
ing

BA,

can
e
y an

t of
is

hip

C++

n.
ugh

ly.

to

to

r

In CORBA, an interface can singly or multiply inherit from other interfaces. In
language bindings supporting typed object references, widening and narrowing sup
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without a
inheritance relationship. The run-time interfaces of an object, as defined in CORB
(for example,CORBA::Object::is_a , CORBA::Object::get_interface)
use a description of the object’s principle type, which is defined in OMG IDL. CORB
allows many ways in which implementations of interfaces can be structured, includ
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces
(without an inheritance relationship between those interfaces) and by which clients
query for these at run-time. (It defines no common way to determine if two interfac
references refer to the same object, or to enumerate all the interfaces supported b
entity.)

An observation about COM is that some COM objects have a required minimum se
interfaces, which they must support. This type of statically defined interface relation
conceptually equivalent to multiple inheritance; however, discovering this relations
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces might be multiply-inherited and
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance of
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknow
Note that the Object interface is not surfaced in COM. For single inheritance, altho
the most derived interface can be queried usingIUnknown::QueryInterface ,
each individual interface in the inheritance hierarchy can also be queried separate

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping fo
attributes.

• Operations are sorted in ascending order based upon the ISO Latin-1 encoding
values of the respective operation names.
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-27

18

the
n the
not
ibute
• The resulting mapping of attributes within an interface are ordered based upon
attribute name. The attributes are similarly sorted in ascending order based upo
ISO-Latin-1 encoding values of the respective attribute names. If the attribute is
readonly, the get_<attribute name> method immediately precedes the set_<attr
name> method.

Figure 18-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();

CORBA Interface Inheritance COM Interface Inheritance

A

B

D E

F

C IU

B C

A

IU

D

A IU

E

IU

F

IU
18-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ing
to

d

fer

used
can

lly

he
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};

Note that theco-class statement in Microsoft ODL allows the definition of an
object class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its correspond
statements in Microsoft IDL, the name of the interface is proceeded by the letter I
indicate that the name represents the name of an interface. This also makes the
mapping more natural to the COM programmer, since the naming conventions use
follow those suggested by Microsoft.

18.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects dif
from other objects in that they cannot be invoked with the Dynamic Invocation
Interface (DII) and do not have object references. Most pseudo-objects cannot be
as general arguments. Currently, only the TypeCode and Principal pseudo-objects
be used as general arguments to a request in CORBA.

The CORBA NamedValue and NVList are not mapped into COM as arguments to
COM operation signatures.

18.2.12.1 Mapping for TypeCode pseudo-object

CORBA TypeCodes represent the types of arguments or attributes and are typica
retrieved from the interface repository. The mapping of the CORBA TypeCode
interface follows the same rules as mapping any other CORBA interface to COM. T
result of this mapping is as follows.
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-29

18
// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;

[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,

pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT _get_Bounds([out] TypeCodeBounds *pExceptionBody);
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody);

};

typedef struct
{
 ExceptionType type;
 LPTSTR repositoryId;
 long minorCode;
 CompletionStatus completionStatus;
 ICORBA_SystemException * pSystemException;
 ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR RepositoryId;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} CORBA_TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
 HRESULT equal(

[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBA_TypeCodeExceptions** ppUserExceptions);

HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT id(
[out] RepositoryId * pszRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT name(
[out] Identifier * pszRetVal,
18-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

he

y
sed
ntil
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);
HRESULT member_count(

[out] unsigned long * pulRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_name(
[in] unsigned long ulIndex,
[out] Identifier * pszRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_type(
[in] unsigned long ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_label(
[in] unsigned long ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT discriminator_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT default_index(
[out] long * plRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT length(
[out] unsigned long * pulRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT content_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT param_count(
[out] long * plRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT parameter(
[in] long lIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions

);
}

Note – Use of the methodsparam_count() andparameter() is deprecated.

18.2.12.2 Mapping for context pseudo-object

This specification provides no mapping for CORBA’s Context pseudo-object into
COM. Implementations that choose to provide support for Context could do so in t
following way. Context pseudo-objects should be accessed through theICORBA
Context interface. This would allow clients (if they are aware that the object the
are dealing with is a CORBA object) to set a single Context pseudo-object to be u
for all subsequent invocations on the CORBA object from the client process space u
such time as theICORBA_Context interface is released.

// Microsoft IDL and ODL
typedef struct
July 2002 CORBA, v3.0: CORBA to COM Data Type Mapping 18-31

18

n

xt

s

M
ne

e.
 {
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
 } ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IUnknown
 {

HRESULT GetProperty([in]LPTSTR Name,
[out] ContextPropertyValue

** pValues);
HRESULT SetProperty([in] LPTSTR,

[in] ContextPropertyValue
* pValues);

 };

If a COM client application knows it is using a CORBA object, the client applicatio
can useQueryInterface to obtain an interface pointer to the
ICORBA_Context interface. Obtaining the interface pointer results in a CORBA
context pseudo-object being created in the View, which is used with any CORBA
request operation that requires a reference to a CORBA context object. The conte
pseudo-object should be destroyed when the reference count on the
ICORBA_Context interface reaches zero.

This interface should only be generated for CORBA interfaces that have operation
defined with the context clause.

18.2.12.3 Mapping for principal pseudo-object

The CORBA Principal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking will need to be defined
between the two object models.

18.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to CO
type libraries. However, the CORBA interface repository looks, to the client, to be o
unified service. Type libraries, on the other hand, are each stored in a separate fil
Clients do not have a unified, hierarchical interface to type libraries.

Table 18-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.
18-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ct

g

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for a CORBA obje
interface using the IProvideClassInfo COM interface.

18.3 COM to CORBA Data Type Mapping

18.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the correspondin
data types available in OMG IDL as shown in Table 18-7.

Table 18-6CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef

Table 18-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft
IDL

Microsoft
ODL

OMG IDL Description

short short short Signed integer with a range of -215...215 -1

long long long Signed integer with a range of -231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 -1

float float float IEEE single -precision floating point number

double double double IEEE double-precision floating point number
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-33

18

ly

M
in

rgo
18.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exact
the same. The following Microsoft IDL definitions for constants:

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

18.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When CO
enumerations are mapped into CORBA, the enumerators are presented in CORBA
increasing order according to their tagged values.

The Microsoft IDL or ODL specification:

char char char 8-bit quantity limited to the ISO Latin-1 character
set

boolean boolean boolean 8-bit quantity, which is limited to 1 and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to not unde
any conversion during transfer between systems

Table 18-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings(Continued)
18-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

that

t

.
reas

r

// Microsoft IDL or ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_or_C {B, C, A};

In this manner, the precedence relationship is maintained in the OMG system such
B is less than C is less than A.

OMG IDL does not support enumerators defined with explicit tagged values. The
CORBA view of a COM object, therefore, is responsible for maintaining the correc
tagged value of the mapped enumerators as they cross the view.

18.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded strings
Bounded strings are defined as strings that have a maximum length specified, whe
unbounded strings do not have a maximum length specified. COM also supports
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions fo
bounded and unbounded strings differs from that specified in OMG IDL.

Table 18-8 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client, a
E_DATA_CONVERSION exception will be raised.

18.3.4.1 Mapping for unbounded string types

The definition of an unbounded string in Microsoft IDL and ODL denotes the
unbounded string as a stringified unique pointer to a character. The following
Microsoft IDL statement

Table 18-8Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

LPSTR
[string,unique]
char *

LPSTR, string Null-terminated 8-bit character string

BSTR BSTR wstring Null-terminated 16-bit character string

LPWSTR
[string,unique]
char *

LPWSTR wstring Null-terminated Unicode string
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-35

18

ft
nt

ose
// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UNBOUNDED_STRING;

In other words, a value of typeUNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

18.3.4.2 Mapping for bounded string types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconforma
array.” The following Microsoft IDL and ODL definition for a bounded string:

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of typeBOUNDED_STRING is that of a
null-terminated array of characters whose extent is known at compile time, and wh
number of valid characters can vary at run-time.

18.3.4.3 Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPWSTR

UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.
18-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

pe.
18.3.4.4 Mapping for unicode bound string types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] wchar t(*

BOUNDED_UNICODE_STRING) [N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

18.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL.
Each structure member is mapped according to the mapping rules for that data ty
The structure definition in Microsoft IDL or ODL is as follows.

// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows:
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-37

18

e

be

s

// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct STRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

18.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any
interfaces that use them. For this reason, this specification does not provide any
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. Th
discriminator for a nonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to
constant expressions.

18.3.6.1 Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated union
having constant discriminators are mapped to OMG IDL unions as shown next.

// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.
18-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

h

// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

18.3.6.2 Mapping for nonencapsulated unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions wit
nonconstant discriminators are mapped to anany in OMG IDL. The type of theany is
determined at run-time during conversion of the Microsoft IDL union.

// Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
 {
 [case(0)] char c;
 [case(1)] short s;
 [case(2)] long l;
 [case(3)] float f;
 [case(4)] double d;
 [default] byte v[8];
 } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef any UNION_OF_CHAR_AND_ARITHMETIC;
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-39

18

G
ay

ray

e

ing
an be
ed

ined
is
18.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OM
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the arr
elements is mapped according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying ar
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that th
value of N is fixed and known at compilation time. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

18.3.7.1 Mapping for nonfixed arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports vary
arrays, and conformant varying arrays. These are arrays whose bounds and size c
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapp
to sequence in OMG IDL, as shown in the following statements.

// Microsoft IDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef sequence<short> BTYPE;
typedef sequence<char> CTYPE;

18.3.7.2 Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are determ
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL
mapped to a CORBA sequence, as shown in the following statements.
18-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

f the

to

is

is

e

// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence< element-type > SequenceName;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSION exception will be raised.

18.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBAany.
However, its allowable set of data types are currently limited to the data types
supported by Automation. VARTYPE is an enumeration type used in the VARIANT
structure. The structure membervt is defined using the data type VARTYPE. Its value
acts as the discriminator for the embedded union and governs the interpretation o
union. The list of valid values for the data type VARTYPE are listed in Table 18-9,
along with a description of how to use them to represent the OMG IDLany data type.

Table 18-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you shouldnot
return VT_EMPTY for the argument. Instead, you should return the
VT_ERROR value: DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored inbVal.

VT_UI1 |
VT_BYREF

A reference to an unsigned 1-byte character was passed; a pointer
the value is inpbVal.

VT_I2 A 2-byte integer value is stored iniVal.

VT_I2 | VT_BYREF A reference to a 2-byte integer was passed; a pointer to the value
in piVal.

VT_I4 A 4-byte integer value is stored inlVal.

VT_I4 | VT_BYREF A reference to a 4-byte integer was passed; a pointer to the value
in plVal.

VT_R4 An IEEE 4-byte real value is stored infltVal.

VT_R4 |
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer to the
value is inpfltVal.

VT_R8 An 8-byte IEEE real value is stored indblVal.

VT_R8 |
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer to its valu
is in pdblVal.
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-41

18

is

y
ed

0

VT_CY A currency value was specified. A currency number is stored as an
8-byte, two’s complement integer, scaled by 10,000 to give a fixed-
point number with 15 digits to the left of the decimal point and 4
digits to the right. The value is incyVal.

VT_CY |
VT_BYREF

A reference to a currency value was passed; a pointer to the value
in pcyVal.

VT_BSTR A string was passed; it is stored inbstrVal. This pointer must be
obtained and freed via the BSTR functions.

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*, which points to a
BSTR, is inpbstrVal. The referenced pointer must be obtained or
freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not be
confused with the NULL pointer. The NULL value is used for tri-
state logic as with SQL.

VT_NULL |
VT_BYREF

Illegal.

VT_ERROR An SCODE was specified. The type of error is specified incode.
Generally, operations on error values should raise an exception or
propagate the error to the return value, as appropriate.

VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A pointer to the value is in
pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of 0xFFFF (all
bits one) indicates True; a value of 0 (all bits zero) indicates False.
No other values are legal.

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean value is in
pbool.

VT_DATE A value denoting a date and time was specified. Dates are
represented as double-precision numbers, where midnight, Januar
1, 1900 is 2.0, January 2, 1900 is 3.0, and so on. The value is pass
in date.

This is the same numbering system used by most spreadsheet
programs, although some incorrectly believe that February 29, 190
existed, and thus set January 1, 1900 to 1.0. The date can be
converted to and from an MS-DOS representation using
VariantTimeToDosDateTime.

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to the value is inpdate.

Table 18-9 Valid OLE VARIANT Data Types(Continued)
18-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ent

for

t

e

y

A COM VARIANT is mapped to the CORBAany without loss. If at run-time a
CORBA client passes an inconvertibleany to a COM server, a
DATA_CONVERSION exception is raised.

18.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot repres
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used
data structures, which form cycles or have aliases.

VT_DISPATCH A pointer to an object was specified. The pointer is inpdispVal. This
object is only known to implement IDispatch; the object can be
queried as to whether it supports any other desired interface by
calling QueryInterface on the object. Objects that do not implemen
IDispatch should be passed using VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was specified. The pointer to the
object is stored in the location referred to byppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed inpvarVal. This
referenced VARIANTARG will never have the VT_BYREF bit set
in vt, so only one level of indirection can ever be present. This value
can be used to support languages that allow functions to change th
types of variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown interface is
passed inpunkVal.

VT_UNKNOWN |
VT_BYREF

A pointer to a pointer to the IUnknown interface is passed in
ppunkVal. The pointer to the interface is stored in the location
referred to byppunkVal.

VT_ARRAY |
<anything>

An array of data type <anything> was passed. (VT_EMPTY and
VT_NULL are illegal types to combine with VT_ARRAY.) The
pointer inpByrefValpoints to an array descriptor, which describes
the dimensions, size, and in-memory location of the array. The arra
descriptor is never accessed directly, but instead is read and
modified using functions.

Table 18-9 Valid OLE VARIANT Data Types(Continued)
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-43

18

ique
nce

ed
es

ugh

s.

al
e
que.

lt
if
ing

, or
s

te a

turn
are
A reference pointer is mapped to a CORBA sequence containing one element. Un
pointers and full pointers with no aliases or cycles are mapped to a CORBA seque
containing zero or one elements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is return
to the COM client. If a COM server attempts to return a full pointer containing alias
or cycles to a CORBA client, aDATA_CONVERSION exception is raised.

18.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Altho
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the following
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces.

18.3.10.1 Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interface
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

COM identifies interfaces using a structure similar to the DCE UUID (in fact, identic
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that th
textual names of interfaces are only for convenience and need not be globally uni

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the
CORBA RepositoryId.

18.3.10.2 Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return resu
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT,
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as be
the same as the HRESULT on Win32). The SCODE can then be examined to
determine whether the call succeeded or failed. The error or success code, also
contained within the SCODE, is composed of a “facility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE values
use the facility FACILITY_ITF and an interface-specific minor code. SCODE value
can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indica
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the re
value. This is because COM operations, which are defined to return an HRESULT,
mapped to CORBA as returning an HRESULT.
18-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ata
ion
rors
rned
tly

odes

ed
Unlike CORBA, COM provides no standard way to return user-defined exception d
to the client. Also, there is no standard mechanism in COM to specify the complet
status of an invocation. In addition, it is not possible to predetermine what set of er
a COM interface might return. Although the set of success codes that can be retu
from a COM operation must be fixed when the operation is defined, there is curren
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. COM user-defined error c
are mapped to CORBA user exceptions.

COM system error codes are defined with the FACILITY_NULL and FACILITY_RPC
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to
CORBA standard exceptions. Table 18-10 lists the mapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 18-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA
standard exceptions. All FACILITY_RPC exceptions not listed in this table are mapp
to the new CORBA standard exception COM.

Table 18-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM

Table 18-11Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-45

18

G
a
r

ed

r

COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of the raises clause in OMG IDL. Since the OM
IDL mapping from the Microsoft IDL and ODL is likely to be generated, this is not
burden to the average programmer. The following OMG IDL illustrates such a use
exception.

// OMG IDL
exception COM_ERROREX
{

long hresult;
Any info;

};

The COM_ERROREX extension is designed to allow exposure of exceptions pass
using the per-thread ErrorObject. The Any contained in theCOM_ERROREX is
defined to hold a CORBA object reference that supports the OMG IDL mapping fo
the IErrorInfo interface.

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 18-11Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions(Continued)
18-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

oss

efore

any),

as
18.3.10.3 Mapping of Nested Data Types

Microsoft MIDL (and ODL) consider all definitions to be at global (or library) scope
regardless of position in the file. This can lead to name collisions in datatypes acr
interfaces. Operations or types later in the file can refer to a datatype without fully
qualifying the name even if the type is nested within another interface.

For purposes of mapping MIDL/ODL to OMG IDL, we treat nested datatypes as if
they had been prepended with the name of the scoping level. Thus:

interface IA : IUnknown
{

typedef enum {ONE, TWO, THREE} Count;
HRESULT f([in] Count val);

}

is mapped as if it were defined as:

typedef enum {A_ONE, A_TWO, A_THREE} A_Count;
interface IA : IUnknown
{

HRESULT f([in] A_Count val);
}

18.3.10.4 Mapping of Names

Microsoft MIDL and ODL support prefixing types/names with leading underscores.
When mapping from Microsoft MIDL or ODL to OMG IDL, the leading underscores
are removed.

Note – This simple rule is not sufficient to avoid all name collisions (such as MIDL
types that clash with OMG IDL reserved names or situations where two operation
names differ only in the leading underscore). However, this rule will cover many
common cases and leads to a more natural mapping than prepending a character b
the underscore.

18.3.10.5 Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within
interface definitions. The definition of an operation constitutes the operations
signature. An operation signature consists of the operation’s name, parameters (if
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the
operation definition to indicate the error information that can be returned.

Microsoft IDL and ODL parameter directional attributes ([in], [out], [in , out]) map
directly to OMG IDL (in , out , inout). Operation request parameters are represented
the values of[in] or [inout] parameters in Microsoft IDL, and operation response
parameters are represented as the values of[inout] or [out] parameters. An
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-47

18

or
an

g
rd

t
IDL

g
be
G

is a

.
r

operation return result can be any type that can be defined in Microsoft IDL/ODL,
void if a result is not returned. By convention, most operations are defined to return
HRESULT. This provides a consistent way to return operation status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the followin
transformations. First, if the last parameter is tagged with the Microsoft ODL keywo
retval , that argument will be used as the return type of the operation. If the las
parameter is not tagged with retval, then the signature is mapped directly to OMG
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown in the following
code.

// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify([in] VARIANT value,

[out, retval] LPSTR * pszValue);

HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};

In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Composite, CosLifeCycle::LifeCycleObject

{
string stringify(in any value) raises (COM_ERROR),

COM_ERROREX);
HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)
};

18.3.10.6 Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describin
properties. Microsoft IDL does not support this capability. Any operations that can
determined to be either a put/set or get accessor are mapped to an attribute in OM
IDL. Because Microsoft IDL does not provide a means to indicate that something
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to
the attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, properties in COM
are mapped in a similar fashion to that used to map attributes in OMG IDL to COM
For example, the following Microsoft ODL statements define the attribute Profile fo
18-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

ce.

is
a

the

the
G

the ICustomer interface and the read-only attribute Balance for the IAccount interfa
The keywords [propput] and [propget] are used by Microsoft ODL to indicate
that the statement is defining a property of an interface.

// Microsoft ODL
interface IAccount
 {
 [propget] HRESULT Balance([out, retval] float

* pfBalance);
 ...
 };

interface ICustomer
 {

[propget] HRESULT Profile([out] CustomerData * Profile);
 [propput] HRESULT Profile([in] CustomerData * Profile);
 };

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor function
limited to raising system exceptions. The value of the HRESULT is determined by
mapping of the CORBA exception, if any, that was raised.

18.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as
only supporting an accessor function, which is used to retrieve the value of the
attribute. In the example above, the mapping of the attribute Balance is mapped to
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attribute float Balance;
...
};

18.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as
only supporting an accessor function that is used to set the value of the attribute. In
previous example, the attribute Profile is mapped to the following statements in OM
IDL.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-49

18

st

port

n

BA,

can
e
y an

t of
is
hip

C++
string SurName;
};

interface Customer
{
attribute CustomerData Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping mu
assume that a property that has the keyword [propput] is mapped to a single read-
write attribute, even if there is no associated [propget] method defined.

18.3.12.1 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in
language bindings supporting typed object references, widening and narrowing sup
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without a
inheritance relationship. The run-time interfaces of an object (for example,
CORBA::Object::is_a , CORBA::Object::get_interface) use a
description of the object’s principle type, which is defined in OMG IDL. In terms of
implementation, CORBA allows many ways in which implementations of interfaces
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces
(without an inheritance relationship between those interfaces) and by which clients
query for these at run-time. (It defines no common way to determine if two interfac
references refer to the same object, or to enumerate all the interfaces supported b
entity.)

An observation about COM is that some COM objects have a required minimum se
interfaces that they must support. This type of statically-defined interface relation
conceptually equivalent to multiple inheritance; however, discovering this relations
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

When COM interfaces are mapped into CORBA, their inheritance hierarchy (which
can only consist of single inheritance) is directly mapped into the equivalent OMG
IDL inheritance hierarchy.2

2. This mapping fails in some cases, for example, if operation names are the same.
18-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

18

not
ot

,
be

ce,
take

-

Note that although it is possible, using Microsoft ODL to map multiple COM
interfaces in a class to OMG IDL multiple inheritance, the necessary information is
available for interfaces defined in Microsoft IDL. As such, this specification does n
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL
at which time the mapping can be extended to allow for multiple COM interfaces to
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, even though those
interfaces are not related by inheritance. Any existing ORB can support this interfa
although in some cases a specialized implementation framework may be desired to
advantage of this interface.

module CORBA // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

};
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multiply
inherited fromCORBA::Composable and
CosLifeCycle::LifeCycleObject . Note that theIUnknown interface is not
surfaced in OMG IDL. Any COM method parameters that requireIUnknown
interfaces as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object .

// Microsoft IDL or ODL
interface IFoo: IUnknown
{
HRESULT inquire([in] IUnknown *obj);
};

In OMG IDL, this becomes:

interface IFoo: CORBA::Composable, CosLifeCycle::LifeCycleObject
{
void inquire(in Object obj);
};
July 2002 CORBA, v3.0: COM to CORBA Data Type Mapping 18-51

18

, to
arate
18.3.12.2 Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA
interface repositories. However, the CORBA interface repository looks, to the client
be one unified service. Type libraries, on the other hand, are each stored in a sep
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve anInterfaceDef . When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for CORBA
object interface using theIProvideClassInfo COM interface.

Table 18-12CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
18-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Mapping:AutomationandCORBA 19
ect
by

rate
cts

f
e

This chapter describes the bidirectional data type and interface mapping between
Automation and CORBA.

Microsoft’s Object Description Language (ODL) is used to describe Automation obj
model constructs. However, many constructs supported by ODL are not supported
Automation. Therefore, this specification is confined to the Automation-compatible
ODL constructs.

As described in theInterworking Architecturechapter, many implementation choices
are open to the vendor in building these mappings. One valid approach is to gene
and compile mapping code, an essentially static approach. Another is to map obje
dynamically.

Although some features of the CORBA-Automation mappings address the issue o
inverting a mapping back to its original platform, this specification does not assum
the requirement for a totally invertible mapping between Automation and CORBA.

Contents

This chapter contains the following sections.

Section Title Page

“Mapping CORBA Objects to Automation” 19-2

“Mapping for Interfaces” 19-3

“Mapping for Basic Data Types” 19-9

“IDL to ODL Mapping” 19-12

“Mapping for Object References” 19-15

“Mapping for Enumerated Types” 19-17
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 19-1

19

ew

s
s not
19.1 Mapping CORBA Objects to Automation

19.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote
CORBA object: the OLE Automation Controller; the COM Communication
Infrastructure; the OLE system registry; the client-side Automation View; the
operation’s type information; the Object Request Broker; and the CORBA object’s
implementation. These are illustrated in Figure 19-1 (the call to the Automation Vi
could be a call in the same process).

Figure 19-1 CORBA Object Architectural Overview

The Automation View is an Automation server with a dispatch interface that is
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an
Automation View Interface. The Automation server encapsulates a CORBA object
reference and maps incoming OLE Automation invocations into CORBA invocation
on the encapsulated reference. The creation and storage of the type information i
specified.

“Mapping for Arrays and Sequences” 19-18

“Mapping for CORBA Complex Types” 19-19

“Mapping Automation Objects as CORBA Objects” 19-38

“Older Automation Controllers” 19-49

“Example Mappings” 19-51

Section Title Page

OLE Automation
Controller

System

Automation

ORB

Object
Implementation

TypeInfo

COM

Registry

Communication

View
19-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ew

OLE

ere
L

pped

d

There is a one-to-one correspondence between the methods of the Automation Vi
Interface and operations in the CORBA interface. The Automation View Interface’s
methods translate parameters bidirectionally between a CORBA reference and an
reference.

Figure 19-2 Methods of the Automation View Interface Delegate to the CORBA Stub

19.1.2 Main Features of the Mapping

• OMG IDL attributes and operations map to Automation properties and methods
respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation wh
possible. Since Automation supports a limited set of data types, some OMG ID
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation
interfaces with appropriate attributes and operations. User exceptions are ma
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, an
overflow conditions are identified.

• OMG IDL sequences and arrays map to VARIANTS containing an Automation
Safearray.

19.2 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View
Interface. For example, the following CORBA interface

Client Space Object Space

CORBA Stub
MyInterface methods CORBA Skeleton

MyInterface methods

Automation View

- Interface DIMyInterface

Client App

Real CORBA Object
Interface MyInterface

pDIMyInterface->Invoke(A_METHOD...

Network
July 2002 CORBA, v3.0: Mapping for Interfaces 19-3

19

that

t

L

face
module MyModule // OMG IDL
{

interface MyInterface
{

// Attributes and operations;
...

};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{

// Properties and methods;
...

};

The interfaceDIMyModule_account is an Automation Dual Interface. A Dual
Interface is a COM vtable-based interface, which derives from IDispatch, meaning
its methods can be late-bound viaIDispatch::Invoke or early-bound through the
vtable portion of the interface. Thus,DIMyModule_account contains the methods of
IDispatch as well as separate vtable-entries for its operations and property get/se
methods.

19.2.1 Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG ID
attribute maps to an ODL property, which has one method toget and one toset the
value of the property. An OMG IDL readonly attribute maps to an OLE property,
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation inter
follows the rules described in “Ordering Rules for the CORBA->OLE Automation
Transformation” part of Section 17.5.2, “Detailed Mapping Rules,” on page 17-13.

For example, given the following CORBA interface,

interface account // OMG IDL
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};

the corresponding Automation View Interface is:

[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL
19-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

9-9,

the

ges
BA
tion

ing

st
es
value
the

of
HRESULT makeLodgement([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

}

OMG IDL in , out , and inout parameters map to ODL[in] , [out] , and[in,out]
parameters, respectively. Section 19.3, “Mapping for Basic Data Types,” on page 1
explains the mapping for basic data types. The mapping for CORBA oneway
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument in
operation’s signature may be tagged[retval,out] . An argument tagged in this fashion
is considered syntactically to be a return value. Automation controller macro langua
map this special argument to a return value in their language syntax. Thus, a COR
operation’s return value is mapped to the last argument in the corresponding opera
of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optionalout parameter of
type VARIANT. The optional parameter returns explicit exception information in the
context of each property set/get or method invocation. See Section 19.8.9, “Mapp
CORBA Exceptions to Automation Exceptions,” on page 19-30 for a detailed
discussion of how this mechanism works.

If the CORBA operation has no return value, then the optional parameter is the la
parameter in the corresponding Automation operation. If the CORBA operation do
have a return value, then the optional parameter appears directly before the return
in the corresponding Automation operation, since the return value must always be
last parameter.

19.2.2 Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy
Automation View Interfaces.

For example, given the interface account and its derived interfacecheckingAccount
defined as follows,

module MyModule { // OMG IDL
interface account {

attribute float balance;
readonly attributestring owner;
void makeLodgement (in float amount, out float

balance);
July 2002 CORBA, v3.0: Mapping for Interfaces 19-5

19

ing

d on

all
void makeWithdrawal (in float amount, out float
theBalance);

};
interface checkingAccount: account {

readonly attribute float overdraftLimit;
boolean orderChequeBook ();

};
};

the corresponding Automation View Interfaces are as follows

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ,
[retval,out] short * val);
[propget] HRESULT overdraftLimit (
[retval,out] short * val);

};

19.2.3 Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance; therefore, a direct mapping of a
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapp
splits such a hierarchy, at the points of multiple inheritance, into multiple singly-
inherited strands.

The mechanism for determining which interfaces appear on which strands is base
a left branch traversal of the inheritance tree. At points of multiple inheritance, the
interface that is first in an ordering of the parent interfaces is included in what we c
19-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

he
der

e
-C.
e
d of
rs,

the

they
d,
of
the main strand, and other interfaces are assigned to other, secondary strands. (T
ordering of parent interfaces is explained later in this section.) For example, consi
the CORBA interface hierarchy, shown in Figure 19-3.

Figure 19-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows:

• B and C derive from A

• D derives from B and C

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance
hierarchies, shown in Figure 19-4.

Figure 19-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following th
left strand B at this point, our main strand is A-B-D and our secondary strand is A
However, to access all of the object’s methods, a controller would have to navigat
among these disjoint strands via QueryInterface. While such navigation is expecte
COM clients and might be an acceptable requirement of C++ automation controlle
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate
operations of the secondary strands into the interface of the main strand. In our
example, we add the operations of C to D (A’s operations are not added because
already exist in the main strand). Thus, D has all the methods of the hierarchy an
more important, an Automation controller holding a reference to D can access all
the methods of the hierarchy without callingQueryInterface .

A

B C

D

E

A

B C

D

E

(+ methods of C)

A

July 2002 CORBA, v3.0: Mapping for Interfaces 19-7

19

e

, a

g is

le
e

ne

e

In order to have a reliable, deterministic, portable way to determine the inheritanc
chain at points of multiple inheritance, an explicit ordering model must be used.
Furthermore, to achieve interoperability of virtual function tables for dual interfaces
precise model for ordering operations and attributes within an interface must be
specified.

Within an interface, attributes should appear after operations and both should be
ordered in ascending order based upon the operation/attribute names. The orderin
based on a byte-by-byte comparison of the ISO-Latin-1 encoding values of the
operation names going from first character to last. For non-readonly attributes, the
[propget] method immediately precedes the[propput] method. This ordering
determines the position of the vtable portion of a Dual Interface. At points of multip
inheritance, the base interfaces should be ordered from left to right in all cases, th
ordering is based on ISO Latin-1. Thus, the leftmost branch at a point of multiple
inheritance is the one ordered first among the base classes, not necessarily the o
listed first in the inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy
conforming to Figure 19-3 on page 19-7.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

interface B: A{
void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that th
ordering of the base interfaces for D has been changed based on our ISO Latin-1
alphabetic ordering model and that operations from C are added to interface D.

// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);}
19-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

D’s
C

wer
n be
[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);}

[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed before
operations. The ordering of these operations obeys the rules for operations within
and is independent of the ordering within D.

19.3 Mapping for Basic Data Types

19.3.1 Basic Automation Types

Table 19-1 lists the basic data types supported by Automation. The table contains fe
data types than those allowed by ODL because not all types recognized by ODL ca
handled by the marshaling ofIDispatch interfaces and by the implementation of
ITypeInfo::Invoke . Arguments and return values of operations and properties are
restricted to these basic types.

Table 19-1Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as a return type for a function, or in a function
parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.
July 2002 CORBA, v3.0: Mapping for Basic Data Types 19-9

19

n

the

uld
The formal mapping of CORBA types to Automation types is shown in Table 19-2.

19.3.2 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translatio
of the Automation and CORBA parameters and return types. It must map from
Automation to CORBA forin parameters and from CORBA to Automation forout
parameters. The translation logic must handle the special conditions described in
following sections.

19.3.2.1 Converting Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation sho
return the HRESULT DISP_E_OVERFLOW.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since December
30, 1899.

SCODE Built-in error type. In Win16, does not include additional data
contained in an HRESULT. In Win32, identical to HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the mapping,
an IDispatch pointer parameter is an object reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be
represented by its IUnknown interface.)

Table 19-2OMG CORBA to Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean VARIANT_BOOL

char UI1

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long

Type Description
19-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

of

rue
ero

nly
19.3.2.2 Demoting CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an
Automation long, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

19.3.2.3 Demoting Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum value
a CORBA::UShort, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

19.3.2.4 Converting Automation boolean to CORBA boolean and CORBA
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0). T
and false values for Automation boolean are, respectively, negative one (-1) and z
(0). Therefore, true values need to be adjusted accordingly.

19.3.3 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLEBSTR. For example,
given the OMG IDL definitions,

// OMG IDL
string sortCode<20>;
string name;

the corresponding ODL code is

// ODL
BSTR sortCode;
BSTR name;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the o
support for internationalization of strings defined at this time.

When mapping a fixed length string, the Automation view is required to raise the
exceptionDISP_E_OVERFLOW if a BSTR is longer than the maximum size.
July 2002 CORBA, v3.0: Mapping for Basic Data Types 19-11

19

as

nd

es
19.4 IDL to ODL Mapping

19.4.1 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA
interface actually exists. Other equivalent expressions of CORBA interfaces, such
the contents of an Interface Repository, may be used. Moreover, there is no
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface a
ODL is the appropriate medium for describing an Automation View Interface.
Therefore, the following OMG IDL code describes a CORBA interface that exercis
all of the CORBA base data types in the roles of attribute, operationin parameter,
operationout parameter, operationinout parameter, and return value. The OMG
IDL code is followed by ODL code describing the Automation View Interface that
would result from a conformant mapping.

module MyModule // OMG IDL
{

interface TypesTest
{

attribute boolean boolTest;
attribute char charTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned short ushortTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (

in boolean boolTest,
in char charTest,
in double doubleTest,
in float floatTest,
in long longTest,
in octet octetTest,
in short shortTest,
in string stringTest,
in string<10> stringnTest,
in unsigned long ulongTest,
in unsigned short ushortTest);

// Gets all the attributes
19-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19
boolean getAll (
out boolean boolTest,
out char charTest,
out double doubleTest,
out float floatTest,
out long longTest,
out octet octetTest,
out short shortTest,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongTest,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolTest,
inout char charTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout octet octetTest,
inout short shortTest,
inout string stringTest,
inout string<10> stringnTest,
inout unsigned long ulongTest,
inout unsigned short ushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string stringReturn();
string<10> stringnReturn();
unsigned long ulongReturn ();
unsigned short ushortReturn();

}; // End of Interface TypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.

[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] double *val);
July 2002 CORBA, v3.0: IDL to ODL Mapping 19-13

19
HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] float *val);

HRESULT getAll ([out] short *boolTest,
[out] short *charTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *octetTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] BSTR *stringnTest,
[out] long *ulongTest,
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * val);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *val);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT setAll ([in] short boolTest,
[in] short charTest,
[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short octetTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] BSTR stringnTest,
[in] long ulongTest,
[in] long ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * val);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *octetTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest,
[in,out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] BSTR *val);

HRESULT stringnReturn ([optional,out] VARIANT * exep_OBJ,
[retval,out] BSTR *val);

HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *val);

HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *val);
19-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

n

es
[propget] HRESULT boolTest([retval,out] short *val);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *val);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double *val);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float *val);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *val);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short *val);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short *val);
[propget] HRESULT shortTest([retval,out] short *val);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR *val);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR *val);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *val);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long *val);
[propput] HRESULT ushortTest([in] long ushortTest);

}

19.5 Mapping for Object References

19.5.1 Type Mapping

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The OMG IDL code defines a
interface Simple and another interface that references Simple as anin parameter, as an
out parameter, as aninout parameter, and as a return value. The ODL code describ
the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{

// A simple object we can use for testing object references
interface Simple

{
attribute short shortTest;

};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

 out Simple outTest,
 inout Simple inoutTest);

};
July 2002 CORBA, v3.0: Mapping for Object References 19-15

19

s

}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.

[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *val);
[propput] HRESULT shortTest([in] short shortTest);

}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** val);

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple **val);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*simpleTest);

}

19.5.2 Object Reference Parameters and IForeignObject

As described in the Interworking Architecture chapter, Automation and COM View
must expose theIForeignObject interface in addition to the interface that is
isomorphic to the mapped CORBA interface.IForeignObject provides a mechanism
to extract a valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as anin parameter to an
operation M in View A. Operation M must somehow convert View B to a valid
CORBA object reference.

In Figure 19-5, Automation Views exposeIForeignObject , as required of all Views.

Figure 19-5 Partial Picture of the Automation View

Automation View
Object

IDispatch

IForeignObject

IUnknown

...
19-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

w
as a

rn

he

e

The sequence of events involvingIForeignObject::GetForeignReference is as
follows:

• The client callsAutomation-View-A::M , passing an IDispatch-derived pointer to
Automation-View-B.

• Automation-View-A::M callsIDispatch::QueryInterface for IForeignObject.

• Automation-View-A::M callsIForeignObject::GetForeignReference to get the
reference to the CORBA object of type B.

• Automation-View-A::M callsCORBA-Stub-A::M with the reference, narrowed to
interface type B, as the object referencein parameter.

19.6 Mapping for Enumerated Types

CORBA enums map to Automation enums. Consider the following example

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {
void op1(in color col);

};
};

which maps to the following ODL:

// ODL
typedef enum {MyModule_red, MyModule_green, MyModule_blue}
MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out]
VARIANT * excep_OBJ);

}

Internally, Automation maps enum parameters to the platform’s integer type. (For
Win32, the integer type is equivalent to a long.) If the number of elements in the
CORBA enum exceeds the maximum value of an integer, the condition should be
trapped at some point during static or dynamic construction of the Automation Vie
Interface corresponding to the CORBA interface in which the enum type appears
parameter. If the overflow is detected at run-time, the Automation View operation
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View
Interface exceeds the maximum value of the enum, the View operation should retu
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into t
controller scripting language context, vendors may wish to generate a header file
containing an appropriate enum declaration or a set of constant declarations for th
July 2002 CORBA, v3.0: Mapping for Enumerated Types 19-17

19

t
than

type

the

se

ing
L
for

y.

ed
es

pts

he

e
the
client language. Since the method for doing so is an implementation detail, it is no
specified here. However, it should be noted that some languages type enums other
as longs, introducing the possibility of conversion errors or faults. If such problems
arise, it is best to use a series of constant declarations rather than an enumerated
declaration in the client header file.

For example, the followingenum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for
interfaces. That is, the name should be fully scoped with the names of enclosing
modules or interfaces. (See Section 17.7.8, “Naming Conventions for View
Components,” on page 17-30.)

If the enum is declared at global OMG IDL scope, as in the previous example, then
name of the enum should also be included in the constant name.

19.7 Mapping for Arrays and Sequences

OMG IDL Arrays and Sequences are mapped as a VARIANT containing an
Automation SAFEARRAY. SAFEARRAYs are one- or multi-dimensional arrays who
elements are of any of the basic Automation types. The following ODL syntax
describes an array parameter:

SAFEARRAY (elementtype) arrayname

Safearrays have a header that describes certain characteristics of the array includ
bounding information, and are thus relatively safe for marshaling. Note that the OD
declaration of Safearrays does not include bound specifiers. OLE provides an API
allocating and manipulating Safearrays, includes a procedure for resizing the arra

For bounded Sequence, Safearray will grow dynamically up to the specified bound
size and maintain information on its current length. Unbounded OMG IDL sequenc
are mapped to VARIANTS containing a Safearray with some default bound. Attem
to access past the boundary result in a resizing of the Safearray.

Since ODL Safearray declarations contain no boundary specifiers, the bounding
knowledge is contained in the Automation View. A method of the Automation View
Interface, which has the VARIANT containing the Safearray as a parameter, has t
intelligence to handle the parameter properly. When the VARIANT is submitted asin
parameters, the View method uses the Safearray API to dynamically repackage th
Safearray as a CORBA array, bounded sequence, or unbounded sequence. When
19-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

rray.

size

to
iew

e, in

to
VARIANT containing the Safearray is anout parameter, the View method uses the
Safearray API to dynamically repackage the CORBA array or sequence as a Safea
When an unbounded sequence grows beyond the current boundary of the
corresponding Safearray, the View’s method uses the Safearray API to increase the
of the array by one allocation unit. The size of an allocation unit is unspecified. If a
Safearray is mapped from a bounded sequence and a client of the View attempts
write to the Safearray past the maximum element of the bounded sequence, the V
operation considers this a run-time error and returns the HRESULT
DISP_E_OVERFLOW.

Multidimensional OMG IDL arrays map to VARIANTs containing multidimensional
Safearrays. The order of dimensions in the OMG IDL array from left to right
corresponds to ascending order of dimensions in the Safearray. If the number of
dimensions of an input SAFEARRAY does not match the CORBA type, the
Automation view will generate the HRESULT DISP_E_TYPEMISMATCH.

19.8 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions, and Exceptions—cannot be mapped
directly to ODL constructed types, as Automation does not support them as valid
parameter types. Instead, constructed types are mapped to Pseudo-Automation
Interfaces. The objects that implement Pseudo-Automation Interfaces are called
pseudo-objects. Pseudo-objects do not expose theIForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from
IDispatch as do Automation View Interfaces. Instead, they derive from
DIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch
{

[propget] HRESULT ([retval,out]
BSTR *val);

HRESULT ([in] IDispatch *pDispatch,
[out, retval] IDispatch **val);

}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as a generic (nondual) Automation Interfac
which case it is namedDForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}

The direct use of the INSTANCE repositoryID () is deprecated. The approved way
retrieve the repositoryId is through theDIObjectInfo::unique id ()
method.
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-19

19

y to

mes
RBA

, in

be
in
The direct use of the INSTANCE clone () method is deprecated. The approved wa
clone the data referred to by a reference is to use theDIObjectInfo::clone
() method.

19.8.1 Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is a Pseudo-Automation
Interface containing properties corresponding to the members of the struct. The na
of a Pseudo-Struct’s properties are identical to the names of the corresponding CO
struct members.

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from
DIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodlessDICORBAStruct interface is to mark the interface
as having its origin in the mapping of a CORBA struct. This information, which can
stored in a type library, is essential for the task of mapping the type back to CORBA
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interface
derives fromDICORBAStruct .

// IDL
interface S
{

attribute long l;
attribute double d;
19-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ion.
with

e
e

, in

l

attribute float f;
};

19.8.2 Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-Un
A Pseudo-Union contains properties that correspond to the members of the union,
the addition of a discriminator property. The discriminator property’s name is
UNION_d, and its type is the Automation type that corresponds to the OMG IDL
union discriminant.

If a union element is accessed from the Pseudo-Union, and the current value of th
discriminant does not match the property being requested, then the operation of th
Pseudo-Union returnsDISP_E_TYPEMISMATCH. Whenever an element is set, the
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interfaceDICORBAUnion which, in
turn, derives fromDIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{

[hidden] HRESULT repositoryID ([out) BSTR * val);
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCORBAUnionand its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}

To support OMG IDL described unions that support multiple case labels per union
branch, theDICORBAUnion2 interface is defined in a way to provide two additiona
accessors.

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion2 : DICORBAUnion
{

HRESULT SetValue([in] long disc, [in] VARIANT val);
[propget, id(-4)]
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-21

19

sly.

nd a
HRESULT CurrentValue([out, retval] VARIANT * val);
};

TheSetValue method can be used to set the discriminant and value simultaneou
TheCurrentValue method will use the current discriminant value to initialize the
VARIANT with the union element. All mapped unions should support the
DICORBAUnion2 interface.

The uuid for theDICORBAUnion2 interface is:
{1a2face0-2199-11d1-9d47-00a024a73e4f}

The uuid for theDCORBAUnion2interface is:
{5d4b8bc0-2199-11d1-9d47-00a024a73e4f}

An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long)
{

case 1: long l;
case 2: float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped
Automation Dual Interface derives fromDICORBAUnion2.

interface A; // IDL

interface U
{

// Switch discriminant
readonly attribute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

Note – The mapping for the OMG IDL default label will be ignored if the cases are
exhaustive over the permissible cases (for example, if the switch type is boolean a
case TRUE and case FALSE are both defined).

19.8.3 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to theDICORBATypeCode interface. The
DICORBATypeCode interface is defined as follows.
19-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

, in
// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * val);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *val);
[propget] HRESULT name([retval,out] BSTR * val);

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT

member_count([retval,out]
long * val);

HRESULT member_name([in] long index,[retval,out]
BSTR * val);

HRESULT member_type([in] long index,
[retval,out] DICORBATypeCode ** val),

// tk_union
HRESULT member_label([in] long index,[retval,out]

VARIANT * val);
[propget] HRESULT discriminator_type([retval,out]

IDispatch ** val);
[propget] HRESULT default_index([retval,out]

long * val);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * val);

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out]

IDispatch ** val);
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is named DCORBATypeCode and its UUID is:
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-23

19

, in

A

{E977F903-3B75-11cf-BBFC-444553540000}

When generating Visual Basic constants corresponding to the values of the
CORBA_TCKindenumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

SinceDICORBATypeCodederives fromDIForeignComplexType , objects
that implement it are, in effect, pseudo-objects. See Section 19.8, “Mapping for
CORBA Complex Types,” on page 19-19 for a description of the
DIForeignComplexType interface.

19.8.4 Mapping foranys

The OMG IDL any data type maps to theDICORBAAnyinterface, which is declared
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType
{

[propget] HRESULT value([retval,out]
VARIANT * val);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out]

DICORBATypeCode ** val);
}

The UUID for DICORBAAnyis:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is named DCORBAAny and its UUID is:

{E977F904-3B75-11cf-BBFC-444553540000}

SinceDICORBAAnyderives fromDIForeignComplexType , objects that
implement it are, in effect, pseudo-objects. See Section 19.8, “Mapping for CORB
Complex Types,” on page 19-19 for a description of the
DIForeignComplexType interface.

Note that the VARIANT value property ofDICORBAAnycan represent a Safearray or
can represent a pointer to aDICORBAStruct or DICORBAUnion interface.
Therefore, the mapping forany is valid for anany that represents a CORBA array,
sequence, structure, or union.
19-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ort,
hese

ces,

, the
19.8.5 Mapping for Typedefs

The mapping of OMG IDLtypedef definitions to OLE depends on the OMG IDL
type for which thetypedef is defined. No mapping is provided fortypedef
definitions for the basic types: float, double, long, short, unsigned long, unsigned sh
char, boolean, and octet. Hence, a Visual Basic programmer cannot make use of t
typedef definitions.

// OMG IDL
module MyModule {
module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interfa
the mapping creates an alias for the Automation View object. A conforming
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

19.8.6 Mapping for Constants

The notion of a constant does not exist in Automation; therefore, no mapping is
prescribed for a CORBA constant.

As with the mapping for enums, some vendors may wish to generate a header file
containing an appropriate constant declaration for the client language. For example
following OMG IDL declaration

// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-25

19

cal

the

les

ing

e

19.8.7 Getting Initial CORBA Object References

The DICORBAFactory interface, described in Section 17.7.3, “ICORBAFactory
Interface,” on page 17-24, provides a mechanism that is more suitable for the typi
programmer in an Automation controller environment such as Visual Basic.

The implementation of theDICORBAFactory interface is not prescribed, but
possible options include delegating to the OMG Naming Service and using the
Windows System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library,
code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the ru
for arguments toDICORBAFactory::GetObject described in Section 17.7.3,
“ICORBAFactory Interface,” on page 17-24.

A special name space for names with a period in the first position can be used to
resolve an initial reference to the OMG Object Services (for example, the Naming
Service, the Life Cycle Service, and so forth). For example, a reference for the Nam
Service can be found using:

Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally theGetObject method will be used to retrieve object references from th
Registry/Naming Service. TheCreateObject method is really just a shorthand
notation forGetObject (“someName”).create. It is intended to be used for object
references to objects supporting a CORBAServices Factory interface.

1. It is always permissible to directly register a CORBA Automation bridging object directly
with the Windows Registry. The administration and assignment of ProgIds for direct regis-
tration should follow the naming rules described in theInterworking Architecture chapter.
19-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

g an
e

ect

ion

, in

a

he
19.8.8 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces,
creating an instance of a mapped CORBA complex type is not the same as creatin
instance of a mapped CORBA interface. The main difference lies in the fact that th
name space for CORBA complex types differs fundamentally from the CORBA obj
and factory name spaces.

To support creation of instances of Automation objects exposing Pseudo-Automat
Interfaces, we define a new interface, derived from DICORBAFactory (see
Section 17.7.3, “ICORBAFactory Interface,” on page 17-24 for a description of
DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName,

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The CreateType method creates an Automation object that has been mapped from
CORBA complex type. The parameters are used to determine the specific type of
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface. T
most derived interface type of the CORBA object bound to the View identifies the
scope within which the second parameter, typeName, is interpreted. For example,
assume the following CORBA interface exists:

// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}

July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-27

19

ns
ace

ce,

pe,
s.

ed.

d.

ce,

turns
void op(in S s);
//

}
}

}

The following Visual Basic example illustrates the primary use of CreateType:

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject(“...”)

‘ creates Automation View of the CORBA object
supporting interface ‘ A::B::C

Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType:

• The typeName parameter can contain a fully-scoped name (i.e., the name begi
with a double colon “::”). If so, then the first parameter defines the type name sp
within which the fully scoped name will be resolved.

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space
associated with the scopingObject parameter, then CreateObject returns the
HRESULT TYPE_E_UNDEFINEDTYPE.

TheCreateTypeByID method accomplishes the same general goal of CreateTy
the creation of Automation objects that are mapped from CORBA-constructed type
The second parameter, repositoryID, is a string containing the CORBA Interface
Repository ID of the CORBA type whose mapped Automation Object is to be creat
The Interface Repository associated with the CORBA object identified by the
scopingObject parameter defines the repository within which the ID will be resolve

The following rules apply toCreateTypeById :

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the repositoryID parameter does not identify a valid type in the Interface
Repository associated with the scopingObject parameter, then CreateObject re
the HRESULT TYPE_E_UNDEFINEDTYPE.
19-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ID

tion

e

eld

, in
19.8.8.1 ITypeFactory Interface

TheDICORBAFactoryEx interface delegates its CreateType and CreateTypeBy
methods to anITypeFactory interface on the scoping object.ITypeFactory
is defined as a COM interface because it is not intended to be exposed to Automa
controllers. Every Automation View object must support theITypeFactory
interface:

//MIDL
interface ITypeFactory: IUnknown
{

HRESULT CreateType([in] LPWSTR typeName, [out] VARIANT
*val);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *val);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods onITypeFactory provide the behaviors previously described for th
correspondingDICORBAFactoryEx methods.

19.8.8.2 DIObjectInfo Interface

The DIObjectInfo interface provides helper functions for retrieving information
about a composite data type (such as a union, structure, exception, …), which is h
as anIDispatch pointer.

// ODL
[odl, dual, uuid(...)]
interface DIObjectInfo: DICORBAFactoryEx
{

HRESULT type_name([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *typeName);

HRESULT scoped_name([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *repositoryId);

HRESULT unique_id([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *repositoryId);

}

The UUID for DIObjectInfo is:
{6dd1b940-21a0-11d1-9d47-00a024a73e4f}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is named DObjectInfo and its UUID is:
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-29

19

s
h

was
ses
he

ld

e to

y

red
is
he
{8fbbf980-21a0-11d1-9d47-00a024a73e4f}

The Automation object having the ProgId “CORBA.Factory ” exposes
DIObjectInfo .

19.8.9 Mapping CORBA Exceptions to Automation Exceptions

19.8.9.1 Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as
defined in C++ and CORBA. Automation methods are invoked with a call to
IDispatch::Invoke or to a vtable method on a Dual Interface. These method
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, whic
have theseveritybit (bit 31 being the high bit) set, indicate that an error occurred
during the call, and thus are considered to be error codes. (In Win16, an SCODE
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purpo
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called t
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility fie
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choos
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If a
non-NULL pointer is passed, the callee can choose to handle an error condition b
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO
structure.

OLE also provides Error Objects, which are task local objects containing similar
information to that contained in the EXCEPINFO structure. Error objects provide a
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically fi
when an invocation returns an HRESULT with the severity bit set. If the HRESULT
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in t
EXCEPINFO structure or in the Error Object can be extracted in the error handling
routine.

19.8.9.2 CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error
handling model. Therefore, all methods of Automation View Interfaces have an
additional, optionalout parameter of type VARIANT, which is filled in by the View
when a CORBA exception is detected.

Both CORBA System exceptions and User exceptions map to Pseudo-Automation
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from
IForeignException , which in turn derives fromIForeignComplexType :
19-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

are

, in

d

t

and
//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long *val);
[propget] HRESULT EX_repositoryID([retval,out] BSTR *val);

};

The EX_Id() method will return the name of the exception. For CORBA
exceptions, this will be the unscoped name of the exception. Additional accessors
available on theDIObjectInfo interface for returning the scoped name and
repository id for CORBA exceptions.

Note – RenamingEX_RepositoryId to EX_Id does break backwards
compatibility, but should simplify the use of exceptions from VB.

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attributeEX_majorCode defines the broad category of exceptions raised, an
has one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2

These values may be specified as an enum in the typelibrary information:

typedef enum {NO_EXCEPTION,
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attributeEX_repositoryID is a unique string that identifies the exception. I
is the exception type’s repository ID from the CORBA Interface Repository.

19.8.9.3 CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whose
properties correspond one-to-one with the attributes of the CORBA user exception,
which derives from the methodless interfaceDICORBAUserException :
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-31

19

, in

it

-
ULT
e

e

l
t

//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as though
were defined as an interface. The declaration

// OMG IDL
exception reject
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

19.8.9.4 Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseudo
Automation Interface, and the operation on the Pseudo-Interface returns the HRES
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from th
operation prevents an active Visual Basic Error Trap from being fired, allowing the
caller to retrieve the exception parameter in the context of the invoked method. Th
View fills in the VARIANT by setting itsvt field to VT_DISPATCH and setting the
pdispval field to point to the pseudo-exception. If no exception occurs, the optiona
parameter is filled with an IForeignException pointer on a pseudo-exception objec
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked viaIDispatch::Invoke , then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.
19-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

E
• If the method was called via the vtable portion of a Dual Interface, then the OL
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement the
standard OLE interface ISupportErrorInfo.

19.8.9.5 CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception
DICORBASystemException , which derives fromDIForeignException :

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

Table 19-3EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION

Table 19-4ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-33

19

, in

r

nd

tion
ions
n

,
-35.

o

[propget] HRESULT EX_minorCode([retval,out] long *val);
[propget] HRESULT EX_completionStatus([retval,out] long

*val);
}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attributeEX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE =

These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES,
COMPLETION_NO,
COMPLETION_MAYBE }
CORBA_CompletionStatus;

19.8.9.6 Operations that raise system exceptions

As is the case for UserExceptions, system exceptions can be returned to the calle
using the optional last parameter, which is present on all mapped methods.

If the optional parameter is supplied and a system exception occurs, the optional
parameter is filled in with an IForeignException pointer to the pseudo-exception, a
the automation return value is S_FALSE. If no exception occurs, the optional
parameter is filled with anIForeignException pointer whose EX_majorCode
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the excep
is looked up in Table 19-5. This table maps a subset of the CORBA system except
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exceptio
is on the table, the equivalent HRESULT is returned. If the exception is not on the
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESULT
then the exception is mapped to an HRESULT according to Table 19-5 on page 19
This new HRESULT is used as follows.

• If the operation was invoked viaIDispatch::Invoke :

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set t
the new HRESULT value.
19-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

f

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT

Table 19-5CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW

Table 19-6EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those o
the CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository
id>] minor code [<minor code>][<completion
status>]
where the <exception repository id> and <minor
code> are those of the CORBA system exception.
<completion status> is “YES,” “NO,” or “MAYBE”
based upon the value of the system exceptions’s
CORBA completion status. Spaces and square
brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 18-3 on
page 18-12.
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-35

19

eudo-

.8,
e
A

used

d to

.

19.8.10 Conventions for Naming Components of the Automation View

The conventions for naming components of the Automation View are detailed in
Section 17.7.8, “Naming Conventions for View Components,” on page 17-30.

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Ps
Exceptions

The formulas used to name components of the Automation View (see Section 17.7
“Naming Conventions for View Components,” on page 17-30) are also used to nam
components Pseudo-Structs, Pseudo-Unions, and Pseudo-Exceptions. The CORB
type name is used as input to the formulas, just as the CORBA interface name is
as input to the formulas when mapping interfaces.

These formulas apply to the name and IID of the Pseudo-Automation Interface, an
the Program Id and Class Id of an object implementing the Pseudo-Automation
Interface if it is registered in the Windows System Registry.

19.8.12 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an Automation Dual
Interface, it is also acceptable to map it as a generic Dispatch Interface.

Table 19-7ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code>
are those of the CORBA system exception. <completion
status> is “YES,” “NO,” or “MAYBE” based upon the
value of the system exceptions’s CORBA completion status
Spaces and square brackets are literals and must be
included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
19-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

uired

nces
the

r

Note – All views that expose the dual interface must respond to QueryInterface for
both the dual interface IID as well as for the non-dual interface IID.

In this case, the normal methods and attribute accessor/assign methods are not req
to have HRESULT return values. Instead, an additional “dispinterface” is defined,
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type1> arg1, [out] <type2> arg2,
[retval, out] <return type> *val)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type1> arg1, [out] <type2> arg2)

Using the example from Section 19.2, “Mapping for Interfaces,” on page 19-3:

interface account
{// OMG IDL

attribute float balance;
readonly attribute string owner;
void makeLodgement (in float amount, out float
balance);
void makeWithdrawal (in float amount, out float
balance);

};

the corresponding Iaccount interfaces are defined as follows.

[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f), oleautomation]
dispinterface Daccount: IUnknown {// ODL

properties:
[id(0)] float balance;
[id(i), readonly] BSTR owner;

methods:
[id(2)] void makeLodgement([in] float amount,

[out] float *balance,
[out, optional]VARIANT OBJ);

[id(3)] void makeWithdrawal ([in] float amount,
[out] float *balance,
[out,optional]VARIANT *excep OBJ);

};

The dispatch interface is Daccount. In the example used for mapping object refere
in Section 19.5, “Mapping for Object References,” on page 19-15, the reference to
Simple interface in the OMG IDL would map to a reference to
DMyModule_Simple rather thanDIMyModule_Simple . The naming
conventions for Dispatch Interfaces (and for their IIDs) exposed by the View are
slightly different from Dual Interfaces. See Section 17.7.8, “Naming Conventions fo
View Components,” on page 17-30 for details.
July 2002 CORBA, v3.0: Mapping for CORBA Complex Types 19-37

19

t,

a
ct

s,
faces

lly.

is
A

ts
tory

the
gal
ine

ly

. A
The Automation View Interface must correctly respond to a QueryInterface for the
specific Dispatch Interface Id (DIID) for that View. By conforming to this requiremen
the Automation View can be strongly type-checked. For example,
ITypeInfo::Invoke , when handling a parameter that is typed as a pointer to
specific DIID, calls QueryInterface on the object for that DIID to make sure the obje
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as struct
unions, exceptions and the other noninterface constructs mapped to dispatch inter
can also be exposed as nondual dispatch interfaces.

19.8.13 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View objects
must either be capable of being aggregated in the standard COM fashion or must
follow COM rules to indicate their inability or unwillingness to be aggregated.

The same rule applies to pseudo-objects.

19.8.14 DII and DSI

Automation interfaces are inherently self-describing and may be invoked dynamica
There is no utility in providing a mapping of the DII interfaces and related pseudo-
objects into OLE Automation interfaces.

19.9 Mapping Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. It
best to solve this problem in a manner similar to the approach for exposing CORB
objects as Automation objects.

19.9.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implemen
one or more dispatch interfaces and whose server application exposes a class fac
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of
operations of each of those interfaces. The CORBA View object is in every way a le
CORBA object. It is not an Automation object. The skeleton is placed on the mach
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View, which as previous
explained, is used to represent a CORBA object as an Automation object. The
Automation View has to reside on the client side because COM is not distributable
copy of the Automation View needs to be available on every client machine.
19-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

of the

tion

,

The CORBA View, however, can live in the real CORBA object’s space and can be
represented on the client side by the CORBA system’s stub because CORBA is
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the termCORBA Viewis distinct from CORBA stubs
and skeletons, COM proxies and stubs, and Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA
operations translate parameter types and delegate to the corresponding methods
real Automation object. When a CORBA client wishes to instantiate the real
Automation object, it instantiates the CORBA View.

Thus, from the point of view of the client, it is interacting with a CORBA object,
which may be a remote object. CORBA handles all of the interprocess communica
and marshaling. No COM proxies or stubs are created.

Figure 19-6 The CORBA View: a CORBA Object, which is a Client of a COM Object

19.9.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operations
respectively.

Client Space Object Space

CORBA Stub

MyInterface methods
CORBA Skeleton

MyInterface methods

CORBA Client App

Real Automation Object

IUnknown

((MyInterface *)pObject)->Method(...

Network

CORBA View

MyInterface methods
pUnknown->QueryInterface(DIID_MyInterface,&
pIntface->Method(...

Dual Interface DIMyInterface

ORB
July 2002 CORBA, v3.0: Mapping Automation Objects as CORBA Objects 19-39

19

w
mote

d

A

• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where
possible.

• Automation errors are mapped similarly to COM errors.

19.9.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA Vie
Interfaces. These interfaces may be registered as normal CORBA objects on the re
machine.

19.9.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward.
Each interface maps to an OMG IDL interface. In general, we map all methods an
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interfaceIMyModule_account ,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account
{

readonly attribute float balance;
};

If the ODL interface does not have a parameter with the[retval,out] attributes,
its return type is mapped to long. This allows COM SCODE values to be passed
through to the CORBA client.

19.9.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORB
View Interfaces.

For example, given the interface “account” and its derived interface
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance)[in] float balance);
19-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

MG
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out]
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};

the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attribute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in float amount, out float

theBalance);
};
interface MyModule_checkingAccount: MyModule_account {

readonly attributeshort overdraftLimit;
short orderChequeBook ();

};

19.9.6 Mapping for ODL Properties and Methods

An ODL property has either a get/set pair or just a set method is mapped to an O
IDL attribute. An ODL property with just a get accessor is mapped to an OMG IDL
readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance,
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
}

July 2002 CORBA, v3.0: Mapping Automation Objects as CORBA Objects 19-41

19

9-9

ed
the corresponding OMG IDL interface is:

// OMG IDL
interface account {
attribute float balance;

readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float balance);

};

ODL [in] , [out] , and [in,out] parameters map to OMG IDLin , out , and inout
parameters, respectively. Section 19.3, “Mapping for Basic Data Types,” on page 1
explains the mapping for basic types.

19.9.7 Mapping for Automation Basic Data Types

19.9.7.1 Basic automation types

The basic data types allowed by Automation as parameters and return values are
detailed in Section 19.3, “Mapping for Basic Data Types,” on page 19-9.

The formal mapping of CORBA types to Automation types is shown in Table 19-8.

Note – The mapping of BSTR to WString breaks backwards compatibility where
BSTR was mapped to string.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fix
point number with 15 digits left of the decimal point and 4 digits to the right. The
COM::Currency type is thus defined as follows:

Table 19-8Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
19-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

the
d to

e

e
o
s.

n

tion

nd
module COM
{

struct Currency
{
unsigned long lower;
long upper;
}

}

This mapping of the CURRENCY type is transitional and should be revised when
extended data types revisions to OMG IDL are adopted. These revisions are slate
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing th
number of days since December 30, 1899.

19.9.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of th
Automation and CORBA parameters and return types. It must map from CORBA t
Automation for “in” parameters and from Automation to CORBA for “out” parameter

When the CORBA View encounters an error condition while translating between
CORBA and Automation data types, it raises the CORBA system exception
DATA_CONVERSION.

19.9.9 Special Cases of Data Type Conversion

19.9.9.1 Translating COM::Currency to Automation CURRENCY

If the suppliedCOM::Currency value does not translate to a meaningful Automatio
CURRENCY value, then the CORBA View should raise the CORBA System
ExceptionDATA_CONVERSION.

19.9.9.2 Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then the
CORBA View should raise the CORBA System ExceptionDATA_CONVERSION.

19.9.9.3 Translating CORBA boolean to Automation boolean and Automa
boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True a
false values for Automation boolean are, respectively, negative one (-1) and zero.
Therefore, true values need to be adjusted accordingly.
July 2002 CORBA, v3.0: Mapping Automation Objects as CORBA Objects 19-43

19

pped

is no

nd

,
thod
.
,

19.9.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the ma
Automation interface actually exist. Other equivalent expressions of Automation
interfaces, such as the contents of a Type Library, may be used. Moreover, there
requirement that OMG IDL code corresponding to the CORBA View Interface be
generated.

However, ODL is the appropriate medium for describing an Automation interface, a
OMG IDL is the appropriate medium for describing a CORBA View Interface.
Therefore, we provide the following ODL code to describe an Automation interface
that exercises all of the Automation base data types in the roles of properties, me
[in] parameter, method [out] parameter, method [inout] parameter, and return value
The ODL code is followed by OMG IDL code describing the CORBA View Interface
which would result from a conformant mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] VARIANT BOOL boolTest);
[propget] HRESULT boolTest([retval,out] short *val);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double *val);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT floatTest([retval,out] float *val);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *val);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short *val);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR *val);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *val);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY *val);
[propget] HRESULT readonlyShortTest([retval,out] short

*val);
HRESULT setAll([in] VARIANT BOOL boolTest,

[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] DATE dateTest,
[in] CURRENCY currencyTest,
[retval,out] short * val);

HRESULT getAll([out] VARIANT BOOL *boolTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
19-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19
[retval,out] short * val);
HRESULT setAndIncrement([in,out] VARIANT BOOL *boolTest,

[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] DATE * dateTest,
[in,out] CURRENCY * currencyTest,
[retval,out] short *val);

HRESULT boolReturn([retval,out] VARIANT BOOL *val);
HRESULT doubleReturn([retval,out] double *val);
HRESULT floatReturn([retval,out] float *val);
HRESULT longReturn([retval,out] long *val);
HRESULT shortReturn([retval,out] short *val);
HRESULT stringReturn([retval,out] BSTR *val);
HRESULT octetReturn([retval,out] DATE *val);
HRESULT currencyReturn([retval,out] CURRENCY *val);

}

The corresponding OMG IDL is as follows.

// OMG IDL
interface MyModule_TypesTest

{
attribute boolean boolTest;

attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateTest;
attribute COM::Currency currencyTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (in boolean boolTest,

in double doubleTest,
in float floatTest,
in long longTest,
in short shortTest,
in string stringTest,
in double dateTest,
in COM::Currency currencyTest);

// Gets all the attributes
boolean getAll (out boolean boolTest,

out double doubleTest,
out float floatTest,
out long longTest,
July 2002 CORBA, v3.0: Mapping Automation Objects as CORBA Objects 19-45

19

ter,
e

out short shortTest,
out string stringTest,
out double dateTest,
out COM::Currency currencyTest);

boolean setAndIncrement (
inout boolean boolTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortTest,
inout string stringTest,
inout double dateTest,
inout COM::Currency currencyTest);

boolean boolReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
short shortReturn ();
string stringReturn();
double dateReturn ();
COM::CurrencycurrencyReturn();

}; // End of Interface TypesTest

19.9.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The ODL code defines an
interface “Simple” and another interface that references Simple as an “in” parame
an “out” parameter, an “inout” parameter, and as a return value. The OMG IDL cod
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out]
short * val);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** val);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);
19-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

he

the
of
HRESULT simpleOp([in] DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **val);

}

The OMG IDL code for the CORBA View Dispatch Interface is as follows.

// OMG IDL
// A simple object we can use for testing object references
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest,

out MyModule_Simple outTest,
inout MyModule_Simple inoutTest);

};

19.9.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
enum MyModule_color {red, green, blue};
interface foo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

Note –An ODL enumeration is mapped to OMG IDL such that the enumerators in t
enumeration are ordered according to the ascending order of the value of the
enumerators. Because OMG IDL does not support explicitly tagged enumerators,
CORBA view of an automation/dual object must maintain the mapping of the values
the enumeration.
July 2002 CORBA, v3.0: Mapping Automation Objects as CORBA Objects 19-47

19

ill

ut”
e

ble
e.

an

s:

s.

d0,

[1]

is
19.9.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, w
have the knowledge to handle the parameter properly.

When SafeArrays are “in” parameters, the View method uses the Safearray API to
dynamically repackage the SafeArray as a CORBA sequence. When arrays are “o
parameters, the View method uses the Safearray API to dynamically repackage th
CORBA sequence as a SafeArray.

19.9.13.1 Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding
information for each dimension, and indeed the number of dimensions, is not availa
in the static typelibrary information or ODL definition. It is only available at run-tim

For this reason, SafeArrays, which have more than one dimension, are mapped to
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follow

• The number of elements in the linear sequence is the product of the dimension

• The position of each element is deterministic; for a SafeArray with dimensions
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of5 * 8 * 9 = 360. This gives us
valid offsets 0-359. In this example, the real offset to the element at location [4][5]
is 4*8*9 + 5*9 + 1 = 334.

19.9.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is the
case of an ODL enum, which is required to be a typedef. In this case the mapping
done according to Section 19.6, “Mapping for Enumerated Types,” on page 19-17.

19.9.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA “any.” If the VARIANT contains a DATE
or CURRENCY element, these are mapped as per Section 19.9.7, “Mapping for
Automation Basic Data Types,” on page 19-42.
19-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ture
on

the

oke

s a

t

ave
in a
_OK
able
SE.

s

g

ting
y

icit
ods
19.9.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by an
Automation client such as the CORBA View. These ways differ based on the signa
of the method and the behavior of the server. For example, for vtable invocations
dual interfaces, the HRESULT is the return value of the method. For
IDispatch::Invoke invocations, the significant HRESULT may be the return
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of
HRESULT is exactly the same as for COM to CORBA (see Section 18.3.10.2,
“Mapping for COM Errors,” on page 18-44). The View raises either a standard
CORBA system exception or theCOM_HRESULT user exception.

CORBA Views must supply an EXCEPINFO parameter when making
IDispatch::Invoke invocations to take advantage of servers using
EXCEPINFO. Servers do not use the EXCEPINFO parameter if it is passed to Inv
as NULL.

An Automation method with an HRESULT return value and an argument marked a
[retval] maps to an IDL method whose return value is mapped from the
[retval] argument. This situation is common in dual interfaces and means tha
there is no HRESULT available to the CORBA client. It would seem that there is a
problem mapping S_FALSE scodes in this case because the fact that no system
exception was generated means that the HRESULT on the vtable method could h
been either S_OK or S_FALSE. However, this should not be a problem. A method
dual interface should never attach semantic meaning to the distinction between S
and S_FALSE because a Visual Basic program acting as a client would never be
to determine whether the return value from the actual method was S_OK or S_FAL

An Automation method with an HRESULT return value and no argument marked a
[retval] maps to a CORBA interface with a long return value. The long
HRESULT returned by the original Automation operation is passed back as the lon
return value from the CORBA operation.

19.10 Older Automation Controllers

This section provides some solutions that vendors might implement to support exis
and older Automation controllers. These solutions are suggestions; they are strictl
optional.

19.10.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some Automation controllers do not support the use of SAFEARRAYs. For this
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no expl
ICollection type interface, OLE does specify guidelines on the properties and meth
a collection interface should export.
July 2002 CORBA, v3.0: Older Automation Controllers 19-49

19

, in

ge

ode

d

// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index,

[retval,out] VARIANT * val);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,

[in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(
[retval, out] IEnumVARIANT * newEnum);

}

The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface
which case it is namedDCollection and its UUID is:

{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH langua
construct can automatically iterate over a collection object such as that previously
described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access c
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then the
signatures for operations accepting SAFEARRAYs should be modified to accept a
VARIANT instead. In addition, the implementation code for the View wrapper metho
should detect the kind of object being passed.
19-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ing

n

pe
f

of
19.11 Example Mappings

19.11.1 Mapping the OMG Naming Service to Automation

This section provides an example of how a standard OMG Object Service, the Nam
Service, would be mapped according to the Interworking specification.

The Naming Service provides a standard service for CORBA applications to obtai
object references. The reference for the Naming Service is found by using the
resolve_initial_references method provided on the ORB pseudo-
interface:

CORBA::ORB_ptr theORB = CORBA::ORB_init(argc, argv, CORBA::ORBid, ev)
CORBA::Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =
CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA::Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent Automation
interface using the mapping rules contained in the rest of this section. A direct
mapping would result in code from VisualBasic that appears as follows.

Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“NamingService”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

19.11.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is
mapped according to the rules provided in Section 18.3, “COM to CORBA Data Ty
Mapping,” on page 18-33. The example chosen is the COM ConnectionPoint set o
interfaces. The ConnectionPoint service is commonly used for supporting event
notification in OLE custom controls (OCXs). The service is a more general version
the IDataObject/IAdviseSink interfaces.
July 2002 CORBA, v3.0: Example Mappings 19-51

19

.
The ConnectionPoint service is defined by four interfaces, described in Table 19-9

For purposes of this example, we describe these interfaces in Microsoft IDL. The
IConnectionPointContainer interface is shown next.

// Microsoft IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
typedef struct {

 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];

} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown
{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out]

IConnectionPoint **cp);
};

MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG
IDL interface shown next.

// OMG IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composite,

Table 19-9Interfaces of the ConnectionPoint Service

IConnectionPointContainer Used by a client to acquire a reference to one or
more of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification
connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint
references

IEnumConnections Used to iterate over the connections currently
associated with a ConnectionPoint
19-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

to
CosLifeCycle::LifeCycleObject
{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) raises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out

IConnectionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B196B284-BAB4-
101A-B69C-00AA00241D07”;

};

Similarly, the forward-declared ConnectionPoint interface shown next is remapped
the OMG IDL definition shown in the second following example.

// Microsoft IDL
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPoint: IUnknown
{
HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out]

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections

**ppEnum);
};

// OMG IDL
interface IEnumConnections;
interface IConnectionPoint:: CORBA::Composite,

CosLifeCycle::LifeCycleObject
{

HRESULT GetConnectionInterface(out IID pIID)
raises (COM_HRESULT);

HRESULT GetConnectionPointContainer
(out IConnectionPointContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);

HRESULT EnumConnections(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B196B286-BAB4-101A-B69C-00AA00241D07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum
Connections interfaces are shown next.
July 2002 CORBA, v3.0: Example Mappings 19-53

19
typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
[out] IConnectionPoint **rcpcn,
[out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
[out] IConnectionData **rcpcn,
[out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition forEnumConnectionPoints and
EnumConnections is shown next:

struct CONNECTDATA {
IUnknown * pUnk;DWORD dwCookie;

};
interface IEnumConnectionPoints: CORBA::Composite,
CosLifeCycle::LifeCycleObject
{

HRESULT Next(in unsigned long cConnections,
out IConnectionPoint rcpcn,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D07”;

};

interface IEnumConnections: CORBA::Composite,
CosLifeCycle::LifeCycleObject

{

19-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

ice

h are

ns.

h

HRESULT Next(in unsigned long cConnections,
out IConnectData rgcd,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections =

“DCE:B196B287-BAB4-101A-B69C-00AA00241D07”;
};

19.11.3 Mapping an OMG Object Service to Automation

This section provides an example of mapping an OMG-defined interface to an
equivalent Automation interface. This example is based on the OMG Naming Serv
and follows the mapping rules from theMapping: Automation and CORBAchapter.
The Naming Service is defined by two interfaces and some associated types, whic
scoped in theOMG IDL CosNamingmodule.

Microsoft ODL does not explicitly support the notions of modules or scoping domai
To avoid name conflicts, all types defined in the scoping space ofCosNamingare
expanded to global names.

The data type portion (interfaces excluded) of theCosNaming interface is shown
next.

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

Table 19-10Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space in
which new associations between names and
object references can be created, and to retrieve
an object reference that has been associated wit
a given name.

CosNaming::BindingIterator Used by a client to establish a list of registered
names that exist within a naming context.
July 2002 CORBA, v3.0: Example Mappings 19-55

19
};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...

}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is
shown next.

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID associa-
tion
 library CosNaming
 {

importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-

string(“struct NameComponent”),
oleautomation, dual]

interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring **val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring
** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);

};
define Name SAFEARRAY(CosNaming_NameComponent *)

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;

#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)
[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),

helpstring(“struct Binding”),
oleautomation, dual]

interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]

CosNaming_IString ** val);
[propput] HRESULT binding_name([in]

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in]

CosNaming_BindingType val);
};

define CosNaming_BindingList SAFEAR-
RAY(CosNaming_Binding)

interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...

};
19-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

e

The types scoped in an OMG IDL interface are also expanded using the notation
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within th
CosNaming::NamingContext interface (shown next) are expanded in Microsoft
ODL as shown in the second following example.

module CosNaming{
// ...
interface NamingContext

{
enum NotFoundReason { missing_node, not_context,
not_object };
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName
);

void destroy()
raises(NotEmpty);

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};
// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)]
library CosNaming
July 2002 CORBA, v3.0: Example Mappings 19-57

19
 { // ...
interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]

interface DICosNaming_NamingContext_NotFound:
ICORBAException {
[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval] CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);

};
[uuid(d2fc8748-3650-cedd-1df6-026237b92940),

helpstring(“exception CannotProceed”),
oleautomation, dual]

interface DICosNaming_NamingContext_CannotProceed:
DICORBAException{

[propget] HRESULT cxt([out, retval] DICosNaming_NamingContext ** _val);
[propput] HRESULT cxt([in] DICosNaming_NamingContext * _val);
[propget] HRESULT rest_of_name([out, retval] CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);
};
[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69),

helpstring(“exception InvalidName”),
oleautomation, dual]

interface DICosNaming_NamingContext_InvalidName:
DICORBAException {};

[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),
helpstring(“exception AlreadyBound”),
oleautomation, dual]

interface DICosNaming_NamingContext_AlreadyBound:
DICORBAException {};

[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),
helpstring(“exception NotEmpty”),
oleautomation, dual]

interface CosNaming_NamingContext_NotEmpty:
DICORBAException {};

typedef enum {[helpstring(“missing_node”)]
NamingContext_missing_node,

[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a),

helpstring(“NamingContext”),
oleautomation,dual]

interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT rebind([in] CosNaming_Name * n, in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,
19-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

19

t

[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)

HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);

HRESULT new_context([out, retval] DICosNaming_NamingContext ** pResult);
HRESULT bind_new_context([in] CosNaming_Name * n,

[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);

HRESULT destroy([out, optional] VARIANT* _user_exception);
HRESULT list([in] unsigned long how_many, [out]

CosNaming_BindingList ** bl,
[out] DICosNaming_BindingIterator ** bi);

};
};

The BindingIterator interface is mapped in a similar manner, as shown in the nex
two examples.

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)]
library CosNaming
 { // ...

[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),
helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}

July 2002 CORBA, v3.0: Example Mappings 19-59

19
19-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Interoperabilitywithnon-CORBA
Systems 20
s

M
be
nt

the
Contents

This chapter contains the following sections.

20.1 Introduction

The primary goal of this specification is to allow effective access to CORBA server
through DCOM and the reverse. To reduce the total cost of ownership of CORBA
applications that are built with COM or Automation clients for CORBA servers, CO
or Automation clients on machines with no ORB or interworking mechanism should
able to act as clients to CORBA servers through DCOM. In addition, a CORBA clie
could, through a CORBA view, access a DCOM server that is not co-located with

Section Title Page

“Introduction” 20-1

“Conformance Issues” 20-2

“Locality of the Bridge” 20-4

“Extent Definition” 20-5

“Request/Reply Extent Semantics” 20-8

“Consistency” 20-9

“DCOM Value Objects” 20-11

“Chain Avoidance” 20-16

“Chain Bypass” 20-19

“Thread Identification” 20-21
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 20-1

20

e
f

ns
nts

r

,
er)
re
OM

e to

A

sing
rs

ant,

s as
view with no additional interworking support on the DCOM server’s machine. Thes
scenarios help to reduce installation and maintenance costs through the lifetime o
applications, which span multiple object systems.

Note – This specification refers to COM/CORBA Part A and COM/CORBA Part B.
The Interworking Architecture, Mapping: COM and CORBA, and Mapping
Automation and CORBA chapters comprise the COM/CORBA Part A and this
specification comprises the COM/CORBA Part B.

Converting a COM or Automation client to contact a server through DCOM is
relatively easy and requires no application changes to the server. Thus, applicatio
that use existing Part A compliant solutions could, today, have remote DCOM clie
access the COM or Automation views of the CORBA servers and CORBA clients
could access (through a view) DCOM or DCOM Automation servers. However,
allowing CORBA access to CORBA views that are not co-located with the COM o
Automation servers or allowing DCOM access to remote views of CORBA servers
introduces a number of issues in terms of performance and scalability that will be
discussed below.

20.1.1 COM/CORBA Part A

The COM/CORBA Part A specifications (see the Interworking Architecture chapter
Mapping: COM and CORBA chapter, and Mapping Automation and CORBA chapt
address most of the requirements of this Part B specification. The basic architectu
and approach is sound. And, in general DCOM requires few changes to existing C
programs. With appropriate changes in the COM Registry, legacy COM client and
server applications can operate unchanged in a DCOM environment. However, du
limitations of DCOM and DCOM Automation, a number of performance and
scalability issues arise when interworking with CORBA using only the COM/CORB
Part A specification. The primary purpose of this specification is to address these
issues; in particular this specification focuses on addressing the issues related to u
native DCOM and DCOM Automation clients with CORBA servers. Note that reade
are expected to be familiar with the terminology used in the other COM/CORBA
specifications.

20.2 Conformance Issues

This specification, as a whole, is optional and is not required for COM/CORBA
interworking compliance.

Solutions that choose to implement this specification must, in order to be conform
implement the DCOM extent and all defined interfaces. There are no optional
compliance points. Solutions that conform to this specification may label themselve
supporting “Advanced DCOM Interworking.”
20-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

M

ed to a
bers
bers
er.

ce is

o a

t
l an

sues
not
ince
do
20.2.1 Performance Issues

When accessing DCOM views of CORBA servers through DCOM (i.e., the DCOM
client and DCOM view are not co-located), major performance issues arise for two
primary reasons:

1. Pseudo objects are specific to CORBA and are thus not available in DCOM.

2. Automation does not support complex types such as structs and unions.

The COM/CORBA Part A specification maps CORBA pseudo objects into regular
COM and Automation objects since there is no equivalent to pseudo objects in CO
or Automation. In the Automation mapping, structs and unions are also mapped to
objects since there is no Automation equivalent construct (essentially structs and
unions are also handled as pseudo objects). When these pseudo objects are pass
remote DCOM client that uses standard DCOM marshaling, all access to all mem
require a remote call. For example, a DCOM Automation client accessing the mem
of a structure would make one remote call for each get or set of a structure memb
This, of course, introduces a significant performance bottleneck.

20.2.2 Scalability Issues

A scalability issue known asproxy explosionarises when passing object references
among clients and servers across object systems. For example, an object referen
received from a CORBA server and is encapsulated in a DCOM view. This view is
passed to a different DCOM server. This server then attempts to pass the object t
CORBA server. Without prior knowledge that the object was originally a CORBA
object, a CORBA view would be built for what appeared to be a DCOM object (bu
which was really a view). This means that when the CORBA server attempts to cal
operation on this object, it passes through a chain of views until the request is
delivered to the real implementation instead of the call being direct CORBA to
CORBA. In order to resolve the proxy explosion view chain problem, an efficient
mechanism must be provided for interworking solutions to determine whether any
object is a view or a native object and, if the object is a view, what is the original
object behind the view. The problem or proxy explosion is not specific to
COM/CORBA interworking. Instead, it can occur between CORBA and any other
system where bidirectional interworking is supported.

The COM/CORBA Part A specification defines a mechanism to help avoid proxy
chains usingIForeignObject::GetForeignReference . However, calling
this operation remotely on each object reference to avoid proxy chains would have
introduced a significant performance problem.

20.2.3 CORBA Clients for DCOM Servers

In cases where CORBA clients need to access DCOM servers, the performance is
that occur in the other direction are not applicable since native DCOM servers do
have pseudo objects (since there is no such concept in COM or Automation) and s
native Automation servers do not use structures or unions (since these constructs
not exist). However, the scalability issue remains.
July 2002 CORBA, v3.0: Conformance Issues 20-3

20

cal
ly
20.3 Locality of the Bridge

The COM/CORBA Part A specification states that the interworking be performed lo
to the COM or Automation client or server since, at the time, COM objects could on
communicate within the same machine. Thus, the possibility for the location of the
view was limited to those in Figure 20-1.

Figure 20-1 COM/CORBA Part A Configurations

The addition of support for DCOM removes the requirement that the interworking
occur in the COM environment. The use of DCOM adds four possibilities for the
location of the view (see Figure 20-2 on page 20-5). Note that the communications
between the view and the CORBA server or client is still performed as per existing
OMG specifications.

The performance issues described above relate, in particular, to the first and third
configuration shown in Figure 20-2. The scalability issues can affect any of these
configurations provided that objects are being passed through multiple different
bridges or through an intermediate object system.

CORBA ServerViewCOM Client

COM ServerViewCORBA Client
20-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

s
n
be
B is
ll

and

jects
s
es
ct.

e

OM
.

Figure 20-2 COM/CORBA Part B Additional Configurations

20.4 Extent Definition

The ideal solution to the performance issues would be to have DCOM able to pas
CORBA pseudo objects with similar semantics to CORBA, and to have Automatio
support structs and unions natively. However, this is not likely to occur and cannot
implemented adequately using DCOM standard marshaling. In addition, since Part
not required to be implemented, COM/CORBA Part A compliant solutions must sti
interoperate with solutions that also support the COM/CORBA Part B extensions.
Thus, another mechanism needs to be defined in order to avoid the performance
scalability problems while still maintaining compatibility.

To handle all of these cases using a standard mechanism, a category of DCOM ob
called “DCOM value objects” was defined. DCOM value objects are DCOM object
that have little or no behavior other than accessors for their underlying data. Proxi
for DCOM value objects act as local caches for the information in the original obje
The Automation and COM views of CORBA pseudo objects, as well as the
Automation views of CORBA structs and unions, are all DCOM value objects.

Note –CORBA objects-by-value will be able to be viewed in DCOM as DCOM valu
objects.

When DCOM value objects are passed across DCOM systems the data of the DC
value object (called the “value data”) is also passed. Systems that support DCOM
value objects can use the passed data to improve performance. However, when a

DCOM ServerViewCORBA Client

CORBA ServerViewDCOM Client

DCOM ServerViewCORBA Client

CORBA ServerViewDCOM Client

DCOM

DCOM

DCOM

DCOM
July 2002 CORBA, v3.0: Extent Definition 20-5

20

ct,

:

e

pass
the

ey

xtent
tend
ket.
of

all
data

and
ed
ts
end.

le to

data.
er

the
DCOM value object is passed to a system that does not support it as a value obje
then the DCOM value object is accessed remotely just as any other DCOM object
would be. There are two types of DCOM value objects to support these semantics

• A “primary DCOM value object,” which is the real; that is, original instance of th
value object, and

• “Local DCOM value objects,” which are the local proxies for the primary value
object and caches for the values data of the primary value object.

Note that the local DCOM value objects are essentially DCOM proxies with some
methods (the ones that access the value data) implemented locally.

To implement DCOM value objects while still providing compatibility with systems
that do not support DCOM value objects, the value data needs to be passed as,
essentially “out-of-band” data. DCOM allows out-of-band data to be passed with
requests in DCOM extents. DCOM extents are a standard DCOM feature used to
additional data with a request. On the receiving end, if a handler is not available for
extent, it is ignored. Extents are similar to CORBA service contexts except that th
are not propagated through a chain of calls.

DCOM value objects are passed in a DCOM extent. Receivers that recognize the e
can take advantage of the data it provides. Receivers that do not recognize the ex
safely ignore it. This occurs with no changes at all to the standard marshaling pac
This allows DCOM developers to use standard DCOM tools and services instead
entirely custom special purpose solutions.

20.4.1 Marshaling Constraints

The layout of the marshaling packet is significant in matching marshaled data to a
proxy on the receiving side. If the receiving side supports DCOM value objects for
passed value data, then the unmarshal process is simple: the first subset of value
goes to the first proxy (local DCOM value object) created by standard marshaling
so on. DCOM, however, allows for proxies in any given client process to be provid
by different vendors. Thus, no assurance can be made that all DCOM value objec
marshaled into the extent can have their value data unmarshaled on the receiving
Thus, the value data in the extent is organized in a tree structure in order to be ab
skip information that cannot be decoded.

20.4.2 Marshaling Key

The interface ID corresponds to the interface used to encapsulate the unmarshaled
It must provide accessors for all the members that are being marshaled, in the ord
that they are marshaled. This interface ID may be different than the interface ID
actually marshaled in the call, since it reflects the content of an object rather than
interface through which it is used at the time of the call. For instance, a class
encapsulating a structure may be marshaled as anIUnknown , which will be the class
ID in the standard marshaling packet, but this is of no help in unmarshaling the
structure. Thus, this identifier is used to describe the marshaled members.
20-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

g
over
will

ined
If the object is standard marshaled, the unmarshal class ID field should be
CLSID_NULL. However, if an interface pointer is custom marshaled, its marshalin
data does not contain a standard OBJREF, which could be used by the proxy to rec
the marshaled data (since nothing can be presumed about the way that the proxy
be communicating with its server). In that case, the object’s proxy will be different
than the regular proxy for this interface, so the correct custom marshaler must be
loaded if correct unmarshaling is to be achieved.

20.4.3 Extent Format

The marshaling format of the extent is best described using the following C++
structures. Note that the size of the extent is encoded in the extent header mainta
by DCOM, so it does not have to be repeated here.

struct DVO_EXTENT // DCOM value object extent
{

HRESULT statusCode; // Status of marshaling
DVO_IFACE interfaces[]; // Marshaled interfaces

};

struct DVO_IFACE // value data container
// for 1 interface

{
unsigned long dataLen; // Total length of packet data
IID remotedIID; // Remoted interface
CLSID unmarshalCLSID;// Unmarshal class
unsigned short cImpl; // Count of Implementations
DVO_IMPLDATA implData[]; // Marshaled implementations

};

struct DVO_IMPLDATA // Marshaled implementation
{

unsigned long dataLen; // Length of data
IID iid; // Implementation interface
DVO_BLOB data; // Value data
DVO_IFACE interfaces[]; // Recursive DVO interface

};

struct DVO_BLOB // Opaque type containing
// marshaled members

{
unsigned long dataLen; // Length of value data
byte data[]; // Value data

};
July 2002 CORBA, v3.0: Extent Definition 20-7

20

M

t

any

re
nd

s an

OM

of
20.4.3.1 DVO_EXTENT

This structure contains the entire DCOM value object information for a given DCO
call. The size and ID of the extent are specified in the ORPC_EXTENT (DCOM
defined) structure. ThestatusCode is used to pass error information, which canno
be returned normally between the client and server extent. The interfaces array,
interfaces , contains the value data for each DCOM value object for the DCOM
call.

The DCOM value object extent will be identified with the following GUID:

{106454c0-14b2-11d1-8a22-006097cc044d}

20.4.3.2 DVO_IFACE

This structure contains value data for a single DCOM value object. ThedataLen
member makes it easy to skip this structure; in doing so, one automatically skips
recursively marshaled interfaces. TheremotedIID member identifies the most
derived interface of the DCOM value object itself. The memberunmarshalCLSID
indicates the unmarshal class used in custom marshaling, if any.

ThecImpl member indicates how many interface DCOM value object interfaces a
marshaled. Normally, this member has a value of 1, but it may be necessary to se
value data for more than one interface.

The implData array contains the blocks of marshaled value data.

20.4.3.3 DVO_IMPLDATA

This structure contains the value data of a DCOM value object. The value data
corresponds to the DCOM value object identified by theiid member of the
DVO_IMPLDATAstructure. The value data is written to thedata blob. If any
marshaled data is itself a DCOM value object, its marshaling data will be added a
entry in theinterfaces array.

20.4.3.4 DVO_BLOB

This contains the actual value data for the DCOM value object. The data has been
marshaled using standard DCOM (NDR) marshaling.

20.5 Request/Reply Extent Semantics

Clients, which support the extent, add the extent to outgoing requests that have DC
value objects, which should have their value data transmitted. ThestatusCode
member of the extent should beNO_ERROR. Even when the outgoing request does
not contain any DCOM value objects, the client must still add the extent (consisting
just thestatusCode member in this case) if it supports the extent at all.
20-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

ing
s).

reply.
he

s
g of

r

t.

e,
, and

ade
er,
t all

e
r
ich

ust
pport

able

eeds

must
pport
nal
Servers, which support the extent, can retrieve the information from the extent dur
unmarshaling to get the value data for the local DCOM value objects (DCOM proxie
If the unmarshaling of the data within the extent fails with an error, this error is
returned in a corresponding reply extent containing the error that occurred. If the
unmarshaling is successful, the request is processed and an extent is added to the
Any out parameter or return DCOM value objects are included in the reply extent. T
statusCode member should beNO_ERROR. Even when the outgoing request doe
not contain any DCOM value objects, the callee must still add the extent (consistin
just thestatusCode member in this case).

If the receiver of a DCOM value object passes a reference to the object to anothe
client/server, the object reference of the primary DCOM value object should be
marshaled in the request, not the object reference for the local DCOM value objec

20.6 Consistency

If the client supports the DCOM value object semantics for a given object referenc
then an in-process copy of the value data is created using the data from the extent
all read accesses are performed with no network calls.

When all clients and servers support the DCOM value object semantics, changes m
to a local copy of the object can then be passed to other clients or servers. Howev
since the implementation of this specification is optional, it cannot be assumed tha
clients and servers support this feature.

If the client of a DCOM value object does not support the extent, or the appropriat
support for a given DCOM value object to be unmarshaled locally, then all reads o
writes to members of the object are transmitted over the network to the server, wh
originally provided the object reference.

In cases where the receiver modifies the local copy of the object, these changes m
be propagated back to the server to maintain consistency between systems that su
the DCOM value object and those that do not.

The interfaces used to manage consistency were designed so that applications on
homogenous networks (where every interworking solution supports Part B) can dis
the synchronization used to maintain consistency. Applications running on
heterogeneous networks can control the synchronization behavior to best suit the n
of the application.

In cases where the receiver modifies the local DCOM value object, these changes
be propagated back to the server to maintain consistency between systems that su
DCOM value objects and those that do not. To maintain consistency, three additio
DCOM interfaces are defined:

[
object,
pointer_default(unique),
uuid(c9362b80-14bd-11d1-8a22-006097cc044d)

]
interface IValueObject : IUnknown
July 2002 CORBA, v3.0: Consistency 20-9

20

his
ned
{
HRESULT GetValue([out] unsigned long *length,

[out, size_is(,*length)] byte**data);

HRESULT PutValue([in] unsigned long length,
[in, size_is(length)] byte *data);

};

typedef enum tagSyncronizeMode
{

kNeverSync,
kSyncOnSend,
kSyncOnChange

} SyncronizeMode;

[
object,
pointer_default(unique),
uuid(c82fb800-14bd-11d1-8a22-006097cc044d)

]
interface ISynchronize : IUnknown
{

HRESULT get_Mode([out, retval] SyncronizeMode *mode);
HRESULT put_Mode([in] SyncronizeMode mode);
HRESULT SyncNow();
HRESULT ReCopy();

};

[
odl,
dual,
oleautomation,
uuid(c8c84e80-14bd-11d1-8a22-006097cc044d)

]
interface DISynchronize : IDispatch
{

[propget] HRESULT Mode([out, retval] SyncronizeMode
*mode);

[propput] HRESULT Mode([in] SyncronizeMode mode);
HRESULT SyncNow();
HRESULT ReCopy();

};

20.6.1 IValueObject

This interface is implemented on the primary DCOM value object. The purpose of t
interface is to allow batch updates of the value data of the object. The data contai
within the data array for theGetValue andPutValue methods is aDVO_IFACE
marshaled according to Section 20.4, “Extent Definition,” on page 20-5.
20-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

red

r

,

ned

the
ll.

he
an

of

lasses
.

Local DCOM value objects that are not primary DCOM value objects are not requi
to support this interface.

20.6.2 ISynchronize and DISynchronize

These interfaces are implemented on local DCOM value objects (ISynchronize is
found on COM proxies,DISynchronize is found on Automation proxies). If the
interface is available, it means that this is a local DCOM value object, not a regula
object or a primary DCOM value object.

20.6.2.1 Mode Property

The propertyMode is used to control when synchronization is done. A value of
kNeverSync means that the local and the primary value objects are never
synchronized.

A value of kSyncOnSend means that, if the local value object has been changed
the primary value object will be synchronized with the local value object when the
local value object is sent to another client/server, which cannot be reliably determi
to support the required DCOM value object. Implementations can choose to
synchronize using either batch synchronization through a call toIValueObject , or
through calls for each changed member through the regular remote interface.

A value ofkSyncOnChange means that, as a member is changed, the update of
member should be propagated to the primary value object as a regular remote ca

20.6.2.2 SyncNow Method

The SyncNow method can be called by application code to force the changes to t
local value object to be propagated to the primary value object. Implementations c
choose to synchronize using either batch synchronization through a call to
IValueObject , or through calls for each changed member through the regular
remote interface.

20.6.2.3 ReCopy Method

TheReCopy method can be called by application code to retrieve the current value
the primary value object and update the local value object.

20.7 DCOM Value Objects

20.7.1 Passing Automation Compound Types as DCOM Value Objects

Compound types such as structures and unions are encapsulated in Automation c
so they may be used by Automation applications. These are DCOM value objects
When a DCOM value object representing a compound type is passed to a remote
July 2002 CORBA, v3.0: DCOM Value Objects 20-11

20

OM
ibed

ts

e
s

client, its interface pointer is marshaled using standard marshaling (as with any DC
value object), and its value data is forwarded simultaneously using the extent descr
in Section 20.4, “Extent Definition,” on page 20-5.

20.7.2 Passing CORBA-Defined Pseudo-Objects as DCOM Value Objec

To handle the DCOM views of CORBA pseudo objects as DCOM value objects, th
memory representation of these data types must be defined. The following section
detail the value data that will be passed in the extent.

20.7.3 IForeignObject

SupportingIForeignObject ’s as a DCOM value object is required to avoid
proxy explosion. The marshaled data for value objects of typeIForeignObject is
described in Section 20.8.2, “COM Chain Avoidance,” on page 20-17.

20.7.4 DIForeignComplexType

The value data for DCOM value objects of typeDIForeignComplexType can
be represented by the following structure (note that this also includes the state for
DIObjectInfo):

struct FOREIGN_COMPLEX
{

LPSTR name; // Name of type
LPSTR scopedName; // Scoped name (if available)
LPSTR repositoryId; // Repository ID of type

};

20.7.5 DIForeignException

The value data for DCOM value objects of typeDIForeignException can be
represented by the following structure:

struct FOREIGN_EXCEPTION
{

FOREIGN_COMPLEX base;
long majorCode;

};

20.7.6 DISystemException

The value data for DCOM value objects of typeDISystemException can be
represented by the following structure:

struct CORBA_SYSTEM_EXCEPTION
{

FOREIGN_EXCEPTION base;
20-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

d by

lue

lue

ber,

ing
long minorCode;
long completionStatus;

};

20.7.7 DICORBAUserException

The value data forDICORBAUserException is identical to that of
DIForeignException . Value objects deriving from
DICORBAUserException are passed as DCOM value objects according to the
previously defined format. The value data of exception members must be precede
the value data ofDIForeignException .

20.7.8 DICORBAStruct

The value data forDICORBAStruct is identical to that of
DIForeignComplexType . Value objects deriving fromDICORBAStruct are
passed as DCOM value objects according to the previously defined format. The va
data of struct members must be preceded by the value data of
DIForeignComplexType .

20.7.9 DICORBAUnion

The value data forDICORBAUnion is identical to that of
DIForeignComplexType . Value objects deriving fromDICORBAUnion are
passed as DCOM value objects according to the previously defined format. The va
data of a union must be preceded by the value data ofDIForeignComplexType .
The value data for the union itself is the discriminant followed by the selected mem
if any.

20.7.10 DICORBATypeCode and ICORBATypeCode

The value data for type code DCOM value objects can be represented by the follow
struct:

struct CORBA_TYPECODE
{

FOREIGN_COMPLEX base;
TCKind kind; // TypeCode kind

union TypeSpecific switch(kind)
{

case tk_objref:
LPSTR id;
LPSTR name;

case tk_struct:
case tk_except:

LPSTR id;
July 2002 CORBA, v3.0: DCOM Value Objects 20-13

20
LPSTR name;
long member_count;
[size_is(member_count,)] LPSTR *member_names;
[size_is(member_count,)] IUnknown**member_types;

case tk_union:
LPSTR id;
LPSTR name;
long member_count;
LPSTR member_names[];
[size_is(member_count,)] IUnknown**member_types;
[size_is(member_count)] VARIANT *member_labels;
IUnknown *discriminator_type;
long default_index;

case tk_enum:
long member_count;
[size_is(member_count,)] LPSTR *member_names;
[size_is(member_count,)] IUnknown**member_types;

case tk_string:
long length;

case tk_array:
case tk_sequence:

long length;
IUnknown *content_type;

case tk_alias:
LPSTR id;
LPSTR name;
long length;
IUnknown *content_type;

}
};

Note that members of typeIUnknown will actually be ICORBATypeCode
instances for COM andDICORBATypeCode instances for Automation.

20.7.11 DICORBAAny

The value data for DCOM value objects of typeDICORBAAnycan be represented by
the following structure:

struct CORBA_ANY_AUTO
{

FOREIGN_COMPLEXbase;
VARIANT value;
DICORBATypeCode*typeCode;

};
20-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

her
of
f the

ing
20.7.12 ICORBAAny

The value data for DCOM value objects of typeICORBAAnycan be represented by a
CORBAAnyDataUnion as defined in COM/CORBA Part A.

20.7.13 User Exceptions In COM

In COM, all CORBA user exceptions used in an interface are represented by anot
interface, which contains one method per user exception. The value data for one
these exception interfaces is an encapsulated DCOM union where each member o
union is one of the exception definition structures. The discriminant values are the
indices of the corresponding structure retrieval method from the user exception
interface.

module Bank
{

...
exception InsufFunds { float balance; };
exception InvalidAmount { float amount; };

interface Account
{

exception NotAuthorized {};

float Deposit(in float amount)
raises(InvalidAmount);

float Withdraw(in float amount)
raises(InvalidAmount, NotAuthorized);

};
};

Per the COM/CORBA Part A specification, the above IDL results in the following
interface used for user exceptions:

struct Bank_InsufFunds { float balance; };
struct Bank_InvalidAmount { float amount; };
struct Bank_Account_NotAuthorized {};

interface IBank_AccountUserExceptions : IUnknown
{

HRESULT get_InsufFunds([out] Bank_InsufFunds *);
HRESULT get_InvalidAmount([out] Bank_InvalidAmount *);
HRESULT get_NotAuthorized([out] Bank_Account_NotAuthorized *);

};

When this DCOM value object is passed, the value data is marshaled as the follow
data structure:
July 2002 CORBA, v3.0: DCOM Value Objects 20-15

20

to

r

ct

ct
union Bank_AccountUserExceptionsData switch(unsigned short)
{

case 0: Bank_InsufFunds m0;
case 1: Bank_InvalidAmount m1;
case 2: Bank_Account_NotAuthorized m2;

};

20.8 Chain Avoidance

To avoid view chaining (and thus proxy explosion), we define a general mechanism
carry chain information along with object references. This mechanism is defined in
both COM and in CORBA to allow for bidirectional chain avoidance. Views in eithe
system carry this information along with their object references. For example, the
information carried in the object reference to a CORBA view of an Automation obje
would describe the object referred to by the view; that is, information about the
Automation object.

20.8.1 CORBA Chain Avoidance

In CORBA, the chain avoidance information is carried as an IOP profile in an obje
reference that is part of a chain.

module CosBridging
{

typedef sequence<octet> OpaqueRef;
typedef sequence<octet> OpaqueData;
typedef unsigned long ObjectSystemID;

interface Resolver
{

OpaqueRef Resolve(in ObjectSystemID objSysID,
in unsigned long chainDataFormat,
in octet chainDataVersion,
in OpaqueData chainData);

};

struct ResolvableRef
{

Resolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
octet chainDataVersion;
OpaqueData chainData;

};

typedef sequence<ResolvableRef> ResolvableChain;

struct BridgingProfile
{

20-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

n

ink

r
or

e
in
tand

000

e

;
he

ed
ResolvableChainchain;
};

};

The content of the profile is defined as a singleBridgingProfile structure. The
ID for this profile will be allocated by the OMG. The profile structure contains a
sequence ofResolvableRef structures, potentially one for each object system i
the chain.

The ResolvableRef structure contains aresolver CORBA object reference
that can be called at runtime through itsResolve method to return an opaque
(because it is not CORBA) object reference for the specified link in the chain. The l
in the chain is identified by the object system ID,objSysID .

Currently defined object system IDs are: 1 for CORBA, 2 for Automation, and 3 fo
COM. IDs in the range from 0 through 100000 are reserved for use by the OMG f
future standardization.

The ResolvableRef structure also contains information that can be used by th
resolver as context to find the appropriate information to return. While this cha
data is opaque, it is also tagged with a format identifier so that bridges that unders
the format can directly interpret the contents ofchainData instead of making a
remote call toResolve . The only currently defined format tag is 0, which is
currently defined as “private.” That is,chainData tagged as private cannot be
directly interpreted and must be passed to the resolver for interpretation. All other
format tags are specific to each object system. Format tags in the range of 1 to 100
are reserved for allocation by the OMG.

The result of calling theResolve method on a COM or Automation
ResolvableRef is an NDR marshaled DCOM object reference with at least on
strong reference.

20.8.2 COM Chain Avoidance

A similar approach is adopted to resolve the same chain avoidance issues in COM
however, since DCOM does not support profiles, the implementation is different. T
information for chain avoidance (also used byIForeignObject and
IForeignObject2) is provided as DCOM value data associated with each pass
view object. This information is represented by aResolvableRefChain .

struct OpaqueRef
{

unsigned long len;
unsigned long maxlen;
BYTE [size_is(len)] *data;

};

struct OpaqueData
{

unsigned long len;
unsigned long maxlen;
July 2002 CORBA, v3.0: Chain Avoidance 20-17

20

lue
BYTE [size_is(len)] *data;
};

typedef unsigned long ObjectSystemID;

struct ResolvableRef
{

IResolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
BYTE chainDataVersion;
OpaqueData chainData;

};

struct ResolvableRefChain
{

unsigned long len;
unsigned long maxlen;
ResolvableRef [size_is(len,)]**data;

};

[
object,
pointer_default(unique),
uuid(5473e440-20ac-11d1-8a22-006097cc044d)

]
interface IResolver : IUnknown
{

OpaqueRef Resolve([in] ObjectSystemID objSysID,
[in] unsigned long chainDataFormat,
[in] BYTE chainDataVersion,
[in] OpaqueData chainData);

};

[
object,
pointer_default(unique),
uuid(60674760-20ac-11d1-8a22-006097cc044d)

]
interface IForeignObject2 : IForeignObject
{

ResolvedRefChain ChainInfo();
};

The use semantics of the resolver is identical to the use semantics described in
Section 20.8.1, “CORBA Chain Avoidance,” on page 20-16. One format tag with va
1 is defined for aResolvableRef with objSysID 1 (CORBA). If the format tag
is 1, thechainDataVersion must be 0 and thechainData contains a (CDR
marshaled) byte defining the byte ordering for the rest of thechainData (the byte
value is identical to that used to encode GIOP messages) followed by a CDR
20-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

ce,
s

tion
then
to

ed
ince

able
marshaled object reference. IfResolve were called for thisResolvableRef ,
the same value as contained in thechainData would be returned byResolve
(i.e., a CDR-marshaled object reference).

In addition to this mechanism, the interfaceIForeignObject2 is defined on
COM or Automation views to return theResolvableRefChain in cases where
this information has been lost.

20.9 Chain Bypass

Using the chain avoidance technique defined in this specification, the formation of
view chains can be avoided. However, there are cases where the chain avoidance
information carried with the object references may have been discarded (for instan
as the object reference is passed through a firewall). In this case, chaining of view
cannot be avoided without an explicit performance hit, which was deemed
unacceptable. However, at the point when the first invocation is performed, informa
about the current chain can be returned as out-of-band data. This information can
be used on subsequent invocations to bypass as many views as possible in order
avoid the performance hit of multiple view translations.

Figure 20-3 Invocation With and Without Chain Bypass

Figure 20-3 shows an example of a call that does not perform chain bypass follow
by one that does. Note that chain bypass cannot eliminate all unnecessary calls s
the client already has a reference to the view (not to the original object) and thus
invokes an operation on the view. It is the responsibility of the view to perform the
chain bypass if it so chooses -- in this case the view essentially becomes a rebind
stub.

20.9.1 CORBA Chain Bypass

For views to discover the chain information, two service contexts are defined as
follows:

ChainBypassCheck = 2
ChainBypassInfo = 3

module CosBridging
{

struct ResolvedRef

CORBA ServerCORBA Client
CORBA

View
COM
View

CORBA ServerCORBA Client
CORBA

View
COM
View
July 2002 CORBA, v3.0: Chain Bypass 20-19

20

-
uent
ion
e

{
Resolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
octet chainDataVersion;
OpaqueData chainData;
OpaqueRef reference;
};

typedef sequence<ResolvedRef> ResolvedRefChain;

struct ChainBypassCheck // Outgoing service context
{

Object objectToCheck;
};

struct ChainBypassInfo // Reply service context
{

ResolvedRefChain chain;
};

};

The ChainBypassCheck service context is sent out with the first outgoing (non
oneway) request. Since the service context is propagated automatically to subseq
calls, an object is provided in the service context to avoid returning chain informat
for an incorrect object. For a reply service context to be generated, the object in th
service context must match the object (a view) being invoked.

If a reply service context,ChainBypassInfo , is received with the reply message,
then a view has been detected. The information in theResolvedRefChain can be
used to bypass intermediate views. EachResolvedRef is identical to a
ResolvableRef except that it also contains the result of the resolution -- the
reference member contains the data that would be returned ifResolve were
called on the included resolver. If the reference field ofResolvedRef is an empty
sequence, then the marshaled object reference is assumed to be identical to the
chainData .

20.9.2 COM Chain Bypass

The technique used for COM chain bypass is very similar to the technique used in
CORBA. The only difference is the result of the fact that DCOM extents are not
propagated into subsequent calls unlike CORBA service contexts.

struct ResolvedRef
{

IResolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
BYTE chainDataVersion;
OpaqueData chainData;
20-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

20

er
of
To
we
read
OpaqueRef reference;
};

struct ResolvableRefChain
{

unsigned long len;
unsigned long maxlen;
ResolvableRef [size_is(len,)]**data;

};

struct ChainBypassCheck // Outgoing extent body
{
};

struct ChainBypassInfo // Reply extent body
{

ResolvableRefChain chain;
};

The ChainBypassCheck extent is sent out with the first outgoing request. If a
reply extent,ChainBypassInfo , is received with the reply message, then a view
has been detected. The information in theResolvedRefChain can be used to
bypass intermediate views. EachResolvedRef is identical to a
ResolvableRef except that it also contains the result of the resolution -- the
reference member contains the data that would be returned ifResolve were
called on the included resolver. If the reference field ofResolvedRef is an empty
sequence, then the marshaled object reference is assumed to be identical to the
chainData .

The UUID for the request and reply extents are both:

1eba96a0-20b1-11d1-8a22-006097cc044d

20.10 Thread Identification

To correlate incoming requests with previous outgoing requests, DCOM requires a
causality ID. The identifier is essentially a logical thread ID used to determine wheth
an incoming request is from an existing logical thread or is a different logical thread
execution. CORBA, on the other hand, does not strictly require a logical thread ID.
maintain the logical thread ID as requests pass through both DCOM and CORBA,
define a general purpose service context, which can be used to maintain logical th
identifiers for any system a thread of execution passes through.

module CosBridging
{

struct OneThreadID
{

ObjectSystemID objSysID;
OpaqueData threadID;
July 2002 CORBA, v3.0: Thread Identification 20-21

20

a

:

};

typedef sequence<OneThreadID> ThreadIDs;

struct LogicalThreadID // Service context
{

ThreadIDs IDs;
};

};

The logical thread ID information is propagated through a CORBA call chain using
service context (IDs to be assigned by the OMG) containing the
LogicalThreadID structure.

For future use, a DCOM extent is defined to allow the same logical thread
identification information to be passed through a DCOM call chain. If the OMG
chooses to standardize a logical thread ID format for CORBA, this can be passed
through a DCOM call chain using this extent.

struct OneThreadID
{

ObjectSystemID objSysID;
OpaqueData threadID;

};

struct ThreadIDs
{

unsigned long len;
unsigned long maxlen;
OneThreadID [size_is(len)] *data;

};

struct LogicalThreadID // DCOM extent
{

ThreadIDs IDs;
};

This extent, used for passing logical thread IDs, is identified by the following UUID

f81f4e20-2234-11d1-8a22-006097cc044d
20-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Portable Interceptors 21
he
Contents

This chapter contains the following sections.

21.1 Introduction

Portable Interceptors are hooks into the ORB through which ORB services can
intercept the normal flow of execution of the ORB. The following figures describe t
programming model for which portable Interceptors were designed.

Section Title Page

“Introduction” 21-1

“Interceptor Interface” 21-5

“Request Interceptors” 21-6

“Portable Interceptor Current” 21-33

“IOR Interceptor” 21-40

“PolicyFactory” 21-50

“Registering Interceptors” 21-50

“Dynamic Initial References” 21-57

“Module Dynamic” 21-58

“Consolidated IDL” 21-59
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 21-1

21

OA

their
B
te
21.1.1 Object Creation

Figure 21-1 Object Creation

Figure 21-1 shows the parts involved in the creation of an object. An object is
represented by an IOR created by the POA. A set of policies is used to create a P
which influences the set of tagged components contained within the profiles of any
IOR created by that POA. ORB services may have tagged components specific to
service, therefore they require a means to add tagged components to an IOR. OR
services may also introduce new policies; therefore, they require a means to crea
these new policies.

Requirement: Add tagged components

Satisfied by: IORInterceptor (see Section 21.5, “IOR Interceptor,” on
page 21-40).

Requirement: Create policies

Satisfied by: PolicyFactory (see Section 21.6, “PolicyFactory,” on
page 21-50).

Policies POA

Tagged Components IOR

create_POA

Influences
Creates

Contains

Examines
21-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

ext.

ce

e
R

21.1.2 Client Sends Request

Figure 21-2 Transfer Client’s Context to Request’s Service Context

Figure 21-2 shows what is needed to transfer a client’s context to the service cont
Service contexts are populated from information in a service’sCurrent object, from
the effective policies, and from information in the tagged components on an IOR’s
profile.

The processing of a request is an integral part of the ORB. Since each ORB servi
potentially creates its own service context, there must be a means by which each
service can get the necessary information during request processing. Since servic
contexts are defined as a unique identifier and an octet sequence containing a CD
encapsulation there must be a portable method to create such an octet sequence.

Requirement: Intercept request processing and access necessary data.

Satisfied by: Request Interceptors (see Section 21.3, “Request Intercep-
tors,” on page 21-6) and the PortableInterceptor::Current (see
Section 21.4, “Portable Interceptor Current,” on page 21-33).

Requirement: Convert types to octet sequences

Satisfied by: Codec (see Section 13.8, “Coder/Decoder Interfaces,” on
page 13-32).

Request
Tagged Components
Effective Policies
Service Current

Service Contexts

Examines

Populates
July 2002 CORBA, v3.0: Introduction 21-3

21

the
d to
ows

1-3

e

1-3
21.1.3 Server Receives Request

Figure 21-3 Transfer Request’s Service Context to Server’s Context

On the client, the client’s context is transferred to the request’s service context. On
server, the opposite must occur: the information in the service context is transferre
the server’s context which is then available to the server application. Figure 21-3 sh
what is necessary to accomplish this.

The requirements which exist in Section 21.1.2, “Client Sends Request,” on page 2
also exist here.

21.1.4 Server Sends Reply

Figure 21-4 Transfer Server’s Context to Reply’s Service Context

Figure 21-4 shows what is needed to transfer a server’s context to a reply’s servic
context. Service contexts are populated from information in a service’sCurrent
object.

The requirements which exist in Section 21.1.2, “Client Sends Request,” on page 2
also exist here.

Request

Policies Service Currents

Service Contexts
Examines

Examines Updates

Service Currents

Service Contexts

Examines

Reply
Populates
21-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

by

if a
me

-3

lists
RB
ty
ered
21.1.5 Client Receives Reply

Figure 21-5 View the Service Context on the Client Reply

When processing the client reply, although the client’s context cannot be updated
the reply’s service context, the service may still wish to query the service context
information.

The client’s context cannot be updated because such updates would be invalid on
asynchronous calls. The client thread may be continually changing its context and
reply also changed the context at any time, the state of the context at any given ti
would be indeterminate.

The requirements that exist in Section 21.1.2, “Client Sends Request,” on page 21
also exist here.

21.2 Interceptor Interface

Portable Interceptor interfaces and related type definitions reside in the module
PortableInterceptor . All portable Interceptors inherit from the local interface
Interceptor :

module PortableInterceptor {

local interface Interceptor {
readonly attribute string name;
void destroy();

};
};

Each Interceptor may have a name that may be used administratively to order the
of Interceptors. Only one Interceptor of a given name can be registered with the O
for each Interceptor type. An Interceptor may be anonymous; that is, have an emp
string as the name attribute. Any number of anonymous Interceptors may be regist
with the ORB.

Service ContextsReply
Examines
July 2002 CORBA, v3.0: Interceptor Interface 21-5

21

ne

tion
ers.

text

t-

lter
tem

to a

the
Interceptor::destroy is called duringORB::destroy . When an application calls
ORB::destroy , the ORB:

1. Waits for all requests in progress to complete.

2. Calls theInterceptor::destroy operation for each interceptor.

3. Completes destruction of the ORB.

Method invocations from withinInterceptor::destroy on object references for
objects implemented on the ORB being destroyed result in undefined behavior.
However, method invocations on objects implemented on an ORB other than the o
being destroyed are permitted. (This means that the ORB being destroyed is still
capable of acting as a client, but not as a server.)

21.3 Request Interceptors

A request Interceptor is designed to intercept the flow of a request/reply sequence
through the ORB at specific points so that services can query the request informa
and manipulate the service contexts that are propagated between clients and serv

The primary use of request Interceptors is to enable ORB services to transfer con
information between clients and servers.

There are two types of request Interceptors: client-side (see Section 21.3.5, “Clien
Side Interceptor,” on page 21-9) and server-side (see Section 21.3.8, “Server-Side
Interceptor,” on page 21-14).

21.3.1 Design Principles

The following points are the principles followed in the design of the portable
Interceptor architecture.

1. Interceptors are called on all ORB mediated invocations. The following implicit
object operations may or may not be ORB mediated:get_interface , is_a ,
non_existent , get_domain_managers, andget_component . When these are
ORB mediated, Interceptors are called; when they are not ORB mediated,
Interceptors are not called.

2. A request Interceptor can affect the outcome of a request by raising a system
exception at any of the interception points. It can stop the request from even
reaching the target by raising a system exception in the outbound path. It can a
an outcome specified by the target (exception or non-exception) by raising a sys
exception in the inbound path.

3. A request Interceptor can affect the outcome of a request by directing a request
different location at any interception point other than a successful reply. That
different location might include a location not otherwise reachable through the
original request; that is, a location that might not be discovered by the ORB in
course of a locate request.
21-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

d by

urn

est

s

s this

ent

lves

t

te
of

flow
rs.

ins

of

on

on

and
4. A request Interceptor cannot affect a request by changing a parameter specifie
the client. That is, the Interceptor cannot modify “in” arguments.

5. A request Interceptor cannot affect a non-exception outcome by supplying the
response itself. That is, the Interceptor cannot modify “out” arguments or the ret
value.

6. Request Interceptors are independent of other request Interceptors. That is, a
request Interceptor won’t need to know, and won’t even be told, if there are requ
Interceptors executed before or after it. If a request Interceptor down the line
(executed closer to the target than this one) affects the outcome of request, thi
request Interceptor will not be aware of that fact.

Corollary: request Interceptors can communicate between themselves to bypas
principle, but that’s outside of the concerns of the model.

7. A request Interceptor may make object invocations itself before allowing the curr
request to execute.

8. There is no provision for making client implementations aware that any request
Interceptor has been or will be called.

Corollary: A client and a request Interceptor can communicate between themse
to bypass this principle, but that is outside of the concerns of the model.

9. There is no provision for making object implementations aware that any reques
Interceptor has been or will be called.

Corollary: An object implementation and a request Interceptor can communica
between themselves to bypass this principle, but that is outside of the concerns
the model.

10. To ensure the integrity of the effect of each request Interceptor, a set of general
rules are specified that govern the flow of processing through a list of intercepto
See below.

21.3.2 General Flow Rules

Both client and server request Interceptors are registered with an ORB (see
Section 21.7, “Registering Interceptors,” on page 21-50). The ORB logically mainta
an ordered list of these Interceptors.

To accommodate both the client and server request Interceptors, and any future
additions to the interception points list, the following general rules apply to the flow
execution of request interception points:

• There is a set of starting interception points. One and only one of these is called
any given request/reply sequence;

• There is a set of ending interception points. One and only one of these is called
any given request/reply sequence;

• There may be any number of intermediate interception points between the start
end interception points which run in sequence;
July 2002 CORBA, v3.0: Request Interceptors 21-7

21

f

w
t

n
ion
its

uest

f

• On an exception, intermediate interception points may not be called;

• If and only if a starting interception point runs to completion is an ending
interception point called.

See Section 21.3.7, “Client-Side Interception Point Flow,” on page 21-11 and
Section 21.3.10, “Server-Side Interception Point Flow,” on page 21-17 for details o
how these general flow rules apply specifically to the client-side and server-side
Interceptors.

21.3.3 The Flow Stack Visual Model

To visualize the general flow rules, think of each Interceptor as being put on a Flo
Stack when a starting interception point completes successfully. (An ORB need no
implement the Flow Stack. It is presented simply as a visual cue.) An ending
interception point is called for each Interceptor in the stack. If a starting interceptio
point is called for all Interceptors, then all Interceptors will have an ending intercept
point called. If one of the Interceptors raises an exception during the invocation of
starting interception point, only those Interceptors on the stack at that point will be
popped and have an ending interception point called.

21.3.4 The Request Interceptor Points

Each request Interceptor is called at a number of interception points. Figure 21-6
shows the flow of control for a request/reply cycle that is subject to at least one req
Interceptor. See Section 21.3.5, “Client-Side Interceptor,” on page 21-9 and
Section 21.3.8, “Server-Side Interceptor,” on page 21-14 for descriptions of each o
these interception points.

Figure 21-6 Request Interception Points

Client Servant

send_request

send_poll

receive_request_service_contexts

receive_request

send_reply

send_exception

send_other

receive_reply

receive_exception

receive_other
21-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

ify

ors’
ped

ped

e

e

21.3.5 Client-Side Interceptor

To write a client-side Interceptor, theClientRequestInterceptor local interface shall
be implemented.

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)

raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)

raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)

raises (ForwardRequest);
};

21.3.6 Client-Side Interception Points

21.3.6.1 send_request

This interception point allows an Interceptor to query request information and mod
the service context before the request is sent to the server.

This interception point may raise a system exception. If it does, no other Intercept
send_request operations are called. Those Interceptors on the Flow Stack are pop
and theirreceive_exception interception points are called.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details of this
exception). If an Interceptor raises this exception, no other Interceptors’
send_request operations are called. Those Interceptors on the Flow Stack are pop
and theirreceive_other interception points are called.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_NO.

21.3.6.2 send_poll

This interception point allows an Interceptor to query information during a Time-
Independent Invocation (TII) polling get reply sequence.

With TII, an application may poll for a response to a request sent previously by th
polling client or some other client. This poll is reported to Interceptors through the
send_poll interception point and the response is returned through thereceive_reply
or receive_exception interception points. If the response is not available before th
poll time-out expires, the system exceptionTIMEOUT is raised and
receive_exception is called with this exception.
July 2002 CORBA, v3.0: Request Interceptors 21-9

21

ors’
d

ter

ors’

r to

ing
on

ges

s

h as
This interception point may raise a system exception. If it does, no other Intercept
send_poll operations are called. Those Interceptors on the Flow Stack are poppe
and theirreceive_exception interception points are called.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_NO.

21.3.6.3 receive_reply

This interception point allows an Interceptor to query the information on a reply af
it is returned from the server and before control is returned to the client.

This interception point may raise a system exception. If it does, no other Intercept
receive_reply operations are called. The remaining Interceptors in the Flow Stack
shall have theirreceive_exception interception point called.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_YES.

21.3.6.4 receive_exception

When an exception occurs, this interception point is called. It allows an Intercepto
query the exception’s information before it is raised to the client.

This interception point may raise a system exception. This has the effect of chang
the exception, which successive Interceptors popped from the Flow Stack receive
their calls toreceive_exception . The exception raised to the client will be the last
exception raised by an Interceptor, or the original exception if no Interceptor chan
the exception.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, no other Interceptors’
receive_exception operations are called. The remaining Interceptors in the Flow
Stack are popped and have theirreceive_other interception point called.

If the completion_status of the exception is notCOMPLETED_NO, then it is
inappropriate for this interception point to raise aForwardRequest exception. The
request’s at-most-once semantics would be lost.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. If the original exception is a
system exception, thecompletion_status of the new exception shall be the same a
on the original. If the original exception is a user exception, then the
completion_status of the new exception shall beCOMPLETED_YES.

Under some conditions, depending on what policies are in effect, an exception (suc
COMM_FAILURE) may result in a retry of the request. While this retry is a new
request with respect to Interceptors, there is one point of correlation between the
21-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

t

n a
le, a

n

ow
s a
the

ors’

t

.2,
original request and the retry: because control has not returned to the client, the
PortableInterceptor::Current for both the original request and the retrying reques
is the same (see Section 21.4, “Portable Interceptor Current,” on page 21-33).

21.3.6.5 receive_other

This interception point allows an Interceptor to query the information available whe
request results in something other than a normal reply or an exception. For examp
request could result in a retry (for example, a GIOP Reply with a
LOCATION_FORWARD status was received); or on asynchronous calls, the reply
does not immediately follow the request, but control shall return to the client and a
ending interception point shall be called.

For retries, depending on the policies in effect, a new request may or may not foll
when a retry has been indicated. If a new request does follow, while this request i
new request with respect to Interceptors, there is one point of correlation between
original request and the retry. Because control has not returned to the client, the
request scopedPortableInterceptor::Current for both the original request and the
retrying request is the same (see Section 21.4, “Portable Interceptor Current,” on
page 21-33).

This interception point may raise a system exception. If it does, no other Intercept
receive_other operations are called. The remaining Interceptors in the Flow Stack
are popped and have theirreceive_exception interception point called.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, successive Interceptors’
receive_other operations are called with the new information provided by the
ForwardRequest exception.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
beCOMPLETED_NO. If the target invocation had completed, this interception poin
would not be called.

21.3.7 Client-Side Interception Point Flow

A ClientRequestInterceptor instance is registered with the ORB. The ORB
logically maintains an ordered list of client-side Interceptors. The Interceptor list is
traversed in order on the sending interception points and in reverse order on the
receiving interception points.

21.3.7.1 Client-side Flow Rules

The client-side flow rules are derived from the general flow rules (see Section 21.3
“General Flow Rules,” on page 21-7):

• The set of starting interception points is:send_request andsend_poll . One and
only one of these is called on any given request/reply sequence.
July 2002 CORBA, v3.0: Request Interceptors 21-11

21

,

e is

ay

3).

es no
first

On
• The set of ending interception points is:receive_reply , receive_exception ,
receive_other . One and only one of these is called on any given request/reply
sequence.

• There are no intermediate exception points.

• If and only if send_request or send_poll runs to completion is an ending
interception point called.

21.3.7.2 Additional Client-side Details

If, during request processing, a request is canceled because of an ORB shutdown
receive_exception is called with the system exceptionBAD_INV_ORDER with a
minor code of 4 (ORB has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel messag
sent by the ORB),receive_exception is called with the system exception
TRANSIENT with a standard minor code of 2.

On oneway requests, returning control to the client may occur immediately or it m
return after the target has performed the operation, or somewhere in-between
depending on the SyncScope (see Section 21.3.12.9, “sync_scope,” on page 21-2
Regardless of the SyncScope, if there is no exception,receive_other is called before
control is returned to the client.

Asynchronous requests are simply two separate requests. The first request receiv
reply. The second receives a normal reply. So the normal (no exceptions) flow is:
request -send_request followed by receive_other ; second request -
send_request followed by receive_reply .

21.3.7.3 Client-side Flow Examples

Given the client-side flow rules, here are some concrete examples:

• For successful invocations:send_request is followed byreceive_reply - a start
point is followed by an end point.

• For retries:send_request is followed byreceive_other - a start point is
followed by an end point.

• For successful TII polls,send_poll is followed byreceive_reply - a start point is
followed by an end point.

• For TII polls whose response is unavailable,send_poll is followed by
receive_exception - a start point is followed by an end point.

For the following exception scenarios, assume we have Interceptors A, B, and C.
the send interception points they are called in the order A, B, C; on the receive
interception points they are called in the order C, B, A.

Scenario

An exception arrives from the server:
21-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

t
tion
• A.send_request is called;

• B.send_request is called;

• C.send_request is called;

• C.receive_exception is called;

• B.receive_exception is called;

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules.
They are all: send_request followed by receive_exception - a start point is
followed by an end point.

Scenario

B.send_request raises an exception:

• A.send_request is called;

• B.send_request is called and raises an exception

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is send_request followed by receive_exception - a start point
is followed by an end point.

• The flow for B issend_request - a start point did not complete, so no end poin
was called; B raised the exception, so there is no need to tell it that the excep
occurred.

• The flow for C is non-existent since the exception occurred before any of C’s
interception points was invoked - a start point was not called, so no end point is
called.

Scenario

A reply returns successfully from the server, butB.receive_reply raises an exception:

• A.send_request is called;

• B.send_request is called;

• C.send_request is called;

• C.receive_reply is called;

• B.receive_reply is called and raises an exception;

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is send_request followed by receive_exception - a start point
is followed by an end point.

• The flow for B is send_request followed by receive_reply - a start point is
followed by an end point.

• The flow for C issend_request followed by receive_reply - a start point is
followed by an end point.

The scenario for B raising an exception atreceive_other is similar to the scenario
where B raises an exception atreceive_reply .
July 2002 CORBA, v3.0: Request Interceptors 21-13

21

d

m

not

ors’
Scenario

An exception X is returned by the server, butB.receive_exception changes the
exception to Y:

• A.send_request is called;

• B.send_request is called;

• C.send_request is called;

• C.receive_exception is called with X;

• B.receive_exception is called with X, raises Y;

• A.receive_exception is called with Y.

In this scenario, the flow for all Interceptors issend_request followed by
receive_exception - a start point followed by an end point - Interceptor A is hande
exception Y while the B and C are handed exception X.

21.3.8 Server-Side Interceptor

To write a server-side Interceptor, theServerRequestInterceptor local interface
shall be implemented.

local interface ServerRequestInterceptor : Interceptor {
void receive_request_service_contexts (in ServerRequestInfo ri)

 raises (ForwardRequest);
void receive_request (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_reply (in ServerRequestInfo ri);
void send_exception (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_other (in ServerRequestInfo ri) raises (ForwardRequest);

};

21.3.9 Server-Side Interception Points

21.3.9.1 receive_request_service_contexts

At this interception point, Interceptors must get their service context information fro
the incoming request transfer it toPortableInterceptor::Current ’s slots (see
Section 21.4, “Portable Interceptor Current,” on page 21-33 for details on the
relationship betweenreceive_request_service_contexts and
PortableInterceptor::Current).

This interception point is called before the servant manager is called. Operation
parameters are not yet available at this point. This interception point may or may
execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Intercept
receive_request_service_contexts operations are called. Those Interceptors on
the Flow Stack are popped and theirsend_exception interception points are called.
21-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

the
hall

s

ors’

he
ly is
he

ors’
all
This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, no other Interceptors’
receive_request_service_contexts operations are called. Those Interceptors on
the Flow Stack are popped and theirsend_other interception points are called.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_NO.

21.3.9.2 receive_request

This interception point allows an Interceptor to query request information after all
information, including operation parameters, are available. This interception point s
execute in the same thread as the target invocation.

In the DSI model, since the parameters are first available when the user code call
arguments , receive_request is called from withinarguments . It is possible that
arguments is not called in the DSI model. The target may callset_exception before
calling arguments . The ORB shall guarantee thatreceive_request is called once,
either througharguments or throughset_exception . If it is called through
set_exception , requesting the arguments will result inNO_RESOURCES being
raised with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other Intercept
receive_request operations are called. Those Interceptors on the Flow Stack are
popped and theirsend_exception interception points are called.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, no other Interceptors’
receive_request operations are called. Those Interceptors on the Flow Stack are
popped and theirsend_other interception points are called.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_NO.

21.3.9.3 send_reply

This interception point allows an Interceptor to query reply information and modify t
reply service context after the target operation has been invoked and before the rep
returned to the client. This interception point shall execute in the same thread as t
target invocation.

This interception point may raise a system exception. If it does, no other Intercept
send_reply operations are called. The remaining Interceptors in the Flow Stack sh
have theirsend_exception interception point called.
July 2002 CORBA, v3.0: Request Interceptors 21-15

21

r to

ing
their
n

ck

s

n a
ould

et

ors’
all
Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_YES.

21.3.9.4 send_exception

When an exception occurs, this interception point is called. It allows an Intercepto
query the exception information and modify the reply service context before the
exception is raised to the client. This interception point shall execute in the same
thread as the target invocation.

This interception point may raise a system exception. This has the effect of chang
the exception that successive Interceptors popped from the Flow Stack receive on
calls tosend_exception . The exception raised to the client will be the last exceptio
raised by an Interceptor, or the original exception if no Interceptor changes the
exception.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, no other Interceptors’
send_exception operations are called. The remaining Interceptors in the Flow Sta
shall have theirsend_other interception points called.

If the completion_status of the exception is notCOMPLETED_NO, then it is
inappropriate for this interception point to raise aForwardRequest exception. The
request’s at-most-once semantics would be lost.

Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. If the original exception is a
system exception, thecompletion_status of the new exception shall be the same a
on the original. If the original exception is a user exception, then the
completion_status of the new exception shall beCOMPLETED_YES.

21.3.9.5 send_other

This interception point allows an Interceptor to query the information available whe
request results in something other than a normal reply or an exception. A request c
result in a retry (for example, a GIOP Reply with aLOCATION_FORWARD status
was received). This interception point shall execute in the same thread as the targ
invocation.

This interception point may raise a system exception. If it does, no other Intercept
send_other operations are called. The remaining Interceptors in the Flow Stack sh
have theirsend_exception interception points called.

This interception point may also raise aForwardRequest exception (see
Section 21.3.15, “ForwardRequest Exception,” on page 21-33 for details on this
exception). If an Interceptor raises this exception, successive Interceptors’
send_other operations are called with the new information provided by the
ForwardRequest exception.
21-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

7,
d

ts.

3.2,

,

e has

BA

ther
Compliant Interceptors shall properly followcompletion_status semantics if they
raise a system exception from this interception point. Thecompletion_status shall
be COMPLETED_NO.

21.3.10 Server-Side Interception Point Flow

A ServerRequestInterceptor instance is registered with the ORB (see Section 21.
“Registering Interceptors,” on page 21-50). The ORB logically maintains an ordere
list of server-side Interceptors. The Interceptor list is traversed in order on the
receiving interception points and in reverse order on the sending interception poin

21.3.10.1 Server-side Flow Rules

The server-side flow rules are derived from the general flow rules (see Section 21.
“General Flow Rules,” on page 21-7).

• The starting interception point isreceive_request_service_contexts ; this
interception point is called on any given request/reply sequence.

• The set of ending interception points issend_reply , send_exception ,
send_other . One and only one of these is called on any given request/reply
sequence.

• The intermediate interception point isreceive_request , which is called after
receive_request_service_contexts and before an ending interception point.

• On an exception,receive_request may not be called.

• If and only if receive_request_service_contexts runs to completion is an
ending interception point called.

21.3.10.2 Additional Server-side Details

If, during request processing, a request is canceled because of an ORB shutdown
send_exception is called with the system exceptionBAD_INV_ORDER with a
minor code of 4 (ORB has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel messag
been received),send_exception is called with the system exceptionTRANSIENT
with a standard minor code of 3.

The following statement is made about the GIOP close connection message (COR
v2.3 15-45):

“If the ORB sending theCloseConnection is a server, or bidirectional GIOP is in
use, the sending ORB must not currently be processing any Requests from the o
side.”

With respect to portable Interceptors, “...processing any Requests...” means that
receive_request_service_contexts has been called on any Interceptor and no
ending interception point has yet been invoked.
July 2002 CORBA, v3.0: Request Interceptors 21-17

21

led
ly is

us

d

nts

On
On oneway requests, there is no reply sent to the client; however, the target is cal
and the server can construct an empty reply. Since closure is necessary, this rep
tracked andsend_reply is called (unless an exception occurs, in which case
send_exception is called).

Asynchronous requests, from the server’s point of view, are just normal synchrono
requests. Normal interception point flows are followed.

If a POA and a servant locator are present, the order of their operations and
interception points is:

1. ServerRequestInterceptor.receive_request_service_contexts;

2. ServantLocator.preinvoke;

3. ServerRequestInterceptor.receive_request

4. the operation

5. ServantLocator.postinvoke;

6. ServerRequestInterceptor send_reply , send_exception , or send_other .

preinvoke , the operation, andpostinvoke are required to execute in the same threa
(see Section 11.3.7, “ServantLocator Interface,” on page 11-27). Since
receive_request occurs within this chain,receive_request shall also execute in the
same thread.

postinvoke executes in the same thread aspreinvoke in order forpostinvoke to
perform any necessary closure processing. Likewise, the sending interception poi
(send_reply , send_exception , or send_other) shall also execute in the same
thread.

21.3.10.3 Server-side Flow Examples

Given the server-side flow rules, here are some concrete examples.

For successful invocations, the chain of interception points, in order, is:
receive_request_service_contexts , receive_request , send_reply - a start point
is followed by an intermediate point, which is followed by an end point.

For the following exception scenarios, assume we have Interceptors A, B, and C.
the receive interception points they are called in the order A, B, C; on the send
interception points they are called in the order C, B, A.

Scenario

An exception is raised by the target:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;
21-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

he

ts

eed

ion
• C.receive_request is called;

• C.send_exception is called;

• B.send_exception is called;

• A.send_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules. T
chain for all is:receive_request_service_contexts , receive_request ,
send_exception - a start point is followed by an intermediate point that is
followed by an end point.

Scenario

B.receive_request_service_contexts raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called and raises an exception;

• A.send_exception is called.;

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is receive_request_service_contexts followed by
send_exception - a start point followed by an end point, no intermediate poin
are called.

• The flow for B is receive_request_service_contexts - a start point did not
complete, so no end point was called; B raised the exception, so there is no n
to tell it that the exception occurred.

• The flow for C is non-existent since the exception occurred before any of C’s
interception points were invoked.

Scenario

B.receive_request raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called and raises an exception;

• C.send_exception is called;

• B.send_exception is called;

• A.send_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• Since thereceive_request_service_contexts starting point ran to completion
then, no matter what happens in intermediate points, a “terminating” intercept
point must be called for all interceptors.

Scenario

The target invocation returns successfully, butB.send_reply raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;
July 2002 CORBA, v3.0: Request Interceptors 21-19

21

d

s
with
• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;

• C.receive_request is called;

• C.send_reply is called;

• B.send_reply is called and raises an exception;

• A.send_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is: receive_request_service_contexts , receive_request ,
send_exception - a start point is followed by an intermediate point that is
followed by an end point.

• The flow for B is receive_request_service_contexts , receive_request ,
send_reply - a start point is followed by intermediate point, which is followed
by an end point.

• The flow for C is:receive_request_service_contexts , receive_request ,
send_reply - a start point is followed by an intermediate point which is followe
by an end point.

The scenario for B raising an exception atsend_other is similar to the scenario
where B raises an exception atsend_reply .

Scenario

An exception X is raised by the target, butB.send_exception changes the exception
to Y:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;

• C.receive_request is called;

• C.send_exception is called with X;

• B.send_exception is called with X, raises Y;

• A.send_exception is called with Y.

In this scenario, the flow for all Interceptors isreceive_request_service_contexts ,
receive_request , send_exception - a start point is followed by an intermediate
point, which is followed by an end point; Interceptor A is handed exception Y while
the B and C are handed exception X.

21.3.11 Request Information

Each interception point is given an object through which the Interceptor can acces
request information. Client-side and server-side interception points are concerned
different information, so there are two information objects:ClientRequestInfo is
21-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

on

teed

e a
passed to the client-side interception points andServerRequestInfo is passed to the
server-side interception points. But there is information that is common to both, so
they both inherit from a common interface:RequestInfo .

21.3.12 RequestInfo Interface

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;
readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (

in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (

in IOP::ServiceId id);
};

The details of the attributes and operations onRequestInfo follow. Some of these are
not valid at all interception points. See Table 21-1 on page 21-26 and Table 21-2
page 21-29.

21.3.12.1 request_id

This ID uniquely identifies an active request/reply sequence. Once a request/reply
sequence is concluded this ID may be reused.

Note that this id is not the same as the GIOPrequest_id . If GIOP is the transport
mechanism used, then these IDs may very well be the same, but this is not guaran
nor required.

21.3.12.2 operation

This attribute is the name of the operation being invoked.

21.3.12.3 arguments

This attribute is aDynamic::ParameterList containing the arguments on the
operation being invoked (see Section 21.9.1, “NVList PIDL Represented by
ParameterList IDL,” on page 21-58). If there are no arguments, this attribute will b
zero length sequence.
July 2002 CORBA, v3.0: Request Interceptors 21-21

21

ings,
ibute

List

hen

d
y
ro

n

DL,”

s,
e is

, for
Not all environments provide access to the arguments. With the Java portable bind
for example, the arguments are not available. In these environments, when this attr
is accessed,NO_RESOURCES will be raised with a standard minor code of 1.

21.3.12.4 exceptions

This attribute is aDynamic::ExceptionList describing theTypeCodes of the user
exceptions that this operation invocation may raise (see Section 21.9.3, “Exception
PIDL Represented by ExceptionList IDL,” on page 21-58). If there are no user
exceptions, this attribute will be a zero length sequence.

Not all environments provide access to the exception list. With the Java portable
bindings, for example, the exception list is not available. In these environments, w
this attribute is accessed,NO_RESOURCES will be raised with a standard minor
code of 1.

21.3.12.5 contexts

This attribute is aDynamic::ContextList describing the contexts that may be passe
on this operation invocation (see Section 21.9.2, “ContextList PIDL Represented b
ContextList IDL,” on page 21-58). If there are no contexts, this attribute will be a ze
length sequence.

Not all environments provide access to the context list. With the Java portable
bindings, for example, the context list is not available. In these environments, whe
this attribute is accessed,NO_RESOURCES will be raised with a standard minor
code of 1.

21.3.12.6 operation_context

This attribute is aDynamic::RequestContext containing the contexts being sent on
the request (see Section 21.9.4, “Context PIDL Represented by RequestContext I
on page 21-59).

Not all environments provide access to the context. With the Java portable binding
for example, the context is not available. In these environments, when this attribut
accessed,NO_RESOURCES will be raised with standard minor code of 1.

21.3.12.7 result

This attribute is anany containing the result of the operation invocation.

If the operation return type isvoid , this attribute will be anany containing a type code
with a TCKind value of tk_void and no value.

Not all environments provide access to the result. With the Java portable bindings
example, the result is not available. In these environments, when this attribute is
accessed,NO_RESOURCES will be raised with a standard minor code of 1.
21-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

,

trol

to
that

can
21.3.12.8 response_expected

This boolean attribute indicates whether a response is expected.

On the client, a reply is not returned whenresponse_expected is false, so
receive_reply cannot be called.receive_other is called unless an exception occurs
in which casereceive_exception is called.

On the client, withinsend_poll , this attribute istrue .

21.3.12.9 sync_scope

This attribute, defined in the Messaging specification, is pertinent only when
response_expected is false . If response_expected is true , the value of
sync_scope is undefined. It defines how far the request shall progress before con
is returned to the client. This attribute may have one of the following values:

Messaging::SYNC_NONE
Messaging::SYNC_WITH_TRANSPORT
Messaging::SYNC_WITH_SERVER
Messaging::SYNC_WITH_TARGET

On the server, for all scopes, a reply will be created from the return of the target
operation call, but the reply will not return to the client. Although it does not return
the client, it does occur, so the normal server-side interception points are followed;
is, receive_request_service_contexts , receive_request , send_reply , or
send_exception .

For SYNC_WITH_SERVER andSYNC_WITH_TARGET, the server does send an
empty reply back to the client before the target is invoked. This reply is not
intercepted by server-side Interceptors.

21.3.12.10 reply_status

This attribute describes the state of the result of the operation invocation. Its value
be one of the following:

PortableInterceptor::SUCCESSFUL
PortableInterceptor::SYSTEM_EXCEPTION
PortableInterceptor::USER_EXCEPTION
PortableInterceptor::LOCATION_FORWARD
PortableInterceptor::TRANSPORT_RETRY
PortableInterceptor::UNKNOWN

On the client:

• Within the receive_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the receive_exception interception point, this attribute will be either
SYSTEM_EXCEPTION or USER_EXCEPTION.
July 2002 CORBA, v3.0: Request Interceptors 21-23

21

ava

his
or a

r a

of
• Within the receive_other interception point, this attribute will be any of:
SUCCESSFUL, LOCATION_FORWARD , TRANSPORT_RETRY, or
UNKNOWN. SUCCESSFUL means an asynchronous request returned
successfully.LOCATION_FORWARD means that a reply came back with
LOCATION_FORWARD as its status.TRANSPORT_RETRY means that the
transport mechanism indicated a retry - a GIOP reply with a status of
NEEDS_ADDRESSING_MODE, for instance.UNKNOWN means that theORB
was unable to determine the correct status. This can occur for example in the J
language mapping when the optimized path for a collocated call is used.

On the server:

• Within the send_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the send_exception interception point, this attribute will be either
SYSTEM_EXCEPTION or USER_EXCEPTION.

• Within the send_other interception point, this attribute will be any of:
SUCCESSFUL, LOCATION_FORWARD , or UNKNOWN. SUCCESSFUL
means an asynchronous request returned successfully.LOCATION_FORWARD
means that a reply came back withLOCATION_FORWARD as its status.
UNKNOWN means that the ORB was unable to determine the correct status. T
can occur for example in the Java language mapping when the optimized path f
collocated call is used.

21.3.12.11 forward_reference

If the reply_status attribute isLOCATION_FORWARD , then this attribute will
contain the object to which the request will be forwarded. It is indeterminate whethe
forwarded request will actually occur.

21.3.12.12 get_slot

This operation returns the data from the given slot of the
PortableInterceptor::Current that is in the scope of the request.

If the given slot has not been set, then anany containing a type code with aTCKind
value of tk_null is returned.

If the ID does not define an allocated slot,InvalidSlot is raised.

See Section 21.4, “Portable Interceptor Current,” on page 21-33 for an explanation
slots and thePortableInterceptor::Current .

Parameters

id The SlotId of the slot that is to be returned.

Return Value The slot data, in the form of an any, obtained with the given
identifier.
21-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

ted

ted
21.3.12.13 get_request_service_context

This operation returns a copy of the service context with the given ID that is associa
with the request.

If the request’s service context does not contain an entry for that ID,BAD_PARAM
with a standard minor code of 26 is raised.

21.3.12.14 get_reply_service_context

This operation returns a copy of the service context with the given ID that is associa
with the reply.

If the request’s service context does not contain an entry for that ID,BAD_PARAM
with a standard minor code of 26 is raised.

21.3.13 ClientRequestInfo Interface

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;
IOR::TaggedComponent get_effective_component (

in IOP::ComponentId id);
IOP::TaggedComponentSeq get_effective_components (

in IOP::ComponentId id);
CORBA::Policy get_request_policy (in CORBA::PolicyType type);
void add_request_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

Parameters

id The IOP::ServiceId of the service context that is to be
returned.

Return Value The IOP::ServiceContext obtained with the given identifier.

Parameters

id The IOP::ServiceId of the service context that is to be
returned.

Return Value The IOP::ServiceContext obtained with the given identifier.
July 2002 CORBA, v3.0: Request Interceptors 21-25

21

,

Some attributes and operations onClientRequestInfo are not valid at all interception
points. Table 21-1 shows the validity of each attribute or operation. If it is not valid
attempting to access it will result in aBAD_INV_ORDER being raised with a
standard minor code of 14.

1 WhenClientRequestInfo is passed tosend_request , there is an entry in the list for every argument,
whether in, inout, or out. But only the in and inout arguments will be available.

2 If thereply_status attribute is notLOCATION_FORWARD , accessing this attribute will raise
BAD_INV_ORDER with a standard minor code of 14.

Table 21-1ClientRequestInfo Validity

send_
request

send_poll receive_
reply

receive_
exception

receive_
other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments yes1 no yes no no

exceptions yes no yes yes yes

contexts yes no yes yes yes

operation_context yes no yes yes yes

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes no yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service_context yes no yes yes yes

get_reply_service_context no no yes yes yes

target yes yes yes yes yes

effective_target yes yes yes yes yes

effective_profile yes yes yes yes yes

received_exception no no no yes no

received_exception_id no no no yes no

get_effective_component yes no yes yes yes

get_effective_components yes no yes yes yes

get_request_policy yes no yes yes yes

add_request_service_context yes no no no no
21-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

rd
ly,

le, it

ch
21.3.13.1 target

This attribute is the object which the client called to perform the operation. See
Section 21.3.13.2, “effective_target,” on page 21-27.

21.3.13.2 effective_target

This attribute is the actual object on which the operation will be invoked. If the
reply_status is LOCATION_FORWARD , then on subsequent requests,
effective_target will contain the forwarded IOR whiletarget will remain
unchanged.

21.3.13.3 effective_profile

This attribute is the profile that will be used to send the request. If a location forwa
has occurred for this operation’s object and that object’s profile changed according
then this profile will be that located profile.

21.3.13.4 received_exception

This attribute is anany that contains the exception to be returned to the client.

If the exception is a user exception that cannot be inserted into an any (for examp
is unknown or the bindings don’t provide theTypeCode), then this attribute will be an
any containing the system exceptionUNKNOWN with a standard minor code of 1.
However, theRepositoryId of the exception is available in the
received_exception_id attribute.

21.3.13.5 received_exception_id

This attribute is theCORBA::RepositoryId of the exception to be returned to the
client.

21.3.13.6 get_effective_component

This operation returns theIOP::TaggedComponent with the given ID from the
profile selected for this request.

If there is more than one component for a given component ID, it is undefined whi
component this operation returns. If there is more than one component for a given
component ID,get_effective_components should be called instead.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.
July 2002 CORBA, v3.0: Request Interceptors 21-27

21

this
.

21.3.13.7 get_effective_components

This operation returns all the tagged components with the given ID from the profile
selected for this request. This sequence is in the form of an
IOP::TaggedComponentSeq .

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

21.3.13.8 get_request_policy

This operation returns the given policy in effect for this operation.

If the policy type is not valid either because the specified type is not supported by
ORB or because a policy object of that type is not associated with this Object,
INV_POLICY with a standard minor code of 2 is raised.

21.3.13.9 add_request_service_context

This operation allows Interceptors to add service contexts to the request.

Parameters

id The IOP::ComponentId of the component that is to be
returned.

Return Value The IOP::TaggedComponent obtained with the given
identifier.

Parameters

id The IOP::ComponentId of the components that are to be
returned.

Return Value The IOP::TaggedComponentSeq, each component of which
contains the given identifier.

Parameters

id The CORBA::PolicyType that specifies the policy to be
returned.

Return Value The CORBA::Policy obtained with the given type.
21-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

t

t is

t

There is no declaration of the order of the service contexts. They may or may no
appear in the order that they are added.

21.3.14 ServerRequestInfo Interface

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;
readonly attribute CORBA::OctetSeq object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name;
readonly attribute CORBA::RepositoryId

target_most_derived_interface;
CORBA::Policy get_server_policy (in CORBA::PolicyType type);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);
boolean target_is_a (in CORBA::RepositoryId id);
void add_reply_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

Some attributes and operations onServerRequestInfo are not valid at all
interception points. Table 21-2 shows the validity of each attribute or operation. If i
not valid, attempting to access it will result in aBAD_INV_ORDER being raised
with a standard minor code of 14.

Parameters

service_context The IOP::ServiceContext to be added to the request.

replace Indicates the behavior of this operation when a service contex
already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is
raised. If true, then the existing service context is replaced by
the new one.

Table 21-2ServerRequestInfo Validity

receive_request_
service_contexts

receive_
request

send_reply send_
exception

send_
other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments no yes1 yes no2 no2

exceptions no yes yes yes yes

contexts no yes yes yes yes

operation_context no yes yes no no
July 2002 CORBA, v3.0: Request Interceptors 21-29

21

A

1 WhenServerRequestInfo is passed toreceive_request , there is an entry in the list for every argument,
whether in, inout, or out. But only the in and inout arguments will be available.

2 If thereply_status attribute is notLOCATION_FORWARD , accessing this attribute will raise
BAD_INV_ORDER with a standard minor code of 14.

3 If the servant locator caused a location forward, or raised an exception, this attribute/operation may not be
available in this interception point.NO_RESOURCES with a standard minor code of 1 will be raised if it is
not available.

4 The operation is not available in this interception point because the necessary information requires access to the
target object's servant, which may no longer be available to the ORB. For example, if the object's adapter is a PO
that uses aServantLocator , then the ORB invokes the interception point after it calls
ServantLocator::postinvoke() .

21.3.14.1 sending_exception

This attribute is anany that contains the exception to be returned to the client.

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes yes yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service_context yes yes yes yes yes

get_reply_service_context no no yes yes yes

sending_exception no no no yes no

object_id no yes yes yes3 yes3

adapter_id no yes yes yes3 yes3

server_id no yes yes yes yes

orb_id no yes yes yes yes

adapter_name no yes yes yes yes

target_most_derived_interface no yes no4 no4 no4

get_server_policy yes yes yes yes yes

set_slot yes yes yes yes yes

target_is_a no yes no4 no4 no4

add_reply_service_context yes yes yes yes yes

Table 21-2ServerRequestInfo Validity

receive_request_
service_contexts

receive_
request

send_reply send_
exception

send_
other
21-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

le, it

pens
tly

ame

e.
d

If the exception is a user exception that cannot be inserted into an any (for examp
is unknown or the bindings don’t provide theTypeCode), then this attribute will be an
any containing the system exceptionUNKNOWN with a standard minor code of 1.

21.3.14.2 object_id

This attribute is the opaqueobject_id describing the target of the operation
invocation.

21.3.14.3 adapter_id

This attribute is the opaque identifier for the object adapter.

21.3.14.4 server_id

The value of theserver_id attribute is the value that was passed into theORB::init
call (see Section 4.5.1.1, “Server ID,” on page 4-26) using the-ORBServerId
argument when the ORB was created.

21.3.14.5 orb_id

The value of theorb_id attribute is the value that was passed into theORB::init call.

In Java, this is accomplished using the-ORBid argument in theORB.init call that
created the ORB containing the object adapter that created this template. What hap
if the same ORBid is used on multiple ORB::init calls in the same server is curren
undefined.

21.3.14.6 adapter_name

The adapter_name attribute defines a name for the object adapter that services
requests for the invoked object. In the case of the POA, the adapter_name is the
sequence of names from the root POA to the POA that services the request. The n
of the root POA is the sequence containing only the string “RootPOA”.

21.3.14.7 target_most_derived_interface

This attribute is theRepositoryID for the most derived interface of the servant.

21.3.14.8 get_server_policy

This operation returns the policy in effect for this operation for the given policy typ
The returnedCORBA::Policy object shall only be a policy whose type was registere
via register_policy_factory (see Section 21.7.2.12, “register_policy_factory,” on
page 21-54).
July 2002 CORBA, v3.0: Request Interceptors 21-31

21

of
If a policy for the given type was not registered viaregister_policy_factory , this
operation will raiseINV_POLICY with a standard minor code of 3.

21.3.14.9 set_slot

This operation allows an Interceptor to set a slot in the
PortableInterceptor::Current that is in the scope of the request. If data already
exists in that slot, it will be overwritten.

If the ID does not define an allocated slot,InvalidSlot is raised.

See Section 21.4, “Portable Interceptor Current,” on page 21-33 for an explanation
slots andPortableInterceptor::Current .

21.3.14.10 target_is_a

This operation returnstrue if the servant is the givenRepositoryId , false if it is not.

21.3.14.11 add_reply_service_context

This operation allows Interceptors to add service contexts to the request.

Parameters

type The CORBA::PolicyType that specifies the policy to be
returned.

Return Value The CORBA::Policy obtained with the given policy type.

Parameters

id The SlotId of the slot.

data The data, in the form of an any, to store in that slot.

Parameters

id The caller wants to know if the servant is this
CORBA::RepositoryId.

Return Value Is the servant the given RepositoryId?
21-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

t

e
e

ing
t

use

text.

t

There is no declaration of the order of the service contexts. They may or may no
appear in the order that they are added.

21.3.15 ForwardRequest Exception

exception ForwardRequest {
Object forward;

};

The ForwardRequest exception is the means by which an Interceptor can indicat
to the ORB that a retry of the request should occur with the new object given in th
exception. This behavior of causing a retry only occurs if the ORB receives a
ForwardRequest from an interceptor. IfForwardRequest is raised anywhere else
it is passed through the ORB as is normal for a user exception.

If an Interceptor raises aForwardRequest exception in response to a call of an
interceptor, no other Interceptors are called for that interception point. The remain
Interceptors in the Flow Stack shall have their appropriate ending interception poin
called:receive_other on the client, orsend_other on the server. Thereply_status
in the receive_other or send_other shall beLOCATION_FORWARD .

21.4 Portable Interceptor Current

21.4.1 Overview

The PortableInterceptor::Current object (hereafter referred to asPICurrent) is a
Current object that is used specifically by portable Interceptors to transfer thread
context information to a request context. Portable Interceptors are not required to
PICurrent . But if information from a client’s thread context is required at an
Interceptor’s interception points, thenPICurrent can be used to propagate that
information. PICurrent allows portable service code to be written regardless of an
ORB’s threading model.

On the client side, this information includes, but is not limited to, thread context
information that shall be propagated to the server via a service context.

On the server side, this information includes, but is not limited to, service context
information received from the client which is propagated to the target’s thread con

Parameters

service_context The IOP::ServiceContext to add to the reply.

replace Indicates the behavior of this operation when a service contex
already exists with the given ID. If false, then
BAD_INV_ORDERwith a standard minor code of 11 is
raised. If true, then the existing service context is replaced by
the new one.
July 2002 CORBA, v3.0: Portable Interceptor Current 21-33

21

ailed

sfer
t.

ring
21.4.2 Obtaining the Portable Interceptor Current

Before an invocation is made,PICurrent is obtained via a call to
ORB::resolve_initial_references (“PICurrent”) .

From within the interception points, the data onPICurrent that has moved from the
thread scope to the request scope is available via theget_slot operation on the
RequestInfo object. APICurrent can still be obtained via
resolve_initial_references , but that is the Interceptor’s thread scopePICurrent .
See Section 21.4.4.4, “Request Scope vs Thread Scope,” on page 21-38 for a det
discussion of the scope ofPICurrent .

21.4.3 Portable Interceptor Current Interface

module PortableInterceptor {

typedef unsigned long SlotId;

exception InvalidSlot {};

local interface Current : CORBA::Current {
any get_slot (in SlotId id) raises (InvalidSlot);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);

};
};

PICurrent is merely a slot table, the slots of which are used by each service to tran
their context data between their context and the request’s or reply’s service contex
Each service that wishes to usePICurrent reserves a slot or slots at initialization time
(see Section 21.7.2.11, “allocate_slot_id,” on page 21-54) and uses those slots du
the processing of requests and replies.

21.4.3.1 get_slot

A service can get the slot data it set inPICurrent via get_slot . The data is in the
form of anany.

If the given slot has not been set, anany containing a type code with aTCKind value
of tk_null and no value is returned.

If get_slot is called on a slot that has not been allocated,InvalidSlot is raised.
21-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

is
its

he
If get_slot is called from within an ORB initializer (see Section 21.7, “Registering
Interceptors,” on page 21-50)BAD_INV_ORDER with a minor code of 10 shall be
raised.

21.4.3.2 set_slot

A service sets data in a slot withset_slot . The data shall be in the form of anany.

If data already exists in that slot, it is overridden.

If set_slot is called on a slot that has not been allocated,InvalidSlot is raised.

If set_slot is called from within an ORB initializer (see Section 21.7, “Registering
Interceptors,” on page 21-50)BAD_INV_ORDER with a minor code of 10 shall be
raised.

21.4.4 Use of Portable Interceptor Current

21.4.4.1 Client-side use of PICurrent

PICurrent is merely a slot table. Before a request, a service’sCurrent can store its
context specific data into a slot inPICurrent . When a request begins,PICurrent ’s
context transitions from a thread context to a request context. (That is, the ORB
logically makes a copy of the currentPICurrent and places that copy on the request.
Note that this could be a lazy copy. A copy would only be necessary ifPICurrent
were modified. Since a copy may never actually be made, the term “logical copy”
used in this section.) Each service’s Interceptor now has access to the data that
Current put into PICurrent ’s slot table. In other words, each service’s Interceptor
now has access to the data within the calling client’s thread context even though t
request processing may be in a different thread.

For example, see the following pseudo-code. Within itsORBInitializer (see
Section 21.7.1, “ORBInitializer Interface,” on page 21-51), the transaction service
allocates a slot:

Parameters

id The SlotId of the slot from which the data will be returned.

Return Value The data, in the form of an any, of the given slot identifier.

Parameters

id The SlotId of the slot to which the data will be set.

data The data, in the form of an any, which will be set to the identi-
fied slot.
July 2002 CORBA, v3.0: Portable Interceptor Current 21-35

21

the
:

PortableInterceptor::SlotId mySlotId =
orb_init_info.allocate_slot_id ();

When a transaction begins, the Transaction’sCurrent is called, which can place its
context information in a slot onPICurrent :

any myData = ...; // get data from Transaction’s Current
PortableInterceptor::Current pic =

orb.resolve_initial_references (“ PICurrent ”);
pic.set_slot (mySlotId, myData);

When an operation invocation begins, the ORB logically copiesPICurrent from the
thread context to the request context and the slots are available to Interceptors via
ClientRequestInfo object. So the transaction service’s Interceptor could look like

any myData = info.get_slot (mySlotId);
IOP::ServiceContext sc = ...;// convert myData to a SC
info.add_request_service_context (sc);

The request scopePICurrent slots are read-only on the client. There is noset_slot
on theClientRequestInfo object.

21.4.4.2 Example of PICurrent to Handle Client-side Recursion

If an Interceptor itself makes an operation invocation, it shall have some means of
breaking infinite recursion. For example: the client calls operation X;send_request
is called, which calls operation Y;send_request is called, which again calls
operation Y; and so on unless the implementation ofsend_request breaks the
recursion.

Recursion can be broken usingPICurrent . If an Interceptor knows it will recurse, it
allocates a slot inPICurrent in its ORBInitializer (see Section 21.7.1,
“ORBInitializer Interface,” on page 21-51) that it will use for recursion:

PortableInterceptor::SlotId recurseId =
orb_init_info.allocate_slot_id ();

At the point at which it recurses, say insend_request , it does so in a manner similar
to the following:

any recurse = info.get_slot (recurseId);

// if we haven’t yet recursed, then the slot will be empty.
if (recurse.type () == tk_null)
{

// Fill in the recurse slot before making
// the recursive call.
any recurseFlag = new any;
recurseFlag.insert_boolean (true);
PortableInterceptor::Current pic =

orb.resolve_initial_references (“ PICurrent ”);
21-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

us
pic.set_slot (recurseId, recurseFlag);

// Now make the recursive call.
someObject.someOperation ();

}

When a client calls operation X,send_request is invoked for operation X. The
recurse slot is empty, so theif block is executed: the recurse slot is set totrue for this
thread’sPICurrent and the recursive call tosomeOperation is made.
send_request is again invoked, this time forsomeOperation . This time the recurse
slot is not empty, so theif block is not executed and the recursive call is not made, th
breaking the recursion.

21.4.4.3 Server-side use of PICurrent

The service contexts associated with the request may be propagated, usingPICurrent ,
to the context of the thread that will execute the operation. The request’sPICurrent is
read and written via theget_slot andset_slot operations onServerRequestInfo .

receive_request_service_contexts shall populate the slots of the request scope
PICurrent . The ORB logically copies thisPICurrent to the thread scope after
processing thereceive_request_service_contexts list.

When the operation invocation completes, the send interception points still have
read/write access to the request scopePICurrent .

For example, within itsORBInitializer (see Section 21.7.1, “ORBInitializer
Interface,” on page 21-51), the transaction service allocates a slot:

PortableInterceptor::SlotId mySlotId =
orb_init_info.allocate_slot_id ();

The Transaction Interceptor can move the transaction information from the service
context list toPICurrent :

IOP::ServiceContext sc =
info.get_request_service_context (transactionId);

any myData = // convert SC to an any
info.set_slot (mySlotId, myData);

Within a server thread, the Transaction service can transfer its information from
PICurrent to theTransactionCurrent :

PortableInterceptor::Current pic =
orb.resolve_initial_references (“PICurrent”);

any myData = pic.get_slot (mySlotId);
// Copy myData into the current context.
July 2002 CORBA, v3.0: Portable Interceptor Current 21-37

21

-

on
s in

he

SC.
SC.

from

nt

n.

SC

nts

ds

ied
21.4.4.4 Request Scope vs Thread Scope

The thread scopePICurrent is thePICurrent that exists within a thread’s context. A
request scopePICurrent is thePICurrent associated with the request. On the client
side, the thread scopePICurrent is logically copied to the request scopePICurrent
from the thread’s context when a request begins and is attached to the
ClientRequestInfo object. On the server-side, the request scopePICurrent is
attached to theServerRequestInfo and follows the request processing. It is logically
copied to the thread scopePICurrent after the list of
receive_request_service_contexts interception points are processed.

21.4.4.5 Flow of PICurrent between Scopes

For the following, TSC means Thread ScopePICurrent ; and RSC means Request
ScopePICurrent . Refer to Figure 21-7 on page 21-39 for a graphical representati
of the following discussion. The numbered points below correspond to the number
Figure 21-7.

Before operation invocation, the client thread may read and write the TSC. On an
operation invocation, the flow proceeds as follows:

1. The invocation proceeds to the ORB.

2. Before the sending interception points are called, a TSC is logically copied to t
request scope.

3. The sending interception points are called. They have read-only access to this R
They may add entries to the service context list based on the slot data in the R

4. On the server, an empty RSC is created. Interceptors shall populate this RSC
the service context list inreceive_request_service_contexts .

5. The ORB logically copies the RSC to the server-side TSC after the
receive_request_service_contexts points are processed and before the serva
manager is called. This TSC is within the context for thereceive_request points,
the invocation of the servant manager, and the invocation of the target operatio
The receive_request points may modify the RSC, but this no longer affects the
TSC. Thereceive_request points are called. These points have access to the R
- though modifying the RSC at this point has no affect on the TSC. Since these
points execute in the same thread as the target operation invocation, these poi
may modify the server-side TSC.

6. After thereceive_request points are called, control transfers to the server threa
which may also read and write this server-side TSC.

7. The target operation invocation completes and control returns to the ORB.

8. The TSC from the thread on which the ORB invoked the target operation is cop
back to the RSC, overwriting the slots in the RSC.
21-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

late
nt,

n by

e

pes,

ere
9. The send interception points have access to this RSC from which they may popu
the reply service context list. After the invocation result is sent back to the clie
the server-side RSC is logically destroyed.

10. The client receives the reply. The Interceptors may read the service contexts
associated with the reply. They also have readonly access to the RSC was see
the send interception points.

11. The invocation returns to the client. When the request completes, the client-sid
RSC is logically destroyed.

Figure 21-7 Thread Scope vs Request Scope

Figure 21-7 Legend
Dotted Line Flow of control (between the thread scopes and the request sco

the dotted arrows indicate a logical copy).

Solid Line Access; single arrow is readonly, double arrow is read/write.

Thick Dotted Line Boundary between client and server.

21.4.4.6 Notes on PICurrent and Scopes

Since an Interceptor is running in a thread, it is running with a thread context and th
is a PICurrent on that context. If the Interceptor calls
ORB::resolve_initial_references (“PICurrent”) , it gets thePICurrent within its
thread scope. ThisPICurrent is different than the request scopePICurrent that the
Interceptor obtains via calls to theClient- or Server- RequestInfo object. So if an

PICurrent

slots

Thread Scope

Request
 Scope

Client

send

receive

PICurrent

slots

Thread Scope

 Request
 Scope

Server

receive

send

Service
Context

Service
Context

Send
Interception
Points

Receive
Interception
Points

Send
Interception
Points

Application
Threads

Threadsreceive_
request_
service_
context

receive_
request

slots

PICurrent

1

2

3

4
5

7

8

9

6
6

1011
July 2002 CORBA, v3.0: Portable Interceptor Current 21-39

21

ich

n

its

n

er

ion
ces

ly.

an

ired,

ter
Interceptor makes an operation call, it is the Interceptor’s thread scopePICurrent that
will be logically copied to the request scope of that operation, not thePICurrent from
the original operation invocation.

Even if a client-side Interceptor happens to be running in the same thread from wh
the invocation was made (this is vendor dependent), the request scopePICurrent and
the thread scopePICurrent are still different. The request scopePICurrent is a copy
of the thread scopePICurrent at the point when the invocation began. So even if a
Interceptor changed the data in its thread scopePICurrent , that does not change the
request scopePICurrent .

Interceptors shall assume that each client-side interception point logically runs in
own thread, with no context relationship between it and any other thread. While an
ORB implementation may not actually behave in this manner, it is up to the ORB
implementation to treatPICurrent as if it did.

Interceptors shall assume that all server-side interception points except
receive_request_service_contexts run in the same thread as the target operatio
invocation, thereby sharing thread context information.
receive_request_service_contexts , like all client-side interception points,
logically runs in its own thread, with no context relationship between it and any oth
thread.

21.5 IOR Interceptor

21.5.1 Overview

In some cases, a portable ORB service implementation may need to add informat
describing the server’s or object’s ORB service related capabilities to object referen
in order to enable the ORB service implementation in the client to function proper

This is supported through theIORInterceptor and IORInfo interfaces.

The IOR Interceptor is used to establish tagged components in the profiles within
IOR.

21.5.2 An Abstract Model for Object Adapters

Using theIORInterceptor to support the object reference template imposes certain
requirements on Object Adapters. While thePOA is the only (current) standard object
adapter, it is deemed inappropriate to impose thePOA architecture on all possible
proprietary object adapters. Consequently only the abstract properties that are requ
and how these map to the particular case of the POA, are presented here.

Object Adapters have the following requirements:

• They have a unique name so that different instances of a particular object adap
may be identified.
21-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

e
ind
ce
can

te

ter

evant

kind
s

.

ed.

ce

with

haves

t

d

n

• Object adapters typically have some kind of request processing state to indicat
whether the adapter is currently accepting, rejecting, or performing some other k
of action on incoming requests. There is some representation of adapter instan
state so that a server activation framework built on the object reference template
correctly process requests as the adapter instances states change.

• If an object adapter supports large numbers of adapter instances, reporting sta
changes that affect a number of adapter instances simultaneously could be
expensive in the amount of data required. The POA has the concept of an adap
manager (thePOAManager) that controls the state of a number ofPOA instances.
They must have an abstract adapter manager that can be used for reporting rel
state changes.

21.5.2.1 Adapter Names

If an Object Adapter supports multiple adapter instances, there is a need for some
of adapter name to distinguish the instances. For this purpose, an adapter name i
defined as a sequence of strings. Several interpretations of an adapter name are
possible:

• If the Object Adapter supports only a single instance, a fixed name can be used

• If the namespace for an Object Adapter is flat, sequences of length 1 can be us

• If the namespace is hierarchical (e.g., the POA), a more complex name sequen
can be used.

In the case of the POA, the adapter name shall be the sequence of names starting
the root POA that is required to reach the POA using thefind_POA call. The name of
the root POA is the sequence containing only the string “RootPOA”.

21.5.2.2 Adapter States

Object adapters may be in one of several states that describe how the adapter be
when a new request is dispatched to the adapter:

HOLDING The request is held off temporarily in response to a transien
resource limit or a application program request. An IMR
could either choose to forward the request to the server an
let the server hold it off, or else to hold off the request at the
IMR until the state changes.

ACTIVE The request is dispatched to the servant and processed. A
IMR should forward the request to the server in this case.
July 2002 CORBA, v3.0: IOR Interceptor 21-41

21

d be

e
f
rves
nager
ant
can

hat

e
t the
nager

r
tate

o
e

In the case of thePOA, HOLDING, ACTIVE, DISCARDING, andINACTIVE map to
the same named states of the POAManager.NON_EXISTENT does not map directly
to a particularPOAManager state, but is used to indicate that aPOA has been
destroyed. APOA whose state isINACTIVE will transition to stateNON_EXISTENT
after the destruction process has completed.

While non-POA adapters may have different detailed states than the POA, it shoul
possible to map other adapter’s states onto a subset of the above states.

21.5.2.3 Adapter Managers

Some object adapters have a concept of a group of adapters that undergo state
transitions together. In such cases it is useful to capture the grouping abstractly. W
define theadapter managerto represent this grouping. The only standard attribute o
the adapter manager is the adapter manager id, which is an opaque id. This ID se
to distinguish different adapter manager instances, and to associate an adapter ma
instance with its adapter instances. The adapter manager id is only locally signific
within the ORB instance that defines the adapter manager. The id is transient, and
be compared for equality within the defining ORB instance. All adapter instances t
share the same adapter manager must have the same adapter manager id.

Use of an adapter manager allows state transitions for all adapters managed by th
same adapter manager to be efficiently reported. The only assumption made abou
semantics of an adapter manager is that a state change reported for an adapter ma
is reflected in all adapter instances managed by the adapter manager.

In the case of thePOA, thePOAManager is an adapter manager.

21.5.2.4 Adapter State Changes

Some adapters may support mechanisms independent of the adapter manager fo
changing states. In such cases, a means needs to be provided for reporting the s
changes.

DISCARDING The request is discarded. This is indicated to the client with
some kind of error. An IMR could either forward the request
to the server, or else reject the request directly. The POA
specification requires that a TRANSIENT/1 system excep-
tion be returned to the client in this case.

INACTIVE The request is discarded. The adapter is in the process of
shutting down, and will eventually end up in the
NON_EXISTENT state. An IMR could reject the request
directly, typically with an OBJ_ADAPTER/1 error.

NON_EXISTENT The adapter has been destroyed. The IMR should attempt t
reactivate the server and adapter as necessary to satisfy th
request. The IMR should hold off the request until the
adapter becomes active again.
21-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

reate
may

t

In the case of the POA, a subtree of POAs may all transition to theNON_EXISTENT
state as a result of thePOA::destroy call.

21.5.3 Object Reference Template

21.5.3.1 Definition

The Object Reference Template is defined in IDL as an abstract valuetype.

An object reference template is associated with an object adapter. Typically the
template is created when the object adapter is created, used within the adapter to c
object references, and destroyed when the adapter is destroyed. Different adapters
support very different styles of object creation.

The object reference template is defined as follows:

module PortableInterceptor {
typedef string ServerId ;
typedef string ORBId ;
typedef CORBA::StringSeq AdapterName ;
typedef CORBA::OctetSeq ObjectId ;

abstract valuetype ObjectReferenceFactory {
boolean equals(in ObjectReferenceFactory other) ;
Object make_object(in string repositoryId, in ObjectId id) ;
IOP::TaggedProfileSeq make_profiles(

in string repository_id,
in ObjectId id) ;

};

abstract valuetype ObjectReferenceTemplate :
ObjectReferenceFactory {
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name;

};

typedef sequence<ObjectReferenceTemplate>
ObjectReferenceTemplateSeq;

};

TheObjectReferenceFactory valuetype provides the capability to create new objec
references, while theObjectReferenceTemplate valuetype extends the factory
capability with the identity of the template. This division is convenient because the
current_factory attribute in IORInfo (see Section 21.5.5, “IORInfo Interface,” on
page 21-46) only requires the capability to create an object reference, while the
adapter_template attribute (also in Section 21.5.5) also requires identity
information.
July 2002 CORBA, v3.0: IOR Interceptor 21-43

21

e
of
r.

ory

s to

lity

,

Concrete definitions and implementations ofObjectReferenceTemplate and
ObjectReferenceFactory are ORB implementation specific and are not defined as
they are not expected to be exchanged between ORB implementations.

21.5.3.2 The ObjectReferenceFactory abstract valuetype

The ObjectReferenceFactory provides only the capability to create an object
reference. Note that a factory is immutable: after it has been created, it cannot be
modified.

Also, note that it is possible to create a concrete valuetype (unknown to the ORB
implementation) that subclasses theObjectReferenceFactory valuetype, and to use
this factory in the IOR interceptor ascurrent_factory (see Section 21.5.5.7,
“current_factory,” on page 21-49). In such cases, the implementation must either b
immutable after it is created, or the implementation must not change the behavior
make_object . Failure to observe this requirement may result in undefined behavio

21.5.3.3 make_object

make_object creates an Object Reference from this factory using the given reposit
ID and object ID.

21.5.3.4 make_profiles

make_profiles returns the sequence of tagged profiles for the IOR that correspond
the object reference that would be created by a call tomake_object with the same
arguments.

21.5.3.5 equals

equals satisfies the usual reflexive, symmetric, and transitive properties that equa
normally respects. That is, for anyObjectReferenceFactories X , Y, andZ:

1. X.equals (X) = TRUE

2. X.equals (Y) = Y.equals (X)

3. if X.equals (Y) = TRUE andY.equals (Z) = TRUE, thenX.equals (Z) = TRUE

If X andY are different object adapters, andXinfo andYinfo are theIORInfo objects
passed to theIORInterceptor , then
Xinfo .adapter_template ().equals (Yinfo .adapter_template ()) = FALSE .

An equals method on a user definedObjectReferenceFactory must returnFALSE
when passed the value of anIORInfo .adapter_template attribute, unless the user
definedmake_profiles method returns the sameProfileSeq as the
adapter_template make_profiles method when invoked with the same arguments
in which case the user definedObjectReferenceFactory equals method may return
TRUE.
21-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

:

pens

se
21.5.3.6 The ObjectReferenceTemplate abstract valuetype

The ObjectReferenceTemplate extends theObjectReferenceFactory with the
identity of the object adapter. Note that the template, like the factory, is immutable
after it has been created, it cannot be modified.

21.5.3.7 server_id

The value of theserver_id attribute is the value that was passed into the ORB::init
call (see Section 4.5.1.1, “Server ID,” on page 4-26) using the-ORBServerId
argument when the ORB was created.

21.5.3.8 orb_id

The value of theorb_id attribute is the value that was passed into theORB::init call.

In Java, this is accomplished using the-ORBid argument in theORB.init call that
created the ORB containing the object adapter that created this template. What hap
if the same ORBid is used on multipleORB::init calls in the same server is currently
undefined.

21.5.3.9 adapter_name

The adapter_name attribute defines a name for the object adapter that services
requests for the invoked object.

21.5.4 IORInterceptor Interface

local interface IORInterceptor : Interceptor {
void establish_components (in IORInfo info);

};
local interface IORInterceptor_3_0 : IORInterceptor {

void components_established(in IORInfo info) ;

void adapter_manager_state_changed(in AdapterManagerId id,
in AdapterState state);

void adapter_state_changed(in ObjectReferenceTemplateSeq
templates, in AdapterState state) ;

};

21.5.4.1 establish_components

A server side ORB calls theestablish_components operation on all registered
IORInterceptor instances when it is assembling the list of components that will be
included in the profile or profiles of an object reference. This operation is not
necessarily called for each individual object reference. In the case of the POA, the
calls are made each timePOA::create_POA is called. In other adapters, these calls
July 2002 CORBA, v3.0: IOR Interceptor 21-45

21

ot

0

d

by

ed
s for

e

r-
would typically be made when the adapter is initialized. The adapter template is n
available at this stage since information (the components) needed in the adapter
template is being constructed.

An implementation ofestablish_components must not throw exceptions. If it does,
the ORB shall ignore the exception and proceed to call the next IOR Interceptor’s
establish_components operation.

21.5.4.2 components_established

After all of the establish_components methods have been called, the
components_established methods are called on all registered IORInterceptor_3_
instances. The adapter template is available at this stage. The current_factory
attribute may be get or set at this stage.

Any exception that occurs incomponents_established is returned to the caller of
components_established . In the case of the POA, this causes thecreate_POA call
to fail, and anOBJ_ADAPTER exception with a standard minor code of 6 is returne
to the invoker ofcreate_POA .

21.5.4.3 adapter_manager_state_changed

Any time the state of an adapter manager changes, the
adapter_manager_state_changed method is invoked on all registered
IORInterceptor_3_0 instances. If a state change is reported through
adapter_manager_state_changed , it is not reported through
adapter_state_changed .

21.5.4.4 adapter_state_changed

Adapter state changes unrelated to adapter manager state changes are reported
invoking the adapter_state_changed method on all registered IORInterceptor_3_0
instances. The templates argument identifies the object adapters that have chang
state by the template ID information. The sequence contains the adapter template
all object adapters that have made the state transition being reported.

21.5.5 IORInfo Interface

The IORInfo interface provides the server-side ORB service with access to the
applicable policies during IOR construction and the ability to add components. Th
ORB passes an instance of its implementation of this interface as a parameter to
IORInterceptor::establish_components .

Parameters

info The IORInfo instance used by the ORB service to query appli-
cable policies and add components to be included in the gene
ated IORs.
21-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

the

ject

es
ct

lar

OA,
typedef string AdapterManagerId;

typedef short AdapterState ;
const AdapterState HOLDING = 0 ;
const AdapterState ACTIVE = 1 ;
const AdapterState DISCARDING = 2 ;
const AdapterState INACTIVE = 3 ;
const AdapterState NON_EXISTENT = 4 ;

local interface IORInfo {
CORBA::Policy get_effective_policy (in CORBA::PolicyType type);
void add_ior_component

(in IOP::TaggedComponent a_component);
void add_ior_component_to_profile (

in IOP::TaggedComponent a_component,
in IOP::ProfileId profile_id);

readonly attribute AdapterManagerId manager_id;
readonly attribute AdapterState state;
readonly attribute ObjectReferenceTemplate adapter_template ;
attribute ObjectReferenceFactory current_factory ;

};

All object adapter implementations provide some mechanism for creating object
references. The construction of the object reference is influenced by all of the
applicable server-side policies, which are used while assembling the tagged
components required for the object reference. The IOR interceptors also influence
tagged components through theIORInfo::add_component and
IORInfo:add_component_to_profile methods. After all of this construction has
completed, the adapter conceptually has a template that can be used to create ob
references. We will refer to this template as theadapter template.

For example, in the POA, afterPOA::create_POA method has completed, there is a
complete template in the POA that will be used to create individual object referenc
whencreate_reference or any other method is called that needs to create an obje
reference.

21.5.5.1 get_effective_policy

An ORB service implementation may determine what server side policy of a particu
type is in effect for an IOR being constructed by calling theget_effective_policy
operation. When the IOR being constructed is for an object implemented using a P
all Policy objects passed to thePortableServer::POA::create_POA call that created
that POA are accessible viaget_effective_policy .

If a policy for the given type is not known to the ORB, then this operation will raise
INV_POLICY with a standard minor code of 3.
July 2002 CORBA, v3.0: IOR Interceptor 21-47

21

t

er.
r

.

21.5.5.2 add_ior_component

A portable ORB service implementation callsadd_ior_component from its
implementation ofestablish_components to add a tagged component to the set
that will be included when constructing IORs. The components in this set will be
included in all profiles.

Any number of components may exist with the same component ID.

21.5.5.3 add_ior_component_to_profile

A portable ORB service implementation callsadd_ior_component_to_profile from
its implementation ofestablish_components to add a tagged component to the se
that will be included when constructing IORs. The components in this set will be
included in the specified profile.

Any number of components may exist with the same component ID.

If the given profile ID does not define a known profile or it is impossible to add
components to that profile,BAD_PARAM is raised with a standard minor code of29.

21.5.5.4 manager_id

The manager_id attribute provides an opaque handle to the manager of the adapt
This is used for reporting state changes in adapters managed by the same adapte
manager.

Parameters

type The CORBA::PolicyType specifying the type of policy to
return.

Return Value The effective CORBA::Policy object of the requested type.
If the given policy type is known, but no policy of that type is
in effect, then this operation will return a nil object reference.

Parameters

a_component The IOP::TaggedComponent to add.

Parameters Description

a_component The IOP::TaggedComponent to add.

profile_id The IOP::ProfileId of the profile to which this component will
be added.
21-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

tly

e

ated

et

f

21.5.5.5 state

The state attribute returns the current state of the adapter. This must be one of
HOLDING, ACTIVE, DISCARDING, INACTIVE, NON_EXISTENT.

21.5.5.6 adapter_template

The adapter_template attribute provides a means to obtain an object reference
template whenever an ior interceptor is invoked. There is no standard way to direc
create an object reference template. The value ofadapter_template is the template
created for the adapter policies and IOR interceptor calls toadd_component and
add_component_to_profile . The value of theadapter_template attribute is never
changed for the lifetime of the object adapter.

21.5.5.7 current_factory

The current_factory attribute provides access to the factory that will be used by th
adapter to create object references.current_factory initially has the same value as
theadapter_template attribute, but this can be changed by settingcurrent_factory
to another factory. All object references created by the object adapter must be cre
by calling themake_object method oncurrent_factory .

The value of thecurrent_factory attribute that is used by the adapter can only be s
during the call to thecomponents_established method.

21.5.5.8 Method Validity

The following table defines the validity of each attribute or operation inIORInfo in the
methods defined in theIORInterceptor :

If an illegal call is made to an attribute or operation inIORInfo , the
BAD_INV_ORDER system exception is raised with a standard minor code value o
14.

Table 21-3IORInfo validity

establish_components components_established

get_effective_policy yes yes

add_component yes no

add_component_to_profile yes no

read manager_id yes yes

read state yes yes

read adapter_template no yes

read current_factory no yes

write current_factory no yes
July 2002 CORBA, v3.0: IOR Interceptor 21-49

21

”

RB
e

.
o

21.6 PolicyFactory

21.6.1 PolicyFactory Interface

A portable ORB service implementation registers an instance of thePolicyFactory
interface during ORB initialization (see Section 21.7.2.12, “register_policy_factory,
on page 21-54) in order to enable its policy types to be constructed using
CORBA::ORB::create_policy . The POA is required to preserve any policy that is
registered withORBInitInfo in this manner.

module PortableInterceptor
{

local interface PolicyFactory {
CORBA::Policy create_policy (

in CORBA::PolicyType type,
in any value)
raises (CORBA::PolicyError);

};
};

21.6.1.1 create_policy

The ORB callscreate_policy on a registeredPolicyFactory instance when
CORBA::ORB::create_policy is called for thePolicyType under which the
PolicyFactory has been registered. Thecreate_policy operation then returns an
instance of the appropriate interface derived fromCORBA::Policy whose value
corresponds to the specifiedany. If it cannot, it shall raise an exception as described
for CORBA::ORB::create_policy .

21.7 Registering Interceptors

Interceptors are intended to be a means by which ORB services gain access to O
processing, effectively becoming part of the ORB. Since Interceptors are part of th
ORB, whenORB_init returns an ORB, the Interceptors shall have been registered
Interceptors cannot be registered on an ORB after it has been returned by a call t
ORB_init .

Parameters Description

type A CORBA::PolicyType specifying the type of policy being cre-
ated.

value An any containing data with which to construct the
CORBA::Policy.

Return Value A CORBA::Policy object of the specified type and value.
21-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

s

e

t

21.7.1 ORBInitializer Interface

An Interceptor is registered by registering an associatedORBInitializer object that
implements theORBInitializer interface. When an ORB is initializing, it shall call
each registeredORBInitializer , passing it anORBInitInfo object, which is used to
register its Interceptor.

module PortableInterceptor {
local interface ORBInitializer {

void pre_init (in ORBInitInfo info);
void post_init (in ORBInitInfo info);

};
};

21.7.1.1 pre_init

This operation is called during ORB initialization. If it is expected that initial service
registered by an interceptor will be used by other interceptors, then those initial
services shall be registered at this point via calls to
ORBInitInfo::register_initial_reference .

21.7.1.2 post_init

This operation is called during ORB initialization. If a service must resolve initial
references as part of its initialization, it can assume that all initial references will b
available at this point.

Calling thepost_init operations is not the final task of ORB initialization. The final
task, following thepost_init calls, is attaching the lists of registered interceptors to
the ORB. Therefore, the ORB does not contain the interceptors during calls to
post_init . If an ORB-mediated call is made from withinpost_init , no request
interceptors will be invoked on that call. Likewise, if an operation is performed tha
causes an IOR to be created, no IOR interceptors will be invoked.

21.7.2 ORBInitInfo Interface

module PortableInterceptor {
local interface ORBInitInfo {

typedef string ObjectId;

Parameter Description

info See below. This object provides initialization attributes and op-
erations by which Interceptors can be registered.

Parameters Description

info See below. This object provides initialization attributes and op-
erations by which Interceptors can be registered.
July 2002 CORBA, v3.0: Registering Interceptors 21-51

21

ame

ute.

lt
exception DuplicateName {
string name;

};
exception InvalidName {};

readonly attribute CORBA::StringSeq arguments;
readonly attribute string orb_id;
readonly attribute IOP::CodecFactory codec_factory;

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

 Object resolve_initial_references (
in ObjectId id) raises (InvalidName);

void add_client_request_interceptor (
in ClientRequestInterceptor interceptor)
raises (DuplicateName);

void add_server_request_interceptor (
in ServerRequestInterceptor interceptor)
raises (DuplicateName);

void add_ior_interceptor (in IORInterceptor interceptor)
raises (DuplicateName);

SlotId allocate_slot_id ();
void register_policy_factory (

in CORBA::PolicyType type,
in PolicyFactory policy_factory);

};
};

21.7.2.1 DuplicateName Exception

Only one Interceptor of a given name can be registered with the ORB for each
Interceptor type. If an attempt is made to register a second Interceptor with the s
name,DuplicateName is raised.

An Interceptor may be anonymous; that is, have an empty string as the name attrib
Any number of anonymous Interceptors may be registered with the ORB so, if the
Interceptor being registered is anonymous, the registration operation will not raise
DuplicateName.

21.7.2.2 InvalidName Exception

This exception is raised byregister_initial_reference and
resolve_initial_references .

register_initial_reference raisesInvalidName if:

• this operation is called with an empty string id; or

• this operation is called with an id that is already registered, including the defau
names defined by OMG.
21-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

ses

ical.

r
ses

ical.

ide

r’s
resolve_initial_references raisesInvalidName if the name to be resolved is
invalid.

21.7.2.3 arguments

This attribute contains the arguments passed toORB_init . They may or may not
contain the ORB’s arguments.

21.7.2.4 orb_id

This attribute is the ID of the ORB being initialized.

21.7.2.5 codec_factory

This attribute is theIOP::CodecFactory . TheCodecFactory is normally obtained
via a call toORB::resolve_initial_references (“CodecFactory”) , but since the
ORB is not yet available and Interceptors, particularly when processing service
contexts, will require aCodec , a means of obtaining aCodec is necessary during
ORB initialization.

21.7.2.6 register_initial_reference

This operation is identical toORB::register_initial_reference described there. This
same functionality exists here because the ORB, not yet fully initialized, is not yet
available but initial references may need to be registered as part of Interceptor
registration. The only difference is that the version of this operation on the ORB u
PIDL (CORBA::ORB::ObjectId andCORBA::ORB::InvalidName) whereas the
version in this interface uses IDL defined in this interface; the semantics are ident

21.7.2.7 resolve_initial_references

See Section 21.7, “Registering Interceptors,” on page 21-50. This operation is only
valid duringpost_init . It is identical toORB::resolve_initial_references . This
same functionality exists here because the ORB, not yet fully initialized, is not yet
available but initial references may be required from the ORB as part of Intercepto
registration. The only difference is that the version of this operation on the ORB u
PIDL (CORBA::ORB::ObjectId andCORBA::ORB::InvalidName) whereas the
version in this interface uses IDL defined in this interface; the semantics are ident

21.7.2.8 add_client_request_interceptor

This operation is used to add a client-side request Interceptor to the list of client-s
request Interceptors.

If a client-side request Interceptor has already been registered with this Intercepto
name,DuplicateName is raised.
July 2002 CORBA, v3.0: Registering Interceptors 21-53

21

-side

or’s

ves

er
.

21.7.2.9 add_server_request_interceptor

This operation is used to add a server-side request Interceptor to the list of server
request Interceptors.

If a server-side request Interceptor has already been registered with this Intercept
name,DuplicateName is raised.

21.7.2.10 add_ior_interceptor

This operation is used to add an IOR Interceptor to the list of IOR Interceptors.

If an IOR Interceptor has already been registered with this Interceptor’s name,
DuplicateName is raised..

21.7.2.11 allocate_slot_id

A service callsallocate_slot_id to allocate a slot on
PortableInterceptor::Current .

Note that while slot ids can be allocated within an ORB initializer, the slots themsel
cannot be initialized. Callingset_slot or get_slot on thePICurrent (see
Section 21.4, “Portable Interceptor Current,” on page 21-33) within an ORB initializ
shall raise aBAD_INV_ORDER with a minor code of 14.

21.7.2.12 register_policy_factory

Register aPolicyFactory for the givenPolicyType .

If a PolicyFactory already exists for the givenPolicyType , BAD_INV_ORDER is
raised with a standard minor code of 16.

Parameter Description

interceptor The ClientRequestInterceptor to be added.

Parameter Description

interceptor The ServerRequestInterceptor to be added.

Parameter Description

interceptor The IORInterceptor to be added.

Return Value The index to the slot that has been allocated.
21-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

ly
er

y

21.7.3 register_orb_initializer Operation

To register anORBInitializer , a new operation is provided:register_orb_initializer .
This operation, likeORB_init , is PIDL and is not part of any interface. It resides in
the PortableInterceptor module.

void register_orb_initializer (in ORBInitializer init);

Each service that implements Interceptors will provide an instance ofORBInitializer .
To use a service, an application would first callregister_orb_initializer , passing in
the service’sORBInitializer . After this is complete, the application would make an
instantiatingORB_init call. (An instantiatingORB_init call is one that produces a
new ORB. In other words, one that is not passed the ID of an existing ORB.) This
instantiatingORB_init call calls each registeredORBInitializer . The returned ORB
will contain any Interceptors that the given service requires.

register_orb_initializer is a global operation. AnORBInitializer registered at a
given point in time will be called by all instantiatingORB_init calls that occur after
that point in time. No ORB instantiated before that point in time will be affected by
that ORBInitializer . Moreover, ifregister_orb_initializer is called from within an
initializer, the initializer registered by that call will not be called for the ORB current
being initialized. That initializer will only be invoked on an ORB instantiated at a lat
time.

21.7.3.1 Mappings of register_orb_initializer

C++

The register_orb_initializer method is defined in thePortableInterceptor name
space as:

namespace PortableInterceptor {
static void register_orb_initializer (

PortableInterceptor::ORBInitializer_ptr init);
};

Java

Theregister_orb_initializer operation, since it is global, would break applet securit
with respect to the ORB. So, in Java, instead of registeringORBInitializers via
register_orb_initializer , ORBInitializers are registered via Java ORB properties.

Parameters Description

type The CORBA::PolicyType that the given PolicyFactory serves.

policy_factory The factory for the given CORBA::PolicyType.
July 2002 CORBA, v3.0: Registering Interceptors 21-55

21

s:

e

New Property Set

The new property names are of the form:

org.omg.PortableInterceptor.ORBInitializerClass.<Service>

where<Service > is the string name of a class, which implements

org.omg.PortableInterceptor.ORBInitializer .

To avoid name collisions, the reverse DNS name convention should be used. For
example, if company X has three initializers, it could define the following propertie

org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init1
org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init2
org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init3

During ORB.init , these ORB properties that begin with
org.omg.PortableInterceptor.ORBInitializerClass shall be collected,
the <Service > portion of each property shall be extracted, an object shall be
instantiated with the<Service > string as its class name, and thepre_init and
post_init methods shall be called on that object. If there are any exceptions, th
ORB shall ignore them and proceed.

Example

A client-side logging service written by company X, for example, may have the
following ORBInitializer implementation:

package com.x.logging;

import org.omg.PortableInterceptor.Interceptor;
import org.omg.PortableInterceptor.ORBInitializer;
import org.omg.PortableInterceptor.ORBInitInfo;

public class LoggingService implements ORBInitializer
{

void pre_init (ORBInitInfo info)
{

// Instantiate the Logging Service’s Interceptor.
Interceptor interceptor = new LoggingInterceptor ();

// Register the Logging Service’s Interceptor.
info.add_client_request_interceptor (interceptor);

}

void post_init (ORBInitInfo info)
{

// This service does not need two init points.
}

}

21-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

hin

B.

ith
h
st
ents.
rs to

l
of
To run a program calledMyApp using this logging service, the user could type:

java
-Dorg.omg.PortableInterceptor.ORBInitializerClass.com.x.
Logging.LoggingService MyApp

Ada

For the Ada mapping, a new child library procedure is defined to register
ORBInitializers :

procedure PortableInterceptor.ORBinitializer.Register
(Init: in PortableInterceptor.ORBinitializer.Local_Ref);

21.7.4 Notes about Registering Interceptors

Request Interceptors are registered on a per-ORB basis.

To achieve virtual per-object Interceptors, query the policies on the target from wit
the interception points to determine whether they should do any work.

To achieve virtual per-POA Interceptors, instantiate each POA with a different OR

While Interceptors may be ordered administratively, there is no concept of order w
respect to the registration of Interceptors. Request Interceptors are concerned wit
service contexts. Service contexts have no order, so there is no purpose for reque
Interceptors to have an order. IOR Interceptors are concerned with tagged compon
Tagged components also have no order, so there is no purpose for IOR Intercepto
have an order.

Registration code should avoid using the ORB; that is, callingORB_init with the
providedorb_id . Since registration occurs during ORB initialization, results of
invocations on this ORB while it is in this state are undefined.

TheORBInitInfo object is only valid duringORB_init . If a service keeps a reference
to its ORBInitInfo object and tries to use it afterORB_init returns, the object no
longer exists and anOBJECT_NOT_EXIST exception shall be raised.

21.8 Dynamic Initial References

There are a set number of objects that a call toORB::resolve_initial_references is
able to return. However, vendors and applications may wish to add additional initia
references. The lifecycle of these additional references coincides with the lifecycle
the ORB.

21.8.1 register_initial_reference

An operation is available in the ORB interface:

void register_initial_reference (in ObjectId id, in Object obj)
July 2002 CORBA, v3.0: Dynamic Initial References 21-57

21

to

lt
raises (InvalidName);

If this operation is called with an id, “Y”, and an object, YY, then a subsequent call
ORB::resolve_initial_references (“Y”) will return object YY.

InvalidName is raised if:

• this operation is called with an empty string id; or

• this operation is called with an id that is already registered, including the defau
names defined by OMG.

If the Object parameter is null,BAD_PARAM will be raised with a standard minor
code of 27.

See also Section 21.7.2.6, “register_initial_reference,” on page 21-53.

21.9 Module Dynamic

In order to keep the portable Interceptor IDL from becoming PIDL, we provide IDL
types that correspond to PIDL types for that subset of PIDL that the portable
Interceptors use. We have chosen to place these new types in a module called
Dynamic since it is the dynamic interface sections that define the PIDL that the
portable Interceptors use.

21.9.1 NVList PIDL Represented by ParameterList IDL

struct Parameter {
any argument;
CORBA::ParameterMode mode;

};
typedef sequence<Parameter> ParameterList;

21.9.2 ContextList PIDL Represented by ContextList IDL

typedef CORBA::StringSeq ContextList;

21.9.3 ExceptionList PIDL Represented by ExceptionList IDL

typedef sequence<CORBA::TypeCode> ExceptionList;

Parameters Description

id The ID by which the initial reference will be known.

obj The initial reference itself.
21-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21

pair
21.9.4 Context PIDL Represented by RequestContext IDL

Context objects are encoded assequence<string> . The strings occur in pairs. The
first string in each pair is the context property name and the second string in each
is the associated value.

typedef CORBA::StringSeq RequestContext;

21.10 Consolidated IDL

21.10.1 Dynamic

// IDL
// File: Dynamic.idl
#ifndef _DYNAMIC_IDL_
#define _DYNAMIC_IDL_

import ::CORBA;
module Dynamic {

typeprefix Dynamic “omg.org”;

struct Parameter {
any argument;
CORBA::ParameterMode mode;

};

typedef sequence<Parameter> ParameterList;

typedef CORBA::StringSeq ContextList;

typedef sequence<CORBA::TypeCode> ExceptionList;

typedef CORBA::StringSeq RequestContext;
};
#endif _DYNAMIC_IDL_

21.10.2 Portions of IOP Relevant to Portable Interceptor

import ::CORBA;

module IOP{
typeprefix IOP “omg.org”;
typedef sequence<IOP::TaggedComponent> TaggedComponentSeq;

local interface Codec {
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};
July 2002 CORBA, v3.0: Consolidated IDL 21-59

21
CORBA::OctetSeq encode (in any data)
raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)
raises (FormatMismatch);

CORBA::OctetSeq encode_value (in any data)
raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,
in CORBA::TypeCode tc)
raises (FormatMismatch, TypeMismatch);

};

typedef short EncodingFormat;
const EncodingFormat ENCODING_CDR_ENCAPS = 0;

struct Encoding {
EncodingFormat format;
octet major_version;
octet minor_version;

};

local interface CodecFactory {
exception UnknownEncoding {};

Codec create_codec (in Encoding enc) raises (UnknownEncoding);
};

};

21.10.3 PortableInterceptor

// IDL
// File: PortableInterceptor.idl
#ifndef _PORTABLE_INTERCEPTOR_IDL_
#define _PORTABLE_INTERCEPTOR_IDL_

import ::CORBA;
import ::IOP;
import ::Messaging;
import ::Dynamic;

module PortableInterceptor {
typeprefix PortableInterceptor “omg.org”;
local interface Interceptor {

 readonly attribute string name;
void destroy();

};

exception ForwardRequest {
Object forward;

};
21-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21
typedef short ReplyStatus;

// Valid reply_status values:
const ReplyStatus SUCCESSFUL = 0;
const ReplyStatus SYSTEM_EXCEPTION = 1;
const ReplyStatus USER_EXCEPTION = 2;
const ReplyStatus LOCATION_FORWARD = 3;
const ReplyStatus TRANSPORT_RETRY = 4;
const ReplyStatus UNKNOWN = 5;

typedef unsigned long SlotId;

exception InvalidSlot {};

local interface Current : CORBA::Current {
any get_slot (in SlotId id) raises (InvalidSlot);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);

};

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;
readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (

in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (

in IOP::ServiceId id);
};

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;
IOP::TaggedComponent get_effective_component (

in IOP::ComponentId id);
IOP::TaggedComponentSeq get_effective_components (

in IOP::ComponentId id);
CORBA::Policy get_request_policy (in CORBA::PolicyType type);
void add_request_service_context (

in IOP::ServiceContext service_context,
July 2002 CORBA, v3.0: Consolidated IDL 21-61

21
in boolean replace);
};

typedef string ServerId ;
typedef string ORBId ;
typedef CORBA::StringSeq AdapterName ;
typedef CORBA::OctetSeq ObjectId;

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;

readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name ;

readonly attribute ObjectId object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute CORBA::RepositoryId

target_most_derived_interface;
CORBA::Policy get_server_policy (in CORBA::PolicyType type);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);
boolean target_is_a (in CORBA::RepositoryId id);
void add_reply_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)

raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)

raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)

raises (ForwardRequest);
};

local interface ServerRequestInterceptor : Interceptor {
void receive_request_service_contexts (in ServerRequestInfo ri)

raises (ForwardRequest);
void receive_request (in ServerRequestInfo ri)

 raises (ForwardRequest);
void send_reply (in ServerRequestInfo ri);
void send_exception (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_other (in ServerRequestInfo ri)

raises (ForwardRequest);
};

abstract valuetype ObjectReferenceFactory {
boolean equals(in ObjectReferenceFactory other) ;
Object make_object(in string repositoryId, in ObjectId id) ;
21-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

21
IOP::TaggedProfileSeq make_profiles(
in string repository_id,
in ObjectId id) ;

};

abstract valuetype ObjectReferenceTemplate :
ObjectReferenceFactory {
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name ;

} ;

typedef sequence<ObjectReferenceTemplate>
ObjectReferenceTemplateSeq;

typedef string AdapterManagerId;

typedef short AdapterState ;

const AdapterState HOLDING = 0 ;
const AdapterState ACTIVE = 1 ;
const AdapterState DISCARDING = 2 ;
const AdapterState INACTIVE = 3 ;
const AdapterState NON_EXISTENT = 4 ;

local interface IORInfo {
CORBA::Policy get_effective_policy (in CORBA::PolicyType type);
void add_ior_component (

in IOP::TaggedComponent a_component);
void add_ior_component_to_profile (

in IOP::TaggedComponent a_component,
in IOP::ProfileId profile_id);

};

local interface IORInterceptor : Interceptor {
void establish_components (in IORInfo info);

};
local interface IORInterceptor_3_0 : IORInterceptor {

void components_established(in IORInfo info) ;
void adapter_manager_state_changed(

in AdapterManagerId id, in AdapterState state) ;
void adapter_state_changed(

in ObjectReferenceTemplateSeq templates,
in AdapterState state) ;

};

local interface PolicyFactory {
CORBA::Policy create_policy (

in CORBA::PolicyType type,
in any value)
raises (CORBA::PolicyError);
July 2002 CORBA, v3.0: Consolidated IDL 21-63

21
};

local interface ORBInitInfo {
typedef string ObjectId;
exception DuplicateName {

string name;
};
exception InvalidName {};

readonly attribute CORBA::StringSeq arguments;
readonly attribute string orb_id;
readonly attribute IOP::CodecFactory codec_factory;

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

Object resolve_initial_references (
in ObjectId id) raises (InvalidName);

void add_client_request_interceptor (
in ClientRequestInterceptor interceptor)
raises (DuplicateName);

void add_server_request_interceptor (
in ServerRequestInterceptor interceptor)
raises (DuplicateName);

void add_ior_interceptor (in IORInterceptor interceptor)
raises (DuplicateName);

SlotId allocate_slot_id ();
void register_policy_factory (

in CORBA::PolicyType type,
in PolicyFactory policy_factory);

};

local interface ORBInitializer {
void pre_init (in ORBInitInfo info);
void post_init (in ORBInitInfo info);

};
};

#endif _PORTABLE_INTERCEPTOR_IDL_
21-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

CORBAMessaging 22
d

ts
This chapter covers three general topics: Quality of Service, Asynchronous Metho
Invocations (including Time-Independent or “Persistent” Requests), and the
specification of interoperable Routing interfaces to support the transport of reques
asynchronously from the handling of their replies.

Contents

This chapter contains the following topics.

Topic Page

Section I - Quality of Service 22-2

“Section I - Introduction” 22-2

“Messaging Quality of Service” 22-2

“Propagation of Messaging QoS” 22-12

Section II - Messaging Programming Model 22-13

“Section II - Introduction” 22-13

“Running Example” 22-15

“Async Operation Mapping” 22-16

“Exception Delivery in the Callback Model” 22-20

“Type-Specific ReplyHandler Mapping” 22-21

“Generic Poller Value” 22-24

“Type-Specific Poller Mapping” 22-26

“Example Programmer Usage” 22-30
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 22-1

22

sing
and

h
s

ities

ly
Section I - Quality of Service
Messaging requires clients and servers to have the ability to set the required and
supported qualities of service with respect to requests. This specification provides
generalized APIs through which such qualities are set in clients and servers. In
addition, the set of Messaging-related qualities and the rules for reconciling and u
these qualities are defined. Finally, the Messaging-specific IOR Profile Component
Service Context are defined for propagation of QoS information.

22.1 Section I - Introduction

This section describes a standard Quality of Service (QoS) framework within whic
CORBA Services specifications should define their service-specific qualities. In thi
framework, all QoS settings are interfaces derived fromCORBA::Policy .

The details of the Policy Management Framework are to be found in theORB Interface
chapter.

22.2 Messaging Quality of Service

The Messaging module contains the IDL that the programmer uses to define Qual
of Service specific to CORBA messaging.

Note – Except where defaults are noted, this specification does not state required
default values for the following Qualities of Service. Application code must explicit
set its ORB-level Quality of Service to ensure portability across ORB products.

module Messaging {

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;

Section III - Message Routing Interoperability 22-45

“Section III - Introduction” 22-45

“Routing Object References” 22-46

“Message Routing” 22-46

“Router Administration” 22-59

“CORBA Messaging IDL” 22-65

Appendix A - “Overall Design Rationale” 22-72

Appendix B - “Conformance and Compatibility Issues” 22-84

Topic Page
22-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD =2;

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
local interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
local interface SyncScopePolicy : CORBA::Policy {

readonly attribute SyncScope synchronization;
};

// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};

local interface RequestPriorityPolicy : CORBA::Policy {
readonly attribute PriorityRange priority_range;

};

const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
local interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType
July 2002 CORBA, v3.0: Messaging Quality of Service 22-3

22
REQUEST_START_TIME_POLICY_TYPE = 27;
local interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
local interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
local interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
local interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;

local interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;

local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
local interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
local interface MaxHopsPolicy : CORBA::Policy {

readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
local interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

};
22-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

n

y

ns
that
in

e

rom

the

ies
22.2.1 Rebind Support

22.2.1.1 typedef short RebindMode

Describes the level of transparent rebinding that may occur during the course of a
invocation on an Object. Values of typeRebindMode are used in conjunction with a
RebindPolicy , as described in Section 22.2.1.2, “interface RebindPolicy,” on
page 22-5. All non-negative values are reserved for use in OMG specifications. An
negative value ofRebindMode is considered a vendor extension.

• TRANSPARENT - allows the ORB to silently handle object-forwarding and
necessary reconnection during the course of making a remote request. This is
equivalent to the only definedCORBAORB behavior.

• NO_REBIND - allows the ORB to silently handle reopening of closed connectio
while making a remote request, but prevents any transparent object-forwarding
would cause a change in client-visible effective QoS policies. When this policy is
effect, only explicit rebinding (throughCORBA::Object::validate_connection)
is allowed.

• NO_RECONNECT - prevents the ORB from silently handling object-forwards or
the reopening of closed connections. When this policy is in effect, only explicit
rebinding and reconnection (throughCORBA::Object::validate_connection) is
allowed.

22.2.1.2 interface RebindPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate
whether the ORB may transparently rebind once successfullyboundto a target. For
GIOP-based protocols an object reference is considered bound once it is in a stat
where aLocateRequest message would result in aLocateReply message with
statusOBJECT_HERE . If the effective Policy of this type has arebind_mode value
of TRANSPARENT (always the default and the only valid value inCORBA), the ORB
will silently handle any subsequentLocateReply messages with
OBJECT_FORWARD status or Reply messages withLOCATION_FORWARD
status. The effective policies of other types for this object reference may change f
invocation to invocation. If the effective Policy of this type has arebind_mode value
of NO_REBIND, the ORB will raise aREBIND system exception if any rebind
handling would cause a client-visible change in policies. This could happen under
following circumstances:

• The client receives aLocateReply message with anOBJECT_FORWARD status
and a new IOR that has policy requirements incompatible with the effective polic
currently in use.

• The client receives a Reply message withLOCATION_FORWARD status and a
new IOR that has policy requirements incompatible with the effective policies
currently in use.
July 2002 CORBA, v3.0: Messaging Quality of Service 22-5

22

a
des

s of

r of

lient
on-

at the
s

,

ide
If the effective Policy of this type has arebind_mode value ofNO_RECONNECT,
the ORB will raise aREBIND system exception if any rebind handling would cause
client-visible change in policies, or if a new connection must be opened. This inclu
the reopening of previously closed connections as well as the opening of new
connections if the target address changes (for example, due to a
LOCATION_FORWARD reply). For connectionless protocols, the meaning of this
effective policy must be specified, or it must be defined thatNO_RECONNECT is an
equivalent toNO_REBIND. Regardless of the effectiveRebindPolicy , rebind or
reconnect can always be explicitly requested through an invocation of
CORBA::Object::validate_connection . When instances ofRebindPolicy are
created, a value of typeRebindMode is passed toCORBA::ORB::create_policy .
This policy is only applicable as a client-side override. When an instance of
RebindPolicy is propagated within aPolicyValue in an INVOCATION_POLICIES
Service Context, theptype has valueREBIND_POLICY_TYPE and thepvalue is a
CDR encapsulation containing aRebindMode .

22.2.2 Synchronization Scope

22.2.2.1 typedef short SyncScope

Describes the level of synchronization for a request with respect to the target. Value
typeSyncScope are used in conjunction with aSyncScopePolicy , as described in
Section 22.2.2.2, “interface SyncScopePolicy,” on page 22-7, to control the behavio
oneway operations. All non-negative values are reserved for use in OMG
specifications. Any negative value ofSyncScope is considered a vendor extension.

• SYNC_NONE - equivalent to one allowable interpretation ofCORBAoneway
operations. The ORB returns control to the client (e.g., returns from the method
invocation) before passing the request message to the transport protocol. The c
is guaranteed not to block. Since no reply is returned from the server, no locati
forwarding can be done with this level of synchronization.

• SYNC_WITH_TRANSPORT - equivalent to one allowable interpretation of
CORBAoneway operations. The ORB returns control to the client only after the
transport has accepted the request message. This in itself gives no guarantee th
request will be delivered, but in conjunction with knowledge of the characteristic
of the transport may provide the client with a useful degree of assurance. For
example, for a direct message over TCP,SYNC_WITH_TRANSPORT is not a
stronger guarantee thanSYNC_NONE. However, for a store-and-forward transport
this QoS provides a high level of reliability. Since no reply is returned from the
server, no location-forwarding can be done with this level of synchronization.

• SYNC_WITH_SERVER - the server-side ORB sends a reply before invoking the
target implementation. If a reply ofNO_EXCEPTION is sent, any necessary
location-forwarding has already occurred. Upon receipt of this reply, the client-s
ORB returns control to the client application. This form of guarantee is useful
where the reliability of the network is substantially lower than that of the server.
22-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

fore

has

ics
as
es

h
y

licy

t

lue

s

y

The client blocks until all location-forwarding has been completed. For a server
using a POA, the reply would be sent after invoking any ServantManager, but be
delivering the request to the target Servant.

• SYNC_WITH_TARGET - equivalent to a synchronous, non-oneway operation in
CORBA. The server-side ORB shall only send the reply message after the target
completed the invoked operation. Note that anyLOCATION_FORWARD reply
will already have been sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime (depending on the semant
of the exception). Even though it was declared oneway, the operation actually h
the behavior of a synchronous operation. This form of synchronization guarante
that the client knows that the target has seen and acted upon a request. As wit
CORBA, only with this highest level of synchronization can the OTS be used. An
operations invoked with lesser synchronization precludes the target from
participating in the client’s current transaction.

22.2.2.2 interface SyncScopePolicy

This interface is a local object derived fromCORBA::Policy . It is applied to oneway
operations to indicate the synchronization scope with respect to the target of that
operation request. It is ignored when any non-oneway operation is invoked. This po
is also applied when the DII is used with a flag ofINV_NO_RESPONSE since the
implementation of the DII is not required to consult an interface definition to
determine if an operation is declared oneway. The default value of this Policy is no
defined. Applications must explicitly set an ORB-levelSyncScopePolicy to ensure
portability across ORB implementations. When instances ofSyncScopePolicy are
created, a value of typeMessaging::SyncScope is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. The client’sSyncScopePolicy is propagated within a request in the
RequestHeader’sresponse_flags as described in GIOP Request Header.

22.2.3 Request and Reply Priority

22.2.3.1 struct PriorityRange

This structure describes a range of priorities. APriorityRange with minimum
Priority greater than maximum Priority is invalid.

22.2.3.2 interface RequestPriorityPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
valid range of priorities, which may be associated with an operation request. This va
is used by Routers when the effectiveQueueOrderPolicy has the value
ORDER_PRIORITY. Higher Priority values indicate a higher priority. When instance
of RequestPriorityPolicy are created, a value of typeMessaging::PriorityRange
is passed toCORBA::ORB::create_policy . An instance of
RequestPriorityPolicy may be specified when creating a POA (and therefore ma
be represented in Object references). In addition, an Object reference’s
July 2002 CORBA, v3.0: Messaging Quality of Service 22-7

22

d

n

ce’s

n

s a
00,

to
RequestPriorityPolicy may be overridden by the client. If set on both the client an
server, reconciliation is performed by intersecting the server-specified
RequestPriorityPolicy range with the range of the client’s effective override. Whe
an instance ofRequestPriorityPolicy is propagated within aPolicyValue in a
TAG_POLICIES Profile Component orINVOCATION_POLICIES Service Context,
the ptype has valueREQUEST_PRIORITY_POLICY_TYPE and thepvalue is a
CDR encapsulation containing aMessaging::PriorityRange .

22.2.3.3 interface ReplyPriorityPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
valid range of priorities, which may be associated with the reply to an operation
request. This value is used by Routers when the effectiveQueueOrderPolicy has the
valueORDER_PRIORITY. Higher Priority values indicate a higher priority. When
instances ofReplyPriorityPolicy are created, a value of type
Messaging::PriorityRange is passed toCORBA::ORB::create_policy . An
instance ofReplyPriorityPolicy may be specified when creating a POA (and
therefore may be represented in Object references). In addition, an Object referen
ReplyPriorityPolicy may be overridden by the client. If set on both the client and
server, reconciliation is performed by intersecting the server-specified
ReplyPriorityPolicy range with the range of the client’s effective override. When a
instance ofReplyPriorityPolicy is propagated within aPolicyValue in a
TAG_POLICIES Profile Component orINVOCATION_POLICIES Service Context,
theptype has valueREPLY_PRIORITY_POLICY_TYPE and thepvalue is a CDR
encapsulation containing aMessaging::PriorityRange .

22.2.4 Request and Reply Timeout

This specification describes the lifetime of requests and replies in terms of the
structured type from the CORBA Time Service Specification. This describes time a
64-bit value, which is the number of 100 nano-seconds from 15 October 1582 00:
along with inaccuracy and time zone information.

22.2.4.1 interface RequestStartTimePolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
valid start time after which a request may be delivered to its target, and is applied
both synchronous and asynchronous invocations. When instances of
RequestStartTimePolicy are created, a value of typeTimeBase::UtcT is passed
to CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance ofRequestStartTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, theptype has value
REQUEST_START_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing aTimeBase::UtcT .
22-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ces

f

ts
uest
22.2.4.2 interface RequestEndTimePolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
time after which a request may no longer be delivered to its target. This policy is
applied to both synchronous and asynchronous invocations. When instances of
RequestEndTimePolicy are created, a value of typeTimeBase::UtcT is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance ofRequestEndTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, theptype has value
REQUEST_END_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing aTimeBase::UtcT .

22.2.4.3 interface ReplyStartTimePolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
valid start time after which a reply may be delivered to the client. This policy is
applied to both synchronous and asynchronous invocations. When instances of
ReplyStartTimePolicy are created, a value of typeTimeBase::UtcT is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance ofReplyStartTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, theptype has value
REPLY_START_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing aTimeBase::UtcT .

22.2.4.4 interface ReplyEndTimePolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
time after which a reply may no longer be obtained or returned to the client. This
policy is applied to both synchronous and asynchronous invocations. When instan
of ReplyEndTimePolicy are created, a value of typeTimeBase::UtcT is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance ofReplyEndTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, theptype has value
REPLY_END_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing aTimeBase::UtcT .

22.2.4.5 interface RelativeRequestTimeoutPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
relative amount of time for which a Request may be delivered. After this amount o
time the Request is cancelled. This policy is applied to both synchronous and
asynchronous invocations. If asynchronous invocation is used, this policy only limi
the amount of time during which the request may be processed. Assuming the req
completes within the specified timeout, the reply will never be discarded due to
timeout. When instances ofRelativeRequestTimeoutPolicy are created, a value of
typeTimeBase::TimeT is passed toCORBA::ORB::create_policy . This policy is
only applicable as a client-side override. When an instance of
RelativeRequestTimeoutPolicy is propagated within aPolicyValue in an
July 2002 CORBA, v3.0: Messaging Quality of Service 22-9

22

t yet
dy
h

INVOCATION_POLICIES Service Context, theptype has value
REQUEST_END_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing therelative_expiry converted into aTimeBase::UtcT end time (as in
the case ofRequestEndTimePolicy).

22.2.4.6 interface RelativeRoundtripTimeoutPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
relative amount of time for which a Request or its corresponding Reply may be
delivered. After this amount of time, the Request is cancelled (if a response has no
been received from the target) or the Reply is discarded (if the Request had alrea
been delivered and a Reply returned from the target). This policy is applied to bot
synchronous and asynchronous invocations.

When instances ofRelativeRoundtripTimeoutPolicy are created, a value of type
TimeBase::TimeT is passed toCORBA::ORB::create_policy . This policy is only
applicable as a client-side override. When an instance of
RelativeRoundtripTimeoutPolicy is propagated within aPolicyValue in an
INVOCATION_POLICIES Service Context, theptype has value
REPLY_END_TIME_POLICY_TYPE and thepvalue is a CDR encapsulation
containing therelative_expiry converted into aTimeBase::UtcT end time (as in
the case ofReplyEndTimePolicy).

22.2.5 Routing

22.2.5.1 typedef short RoutingType

Describes the type of Routing to be used for invocations on an Object reference.
Values of typeRoutingType are used in conjunction with aRoutingPolicy as
described in Section 22.2.5.3, “interface RoutingPolicy,” on page 22-11. All non-
negative values are reserved for use in OMG specifications. Any negative value of
RoutingType is considered a vendor extension.

• ROUTE_NONE - Synchronous or Deferred Synchronous delivery is used. No
Routers will be used to aid in the delivery of the request.

• ROUTE_FORWARD - Asynchronous delivery is used. The request is made
through the use of a Router and not delivered directly to the target by the client
ORB.

• ROUTE_STORE_AND_FORWARD - Asynchronous TII is used. The request is
made through the use of a Router that persistently stores the request before
attempting delivery.

22.2.5.2 struct RoutingTypeRange

This structure describes a range of routing types. ARoutingTypeRange with
minimum RoutingType greater than maximumRoutingType is invalid.
22-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ing.

ting

of

sed

r

.

ed
22.2.5.3 interface RoutingPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate
whether or not the ORB must ensure delivery of a request through the use of queue
If the effective Policy of this type has aRoutingTypeRange with min value of
ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD , the interoperable
Routing protocol described in Section 22.12, “Section III - Introduction,” on
page 22-45 is used. This policy does not apply to synchronous invocations. If, for
example, the min isROUTE_NONE and the max isROUTE_FORWARD, the
Routing protocol will normally be used but a direct connection may be used if
available. When instances ofRoutingPolicy are created, a value of type
RoutingTypeRange is passed toCORBA::ORB::create_policy . An instance of
RoutingPolicy may be specified when creating a POA (and therefore may be
represented in Object references). In addition, a POA’sRoutingPolicy is visible to
clients through the Object references it creates, and reconciled with the client’s
override. If set on both the client and server, reconciliation is performed by intersec
the server-specifiedRoutingPolicy range with the range of the client’s effective
override. When an instance ofRoutingPolicy is propagated within aPolicyValue in
a TAG_POLICIES Profile Component orINVOCATION_POLICIES Service Context,
the ptype has valueROUTING_POLICY_TYPE and thepvalue is a CDR
encapsulation containing aMessaging::RoutingTypeRange .

22.2.5.4 interface MaxHopsPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
maximum number of routing hops that can occur when routing a request from the
client to the target. When instances ofMaxHopsPolicy are created, a value of type
unsigned short is passed toCORBA::ORB::create_policy . This policy is only
applicable as a client-side override. When an instance ofMaxHopsPolicy is
propagated within aPolicyValue in an INVOCATION_POLICIES Service Context,
the ptype has valueMAX_HOPS_POLICY_TYPE and thepvalue is a CDR
encapsulation containing anunsigned short .

22.2.6 Queue Ordering

22.2.6.1 typedef short Ordering

Describes the ordering policy for the consideration of routers that prioritize delivery
requests. Values of type Ordering are used in conjunction with aQueueOrderPolicy
as described in “interface QueueOrderPolicy” on page 22-12. This policy is only u
if the effectiveRoutingType is at leastROUTE_FORWARD (which implies the use
of a Router). Support for multiple ordering policies is indicated by “or”-ing togethe
individual values in a combined Ordering.

• ORDER_ANY - the client doesn't care in what order its requests are processed

• ORDER_TEMPORAL - the client wants to be sure that its requests are process
in the order in which they were issued.ORDER_TEMPORAL is the default.
July 2002 CORBA, v3.0: Messaging Quality of Service 22-11

22

rity

ues
• ORDER_PRIORITY - the client wants its requests processed based on the prio
assigned in the QoS structure described below.

• ORDER_DEADLINE - the client wants its requests ordered so that those whose
time_to_live is about to expire are moved to the front of the queue.

22.2.6.2 interface QueueOrderPolicy

This interface is a local object derived fromCORBA::Policy . It is used to indicate the
basis upon which a Router orders delivery of requests. When instances of
QueueOrderPolicy are created, a value of typeMessaging::Ordering is passed to
CORBA::ORB::create_policy . This specifiedOrdering value can be the result of
“or”-ing together individual orderings. An instance ofQueueOrderPolicy may be
specified when creating a POA (and therefore may be represented in Object
references). In addition, an Object reference’sQueueOrderPolicy may be overridden
by the client. If set on both the client and server, reconciliation is performed by
intersecting the server-specified list of supported Ordering values with the list of val
in the client’s effective override. When an instance ofQueueOrderPolicy is
propagated within aPolicyValue in a TAG_POLICIES Profile Component or
INVOCATION_POLICIES Service Context, theptype has value
QUEUE_ORDER_POLICY_TYPE and thepvalue is a CDR encapsulation
containing aMessaging::Ordering .

22.3 Propagation of Messaging QoS

This section defines the profile Component through which QoS requirements are
expressed in an object reference, and the Service Context through which QoS
requirements are expressed as part of a GIOP request.

module Messaging {
struct PolicyValue {

CORBA::PolicyType ptype;
sequence<octet> pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

const IOP::ComponentId TAG_POLICIES = 2;
const IOP::ServiceId INVOCATION_POLICIES = 7;

};

22.3.1 Structures

PolicyValue

This structure contains the value corresponding to a Policy of thePolicyType
indicated by itsptype . This representation allows the compact transmission of QoS
policies within IORs and Service Contexts. The format ofpvalue for each type is
given in the specification of that Policy.
22-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

tion

d in
d

e, if

lt

ive
s
he
se

a

a
ses,

eir
rs,

ed to

he
In

ion
es
22.3.2 Messaging QoS Profile Component

A new IOP::TaggedComponent is defined for transmission of QoS policies within
interoperable Object References. The body of this Component is a CDR encapsula
containing aMessaging::PolicyValueSeq . When creating Object references,
Portable Object Adapters may encode the relevant policies with which it was create
this TaggedComponent . POA Policies that are exported in this way are clearly note
asclient-exposedin their definitions. These policies are reconciled with the effective
client-side override when clients invokes operations on that reference. For exampl
a POA is created with aRequestPriorityPolicy with minimum value 0 and
maximum value 10, all Object references created by that POA will have that defau
RequestPriorityPolicy encoded in their IOR. Furthermore, if a client sets an
overridingRequestPriorityPolicy with both minimum and maximum of 5 (the client
requires its requests to have a priority of value 5), the ORB will reconcile the effect
Policy for any invocations on this Object reference to have a priority of 5 (since thi
value is within the range of priorities allowed by the target). On the other hand, if t
client set an override with minimum value of 11, any invocation attempts would rai
the system exceptionINV_POLICY.

22.3.3 Messaging QoS Service Context

A new IOP::ServiceContext is defined for transmission of QoS policies within GIOP
requests and replies. The body of this Context is a CDR encapsulation containing
Messaging::PolicyValueSeq .

Section II - Messaging Programming Model

22.4 Section II - Introduction

Asynchronous Method Invocations allow clients to make non-blocking requests on
target. The AMI is treated as a client-side language mapping issue only. In most ca
server-side implementations are not required to change as from the server-side
programmer’s point of view all invocations can be treated identically regardless of th
synchronicity characteristics. In certain situations, such as with transactional serve
the asynchrony of a client does matter and requires server-side changes if expect
handle transactional asynchronous requests. This specific issue is addressed in
Appendix C, Section B.2.1, “Transaction Service,” on page 22-84.

Clients may, at any time, make either asynchronous or synchronous requests on t
target. Two models of asynchronous requests are supported: callback and polling.
the callbackmodel, the client passes a reference to a reply handler (a client-side
CORBA object implementation that handles the reply for a client request), in addit
to the normal parameters needed by the request. The reply handler interface defin
operations to receive the results of that request (includinginout andout values and
possible exceptions). TheReplyHandler is a normal CORBA object that is
implemented by the programmer as with any object implementation. In the polling
July 2002 CORBA, v3.0: Section II - Introduction 22-13

22

of

ny

a

I

re
e

ck

to
ew
ce
stent

e
he

g is

t.

1.

de

e
f

model, the client makes the request passing in all the parameters needed for the
invocation, and is returned a Poller object that can be queried to obtain the results
the invocation. This Poller is an instance of a valuetype.

AMI may be used in single- and multi-threaded applications. AMI calls may have a
legal return type, parameters, and contexts. AMI operations do not raise user
exceptions. Rather, user exceptions are passed to the implemented type-specific
ReplyHandler or returned from the type-specific Poller. If an AMI operation raises
system exception with a completion status ofCOMPLETED_NO, the request has not
been made. This clearly distinguishes exceptions raised by the server (which are
returned via theReplyHandler or Poller) from local exceptions that caused the AM
to fail.

This section focuses entirely on the static (typed) asynchronous invocations that a
based on the interface that is the target of the operation. This section describes th
mapping for the generated asynchronous method signatures. It also describes the
generated reply handlers that are passed to those async methods when the callba
model is used, and the generated poller values that are returned from those async
methods when the polling model is used. The AMI mapping contains an IDL to
“implied-IDL” mapping, which defines the new operations and interfaces required
perform asynchronous invocations and obtain the replies to these requests. The n
interfaces and values defined in this implied-IDL are considered to be real IDL sin
they can correspond to entries in the Interface Repository and have behavior consi
with all other definitions in IDL. In several cases, this implied-IDL adds new
operations to existing interfaces. These new asynchronous stub interfaces are not
considered to be real IDL in that they do not correspond to entries in the Interface
Repository. The distinction between these types of implied-IDL is made clear in th
rest of this section. In general, the implied-IDL is used to avoid explicitly mapping t
AMI API to each of the currently supported languages.

When a messaging-enabled IDL code generator is run on an interface, the followin
performed in addition to the processing specified inCORBA:

• A Servant mapping is generated for a type-specificReplyHandler from which the
client application derives itsReplyHandler implementation. No type-specific
ReplyHandler stubs need be generated, but their absence is not a requiremen
The Servant base is generated as if from an IDL interface with a definition as
specified in Section 22.8, “Type-Specific ReplyHandler Mapping,” on page 22-2

• A type-specificPoller valuetype is generated. The implementation of thisPoller
is provided by the messaging-aware ORB. The language-specific generated co
corresponds to avaluetype as if it were defined in IDL as specified in
Section 22.10, “Type-Specific Poller Mapping,” on page 22-26.

• Asynchronous request operations are generated with signatures exactly as if th
operations were declared on the original interface. The implied-IDL signature o
these operations is specified in Section 22.6, “Async Operation Mapping,” on
page 22-16. The implied-IDL is used entirely so that each individual supported
language mapping need not be given for the asynchronous request operations.
22-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

side

se
of

ew
ng
ding

cause
Note – These implied-IDL operations are not intended to be seen by the Object
implementation and are not implemented by the Servant. They are purely a client-
construct for describing the operation signatures for generated code.

• Furthermore, these operations are not part of the interfacesCORBA::InterfaceDef
and do not correspond to synchronous operations. The generated code for the
operations interacts with a messaging-aware ORB in ways outside of the scope
this section. The mechanism of this interaction is specified for interoperability
purposes in Section 22.14, “Message Routing,” on page 22-46. An application
programmer need not be aware of this mechanism.

22.5 Running Example

A running example is used throughout this section to clarify the generation of the n
typed asynchronous invocation stubs, the new reply handling interfaces for receivi
callback responses, and the new poller values for querying the status of an outstan
request. The example features a simple stock portfolio manager interface. Most
importantly, the interface includes operations that cover all cases of operation
signature:

• attributes

• in arguments

• inout arguments

• out arguments

• return values

• user exceptions

Operations declared oneway are not mapped to asynchronous invocation stubs be
they are already asynchronous in nature.

// Original IDL
exception InvalidStock { string sym; };

interface StockManager {
attribute string stock_exchange_name;

boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);

boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

};
July 2002 CORBA, v3.0: Running Example 22-15

22

us
hich

these
age
the

es,

:

the

e

ay

ing

pe

rom
22.6 Async Operation Mapping

For each operation in an interface, corresponding callback and polling asynchrono
method signatures are generated. These signatures are described in implied-IDL, w
is used to generate language-specific operation signatures. The implementation of
methods must generate a method invocation as described in Section 22.14, “Mess
Routing,” on page 22-46. Note that these generated operations are not included in
interface’s definition (CORBA::InterfaceDef). These operations do not raise user
exceptions. Just as with the currently specifiedCORBA::Request::send operation ,
they can (but are not required to) raise system exceptions. For explanatory purpos
the sections below show the Callback and Polling implied-IDL in separate pieces.
Logically, the IDL compiler deals with async as if the IDL included all three pieces
the original IDL and the implied IDL for both async models.

22.6.1 Callback Model Signatures (sendc)

When the callback model is used, the client supplies a reply handler when making
asynchronous invocation. The interface’s operations and attributes are mapped to
implied-IDL operations with names prefixed by “sendc_ ”. If this implied-IDL
operation name conflicts with existing operations on the interface or any of the
interface’s base interfaces, “ami_ ” strings are inserted between “sendc_ ” and the
original operation name until the implied-IDL operation name is unique.

22.6.1.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• void return type, followed by;

• sendc_<opName> whereopName is the name of the operation.

The async callback version takes the following arguments in order:

• An object reference to a type-specificReplyHandler as described in Section 22.8,
“Type-Specific ReplyHandler Mapping,” on page 22-21, with the parameter nam
ami_handler . If a nil ReplyHandler reference is specified when this operation is
invoked, no response will be returned for this invocation. A system exception m
be raised by the ORB during evaluation of the request, but oncesendc returns, no
further results of the operation will be made available. This is equivalent to sett
the CORBA::INV_NO_RESPONSE flag when making a DII deferred request.

• Each of thein and inout arguments in the order that they appeared in the
operation's declaration in IDL, all with a parameter attribute of in and with the ty
specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one f
the original operation (if any is present).
22-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

s

the

e

22.6.1.2 Implied-IDL for Attributes

The signature of the implied-IDL for the callback model getter and setter operation
corresponding to an interface’s attribute is as follows.

• Setter operations are only generated for attributes that are not defined readonly

• void return type, followed by the operation name, which to distinguish between
getter and setter operations for the attribute is given by either:

• sendc_get_<attributeName> for reading the attribute value, where
attributeName is the name of the attribute, or

• sendc_set_<attributeName> for setting the attribute value, where
attributeName is the name of the attribute that is not defined readonly.

The callback implied-IDL operations take the following arguments in order:

• An object reference of a type-specificReplyHandler as described in Section 22.8,
“Type-Specific ReplyHandler Mapping,” on page 22-21, with the parameter nam
ami_handler .

• The additional arguments for asynchronous implied-IDL operations forattributes
are as follows:

• For the attribute’s generatedget operation, there are no additional arguments.

• For the attribute’s generatedset operation, there is one additional argument, in
<attrType> attr_<attributeName> , whereattrType is the type of the attribute,
andattributeName is the name of that attribute. Theset operation is only
generated for attributes that are not definedreadonly .

22.6.1.3 Example

The following implied-IDL is generated from the interface definitions used in the
running example:

// AMI implied-IDL including callback operations
// for original example IDL defined in Section 22.5

exception InvalidStock { string sym; };

interface AMI_StockManagerHandler;

interface StockManager {

// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);
July 2002 CORBA, v3.0: Async Operation Mapping 22-17

22

ing
d to

se

rom
// Async Callback operation Declarations
void sendc_get_stock_exchange_name(

in AMI_StockManagerHandler ami_handler);
void sendc_set_stock_exchange_name(

in AMI_StockManagerHandler ami_handler,
in string attr_stock_exchange_name);

void sendc_add_stock(
in AMI_StockManagerHandler ami_handler, in string symbol,
in double quote);

void sendc_edit_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol, in double new_quote);

void sendc_remove_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_find_closest_symbol(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_get_quote(
in AMI_StockManagerHandler ami_handler,
in string symbol);

};

22.6.2 Polling Model Signatures (sendp)

When the polling model is used, the client is returned a queriable poller when mak
the asynchronous invocation. The interface’s operations and attributes are mappe
implied-IDL operations with names prefixed bysendp_ . If this implied-IDL operation
name conflicts with existing operations on the interface or any of the interface’s ba
interfaces,ami_ strings are inserted betweensendp_ and the original operation name
until the implied-IDL operation name is unique.

22.6.2.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• A type-specific Poller return type as described in Section 22.10, “Type-Specific
Poller Mapping,” on page 22-26, followed bysendp_<opName> whereopName
is the name of the operation.

The async polling version takes the following parameters in order:

• Each of thein and inout arguments in the order that they appeared in the
operation’s declaration in IDL, all with a parameter attribute ofin and with the type
specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one f
the original operation (if any is present).
22-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

:

ws:
22.6.2.2 Implied-IDL for Attributes

The signature of the implied-IDL for the polling model getter and setter operations
corresponding to an interface’s attribute is as follows:

• Setter operations are only generated for attributes that are not defined readonly

• A type-specific Poller return type as described in Section 22.10, “Type-Specific
Poller Mapping,” on page 22-26, followed by the operation name, which to
distinguish between the getter and setter operations for the attribute is given by
either:

• sendp_get_<attributeName> for reading the attribute value, where
attributeName is the name of the attribute, or

• sendp_set_<attributeName> for setting the attribute value, where
attributeName is the name of the attribute that is not defined readonly.

• Asynchronous implied-IDL operations for attributes have argument lists as follo

• For the attribute’s generatedget operation, there are no arguments.

• For the attribute’s generatedset operation, there is one argument, in<attrType>
attr_<attributeName> , whereattrType is the type of the attribute, and
attributeName is the name of that attribute. Theset operation is only generated
for attributes that are not defined readonly.

22.6.2.3 Example

The following implied-IDL is generated from the interface definitions used in the
running example:

// AMI implied-IDL including polling operations
// for original example IDL defined in Section 22.5
exception InvalidStock { string sym; };

valuetype AMI_StockManagerPoller;

interface StockManager {
// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

// Async Polling operation Declarations
AMI_StockManagerPoller sendp_get_stock_exchange_name();
AMI_StockManagerPoller sendp_set_stock_exchange_name(

in string attr_stock_exchange_name);
AMI_StockManagerPoller sendp_add_stock(
July 2002 CORBA, v3.0: Async Operation Mapping 22-19

22

hat

ated

e

in string symbol,
in double quote);

AMI_StockManagerPoller sendp_edit_stock(
in string symbol, in double new_quote);

AMI_StockManagerPoller sendp_remove_stock(
in string symbol);

AMI_StockManagerPoller sendp_find_closest_symbol(
in string symbol);

AMI_StockManagerPoller sendp_get_quote(
in string symbol);

};

22.7 Exception Delivery in the Callback Model

TheReplyHandler interface is expressed in IDL and thus cannot have operations t
take exceptions as arguments. Furthermore, the most natural way for aReplyHandler
to deal with exceptions is by invoking some operation that raises exceptions, not
through inspecting operation parameters. Therefore, exception replies are propag
to theReplyHandler in the form of a type-specificMessaging::ExceptionHolder
valuetype instance that contains the marshaled exception as its state and has
raise_exception andraise_exception_with_list operations for raising the
encapsulated exception.

22.7.1 Messaging::ExceptionHolder valuetype

The Messaging::ExceptionHolder valuetype encapsulates the exception data and
enough information to turn that data back into a raised exception.

// IDL
module Messaging {

// ... all the other stuff
native UserExceptionBase;
valuetype ExceptionHolder {

void raise_exception() raises (UserExceptionBase);
void raise_exception_with_list(

 in CORBA::ExceptionList exc_list
) raises (UserExceptionBase);
private boolean is_system_exception;
private boolean byte_order;
private sequence<octet> marshaled_exception;

};
};

• raise_exception() - This method is used by applications to raise exception from
the encapsulatedmarshaled_exception member.

• raise_exception_with_list() - If is_system_exception is true, this function is
same asraise_exception() . Otherwise, this method raises an exception from th
marshaled_exception using an application provided user exception list. It is
22-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ly
lder

s
from

The
s

r its
an

nt

of

ny
and

is

act
ith

r

tion
useful and should only be used when the given exception holder is not from a
skeleton reply handler's xxx_excep() method. For instance, it is from a DSI rep
handler servant or from another ORB runtime. In these cases, the exception ho
may not have an internal user exception list available.

• UserExceptionBase - Language mapping of this native type should allow any
user exception to be raised from this method. For instance, it is mapped to
CORBA::UserException in C++ and to org.omg.CORBA.UserException in java. A
usual, system exceptions do not need to be in the raises clause for raising them
this method.

22.8 Type-Specific ReplyHandler Mapping

For each interface, a type-specific reply handler is generated by the IDL compiler.
client application implements and registers a reply handler with each asynchronou
request and receives a callback when the reply is returned for that request. The
interface name of the type-specific handler isAMI_<ifaceName>Handler , where
ifaceName is the original unqualified interface name. If the interfaceifaceName
derives from some other IDL interfacebaseName , then the handler forifaceName is
derived fromAMI_<baseName> , but if it does not, then it is derived from the generic
Messaging::ReplyHandler . If the interface nameAMI_<ifaceName>Handler
conflicts with an existing identifier, uniqueness is obtained by inserting additional
“AMI_” prefixes before theifaceName until the generated identifier is unique.

When invoking an async operation, the client first generates an object reference fo
ReplyHandler and then associates it with the request by passing the reference as
argument to the operation. The reply will be targeted to thatReplyHandler . So that a
singleReplyHandler servant instance can be supplied to multiple requests, the clie
can assign uniqueObjectId s for each request if the application code needs to
distinguish between each of these requests at a later time. Most commonly, the
application needs to access information from the calling scope while in the scope
the callback. That information can be associated with theReplyHandler ’s ObjectId
by the client application at the time of invocation. Obtaining theReplyHandler ’s
ObjectId within the callback implementation allows that implementation to obtain a
information previously associated with the original request. Since the assignment
accessing of theseObjectId s is fully supported within the Portable Object Adapter
defined inCORBA, there is no need to specify the notion of unique request ids in th
document.

The ReplyHandler object reference will be serviced by a servant running under a
POA with a particular set of POA policies. These policies are not affected by the f
that it is aReplyHandler , so these Policy values have the same considerations as w
any server. The POALifeSpanPolicy will probably be affected depending on whethe
or not TII is used:

• If TII is not used, theLifeSpanPolicy can be eitherPERSISTENT or
TRANSIENT, depending on the implementation.LifeSpanPolicy would likely be
PERSISTENT if the sameReplyHandler implementation is used for replies from
multiple clients. It could beTRANSIENT if the programmer creates the
ReplyHandler object reference in the same process as that of the async invoca
July 2002 CORBA, v3.0: Type-Specific ReplyHandler Mapping 22-21

22

g

,

ture

client
ld be
ck.
ion

ted

iated
nt
and wants theReplyHandler object reference to become invalid when the creatin
POA terminates. In this case, replies are discarded by the ORB once the client
terminates.

• If TII is used,LifeSpanPolicy of PERSISTENT is almost required since TII
means that theReplyHandler can validly be located in a process that can be
different than the process of the original client. It is possible forLifeSpanPolicy
to beTRANSIENT, but this would be a rare usage in which the original client
obtains theReplyHandler reference from a process other than itself. This usage
would allow aReplyHandler to be in effect only for the life of that other process
supporting a rather limited form of TII.

22.8.1 ReplyHandler Operations for NO_EXCEPTION Replies

For each operation declared in the interface, an operation with the following signa
is defined on the generated reply handler:

• return type void, followed by

• the name of the operation, followed by

• arguments in order (all “in” parameters).

• If the original operation has a return value, the type returned by the operation
declared in IDL with parameter namedami_return_val .

• Each inout/outtype name andargument name as they were declared in IDL.

These operations do not raise any exceptions because they are never invoked by a
and have no client to respond to such an exception. Only a system exception cou
raised by such operations, and only with the effect of causing a transaction to roll ba
See Appendix C, “Changes to Current OTS Behavior” on page 22-85 for a discuss
of the Unshared Transaction model in which aReplyHandler may be invoked as part
of a transaction.

For an attribute with the name “attributeName,” the following operations are genera
on the reply handler: return type void, followed by get_<attributeName> for the
getter (orset_<attributeName> for the setter operation if the attribute is not defined
to be readonly). For the “get” operation, there is one argument (the setter callback
operation takes no arguments):in <attrType> ami_return_val where the attribute of
nameami_return_val is of typeattrType .

There are two cases where the above mapping results in an operation with no
parameters. The first is for an operation with no return value and either with no
parameters or with onlyin parameters. The second is the mapping of a setter on an
attribute. In these cases, it is worth noting that the only meaning that can be assoc
with the operation is that the AMI operation completed successfully. This is significa
information, essentially an acknowledgment of completion.
22-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

d
.
e

ready
ep”

is
eply
22.8.2 ReplyHandler Operations for Exceptional Replies

If the AMI didn’t succeed at the target, the exception is delivered via the generate
_excep ReplyHandler operation corresponding to the operation originally invoked
This section describes the implied-IDL rules for generating these operations on th
ReplyHandler .

For each operation,operName , on the original interface namedifaceName , an
operation with the following signature is generated on the type-specific
ReplyHandler :

void <operName >_excep(
in Messaging::ExceptionHolder excep_holder);

For each attribute,attrName , on the original interface namedifaceName , an
operation with the following signature is generated on the type-specific
ReplyHandler :

void get_ <attrName >_excep(
in Messaging::ExceptionHolder excep_holder);

For each non-readonly attribute,attrName , on the original interface named
ifaceName , an operation with the following signature is generated on the type-
specificReplyHandler :

void set_ <attrName >_excep(
in Messaging::ExceptionHolder excep_holder);

If the name generated by the method described above clashes with a name that al
exists in the interface, “_ami” strings are inserted immediately preceding the “_exc
repeatedly, until generated IDL operation name is unique in the interface.

22.8.3 Example

The example IDL causes the generation of the following additional IDL when
asynchronous operations are to be used. This IDL is “real” in that the interfaces
described here are CORBA objects. However, the generation of stubs for these
interfaces is not required, as no client ever invokes these operations remotely in th
model. The operations are invoked directly by the messaging-aware ORB when a r
becomes available.

// AMI implied-IDL of ReplyHandler
// for original example IDL defined in Section 22.5
interface AMI_StockManagerHandler : Messaging::ReplyHandler {

void get_stock_exchange_name(
in string ami_return_val);

void get_stock_exchange_name_excep(
in Messaging::ExceptionHolder excep_holder);
July 2002 CORBA, v3.0: Type-Specific ReplyHandler Mapping 22-23

22

y

ng
e

void set_stock_exchange_name();
void set_stock_exchange_name_excep(

in Messaging::ExceptionHolder excep_holder);

void add_stock(
in boolean ami_return_val);

void add_stock_excep(
in Messaging::ExceptionHolder excep_holder);

void edit_stock();
void edit_stock_excep(

in Messaging::ExceptionHolder excep_holder);

void remove_stock(
in double quote);

void remove_stock_excep(
in Messaging::ExceptionHolder excep_holder);

void find_closest_symbol(
in boolean ami_return_val,
in string symbol);

void find_closest_symbol_excep(
in Messaging::ExceptionHolder excep_holder);

void get_quote(
in double ami_return_val);

void get_quote_excep(
in Messaging::ExceptionHolder excep_holder);

};

22.9 Generic Poller Value

The generic basePoller valuetype can be queried to obtain the status of a potentiall
outstanding request. So that it can be registered in aCORBA::PollableSet , it derives
from the abstract valuetypeCORBA::Pollable . The inheritedPollable is_ready
returns the value TRUE if and only if a reply is currently available for the outstandi
request. If it returns the value FALSE, the reply has not yet been returned from th
target. This operation raises the system exceptionOBJECT_NOT_EXIST if the
reply has already been obtained by some client at the time of the query.

The Poller has the following definition:

module Messaging {
valuetype Poller : CORBA::Pollable {

readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
readonly attribute boolean is_from_poller;

Object target;
22-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

y
ce’s

y

n.

ibute

n

he
n.

ller
the
not
string op_name;
};

};

22.9.1 operation_target

The target of the asynchronous invocation is accessible from any Poller.

22.9.2 operation_name

The name of the operation that was invoked asynchronously is accessible from an
Poller. The returned string is identical to the operation name from the target interfa
InterfaceDef .

22.9.3 associated_handler

If the associated_handler is set to nil, the polling model is used to obtain the repl
to the request. If it is non-nil, the associatedReplyHandler is invoked when a reply
becomes available.

Switching between the callback and polling models is supported by this specificatio
The request must be made using the polling model, and thus a Poller is obtained.
Through the attributeassociated_handler , a ReplyHandler may be registered.
When the reply is available, the associatedReplyHandler will be invoked just as if
the callback model had been used to make the original request. By setting the attr
to nil, theReplyHandler can be disassociated at any time to allow the client
application to resume use of the Polling model. The Poller implementation is
responsible for ensuring that in multi-threaded applications, access to the
associated_handler is multi-thread safe.

22.9.4 is_from_poller

As described below, the type-specific pollers are queried to obtain the reply from a
asynchronously invoked operation. If the reply is a system exception, it may be
important for the client application to distinguish between an exception raised by t
poll itself and an exception that is actually the reply for the asynchronous invocatio
The is_from_poller attribute returns the value TRUE if and only if the poller itself
has raised a system exception during the invocation of one of the type specific po
operations. If the exception raised from one of the type specific poller operations is
reply for the asynchronous operation, the value FALSE is returned. If the Poller has
yet returned a response to the client, theBAD_INV_ORDER system exception is
raised.
July 2002 CORBA, v3.0: Generic Poller Value 22-25

22

ated
nous

This

r is
l

ption

des
22.10 Type-Specific Poller Mapping

The polling model requires usage of generated type-specificPoller valuetype s. A
valuetype is used because all operations are locally implemented. The basic gener
Poller encapsulates the operations for obtaining replies to an outstanding asynchro
request. A derivedPersistentPoller valuetype also adds private state that allows the
response to be obtained from a client other than the client that made the request.
private state is used by thePersistentPoller implementation in conjunction with the
messaging-aware ORB.

22.10.1 Basic Type-Specific Poller

For each interface, the IDL compiler generates a type-specific Poller value. A Polle
created by the ORB for each asynchronous invocation that uses the polling mode
operations. The name of the basic type-specific Poller isAMI_<ifaceName>Poller ,
whereifaceName is the unqualified name of the interface for which the Poller is
being generated. If the interfaceifaceName derives from some other IDL interface
baseName , then the Poller forifaceName is derived from
AMI_<baseName>Poller , but if it does not, then it is derived from
Messaging::Poller . If this name conflicts with definitions in the original IDL,
additionalAMI_ prefixes are prepended before<ifaceName> until a unique
valuetype name is generated (such as “AMI_AMI_FooPoller ” for interfaceFoo).

22.10.1.1 Poller operations for Interface operations

For each operation declared in the interface, a polling operation with the following
signature is declared:

1. Return type void followed by

2. The name of the operation, followed by

3. A first parameter that is in unsigned long timeout indicating for how many
milliseconds this call should wait until the response becomes available. If this
timeout expires before a reply is available, the operation raises the system exce
CORBA:TIMEOUT. Any delegated invocations used by the implementation of
this polling operation are subject to the single timeout parameter, which superse
any ORB or thread-level timeout quality of service. Two specific values are of
interest:

• 0 - the call is a non-blocking poll, which raises the exception
CORBA::NO_RESPONSE if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be
used. The poll will not return until the reply is available.

The remaining arguments, if any, are in order (all “out” parameters):

1. If the original operation has a return value, the type returned by the operation
declared in IDL with parameter namedami_return_val .
22-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ises

n

ll

will

eply

t are

bute

s

is
ny
2. Each inout/out type name and argument name as they were declared in IDL ra
(<exceptionList >, CORBA::WrongTransaction whereexceptionList contains
the original operation raises exceptions, each exception from the original raises
clause.

3. In addition, if the deferred synchronous model is being used:

• the poll raises theCORBA::WrongTransaction user exception (if the request
has an associated transaction context), and

• the polling thread either has a null transaction context or a non-null transactio
context that differs from that of the request.

When a polling call is made, the operation returns in one of the following ways:

1. With the out arguments set - the reply has been returned and future queries wi
raise the standard exceptionOBJECT_NOT_EXIST.

2. By raising the reply’s exception - the reply has been returned and future queries
raise the standard exceptionOBJECT_NOT_EXIST. The base Poller’s
is_from_poller has a value of FALSE.

3. By raising a system exception orCORBA::WrongTransaction due to a failure in
the polling operation. The base Poller’sis_from_poller has a value of TRUE.
Two specific exceptions are worth noting:

• CORBA::TIMEOUT - If a non-zero timeout value is specified, this system
exception is raised to indicate that the specified timeout has expired and the r
has not yet been returned.

• CORBA::NO_RESPONSE - If a timeout with value 0 is specified, this
system exception is raised to indicate that the reply is not available.

22.10.1.2 Poller operations for Interface attributes

For each attribute declared in the interface, a polling operation with the following
signature is declared. Setter polling operations are only generated for attributes tha
not declared readonly: return type void followed by the name of the generated
operation, which to distinguish between the getter and setter operations for an attri
is given by (respectively):

• get_<attributeName> , whereattributeName is the name of the interface’s
attribute, or

• set_<attributeName> , whereattributeName is the name of the interface’s
attribute that was not declared readonly.

A first parameter that is in unsigned long timeout indicating how many millisecond
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the system exception
CORBA::TIMEOUT. Any delegated invocations used by the implementation of th
polling operation are subject to the single timeout parameter, which supersedes a
ORB or thread-level timeout quality of service. Two specific values are of interest:

• 0 - the call is a non-blocking poll, which raises the exception
CORBA::NO_RESPONSE if the reply is not immediately available.
July 2002 CORBA, v3.0: Type-Specific Poller Mapping 22-27

22

ll

will

eply

nt

de

e

• 232-1 - the maximum value forunsigned long indicates no timeout should be
used. The poll will not return until the reply is available.

For the getter operation only

An additional argumentout <attrType> ami_return_val whereattrType is the
type of the attribute.

The set operation takes no additional arguments.

Raises (CORBA::WrongTransaction) - If the deferred synchronous model is being
used, the poll raises theCORBA::WrongTransaction user exception if the request
has an associated transaction context, and the polling thread either has a null
transaction context or a non-null transaction context that differs from that of the
request.

When a polling call is made, the operation returns in one of the following ways:

• With the out arguments set - the reply has been returned and future queries wi
raise the standard exceptionOBJECT_NOT_EXIST.

• By raising the reply’s exception - the reply has been returned and future queries
raise the standard exceptionOBJECT_NOT_EXIST. The base Poller’s
is_from_poller has a value of FALSE.

• By raising a system exception orCORBA::WrongTransaction due to a failure in
the polling operation. The base Poller’sis_from_poller has a value of TRUE.
Two specific exceptions are worth noting:

• CORBA::TIMEOUT - If a non-zero timeout value is specified, this system
exception is raised to indicate that the specified timeout has expired and the r
has not yet been returned.

• CORBA::NO_RESPONSE - If a timeout with value 0 is specified, this
system exception is raised to indicate that the reply is not available.

22.10.2 Persistent Type-Specific Poller

When Time-Independent Invocations are made, the reply may be obtained by a
different client than the one that made the original request. An instance of persiste
poller is returned from such invocations. ThePersistentPoller contains the state
necessary to allow polling to be performed in a client distinct from the one that ma
the request. This state is used privately by the messaging-aware ORB and is not
directly accessible to the application.

The generatedPersistentPoller valuetype is derived from the basic one. It adds no
methods, only one piece of private state. For an interface with the unqualified nam
ifaceName the following PersistentPoller is generated:

valuetype AMI_ <ifaceName >PersistentPoller : AMI_ <ifaceName >Poller {
MessageRouting::PersistentRequest outstanding_request;

};
22-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
Just as with any CORBAvaluetype this PersistentPoller can be passed as an
argument to IDL operations and a copy of thePoller will be instantiated local to the
callee.

22.10.3 Example

The example IDL causes the generation of the following additional IDL when
asynchronous polling operations are to be used. This IDL is “real” in that the
valuetype s described here are normal CORBAvaluetype s.

// AMI implied-IDL of type-specific Poller
// for original example IDL defined in Section 22.5
valuetype AMI_StockManagerPoller : Messaging::Poller {

void get_stock_exchange_name(
in unsigned long timeout,
out string ami_return_val)

raises (CORBA::WrongTransaction);
void set_stock_exchange_name(

in unsigned long timeout)
raises (CORBA::WrongTransaction);

void add_stock(
in unsigned long timeout,
out boolean ami_return_val)

raises (CORBA::WrongTransaction);
void edit_stock(

in unsigned long timeout)
raises (InvalidStock, CORBA::WrongTransaction);

void remove_stock(
in unsigned long timeout,
out double quote)

raises (InvalidStock, CORBA::WrongTransaction);
void find_closest_symbol(

in unsigned long timeout,
out boolean ami_return_val,
out string symbol)

raises (CORBA::WrongTransaction);
void get_quote(

in unsigned long timeout,
out double ami_return_val)

raises (InvalidStock, CORBA::WrongTransaction);

attribute AMI_StockManagerHandler associated_handler;
};

valuetype AMI_StockManagerPersistentPoller : AMI_StockManagerPoller
{

MessageRouting::PersistentRequest request;
};
July 2002 CORBA, v3.0: Type-Specific Poller Mapping 22-29

22

n

e
use

ing

s

ous

are
are

wn.
22.11 Example Programmer Usage

22.11.1 Example Programmer Usage (Examples Mapped to C++)

The following is an illustrative example of how the ideas from Section 22.4, “Sectio
II - Introduction,” on page 22-13 and other sections come together from the
programmer’s point of view. It contains no new definitions; Section 22.11, “Exampl
Programmer Usage,” on page 22-30 is solely meant to demonstrate an application
of Messaging. Since the example is implemented in C++, the expected C++ mapp
of Section 22.4, “Section II - Introduction,” on page 22-13 implied-IDL is shown in
Section 22.11, “Example Programmer Usage,” on page 22-30.

22.11.2 Client-Side C++ Example for the Asynchronous Method Signature

This section shows sample C++ that is generated from the implied-IDL of the previ
subsections of Section 22.4, “Section II - Introduction,” on page 22-13. The C++
mapping specifies a generated interface class (stub) on which method invocations
translated into operation requests. It is this class on which the function signatures
generated from their operation declarations in IDL. It is in this class that the async
functions signatures are also declared (and implemented). Using the IDL from the
example in the previous section the stub classStockManager is generated following
the C++ mapping. The following notes apply to this sample generated C++ code:

• Only the generated synchronous and asynchronous method signatures are sho
Vendor-specific constructors, methods, and members are omitted.

• Although optional according to the IDL to C++ language mapping, method
signatures are generated as virtual.

• Since optional according to the IDL to C++ language mapping, exception
specifications are not included in generated methods.

// Generated file: stockmgr_c.hh (Filename is non-normative)

// C++ - StockManager declaration
class StockManager : public virtual CORBA::Object
{
public:
// … all the other stuff.
// StockManager SYNCHRONOUS CALLS
virtual void stock_exchange_name(const char * attr);
virtual char * stock_exchange_name();
virtual CORBA::Boolean add_stock(const char* symbol,CORBA::Double q);
virtual void edit_stock(const char* symbol, CORBA::Double q);
virtual void remove_stock(const char* symbol, CORBA::Double_out q);
virtual CORBA::Boolean find_closest_symbol(CORBA::String_out symbol);
virtual CORBA::Double get_quote(const char * symbol);

// ASYNCHRONOUS CALLBACK-MODEL CALLS
virtual void sendc_get_stock_exchange_name(

AMI_StockManagerHandler_ptr ami_handler);
virtual void sendc_set_stock_exchange_name(
22-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
AMI_StockManagerHandler_ptr ami_handler,
const char* attr_stock_exchange_name);

virtual void sendc_addStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_editStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_removeStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol);

virtual void sendc_find_closest_symbol(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

virtual void sendc_get_quote(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

// ASYNCHRONOUS POLLING-MODEL CALLS
virtual AMI_StockManagerPoller* sendp_get_stock_exchange_name();
virtual AMI_StockManagerPoller* sendp_set_stock_exchange_name(

const char* attr_stock_exchange_name);
virtual AMI_StockManagerPoller* sendp_addStock(

const char* symbol, CORBA::Double q);
virtual AMI_StockManagerPoller* sendp_editStock(

const char* symbol, CORBA::Double q);
virtual AMI_StockManagerPoller* sendp_removeStock(

const char* symbol);
virtual AMI_StockManagerPoller* sendp_find_closest_symbol(

const char * symbol);
virtual AMI_StockManagerPoller* sendp_get_quote(

const char * symbol);
};

22.11.3 Client-Side C++ Example of the Callback Model

22.11.3.1 C++ Example of Generated ReplyHandler

The ReplyHandler Servant class generated for theStockManager interface is:

// Generated file: stockmgr_s.hh (Filename is non-normative)
// C++ - AMI_StockManagerHandler declaration
class POA_AMI_StockManagerHandler

: public POA_Messaging::ReplyHandler
{
public:
// Programmer must implement the following pure virtuals:

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val) = 0;
virtual void get_stock_exchange_name_excep(
July 2002 CORBA, v3.0: Example Programmer Usage 22-31

22

pure
ese

s

the
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void set_stock_exchange_name() = 0;
virtual void set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder) = 0;

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val) = 0;
virtual void add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void edit_stock() = 0;virtual void edit_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void remove_stock(
CORBA::Double quote) = 0;

virtual void remove_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol) = 0;

virtual void find_closest_symbol_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void get_quote(
CORBA::Double d) = 0;

virtual void get_quote_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

};

The programmer must now derive from the generated handler and implement the
virtual methods. The following points should be considered when implementing th
handler-derived reply handlers:

• System and User exceptions are “raised” through invocations of the generated
“_excep” operations. If a regular type-specific operation is invoked, the reply wa
not an exception.

• Any exception raised from aReplyHandler method can only be visible to the
messaging-aware ORB that is invoking thatReplyHandler . In most cases, this
means that exceptions should never be raised. In the case of an Unshared
Transaction, theReplyHandler method may invoke
CosTransactions::Current::rollback_only or
CosTransactions::coordinator::rollback_only and then raise the
CORBA::TRANSACTION_ROLLEDBACK system exception to roll back this
attempted delivery of the reply.

• All heap-allocated storage associated with any of the arguments to the
ReplyHandler methods may be owned by the ORB. If so, any data passed into
handler must be copied if the data is to be kept. This corresponds to the usual
memory management rules forin arguments.
22-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ted

ch
22.11.3.2 C++ Example of User -Implemented ReplyHandler

The following code is an example implementation of a user derived and implemen
reply handler based on the generated reply handler from Section 22.11.3.1, “C++
Example of Generated ReplyHandler,” on page 22-31. The inherited methods, whi
were previously declared as pure virtual are declared here as virtual and are
implemented as part of this class:

// File: AsyncStockHandler.h
// C++ - Declaration in my own header
#include "stockmgr_s.hh"// Include filename non-normative

class AsyncStockHandler : public POA_AMI_StockManagerHandler
{
public:
AsyncStockHandler() { }
virtual ~AsyncStockHandler() {}

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val);
virtual void get_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void set_stock_exchange_name();
virtual void set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val);
virtual void add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void edit_stock();
virtual void edit_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void remove_stock(
CORBA::Double quote);

virtual void remove_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder);

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol);

virtual void find_closest_symbol_excep(
Messaging::ExceptionHolder_ptr excep_holder);

virtual void get_quote(
CORBA::Double d);

virtual void get_quote_excep(
July 2002 CORBA, v3.0: Example Programmer Usage 22-33

22

e
is
Messaging::ExceptionHolder_ptr excep_holder);
};

Each of these callback operations have implementations as in the following. Pleas
note that for the sake of brevity, each pointer is not checked before it is used. This
intentional.

// AsyncStockHandler.cpp
#include <AsyncStockHandler.h>

void
AsyncStockHandler::get_stock_exchange_name(
const char * ami_return_val)
{
cout << "Exchange Name = " << ami_return_val << endl;
}
void
AsyncStockHandler::get_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "Get stock_exchange_name exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::set_stock_exchange_name()
{
// No data returned since this was the "set" of the attribute.
cout << "Set stock_exchange_name succeeded!" << endl;
}
void
AsyncStockHandler::set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "Set stock_exchange_name exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::add_stock()
{
// No data returned but no exception either which is good news.
cout << "Stock was added!" << endl;
22-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
}
void
AsyncStockHandler::add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "add_stock exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::edit_stock()
{
// No return data but no exception either which is good.
cout << "Stock was edited!" << endl;
}
void
AsyncStockHandler::edit_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "edit_stock System Exception exception [" << e << "]" <<
endl;

}
catch (const InvalidStock& e) {

cout << "edit_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::remove_stock(
CORBA::Double quote)
{
cout << "Stock Removed and quote = " << quote << endl;
}
void
AsyncStockHandler::remove_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "remove_stock System Exception exception [" << e << "]" <<
 endl;
July 2002 CORBA, v3.0: Example Programmer Usage 22-35

22
}
catch (const InvalidStock& e) {

cout << "remove_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::find_closest_symbol(
CORBA::Boolean ami_return_val,
const char* symbol)
{
if (ami_return_val)

cout << "Closest stock = " << symbol << endl;
else

cout << "No closest stock could be found!" << endl;
}
void
AsyncStockHandler::find_closest_symbol_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "find_closest_symbol exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::get_quote(CORBA::Double quote)
{
cout << "Quote = " << quote << endl;
}
void
AsyncStockHandler::get_quote_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "get_quote System Exception exception [" << e << "]" <<
 endl;

}
catch (const InvalidStock& e) {

cout << "get_quote invalid symbol [" << e.sym << "]" << endl;
}
}

22-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

(the

y,
en
22.11.3.3 C++ Example of Callback Client Program

The following code shows how to set QoS at the ORB and object reference scopes
two most common levels) and make asynchronous invocations using the user-
implemented reply handler from the previous section. Again, for the sake of brevit
checking for valid pointers and placing all of the CORBA calls in try blocks has be
omitted.

// callback_client_main.cpp
#include <AsyncStockHandler.h>
int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Initializing objRef for StockManager -- assumes IOR is passed
// on command-line
CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);

// Obtain the ORB’s PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =
CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);
stockMgr = stockMgr->set_policy_overrides(obj_pols);
July 2002 CORBA, v3.0: Example Programmer Usage 22-37

22

re
// At this point QoS has been set and a protocol selected.

// Create an async handler for each async function.
// Note that the same handler instance could be used across the board
// if we wanted to only create a new Object Reference for each
// invocation and then correlate the timing data with each ObjectId
// ourselves.
//
// The following code assumes implicit activation of Servants with the
// RootPOA
AsyncStockHandler* handlerImpls[6];
for (int i = 0; i < 6; i++)

handlerImpls[i] = new AsyncStockHandler();

AMI_StockManagerHandler_var handlerRefs[6];
for (int i=0; i < 6; i++)

handlerRefs[i] = handlerImpls[i]._this();

// Async Attributes
stockMgr->sendc_set_stock_exchange_name(handlerRefs[0], "NSDQ");
stockMgr->sendc_get_stock_exchange_name(handlerRefs[1]);
// Async Operations
stockMgr->sendc_add_stock(handlerRefs[2], "ACME", 100.5);
stockMgr->sendc_edit_stock(handlerRefs[3], "ACME", 150.4);

// Notice no out param is passed.
stockMgr->sendc_remove_stock(handlerRefs[4], "ABC");

stockMgr->sendc_find_closest_symbol(handlerRefs[5], "ACMA");

// callbacks get invoked during other distributed requests and during
// eventloop processing.
// Assume that done is set by handler implementation when all replies
// have been received or request have timed out.while(!done)

orb->perform_work();
return 0;
}

22.11.4 Client-Side C++ Example of the Polling Model

22.11.4.1 C++ Example of Generated Poller

The typedPoller valuetype class implementation is provided by the messaging-awa
ORB. The generated C++ class has the following declaration:

// Generated file: stockmgr_c.hh (Filename is non-normative)
class AMI_StockManagerPoller : public Messaging::Poller
{
public:
22-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

he

h
hen

atch
virtual void get_stock_exchange_name(
CORBA::ULong timeout,
CORBA::String_out ami_return_val);

virtual void set_stock_exchange_name(
CORBA::ULong timeout);

virtual void add_stock(
CORBA::ULong timeout,
CORBA::Boolean_out ami_return_val);

virtual void edit_stock(CORBA::ULong timeout);

virtual void remove_stock(
CORBA::ULong timeout,
CORBA::Double_out quote);

virtual void find_closest_symbol(
CORBA::ULong timeout,
CORBA::Boolean_out ami_return_val,
CORBA::String_out symbol);

virtual void get_quote(
CORBA::ULong timeout,
CORBA::Double_out ami_return_val);

virtual AMI_StockManagerHandler_ptr associated_handler();
virtual void associated_handler(AMI_StockManagerHandler_ptr _val);
};

22.11.4.2 C++ Example of Polling Client Program

The following example client program demonstrates the use of the Polling model. T
bulk of the program is exactly the same as the program demonstrated in
Section 22.11.3.3, “C++ Example of Callback Client Program,” on page 22-37. Eac
invocation uses the polling “sendp_” in this program and the returned Pollers are t
sequentially called to obtain the results. The following notes apply to this sample
program:

• All polling calls are fully blocking (no timeouts are used).

• Since transactions are not used in this example, the polling program does not c
CORBA::WrongTransaction exceptions.

// polling_client_main.cpp
#include <stockmgr_c.hh> // include filename is non-normative
int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
July 2002 CORBA, v3.0: Example Programmer Usage 22-39

22
// Initializing objRef for StockManager -- assumes IOR is passed
// on command-line
CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);

// Obtain the ORB’s PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =

CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);

stockMgr = stockMgr->set_policy_overrides(obj_pols);

// At this point QoS has been set and a protocol selected.

// Make each invocation and store the returned Pollers
AMI_StockManagerPoller* pollers[6];

// Async Attributes
pollers[0] = stockMgr->sendp_set_stock_exchange_name("NSDQ");
pollers[1] = stockMgr->sendp_get_stock_exchange_name();

// Async Operations
pollers[2] = stockMgr->sendp_add_stock("ACME", 100.5);
pollers[3] = stockMgr->sendp_edit_stock("ACME", 150.4);

// Notice no out param is passed.
pollers[4] = stockMgr->sendp_remove_stock("ABC");
22-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
pollers[5] = stockMgr->sendp_find_closest_symbol("ACMA");

// Now obtain each result
CORBA::ULong max_timeout = (CORBA::ULong) -1;
pollers[0]->set_stock_exchange_name(max_timeout);
cout << "Setting stock exchange name succeeded" << endl;

CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(

max_timeout,
exchange_name.out());

cout << "Obtained stock exchange name [" << exchange_name << "]"
<< endl;

CORBA::Boolean stock_added;
pollers[2]->add_stock(

max_timeout,
stock_added);

if (stock_added)
cout << "Stock added successfully" << endl;

else
cout << "Stock not added" << endl;

try {
pollers[3]->edit_stock(max_timeout);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

cout << "Edit stock failure [" << e << "]" << endl;
}

try {
CORBA::Double quote;
pollers[4]->remove_stock(

max_timeout,
quote);

cout << "Removed stock successfully with quote [" << quote << "]"
<< endl;

}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]" << endl;
}

CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(

max_timeout,
closest_found, symbol.out());

if (closest_found)
cout << "Found closest symbol [" << symbol << "]" << endl;
July 2002 CORBA, v3.0: Example Programmer Usage 22-41

22

t of

ner
cout << "Exiting Polling Client" << endl;
return 0;
}

22.11.4.3 C++ Example of Using PollableSet in a Client Program

The following example client program demonstrates the use of thePollableSet and
wait for multiple requests to finish. The program would be exactly the same as tha
the previous section, as far as the comment “// Now obtain each result ”.

In this example, after thePollableSet::poll indicates that a particular Poller has
finished, the code makes the call on the type-specific poller in a non-blocking man
and doesn’t bother checking for completion in the return value. Checking isn’t
necessary when only a single client is using the Poller, but it is the safe practice if
multiple clients are waiting.

// Obtain results in any order. First set up
// the PollableSet.

CORBA::PollableSet_var poll_set =
pollers[0]->create_pollable_set();

CORBA::Pollable_var pollables[6];
for (int i=0; i<6, i++) {

pollables[i] = pollers[i]._this();
poll_set->add_pollable(pollables[i]);

}

// repeat until all completions have been received
CORBA::ULong max_timeout = (CORBA::ULong) -1;
while (poll_set->number_left() > 0) {

// wait for a completion
CORBA::Pollable_ptr pollable = poll_set->poll(max_timeout);

// the returned Pollable is ready to return its reply
for (int j=0; j < 6; j++) {

if (pollables[j]->is_equivalent(pollable)) break;
}

switch(j) {
case 0:

pollers[0]->set_stock_exchange_name(0UL);
cout << "Setting stock exchange name succeeded"

<< endl;
break;

case 1:
CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(0UL, exchange_name.out());
cout << "Obtained stock exchange name ["

<< exchange_name << "]" << endl;
break;
22-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
case 2:
CORBA::Boolean stock_added;
pollers[2]->add_stock(0UL, stock_added);
if (stock_added)

cout << "Stock added successfully" << endl;
else

cout << "Stock not added" << endl;
break;

case 3:
try {

pollers[3]->edit_stock(0UL);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

cout << "Edit stock failure [" << e << "]"
<< endl;

}
break;

case 4:
try {

CORBA::Double quote;
pollers[4]->remove_stock(0UL, quote);
cout << "Removed stock successfully with quote ["

<< quote << "]" << endl;
}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]"
<< endl;

}
break;

case 5:
CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(0UL, closest_found,

symbol.out());
if (closest_found)

cout << "Found closest symbol [" << symbol
<< "]" << endl;

break;
}

}

cout << "All replies received. Exiting Polling Client"
<< endl;

return 0;
}

July 2002 CORBA, v3.0: Example Programmer Usage 22-43

22
22.11.5 Server Side

The following example of theserver-side main() assumes a C++
implementation of theStockManager interface calledStockManager_impl .

#include <StockManagerImpl.h> // Implementation header

int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// Obtain the POA
PortableServer::POA_var poa =

orb->resolve_initial_references("RootPOA");

// Create a POA that supports Unshared transactions and processes
// queued requests in priority order
CORBA::Any policy_val;
CORBA::PolicyList pols(2);
pols.length(2);

policy_val <<= (Messaging::PRIORITY | Messaging::DEADLINE);
pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::QUEUE_ORDER_POLICY_TYPE,
policy_val);

policy_val <<= CosTransactions::Allows_either;
pols[(CORBA::ULong) 1] =

orb->create_policy(CosTransactions::TRANSACTION_POLICY_TYPE,
 policy_val);

poa = poa->create_POA(
"MessagingPOA",
PortableServer::POAManager::_nil(),
pols);

// Instantiate the servant.
StockManager_impl* stockMgr = new StockManager_impl("NYSE");
// register the servant for use.
PortableServer::ObjectId_var servantId =

poa->activate_object(stockMgr);
orb->run();
return 0;
}

22-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

g of
eply
nts, or
ts of
t and
is
tually
t

red
.

the
sider
Section III - Message Routing Interoperability

22.12 Section III - Introduction

Asynchronous method invocation and time-independent delivery of requests and
responses cannot be handled in a first-class manner within the synchronous dialo
the GIOP 1.1. The basic requirement for Messaging is that individual request and r
messages (and their components) can be discussed by routing agents. These age
Routers, explicitly pass messages between them and interact with clients and targe
asynchronous operations. This section describes the interactions between a clien
the first Router to handle its request, between successive Routers as the request
passed along the path to the target, and between the target and the Router that ac
makes the request on behalf of the original client. This Router closest to the Targe
then turns the reply into a Request on aReplyHandler , allowing the Reply to be
routed using the same mechanism as the original request. The reply is finally delive
to an application’sReplyHandler or through an application’s use of the Polling APIs

Note – This Introduction specifies Routing interoperability for CORBA Messaging
products. The information presented in this section is not required for building
applications that make Asynchronous operation invocations.

Throughout this Introduction a configuration is assumed in which the Client is
separated from the Target by the Internet. Using this “most complex” scenario, all
details of the Routing procedure are exposed. To help understand this design, con
Figure 22-1.

Figure 22-1 Routing Interoperability Overview

Client

INTERNET

Target

TargetRouter1

TargetRouter0

ClientRouter1

ClientRouter0

TargetRouter2ClientRouter2

ReplyHandler

1

2

3

4

5

6
7

8

9b

9a

Polling Client
July 2002 CORBA, v3.0: Section III - Introduction 22-45

22

s.
y
a
n a

hly
e

ion

ions

to
22.13 Routing Object References

This specification is designed to support scenarios in which a target may be
disconnected for a long period of time. It would be inefficient for a client’s router to
need to monitor the availability of all targets for which it holds outstanding request
To make this scenario scalable, it is possible for the target to specify a more highl
available temporary destination for its asynchronous requests. This destination is
Router, and the natural place for the target to specify this Router’s location is withi
component of the Target’s IOR. For extensibility, this specification defines a
TaggedComponent that contains a sequence of Router IORs.

module MessageRouting {
const IOP::ComponentId TAG_MESSAGE_ROUTERS = 3;

interface Router;
typedef sequence<Router> RouterList;

};

A TaggedComponent containing Target routing hints is built by setting the tag
member toMessageRouting::TAG_MESSAGE_ROUTERS and the
component_data to a CDR encapsulation of aMessageRouting::RouterList .
This component can appear inTAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles.

Routers are listed in this sequence in order from most highly available to least hig
available. It is expected that the least highly available Router will be “closest” to th
Target, whereas the most highly available Target Router will be “closest” to the
Internet. For example, the target in the reference example of Section 22.12, “Sect
III - Introduction,” on page 22-45 would have an IOR containing a
TAG_MESSAGE_ROUTERS Component containing a sequence of two Router
IORs. The first element in this sequence would be the reference ofTargetRouter1
and the second element would be the reference ofTargetRouter .

22.14 Message Routing

The messaging Routers serve two main purposes:

• forward a message to another Router, and

• synchronously deliver a message to its intended target.

This section explains the interfaces and mechanisms that support these two funct
of Routers. The interfaces described here are not exposed to the application
programmer in any way. They are intended entirely for use by Messaging vendors
support interoperability between messaging implementations.

The following IDL is used to route asynchronous requests and their corresponding
replies:

// IDL
module Messaging {
22-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
interface ReplyHandler { };
};

module MessageRouting {

struct MessageBody {
sequence<octet> body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
octet reserved[3];
sequence<octet> object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;

};

interface Router;
typedef sequence<Router> RouterList;
struct RequestInfo {

RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Messaging::PolicyValueSeq selected_qos;
RequestMessage payload;

};
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
void reply(

in string operation_name,
July 2002 CORBA, v3.0: Message Routing 22-47

22

d that
1.2
ry to

est.
in GIOP::ReplyStatusType reply_type,
in MessageBody reply_body);

};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};
};

22.14.1 Structures

22.14.1.1 MessageBody

This structure is used to wrap the marshaled GIOP message data (either request
arguments or reply data) to support repackaging as the request components aroun
data (such as service contexts or object key) change due to Routing. Since GIOP
Request and Reply Bodies are always aligned to an 8-octet boundary, it is necessa
keep track of the

• data and the length of that data as a sequence of octet, and

• the byte order with which that data was originally marshaled.

22.14.1.2 RequestMessage

This structure explicitly contains all the components of a GIOP request. When the
target is actually invoked, its members are used to compose an actual GIOP requ

The RequestMessage has the following members:
22-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

of

he

no

a
et.

ady.
st to
twork
• giop_version - the version of the GIOP that was used when the message was
marshaled.

• service_contexts - the sequence of service contexts selected for this request.
Routers must propagate all Service Contexts with unknown tags.

• response_flags - As explained further in theGeneral Inter-ORB Protocol
chapter, Section 15.4.1, “GIOP Message Header,” on page 15-31, the meaning
the two least significant bits is defined as:

• the least significant bit (bit-0) indicates whether or not a response may be
returned. If this bit is “1”, then the server-side ORB shall always send a
ReplyMessage . If the bit-0 is “0”, no ReplyMessage will be sent. This
replicates the function of theresponse_expected boolean inCORBA.

• Bit-1 is considered if and only if bit-0 is “1.” If bit-1 is “0” the server sends a
ReplyMessage before invoking the target. If bit-1 is “1” theReplyMessage is
sent after the target has completed the invocation.

• reserved

• object_key - the opaque object key of the target. This may change if a GIOP
object forwarding occurs for this request.

• operation - the operation name of the request being made.

• body - the CDR stream message payload and marshaling byte order for
repackaging within a new GIOP request once the routed message can be
synchronously invoked on the target.

22.14.1.3 ReplyDestination

This structure contains enough information for the response to be returned once t
actual invocation has been made on the target.

• handler_type - Either UNTYPED or TYPED indicating which type of
ReplyHandler is to receive the response. This flag is necessary to ensure that
is_a must be performed when the Target Router is ready to return the reply as
described in Section 22.14.3.5, “Target Router,” on page 22-55.

• handler - an Object reference to theReplyHandler that is the destination of the
response.

22.14.1.4 RequestInfo

This structure contains the information required for an intermediate Router to get
request closer to its target and for a target Router to invoke that request on its targ

• visited - the sequence of Routers through which the message has been sent alre
Each router may add its reference to this sequence before forwarding the reque
another Router. This sequence can be used by a Router to detect cycles in a ne
of Routers, but this is not a requirement step in the Routing protocol.
July 2002 CORBA, v3.0: Message Routing 22-49

22

sent
ent

is
y

If

e.

ard
s

to
• to_visit - the suggested sequence of Routers to which the message should be
if the target is not available. This sequence may be modified as the request is s
from Router to Router.

• profile_index - the index of the profile in the target IOR that is being used for th
request. This is necessary so the target router can choose the correct object ke
when composing the final GIOP request.

• target - the full IOR of this message’s target.

• reply_destination - a reference to theReplyHandler for this request along with
the disposition of thatReplyHandler . If the handler_type is UNTYPED, the
destination is an untypedReplyHandler (meaning that it was created when
create_persistent_request was called and is implemented by the
ClientRouter). If the handler_type is TYPED, the reply destination is a type-
specificReplyHandler implemented by an application using the callback model.
the reply destination isnil , no reply will be sent and thehandler_type can be
ignored.

• selected_qos - the list of QoS that was selected for the Routing of this messag

• message - the payload (arguments, return value, raised exception) for this
message, including the byte order with which the message was originally
marshaled.

22.14.2 Interfaces

22.14.2.1 ReplyHandler

The ReplyHandler interface is a base interface for all specificReplyHandler s
(either type-specific or Generic ones). It is used as the genericreply_destination
argument when a request is sent to a Router:

22.14.2.2 Router

The Router interface is used to pass messages when a request cannot be
synchronously invoked on its final target.

22.14.2.3 send_request

The Router is passed all the information necessary to either route the request tow
the target by callingsend_request on another Router, or to invoke the request on it
final target.

22.14.2.4 send_multiple_requests

The Router is passed a sequence ofRequestInfo structures, where each
RequestInfo is a completely self-contained set of information allowing the Router
either route the request toward the target by callingsend_request on another Router,
or to invoke the request on its final target.
22-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ata

t

ed
22.14.2.5 UntypedReplyHandler

This interface is the target of replies when the polling model is used.

22.14.2.6 reply

The reply operation is invoked when the reply to aPersistentRequest becomes
available. The operation is invoked with the following arguments:

• operation_name - The string name of the original request operation. This is
necessary if the untyped reply must be turned into a callback on a typed
ReplyHandler (as is the case if the polling client has switched models after
making the request and associated aReplyHandler with its Poller).

• reply_type - The status of the Reply (eitherNO__EXCEPTION,
USER_EXCEPTION, or SYSTEM_EXCEPTION). LOCATION_FORWARD
replies are not invoked on theReplyHandler .

• reply_body - The marshaled data of the reply along with the byte order with
which it was marshaled.

22.14.2.7 PersistentRequest

Instances of this interface are created by the Client Router for polling model
invocations, and is queried to obtain the status of a request, including the reply’s d
if available.

22.14.2.8 readonly attribute reply_available

Returns the valueTRUE if and only if the reply is currently available and has not ye
been returned to some caller ofget_reply . Returns the valueFALSE if and only if
the reply has not yet been returned to the ClientRouter. This attribute cannot be
checked if the response has already been delivered to some caller ofget_reply , as the
PersistentRequest instance will have been deactivated at that time and the ORB
will return the system exceptionOBJECT_NOT_EXIST on any subsequent
invocations on thatPersistentRequest .

22.14.2.9 get_reply

The get_reply operation is invoked to poll or block for a reply to a
PersistentRequest . The operation returns the status of the reply (either
NO_EXCEPTION, USER_EXCEPTION, or SYSTEM_EXCEPTION) or raises the
ReplyNotAvailable exception if no reply is obtained before the specified timeout
occurs. If the response is returned to the caller, thePersistentRequest is deactivated
so that future invocations ofget_reply raise the system exception
OBJECT_NOT_EXIST. The operation takes the following arguments:

• blocking - if set, the operation does not return until either a reply can be return
or thePersistentRequest becomes invalid (due to an expired time-to-live).
July 2002 CORBA, v3.0: Message Routing 22-51

22

he
nt

t can

the

is
y

sent
ent
• timeout - ignored if blocking isTRUE. Otherwise, the request blocks for the
specified number of seconds or until a reply is available. If no reply becomes
available after the specified timeout has expired, theReplyNotAvailable
exception is raised.

• reply_body - the data of the reply as originally marshaled by the target.

22.14.2.10 attribute associated_handler

The possiblynil ReplyHandler reference of the type-specificReplyHandler
registered to receive a callback reply for this request. This attribute is initially nil if t
PersistentRequest was created for a polling client, and becomes non-nil if the clie
decides to switch from the polling model to the callback model.

22.14.2.11 PersistentRequestRouter

This interface is used by the messaging-aware client ORB to create a request tha
be queried to obtain its status and reply data (e.g., using the polling model).

22.14.2.12 create_persistent_request

When aPersistentRequest is created for a message, no reply destination is
supplied. Instead, thePersistentRequestRouter establishes itself as the reply
destination and returns to the caller a reference that has operations for obtaining
status and reply for the request. The operation that returns this new
PersistentRequest takes the following arguments:

• profile_index - the index of the profile in the target IOR that is being used for th
request. This is necessary so the target router can choose the correct object ke
when composing the final GIOP request.

• to_visit - the suggested sequence of Routers to which the message should be
if the target is not available. This sequence may be modified as the request is s
from Router to Router.

• target - the full IOR of this message’s target.

• selected_qos - the list of QoS that was selected for this message.

• message - the payload (arguments, return value, raised exception) for this
message.

22.14.3 Routing Protocol

Processing of a time-independent invocation involves a series of roles played by
various components of the distributed system. These roles include:

• the invoking client

• an initial request router

• intermediate request routers
22-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

e
uter

erve

es.

the
is
has

an

the

o

ses)
e

o

by

ly

refore
• a target router

• the target object

• intermediate reply routers

• a final reply router

• the response-receiving client.

Not all of these distinct roles are necessarily involved in every invocation, and mor
than one role can be played by the same component of the distributed system. A ro
implementation is likely to be able to serve any of the router roles, and may even s
multiple roles for the same invocation, such as when the initial request router also
serves as the target router with no intermediate request routers involved.

Routers can be collocated with client or server ORBs, or can be separate process
Either way, routers must maintain persistent state with transactional semantics.

22.14.3.1 Invoking Client

The client application makes an asynchronous invocation either by specifying a
ReplyHandler object or by using the polling API.

Depending on QoS requirements, the client ORB may try to synchronously invoke
operation on the target object, using IIOP or some other synchronous protocol. Th
attempt will not be made if the client is part of an active transaction and the target
a TransactionPolicy of Requires_unshared .

If the target is unreachable via a synchronous protocol, the client ORB tries to find
initial router to use. If the target IOR has aTAG_MESSAGE_ROUTERS component,
its list of routers may be tried, starting from the one closest to the target, which is
last in the list. If none of these are reachable, or there is no
TAG_MESSAGE_ROUTERS component, then the client ORB’s default router
closest to the target may be chosen. The order in which the client ORB attempts t
contact an initial router is not mandated by this specification. The client ORB may
choose to send the request to any Router (such as its own closest Router in all ca
according to implementation-specific configuration. If the client application used th
polling interface and a quality of service requiring the request to be persistent, the
client ORB attempts to narrow the initial request router to a
PersistentRequestRouter , and if this fails, a different router must be selected. If n
router can be found meeting the required quality of service, the system exception
CORBA::INV_POLICY is raised.

Once an initial request router is identified, the client ORB delivers the request to it
invoking send_request if a ReplyHandler was specified, or
create_persistent_request if the polling API and persistent QoS was used. The
client application’s active transaction context, if any, is used for this invocation. On
service context information that is meaningful to the target in a time-independent
invocation, such asCodeSet s (but notTransactionContext), is included in the
RequestMessage argument tosend_request . Future ORB service specifications
must state whether their service contexts are to be considered end-to-end (and the
July 2002 CORBA, v3.0: Message Routing 22-53

22

t of

RB
ng

text,
ow.

e

the
ation

ng
all
the
t

e
ject,
, it
o
d of
uter
included within theRequestMessage) or are only for a single hop (and therefore
used by the ORB when invoking the initial router but not included with the
RequestMessage).

An empty sequence is passed by the client ORB as the visited parameter. The lis
routers from the target IOR’sTAG_MESSAGE_ROUTERS component is used as the
to_visit parameter. This list may have additional routers added to it by the client O
depending on administration of the network of routers. If the callback model is bei
used, the type-specificReplyHandler is passed as thereply_destination . If the
request was originated usingcreate_persistent_request , the untyped
ReplyHandler is passed as thereply_destination . For the reply to be able to be
delivered asynchronously, theseReplyHandler IORs must contain enough routing
information (e.g.,TAG_MESSAGE_ROUTERS component).

22.14.3.2 Initial Request Router

The initial request router’s role depends on whether theReplyHandler or polling API
was used by the client.

If the client ORB passed the request message, along with aReplyHandler reference,
to the initial router using thesend_request operation, the initial request router saves
the request message to stable storage within the client application’s transaction con
and then processes the request using the request routing algorithm described bel

If create_persistent_request was called, the initial request router must instantiat
a PersistentRequest object and return its reference to the client ORB, which will
return it to the client application. Until the response for the request is delivered to
client, or the request times out, such an initial request router must keep an associ
between the identity of thisPersistentRequest object and the state of the request.
When routing the request (as described below), this first router passes a
reply_destination , which is anUntypedReplyHandler implemented by the first
router itself. ThisUntypedReplyHandler may be created either before or after the
PersistentRequest and request state is committed to stable storage. After returni
the PersistentRequest object and committing the request state to stable storage,
within the transaction context of the client application, the initial router processes
request using the routing algorithm described below. The routing process does no
continue until the client’s initial transaction has been committed.

22.14.3.3 Request Routing Algorithm

Any router that has received a request message and committed it to stable storag
processes it in the same way. If it can invoke the operation directly on the target ob
the router serves as the target router for the invocation, as described below. If not
tries to deliver the request to another router closer to the target object. If it can’t d
either of these, it queues the request and tries again later, either after some perio
time has elapsed, or in response to an announcement of availability from another ro
closer to the target as described in Section 22.15, “Router Administration,” on
page 22-59.
22-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

of

g
cted
. If
ion is

nd

uest

m

take

livers
k to

the
r
e

his

ssage
age
A router typically picks another router closer to the target by selecting from the list
routers passed to it as theto_visit parameter to eithersend_request or
create_persistent_request . Routers later in the list are given preference as bein
closer to synchronous connection with the target. The next router can also be sele
from some set of known Routers based on an implementation-specific configuration
QoS attributes of the request message require persistence of requests, a transact
first initiated. Thensend_request is called on the selected router. Theto_visit
parameter is formed by removing the callee from theto_visit list received with the
original request. Any routers further from the target than the callee (earlier in the
to_visit list) are also removed. Thetarget , reply_destination , selected_qos , and
message parameters are copied from the received request. After invoking
send_request , the router removes the request message from its stable storage, a
commits the transaction if it initiated one.

A router must ensure that exactly-once semantics are preserved. If delivering a req
message results in an exception with aCompletionStatus of COMPLETED_NO, or
in a transaction being aborted, it can retry. Since any invocation can raise a syste
exception, all exception replies with a completion status other than
COMPLETED_NO must be reported back to the client via the reply message.

22.14.3.4 Intermediate Request Router

An intermediate router is simply a router that accepts a request message via
send_request from one router and then, eventually, delivers it to another router,
again usingsend_request . Thesend_multiple_requests operation may also be
used to allow batching of requests between Routers. The intermediate routers may
a request’sQueueOrderPolicy (if present) into account when prioritizing the
delivery of requests to destination routers, but is not required to do so.

22.14.3.5 Target Router

The target router for an invocation is a router that accepts a request message, de
it to the target object, and, if a response is expected, routes the target’s reply bac
the client. The target router may have to queue the request message before the
invocation and/or may have to queue the response message after the invocation.

The target router may be collocated with the target, or may deliver the request to
target via a synchronous GIOP-based protocol. The target router is responsible fo
processing anyLOCATION_FORWARD replies that may be generated in making th
invocation on the target, so onlyNO_EXCEPTION, USER_EXCEPTION, or
SYSTEM_EXCEPTION replies are routed back to the client. When making the
synchronous GIOP request on the target, theTargetRouter must marshal its request
with the same byte order with which the original message body was marshaled. T
byte order is recorded in theMessageBody structure. No Router is expected to
remarshal the request body with a new byte order.

If persistence of requests is required, the target router ensures that the request me
is removed from stable storage and the reply message is committed to stable stor
within the scope of a single transaction. If the target object’s IOR indicates that it
July 2002 CORBA, v3.0: Message Routing 22-55

22

se no

y a
the
back

was
ble
n the
he
ply
eply
the

the
rated
ts a

tion

, the
licy

is

nd
are
supports time-independent transactions (through aTransactionPolicy of
Allows_unshared , Allows_either , Requires_unshared , or Requires_either),
then that same transaction context is propagated to the server application. Otherwi
transaction context is propagated to the target when the request is invoked.

When guaranteed delivery is required, there may be one, two, or three distinct
transactions involved in the target router’s processing of the invocation. The target
router receives the request message within the context of a transaction initiated b
previous router or possibly the client ORB. If the target is accessible at that time,
operation can be invoked on the target and the reply message either stored or sent
toward the reply destination using the transaction context within which the request
received. If the target is not accessible, the request message is committed to sta
storage and queued for later delivery to the target under a second transaction. Whe
target operation is invoked and its reply is received, the target router may deliver t
reply to another router, or possibly to the client ORB. The router may deliver the re
in the same transaction as it invoked the operation, or the router may commit the r
to stable storage and later deliver it in yet another transaction. The completion of
transaction in which theTargetRouter actually delivers the request to the target is
governed by the following cases:

• A NO_EXCEPTION reply is returned and the transaction commits. This
committed reply is the one that will be returned to the client. Since the reply
committed, the request is no longer waiting in some queue pending delivery.

• A NO_EXCEPTION reply is returned but the transaction raises
TRANSACTION_ROLLEDBACK upon commit. In this case the router must
ensure that the request not be considered pending delivery anymore (logically
request must be removed from some queue), and that a suitable reply be gene
so that the client knows that the target’s transaction rolled back. The router star
new transaction in which it removes the request from its “to be delivered” queue
and generates a reply with the system exception
TRANSACTION_ROLLEDBACK. This reply is then committed as the reply
for the request.

• A user or system exception is returned. The Router should rollback the transac
so no work has been done in the target server. There are two subcases here:

• the target was unreachable. In this case, since the transaction has rolled back
request is still waiting in the Router’s queue of pending requests. The retry po
is used to determine when next to attempt delivery.

• the target was reachable but an exception was raised. As in the
TRANSACTION_ROLLEDBACK case above, the Router starts a new
transaction to remove the request from the queue of pending requests, and
commits the exception reply that it received from the target as the reply for th
operation.

If the request has aQueueOrderPolicy associated with it, the target router is
responsible for making invocations in the proper order. Depending on the Ordering
requested (e.g.,PRIORITY, TEMPORAL), the appropriate request is selected for
delivery. Note that end-to-end ordering guarantees cannot be made when client a
target are decoupled, so this ordering is really only a guideline. If multiple threads
22-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

to

e the

t

rder
not

as

y the
used in the router for request delivery, it is certainly possible for delivery of requests
be out of order. The specification ofQueueOrderPolicy does not require a router or
server ORB to limit its use of threads in delivering requests.

Regardless of how many transactions, if any, are used, the target router must rout
reply back to the reply destination if and only if theresponse_expected flag was
set to a non-zero value in theRequestMessage . The reply can take one of two forms
depending on whether thereply_destination is a type-specificReplyHandler (the
client uses the Callback model) or if thereply_destination is an
UntypedReplyHandler (a PersistentRequest was created such as when the clien
used the Polling model).

Note – The type-specific reply handlers and theUntypedReplyHandler are both
derived from the common baseReplyHandler interface, but there is no other
inheritance relationship between theUntypedReplyHandler and the type-specific
reply handlers.

Regardless of destination, the new reply must be marshaled with the same byte o
used by the target when the reply was originally marshaled. The Target Router is
expected to remarshal the reply body.

22.14.3.6 Replying to a Type-specific ReplyHandler

If the client originally supplied a type-specificReplyHandler , the reply must be
converted into a typed request invocation on theReplyHandler . The Target Router
determines this by verifying that thehandler_type disposition of the
reply_destination argument has the valueTYPED. The format of the generated
request depends on thereply_status :

• NO_EXCEPTION - the generated reply operation has the same operation name
the request. ItsRequestBody is exactly the same as the marshaledReplyBody
from the target’s GIOP reply.

• SYSTEM_EXCEPTION or USER_EXCEPTION - the generated reply operation
has the same name as the request operation, with the string_excep appended. The
single argument to this request is theMessaging::ExceptionHolder valuetype.

A reply with statusLOCATION_FORWARD is handled as described below.

22.14.3.7 Replying to an UntypedReplyHandler

If the client originally created aPersistentRequest (such as by using the Polling
model), the reply must be converted into the generic request operation supported b
UntypedReplyHandler interface. The Target Router determines this by verifying
that thehandler_type disposition of thereply_destination argument has the value
UNTYPED. The generated reply operation has the name “reply” and takes as
arguments the original operation name, the reply_status (NO_EXCEPTION,
SYSTEM_EXCEPTION or USER_EXCEPTION) and a sequence of octet
containing the reply data. The length is set to the size of the marshaledReplyBody
and the data is the marshaled body itself.
July 2002 CORBA, v3.0: Message Routing 22-57

22

est

the

.

the

ple,

he

ts a
22.14.3.8 Handling of Service Contexts

When aTargetRouter receives a Reply, it generates a request on someReplyTarget
as described previously in this section. If the Reply contains service contexts, the
TargetRouter must decide whether or not these contexts are to be used in its requ
on theReplyTarget . End-to-end service contexts, such as theCodeSets context, are
propagated to theReplyTarget . Single-hop service contexts, such as the
TransactionService context, are consumed by theTargetRouter . Unknown service
contexts are propagated from the reply to the generated request on theReplyTarget .

22.14.3.9 Handling LOCATION_FORWARD Replies

When aTargetRouter receives a Reply with statusLOCATION_FORWARD , it must
either use the returned reference as the new target for the request, or must return
new reference to theReplyTarget . The Messaging protocol requires that the
TargetRouter continue processing the request by either directly invoking the new
target or routing the request toward the new target as has been described thus far

22.14.3.10 Routing of Replies

As described above, the GIOP reply is turned into a request message targeted to
original reply_destination . Since this reply is now a request, it may be sent to its
destination using the message routing protocol described in this section. For exam
if the ReplyHandler ’s reference contains Routing information, theTargetRouter
may invoke the new request using some Router’ssend_request operation. In this
case, the specified routing protocol should be followed for this new request, with t
response_expected flags all set to 0 and thereply_destination set to nil.

22.14.3.11 UntypedReplyHandler

When anUntypedReplyHandler’s reply operation is invoked, several things may
happen. The specific correlation of a Router’sUntypedReplyHandler with the
PersistentRequests it supports is not visible to this interoperability layer, but at a
high level one of the following occurs:

• A type-specificReplyHandler has been associated with the corresponding
PersistentRequest . If a callback has been registered for this reply (the
associated_handler is non-nil), the type-specific callback operation may be
invoked directly as described in Section 22.14.3.6, “Replying to a Type-specific
ReplyHandler,” on page 22-57. For persistent delivery of replies, the Router star
transaction in which the reply is delivered. Once the client returns, the Router
commits and the reply is deleted. As with any transactional request, the
application’sReplyHandler implementation may choose to invoke
CosTransactions::Current::rollback_only or
CosTransactions::coordinator::rollback_only and then raise the
CORBA::TRANSACTION_ROLLEDBACK system exception if it wishes to
rollback the Router’s transaction.
22-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

y

ade
s

a

hip
r,”
rk is

ation

io

d
et
• A PersistentRequest::get_reply is pending for this request. The reply data ma
be immediately returned to the waiting client. The reply is returned within the
client’s transaction context and when that transaction is committed the reply is
deleted.

• The reply data may be saved to stable storage (for guaranteed delivery this is m
durable when the sending Router commits the transaction in which the reply ha
been delivered) or recorded in-process (if the reply is not guaranteed). The
UntypedReplyHandler::reply then returns. The reply is obtained by a client at
later time.

22.15 Router Administration

One basic function of a Router is to forward a request to another Router, which is
“closer” to the eventual target of a client’s original request. In terms of the relations
between these two routers, the first Router can be thought of as the “source Route
and the second can be called the “destination Router.” In the case where the netwo
partitioned or the destination Router has temporarily or permanently become
unavailable, the source Router will be unable to forward its message. When this
occurs, the Router must determine when and how to retry the request to the destin
Router.

To enable scalable networks of routers, aRouterAdmin interface has been specified.
The interface is defined mainly for the purpose of avoiding the non-scaling scenar
where a source Router has no choice but to consume network resources by
continuously “pinging” its destination Router.

This problem is analogous to the one faced by the target router when attempting
delivery of the request to the message’s target. Therefore, the mechanism specifie
here generically supports registrations of destination routers as well as actual targ
object references.

module MessageRouting {

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

valuetype RetryPolicy supports CORBA::Policy { };

const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 50;
valuetype ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 51;
valuetype UnlimitedPing : RetryPolicy {
July 2002 CORBA, v3.0: Router Administration 22-59

22

ectly

needs
public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;

};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 52;
valuetype LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 53;
valuetype DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 54;
valuetype ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
in Object dest)

raises (InvalidState);

void unregister_destination(
in Object dest)

raises (InvalidState);
};

interface Router {
readonly attribute RouterAdmin admin;

};
};

When a request arrives at a Router (source router) that must either be delivered dir
to a target, or be forwarded on via another Router (destination router), that source
router attempts to send the message. If the message send fails, the source router
to decide when to retry the send.
22-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

e the
the

n

ages,

rk.

e

ts

ced
ted

e

er
he

can
e

he
is
ce

ve.
The following use of theRouterAdmin is intended for router-to-router
administration:

1. A source router gets a request that should be sent to a destination router. Sinc
source router has no registration for that destination router, it attempts to send
message.

2. Upon receipt of the message, the destination router realizes that it has never
registered back with the source router and calls back to the source router's
RouterAdmin (independent of the processing of the message - this is purely a
optional administrative request to avoid poor routing behavior in the future). By
calling back to theRouterAdmin , the destination router registers itself with its
desired retry policy and decay policy for future messages. On subsequent mess
the destination router knows that it has already registered and need perform no
administrative processing at this step.

3. At some time, the destination router knows it is being separated from the netwo
This case is termed “graceful disconnection.”

• The destination router notifies the source router that the registration should b
suspended.

• Upon subsequent requests, the source router consults its list of registrations.
Since the destination router is currentlySUSPENDED, no send is attempted
(depending on theResumePolicy at the time of suspension).

• At some later time, the destination router becomes reconnected. It resumes i
registration and can now receive stored (and later) messages.

4. At some time, the destination router becomes disconnected without any advan
warning (it may not know that it is disconnected). This case is termed “unexpec
disconnection.”

• Upon subsequent requests, the source router consults its list of registrations.
Since the destination router is currentlyACTIVE, a send is attempted. When the
send fails, the source router follows itsRetryPolicy and keeps pinging until the
RetryPolicy indicates the registration should be suspended (immediately if th
RetryPolicy is ImmediateSuspend or never if theRetryPolicy is
UnlimitedPing).

• At some time, the destination router becomes reconnected. If the source rout
discovers this due to pinging, the pending requests can now be delivered. If t
source router hasSUSPENDED the registration or is in the midst of the interval
between pings when the destination router re-registers itself, the registration
immediately be set to anACTIVE state and pending requests can be sent to th
destination router.

The “target router” is the one that synchronously delivers requests to the target. T
RouterAdmin is also used for the administration of policies that determine when th
target router will actually attempt to deliver its request. A target’s use of this interfa
is very similar to the way it is used for router-to-router administration described abo
The analogous scenarios are re-described here for clarity:
July 2002 CORBA, v3.0: Router Administration 22-61

22

to

so

ter
t

e is

.

ince

on

(it

ince

e

he

tely

r

1. An object instance is activated with support for TII. Since the target is now ready
receive requests, it is registered with some router’sRouterAdmin with the target’s
desired retry policy and decay policy. Typically, a reference to this router will al
be contained in aMessageRouting::TAG_MESSAGE_ROUTERS component
of the target’s object reference.

2. A router gets a request that it can deliver directly to the target (therefore this rou
is considered a “target router”). Since the target router has a registration for tha
object, it attempts to invoke the request.

3. At some time, the target knows it is being separated from the network. This cas
termed “graceful disconnection.”

• The target notifies the target router that the registration should be suspended

• Upon subsequent requests, the target router consults its list of registrations. S
the target is currentlySUSPENDED, no invocation is attempted (depending on
the ResumePolicy at the time of suspension).

• At some later time, the target becomes reconnected. It resumes its registrati
and can now receive stored (and later) requests.

4. At some time, the target becomes disconnected without any advanced warning
may not know that it is disconnected). This case is termed “unexpected
disconnection.”

• Upon subsequent requests, the target router consults its list of registrations. S
the target is currentlyACTIVE, an invocation is attempted. When this invocation
fails, the target router follows itsRetryPolicy and keeps pinging until the
RetryPolicy indicates the registration should be suspended (immediately if th
RetryPolicy is ImmediateSuspend or never if theRetryPolicy is
UnlimitedPing).

• At some time, the target once again becomes available. If the target router
discovers this due to pinging, the pending requests can now be delivered. If t
target router hasSUSPENDED the registration or is in the midst of the interval
between pings when the target re-registers itself, the registration can immedia
be set to anACTIVE state and pending requests can be invoked on the target.

22.15.1 Constants

22.15.1.1 typedef short RegistrationState

The RegistrationState indicates the current status of a registration for a particula
destination (a router or a target). The possible values are:

• NOT_REGISTERED - The given destination is not registered with this
RouterAdmin .

• ACTIVE - The given destination is currently registered with thisRouterAdmin
and is not in the suspended state.

• SUSPENDED - The given destination is currently registered with this
RouterAdmin and has been set to the Suspended state.
22-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

th a
ains

e.

d

to
a
pt.

t

same
22.15.2 Exceptions

22.15.2.1 exception InvalidState

The attempted operation attempts to affect a registration, which is not in a state wi
valid transition to the new state dictated by the operation. The State member cont
the current status of the router or target for which the operation was attempted:

• Suspend was attempted on a router/target either not registered or already
suspended.

• Resume was attempted on a router/target either not registered or already activ

• Unregister was attempted on a router/target not registered.

22.15.3 Valuetypes

22.15.3.1 RetryPolicy

This valuetype is the abstract base from which all retry policies are derived.

22.15.3.2 ImmediateSuspend

The registered router is placed in theSUSPENDED state as soon as a message sen
fails.

22.15.3.3 UnlimitedPing

This valuetype is used to parameterize a pinging behavior:

• backoff_factor - If max_backoffs is non-zero, thebackoff_factor is the
number by which the current interval between failed send attempts is multiplied
determine the interval before the next send should be attempted. For example,
backoff_factor of 2 will cause the interval to double between each failed attem

• base_interval_seconds - The base number of seconds between retries.

• max_backoffs - If zero, the same interval is used between each retry (constan
interval pinging). If non-zero, the interval between retries is multiplied by the
backoff_factor after each failed send attempt untilmax_backoffs failed
attempts have been made. Oncemax_backoffs have been performed, retry
attempts are made at the constant rate of the last interval used. Otherwise, the
interval is used between each retry (linear pinging).

22.15.3.4 LimitedPing

This valuetype is used to parameterize a pinging behavior that should be stopped
after a specified number of attempts. It derives fromUnlimitedPing and adds the
following state:
July 2002 CORBA, v3.0: Router Administration 22-63

22

ly

be

s and

ade

e

• interval_limit - The number of attempts before the pinging should be stopped.

22.15.3.5 DecayPolicy

This valuetype indicates how long a given registration is valid. If the
decay_seconds are set to the value zero, the registered destination router will on
be unregistered with an invocation ofunregister_router . Otherwise, the registered
destination router will be unregistered after the specified timeout has elapsed.

22.15.3.6 ResumePolicy

This valuetype indicates when a suspended registration should be resumed. If the
resume_seconds are set to the value zero, the registered destination will only
become active once explicitly resumed. Otherwise, the suspended destination will
resumed after the specified timeout has passed.

22.15.4 Interfaces

22.15.4.1 RouterAdmin

The RouterAdmin interface provides the operations for supporting scalable
connection and disconnection between source routers and their destination router
targets.

22.15.4.2 register_destination

A registration is added for the specified target with the given policies. If the
registration is marked asis_router , the destination will receive messages via the
Router interface as described in “Intermediate Request Router” on page 22-55.
Otherwise, the registration is assumed to be for a target, in which case delivery is m
as described in “Target Router” on page 22-55.

22.15.4.3 suspend_destination

The specified registration is suspended. If that target is not in anACTIVE state, an
InvalidState exception is raised. The suspended destination will be returned to th
ACTIVE state if an explicitresume_destination or register_destination
operation is performed for that destination. If theresume_policy allows for
TimedResume , this transition will occur in, at most, the specified amount of time
(e.g., if an explicit resumption doesn’t happen first).

22.15.4.4 resume_destination

Resume the suspended destination. AnInvalidState exception is raised if the
destination is not in theSUSPENDED state.
22-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
22.15.4.5 unregister_destination

Unregister the specified destination. AnInvalidState exception is raised if the target
is not registered.

22.16 CORBA Messaging IDL

22.16.1 Messaging Module

The following module has been added by CORBA Messaging:

// IDL
// File: Messaging.idl
#ifndef _MESSAGING_IDL_
#define _MESSAGING_IDL_

import ::CORBA;
import ::IOP;
import ::TimeBase;
module Messaging {

typeprefix Messaging “omg.org”;

//
// Messaging Quality of Service
//

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD = 2;

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;
July 2002 CORBA, v3.0: CORBA Messaging IDL 22-65

22
//
// Locally-Constrained Policy Objects
//

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
interface SyncScopePolicy : CORBA::Policy {

readonly attribute SyncScope synchronization;
};

// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};
interface RequestPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};
const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType

REQUEST_START_TIME_POLICY_TYPE = 27;
interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};
22-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;

interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;

interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
interface MaxHopsPolicy : CORBA::Policy {

readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

//
// Propagation of QoS Policies
//

struct PolicyValue {
CORBA::PolicyType ptype;
sequence<octet> pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

//
// Exception Delivery in the Callback Model
//

native UserExceptionBase;
valuetype ExceptionHolder {

void raise_exception() raises (UserExceptionBase);
void raise_exception_with_list(

in Dynamic::ExceptionList exc_list)
July 2002 CORBA, v3.0: CORBA Messaging IDL 22-67

22
raises (UserExceptionBase);
private boolean is_system_exception;
private boolean byte_order;
private sequence<octet> marshaled_exception;

};

//
// Base interface for the Callback model
//

interface ReplyHandler { };

//
// Base value for the Polling model
//

valuetype Poller : CORBA::Pollable {
readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
readonly attribute boolean is_from_poller;

private Object target;
private string op_name;

};
};
#endif

22.16.2 MessageRouting Module

The following module has been added for the CORBA Messaging Interoperable
Routing Protocol. These definitions are only required for interoperable support of
Time-Independent Invocations:

// IDL
// File: MessageRouting.idl
#ifndef _MESSAGE_ROUTING_IDL_
#define _MESSAGE_ROUTING_IDL_

import ::CORBA;
import::Dynamic;
import ::GIOP;
import ::IOP;
import ::Messaging;
module MessageRouting {

typeprefix MessageRouting “omg.org”;

//
// Basic Routing Interoperability
22-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
//

interface Router;
interface RouterAdmin;
typedef sequence<Router> RouterList;

struct MessageBody {
sequence<octet> body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
octet reserved[3];
sequence<octet> object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;

};

struct RequestInfo {
RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Messaging::PolicyValueSeq selected_qos;
RequestMessage payload;

};
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

readonly attribute RouterAdmin admin;
};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
void reply(
July 2002 CORBA, v3.0: CORBA Messaging IDL 22-69

22
in string operation_name,
in GIOP::ReplyStatusType reply_type,
in MessageBody reply_body);

};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};

//
// Router Administration
//

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

valuetype RetryPolicy supports CORBA::Policy { };

const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 50;
valuetype ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 51;
valuetype UnlimitedPing : RetryPolicy {

public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;
22-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22
};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 52;
valuetype LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 53;
valuetype DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 54;
valuetype ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
in Object dest)

raises (InvalidState);

void unregister_destination(
in Object dest)

raises (InvalidState);
};

};
#endif
July 2002 CORBA, v3.0: CORBA Messaging IDL 22-71

22

in
be

e

ces

s

Appendix A Overall Design Rationale

A.1 QoS Abstract Model Design

This Appendix describes each of the components in the Quality of Service (QoS)
abstract model and their relationships. The specification defines a framework with
which current QoS levels are queried and overridden. This framework is intended to
of use for CORBAServices specifiers, as well as for future revisions of CORBA. Th
Messaging-specific QoS are defined in terms of this framework.

Note – The QoS definitions specified in this specification are applied to both
synchronous as well as asynchronous invocations.

A.2 Model Components

The QoS framework abstract model consists of the following components:

• Policy - The base interface from which all QoS objects derive.

• PolicyList - A sequence of Policy objects.

• PolicyManager - An interface with operations for querying and overriding QoS
Policy settings.

• Mechanisms for obtainingPolicy override management operations at each
relevant application scope:

• The ORB’sPolicyManager is obtained through invoking
ORB::resolve_initial_references with the ObjectId “ORBPolicyManager”.

• A CORBA::PolicyCurrent derived fromCORBA::Current is used for
managing the thread’s QoS Policies. A reference to this interface is obtained
through an invocation ofORB::resolve_initial_references with theObjectId
“PolicyCurrent”.

• Accessor operations onCORBA::Object allow querying and overriding of QoS
at the object reference scope.

• The application of QoS on a Portable Object Adapter is done through the
currently existing mechanism of passing aPolicyList to thePOA::create_POA
operation.

• Mechanisms for transporting Policy values as part of interoperable object referen
and within requests:

• TAG_POLICIES - A Profile Component containing the sequence of QoS policie
exported with the object reference by an object adapter.

• INVOCATION_POLICIES - A Service Context containing a sequence of QoS
policies in effect for the invocation.

The Messaging QoS abstract model consists of a number ofCORBA::Policy -derived
interfaces:

• Client-side Policies are applied to control the behavior of requests and replies.
These include Priority, RequestEndTime, and Queueing QoS.
22-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

n a

d by
e.

nce
. The
on

ced

rent

n in
• Server-side Policies are applied to control the default behavior of invocations o
target. These include QueueOrder and Transactionality QoS.

A.2.1 Component Relationships

Programmers set QoS at various levels of scope by creating a Policy-derived
Messaging QoS Policy and selecting the interface for the particular scope. It is
anticipated that the following is the standard use-case scenario:

• A POA is created with a certain set of QoS. When object references are create
that POA, the required and supported QoS are encoded in that object referenc
Such an object reference is then exported for use by a client.

• Within a client, the ORB’sPolicyManager interface is obtained to set QoS for the
entire ORB (for the entire process when only one ORB is present) either
programmatically, or administratively. The Policies set here are valid for all
invocations in the process. A programmer-constructedPolicyList is used with this
interface to actually set the QoS.

• Within that same client, theCORBA::PolicyCurrent is obtained to set QoS for all
invocations in the current thread. This interface is derived from the
PolicyManager interface, which can be used to change the QoS for each
invocation. A programmer-constructedPolicyList is used with this interface to
actually set the QoS.

• Within that same client, the object reference is obtained and an invocation of its
get_client_policy operation queries the most specific QoS overrides. A
programmer-constructedPolicyList may be passed to the Object’s
set_policy_overrides operation to obtain a new Object reference with revised
QoS. Setting the QoS here applies to all invocations using the new Object refere
and supersedes (if possible) those set at the ORB and thread (Current) scopes
current set of overrides can be validated by calling the Object’s pseudo-operati
validate_connection , which will attempt to locate a target for the object
reference if no target has yet been located. At this time, any Policy overrides pla
at the Object, Thread or ORB scope will be reconciled with the QoS Policies
established for that object reference when it was created by the POA. The cur
effectivePolicy can then be queried by invokingget_policy , which returns the
Policy value that is in effect.

• Unseen by the application, the ORB (including the protocol engine) modifies its
internal behavior in order to realize the quality of service indicated by the client
through the first three steps. See the description of the protocol abstract desig
Section A.4, “Message Routing Abstract Model Design,” on page 22-81.

A.2.2 Component Design

Design decisions were made with respect to the following components of the QoS
framework:
July 2002 CORBA, v3.0: Model Components 22-73

22

s can

e the

n

ped
n
e

the

fit
for
,

s a

ice

ice

ely
n’s
• Each QoS is an interface derived fromCORBA::Policy . The design trade-offs
focused on ease of application interface for setting specific QoS values,
extensibility for new QoS types and values, and compactness so the QoS value
be represented efficiently in Service Contexts and IOR Profile Components.
Several alternatives were considered as the basic type for each QoS entity befor
decision was made to use thePolicy interface:

• CORBA::NamedValue - A pair of string andany were considered mainly due
to the flexibility afforded by using an any to represent QoS values. This desig
was discounted due to the untyped nature of theany and the application
development and execution costs of inserting typed data into and extracting ty
data from values of typeany. Furthermore, the presence of a full typecode withi
an any makes the size of such pairs too large for inclusion in compact Servic
Contexts and Profile Components.

• Stateful CORBAvaluetype - Although thevaluetype does present a typed
interface to the application program, includingvaluetype s in Service Contexts
and IOR Profile Components is too expensive due to the presence of full
repository identifier information when thevaluetype is marshaled. Furthermore,
there are issues associated with potential truncation of such QoSvaluetype s
when passed as formal arguments of their base type.

• Interfaces derived fromCORBA::Policy and compact representation. In the
model chosen by this specification, the QoS values are accessible through
locality-constrained interfaces. Derivation fromCORBA::Policy allows reuse of
existing interfaces and operations for policy management. When certain QoS
values must be marshaled in a Service Context or an IOR Profile Component,
most compact format was chosen. The type of QoSPolicy represented is
indicated by a structure containing the integralPolicyType and asequence of
octet holding the values for that policy.

• A generic factory for creating QoS Policies. In thePOA specification within
CORBA, each POAPolicy is created through an operation on the POA itself.
Although this presents a convenient typed interface for the creation ofPolicy
objects, it causes serious problems when new POA Policies are introduced. To
with the current model, operations would have to be added to the POA interface
every new type of POAPolicy . To address this potential administrative nightmare
this specification introduces a new ORB operationcreate_policy . Rather than
introducing typed operations for creating all of the Messaging QoS Policies
discussed in this specification, the generic factory operation is used.

• A RebindPolicy client-side QoSPolicy to ensure deterministic effective QoS. In
CORBA, transparent rebindingof an object reference may take place during any
invocation. Rebinding is defined here to mean changing the client-visible QoS a
result of replacing the IOR Profile used by a client’s object reference with a new
IOR Profile. Transparent rebinding is defined as when this happens without not
to the client application. Typically, this happens within GIOP through the use of
location forwarding. The defaultRebindPolicy (and the onlyCORBAbehavior)
supports this transparent rebind. For an application with rigorous quality of serv
requirements, such transparent rebinding can cause problems. For instance,
unexpected errors may occur if the application sets its QoS Policies appropriat
for an object reference, and then the ORB transparently changes the applicatio
assumptions about that reference by obtaining a new IOR. TheRebindPolicy has
22-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

e
re

tion
en

l

are

tions,
.

de

y
.

s
is

ns

ing
been added so that applications can prevent the ORB from silently changing th
IOR Profile (and therefore the server-side QoS) that have been assumed. A mo
rigorous value of thisPolicy even precludes the ORB from silently closing and
opening connections (when IIOP is being used, for example). The specific
requirements demanded by an application dictate which level ofRebindPolicy is
necessary.

A.3 AMI/TII Abstract Model Design

This section describes each of the components in the Asynchronous Method Invoca
/Time-Independent Invocation (AMI/TII) abstract model and the relationships betwe
them.

The model supported by Messaging is a specialization of the general object mode
described in the OMA guide. All of the elements of the CORBA object model are
present in the model described here. Some of the names of existing components
defined more precisely than they are in the CORBA object model. In addition, this
specification adds some new components to support Messaging.

Some of the components described here have been borrowed from other specifica
which in some cases have yet to be ratified. Where this occurs, it is clearly noted

A.3.1 Asynchronous Method Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following client-si
components:

• ReplyHandler - A ReplyHandler is an Object that encapsulates the functionalit
for handling an asynchronous reply. It is used for callback model reply handling

• Poller - A Poller is avaluetype used by clients to obtain replies to asynchronou
invocations. The Poller provides a type-specific wrapping through which a Reply
obtained.

• Asynchronous Method Invocation (AMI) - A remote method invocation that retur
immediately and whose reply is handled by aReplyHandler -derived class
implemented by the programmer, or whose reply is obtained through a Poller
valuetype .

A.3.2 Time-Independent Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following
components to support interoperability of Time-Independent Invocations:

• PersistentRequest - A PersistentRequest is an Object that encapsulates an
outstanding request. It supports operations for asynchronous operations (includ
polling or blocking until the reply comes). ThePersistentRequest is not a
locality constrained object (as opposed to theCORBA::Request).
July 2002 CORBA, v3.0: AMI/TII Abstract Model Design 22-75

22

the

he

of

s not

on
rver
ISP
• Persistent ReplyHandler - A ReplyHandler whose Object reference is created
by a POA with aPERSISTENT LifeSpan Policy. The PersistentReplyHandler
may be implemented by a process other than the one that issued the request.

• PersistentPoller - A Poller with state including aPersistentRequest reference.
The PersistentPoller may be used by a process other than the one that issued
request.

• Time-Independent Invocation (TII) - A time-independent invocation is an AMI
request whose reply may outlive the client process. This is addressed via the
persistentReplyHandler and Poller mechanisms.

• Router - A software routing agent that is used when the target objects (either t
target of the request or the target of the reply) are not available.

• Interoperable Routing Protocol -- An interoperable routing protocol built in terms
GIOP that provides a higher level of Quality of Service with respect to message
routing and delivery than is currently supported by IIOP. These extensions allow
out-of-the-box interoperability and define interfaces for MOM product plug-ins to
support CORBA Messaging with value-added QoS services that the particular
MOM vendor brings to the market.

A.3.3 Component Relationships

Figure 22-2 denotes an abstract view of the general Messaging architecture and i
meant to imply any particular implementation.

Figure 22-2 TII: No direct connection possible

Figure 22-2 depicts the most general scenario in which a client application residing
a laptop wishes to make an asynchronous method invocation on an object in a se
residing on another laptop. Each laptop typically connects to its own corporate or
22-76 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

that
ard

g the
ays
st to
uter

oke

ery
y

t

n to

e

y

network. Each of these networks has some set of Request/Reply Routers installed
are meant to be highly available and reliable. These Routers provide store-and-forw
capabilities.

In Figure 22-2 neither client nor server laptops are currently connected to their
respective networks. In this scenario, the client application makes its requests usin
Time-Independent Invocation model. The dashed arrows indicate that the client alw
tries to make the invocation on the target object or the Request/Reply Router close
the target. Since the client is not connected, it makes the invocation on the local ro
(indicated by the solid arrow).

Figure 22-3 depicts an asynchronous invocation in that the replies to the client inv
an operation on a callback object called aReplyHandler . In general, the client may
passivate himself, or may die while the request is outstanding. If a persistent deliv
quality of service had been specified (with a long enough time-out period) the repl
may be delivered when theReplyHandler instance becomes available again. All
object adapter features including process activation, Adapter activation and servan
activation can be used in ensuring delivery of the reply to a persistentReplyHandler .

Again, Figure 22-3 is meant to depict the most general case.

Figure 22-3 TII: Target not available synchronously

Figure 22-4 illustrates the case where the client laptop gains an Internet connectio
its corporate network. In this scenario, the Routers that are accessible exchange
requests and replies always first trying to contact the target and then sending to th
accessibleRouter closest to the target. In Figure 22-3, the server laptop is not
accessible so the routers exchange information. Notice that Corporate Routers ma
have replies to invoke on the client’s set of ReplyHandlers now that the client is

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

Local Router

ObjA

Request Tried

Request/Reply Made Internet Connection

Local Router

ObjA_ref

Reply
Handlers
July 2002 CORBA, v3.0: AMI/TII Abstract Model Design 22-77

22

y be
t

ly
their
nt’s
sent

e

e

till

on:
reachable. Also, recognize that since the client laptop is now connected, there ma
requests and replies for other targets, which are not currently running on the Clien
Laptop and so are cached in the Client Laptop’s LocalRouter .

Figure 22-4 Full connectivity available

Finally, Figure 22-4 represents full connectivity. Notice that all of the Request/Rep
Routers exchange information to get previously-queued requests/replies closer to
target objects. Since there is full connectivity between the two applications, the clie
async invocations can be made on the target object directly and the replies can be
directly back to make the appropriate invocation on theReplyHandler object.

If the client application has requested queued delivery, a Router is used even in th
case depicted in Figure 22-4. Despite the availability of the target, the client ORB
sends the request to a Router, which can queue the request prior to attempting th
synchronous invocation on the target. As an optimization that limits the request to
needing only a single network hop, this Router may be local to the target, but it is s
a Router with all the usual responsibilities.

Notice also that since the Server Laptop is connected its Request/Reply Router
exchanges information for applications that may or may not be running.

A.3.4 Callback Model Detailed Design

Several characteristics of the Callback programming model are worth extra attenti

• The ReplyHandler is a CORBA object that receives the reply to an AMI. The
programmer writes the implementation for a type-specificReplyHandler . A client
obtains an object reference for thisReplyHandler and passes it as part of the

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

Local Router

ObjA

Request Tried

Request/Reply Made Internet Connection

Local Router

ObjA_ref

Reply
Handlers
22-78 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ply is

ns

olve

, the

its

d of
ack

h

e,
asynchronous method invocation. When the server completes the request, its re
delivered as an invocation on theReplyHandler object. This invocation is made on
the ReplyHandler using the normal POA techniques of servant and object
activation. As a result, the callback operation may be handled in a different
programming context than that in which the original request was made.

• Exception replies require special handling in the Callback model. Since the
ReplyHandler implements an IDL interface, all arguments passed to its operatio
must be defined in IDL as well. However, exceptions cannot be passed as
arguments to operations; exceptions can only be raised as part of a reply. To s
this problem, anExceptionHolder valuetype is created to encapsulate the
identity and contents of the exception that was raised. An instance of this
ExceptionHolder is passed as the argument to theReplyHandler operation that
indicates an exception was raised by the target. In addition to its exception state
ExceptionHolder also has operations that raise the returned exception, so the
ReplyHandler implementation can have the returned exception re-raised within
own context.

A.3.5 Poller/PersistentRequest Detailed Design

In the Polling model, the routing relationships are a superset of those seen in the
Callback model. The differences in this model appear at both the beginning and en
the request/reply cycle. For Polling, the client application does not establish a Callb
ReplyHandler . The events that occur when Polling are pictured in Figure 22-5 on
page 22-80. The steps are as follows:

1. The client invokes the “sendp” variation of the target object’s operation.

2. The ORB creates aPersistentRequest object and associates a reference to it wit
an invisibleReplyHandler that is wrapped in a type-specific Poller value.

3. The ORB returns this Poller to the client.

4. The ORB then proceeds as if the invocation were done with the invisible
ReplyHandler and sends its request into the network.

5. At the very end, the invisibleReplyHandler receives the response and waits for a
poll.

6. When the computing context holding the type-specific Poller asks for a respons
the Poller obtains the response from the invisibleReplyHandler and delivers that
response to the caller.
July 2002 CORBA, v3.0: AMI/TII Abstract Model Design 22-79

22

l.
ived
r to

g

eply

e
at
of

the

to

se

y of
Figure 22-5 Sequence of Steps in Polling

A client uses thePoller in a similar fashion as in the DII deferred synchronous mode
The programmer can at any time choose to check whether or not the reply has arr
and deal with it in the current programming context. The user may also ask a Polle
block until the reply has arrived. ThePersistentRequest reference is not visible to
the client application, but is specified to enable interoperability between Messagin
products.

When a Time-Independent Invocation has been made, it is possible to poll for the r
in a client different from the one that made the initial request. An application takes
advantage of this by passing the Poller from the client that made the request to th
client that intends to poll for the reply (presumably by way of an Object instance th
is collocated with the latter client). Since this Poller is implemented through the use
a PersistentRequest object implemented by the Messaging layer, that
PersistentRequest must be accessible to whichever client uses that Poller. When
TII is used, it is possible for the polling client to obtain the reply after the original
invoking client no longer exists. Since thePersistentRequest must be implemented
in a server that is accessible to the Polling client, thatPersistentRequest must be
external to the original invoking client. A common design might be to have the
PersistentRequest in this case be implemented by a corporate Router accessible
the invoking client as well as to the client that intends to poll for the response. The
creation ofPersistentRequest objects is discussed in detail in the Section 22.12,
“Section III - Introduction,” on page 22-45.

In addition to being able to query the status of an individual Poller, the client can u
the PollableSet interface to ask about the status of several pollers, as well as the
status of any deferred synchronous requests. The client can query to find out if an
a particular set has completed or it can block until one of the set completes.

ObjA_ref

Invisible ReplyHandler

ORB

2
3

4 ObjA_ref, to network

reply, from network
5

6

PersistentRequest

Client laptop

1

Type-Specific Poller
22-80 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

ed
t and

To
y

new

.

t
ide a
d

his
the

ages

out
get
e

odel

se of
Note on CORBA AMI Support

Asynchrony is addressed in several places inCORBA. These items are taken into
consideration by this specification and are modified in the following ways:

• oneway operations - Operations can be defined in IDL to be oneway. Such
operations are by their very nature asynchronous, in that no reply is ever receiv
from a oneway operation and no synchrony can be assumed between the clien
the target. However, the definition of oneway in theCORBAspecification does not
guarantee a deterministic, portable behavior between compliant ORB products.
address this issue, the CORBA Messaging specification introduces a QoS Polic
that makes the behavior of oneway operations deterministic. Note that this new
Policy addresses the behavior of oneway operations regardless of the use of the
Polling and Callback stubs introduced by this specification.

• DII Deferred Synchronous - Deferred synchronous invocations are supported in
CORBAonly when the DII is used. The CORBA::Request pseudo-interface is
enhanced by this specification with the additions of TII and the Callback model

Note on Asynchrony and Narrowing of Object References

Many programming languages map IDL interfaces to programming constructs tha
support inheritance. In those language mappings (such as C++ and Java) that prov
mechanism for narrowing an Object reference of a base interface to a more derive
interface, the act of narrowing may require the full type hierarchy of the target. In t
case, the implementation of narrow must either contact an interface repository or
target itself to determine whether or not it is safe to narrow the client’s object
reference. This requirement is not acceptable when a client is expecting only
asynchronous communication with the target. Therefore, for the appropriate langu
this specification adds an unchecked narrow operation to the IDL mappings for
interface. This unchecked narrow always returns a stub of the requested type with
checking that the target really implements that interface. If a client narrows the tar
to an unsupported interface type, invoking the unsupported operations will raise th
system exceptionCORBA::BAD_OPERATION with standard minor code 2.

A.4 Message Routing Abstract Model Design

This section describes each of the components of the Message Routing abstract m
and their relationships.

A.4.1 Model Components

By and large the components of the message routing protocol are the same as tho
GIOP. The differences come with respect to two issues:
July 2002 CORBA, v3.0: Message Routing Abstract Model Design 22-81

22

into

in
col

e
ssing

ing:

/or
d.

eds

ing
eiving
to
s of:

lient).

and
e.

ent.
of a

two
• TII is essentially a store-and-forwarding mechanism. This implies the use of
Request routing agents. The protocol followed by these Routers is defined in
Section 22.14, “Message Routing,” on page 22-46, and is intended for insertion
Common Object Request Broker: Architecture and Specificationas a chapter on
Messaging Interoperability.

• Dynamic Protocol Selection based on QoS is reconciled locally via information
the IOR and the local ORB. This implies several newly defined items at the proto
level:

• Newly definedIOP::ServiceContext that contains QoS parameters.

• Newly definedIOP::ComponentId tag for Messaging and a Component
consisting of a representation of default QoS parameters.

• Newly definedIOP::ComponentId tag and Component representing the
transaction policy.

• A newly definedIOP::ComponentId tag and Component containing a sequenc
of Request Routers. This sequence of Routers represents the preferred addre
strategy when TIIs are made on an Object.

A.4.2 Component Relationships

The relationship between the above described components is based on the follow

• QoS resolution should be performed by the client ORB if possible. Routers and
Messaging-aware Adapters must ensure that only valid QoS have been selecte

• For efficient use of the Request/Reply Routers, their addressing information ne
to be in the IOR.

• Request/Reply Routers re-route request and reply messages by explicitly send
messages between them, and then generating a regular GIOP request (and rec
a regular GIOP reply) when interfacing with the real target. To allow this routing
occur, the Router interface requires an encapsulation of a GIOP request in term

• Routing information including the message header and pertinent QoS
information.

• Message payload (the marshaled arguments and service contexts from the c

The routers use the encapsulated QoS & re-routing information to re-route requests
replies and to decide whether to store request/reply information for a specified lifetim
The GIOP must be flexible enough to allow the Router closest to the request’s
destination to generate a request that looks like it was marshalled at the original cli
This closest Router must be able to handle the full GIOP including the processing
LOCATION_FORWARD reply without necessitating a return to the original client.

A.4.3 Router Administration Design

Several features of the Router administration design are worth note. These fall into
main areas:
22-82 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

e

uests
rred
ted.

mic
uch

l

ally
ges
• Static vs. Dynamic Routing - Routing information for an Object is available to th
client ORB through a Profile Component in the object’s IOR. This Component
contains a sequence of Router references through which Time-Independent req
may pass on the way to the target. Therefore, portably exporting a target’s prefe
Routers must be done statically, at the time when the target’s reference is crea
This specification introduces no interfaces that support dynamic routing. It is
expected that future work in CORBA Messaging will introduce portable
administrative interfaces through which domains of Routers may be connected.
Note that since the Router is an Object, the usual CORBA mechanisms for dyna
server relocation can certainly be used to allow migration of Routers and other s
dynamic Routing activities.

• Minimize administrative traffic - Administrative interfaces are introduced that wil
allow a minimal amount of network bandwidth to be consumed when network
disconnections occur. Furthermore, these administrative interfaces have been
designed so that additional overhead is not consumed when Routers would norm
be in an idle state. Administrative communication is only necessary when messa
would otherwise have to be sent between Routers.
July 2002 CORBA, v3.0: Message Routing Abstract Model Design 22-83

22

of

res

e
aces

le
2-2.

is

on
Appendix B Conformance and Compatibility Issues

This Appendix specifies the points that must be met for a compliant implementation
CORBA Messaging and compatibility issues associated with this specification.

B.1 Conformance Issues

This specification can be separated into several logical components.

In order to be conformant with this specification, the following mappings and featu
must be supported and implemented using the specified semantics:

• Changes to CORBA and Services. These changes include the modifications to
GIOP, OTS, and theSyncScopePolicy refinements tooneway operations. This
component includes thePolicy management framework for Quality of Service as
described in Section 22.1, “Section I - Introduction,” on page 22-2.

• Asynchronous Method Invocation (AMI) interfaces. This component includes th
generation of asynchronous stubs (sendc/sendp operations) along with all interf
and values upon which these stubs rely. All modifications to the DII are also
included in this component.

• Quality of Service Policies for Messaging. These new Policies and their possib
values are described in Section 22.2, “Messaging Quality of Service,” on page 2

Implementation of the following component is not required to be conformant with th
specification:

• Time-Independent Invocations (TII). This component includes the QoSPolicy that
supports TII (RoutingTypePolicy), the typedPersistentPollers described in
Section 22.10.2, “Persistent Type-Specific Poller,” on page 22-28, and all
interoperable Routing interfaces described in Section 22.12, “Section III -
Introduction,” on page 22-45.

B.2 Compatibility Issues

B.2.1 Transaction Service

Transaction service compatibility is affected by two factors:

• Changes to existing transaction service behavior introduced as part of this
specification.

• New transaction service functions introduced by this specification and the affect
existing implementations.

These are considered separately in each of the following sections.
22-84 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

22

n

.

nce

nce

s
k

e

ction

ior
it is
B.2.2 Changes to Current OTS Behavior

This specification deprecates theTransactionalObject interface defined in the
Transaction Servicespecification located in theCORBAServicesspecification. The
TransactionalObject interface was defined to control propagation of the transactio
context between the client and the server. An interface that inherits from
TransactionalObject will automatically have the client’s transaction context
established by the server ORB before any operations on that interface are invoked

A new mechanism for transaction propagation is independent of the use of inherita
from TransactionalObject . This mechanism has been defined so thatexisting
applications will continue to operate correctly without changeso they do not have to
removeTransactionalObject inheritance from their existing IDL. At most, they will
need to ensure that a definition ofCosTransactions::TransactionalObject
continues to be available to the IDL compiler.

The use ofTransactionalObject inheritance had two other side effects in the
Transaction Servicespecification.

• It affected the CORBA type of the interface being defined and thus the
RepositoryID in the Interface Repository. This means that once interface inherita
is actually removed, transactional and non-transactional implementations of the
same interface will have the same CORBA type.

• It provided for documentation within IDL of interfaces whose implementation wa
intended to be transactional. This enabled application developers to easily trac
their use of transactions.

OnceTransactionalObject is actually removed, these side effects will no longer b
present.

Effects of New OTS Functions on Existing OTS Implementations

This specification introduces new functions and behaviors to theTransaction Serviceto
support the global transaction model used by messaging and to encode the transa
model in the object reference using a newly definedTransactionPolicy . The default
for this new policy has been chosen to be compatible with existing CORBA behav
(i.e., a global transaction is associated with the target object if present) otherwise
not. Existing applications, which will not createTransactionPolicy objects, will get
the existing CORBA behavior.

Existing Clients with New Servers

New server applications can create object references with newTransactionPolicy
selections that can be exported to existing clients. Depending on the
TransactionPolicy selected, invoking methods on these objects may succeed
transparently to the client or produce failures (in the form of system exceptions)
existing clients will not have previously seen.
July 2002 CORBA, v3.0: Compatibility Issues 22-85

22

use
ng

MI

del
tion.

ces.

I

ject

ssed
s of
New AMI Clients with Existing Servers

Existing servers may require analysis of their existing semantics to determine the
extent to which they may be able to operate with new clients, especially clients that
the new AMI request invocation model. In general the following are true and existi
objects may as a result be usable without change by AMI clients:

• If transactions are not used, existing server objects will interoperate with new A
clients.

• If transactions are used, AMI invocations will use the new queued transaction mo
causing invocations on the target object to be rejected with a new system excep

• Depending on application design, it is possible that some (but not all) of these
existing applications can operate successfully with AMI clients. This will require
that these server objects be changed to produce new compatible object referen

It is normally true that a server application design, which depends on updating
recoverable resources managed by objects at multiple sites cannot support an AM
invocation without producing different behavior. For the cases where this is not a
problem the application can take advantage of new AMI clients by changing the ob
reference at creation time.

B.2.3 Security Service

The issues surrounding Security and Time-Independent Invocations must be addre
in a subsequent RFP. Current CORBA Security does fully support all other aspect
this specification, including typed deferred synchronous invocations.
22-86 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

FaultTolerantCORBA 23
the
ery

ch as

ch as
Contents

This chapter contains the following topics.

23.1 Fault Tolerant CORBA

23.1.1 Fault Tolerance for Diverse Applications

Many different kinds of applications, developed by the members of the OMG and
users of CORBA, have a need for fault tolerance. These applications range from v
large critical systems (such as air traffic control and defense systems) to smaller
critical systems (such as 911 and medical systems) to embedded applications (su
aircraft instrumentation and manufacturing control applications) to communication
systems (such as telephony and networking systems) to enterprise applications (su
financial and supply chain applications).

Topic Page

“Fault Tolerant CORBA” 23-1

“Basic Fault Tolerance Mechanisms” 23-12

“Replication Management” 23-31

“Fault Management” 23-66

“Logging & Recovery Management” 23-81

“Consolidated IDL” 23-88

Appendix A- “Glossary” 23-96

Appendix B- “Compliance Points” 23-105
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 23-1

23

,
ined
on
ater

e
ires

ntity
f

the

y,
e
e

to

at
both

ure

g

A standard that attempts to meet all of the requirements of this wide spectrum of
applications might satisfy many needs only poorly, or might be too complex to
implement. This specification therefore represents a number of compromises. In
particular, to provide full interoperability between the products of different vendors
substantially more interfaces and protocols would need to be defined than are def
in this specification. Once experience of implementation and use of the specificati
has been gained, it might be appropriate to extend the specification to provide gre
interoperability and fault tolerance. In the meantime, some vendors may choose to
offer proprietary extensions to satisfy the fault tolerance needs of specific kinds of
applications.

23.1.2 Objectives

The standard for Fault Tolerant CORBA aims to provide robust support for
applications that require a high level of reliability, including applications that requir
more reliability than can be provided by a single backup server. The standard requ
that there shall be no single point of failure.

Fault tolerance depends on entity redundancy, fault detection, and recovery. The e
redundancy by which this specification provides fault tolerance is the replication o
objects. This strategy allows greater flexibility in configuration management of the
number of replicas, and of their assignment to different hosts, compared to server
replication. Replicated objects can invoke the methods of other replicated objects
without regard to the physical location of those objects. Support for redundancy in
time is provided by allowing clients to make repeated requests on the server, using
same or alternative transport paths.

The standard supports a range of fault tolerance strategies, including request retr
redirection to an alternative server, passive (primary/backup) replication, and activ
replication which provides more rapid recovery from faults. The standard allows th
users to define fault tolerance properties for each replicated object (object group).

The standard supports applications that require the Fault Tolerance Infrastructure
control the creation of the application object replicas, as well as applications that
control directly the creation of their own object replicas. It supports applications th
require the Fault Tolerance Infrastructure to maintain Strong Replica Consistency,
under normal conditions and under fault conditions, as well as applications that
provide whatever level of consistency they require.

The standard provides support for fault detection, notification, and analysis for the
object replicas. It supports applications that require the Fault Tolerance Infrastruct
to provide automatic checkpointing, logging and recovery from faults, as well as
applications that handle their own fault recovery.

The standard aims for minimal modifications to the application programs, and for
transparency to replication and to faults. It defines minimal modifications to existin
ORBs that allow non-replicated clients to derive fault tolerance benefits when they
invoke replicated server objects.
23-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

e

onal
t the

g
tion

may
can

n a
e
n be

nce
er

ded,
t

23.1.3 Basic Concepts

23.1.3.1 Replication and Object Groups

To render an object fault-tolerant, several replicas of the object are created and
managed as anobject group. While each individual replica of an object has its own
object reference, an additionalinteroperable object group reference(IOGR) is
introduced for the object group as a whole. It is this object group reference that th
replicated server publishes for use by the client objects. The client objects invoke
methods on the server object group, and the members of the server object group
execute the methods and return their responses to the clients, just like a conventi
object. Because of the object group abstraction, the client objects are not aware tha
server objects are replicated (replication transparency) and are not aware of faults in
the server replicas or of recovery from faults (failure transparency).

23.1.3.2 Fault Tolerance Domains

Many applications that need fault tolerance are quite large and complex. Managin
such an application as a single entity is inappropriate. Consequently, this specifica
definesfault tolerance domains, as illustrated in Figure 23-1. Each fault tolerance
domain typically contains several hosts and many object groups, and a single host
support several fault tolerance domains. Existing security policies and mechanisms
be maintained by ensuring that a fault tolerance domain is entirely contained withi
single security domain. All of the objects groups within a fault tolerance domain ar
created and managed by a single Replication Manager, but they can invoke and ca
invoked by objects within other fault tolerance domains. The concept of fault tolera
domains allows applications to scale to arbitrary sizes, by allowing a smaller numb
of objects to be managed by each Replication Manager.

Figure 23-1 Fault tolerance domains are shown lightly shaded, hosts are shown darkly sha
and members of an object group are shown unshaded. The members of objec
group B are denoted B1, B2 and B3, and similarly for object groups C, D and E.

Host 1

A

Hawaii
Location

ORB without
support for
fault tolerance

1

Host 2

Los Angeles
Fault
Tolerance
Domain

Host 3

B
2

C
1

Host 4

B3
C2

Host 5

C3
D 1

Host 6

D
2

E1

Host 7

D3 E
2

Wide-area
Fault Tolerance
Domain

New York
Fault Tolerance
Domain

Bgate
way

IIOP
TCP/IP
July 2002 CORBA, v3.0: Fault Tolerant CORBA 23-3

23

such

to
ties

oup
aults

p, all

r,
tency
sive
an
f the

oked

an
A.
23.1.3.3 Fault Tolerance Properties

Each object group has an associated set of fault tolerance properties. Examples of
properties are theReplicationStyle (COLD_PASSIVE , WARM_PASSIVE ,
ACTIVE, etc.),InitialNumberReplicas , MinimumNumberReplicas , etc. It is
possible to define fault tolerance properties that apply to all object groups within a
fault tolerance domain or to all object groups of a specific type. It is also possible
set the properties of an object group when it is created, and to change the proper
dynamically after the object group is created.

23.1.3.4 Strong Replica Consistency

Strong replica consistency requires that the states of the members of an object gr
remain consistent (identical) as methods are invoked on the object group and as f
occur. More specifically, for the ACTIVEReplicationStyle , Strong Replica
Consistency means that, at the end of each method invocation on the object grou
of the members of the object group have the same state. For theCOLD_PASSIVE and
WARM_PASSIVE ReplicationStyles , it means that, at the end of each state transfe
all of the members of the object group have the same state. Strong Replica Consis
requires Strong Group Membership, as well as Uniqueness of the Primary for pas
replication. Strong Group Membership means that, for each method invocation on
object group, the Fault Tolerance Infrastructures on all hosts have the same view o
membership of the object group. Uniqueness of the Primary for passive replication
means that one and only one member of the object group executes the methods inv
on the object group.

23.1.4 Architectural Overview

Figure 23-2 presents an architectural overview of a fault-tolerant system, showing
example strategy for implementation of the specifications for Fault Tolerant CORB
Other implementation strategies are possible.
23-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

lly,
e

host
the
Figure 23-2 Achitectural Overview of a Fault-Tolerant System

At the top of the figure are shown several components of the Fault Tolerance
Infrastructure (Replication Manager, Fault Notifier, Fault Detector), all of which are
implemented as CORBA objects. Logically, there is a single instance of the
Replication Manager and Fault Notifier in each fault tolerance domain but, physica
they are replicated to protect against faults, just as are the application objects. Th
Replication Manager inherits thePropertyManager , ObjectGroupManager , and
GenericFactory interfaces.

The bottom of the figure shows three hosts, as follows:

• a client application object C on host H1 that is invoking a replicated server object
with two replicas,

• S 1 on host H2, and

• S 2 on host H3.

A typical system will contain many such client and server objects.

The figure shows Factory and Fault Detector objects that may be present on each
and are specific to that host. These host-specific objects are not replicated, unlike
service objects shown at the top of the figure, which are replicated objects.

ORB ORB ORB

Fault
Detector

Fault
Detector

Factory Factory

Client Object Server Replica Server Replica

Replication Manager Fault
Notifier

Fault
Detector

notifications

fault
reports is_alive()

create_
object()

Generic Factory

Property
Manager

Object Group
Manager

set
properties

C S1 S2

Host
H1

Host
H3

Host
H2

Logging
Mechanism

Recovery
Mechanism

Logging
Mechanism

Recovery
Mechanism

create_
object()

Invoked by
Application

Invoked by
Replication
Manager on
Factory Objects
July 2002 CORBA, v3.0: Fault Tolerant CORBA 23-5

23

ther,
.

r

ncy
is

s

d

ent

t as
er,
The
lica

e

ole

ed

bject
The figure also shows the Message Handler and the Logging and Recovery
Mechanisms that are present on each host. These are not CORBA objects but, ra
are a part of the ORB, or are located between the ORB and the operating system

23.1.4.1 Fault Tolerance Property Management

This specification provides aPropertyManager interface that allows the user to
define fault tolerance properties of object groups. The specification of the
PropertyManager interface is designed to allow vendors to develop graphical use
interfaces and to define additional properties should they so desire.

Two properties of particular relevance are the Membership Style and the Consiste
Style. The Membership Style defines whether the membership of an object group
infrastructure-controlled or application-controlled. Similarly, the Consistency Style
defines whether the consistency of the states of the members of an object group i
infrastructure-controlled or application-controlled. Some components of the Fault
Tolerance Infrastructure, such as the Logging and Recovery Mechanisms, are use
only for object groups that have the infrastructure-controlled Consistency Style.

23.1.4.2 Replication Management

For the infrastructure-controlled (MEMB_INF_CTRL) Membership Style
(Section 23.3.2.2, “MembershipStyle,” on page 23-33) the replication of objects is
substantially transparent to the application program, which simplifies the developm
of new application programs, and allows the continued use of existing application
programs.

Using thecreate_object() operation of theGenericFactory interface, the
application program requests the creation of a replicated object (object group), jus
it would an unreplicated object. This operation is invoked on the Replication Manag
rather than directly on the factory (as it would have been in the unreplicated case).
Replication Manager then invokes the factories, on the different hosts, where a rep
is to be created, using the samecreate_object() operation of theGenericFactory
interface.

Using thecreate_member() , add_member(), andremove_member() operations
of the ObjectGroupManager interface, the application can exercise control over th
addition and removal, and location, of members of an object group (violating
transparency).

While each individual replica has its own object reference, the object group as a wh
has its interoperable object group reference, which is created by the Replication
Manager. This object group reference contains aTAG_FT_GROUP component for the
object group within the profiles of the object group reference. The object group
reference is returned to the application by the Replication Manager, and is publish
by the server object. The client objects use the object group reference to invoke
methods on the server object group, just as they would have used a conventional o
reference for an unreplicated object.
23-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

erver
ts in

ject
are

on-
and

e

ber.

r is

the
ious
ging

ed in

as
Because of the object group abstraction, the client objects are not aware that the s
objects are replicated (client transparency to replication), and are not aware of faul
the server replicas or of the recovery of server replicas when a fault has occurred
(client transparency to faults).

23.1.4.3 Fault Detection and Notification

Fault tolerance requires fault detection, and typical systems contain several fault
detection mechanisms to detect host failures, resource exhaustion, etc. This
specification defines a simplePullMonitorable interface that the application objects
inherit. ThePullMonitorable interface contains theis_alive() operation that a Fault
Detector invokes. For efficiency, the Fault Detector that monitors an application ob
is typically located on the same host as that object, while the local Fault Detectors
monitored by a global Fault Detector that is replicated for fault tolerance.

The Fault Detector, and other kinds of fault detectors in the system, such as those
based on the PUSH Monitoring Style and those that detect host or network faults,
report faults to the Fault Notifier, which passes fault notifications to the Replication
Manager and other objects that have registered for such notifications. An applicati
specific fault analyzer may register to receive such notifications, and may condense
filter such notifications into further fault reports that it returns to the Fault Notifier.

23.1.4.4 Logging and Recovery

For theCOLD_PASSIVE andWARM_PASSIVE Replication Styles, under fault-free
conditions, only one member of an object group, the primary member, executes th
requests and generates the replies. If the Fault Detector suspects that the primary
member is faulty, the Replication Manager, at its discretion, restarts the current
primary member or promotes a backup member to become the new primary mem

For the application-controlled (CONS_APP_CTRL) Consistency Style, the
Replication Manager takes no further recovery action and the new primary membe
responsible for the recovery of its own state.

For the infrastructure-controlled (CONS_INF_CTRL) Consistency Style, the new
primary member must start operation with the appropriate state, and must execute
same sequence of requests that were, or should have been, executed by the prev
primary member, had it not failed. Thus, each GIOP message is passed to the Log
and Recovery Mechanisms, automatically and invisibly to the application. The
Logging Mechanism records the message in a log, from which the Recovery
Mechanism can retrieve the message during recovery.

Periodically, the Logging Mechanism invokes theget_state() operation of the
Checkpointable interface, which must be implemented by every replicated
application object, to obtain the state of the object, so that the state can be record
a log. During recovery, the Recovery Mechanism invokes theset_state() operation of
the Checkpointable interface of the new primary to set its state to the state that w
recorded in the log.
July 2002 CORBA, v3.0: Fault Tolerant CORBA 23-7

23

ires

a

A
ce

oup
y an

ct.

an
, the
ame
ber

.

ct
ting

llows
is

l

23.1.5 Requirements

The requirements of the Fault Tolerant CORBA specification are stated below.

CORBA Object Model

For object groups with the infrastructure-controlled (CONS_INF_CTRL) Consistency
Style (Section 23.3.2.3, “ConsistencyStyle,” on page 23-34), the specification requ
that the CORBA object model is preserved. Even though an object is replicated to
provide protection against faults, at all times its behavior shall appear to be the
behavior of a single object. In particular, a replicated object can act as a client or
server or both, and can invoke another replicated object, regardless of the fault
tolerance properties of the two object groups.

CORBA Object Reference Model

The specification introduces three new special tagged components into the CORB
object reference model. The object group references that are used for fault toleran
contain multiple profiles that contain these components. Even though an object gr
reference contains such components in its profiles, an unreplicated object, hosted b
ORB that does not support fault tolerance, can still use the reference to invoke the
methods of the replicated object. Similarly, a replicated object can use the object
reference of an unreplicated object to invoke the methods of the unreplicated obje

Transparency to Replication and to Faults

Creating or deleting an object using a Generic Factory, and invoking a method of
object, appear the same for replicated objects as for unreplicated objects. Similarly
behavior of a replicated server object when invoked by a client object appears the s
whether or not faults occur, except perhaps for a transient delay if the primary mem
of a passively replicated object becomes faulty.

No Single Point of Failure

The specification supports applications that need robust fault tolerance, including
applications that require higher reliability than can be provided by a single backup
The specification requires that there shall be no single points of failure.

Client Redirection

For a client and a replicated server, the specification defines an interoperable obje
group reference that allows the client to connect to the server replicas, by connec
to an alternative server or through an alternative network, when a fault in a server
replica occurs. It defines an additional service context, in request messages, that a
a server to determine if the object group reference for the server used by a client
obsolete. Transparency to the client application program is provided, with minimal
modifications to the client ORB and simple mechanisms in the server ORB. Typica
applications include desktop client access to enterprise servers.
23-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

at
ted

-

the

hain

the
sible

es,

g
an
avior
nce

e
on
d

e
.

Transparent Reinvocation

The specification introduces an additional service context in Request messages th
ensures that, in the presence of faults, a client can reinvoke a request on a replica
server and receive a reply to that request, without risk that the operation will be
performed more than once. Typical applications include desktop client access to e
commerce applications.

Infrastructure-Controlled Membership

The infrastructure-controlled (MEMB_INF_CTRL) Membership Style allows the
application to direct the Replication Manager to create an object group. The
Replication Manager then invokes the factories at the different locations to create
object replicas, and then add them to the group. The Replication Manager is
responsible for creating the initial number of replicas and for maintaining the
minimum number of replicas, as specified by the fault tolerance properties for the
group. Typical applications include enterprise server applications, such as supply c
applications, and large-scale critical systems, such as defense applications.

Application-Controlled Membership

The application-controlled (MEMB_APP_CTRL) Membership Style allows the
application to create the members of an object group and to direct the Replication
Manager to add them to the group, or to direct the Replication Manager to create
members of an object group and add them to the group. The application is respon
for maintaining the initial and minimum number of replicas and the locations of the
replicas, both initially and after faults. Application-controlled membership is
particularly important for applications whose different hosts have different capabiliti
such as communication network applications.

Infrastructure-Controlled Consistency

The infrastructure-controlled (CONS_INF_CTRL) Consistency Style provides Strong
Replica Consistency between the states of the members of an object group. Stron
Replica Consistency requires that, even in the presence of faults, as members of
object group execute a sequence of methods invoked on the object group, the beh
is logically equivalent to that of a single fault-free object processing the same seque
of method invocations. The Fault Tolerance Infrastructure provides logging,
checkpointing, activation, and recovery mechanisms to achieve Strong Replica
Consistency. Strong Replica Consistency is particularly important for financial
applications and safety-critical applications, such as industrial process control and
aircraft instrumentation.

Application-Controlled Consistency

The application-controlled (CONS_APP_CTRL) Consistency Style depends on
application-specific mechanisms to ensure whatever consistency is required for th
members of an object group. Application-controlled consistency does not depend
the Fault Tolerance Infrastructure to provide logging, checkpointing or recovery, an
does not guarantee Strong Replica Consistency. Typical applications might includ
telecommunications applications, and some embedded and real-time applications
July 2002 CORBA, v3.0: Fault Tolerant CORBA 23-9

23

the
of

by
d in
n is
not

and

n
tion
nd
quest
ate
ct(s).
ost
ult

de
of

ost
a
ers

ons

s.

aces

f

the
e

d
y

the
Passive Replication

The COLD_PASSIVE or WARM_PASSIVE Replication Styles require that, during
fault-free operation, only one member of the object group, the primary member,
executes the methods invoked on the group. Periodically, the state of the primary
member is recorded in a log, together with the sequence of method invocations. In
presence of a fault, a backup member is promoted to be the new primary member
the group. The state of the new primary is restored to the state of the old primary
reloading its state from the log, followed by reapplying request messages recorde
the log. Passive replication is useful when the cost of executing a method invocatio
larger than the cost of transferring a state, and the time for recovery after a fault is
constrained. Typical examples include enterprise inventory, logistics applications,
hospital record keeping.

Active Replication

The ACTIVE Replication Style requires that all of the members of an object group
execute each invocation independently but in the same order, so that they maintai
exactly the same state and, in the event of a fault in one member, that the applica
can continue with results from another member without waiting for fault detection a
recovery. Even though each of the members of the object group generates each re
and each reply, the Message Handling Mechanism detects and suppresses duplic
requests and replies, and delivers a single request or reply to the destination obje
Active replication is useful when the cost of transferring a state is larger than the c
of executing a method invocation, or when the time available for recovery after a fa
is tightly constrained. Typical examples include enterprise electronic trading
applications and safety-critical applications, such as hospital patient monitoring.

Fault Detection and Notification

The Fault Management interfaces allow detection of object crash faults, and provi
fault notifications to the entities that have registered for such notifications. Accuracy
fault detection is impossible in an asynchronous fault-tolerant distributed system.
Occasional false suspicions cause no harm in a robust fault-tolerant system. If a h
crashes or an object hangs, the Fault Detectors are required to detect the fault in
timely manner. However, a Fault Detector must not continuously suspect all memb
of an object group, unless all of them are indeed faulty. Most fault-tolerant applicati
will use the Fault Management interfaces, but they are particularly important for
telecommunications, electric power distribution and other safety-critical application

Logging and Recovery

The Logging and Recovery Mechanisms and Checkpointable and Updateable interf
allow an application object to record its state, for use in recovery after a fault or to
initialize another replica. Following a fault that damages one or more, but not all, o
the members of an object group, recovery is required to ensure that the continued
behavior of the replicated object after recovery is the same as it would have been in
absence of the fault. A recovering member executes the same requests in the sam
order, generates the same replies, invokes the same methods of other objects, an
reaches the same internal state, as if no fault had occurred. If a request is partiall
executed when a fault occurs, that request is fully executed, at the same position in
23-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

bject

Bs

ation
ncy

es
efits

RB

ut
ly
uests

dor
and
up
s

both

ent

bject
be

e

sequence of messages, during recovery. If an object invokes a method of another o
and then becomes faulty, that method invocation must not be duplicated during
recovery. Because some objects may be unreplicated, or may be supported by OR
that do not provide fault tolerance, or may use different Replication Styles, the
recovery of each object must be self-contained and must not depend on the cooper
of any other object. Applications that employ the infrastructure-controlled Consiste
Style will use these mechanisms and interfaces.

23.1.6 Limitations

The limitations of the Fault Tolerant CORBA specification are given below.

Legacy ORBs

An unreplicated client hosted by a legacy ORB can invoke methods of a replicated
server, supported by the Fault Tolerance Infrastructure. The object group referenc
generated for replicated servers can be used by legacy ORBs, although the full ben
of fault-tolerant operation are not achieved for an unreplicated client. If a legacy O
has been modified to understand object group references and to retry requests at
alternative destinations, the unreplicated client receives the benefits of a higher, b
still partial, level of fault tolerance. Special service contexts in the request and rep
messages protect an unreplicated client from a replicated server executing its req
multiple times when the client retries those requests at alternative destinations.

Common Infrastructure

All of the hosts within a fault tolerance domain must use ORBs from the same ven
and Fault Tolerance Infrastructures from the same vendor to ensure interoperability
full fault tolerance within that domain. Consequently, the members of an object gro
must be hosted by ORBs from the same vendor and Fault Tolerance Infrastructure
from the same vendor. For clients and servers in different fault tolerance domains,
using ORBs and Fault Tolerance Infrastructures from the same vendors, full fault
tolerance can be achieved. Otherwise, the specifications provide a useful improvem
over no fault tolerance but substantially less than full fault tolerance.

Deterministic Behavior

For the infrastructure-controlled Consistency Style, for both active and passive
replication, deterministic behavior is required of the application objects, and of the
ORBs, to guarantee Strong Replica Consistency. The inputs to the replicas of an o
must be consistent (identical); this implies that request and reply messages must
delivered in the same order to each of the replicas of an object. If sources of non-
determinism exist, they must be filtered out. Multi-threading in the application or th
ORB may be restricted, or transactional abort/rollback mechanisms may be used.
July 2002 CORBA, v3.0: Fault Tolerant CORBA 23-11

23

the
with

t
airly
and

tem

erly

d
osts

for
t

lt

for
Network Partitioning Faults

Network partitioning faults separate the hosts of the system into two or more sets,
hosts of each set being able to operate and to communicate within that set but not
hosts of different sets. The current state-of-the-art does not provide an adequate
solution to network partitioning faults. Thus, network partitioning faults are not
addressed in this specification.

Commission Faults

A commission fault occurs when an object or host generates incorrect results. A
Byzantine fault is a commission fault in which an object or host generates incorrec
results maliciously. Algorithms have been devised to detect and protect against a f
wide range of Byzantine faults but they are complex and expensive in processing
communication. In the current state-of-the-art, Byzantine algorithms are seldom
appropriate for fault tolerance but might be appropriate for security, to protect a sys
after one or more of its hosts have been subverted by intruders. The specification
provides anACTIVE_WITH_VOTING Replication Style. Voting itself is relatively
inexpensive, but the communications infrastructure required to support voting prop
is substantially more expensive than that required to tolerate only crash faults.

Correlated Faults

No protection is provided against design or programming faults, or other correlate
faults, that cause the same errors in all replicas of an object, in all ORBs, or in all h
or their operating systems.

23.2 Basic Fault Tolerance Mechanisms

23.2.1 Overview

This section defines basic fault tolerance mechanisms that must be implemented
Fault Tolerant CORBA. The client-side mechanisms are intended to be simple ligh
weight extensions to CORBA that will be easy to implement. These mechanisms
enable client-side ORBs to achieve a higher level of reliability by exploiting the fau
tolerance mechanisms defined for server-side ORBs.

In particular, this section defines:

• Interoperable object group reference that contains multipleTAG_INTERNET_IOP
profiles, each of which contains theTAG_FT_GROUP component and one of
which may contain aTAG_FT_PRIMARY component. The interoperable object
group reference may contain theTAG_MULTIPLE_COMPONENTS profile, which
may contain theTAG_FT_GROUP component.

• Failover semantics for Fault Tolerant CORBA that extend the failover semantics
the CORBA core.
23-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

he
p.

t

f

lure

rence
• Most recent object group reference for a server object group, using the
FT_GROUP_VERSION service context in a client’s request message. The
FT_GROUP_VERSION service context allows the server to determine whether t
client is using the most recent object group reference for the server object grou

• Transparent reinvocations of requests, using theFT_REQUEST service context in a
client’s request messages, the client-side Request Duration Policy and the faul
handling semantics of GIOP messages. TheFT_REQUEST service context
prevents a request from being executed two or more times as a consequence o
reinvocation of the request on a backup server after a fault.

• Heartbeating of the server, using theTAG_FT_HEARTBEAT_ENABLED
component of theTAG_INTERNET_IOP profile, the client-side Heartbeat Policy
and the server-side Heartbeat Enabled Policy. This allows the client to detect fai
of the server.

23.2.2 Interoperable Object Group References

This section extends the definition of an interoperable object reference (IOR) to
encompass references to server object groups. The interoperable object group refe
(IOGR) for a server object group is an IOR that contains multiple
TAG_INTERNET_IOP profiles and that may contain a
TAG_MULTIPLE_COMPONENTS profile.

Each of theTAG_INTERNET_IOP profiles must contain theTAG_FT_GROUP
component, and may contain other components such as
TAG_IIOP_ALTERNATE_ADDRESS components. At most one of the
TAG_INTERNET_IOP profiles may contain theTAG_FT_PRIMARY component.
The TAG_MULTIPLE_COMPONENTS profile may also contain the
TAG_FT_GROUP component, which must be used for object groups that have no
members. An example is shown in Figure 27-3 on page 27-14.

The TAG_FT_GROUP component andTAG_FT_PRIMARY component are
described in Section 23.2.2.1, “TAG_FT_GROUP Component,” on page 23-14 and
Section 23.2.2.2, “TAG_FT_PRIMARY Component,” on page 23-16.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-13

23

ce.
ny
o

Y

Figure 23-3 An example of the Interoperable Object Group Reference Used for Fault Toleran
The reference is an IOR that contains multiple TAG_INTERNET_IOP profiles, a
of which may be used to reach the server object group. The reference may als
contain a TAG_MULTIPLE_COMPONENTS profile. The TAG_FT_GROUP
component is contained in every profile of the reference. The TAG_FT_PRIMAR
component is contained in at most one TAG_INTERNET_IOP profile.

23.2.2.1 TAG_FT_GROUP Component

The TAG_FT_GROUP component is contained in the profiles of the interoperable
object group reference.

module IOP {
const ComponentId TAG_FT_GROUP = 27;

};

module FT {
typedef string FTDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;

struct TagFTGroupTaggedComponent { // tag = TAG_FT_GROUP;

Number of
Profiles

TAG
INTERNET IOP

TAG
INTERNET IOP

IIOP
Version

IIOP
Version

Tag Primary
component

Tag Group
component

Other
components

Tag Group
component

Other
components

Number of
components

Number of
components

TAG
PRIMARY

TAG
GROUP Components Body

tag_group
version ft_domain_id

object_group
_version

Type_id IIOP Profile IIOP Profile

Profile Body Profile Body

host port Object Key Components host port Object Key Components

object_group_id
23-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

roup
text
ges,
s,

d
er

ext,”

p
ct
e

GIOP::Version version;
FTDomainId ft_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
};

Object groups have an identity that persists even as the membership of the object g
changes. Thus, an object group requires an identifier that is unique within the con
of a fault tolerance domain. Moreover, as the membership of an object group chan
the object group reference may have different versions. To address these concern
Fault Tolerant CORBA introduces the following types.

typedef string FTDomainId;

The identifier of a fault tolerance domain.

typedef unsigned long long ObjectGroupId;

The identifier of an object group.

typedef unsigned long ObjectGroupRefVersion;

The version number of the object group reference.

The TAG_FT_GROUP component contains the fault tolerance domain identifier an
object group identifier of the server object group, which are used to reach the serv
object group. It also contains theobject_group_ref_version , which the client ORB
may put in theFT_GROUP_VERSION service context in the client’s request
messages, as described in Section 23.2.7.1, “FT_GROUP_VERSION Service Cont
on page 23-22.

const ComponentId TAG_FT_GROUP = 27;

A constant that designates theTAG_FT_GROUP component that is contained in the
TAG_INTERNET_IOP profiles and may be contained in the
TAG_MULTIPLE_COMPONENTS profile.

struct TagFTGroupTaggedComponent { // tag = TAG_FT_GROUP;
GIOP::Version version;
FTDomainId ft_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};

The TAG_FT_GROUP component, within theTAG_INTERNET_IOP profiles and
TAG_MULTIPLE_COMPONENTS profile, contains the version of the
TAG_FT_GROUP component, the fault tolerance domain identifier, the object grou
identifier, and the version number of the object group reference for the server obje
group. For implementations conforming to this version of the specification, the valu
of version.major must be 1 and the value of the version.minor must be 0.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-15

23

e

m

23.2.2.2 TAG_FT_PRIMARY Component

The TAG_FT_PRIMARY component is contained in at most one of the
TAG_INTERNET_IOP profiles of the interoperable object group reference.

module IOP {
const ComponentId TAG_FT_PRIMARY = 28;

};

module FT {
struct TagFTPrimaryTaggedComponent { // tag = TAG_FT_PRIMARY;

boolean primary;
};

};

The profile that contains theTAG_FT_PRIMARY component is used in preference to
other profiles to reach the server object group.

const ComponentId TAG_FT_PRIMARY = 28;

A constant that designates theTAG_FT_PRIMARY component that is contained in at
most one of theTAG_INTERNET_IOP profiles.

struct TagFTPrimaryTaggedComponent { // tag = TAG_FT_PRIMARY;
boolean primary;

};

The TagFTPrimaryTaggedComponent , when present in aTAG_INTERNET_IOP
profile, indicates that the profile is to be used in preference to the other
TAG_INTERNET_IOP profiles within the object group reference.

At most one of the profiles in the object group reference contains the
TAG_FT_PRIMARY component. A client-side ORB may use that profile in preferenc
to the other profiles. It is not mandated that the ORB must choose the profile
containing theTAG_FT_PRIMARY component. Moreover, it cannot be guaranteed
that the endpoint addressed by the profile containing theTAG_FT_PRIMARY
component is currently the primary endpoint for the object group.

Use of any of the profiles, other than that containing theTAG_FT_PRIMARY
component, may result in one or moreLOCATION_FORWARDs and thus reduced
efficiency. No requirement is imposed on the particular order in which the other
profiles, that do not contain theTAG_FT_PRIMARY component, must be used.

23.2.3 Interoperable Object Group Reference Operations

IOGRs are IORs. However, the semantics of several of the operations inherited fro
CORBA::Object must be adjusted to account for the group contents of an IOGR.
23-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

faces

t

This

nce
are

ed in

are

on

e

nt
23.2.3.1 get_interface

Unchanged. The assembly procedure for an object group guarantees that the inter
supported by the object group are supported by all members of the object group.

23.2.3.2 is_a

Unchanged.

23.2.3.3 is_nil

Essentially unchanged. True if no profiles are present or ifis_nil is true for all of the
profiles.

23.2.3.4 non_existent

Essentially unchanged. True if the object group does not exist. Note that the objec
group might exist even ifnon_existent() is true for all of the profiles of the object
group reference or even if there are no IOP profiles in the object group reference. (
occurs when an object group with the application-controlled Membership Style is
created with no members so that the members can be added individually by the
application.) A server ORB can obtain an authoritative determination of non-existe
of the object group from the Replication Manager, using the same mechanisms as
used to obtain the most recent object group reference. The ORB must use those
mechanisms to generate aLOCATION_FORWARD reply when the client’s request
contains an obsoleteobject_group_ref_version field in the
FT_GROUP_VERSION service context.

23.2.3.5 is_equivalent

There are three cases to consider for checking equivalence:

1. Two non-object group references. The semantics of the operation are unchang
this case.

2. An object group reference and a non-object group reference. These references
not equivalent.

3. Two object group references. Section 23.2.2.1, “TAG_FT_GROUP Component,”
page 23-14 introduces a strong identity for an object group in itsft_domain_id
andobject_group_id fields. Two object group references are equivalent if they
have the sameft_domain_id and the sameobject_group_id fields. Note that the
object_group_ref_version field in theTAG_FT_GROUP component is ignored.

The analysis of these cases collapses the semantics to the following:

• Non-Fault-Tolerant CORBA implementations are essentially unchanged. Thes
implementations might not recognize certain object group references as
representing the same object group. However, that is allowed under the prese
semantics.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-17

23

ing

the

ect
des:

t

used
• Fault Tolerant CORBA implementations compare the values of the correspond
ft_domain_id andobject_group_id fields in theTAG_FT_GROUP
components to determine the equivalence of two object group references.
Otherwise, the semantics foris_equivalent are unchanged.

23.2.3.6 hash

Follows the semantics foris_equivalent() . An interoperable object group reference
contains an object group identifier that is unique and immutable over the lifetime of
object group. For such a reference, the value ofhash() shall be derived from the
object group identifier. For references that are not interoperable object group
references, the value ofhash() continues to be derived as at present.

23.2.3.7 create_request

Unchanged.

23.2.3.8 get_policy

Unchanged.

23.2.3.9 get_domain_managers

Unchanged.

23.2.3.10 set_policy_overrides

Unchanged.

23.2.4 Modes of Profile Addressing

The interoperable object group references contain profiles that address server obj
groups. This section illustrates the use of these profiles according to one of two mo

• Profiles that address object group members.

• Profiles that address gateways (technically generic in-line bridges of the type
described in theBuilding Inter-ORB Bridgeschapter of the CORBA
specification).

The choice of addressing mode is influenced by the Replication Style of the objec
group.

23.2.4.1 Profiles That Address Object Group Members

When using profiles that address members of an object group, the object group
reference for a server object group contains oneTAG_INTERNET_IOP profile for
each member of that group. Each profile contains a member reference that can be
to reach an individual member of the object group.
23-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

r

that

bject

he
that
ed on

bject
l of

gies
ese

up,

ll of
he

nt
23.2.4.2 Profiles That Address Gateways

When using profiles that address gateways, the object group reference for a serve
object group contains oneTAG_INTERNET_IOP profile for each of several
alternative gateways to that group. Each profile contains a reference to a gateway
can forward messages to all members of the server object group possibly using a
proprietary multicast group communication protocol. The group communication
protocol may be used for server object groups that support any of the Replication
Styles.

23.2.4.3 Choice of Profile Addressing Mode

For a server object group having theSTATELESS , COLD_PASSIVE , or
WARM_PASSIVE Replication Styles (Section 23.3, “Replication Management,” on
page 23-31), the Fault Tolerance Infrastructure at the server may create either an o
group reference that contains member profiles, or alternatively, an object group
reference that contains gateway profiles.

For a server object group having theACTIVE andACTIVE_WITH_VOTING
(Section 23.3.2, “Fault Tolerance Properties,” on page 23-32) Replication Styles, t
client must invoke all of the members of the server object group simultaneously so
the members are treated as, and behave as, peers in executing the methods invok
the object group. Therefore, for theACTIVE andACTIVE_WITH_VOTING
Replication Styles, the Fault Tolerance Infrastructure at the server can create an o
group reference that contains profiles for gateways that multicast the request to al
the members of the object group.

23.2.5 Accessing Server Object Groups

The interoperable object group references permit alternative implementation strate
for connecting a client to a server object group. This section illustrates some of th
strategies:

• Access via IIOP directly to a member of a server object group.

• Access via IIOP and a gateway.

• Access via a proprietary multicast group communication protocol.

The first of these three options, access directly to a member of a server object gro
requires the use of theLOCATION_FORWARD_PERM exception. As object
replicas fail and are replaced by new replicas, a stage may be reached at which a
the original replicas, cited in the original interoperable object group reference for t
object, are inaccessible. Continued use of the original reference will cause system
failure. TheLOCATION_FORWARD_PERM exception allows such a reference to
be replaced by an updated reference that contains profiles for the new replaceme
replicas. Thus, theLOCATION_FORWARD_PERM exception is not deprecated
when it is used to return an interoperable object group reference. The use of the
LOCATION_FORWARD_PERM exception to return a reference that is not an
interoperable object group reference continues to be deprecated.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-19

23

ct

ry

the

.

ary.

ct
t
dor

that
at
mbers

r.

n

e

23.2.5.1 Access via IIOP Directly to the Primary Member

This strategy may be used to provide access to a fault-tolerant server (server obje
group) by an unreplicated client or by a client supported by a Fault Tolerance
Infrastructure from a vendor different from the vendor that provided the Fault
Tolerance Infrastructure for the server. Because the access is directly to the prima
member, this strategy may be used only if the server object group has the
STATELESS , COLD_PASSIVE , or WARM_PASSIVE Replication Style.

The client ORB extracts an IIOP profile from the object group reference, preferably
profile containing theTAG_FT_PRIMARY component, and establishes a connection
to the endpoint addressed by that profile. If the addressed endpoint is the primary
member of the object group, it accepts the connection and processes the request
Otherwise, it replies with aLOCATION_FORWARD_PERM that provides the
current object group reference, one profile of which (the one with the
TAG_FT_PRIMARY component) contains a profile that addresses the current prim

23.2.5.2 Access via IIOP and a Gateway

This strategy may be used to provide access to a fault-tolerant server (server obje
group) by an unreplicated client hosted by a non-fault-tolerant ORB and by a clien
supported by a Fault Tolerance Infrastructure from a vendor different from the ven
that provided the Fault Tolerance Infrastructure for the server.

The client ORB extracts an IIOP profile from the object group reference and uses
reference to establish a connection to the endpoint addressed by that profile. If th
endpoint is a gateway, it accepts the connection and forwards messages to the me
of the object group, typically using a (proprietary) multicast group communication
protocol.

The client ORB and the client application object must be unaware of whether the
interoperable object group reference addressed a gateway or the primary membe

23.2.5.3 Access via a Multicast Group Communication Protocol

Some vendors may choose to use a proprietary multicast group communication
protocol within a fault tolerance domain, or even between fault tolerance domains
supported by a Fault Tolerance Infrastructure from the same vendor.

The fault tolerance domain identifier and object group identifier contained in the
TAG_FT_GROUP component of the profiles of the object group reference could be
used to establish a connection using the proprietary multicast group communicatio
protocol. The details of connection establishment, and recovery from faults during
connection establishment, for the multicast group communication protocol are not
defined in this specification.

The use of a proprietary multicast group communication protocol must, however, b
invisible to both the client application object and the server application object.
23-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

the
lt

rior

e

same
ce.

est,

ct
ct

e
he
blish

ll

e
roup

ject

try
23.2.6 Extensions to CORBA Failover Semantics

The failover semantics for Fault Tolerant CORBA extend the failover semantics for
CORBA core, and are summarized in Table 23-1 on page 23-22. Note that the Fau
Tolerant CORBA failover semantics permit reinvocation of requests even when a p
invocation yieldedCOMPLETED_MAYBE, whereas the CORBA failover
semantics permit reinvocation only if all prior attempts yieldedCOMPLETED_NO.
The permissible failover behaviors are determined by whether the IOR contains th
TAG_FT_GROUP component (defined in Section 23.2.2.1, “TAG_FT_GROUP
Component,” on page 23-14) and whether the client ORB includes anFT_REQUEST
service context (defined in Section 23.2.8.1, “FT_REQUEST Service Context,” on
page 23-24) in its request, as well as by the completion status returned and by the
exception raised.

The temporal scope of the replacement reference provided by
LOCATION_FORWARD_PERM is ORB lifetime or the next
LOCATION_FORWARD_PERM. It is safe, and appropriate, for an ORB to
replace any reference that contains the same fault tolerance domain identifier, the
object group identifier, and a smaller value of the version of the object group referen

If a client tries to establish a connection to an endpoint that cannot handle the requ
the client ORB might receive a reply containing a
LOCATION_FORWARD_PERM response, which provides the most recent obje
group reference for the group (as described in Section 23.2.7, “Most Recent Obje
Group Reference,” on page 23-22), or it might receive aSYSTEM_EXCEPTION.

Each time a client ORB attempts to establish a connection, it must not abandon th
attempt and raise an exception to the client application until it has tried to invoke t
server using all of the alternative IIOP addresses in the IOR, and has failed to esta
a connection within therequest_duration_policy_value (defined in
Section 23.2.8.2, “Request Duration Policy,” on page 23-26). It must then return a
SYSTEM_EXCEPTION to the client application. Alternative addresses include a
of the host/port pairs in all of theTAG_INTERNET_IOP profiles within the
interoperable object group reference, and all of the
TAG_ALTERNATE_IIOP_ADDRESS components.

Each time a client ORB attempts to invoke a method, it must not abandon the
invocation and raise an exception to the client application until it has tried to invok
the server using all of the alternative IIOP addresses in the interoperable object g
reference, or has received a “non-failover” condition, or the request duration has
expired.

No order is prescribed for the use of the addresses present in an interoperable ob
group reference (including theTAG_ALTERNATE_IIOP_ADDRESS). If a failover
condition arises, an ORB may retry with the same address, or may immediately re
with other addresses - this is a quality of implementation issue.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-21

23

nt.
ted.

lient
he

a

, the
t

This behavior specifies the minimum failover semantics that an ORB must impleme
An ORB may also retry in other conditions not stated above, but this is not manda
Under all failover conditions, at most once semantics must be guaranteed.

23.2.7 Most Recent Object Group Reference

This section defines a mechanism that allows the server to determine whether the c
is using the most recent object group reference for the server object group when t
client issues a request. The mechanism consists of anFT_GROUP_VERSION service
context that a client may include in its request messages.

23.2.7.1 FT_GROUP_VERSION Service Context

The FTGroupVersionServiceContext struct contains the version of the object
group reference for the server object group, which allows the server to determine
whether the client is using an obsolete object group reference. When encoded in
request or reply message header, thecontext_data component of the
ServiceContext struct shall contain a CDR encapsulation of the
FTGroupVersionServiceContext struct, which is defined below.

module IOP {
const ServiceId FT_GROUP_VERSION = 12;

};

module FT {
struct FTGroupVersionServiceContext { //context_id = FT_GROUP_VERSION;

ObjectGroupRefVersion object_group_ref_version;
};

};

If the server determines that the client is using an obsolete object group reference
server returns aLOCATION_FORWARD_PERM response that contains the mos
recent object group reference for the server object group.

const ServiceId FT_GROUP_VERSION = 12;

A constant that designates theFT_GROUP_VERSION service context.

Table 23-1Permitted Failover Conditions without and with Transparent Reinvocation

Completion Status CORBA Exception

Without Transparent
Reinvocation

COMPLETED_NO COMM_FAILURE
TRANSIENT
NO_RESPONSE
OBJ_ADAPTER

With Transparent
Reinvocation

COMPLETED_NO
COMPLETED_MAYBE

COMM_FAILURE
TRANSIENT
NO_RESPONSE
OBJ_ADAPTER
23-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

o
.

rver

nt

s the

nt

d in

nt

the

mber

er
inal
the
struct FTGroupVersionServiceContext{ //context_id = FT_GROUP_VERSION;
ObjectGroupRefVersion object_group_ref_version;

};

A structure that contains the sameobject_group_ref_version that is in the
TAG_FT_GROUP component of each of theTAG_INTERNET_IOP profiles of the
object group reference for the server object group, which allows the server ORB t
determine whether the object group reference being used by the client is obsolete

When the Replication Manager generates a new object group reference for the se
object group, because the membership of the server object group has changed, it
updates theobject_group_ref_version in the reference for the new membership.

If the highestobject_group_ref_version known to the server ORB is greater than
that contained in the request from the client, the server ORB must return a
LOCATION_FORWARD_PERM response to the client containing the most rece
reference for the server object group.

If the object_group_ref_version known to the server ORB is equal to that
contained in the request from the client and the server ORB supports the primary
member of the server object group, the server ORB invokes the member to proces
request. If theobject_group_ref_version known to the server ORB is equal to that
contained in the request from the client and the server ORB supports a backup
member, the server ORB returns aTRANSIENT exception with completion status
COMPLETION_NO to the client ORB. The client ORB can then reinvoke the
request using another profile from the object group reference.

If the most recentobject_group_ref_version known to the server ORB is less than
that contained in the request from the client, the server ORB must obtain the curre
reference for the server object group. If theobject_group_ref_version in the object
group reference returned by the Replication Manager is greater than that containe
the request from the client, the server ORB must return a
LOCATION_FORWARD_PERM response to the client containing the most rece
reference for the server object group. If theobject_group_ref_version in the object
group reference returned by the Replication Manager is less than that contained in
request from the client, the server ORB returns anINV_OBJREF exception to the
client.

23.2.8 Transparent Reinvocation

This section defines mechanisms that provide transparent reinvocation of methods
contained in request messages. The mechanisms handle failure of the primary me
of a server object group that has theCOLD_PASSIVE or WARM_PASSIVE
Replication Styles and provide redirection of the client’s outstanding request to a
backup server. In the absence of such mechanisms, the failure of the primary serv
could cause a client’s request to be executed two (or more) times, once by the orig
primary and once by a backup that became the new primary, without the client or
server being aware of the repetition, possibly producing erroneous results.
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-23

23

of
nce
fault-
rant

nd
both

ation
or

nger

re
ader,

e
the
turns
that
a

ore,
These specifications do not change the current at-most-once invocation semantics
the CORBA object model. At the level of the application, a client makes a request o
only and that request is executed at most once. At the transport level, however, a
tolerant client ORB can transparently retransmit a request message to a fault-tole
server, to mask faults including both object and link faults, thus providing higher
reliability. Transparent reinvocation is permitted only under the completion status a
system exception conditions listed in Table 23-1 on page 23-22, and provided that
the IOP profile used for the existing request and the IOP profile used for the
reinvocation contain aTAG_FT_GROUP component. Both the existing request
message and the reinvocation request message must contain anFT_REQUEST service
context. Neither the client application nor the server application is aware of such
retransmissions. The server application executes the request at most once with no
special application programming to handle repeated requests, and the client applic
receives its reply with no special application programming to handle exceptions. (F
replicated clients communicating with replicated servers, use of a multicast group
communication protocol may be appropriate because such a protocol provides stro
acknowledgment and retransmission mechanisms.)

The mechanisms defined here consist of theFT_REQUEST service context, which a
client may include in its request messages, and the Request Duration Policy.

23.2.8.1 FT_REQUEST Service Context

TheFTRequestServiceContext is used to ensure that a request is not executed mo
than once under fault conditions. When encoded in a request or reply message he
the context_data component of theServiceContext struct shall contain a CDR
encapsulation of theFTRequestServiceContext struct, which is defined below.

module IOP {
const ServiceId FT_REQUEST = 13;

};

module FT {
struct FTRequestServiceContext { // context_id = FT_REQUEST;

string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};
};

The FT_REQUEST service context contains a uniqueclient_id for the client, a
retention_id for the request, and anexpiration_time for the request. Theclient_id
andretention_id serve as a unique identifier for the client’s request and allow the
server ORB to recognize that the request is a repetition of a previous request. If th
request is a repetition of a previous request that the server has already executed,
server (which may be a new primary) does not re-execute the request but rather re
the reply that was generated by the prior execution (possibly by a previous primary
failed). Theexpiration_time serves as a garbage collection mechanism. It provides
lower bound on the time until which the server must honor the request and, theref
retain the request and corresponding reply (if any) in its log.
23-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

me
e

d

its

been
the
est
e

or a

ew
ies

y the

be
const ServiceId FT_REQUEST = 13;

A constant that designates theFT_REQUEST service context.

struct FTRequestServiceContext { // context_id = FT_REQUEST;
string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};

A structure that contains the client identifier, retention identifier, and the expiration
time of the request. Each repetition of a request must carry the sameclient_id ,
retention_id , andexpiration_time as the original request. These fields are defined
as follows:

• Theclient_id uniquely identifies the client, so that repeated requests from the sa
client can be recognized. No mechanisms are defined for generating this uniqu
identifier.

• The retention_id uniquely identifies the request within the scope of the client an
the expiration_time . The client ORB can reuse theretention_id provided that it
guarantees uniqueness.

• The expiration_time defines a lower bound on the time when the request will
expire. Typically, theexpiration_time is obtained by adding the
request_duration_policy_value defined by the Request Duration Policy, to the
local clock value of the client ORB.

If a server is unable to support theexpiration_time , it may throw an
INVALID_POLICY exception. Otherwise, the server must retain each request and
reply until the time (at the server) defined by theexpiration_time . Until that time, the
server must recognize requests that are repetitions of requests that have already
executed, and must return the reply to the original request rather than reinvoking
method. After that time, the server must return either the reply to the original requ
or a BAD_CONTEXT exception, but all replicas of the server must make the sam
decision about which reply to return so that the client receives only one reply.

The client ORB that has issued the request may reissue the request to the same
different member of the server object group, but must use theFT_REQUEST service
context with thesame retention_id and sameexpiration_time as it used in its
original request.

Before the server returns the reply for a request to the client, the Fault Tolerance
Infrastructure must log the request and the reply. A backup that has become the n
primary must not reply to the client until its state has been updated to include repl
generated by other members of the object group, using the messages in the log.

Both the establishment of connections and the retention of requests are bounded b
expiration_time , or the client ORB’s current clock value plus the
request_duration_policy_value if no expiration_time has been established. If a
current connection fails, a new connection may be needed so that the request can
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-25

23

nt of

ng
ault

ich
B to

for
ult
.
ge or
ch
by

d.
retransmitted to an alternative member of the server object group. The establishme
the new connection must be bounded by theexpiration_time determined for the prior
request.

23.2.8.2 Request Duration Policy

The Request Duration Policy determines how long a request, and the correspondi
reply, should be retained by a server to handle reinvocation of the request under f
conditions.

module FT {
const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;

interface RequestDurationPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT request_duration_policy_value;

};
};

The Request Duration Policy, applied at the client, defines the time interval over wh
a client’s request to a server remains valid and must be retained by the server OR
detect repeated requests.

The policy is defined by:

const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;

A constant that designates theREQUEST_DURATION_POLICY.

interface RequestDurationPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT request_duration_policy_value;

};

The request_duration_policy_value is added to the client ORB’s current clock
value to obtain theexpiration_time that is included in theFT_REQUEST service
context for the request.

23.2.8.3 Fault Handling for GIOP Messages

The standard semantics of GIOP messages include definitions of fault conditions
messages of different types, and provisions for handling of faults by the ORBs. Fa
Tolerant CORBA does not modify those semantics in normal (fault-free) conditions
For some types of GIOP messages, an ORB may attempt to retransmit the messa
transmit the message to alternative destinations or over alternative transports. Su
attempts are invisible to the client and server application and are bounded in time
the request_duration_policy_value defined for the client by the Request Duration
Policy. We discuss below those GIOP messages for which fault handling is modifie
23-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

ver

smit
up to

a

st and

ver,
not
by
LocateRequest

If a client ORB loses an IIOP connection with a server while issuing a
LocateRequest , or before receiving a correspondingLocateReply , or if it does not
receive aLocateReply in a timely manner, then the client ORB may attempt to
retransmit the message or to transmit the message to alternative destinations or o
alternative transports. If the client ORB is unable to obtain a reply within the
request_duration_policy_value of the Request Duration Policy, the client ORB
must return aCOMM_FAILURE system exception to the client application. It may
return aCOMM_FAILURE system exception before the end of that duration.

Request

If a client ORB loses the connection with a server or incurs some other kind of
transport fault, the ORB may attempt to retransmit the request message, or retran
the request message to an alternative destination or using an alternative transport,
the expiration_time .

If a client invokes a fault-tolerant server (as indicated by the presence of the
TAG_FT_GROUP component in theTAG_INTERNET_IOP profiles of the server’s
object group reference), the client ORB may retransmit a request if it would have
otherwise returned aCOMM_FAILURE, TRANSIENT, NO_RESPONSE, or
OBJ_ADAPTER exception with aCOMPLETED_NO or
COMPLETED_MAYBE completion status to the client application. The client is
protected against repeated execution by the inclusion of anFT_REQUEST service
context in the request message, as described in Section 23.2.8.1, “FT_REQUEST
Service Context,” on page 23-24.

If a client invokes a non-fault-tolerant server (as indicated by the absence of a
TAG_FT_GROUP component in theTAG_INTERNET_IOP profiles of its reference),
the client ORB may retransmit the request only if it would have otherwise returned
COMM_FAILURE, TRANSIENT, NO_RESPONSE, or OBJ_ADAPTER
exception with aCOMPLETED_NO completion status to the client application.

LocateReply and Reply

Retransmission of a LocateReply or Reply message may occur either because the
server ORB has not received a transport-level acknowledgment for a previous
transmission or because the server ORB has received a repetition of a previous
LocateRequest or Request message.

Fragment

Fragmented Request and Reply messages are handled like unfragmented Reque
Reply messages.

23.2.9 Transport Heartbeats

With IIOP (TCP/IP), a problem can arise when a client invokes a method on a ser
the host on which the server resides fails or the link fails, and the client ORB does
detect the TCP/IP problem and receives no reply. Typically, this problem is solved
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-27

23

ion

er
ute;

g of
using round-trip timeouts in the client application. Setting a timeout at the applicat
level for each request is laborious, even if one knew approximately how long a
particular method will take. An alternative solution proposed here is to send anoth
request message on the same connection that takes a known (short) time to exec
that is, a kind of no op.

This section therefore defines a newTAG_FT_HEARTBEAT_ENABLED component
of the TAG_INTERNET_IOP profile, and adds two new policies:Heartbeat and
HeartbeatEnabled .

23.2.9.1 TAG_FT_HEARTBEAT_ENABLED Component

The TAG_FT_HEARTBEAT_ENABLED component in aTAG_INTERNET_IOP
profile indicates that the addressed endpoint supports heartbeating.

module IOP {
const ComponentId TAG_FT_HEARTBEAT_ENABLED = 29;

};

module FT {
struct TagFTHeartbeatEnabledTaggedComponent {

// tag =TAG_FT_HEARTBEAT_ENABLED
boolean heartbeat_enabled;
};

};

The TAG_FT_HEARTBEAT_ENABLED component contains only a boolean.

const ComponentId TAG_FT_HEARTBEAT_ENABLED = 29;

A constant that designates theTAG_FT_HEARTBEAT_ENABLED component that is
contained in aTAG_INTERNET_IOP profile.

struct TagFTHeartbeatEnabledTaggedComponent {
// tag =TAG_FT_HEARTBEAT_ENABLED

boolean heartbeat_enabled;
};

The TAG_FT_HEARTBEAT_ENABLED component may be included in a
TAG_INTERNET_IOP profile to indicate that the endpoint isheartbeat_enabled .

23.2.9.2 Heartbeat Policy

The Heartbeat Policy, applied at the client, allows the client to request heartbeatin
its connections to servers, using theheartbeat_interval andheartbeat_timeout .

module FT {
const CORBA::PolicyType HEARTBEAT_POLICY = 48;

struct HeartbeatPolicyValue {
23-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

by the
r

d:

at
ain

the

.

boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;

};

interface HeartbeatPolicy : CORBA::Policy {
readonly attribute HeartbeatPolicyValue heartbeat_policy_value;

};
};

When the Heartbeat Policy is applied at a client ORB, the ORB is responsible for
taking the following steps. While a connection exists to a remote server, the ORB
sends a request message over the connection at least as often as was requested
heartbeat_interval of the Heartbeat Policy of any client connected to a server ove
that connection. The request message is equivalent to an invocation of the metho

void FT_HB ();

on any one of the server objects accessed by the connection. TheFT_HB() operation
name is reserved in CORBA for this purpose, and IDL compilers use the standard
escape techniques if IDL specifications contain operations with this name.

If the corresponding reply message does not arrive at the client ORB within the
heartbeat_timeout of the Heartbeat Policy of a client connected to a server over th
connection, the ORB closes the connection for that client. The connection may rem
open for other clients whose Heartbeat Policy define a larger value for the
heartbeat_timeout .

The policy is defined by:

const CORBA::PolicyType HEARTBEAT_POLICY = 48;

A constant that designates the Heartbeat Policy for the client.

struct HeartbeatPolicyValue {
boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;

};

The HeartbeatPolicyValue consists of a boolean that indicates whether the client
ORB supports heartbeating, aheartbeat_interval that determines the frequency with
which the client ORB pings the server, and aheartbeat_timeout that indicates the
time by which the client ORB must receive a reply from the server before it closes
connection. Both theheartbeat_interval and theheartbeat_timeout use the
standardTimeBase::TimeT representation, which uses a unit of 100 nanoseconds

interface HeartbeatPolicy : CORBA::Policy {
readonly attribute HeartbeatPolicyValue heartbeat_policy_value;

};
July 2002 CORBA, v3.0: Basic Fault Tolerance Mechanisms 23-29

23

ant
the

at
A server ORB must respond to requests that contain theFT_HB() operation by
immediately sending a reply message. The contents of the reply message are not
defined. The request id of the reply message must match therequest_id of the request
message.

A server ORB must not involve POAs or servants on receipt or reply of theFT_HB()
message.

23.2.9.3 Heartbeat Enabled Policy

Because heartbeating can generate significant network traffic, and can use signific
server resources, the heartbeating capability is explicitly enabled or disabled using
Heartbeat Enabled Policy.

module FT {
const CORBA::PolicyType HEARTBEAT_ENABLED_POLICY = 49;

interface HeartbeatEnabledPolicy : Policy {
readonly attribute boolean heartbeat_enabled_policy_value;

};
};

The Heartbeat Enabled Policy allows the heartbeating of a server endpoint. If the
Heartbeat Enabled Policy is enabled for a server endpoint, theTAG_INTERNET_IOP
profile for that endpoint contains theTAG_FT_HEARTBEAT_ENABLED component
to indicate to the client that the server endpoint isheartbeat_enabled .

The policy is defined by:

const PolicyType HEARTBEAT_ENABLED_POLICY = 49;

A constant that designates the Heartbeat Enabled Policy for the server.

interface HeartbeatEnabledPolicy : CORBA::Policy
readonly attribute boolean heartbeat_enabled_policy_value;

};

The heartbeat_enabled_policy_value determines whether the server endpoint
supports heartbeats.

If a client attempts to apply the Heartbeat Policy to a server for which the Heartbe
Enabled Policy is not enabled; that is,heartbeat_enabled_policy_value is false,
then anINVALID_POLICIES exception is thrown. The Heartbeat Enabled Policy
can be checked usingvalidate_policies() .
23-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

the
ery
ion

ch

ay

s

es

ates
bers,

ting

ons
23.3 Replication Management

23.3.1 Overview

The Replication Manager is an important component of the Fault Tolerance
Infrastructure that interacts with other components of the infrastructure. Typically,
Replication Manager is replicated for fault tolerance, though not necessarily on ev
host within the fault tolerance domain; however, logically, there is a single Replicat
Manager for each fault tolerance domain.

The Replication Manager inherits three application program interfaces:
PropertyManager , GenericFactory , andObjectGroupManager .

ThePropertyManager interface allows properties of the object groups to be set, su
as theReplicationStyle , MembershipStyle , ConsistencyStyle ,
InitialNumberReplicas , MinimumNumberReplicas , etc. These properties may be
set statically as defaults for the fault tolerance domain or for a particular type, or m
be set or changed dynamically while the application is executing.

The GenericFactory interface is used by the application to create object groups, a
shown in Figure 23-4 on page 23-32. It is also used by the Replication Manager to
create individual members of an object group.

For the infrastructure-controlled Membership Style, the Replication Manager invok
the individual factories, for the appropriate locations, to create the members of the
object group, both initially to satisfy theInitialNumberReplicas property, and after
the loss of a member because of a fault to satisfy theMinimumNumberReplicas
property. The Replication Manager adds the members to the object group and cre
the object group reference. Subsequently, the Replication Manager removes mem
if necessary.

For the application-controlled Membership Style, theObjectGroupManager
interface allows the application to create a member of an object group, to add an
existing object to an object group, or to remove a member from an object group, ci
the location of the member to be created, added, or removed. It also allows the
application to define the primary member of an object group and to query the locati
of the members of an object group and the primary member.
July 2002 CORBA, v3.0: Replication Management 23-31

23

the
e
. The
tions

ed
Figure 23-4 The Replication Manager and the Creation of an Object Group

23.3.2 Fault Tolerance Properties

Each object group has an associated set of properties that are set as defaults for
fault tolerance domain, that are set for the type of the object, that are set when th
object group is created, or that are set subsequently while the application executes
names and values of the specified properties are given below. Vendor implementa
may define additional properties and may extend the property values.

23.3.2.1 ReplicationStyle

For the STATELESS Replication Style, the behavior of the object group is unaffect
by its history of invocations. A typical example is a server that provides read-only
access to a database.

Name org.omg.ft.ReplicationStyle

Value FT::STATELESS
FT::COLD_PASSIVE
FT::WARM_PASSIVE
FT::ACTIVE
FT::ACTIVE_WITH_VOTING

Replication Manager

create_
object()

Generic Factory

Property
Manager

Object
Group

Manager

create_
object()

create_
member()

add_
member()

set
properties

Invoked by the Application for
Infrastructure-Controlled and

Application-Controlled
Membership Styles

Invoked by the Application for
Application-Controlled

Membership Style

Invoked by
Replication
Manager on
Factory Objects

ORB ORB

Factory Factory

Object Replica Object Replica

S1 S2

Host
H3

Host
H2
23-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

he
fter

a

ed

one
lies

. The

ly
te is
h in

but

ct

o
or

to

r

For the COLD_PASSIVE or WARM_PASSIVE Replication Styles, only a single
member, the primary member, executes the methods that have been invoked on t
object group. The object group contains additional backup members for recovery a
a fault.

For the COLD_PASSIVE Replication Style, the state of the primary is extracted from
log and loaded into a backup member when needed for recovery.

For the WARM_PASSIVE Replication Style, the state of the primary member is load
into one or more backup members periodically during normal operation.

For the ACTIVE Replication Style, all of the members of the object group
independently execute the methods invoked on the object, so that if a fault prevents
member from operating correctly, the other members will produce the required rep
without the delay required for recovery. Duplicate requests and duplicate replies,
generated by multiple members of the object group, are detected and suppressed
ACTIVE Replication Style typically requires the use of a multicast group
communication system that provides reliable totally-ordered message delivery and
group membership services in a model of virtual synchrony (see theGlossary).

For a source object group that has theACTIVE_WITH_VOTING Replication Style, the
requests (replies) from the members of the source object group are voted, and are
delivered to the members of the destination object group only if a majority of the
requests (replies) are identical (match exactly). A vote on a specific request or rep
must be performed using the same voting membership at each host where that vo
performed. This Replication Style requires protection against commission faults bot
the objects and in the network infrastructure. TheACTIVE_WITH_VOTING
Replication Style is not supported in the current specification, but is an anticipated
extension. It should be understood that voting itself is computationally inexpensive
that the communication required to support voting properly is substantially more
expensive than that required to tolerate only crash faults.

23.3.2.2 MembershipStyle

If the value of theMembershipStyle is MEMB_APP_CTRL , the application may
create an object itself and then invoke theadd_member() operation of the
ObjectGroupManager interface to cause the Replication Manager to add the obje
to the object group. Alternatively, the application may invoke thecreate_member()
operation of theObjectGroupManager interface to cause the Replication Manager t
create the member and add it to the object group. The application is responsible f
enforcing theInitialNumberReplicas andMinimumNumberReplicas properties.
The Replication Manager initiates monitoring of the members for faults, according
the FaultMonitoringStyle , and registers with the Fault Notifier to receive
notifications of faults. Likewise, the application may register for fault notifications fo
the members of the object group.

Name org.omg.ft.MembershipStyle

Value FT::MEMB_APP_CTRL
FT::MEMB_INF_CTRL
July 2002 CORBA, v3.0: Replication Management 23-33

23

the
iven

e

g

d

of an
mary
ests
icate

up,
es are

ber
n the

ut
At most one member of an object group can exist at a given location. Therefore, if
application attempts to create or add a second member to an object group at the g
location, aMemberAlreadyPresent exception is raised.

If the value of theMembershipStyle is MEMB_INF_CTRL , the Replication
Manager invokes the individual factories, for the appropriate locations, to create th
members of the object group, both initially to satisfy theInitialNumberReplicas
property, and after the loss of a member because of a fault to satisfy the
MinimumNumberReplicas property. The Replication Manager initiates monitoring
of the members for faults, according to theFaultMonitoringStyle , and registers with
the Fault Notifier to receive notifications of faults.

23.3.2.3 ConsistencyStyle

If the value of theConsistencyStyle is CONS_APP_CTRL , the application is
responsible for checkpointing, logging, activation and recovery, and for maintainin
whatever kind of consistency is appropriate for the application.

If the value of theConsistencyStyle is CONS_INF_CTRL, the Fault Tolerance
Infrastructure is responsible for checkpointing, logging, activation and recovery, an
for maintaining Strong Replica Consistency, Strong Membership Consistency, and
Uniqueness of the Primary for theCOLD_PASSIVE andWARM_PASSIVE
Replication Styles. TheCONS_INF_CTRL Consistency Style requires the object to
inherit theCheckpointable interface.

For theCOLD_PASSIVE andWARM_PASSIVE Replication Styles, Strong Replica
Consistency requires that, at the end of each state transfer, each of the members
object group has, or has access to, the same state and the same requests the pri
replica had, or had not, processed when it created that state. It requires that requ
and replies are not lost in the event of a fault and that duplicate requests and dupl
replies, generated during recovery, are suppressed.

For theACTIVE andACTIVE_WITH_VOTING Replication Styles, Strong Replica
Consistency requires that, at the end of each method invocation on the object gro
the members of the object group have the same state, and that no requests or repli
lost or duplicated.

For theACTIVE, COLD_PASSIVE , andWARM_PASSIVE Replication Styles, the
behavior of each member of an object group must be deterministic and each mem
must start in the same state. If the same sequence of requests are then applied, i
same order, to each member of the group, Strong Replica Consistency will be
maintained. Strong Replica Consistency simplifies the application programming, b
requires strong mechanisms within the Fault Tolerance Infrastructure to do so. In
particular, theACTIVE andACTIVE_WITH_VOTING Replication Styles, and perhaps

Name org.omg.ft.ConsistencyStyle

Value FT::CONS_APP_CTRL
FT::CONS_INF_CTRL
23-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

and

bject

ary

en
s a
at
ject
hat
ist
ave

but
t

also theWARM_PASSIVE Replication Style, typically employ a multicast group
communication protocol that provides reliable totally-ordered delivery of messages
group membership services to maintain Strong Replica Consistency.

Strong Membership Consistency requires that, for each method invocation on an o
group, the Fault Tolerance Infrastructures on all hosts have the same view of the
membership of the object group. For theCOLD_PASSIVE andWARM_PASSIVE
Replication Styles, Uniqueness of the Primary requires that there is exactly one prim
member of the object group at each logical point in time.

23.3.2.4 FaultMonitoringStyle

For thePULL FaultMonitoringStyle , the Fault Monitor interrogates the monitored
object periodically to determine whether it is alive. ThePULL FaultMonitoringStyle
requires that the object inherits thePullMonitorable interface.

For thePUSH FaultMonitoringStyle , the monitored object periodically reports to
the fault monitor to indicate that it is alive. ThePUSH FaultMonitoringStyle is not
supported in the current specification, but is an anticipated extension.

23.3.2.5 FaultMonitoringGranularity

For theMEMB FaultMonitoringGranularity , each individual member of this object
group is monitored. This is the default.

For theLOC FaultMonitoringGranularity and for a member of this object group at
a particular location, if no other object at that location is already being monitored, th
the member of this object group at that location is monitored. This member acts a
“fault monitoring representative” for the members of the other objects groups at th
location. If another object at that location is already being monitored, then that ob
acts as the “fault monitoring representative” for the member of this object group at t
location. If the “fault monitoring representative” at a particular location ceases to ex
due to a fault, then the Replication Manager regards all objects at that location to h
failed and performs recovery for all objects at that location. If the “fault monitoring
representative” ceases to exist because the member was removed from the group
had not actually failed, then the Replication Manager selects another object at tha
location as the “fault monitoring representative.”

Name org.omg.ft.FaultMonitoringStyle

Value FT::PULL
FT::PUSH
FT::NOT_MONITORED

Name org.omg.ft.FaultMonitoringGranularityStyle

Value FT::MEMB
FT::LOC
FT::LOC_AND_TYPE
July 2002 CORBA, v3.0: Replication Management 23-35

23

tion
s
s of
ame

he
to

n of

er
ger

eria
For theLOC_AND_TYPE FaultMonitoringGranularity and for a member of this
object group at a particular location, if no other object of the same type at that loca
is already being monitored, then the member of this object group at that location i
monitored. This member acts as a “fault monitoring representative” for the member
the other object groups of the same type at that location. If another object of the s
type at that location is already being monitored, then that object acts as the “fault
monitoring representative” for the member of this object group at that location. If t
“fault monitoring representative” at a particular location for a particular type ceases
exist due to a fault, then the Replication Manager regards all objects at that locatio
that type to have failed and performs recovery for all objects of that type at that
location. If the “fault monitoring representative” ceases to exist because the memb
was removed from the group but had not actually failed, then the Replication Mana
selects another object at that location of that type as the “fault monitoring
representative.”

23.3.2.6 Factories

A factory is an object, the purpose of which is to create other objects.FactoryInfos is
a sequence ofFactoryInfo , whereFactoryInfo contains the reference to the factory,
the location at which the factory is to create a member of the object group and crit
that the factory is to use to create the member.

23.3.2.7 InitialNumberReplicas

The number of replicas of an object to be created initially.

23.3.2.8 MinimumNumberReplicas

The smallest number of replicas of an object needed to maintain the desired fault
tolerance.

Name org.omg.ft.Factories

Value FactoryInfos

Name org.omg.ft.InitialNumberReplicas

Value An unsigned short

Name org.omg.ft.MinimumNumberReplicas

Value An unsigned short
23-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

f an
e

23.3.3 FaultMonitoringIntervalAndTimeout

The value is a struct that contains the interval of time between successive pings o
object, and the time allowed for subsequent responses from the object to determin
whether it is faulty.TimeBase::TimeT is a long long, and the value is in units of 100
nanoseconds.FaultMonitoringInterval requires that the object inherits the
PullMonitorable interface.

23.3.4 CheckpointInterval

An interval of time between writing the full state of the object to the log.
TimeBase::TimeT is a long long , and the value is in units of 100 nanoseconds.
CheckpointInterval requires that the object inherits theCheckpointable interface.

Note that some of these properties are incompatible, such as theSTATELESS
ReplicationStyle andCheckpointInterval or theCONS_APP_CTRL
ConsistencyStyle andCheckpointInterval .

Name org.omg.ft.FaultMonitoringIntervalAndTimeout

Value TimeBase::TimeT
TimeBase::TimeT

Name org.omg.ft.CheckpointInterval

Value TimeBase::TimeT

Table 23-2Fault Tolerance Properties and When They May Be Set

Default Type Creation Dynamically

ReplicationStyle * * *

MembershipStyle * * *

ConsistencyStyle * *

FaultMonitoringStyle * *

FaultMonitoringGranularity * * * *

Factories * * *

InitialNumberReplicas * * *

MinimumNumberReplicas * * * *

FaultMonitoringInterval * * * *

CheckpointInterval * * * *
July 2002 CORBA, v3.0: Replication Management 23-37

23

erties
in a
e
de
that
rride
s of
and
r

Table 23-2 shows the Fault Tolerance Properties and when they may be set. Prop
of object groups that are set as defaults apply to all object groups of all types with
fault tolerance domain. Properties of object groups that are set for a particular typ
apply to all object groups of that type within the fault tolerance domain, and overri
the properties that are set as defaults for that type. Properties of an object group
are set at creation time are set when the particular object group is created, and ove
the properties that are set as defaults or for the type of the object group. Propertie
an object group that are set dynamically are set while the application is executing,
override the properties that are set as defaults or for the type of the object group o
when the object group is created.

23.3.5 Common Types

module FT {
interface GenericFactory;
interface FaultNotifier;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;

typedef CosNaming::Name Name;
typedef any Value;
struct Property {

Name nam;
Value val;

};
typedef sequence<Property> Properties;

typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;
struct FactoryInfo {

GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};
typedef sequence<FactoryInfo> FactoryInfos;

typedef unsigned short ReplicationStyleValue;
const ReplicationStyleValue STATELESS = 0;
const ReplicationStyleValue COLD_PASSIVE = 1;
const ReplicationStyleValue WARM_PASSIVE = 2;
const ReplicationStyleValue ACTIVE = 3;
const ReplicationStyleValue ACTIVE_WITH_VOTING = 4;

typedef unsigned short MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;
23-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
typedef unsigned short ConsistencyStyleValue;
const ConsistencyStyleValue CONS_APP_CTRL = 0;
const ConsistencyStyleValue CONS_INF_CTRL = 1;

typedef unsigned short FaultMonitoringStyleValue;
const FaultMonitoringStyleValue PULL = 0;
const FaultMonitoringStyleValue PUSH = 1;
const FaultMonitoringStyleValue NOT_MONITORED = 2;

typedef unsigned short FaultMonitoringGranularityValue;
const FaultMonitoringGranularityValue MEMB = 0;
const FaultMonitoringGranularityValue LOC = 1;
const FaultMonitoringGranularityValue LOC_AND_TYPE = 2;

typedef FactoryInfos FactoriesValue;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

struct FaultMonitoringIntervalAndTimeoutValue {
TimeBase::TimeT monitoring_interval;
TimeBase::TimeT timeout;

};

typedef TimeBase::TimeT CheckpointIntervalValue;
exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception PrimaryNotSet {};
exception UnsupportedProperty {

Name nam;
Value val;

};
exception InvalidProperty {

Name nam;
Value val;

};
exception NoFactory {

Location the_location;
TypeId type_id;

};
exception InvalidCriteria {

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
July 2002 CORBA, v3.0: Replication Management 23-39

23

may

ne

re
ault
};
};

23.3.5.1 Identifiers

typedef Object ObjectGroup;

A reference to an object group.

typedef CosNaming::Name Name;

The name of a property

typedef any Value;

The value of a property.

struct Property {
Name nam;
Value val;

};

The name-value pair for a property. The name may be hierarchical.

typedef sequence<Property> Properties;

A sequence of properties.

typedef Name Location;

The name for a fault containment region, host, device, cluster of hosts, etc., which
be hierarchical. For example, the kind field of the name might be “HostIP” which
defines a particular format for the address in the id field. The id field would then
contain an IP address for a host. For each object group and each location, only o
member of that object group may exist at that location.

typedef sequence<Location> Locations;

A sequence of locations of the members of an object group.

typedef Properties Criteria;

Criteria is a sequence of property; that is, name-value pair. Examples of criteria a
initialization values, constraints on an object, preferred location of the object, and f
tolerance properties of an object group.

Two names are reserved for criteria:org.omg.ft.ObjectLocation and
org.omg.ft.FTProperties . Theorg.omg.ft.FTProperties name tags a location
value at which an object is to be created by a factory. Theorg.omg.ft.FTProperties
23-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

s for
nly

that
uch
name tags a sequence of name-value pairs that represent fault tolerance propertie
an object group. All other criteria are implementation-specific and are interpreted o
by the factory.

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

A structure that contains the reference to a factory and the location and the criteria
the factory uses to create an object at the given location using the given criteria, s
as initialization values, constraints on the object, etc.

typedef sequence<FactoryInfo> FactoryInfos;

A sequence ofFactoryInfos .

typedef unsigned short ReplicationStyleValue;
const ReplicationStyleValue STATELESS = 0;
const ReplicationStyleValue COLD_PASSIVE = 1;
const ReplicationStyleValue WARM_PASSIVE = 2;
const ReplicationStyleValue ACTIVE = 3;
const ReplicationStyleValue ACTIVE_WITH_VOTING = 4;

The values of theReplicationStyle property.

typedef unsigned short MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

The values of theMembershipStyle property.

typedef unsigned short ConsistencyStyleValue;
const ConsistencyStyleValue CONS_APP_CTRL = 0;
const ConsistencyStyleValue CONS_INF_CTRL = 1;

The values of theConsistencyStyle property.

typedef unsigned short FaultMonitoringStyleValue;
const FaultMonitoringStyleValue PULL = 0;
const FaultMonitoringStyleValue PUSH = 1;
const FaultMonitoringStyleValue NOT_MONITORED = 2;

The values of theFaultMonitoringStyle property.

typedef unsigned short FaultMonitoringGranularityValue;
const FaultMonitoringGranularityValue MEMB = 0;
const FaultMonitoringGranularityValue LOC = 1;
const FaultMonitoringGranularityValue LOC_AND_TYPE = 2;

The values of theFaultMonitoringGranularity property.
July 2002 CORBA, v3.0: Replication Management 23-41

23
typedef FactoryInfos FactoriesValue;

The value of theFactories property.

typedef unsigned short InitialNumberReplicasValue;

The value of theInitialNumberReplicas property.

typedef unsigned short MinimumNumberReplicasValue;

The value of theMinimumNumberReplicas property.

struct FaultMonitoringIntervalAndTimeoutValue {
TimeBase::TimeT monitoring_interval;
TimeBase::TimeT timeout;

};

The value of theFaultMonitoringIntervalAndTimeout property. Each field is of
type TimeBase::TimeT , which is along long , and is in units of 100 nanoseconds.

typedef TimeBase::TimeT CheckpointIntervalValue;

The value of theCheckpointInterval property.TimeBase::TimeT is a long long ,
and the value is in units of 100 nanoseconds.

23.3.5.2 Exceptions

exception InterfaceNotFound {};

The object with the given interface is not found by the Replication Manager.

exception ObjectGroupNotFound {};

The object group with the given identifier is not found by the Replication Manager.

exception MemberNotFound {};

No member of the object group exists at the given location.

exception ObjectNotFound {};

The object is not found by the Replication Manager.

exception MemberAlreadyPresent {};

A member of the object group already exists at the given location.

exception BadReplicationStyle {};

The ReplicationStyle of the object group is inappropriate.
23-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
exception ObjectNotCreated {};

The GenericFactory did not create the object.

exception ObjectNotAdded {};

The Replication Manager did not add the object to the object group.

exception PrimaryNotSet {};

The Replication Manager did not set the primary member of the object group.

exception UnsupportedProperty {
Name nam;
Value val;

};

A property named in the property sequence is not supported.

exception InvalidProperty {
Name nam;
Value val;

};

A property value in the property sequence is not valid either in itself (for example,
because the number of replicas is negative) or because it conflicts with another
property in the sequence or with other properties already in effect that are not
overridden.

exception NoFactory {
Location the_location;
TypeId type_id;

};

The factory cannot create an object at the given location with the given repository
identifier.

exception InvalidCriteria {
Criteria invalid_criteria;

};

The factory does not understand the given criteria.

exception CannotMeetCriteria {
Criteria unmet_criteria;

};

The factory understands the given criteria, but cannot satisfy the criteria.
July 2002 CORBA, v3.0: Replication Management 23-43

23

e

r

is

the
rs

ning
r

23.3.6 Replication Manager

The Replication Manager inherits three application program interfaces:
PropertyManager , ObjectGroupManager , andGenericFactory . The methods
inherited from thePropertyManager interface allow definition of properties
associated with object groups created by the Replication Manager. The operations
inherited from theObjectGroupManager interface allow an application to exercise
control over the addition, removal, and location of members of an object group. Th
operations inherited from theGenericFactory interface allow the Replication
Manager to create and delete object groups.

The ReplicationManager interface provides operations that allow the Fault Notifie
to register with the Replication Manager and that allow the application or Fault
Tolerance Infrastructure to get the reference of the Fault Notifier subsequently. Th
interface may be extended with similar methods for other components of the Fault
Tolerance Infrastructure by the vendors of the Fault Tolerance Infrastructure.

Note that theReplicationManager interface does not contain
register_fault_monitor() or get_fault_monitor() operations. The reason is that
typically there will be several fault monitors (detectors) within a fault tolerance
domain, for example, a fault detector on each of the individual hosts that monitors
objects on that host, and a fault detector for the fault tolerance domain that monito
the fault detectors and the hosts within that domain. Therefore, the means of obtai
the references to the fault monitors is not specified. The Naming Service or Trade
Service could be used to obtain the references to the various fault monitors.

module FT {
interface ReplicationManager : PropertyManager, ObjectGroupManager,

GenericFactory {
void register_fault_notifier(in FaultNotifier fault_notifier);

FaultNotifier get_fault_notifier()
raises (InterfaceNotFound);

};
};

23.3.6.1 Operations

register_fault_notifier

This operation registers the Fault Notifier with the Replication Manager.

void register_fault_notifier(in FaultNotifier fault_notifier);
23-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

pe,
.

Parameters

get_fault_notifier

This operation returns the reference of the Fault Notifier.

FaultNotifier get_fault_notifier()
raises (InterfaceNotFound);

Return Value

The reference of the Fault Notifier.

Raises

InterfaceNotFound if the Fault Notifier is not found.

23.3.7 PropertyManager

The PropertyManager interface provides operations that set properties for object
groups, such as theReplicationStyle , MembershipStyle , ConsistencyStyle ,
InitialNumberReplicas , MinimumNumberReplicas , etc. It may set these
properties statically as defaults for the fault tolerance domain or for a particular ty
or may set or change the properties dynamically while the application is executing

module FT {
interface PropertyManager {

void set_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

void set_type_properties(in TypeId type_id,
in Properties overrides)

raises (InvalidProperty,
UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties(in TypeId type_id,
in Properties props)

raises (InvalidProperty,
UnsupportedProperty);

fault_notifier The reference of the Fault Notifier that is to be
registered.
July 2002 CORBA, v3.0: Replication Management 23-45

23

ed
void set_properties_dynamically(in ObjectGroup object_group,
in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

};
};

23.3.7.1 Operations

set_default_properties

This operation sets the default properties for all object groups that are to be creat
within the fault tolerance domain.

void set_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.
UnsupportedProperty if one or more of the properties in the sequence is not
supported.

get_default_properties

This operation returns the default properties for the object groups within the fault
tolerance domain.

Properties get_default_properties();

Return Value

The default properties that have been set for the object groups.

remove_default_properties

This operation removes the given default properties.

void remove_default_properties(in Properties props)
raises (InvalidProperty,

props The properties to be set for all newly created object
groups within the fault tolerance domain.
23-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.
UnsupportedProperty if one or more of the properties in the sequence is not
supported.

set_type_properties

This operation sets the properties that override the default properties of the object
groups, with the given type identifier, that are created in the future.

void set_type_properties(in TypeId type_id,
in Properties overrides)

raises (InvalidProperty,
UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.

UnsupportedProperty if one or more of the properties in the sequence is not
supported.

get_type_properties

This operation returns the properties of the object groups, with the given type
identifier, that are created in the future. These properties include the properties
determined byset_type_properties() , as well as the default properties that are not
overridden byset_type_properties() .

props The properties to be removed.

type_id The repository id for which the properties, that are to
override the existing properties, are set.

overrides The overriding properties.
July 2002 CORBA, v3.0: Replication Management 23-47

23

the
Properties get_type_properties(in TypeId type_id);

Parameters

Return Value

The effective properties for the given type identifier.

remove_type_properties

This operation removes the given properties, with the given type identifier.

void remove_type_properties(in TypeId type_id,
in Properties props)

raises (InvalidProperty,
UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.

UnsupportedProperty if one or more of the properties in the sequence is not
supported.

set_properties_dynamically

This operation sets the properties for the object group with the given reference
dynamically while the application executes. The properties given as a parameter
override the properties for the object when it was created which, in turn, override
properties for the given type which, in turn, override the default properties.

void set_properties_dynamically(in ObjectGroup object_group,
 in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

type_id The repository id for which the properties, that are to
override the existing properties, are set.

type_id The repository id for which the given properties are to
be removed.

props The properties to be removed.
23-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

ct

.

o

to
Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is invalid.

UnsupportedProperty if one or more of the properties in the sequence is not
supported.

23.3.7.2 get_properties

This operation returns the current properties of the given object group. These
properties include those that are set dynamically, those that are set when the obje
group was created but are not overridden byset_properties_dynamically() , those
that are set as properties of a type but are not overridden bycreate_object() and
set_properties_dyamically() , and those that are set as defaults but are not
overridden byset_type_properties() , create_object() , and
set_properties_dyamically() .

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

The set of current properties for the object group with the given reference.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager

23.3.8 ObjectGroupManager

TheObjectGroupManager interface provides operations that allow an application t
exercise control over the addition, removal and locations of members of an object
group and to obtain the current reference and identifier for an object group.

module FT {
interface ObjectGroupManager {

ObjectGroup create_member(in ObjectGroup object_group,
in Location the_location,

object_group The reference of the object group for which the
overriding properties are set.

overrides The overriding properties.

object_group The reference of the object group for which the properties are
be returned.
July 2002 CORBA, v3.0: Replication Management 23-49

23

ber
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound);
PrimaryNotSet,
BadReplicationStyle);

Locations locations_of_members(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Object get_member_ref(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound,
MemberNotFound);

};
};

23.3.8.1 Operations

create_member

The create_member() operation allows the application to exercise explicit control
over the creation of a member of an object group, and to determine where the mem
is created.

ObjectGroup create_member(in ObjectGroup object_group,
in Location the_location,
in TypeId type_id,
in Criteria the_criteria)
23-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

nce

t,
.

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

Parameters

Return Value

The object group reference of the object group with the member added. This refere
may be the same as that passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

MemberAlreadyPresent if a member of the object group already exists at the
given location.

NoFactory if the Replication Manager cannot find a factory that is capable of
constructing a member of the object group with the giventype_id and at the given
location.

ObjectNotCreated if the factory or the Replication Manager cannot create the
member and add it to the object group.

InvalidCriteria if the factory does not understand the criteria.

CannotMeetCriteria if the factory understands the criteria but cannot satisfy it.

object_group The object group reference for the object group to which the
member is to be added.

the_location The physical location; that is, a fault containment region, hos
cluster of hosts, etc. at which the new member is to be created
There is at most one member of an object group at each
location.

type_id The repository identifier for the type of the object.

the_criteria Parameters to be passed to the factory, which the factory
evaluates before creating the object. The criteria are
implementation-specific and are not defined in this
specification. Examples of criteria are initialization values,
constraints on the member, etc. The criteria passed in as a
parameter tocreate_member() , if any, override the criteria
set in the FactoryInfos property of the given object group for
the given location.
July 2002 CORBA, v3.0: Replication Management 23-51

23

r

nce
add_member

The add_member() operation allows an application to exercise explicit control ove
the addition of an existing object to an object group at a particular location.

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

Parameters

Return Value

The object group reference for the object group with the object added. This refere
may be the same as that passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

MemberAlreadyPresent if a member of the object group already exists at the
given location.

ObjectNotAdded if the Replication Manager cannot add the object to the object
group.

remove_member

The remove_member() operation allows an application to exercise explicit control
over the removal of a member from an object group at a particular location.

If the application invoked thecreate_object() operation of theGenericFactory
interface to create the member object and used theadd_member() operation to add
the object to the object group, when the application invokesremove_member() , the
Replication Manager removes the member from the group but does not delete it.
Deletion of the object is the responsibility of the application.

object_group The object group reference of the object group to which
the existing object is to be added.

the_location The physical location; that is, a fault containment
region, host, cluster of hosts, etc. of the object to be
added. There is at most one member of an object group
at each location.

member The reference of the object to be added.
23-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

r

es

s

t

ary.
If the application invoked thecreate_member() operation to create the member
object, when the application invokes theremove_member() operation to remove the
member from the object group, the Replication Manager first removes the membe
from the object group and then invokes thedelete_object() operation of the
GenericFactory interface to delete the object.

If the Replication Manager invoked thecreate_object() operation of the
GenericFactory interface to create the member object, when the application invok
the remove_member() operation to remove the member, the Replication Manager
first removes the member from the group and then invokes thedelete_object()
operation of theGenericFactory interface to delete the object.

If the MembershipStyle is MEMB_INF_CTRL , the application invokes the
remove_member() operation and the number of members of the object group fall
below theMinimumNumberReplicas , then the Replication Manager starts up a new
member at another location.

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound};

Parameters

Return Value

The object group reference for the object group with the member removed. This
reference may be the same as that passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

MemberNotFound if the Replication Manager cannot find a member of the objec
group at the given location.

set_primary_member

The set_primary_member() operation allows the application to exercise explicit
control over the selection of the member of the object group that is to be the prim

ObjectGroup set_primary_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,

object_group The object group reference of the object group from
which the member is to be removed.

the_location The physical location; that is, a fault containment
region, host, cluster of hosts, etc. of the member to be
removed.
July 2002 CORBA, v3.0: Replication Management 23-53

23

en

t

y

If
MemberNotFound,
PrimaryNotSet,
BadReplicationStyle)

Parameters

Return Value

The object group reference of the object group with the primary member at the giv
location. This reference may be the same as that passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

MemberNotFound if the Replication Manager cannot find a member of the objec
group at that location.

PrimaryNotSet if the Replication Manager cannot set the primary member of the
object group.

BadReplicationStyle if the ReplicationStyle of the given group is not
COLD_PASSIVE or WARM_PASSIVE .

locations_of_members

The locations_of_members() operation allows the application to determine the
locations of the members of the given object group, and the location of the primar
member of the group.

Locations locations_of_members(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

A sequence of locations at which the members of the object group currently exist.
the object group has theCOLD_PASSIVE or WARM_PASSIVE Replication Style,
the first location in the sequence is the location of the primary.

object_group The object group reference of the object group whose
primary is to be determined.

the_location The physical location of the member that is to become
the primary.

object_group The object group reference of the object group.
23-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

in

in

y be

on
Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

get_object_group_id

The get_object_group_id() operation takes a reference for an object group as an
parameter, and returns the identifier of the object group.

ObjectGroupId get_object_group_id(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

The object group identifier for the object group.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

get_object_group_ref

Theget_object_group_ref() operation takes a reference for an object group as an
parameter, and returns the current reference for the object group.

ObjectGroup get_object_group_ref(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

The current object group reference for the object group. The returned reference ma
the same as the reference passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

get_member_ref

Theget_member_ref() operation takes a reference for an object group and a locati
as in parameters, and returns a reference for the member.

object_group The object group reference for the object group.

object_group An object group reference for the object group.
July 2002 CORBA, v3.0: Replication Management 23-55

23

ects.

on’s
ke
ct

d

t

ds
Object get_member_ref(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound,
MemberNotFound);

Parameters

Return Value

The reference for the member.

Raises

ObjectGroupNotFound if the object group is not found by the Replication
Manager.

MemberNotFound if the member is not found by the Replication Manager.

23.3.9 GenericFactory

The GenericFactory interface is generic in that it allows the creation of replicated
objects (object groups), replicas (members of object groups), and unreplicated obj
It is inherited by the Replication Manager to allow the application to invoke the
Replication Manager to create replicated objects. It is implemented by the applicati
local factory objects on the various hosts to allow the Replication Manager to invo
the local factory objects of the application to create individual members of an obje
group and to allow the application to invoke the local factory objects to create
individual (unreplicated) objects.

TheGenericFactory interface, inherited by the Replication Manager, is programme
by the vendor of the Fault Tolerance Infrastructure. In contrast, the local factory
objects, that implement theGenericFactory interface, are programmed by the
application programmer, rather than by the vendor of the Fault Tolerance
Infrastructure; they can be regarded in the same light as theMonitorable ,
Checkpointable , andUpdateable interfaces.

The GenericFactory interface providescreate_object() anddelete_object()
operations for creating and deleting objects and object groups.

The application program invokes thecreate_object() operation of the
GenericFactory interface inherited by the Replication Manager to create an objec
group, whether it is application-controlled or infrastructure-controlled, and similarly
for the delete_object() operation.

If the MembershipStyle is MEMB_INF_CTRL , the Replication Manager in turn
invokes thecreate_object() operation of theGenericFactory interface of the
appropriate local factories to create the members of the object group and then ad
them to the group.

object_group An object group reference for the object group.

loc The location of the member.
23-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

oup.

ct

or

t, or

ed
If the MembershipStyle is MEMB_APP_CTRL , the application or an application-
level manager may invoke thecreate_member() operation of the
ObjectGroupManager interface which, in turn, causes the Replication Manager to
invoke thecreate_object() operation of theGenericFactory interface of the local
factory, using the given location and criteria, and then to add the member to the gr
Alternatively, the application or an application-level manager itself may invoke the
create_object() operation of theGenericFactory interface of the local factory to
create the object and may then invoke theadd_member() operation of the
ObjectGroupManager interface to cause the Replication Manager to add the obje
to the group.

To create an unreplicated object, the application invokes thecreate_object()
operation of theGenericFactory interface of a specific local factory.

module FT {
interface GenericFactory {

typedef any FactoryCreationId;
Object create_object(in TypeId type_id,

in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

void delete_object(in FactoryCreationId factory_creation_id)
raises (ObjectNotFound);

};
};

There may be multiple different implementations of theGenericFactory interface.
Each such factory implementation may create objects of one or more types at one
more locations.

The create_object() operation takes atype_id as an in parameter. It also takes
the_criteria as an in parameter, which allows a user to specify additional criteria,
such as initialization values for the object implementation, constraints on the objec
preferred location of the object. Thetype_id and the_criteria in parameters of the
create_object() operation contribute to the genericity and the flexibility of the
GenericFactory interface.

Thecreate_object() operation of theGenericFactory interface, implemented by the
application’s local factory objects, accepts a criterion with the reserved name
org.omg.ft.ObjectLocation . The value of this criterion instructs the factory where to
create the object.

The create_object() operation of theGenericFactory interface, inherited by the
Replication Manager, accepts fault tolerance properties withinthe_criteria parameter.
These fault tolerance properties are contained in a single criterion with the reserv
nameorg.omg.ft.FTProperties . Such properties, if any, override the corresponding
July 2002 CORBA, v3.0: Replication Management 23-57

23

his

n
bers

the

ger
y

the

oup
fault tolerance properties that are specified as defaults or based on the type of the
object. The Replication Manager removes theorg.omg.ft.FTProperties criterion
from the_criteria passed to it by the application in thecreate_object() operation
and adds theorg.omg.ft.ObjectLocation criterion to the criteria before passing
the_criteria as a parameter of thecreate_object() operation to the application’s
local factory.

Thecreate_object() operation of theGenericFactory interface, implemented by the
application’s local factory objects, returns an object reference as a result.

The create_object() operation of theGenericFactory interface, inherited by the
Replication Manager, returns an object group reference as a result. If the
MembershipStyle is MEMB_APP_CTRL , the Replication Manager creates an
object group with no members. Consequently, the returned object group reference
contains noTAG_INTERNET_IOP profiles but, instead, contains a
TAG_MULTIPLE_COMPONENTS profile with theTAG_FT_GROUP component in
it.

The create_object() operation has an out parameter,factory_creation_id , that is
retained by the entity that invoked the method so that it can later invoke the
delete_object() operation of the factory using thefactory_creation_id as an in
parameter, to cause the factory to delete the object. The factory must also retain t
identification information so that it can actually delete the object.

Because the factory retains the identification information that is needed to delete a
object that it created, the factory has state. The local factories that create the mem
of an object group are not replicas of one another. To protect each of these local
factories against faults, the application deployer either may replicate each of the
factories using theCOLD_PASSIVE ReplicationStyle , or may assume that the
failure of a local factory at a location (for example, process or host) is equivalent to
failure of that location.

The application deployer registers a sequence of factories with the Property Mana
as the Factories property of the object group, which contains a sequence of factor
reference,the_location and the_criteria , which determine where the factory may
create an object and the criteria for the object that it is to create.

If the MembershipStyle is MEMB_INF_CTRL , the Replication Manager uses the
locations to choose one or more factories from the Factories sequence and uses
factory references to invoke thecreate_object() operation of theGenericFactory
interface that the factories implement to create the members of the object group.

If the MembershipStyle is MEMB_APP_CTRL and the application itself invokes
the create_member() operation of theObjectGroupManager interface, citing a
location that it selected, the Replication Manager invokes thecreate_object()
operation of theGenericFactory interface implemented by the factory (provided by
the Factories property) for that location to create the new member of the object gr
at that location.
23-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

that

f,

r an

rty
If the MembershipStyle is MEMB_APP_CTRL and the application invokes the
create_object() operation of theGenericFactory interface for a particular factory to
create an object, it may then invoke theadd_member() operation of the
ObjectGroupManager interface to add the object to the group.

Similarly, to create an unreplicated object, the application may invoke the
create_object() operation of theGenericFactory interface of one of its own
factories.

23.3.9.1 Identifiers

typedef any FactoryCreationId;

An identifer that is assigned to an object by the factory that creates the object and
is used by the factory to delete the object subsequently.

23.3.9.2 Operations

create_object

This operation of theGenericFactory interface creates an object, using thetype_id
parameter to determine which type of object to create andthe_criteria parameter to
determine restrictions on how and where to create the object. The out parameter,
factory_creation_id , allows the entity that invoked the factory, and the factory itsel
to identify the object for subsequent deletion.

If the application or the Replication Manager invokes thecreate_object() operation
on theGenericFactory interface, implemented by the application’s local factory
object, then it creates a single object.

If the application invokes thecreate_object() operation on theGenericFactory
interface, inherited by the Replication Manager, then it creates an object group. Fo
object group with theMEMB_APP_CTRL MembershipStyle , the Replication
Manager returns an object group reference containing only the
TAG_MULTIPLE_COMPONENTS profile with theTAG_FT_GROUP component in
it.

One of the name-value pairs inthe_criteria , passed to the Replication Manager as a
parameter ofcreate_object() , may have the nameorg.omg.ft.FTProperties (which
is reserved for specifying fault tolerance properties). The Replication Manager
removes that entry of the sequence, adds theorg.omg.ft.ObjectLocation entry
(which is reserved for specifying the location at which the factory is to create the
object), and appends any location-specific criteria (specified in the Factories prope
for the particular location) before it invokescreate_object() operation on the
application’s local factory object.

Object create_object(in TypeId type_id,
in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory,
July 2002 CORBA, v3.0: Replication Management 23-59

23

s

ject

t.
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

Parameters

Return Value

The reference to the object created by theGenericFactory . When the
GenericFactory interface is implemented by the application’s local factory object,
the create_object() operation returns an object reference as a result. When the
GenericFactory interface is inherited by the Replication Manager, the
create_object() operation returns an object group reference as a result.

Raises

NoFactory if the object cannot be created. When theGenericFactory interface is
implemented by the application’s local factory object, the raised exception indicate
that the factory cannot create an individual object of thetype_id at the location. When
the GenericFactory interface is inherited by the Replication Manager, the raised
exception indicates that the Replication Manager cannot create the object group
because it cannot find a factory that is capable of constructing a member of the ob
group of thetype_id at the location.

ObjectNotCreated if the factory cannot create the object.

InvalidCriteria if the factory does not understand the criteria.

InvalidProperty if a property passed in as criteria is invalid.

CannotMeetCriteria if the factory understands the criteria but cannot satisfy it.

delete_object

This operation deletes the object with the given identifier. If the application or the
Replication Manager invokes this operation on theGenericFactory interface,
implemented by the application’s local factory object, then it deletes a single objec

type_id The repository identifier of the object to be created by
the factory.

the_criteria Information passed to the factory, which the factory
evaluates before creating the object. Examples of
criteria are initialization values, constraints on the
object, preferred location of the object, fault tolerance
properties for an object group, etc.

factory_creation_id An identifier that allows the factory to delete the object
subsequently.
23-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

is
m
.

he

oup

e

eria
the
If the application invokes this operation on theGenericFactory interface, inherited
by the Replication Manager, then it deletes an object group. When this operation
invoked on it, the Replication Manager must first remove each of the members fro
the object group, and delete each of them, before it deletes the object group itself

void delete_object(in FactoryCreationId factory_creation_id)
raises(ObjectNotFound);

Parameters

Raises

ObjectNotFound if the object cannot be found.

23.3.10 Obtaining the Reference for the Replication Manager

The application may obtain a reference to the Replication Manager for its Fault
Tolerance Domain by invokingresolve_initial_references() with an ObjectId of
“ReplicationManager” and narrowing to the appropriate type.

23.3.11 Use Cases

23.3.11.1 Infrastructure-Controlled Membership Style

1. The application obtains a reference to the Replication Manager by invoking
resolve_initial_references() and narrowing the result.

2. To create a replicated object (object group), the application invokes the
create_object() operation of theGenericFactory interface inherited by the
Replication Manager, supplying thetype_id and the_criteria . The
create_object() operation returns (at Step 11) the object group reference and t
object group identifier as thefactory_creation_id , which is recorded by the
application to permit it to subsequently request theGenericFactory to delete the
object group.

3. The Replication Manager obtains the fault tolerance properties for the object gr
from the Property Manager of the type defined by thetype_id parameter. If
additional fault tolerance properties are defined in an entry named
org.omg.ft.FTProperties of the_criteria parameter, those properties override th
properties obtained from the Property Manager.

4. Using theInitialNumberReplicas property and theFactories property (a
sequence of factory, location at which the factory is to create the object and crit
that the factory is to use in creating the object), the Replication Manager decides
locations at which to create the members of the object group.

factory_creation_id An identifier for the object that is to be deleted.
July 2002 CORBA, v3.0: Replication Management 23-61

23

n

ject

p

le,
f

as
er.

for
5. For each member, the Replication Manager invokes thecreate_object() operation
of the GenericFactory interface of the requisite factory provided by the
application for the location of the member, passing in as parameters thetype_id
and the_criteria obtained from theFactories property, as shown in Figure 23-5
on page 23-63. The operation returns the reference of the member and its
factory_creation_id , which is unique within the context of the factory. The
factory and the Replication Manager record this information to allow the
Replication Manager to invoke thedelete_object() operation of the
GenericFactory interface of the same local factory to delete the member
subsequently.

6. The Replication Manager determines the identifier of the object group, and
constructs theTAG_FT_GROUP component containing the fault tolerance domai
identifier, the object group identifier and the object group version that allow the
object group to be addressed. The Replication Manager then constructs the ob
group reference.

7. For each gateway:

a. The Replication Manager constructs aTAG_INTERNET_IOP profile for the
gateway containing its host and port, and aTAG_FT_GROUP component that
allows the object group to be addressed.

b. The Replication Manager then augments the object group reference with the
gateway profile.

8. The Replication Manager records the object group reference for the object grou
against the object group identifier.

9. For each member:

a. The Replication Manager adds the member to the object group.

b. Depending on the Replication Style, the Replication Manager activates the
member.

c. The Replication Manager checks the Replication Style, Fault Monitoring Sty
Fault Monitoring Granularity to determine whether to initiate fault monitoring o
the member.

d. The Replication Manager registers itself, or a fault consumer object that it h
created, with the Fault Notifier to receive notifications of faults for the memb

10. For theCOLD_PASSIVE or WARM_PASSIVE Replication Styles, the Replication
Manager determines the primary member of the group and includes the
TAG_FT_PRIMARY component in the profile for that member.

11. The Replication Manager returns to the application the object group reference
the object group, as constructed in Step 7, and theobject_group_id as the out
parameter,factory_creation_id , of thecreate_object() operation.
23-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

er,

n
on
Figure 23-5 The Creation of an Object Group with the Infrastructure-Controlled
MembershipStyle.

23.3.11.2 Application-Controlled Membership Style

1. The application obtains a reference to the Replication Manager by invoking
resolve_initial_references() .

2. The application obtains the fault tolerance properties from the Property Manag
including theInitialNumberReplicas .

3. To create a replicated object (object group), the application invokes the
create_object() operation of theGenericFactory interface inherited by the
Replication Manager, supplying thetype_id and the_criteria , as shown in Figure
23-5.

4. The Replication Manager determines the identifier of the object group, and
constructs theTAG_FT_GROUP component containing the fault tolerance domai
identifier, the object group identifier and the object group version. The Replicati
Manager then constructs the object group reference, containing the
TAG_MULTIPLE_COMPONENTS profile with theTAG_FT_GROUP
component in it.

Replication Manager

create_
object()

Generic Factory

Property
Manager

create_
object()

Invoked by
Replication
Manager on
Factory Objects

ORB ORB

Factory Factory

Object Replica Object Replica

S1 S2

Host
H3

Host
H2

Application

G1

G1
G2

G2 S

Object Group
Reference

Gateway

Gateway

Fault
Monitor

Fault
Monitor

Fault
Notifier
July 2002 CORBA, v3.0: Replication Management 23-63

23

e

er,

he

e
e as

as
r.

the
5. The Replication Manager returns to the application, as the reply to
create_object() , the object group reference and the object group identifer as th
factory_creation_id , which allows the application to delete the object group
subsequently.

6. For each member:

a. If the application has already created the object that is to become the memb
the application invokes theadd_member() operation of the
ObjectGroupManager interface, citing the object group reference, location
and member reference.

b. If instead the application wants the infrastructure to create the member, the
application invokes thecreate_member() operation of the
ObjectGroupManager interface, citing the object group reference, location,
type_id and the_criteria , as shown in Figure 23-6 on page 23-65.

The Replication Manager obtains the object reference for thefactory ,
the_location , andthe_criteria from the Factories property. The Replication
Manager takesthe_criteria passed to it bycreate_member() , appends the
property with the nameorg.omg.ft.ObjectLocation and the_location value
passed to it bycreate_member() , and appendsthe_criteria from the
Factories property for the particular location. It then invokes the
create_object() operation of theGenericFactory interface of the factory
provided by the application to create a member at that location, passing in t
type_id and the_criteria .

The factory returns the object reference and thefactory_creation_id for the
new member, and records this identification information. The Replication
Manager records thefactory_creation_id , which allows it subsequently to
invoke thedelete_object() operation of theGenericFactory interface of the
local factory to delete the member.

c. The Replication Manager constructs a new object group reference, taking th
new member into account. The new object group reference may be the sam
the existing object group reference.

d. The Replication Manager checks theFaultMonitoringStyle ,
FaultMonitoringGranularity , andFaultMonitoringInterval properties and
initiates monitoring of the new member.

e. The Replication Manager registers itself, or a fault consumer object that it h
created, with the Fault Notifier to receive fault reports about the new membe

f. The Replication Manager returns the new object group reference to the
application in case (a) as the return value ofadd_member() and in case (b) as
the return value ofcreate_member() .

7. For theCOLD_PASSIVE or WARM_PASSIVE Replication Managers, the
application determines which of the members is to be the primary and invokes
set_primary_member() operation of theObjectGroupManager interface. The
23-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

he

Replication Manager puts theTAG_FT_PRIMARY component in the appropriate
profile of the object group reference and returns the object group reference to t
application as the return value ofset_primary_member() .

Figure 23-6 The Creation of a Member of an Object Group with the Application-Controlled
Membership Style.

23.3.11.3 Unreplicated Object Creation and Deletion

Creation

1. The application obtains a reference to the local factory.

2. The application invokes thecreate_object() operation of theGenericFactory
interface of the local factory, supplying thetype_id and the_criteria .

3. The factory creates the object and returns the object reference and the
factory_creation_id to the application, as the result ofcreate_object() . The
factory_creation_id is unique within the context of the factory. The application
and the factory record this identification information, which they can use
subsequently to delete the object.

Replication Manager

create_
object()

Generic Factory

Property
Manager

Object
Group

Manager

create_
member()

Invoked by
Replication
Manager on
Factory Object

ORB ORB

Factory

Object Replica Object Replica

S1 S2

Host
H3

Host
H2

Application

S1 S2 S

Object Group
Reference

Fault
Monitor

Fault
Monitor

Fault
Notifier

Application requests
the creation of a member

at location Host H3
July 2002 CORBA, v3.0: Replication Management 23-65

23

a

ch

nd

nt
ons
ault

ed

ush-

. The
s

is

sis.
.g.,
Deletion

1. The application invokes thedelete_object() operation of theGenericFactory
interface of the local factory, supplying thefactory_creation_id .

2. The factory associates thefactory_creation_id with the recorded information and
deletes the object.

23.4 Fault Management

23.4.1 Overview

In a fault-tolerant system, fault management encompasses the following activities:

• Fault detection - detecting the presence of a fault in the system and generating
fault report.

• Fault notification - propagating fault reports to entities that have registered for su
notifications.

• Fault analysis/diagnosis - analyzing a (potentially large) number of related fault
reports and generating condensed or summary reports.

In the Fault Tolerance Infrastructure, Fault Detectors detect faults in the objects, a
report faults to the Fault Notifier. The Fault Notifier receives fault reports from the
Fault Detectors, filters the reports, and propagates the filtered reports as fault eve
notifications to consumers that have subscribed for them. The Fault Analyzer reas
about the fault reports that it has received, and produces aggregate or summary f
reports that it propagates back to the Fault Notifier for dissemination to other
consumers.

A fault-tolerant system typically has several Fault Detectors, including those provid
by the infrastructure to monitor objects, and other fault detectors provided by the
infrastructure or the application. Each Fault Detector belongs to a particular fault
tolerance domain, and is not shared across fault tolerance domains. Most
implementations of Fault Detectors are based on timeouts, and use either pull- or p
based monitoring. This section defines an interface for pull-based monitoring, the
PullMonitorable interface, that application objects inherit, and that is invoked by a
Fault Detector within the Fault Tolerance Infrastructure.

The section also defines aFaultNotifier interface. The Fault Notifier receives fault
reports from the Fault Detectors. The Fault Notifier filters the reports to eliminate
unnecessary or duplicate reports. It then sends fault event notifications to the
consumers. The Replication Manager is such a consumer, as is the Fault Analyzer
application can also subscribe to receive fault event notifications. Logically, there i
one Fault Notifier per fault tolerance domain, although typically it is replicated for
fault tolerance. The Fault Notifier belongs to a particular fault tolerance domain and
not shared across domains.

A fault-tolerant system may also have one or more Fault Analyzers. Each Fault
Analyzer collects fault reports and performs event correlation, analysis, and diagno
It may condense a large number of related fault reports into a single fault report (e
23-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

fault
us,

he

o
ult

lt
the crash of a host can cause fault reports for all objects on that host, as well as a
report for the host itself). The analysis of fault reports is application-dependent; th
this chapter does not define a Fault Analyzer interface, but allows an application
developer to hook in Fault Analyzers as consumers of fault reports generated by t
Fault Notifier.

A problem with fault notification is the potential for a large number of notifications t
be generated by a single fault. This problem is addressed by filtering within the Fa
Notifier, by Fault Analyzers, and by theFaultMonitoringGranularity .

23.4.2 Architecture

Figure 23-7 shows the interaction between the Fault Detectors, Fault Notifier, Fau
Analyzer, and Replication Manager in a relatively simple system. The fault
management specification defines interfaces that allow interaction of:

• A Fault Detector with a pull-monitored object within a fault tolerance domain

• A Fault Detector with the Fault Notifier within a fault tolerance domain

• The Fault Notifier with the Replication Manager, a Fault Analyzer, or other
application objects within a fault tolerance domain.

Figure 23-7 Interactions between the Fault Detectors, Fault Notifier, Fault Analyzer, and
Replication Manager.

Application
Object

Application
Object

Application
Object

Application
Object

Replication
Manager

Fault
Notifier

Fault
Analyzer

Fault
Detector

Fault
Detector

Fault
Detector

Pings

Fault
Reports

Fault Notifications

Application
July 2002 CORBA, v3.0: Fault Management 23-67

23

on
sed

lt
.

s not

ault

rk)
not

he
ause

lt
sed

ault
each
ture

ss)

ss-
y a
23.4.2.1 Fault Detection

In the Fault Tolerance Infrastructure, fault detection is initiated by the Replication
Manager for members of object groups having either application-controlled or
infrastructure-controlledMembershipStyles (see Section 23.3.2, “Fault Tolerance
Properties,” on page 23-32). Because the fault management specification focuses
monitoring and timeout-based fault detection, the terms monitor and detector are u
interchangeably.

There are two common styles of fault monitoring: PULL and PUSH. These two fau
monitoring styles differ in the direction in which fault information flows in the system
Because push-based monitoring depends on characteristics of the application, it i
defined in this specification.

The fault management specification defines the interaction between a pull-based F
Detector and application objects. It defines aPullMonitorable interface that the
application objects inherit. Other kinds of system-specific (for example, host, netwo
and application-specific Fault Detectors may be present in the system, but they are
defined.

23.4.2.2 Fault Notification

This section defines aFaultNotifier interface that contains operations that allow a
Fault Detector or Fault Analyzer to push fault reports to the Fault Notifier. It also
defines operations that allow the Replication Manager, a Fault Analyzer or other
application object to register as consumers of fault event notifications. The Fault
Notifier filters fault reports that it has received from the Fault Detectors, and
propagates fault reports to the entities that have registered for such notifications.

23.4.2.3 Fault Analysis

The Fault Analyzer registers with the Fault Notifier as a consumer of fault reports. T
Fault Analyzer correlates fault reports and generates condensed fault reports. Bec
these activities are specific to the application or the environment, the application
developer is responsible for the analysis/diagnosis algorithm employed by the Fau
Analyzer. The Fault Analyzer may use the Fault Notifier to disseminate its conden
fault reports.

23.4.2.4 Scalability

The fault management specification does not limit the number or arrangement of F
Detectors in a fault tolerance domain. In a large system spanning many hosts with
host supporting many objects, arranging the Fault Detectors in a hierarchical struc
would be more scalable and efficient.

For example, consider a system where all objects at a given location (say, a proce
are monitored by a local object-level Fault Detector, as shown in Figure 23-8 on
page 23-69. The set of object-level Fault Detectors might be monitored by a proce
level Fault Detector. The set of process-level Fault Detectors might be monitored b
23-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

by

ct-

t in
er
of

g
le

erse

ly
en
ault
host-level Fault Detector. The Replication Manager, or a consumer object created
the Replication Manager, might be implemented to consume either object-level,
process-level, or host-level fault reports. If it is implemented to consume only obje
level fault reports, a Fault Analyzer that translates object-level fault reports into
process- or host-level fault reports can be attached to the Fault Notifier.

Monitoring at the process level can be achieved by monitoring a single proxy objec
the process. The proxy object would be responsible for ensuring that all of the oth
objects in the process are alive, and would monitor those objects through the use
application-specific facilities or private Fault Notifier channels provided by the
infrastructure.

Figure 23-8 Hierarchical Fault Detection.

This example shows the generality of the Fault Tolerance Infrastructure in handlin
different types of arrangements of Fault Detectors. Other organizations are possib
and useful.

23.4.2.5 Deployment of Fault Detectors

Fault Detectors can be as varied as the applications they monitor and, for these div
applications, Fault Detectors can be deployed in several different ways:

• Statically Deployed Fault Detectors. In an operating environment with a relative
static configuration, location-specific Fault Detectors will typically be created wh
the Fault Tolerance Infrastructure is installed. For example, these stand-alone F

Fault
Notifier

Process
Fault

Detector

Host
Fault

Detector

Process
Fault

Detector

Fault
Reports

Application
Object

Application
Object

Object
Fault

Detector

Pings

Pings

Application
Object

Application
Object

Object
Fault

Detector

Pings

Application
Object

Application
Object

Object
Fault

Detector

Pings

Process Process Process

Host Host
July 2002 CORBA, v3.0: Fault Management 23-69

23

he

to
in

least,

r
ht
ware

n-
n

ifier,

e
s,
tion

er,
s
tion
ng

ne

tails.
Detectors could be implemented as daemon processes that are installed with t
Fault Tolerance Infrastructure. These Fault Detectors could be registered in a
manner internal to the Fault Tolerance Infrastructure, allowing the infrastructure
include them in every fault-tolerant application within the fault tolerance domain
a transparent manner.

• Infrastructure Created Fault Detectors. The Fault Tolerance Infrastructure may
create instances of Fault Detectors to meet the needs of the applications. For
example, to implement theMEMB FaultMonitoringGranularity , the Fault
Tolerance Infrastructure must create Fault Detectors sufficient to ping every
member of the object group. Because these Fault Detectors are created (or, at
configured) by the Fault Tolerance Infrastructure, their identities need only be
known to the infrastructure.

• Application Created Fault Detectors. It might be necessary or advantageous fo
applications to create their own Fault Detectors. For example, applications mig
have unique knowledge of their operating environment, such as access to hard
indicators of faults within the operating environment. However, unlike the other
types of Fault Detectors, application-created Fault Detectors are not inherently
known to the Fault Tolerance Infrastructure. They can propagate their fault
information to an application-specific Fault Analyzer through the Fault Notifier
provided by the infrastructure. The Fault Analyzer can interpret these applicatio
specific fault reports, generate reports that can be understood by the Replicatio
Manager, and propagate them to the Replication Manager through the Fault Not
as shown in Figure 23-8.

23.4.3 Connecting Fault Detectors to Applications

The Fault Notifier provides flexible event-based connection of Fault Detectors to th
Replication Manager, Fault Analyzer, and other application objects. Fault Detector
from whatever source, push fault reports onto Fault Notifier channels. The Replica
Manager, Fault Analyzer, or application objects registers as a consumer of fault
reports. The Fault Notifier provides the channel for fault reports in an indirect mann
thus allowing the decoupling of the identity and configuration of the Fault Detector
from the application. The process of connecting the Fault Detectors to the Replica
Manager, Fault Analyzer, or application objects thus devolves to a process of findi
the Fault Notifier with which to register for fault notifications.

Obtaining a reference to the Fault Notifier for a fault tolerance domain involves two
steps:

1. Obtain a reference to the Replication Manager, which may be done using
resolve_initial_references() , as described in Section 23.3.10, “Obtaining the
Reference for the Replication Manager,” on page 23-61.

2. Query the Replication Manager for the registered Fault Notifier, which may be do
using theget_fault_notifier() operation of theReplicationManager interface,
given in Section 23.3.6, “Replication Manager,” on page 23-44.

The use cases in Section 23.3.11, “Use Cases,” on page 23-61 provide further de
23-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

tor
lly

sts.

.

the
23.4.4 Pull-Based Monitoring

Based on theMEMB FaultMonitoringGranularity and thePULL
FaultMonitoringStyle , the Replication Manager chooses a pull-based Fault Detec
to monitor a member of the object group. The pull-based Fault Detector periodica
pings the member by invoking theis_alive() operation of thePullMonitorable
interface that the member of the object group inherits. The period of the ping is
determined by theFaultMonitoringInterval for the object group. The pull-based
Fault Detector uses the monitoring interval as a hint (in contrast to maintaining the
exact value) to optimize monitoring across a number of objects.

23.4.4.1 PULL Fault Monitoring Style

In the PULL FaultMonitoringStyle , the Fault Detector periodically invokes the
object to check its liveness; the monitored object responds to these liveness reque
The monitored object must inherit thePullMonitorable interface. The Fault Detector
invokes theis_alive() operation of this interface to check the liveness of the object

Figure 23-9 shows the interactions between the monitored object represented by
PullMonitorable interface and the Fault Detector for thePULL
FaultMonitoringStyle , and the interactions with the Fault Notifier and the
Replication Manager.

Figure 23-9 PULL FaultMonitoringStyle.

23.4.4.2 PullMonitorable Interface

module FT {
interface PullMonitorable

boolean is_alive();
};

};

Application
Object

Replication
Manager

Fault
Notifier

Fault
Detector

PullMonitorable

push_structured_fault() or
push_sequence_fault()

push_structured_event() or
push_sequence_event()

is_alive()

CosNotifyComm:
StructuredPushConsumer

CosNotifyComm:
SequencePushConsumer
July 2002 CORBA, v3.0: Fault Management 23-71

23

ly to

at

ault
rs

to

ne

at an
is_alive

This operation informs the pull-based Fault Detector whether the object is able to
accept requests and produce replies. The monitored object may return true direct
indicate its liveness, or it may perform an application-specific “health” check (for
example, assertion check) within the operation and return false if the test shows th
the object is in an inconsistent state.

boolean is_alive();

Return Value

Returns true if the object is alive and ready to take further requests, and false
otherwise.

23.4.5 Fault Event Types

Fault reports are conveyed to the Fault Notifier by the Fault Detectors and by the F
Notifier to the entities that have registered for such notifications. The Fault Detecto
and Fault Notifier use a well-defined event type to convey a given fault event. This
specification defines a set of fault event types that are understood by the Fault
Tolerance Infrastructure. Vendors or the OMG may extend these fault event types
include other types of fault events.

To align the Fault Tolerant CORBA specification with theCosNotification Service,
the fault event types are mandated to be eitherCosNotification::StructuredEvent
or CosNotification::EventBatch (sequence ofStructuredEvent). Fault events
flow from the Fault Detectors to the Fault Notifier to the consumers according to o
of these two formats.

23.4.5.1 ObjectCrashFault

The fault management specification defines one event type:ObjectCrashFault . As
the name suggests, this event is generated by a Fault Detector when it detects th
object has crashed. The definition for the event type is as follows:

CosNotification::StructuredEvent fault_event;
fault_event.header.fixed_header.event_type.domain_name = "FT_CORBA";
fault_event.header.fixed_header.event_type.type_name = "ObjectCrashFault";
fault_event.filterable_data_length(2);
fault_event.filterable_data[0].name = "FTDomainId";
fault_event.filterable_data[0].value = /* Value of FTDomainId bundled into any */;
fault_event.filterable_data[1].name = “Location”;
fault_event.filterable_data[1].value = /* Value of Location bundled into any */;
if (all objects at a given location have failed)

{} /* do nothing */
else
fault_event.filterable_data.length(3);
fault_event.filterable_data[2].name = "TypeId";
fault_event.filterable_data[2].value = /* Value of TypeId bundled into any */;
if (all objects of a given type at a given location have failed)

{} /* do nothing */
23-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

ct
ion

ault
ult
tion

l
at

ties:

ult-

e

else {
fault_event.filterable_data.length(4);
fault_event.filterable_data[3].name = "ObjectGroupId";
fault_event.filterable_data[3].value =

/* Value of ObjectGroupId bundled into any */;
};

};

Thefilterable_data part of the event body contains the identity of the crashed obje
as four name-value pairs: the fault tolerance domain identifier, the member’s locat
identifier, the repository identifier and the object group identifier. The Fault Notifier
filters events based on thedomain_name , the type_name , and the four identifiers.
All other fields of the structured event may be set to null.

The Fault Detector always sets the following fault event fields:domain_name ,
type_name , FTDomainId , andLocation . The fault detector may or may not set the
TypeId andObjectGroupId fields with the following interpretations:

• Neither is set if all objects at the given location have failed.

• TypeId is set andObjectGroupId is not set if all objects at the given location with
the given type have failed.

• Both are set if the member with the givenObjectGroupId at the given location has
failed.

23.4.6 Fault Notifier

The Fault Notifier takes the fault reports generated by the Fault Detectors or the F
Analyzers, filters them, and propagates them to entities that have registered for fa
notifications, such as the Replication Manager, the Fault Analyzer, or other applica
objects.

The Fault Notifier provides a small subset of the functionality of theCosNotification
Service. TheCosNotification Service is complex, and an implementation of the ful
specification might be difficult to render fault tolerant. The Fault Notifier assumes th
the notification channel used for propagating fault reports has the following proper

• Push-based event communication model.

• Support for propagatingCosNotification::StructuredEvent and
CosNotification::EventBatch (Sequence ofStructuredEvent) types.

• Forwarding filter framework at the consumer.

A notification channel that provides the above properties and that can be made fa
tolerant is a good candidate for implementing the Fault Notifier.

The Fault Notifier uses the existingCosNotification StructuredEvent and
EventBatch formats, forwarding filter framework, and consumer end interfaces. Th
default constraint grammar is the same as that supported by theCosNotification
Service (see telecom/98-11-01).
July 2002 CORBA, v3.0: Fault Management 23-73

23

fier

ated
nt

rt the
Figure 23-10Fault Report Propagation through the Fault Notifier

Figure 23-10 shows the interaction between the Fault Notifier and the fault event
suppliers and consumers during fault propagation.

Any fault event supplier (Fault Detector) may obtain the reference to the Fault Noti
and send fault reports to it. It does not need to register explicitly with the Fault
Notifier. TheFaultNotifier interface provides two operations,
push_structured_fault() andpush_sequence_fault() , for fault event suppliers to
push fault events of the formCosNotification::StructuredEvent and
CosNotification::EventBatc h to the Fault Notifier.

A fault event consumer, such as the Replication Manager or a consumer object cre
by the Replication Manager, must register with the Fault Notifier to receive fault eve
notifications, as shown in Figure 23-11. TheFaultNotifier interface provides two
operations for registering consumers:connect_structured_fault_consumer() for
consumers that accepts only structured events and
connect_sequence_fault_consumer() for consumers that accept a sequence of
structured events. A consumer that wishes to receive structured events must suppo
CosNotifyComm::StructuredPushConsumer interface and a consumer that
wishes to receive a sequence of structured must support the
CosNotifyComm::SequencePushConsumer interface.

Figure 23-11Connection Setup between the Consumer and the Fault Notifier

Fault
Notifier

push_structured_fault()

push_sequence_fault()

Fault
Event
Supplier

Fault
Event
Supplier

push_structured_event()

push_sequence_event()

CosNotifyComm
StructuredPushConsumer

CosNotifyComm
SequencePushConsumer

CosNotifyComm
StructuredPushConsumer

Consumer

Fault
Notifier

1. create_subscription_filter()

2. connect_structured_fault_consumer()

3. push_structured_event()
23-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

ept

nt

lt

and
ifier
The Fault Notifier propagates all events of a given format to all consumers that acc
that format. While a consumer is connected to the Fault Notifier, it may use the
operationreplace_constraint() to replace a constraint for a given sequence of eve
types.

module FT {
interface FaultNotifier {

typedef unsigned long long ConsumerId;
void push_structured_fault(

in CosNotification::StructuredEvent event);

void push_sequence_fault(
in CosNotification::EventBatch events);

ConsumerId connect_structured_fault_consumer(
in CosNotifyComm:StructurePushConsumer
push_consumer);

ConsumerId connect_sequence_fault_consumer(
in CosNotifyComm:StructurePushConsumer
push_consumer);

void disconnect_consumer (in ConsumerId connection)
raises(CosEventComm::Disconnected);

void replace_constraint (in ConsumerID connection,
in CosNotification::EventTypeSeq event_types,
in string constr_expr);

};
};

23.4.6.1 Identifiers

typedef unsigned long long ConsumerId;

The identifier used to identify the consumer of notifications uniquely within the Fau
Notifier.

23.4.6.2 Operations

push_structured_fault

The supplier of a fault report creates a structured event containing the fault report
invokes this operation with the structured event as an in parameter. The Fault Not
then pushes a fault notification to the consumers that have registered for such
notifications.
July 2002 CORBA, v3.0: Fault Management 23-75

23

fault

t

s to
ely
use
on

ifier.

s to
tifier

lt
and

.

.

g

void push_structured_fault(in CosNotification::StructuredEvent event);

Parameters

push_sequence_fault

The supplier of a fault report creates a sequence of structured event containing the
reports and invokes this operation with the sequence of structured event as an in
parameter. The Fault Notifier then pushes a fault notification to the consumers tha
have registered for such notifications.

void push_sequence_fault(in CosNotification::EventBatch events);

Parameters

connect_structured_fault_consumer

This operation accepts as an in parameter the reference to a consumer that wishe
receive structured events from the Fault Notifier and returns an identifier that uniqu
identifies the consumer within the context of the Fault Notifier. The consumer must
this identifier in all of its subsequent interactions with the Fault Notifier. The operati
establishes a logical connection between the Fault Notifier and the consumer, and
allows the Fault Notifier to push fault events to the consumer, using the
push_structured_event() operation of the
CosNotifyComm::StructuredPushConsumer interface.

ConsumerId connect_structured_fault_consumer(
in CosNotifyComm::StructuredPushConsumer push_consumer);

Parameters

Return Value

An identifier that uniquely identifies the consumer within the context of the Fault
Notifier and is used by the consumer in subsequent interactions with the Fault Not

connect_sequence_fault_consumer

This operation accepts as an in parameter the reference to a consumer that wishe
accept a sequence of structured events from the Fault Notifier and returns an iden
that uniquely identifies the consumer within the context of the Fault Notifier. The
consumer must use this identifier in all of its subsequent interactions with the Fau
Notifier. The operation establishes a logical connection between the Fault Notifier

event The fault event that is to be delivered to the consumer

event The fault event that is to be delivered to the consumer

push_consumer The reference to the consumer object that is registerin
for fault notifications.
23-76 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

sing

t

er.

g

the consumer, and allows the Fault Notifier to push fault events to the consumer u
the push_sequence_event() operation of the
CosNotifyComm::SequencePushConsumer interface.

ConsumerId connect_sequence_fault_consumer(
in CosNotifyComm::SequencePushConsumer push_consumer);

Parameters

Return Value

An identifier that uniquely identifies the consumer within the context of the Fault
Notifier and that is used by the consumer in subsequent interactions with the Faul
Notifier.

disconnect_consumer

This operation is invoked by the consumer to disconnect itself from the Fault Notifi
The operation takes as an in parameter theConsumerId identifying the disconnecting
consumer.

void disconnect_consumer(in ConsumerId connection)
raises(CosEventComm::Disconnected);

Parameters

Raises

CosEventComm::Disconnected if the Fault Notifier is not currently connected to
any consumer identifier by the givenConsumerId .

23.4.6.3 Filtering

Filtering is done by the Fault Notifier based on the constraints provided by the
consumer.

Because Location is of typeCosNaming::Nam e, a location can be described using a
hierarchical location scheme. For example, an object “objA” located in process
“procB” on host “hostC” can be described as follows:

Location object_location;
object_location.length(3);
object_location[0].id = "hostC";
object_location[0].kind = "hostname";

push_consumer The reference to the consumer object that is registerin
for fault notifications.

connection The ConsumerId identifying the particular consumer
that wishes to be disconnected.
July 2002 CORBA, v3.0: Fault Management 23-77

23

lt
ies

For
of

e

ed

ining

or

h

object_location[1].id = "procB";
object_location[1].kind = "processname";
object_location[2].id = "objA";
object_location[2].kind = "objectname";

To facilitate hierarchical fault detection and reporting, the Fault Detector may omit
some trailing Location entries. For example, if all objects on a host fail, then a Fau
Detector may send a fault report with only the leading Location entry, which identif
the failed host.

The Fault Notifier may also filter events based on a subset of the Location entries.
example, if a consumer of fault events wishes to subscribe to notifications of faults
type ObjectCrashFault on a particular host, the filtering selects faults based on th
leading entry of Location, which identifies the host.

The Extended Trader Constraint Language is used to filter fault events, as illustrat
below.

For example, to register for all fault events in ftdom0 on hostC, use the filter string
"$event_type.domain_name == ‘FT_CORBA’ and $event_type.type_name ==
‘ObjectCrashFault’ and $FTDomainId == ‘ftdom0’ and $Location[0].id == ‘hostC’".

To register for fault events for a member of an object group, identified by (ftdom0,
group1, type2, hostC, procB), where the object itself crashed or the process conta
the object crashed or the host supporting the process crashed, use the filter string
"$event_type.domain_name == ‘FT_CORBA’ and $event_type.type_name ==
‘ObjectCrashFault’ and $FTDomainId == ‘ftdom0’ and (not exists $ObjectGroupId
$ObjectGroupId == ‘group1’) and (not exists $TypeId or $TypeId == ‘type2’) and
$Location[0].id == ‘hostC’ and (not exists $Location[1] or $Location[1].id ==
‘procB’)".

23.4.6.4 Mapping of the Fault Notifier to the CosNotification Service

This section is intended as an informational, rather than a mandatory, part of the
specification. It is intended for vendors that want to use theCosNotification service,
in place of theFaultNotifier interface that has been defined in this specification. Suc
a vendor must use an implementation of theCosNotification service that can be
rendered fault-tolerant and that is compatible with the rest of the Fault Tolerance
Infrastructure. The six operations of theFaultNotifier interface map directly or
indirectly to one or more of the operations of theCosNotification service.

Initialization

The Fault Notifier first creates a notification channel and registers itself both as a
structured event supplier and a sequence of structured event supplier with the
notification channel. To register itself as a supplier of structured events, the Fault
Notifier goes through the following steps:

1. It invokesCosNotifyChannelAdmin::EventChannel::default_supplier_admin() and
gets the reference to theCosNotifyChannelAdmin::SupplierAdmin interface.
23-78 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

s.

of

e

een

ents

f.
“1”

ctor
2. It invokesobtain_notification_push_consumer() on theSupplierAdmin interface
and gets a reference to theCosNotifyChannelAdmin::ProxyConsumer interface,
which it narrows toCosNotifyChannelAdmin::StructuredProxyPushConsumer .

3. It invokesconnect_structured_push_supplier() on the
StructuredProxyPushConsumer to connect itself as a supplier of structured event

The Fault Notifier follows similar steps to register itself as a supplier of a sequence
structured events.

Supplier End Operations

The supplier end methodspush_structured_fault() andpush_sequence_fault() map to
CosNotifyComm::StructuredProxyPushConsumer::push_structured_event() and
CosNotifyComm::SequenceProxyPushConsumer::push_sequence_event() .

Consumer End Operations

A consumer, such as the Replication Manager or a consumer object created by th
Replication Manager, connect to the Fault Notifier through the
connect_structured_fault_consumer() and
connect_sequence_fault_consumer() operations. The consumer sets the
constraints for a given sequence of event types using thereplace_constraint()
operation.

In response to theconnect_structured_fault_consumer() invocation, the Fault
Notifier goes through the following sequence of steps to set up the connection betw
the consumer and the notification channel.

1. It invokesCosNotifyChannelAdmin::EventChannel::default_consumer_admin()
and gets the reference to theCosNotifyChannelAdmin::ConsumerAdmin interface.

2. It invokesobtain_notification_push_supplier() on theConsumerAdmin and gets a
reference to theCosNotifyChannelAdmin::ProxySupplier interface which it
narrows toCosNotifyChannelAdmin::StructuredProxyPushSupplier .

3. It invokesconnect_structured_push_consumer() on the
StructuredProxyPushSupplier and passes it the reference to the connecting
consumer. This sets up a connection capable of propagating structured fault ev
between the notification channel and the push consumer.

23.4.7 Use Cases

23.4.7.1 The Fault Detector as a Fault Notification Supplier

1. The Replication Manager wishes to monitor an object O1 with reference O1_re
The object belongs to the fault tolerance domain “acme.com” and object group
and location “object_location.” Based on thePULL FaultMonitoringStyle and the
location of the object, the Replication Manager chooses a pull-based Fault Dete
and informs it to start monitoring the object with the value of the
FaultMonitoringInterval given as a property.
July 2002 CORBA, v3.0: Fault Management 23-79

23

ng

nding
2. The pull-based Fault Detector periodically invokesis_alive() on O1_ref.

3. If Object O1 fails to respond to theis_alive() messages of the Fault Detector, the
Fault Detector may declare the object to have crashed. It then takes the followi
actions:
• It creates aStructuredEvent data structure with the following data.

Location object_location;
object_location.length(1);
object_location[0].id = "myhost.acme.com";
object_location[0].kind = "hostname";
CosNotification::StructuredEvent fault_event;
fault_event.header.fixed_header.event_type.domain_name = "FT_CORBA";
fault_event.header.fixed_header.event_type.type_name = "ObjectCrashFault";
fault_event.filterable_data.length(4);
fault_event.filterable_data[0].name = "FTDomainId";
fault_event.filterable_data[0].value <<= "acme.com";
fault_event.filterable_data[1].name = "Location";
fault_event.filterable_data[1].value <<= object_location;
fault_event.filterable_data[2].name = “TypeId”;
fault_event.filterable_data[2].value <<= object_type;
fault_event.filterable_data[3].name = "ObjectGroupId";
fault_event.filterable_data[3].value <<= 1;

• It invokespush_structured_event(fault_event) on the Fault Notifier.

23.4.7.2 The Replication Manager as a Fault Notification Consumer

1. The Replication Manager wishes to be notified when object O1 crashes.

2. The Replication Manager invokesconnect_structured_fault_consumer() with
a push consumer reference as an in parameter. The Fault Notifier returns a
consumer identifier to the Replication Manager.

3. The Replication Manager creates a sequence of event types and their correspo
constraint expressions, as follows:

CosNotification::EventTypeSeq event_types;
event_types.length(1);
event_types[0].domain_name = "FT_CORBA";
event_types[0].type_name = "ObjectCrashFault";

const CORBA::string constraint_expr;
constraint_expr = "$FTDomainId == ‘acme.com’

and $ObjectGroupId == 1
and $Location[0].id ==‘myhost.acme.com’";

4. The Replication Manager invokesreplace_constraint(consumer_id,
event_types, constraint_expr) on the filter object returned in Step 2. The above
constraints allow the Replication Manager to register forObjectCrashFault of a
member of object group 1 occurring on host “myhost.acme.com”.
23-80 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

.

ary

e of a
the

d to
ined

e

a
tate
ct

he
cal

red
p.

the
ch
have

es in
5. When the Replication Manager is no longer interested in fault reports for O1, it
invokesreplace_constraints() on the filter object with suitable constraint values

6. If the Replication Manager does not wish to receive any more notifications, it
disconnects from the Fault Notifier by invokingdisconnect_consumer(c_id) on
it.

23.5 Logging & Recovery Management

23.5.1 Overview

The Fault Tolerance Infrastructure includes Logging and Recovery Management
Mechanisms that support the infrastructure-controlledConsistencyStyle . During
normal operation, the Logging Mechanism records the state and actions of the prim
member of a passively replicated object group in a log. After a fault, the Recovery
Mechanism retrieves these records from the log and uses them to restore the stat
backup member of the object group, so that it can continue the service provided by
primary member that failed. The Logging and Recovery Mechanisms are also use
activate a new member of an actively replicated object group. No interfaces are def
for the Logging and Recovery Mechanisms because these mechanisms are never
invoked directly by the application program.

This section defines two interfaces that objects of the application program inherit:
Checkpointable andUpdateable . An application object that needs to have its stat
logged and restored must inherit theCheckpointable interface. In addition, it may
inherit theUpdateable interface, which allows state changes to be logged and
restored incrementally.

23.5.2 Logging Mechanism

During normal operation, the Logging Mechanism records the state and actions of
member of an object group in a log, as shown in Figure 23-12 on page 23-83. The s
and actions correspond to messages sent and received by the member of the obje
group. Conceptually, the Fault Tolerance Infrastructure maintains a distinct log for
each object group, although it may record the logs for many object groups within t
same physical log. The log may be distributed, in which case it is maintained in lo
volatile storage at each member of the object group that is the destination of the
message. The distributed logging strategy typically employs a reliable totally-orde
multicast protocol to deliver the messages to all of the members of the object grou
Alternatively, particularly for passively replicated object groups, the log may be
written to shared stable storage by the primary member of the object group that is
source of the message. To be sound, the shared logging strategy requires that ea
message is forced to the log on stable storage before it is transmitted, which may
an adverse effect on performance.

The format of the log is not specified in this specification. Typically, the information
recorded in the log consists of request and reply messages, and states and updat
the form ofget_state() andget_update() request and reply messages, as shown in
July 2002 CORBA, v3.0: Logging & Recovery Management 23-81

23

were

he

in a

larly.

the

r to
ete
r than

its

vely

ally,

e

can
ained

be
ined
Figure 23-12 on page 23-83. The log must preserve the order in which messages
received by the members of the object group, so that they can be replayed in the
correct order during recovery. States and updates must be positioned logically in t
message sequence at the point at which they were requested by theget_state() or
get_update() request message, even though the state or update may be contained
reply message that is sent at a later time. A complete state consists of theget_state()
request message and the reply to that request. A complete update is defined simi

To conserve memory, the Logging Mechanism must prune the log of records that
Recovery Mechanism will not subsequently require for recovery. Thus, if the log
contains a complete state, the Logging Mechanism can discard all log records prio
the get_state() request message for that state. Similarly, if a log contains a compl
update, the Logging Mechanism can discard all request and reply messages, othe
those associated with the logging of a state or update, that precedes theget_update()
request message for that update. If, however, a request contains anFT_REQUEST
service context, which defines an expiration time for the request, the request and
matching reply must be retained until that expiration time.

23.5.3 Recovery Mechanism

The Recovery Mechanism sets the state of a member, either after a fault when a
backup member of an object group is promoted to the primary member, or alternati
when a new member is introduced into an object group. The Recovery Mechanism
processes the log and applies messages from the log to the member to bring that
member to the correct current state, so that it can start to process messages norm
as shown in Figure 23-12 on page 23-83.

The messages in the log are not necessarily in the order required for recovery. Th
Recovery Mechanism processes the log, discarding irrelevant messages to form a
complete log. A complete log for an object group contains:

• The most recent complete state in the log. Prior complete states are ignored and
be discarded from the log. Subsequent incomplete states are ignored but are ret
in the log so that they can be completed.

• All complete updates that occur after the most recent complete state. Complete
updates that occur prior to the most recent complete state are ignored and can
discarded from the log. Subsequent incomplete updates are ignored but are reta
in the log so that they can be completed.
23-82 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

lete

he
and
ject
Figure 23-12Operation of the Logging and Recovery Mechanisms for a server object group
having the WARM_PASSIVE ReplicationStyle, during normal operation, during
the recording of a checkpoint, and during recovery

• All request and reply messages that occur in the log after the most recent comp
state and after the most recent complete update, if present. Request and reply
messages are ignored and can be discarded from the log if they occur before t
complete state or complete update and if they are not the most recent request
reply messages in the sequence of request and reply messages for a client ob
group’s invocations of this object group.

ORB ORB ORB

Client Object Server Replica Server Replica

C S1 S2

Host
H1

Host
H3

Host
H2

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

set_state()
Apply GIOP
messages

New
Primary

ORB ORB ORB

Client Object Server Replica Server Replica

C S1 S2

Host
H1

Host
H3

Host
H2

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

get_
state()
and reply

Primary Backup

ORB ORB ORB

Client Object

C S1 S2

Host
H1

Host
H3

Host
H2

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Message
Handling
Mechanism

Logging &
Recovery

Mechanism

Primary Backup

Server Replica Server Replica
July 2002 CORBA, v3.0: Logging & Recovery Management 23-83

23

of

dy
plies

te or

alue
al

state

ilover

s for

us
most

f

For a backup member of an object group with theCOLD_PASSIVE
ReplicationStyle that is being promoted to primary member, or for a new member
an object group with theACTIVE ReplicationStyle , the Recovery Mechanism must
apply the entire complete log to the member.

For a backup member of an object group with theWARM_PASSIVE
ReplicationStyle that is being promoted to primary member, the member has alrea
received states and updates during normal operation. The Recovery Mechanism ap
to the member, only messages in the complete log that follow the most recent sta
update applied to the member during normal operation.

For a new backup member of an object group with theWARM_PASSIVE
ReplicationStyle , the Recovery Mechanism applies only the state and update
messages in the complete log to the member.

23.5.4 Checkpointable and Updateable Interfaces

An application object inherits theCheckpointable interface, which provides
get_state() andset_state() operations, to enable the Logging and Recovery
Mechanisms to record and restore its state. The Logging Mechanism obtains the v
of theCheckpointInterval from the Property Manager, which determines the interv
between successive invocations of theget_state() operation.

An application object may also inherit theUpdateable interface, which provides
get_update() andset_update() operations, to enable the Logging and Recovery
Mechanisms to record and restore updates. An update is the set of changes in the
of an object since the most recent invocation ofget_state() or get_update() .

The Logging Mechanism invokes theget_state() operation on a member of an object
group to obtain its state. In addition, for theWARM_PASSIVE ReplicationStyle ,
the Logging Mechanism invokes theget_state() operation on the primary member to
obtain the state needed to update the backup members in order to speed up the fa
process in case the primary fails. The Recovery Mechanism invokes theset_state()
operation on the new or recovering member of the object group, and on the backup
the WARM_PASSIVE ReplicationStyle .

The Logging Mechanism invokes theget_update() operation on a member of an
object group to obtain data that represents the change (delta) between the previo
state and the current state. The “previous” state is the state at the moment of the
recent invocation ofget_state() or get_update() . The state of the backup is typically
updated using the most recent state plus the following updates. The Recovery
Mechanism invokes theset_update() operation on the new or recovering member o
the object group, and on the backups for theWARM_PASSIVE ReplicationStyle .

module FT {
typedef sequence<octet> State;

exception NoStateAvailable {};
exception InvalidState {};
exception NoUpdateAvailable {};
exception InvalidUpdate {}; get_update
23-84 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
interface Checkpointable {
State get_state()

raises(NoStateAvailable);

void set_state(in State s)
raises(InvalidState);

};

interface Updateable : Checkpointable {
State get_update()

raises(NoUpdateAvailable);

void set_update(in State s)
raises(InvalidUpdate);

};
};

23.5.4.1 Identifiers

typedef sequence<octet> State;

The state or partial state (update) of an object.

23.5.4.2 Exceptions

NoStateAvailable {} This exception is thrown if the state of the object is
not available.

InvalidState {}; This exception is thrown if the state being supplied
to the object is not a valid state for the object. The
Fault Tolerance Infrastructure then assumes that the
object has failed.

NoUpdateAvailable {}; This exception is thrown if an update for the object
is not available.

InvalidUpdate {}; This exception is thrown if the update being supplied
to the object is not a valid update for the object. The
Fault Tolerance Infrastructure then assumes that the
object has failed.
July 2002 CORBA, v3.0: Logging & Recovery Management 23-85

23

e

ult

.

es
23.5.4.3 Operations

get_state

This operation obtains the state of the application object on which it is invoked. Th
operation is invoked by the Logging Mechanism. TheCheckpointInterval obtained
from the Property Manager determines the interval between invocations of
get_state() .

When the Logging Mechanism invokesget_state() , the application object returns the
state. For each retrieval of a state, the Logging Mechanism invokesget_state() only
once, and the state that is returned is the state at the timeget_state() is invoked.

State get_state()
raises(NoStateAvailable);

Return Value

The state of the application object on which the operation is invoked.

Raises

NoStateAvailable if the state is not available.

set_state

This operation sets the state of the application object on which it is invoked. The
operation is invoked by the Recovery Mechanism. When the Recovery Mechanism
invokesset_state() , it transfers the state to the application object.

void set_state(in State s)
raises(InvalidState);

Parameters

Raises

InvalidState if the parameter s is not a valid state. If the exception is raised, the Fa
Tolerance Infrastructure assumes that the application object has failed.

get_update

This operation obtains an update from the application object on which it is invoked
The get_update() operation is invoked by the Logging Mechanism.

When the the Logging Mechanism invokesget_update() , the application object
returns the update. For each retrieval of an update, the Logging Mechanism invok
get_update() only once, and the update that is returned is the update at the time
get_update() is invoked.

s The state to be used to set the state of the application object on
which the operation is invoked.
23-86 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

e

ture

ry
State get_update()
raises(NoUpdateAvailable);

Return Value

An update for the application object on which the operation is invoked.

Exception

NoUpdateAvailable if an update is not available.

23.5.4.4 set_update

This method applies an update to the application object on which it is invoked. Th
operation is invoked by the Recovery Mechanism. When the Recovery Mechanism
invokesset_update() , it transfers the update to the application object.

void set_update(in State s)
raises(InvalidUpdate);

Parameters

Exception

InvalidUpdate if the parameter s is not a valid update.

23.5.5 Use Case

23.5.5.1 Infrastructure-Controlled Consistency Style

For theCOLD_PASSIVE ReplicationStyle and thePULL FaultMonitoringStyle ,
the interactions between the various components of the Fault Tolerance Infrastruc
are typically as follows:

1. The Pull Monitor invokesis_alive() on the primary member of the object group
and the primary responds.

2. The primary fails.

3. The Pull Monitor invokesis_alive() on the primary member of the object group
and the primary does not respond.

4. The Pull Monitor incurs a timeout and reports to the Fault Notifier that the prima
is faulty.

5. The Fault Notifier notifies the Replication Manager that the primary is faulty.

s The update to be applied to the application object on which the
operation is invoked. If the exception is raised, the Fault Tolerance
Infrastructure assumes that the application object has failed.
July 2002 CORBA, v3.0: Logging & Recovery Management 23-87

23

nd

the

the

ges.

s

ion
6. The Replication Manager determines the object group containing the primary, a
the Replication Style of the object group.

7. The Replication Manager invokes the Fault Tolerance Infrastructure to remove
failed primary from the object group.

8. If the number of members of the object group is now less than the minimum
number of replicas for this object group, the Replication Manager initiates the
creation of a new member of the object group.

9. If the backup is not yet loaded, the Replication Manager invokes an operation of
Fault Tolerance Infrastructure to load the backup.

10. The Replication Manager then invokes an operation of the Fault Tolerance
Infrastructure to set the new primary for the object group.

11. The Replication Manager invokes an operation of the Recovery Mechanism to
activate the new primary.

12. The Recovery Mechanism accesses the log and extracts the most recent state
message for the previous primary and the subsequent request and reply messa

13. The Recovery Mechanism invokesset_state() from the request and reply message
on the new primary.

14. The Recovery Mechanism returns a reply to the Replication Manager’s invocat
of activate.

15. The Replication Manager invokes the Pull Monitor to start monitoring the new
primary.

23.6 Consolidated IDL

23.6.1 OMG IDL

#ifndef _FT_IDL_
#define _FT_IDL_

import ::TimeBase;
import ::CosNaming;
import ::CosEventComm;
import ::CosNotification;
import ::IOP;
import ::GIOP;
import ::CORBA;

#pragma prefix “omg.org”

module FT {
typeprefix FT “omg.org”;
// Specification for Interoperable Object Group References
23-88 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
typedef string FTDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;

struct TagFTGroupTaggedComponent { // tag = TAG_FT_GROUP;
GIOP::Version version;
FTDomainId ft_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};

struct TagFTPrimaryTaggedComponent { // tag = TAG_FT_PRIMARY;
boolean primary;

};

// Specification for Most Recent Object Group Reference
struct FTGroupVersionServiceContext { //context_id = FT_GROUP_VERSION;

ObjectGroupRefVersion object_group_ref_version;
};

// Specification for Transparent Reinvocation
const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;

struct FTRequestServiceContext { // context_id = FT_REQUEST;
string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};

interface RequestDurationPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT request_duration_value;

};

// Specification for Transport Heartbeats
const CORBA::PolicyType HEARTBEAT_POLICY = 48;
const CORBA::PolicyType HEARTBEAT_ENABLED_POLICY = 49;

struct TagFTHeartbeatEnabledTaggedComponent {
// tag = TAG_FT_HEARTBEAT_ENABLED;
boolean heartbeat_enabled;
};

struct HeartbeatPolicyValue {
boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;
};
interface HeartbeatPolicy : CORBA::Policy {

readonly attribute HeartbeatPolicyValue heartbeat_policy_value;
};
July 2002 CORBA, v3.0: Consolidated IDL 23-89

23
interface HeartbeatEnabledPolicy : CORBA::Policy {
readonly attribute boolean heartbeat_enabled_policy_value;

};

// Specification of Common Types and Exceptions for ReplicationManager
interface GenericFactory;
interface FaultNotifier;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;

typedef CosNaming::Name Name;
typedef any Value;
struct Property {

Name nam;
Value val;

};
typedef sequence<Property> Properties;

typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};
typedef sequence<FactoryInfo> FactoryInfos;

typedef unsigned short ReplicationStyleValue;
const ReplicationStyleValue STATELESS = 0;
const ReplicationStyleValue COLD_PASSIVE = 1;
const ReplicationStyleValue WARM_PASSIVE = 2;
const ReplicationStyleValue ACTIVE = 3;
const ReplicationStyleValue ACTIVE_WITH_VOTING = 4;

typedef unsigned short MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

typedef unsigned short ConsistencyStyleValue;
const ConsistencyStyleValue CONS_APP_CTRL = 0;
const ConsistencyStyleValue CONS_INF_CTRL = 1;

typedef unsigned short FaultMonitoringStyleValue;
const FaultMonitoringStyleValue PULL = 0;
const FaultMonitoringStyleValue PUSH = 1;
const FaultMonitoringStyleValue NOT_MONITORED = 2;

typedef unsigned short FaultMonitoringGranularityValue;
23-90 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
const FaultMonitoringGranularityValue MEMB = 0;
const FaultMonitoringGranularityValue LOC = 1;
const FaultMonitoringGranularityValue LOC_AND_TYPE = 2;

typedef FactoryInfos FactoriesValue;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

struct FaultMonitoringIntervalAndTimeoutValue {
TimeBase::TimeT monitoring_interval;
TimeBase::TimeT timeout;

};

typedef TimeBase::TimeT CheckpointIntervalValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception PrimaryNotSet {};
exception UnsupportedProperty {

Name nam;
Value val;

};
exception InvalidProperty {

Name nam;
Value val;

};
exception NoFactory

Location the_location;
TypeId type_id;

};
exception InvalidCriteria {

Criteria invalid_criteria;
};
exception CannotMeetCriteria {
Criteria unmet_criteria;
};

// Specification of PropertyManager Interface
// which ReplicationManager Inherits
interface PropertyManager {

void set_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);
Properties get_default_properties();
July 2002 CORBA, v3.0: Consolidated IDL 23-91

23
void remove_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

void set_type_properties(in TypeId type_id,
in Properties overrides)

raises (InvalidProperty,
UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties(in TypeId type_id,
in Properties props)

raises (InvalidProperty,
UnsupportedProperty);

void set_properties_dynamically(in ObjectGroup object_group,
in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

};

// Specification of ObjectGroupManager Interface
// which ReplicationManager Inherits
interface ObjectGroupManager {

ObjectGroup create_member(in ObjectGroup object_group,
in Location the_location,
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,:
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
23-92 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
MemberNotFound);

ObjectGroup set_primary_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound,
PrimaryNotSet,
BadReplicationStyle);

Locations locations_of_members(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Object get_member_ref(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound,
MemberNotFound);

};

// Specification of GenericFactory Interface
// which ReplicationManager Inherits and Application Objects Implement
interface GenericFactory {

typedef any FactoryCreationId;

Object create_object(in TypeId type_id,
in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

void delete_object(in FactoryCreationId factory_creation_id)
raises (ObjectNotFound);

};

// Specification of ReplicationManager Interface
interface ReplicationManager : PropertyManager, ObjectGroupManager,

GenericFactory {
void register_fault_notifier(in FaultNotifier fault_notifier);

FaultNotifier get_fault_notifier()
raises (InterfaceNotFound);

};
July 2002 CORBA, v3.0: Consolidated IDL 23-93

23
// Specifications for Fault Management
// Specification of PullMonitorable Interface
// which Application Objects Inherit
interface PullMonitorable {

boolean is_alive();
};

// Specification of FaultNotifier Interface
interface FaultNotifier {

typedef unsigned long long ConsumerId;

void push_structured_fault(
in CosNotification::StructuredEvent event);

void push_sequence_fault(
in CosNotification::EventBatch events);

ConsumerId connect_structured_fault_consumer(
in CosNotifyComm::StructuredPushConsumer push_consumer);

ConsumerId connect_sequence_fault_consumer(
in CosNotifyComm::SequencePushConsumer push_consumer);

void disconnect_consumer(in ConsumerId connection)
raises(CosEventComm::Disconnected);

void replace_constraint(in ConsumerId connection,
in CosNotification::EventTypeSeq event_types,
in string constr_expr);

};

// Specifications for Logging and Recovery
typedef sequence<octet> State;

exception NoStateAvailable {};
exception InvalidState {};
exception NoUpdateAvailable {};
exception InvalidUpdate {};

// Specification of Checkpointable Interface
// which Updateable and Application Objects Inherit
interface Checkpointable {

State get_state()
raises(NoStateAvailable);

void set_state(in State s)
raises(InvalidState);

};

// Specification of Updateable Interface
// which Application Objects Inherit
23-94 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
interface Updateable : Checkpointable {
State get_update()

raises(NoUpdateAvailable);

void set_update(in State s)
raises(InvalidUpdate);

};
};
#endif // for #ifndef _FT_IDL
July 2002 CORBA, v3.0: Consolidated IDL 23-95

23
Appendix A Glossary

A.1 List of Terms

Active Replication All of the members of an object group independently
execute the methods invoked on the object, so that if a
fault prevents one replica from operating correctly, the
other replicas will produce the required results without
the delay incurred by recovery.

Active Replication with Voting Active replication where the requests (replies) from the
members of a client (server) object group are voted, and
are delivered to the members of the server (client) object
group only if a majority of the requests (replies) are
identical.

Application-Controlled Consistency A ConsistencyStyle in which the application is
responsible for checkpointing, logging, activation and
recovery, and for maintaining whatever kind of
consistency is appropriate for the application.

Application-Controlled Membership A MembershipStyle in which the application, or an
application-level manager, can create a member of the
object group and then invoke theadd_member()
operation of theObjectGroupManager interface to
cause the Replication Manager to add the member to the
group. Alternatively, the application can invoke the
create_member() operation of the
ObjectGroupManager interface to cause the
Replication Manager to create the member and add it to
the object group. The application is responsible for
enforcing theInitialNumberReplicas and
MinimumNumberReplicas properties.

Backup Member In passive replication, a member of an object group that
does not execute the methods invoked on the object
group but is available to assume the role of the primary
member in the event of a fault.

Byzantine Fault A form of commission fault that occurs when an object
or host generates incorrect results maliciously.
23-96 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

.
e

Causal Order Causal order ensures that if a multicast message m1
could have caused, possibly indirectly, a message m2
then no object receives m2 before it receives m1. The
causally precedesrelation is the transitive closure of:
• If message m1 is delivered to object replica O before

O sends message m2, then m1 causally precedes m2
• If object replica O sends message m1 before messag

m2, then m1 causally precedes m2.
• If both m1 and m2 are delivered to object replica O,

and m1 causally precedes m2, then m1 is delivered to
O before m2.

Checkpoint A snapshot of the state of an object.

Checkpoint Interval An interval of time (in seconds and nanoseconds)
between writing the full state of an object to a log.

Cold Passive Replication A form of passive replication in which only one replica,
the primary replica, in the object group executes the
methods invoked on the object. The state of the primary
replica is extracted from the log and is loaded into the
backup replica when needed for recovery.

Commission Fault A commission fault occurs when an object or host
generates incorrect results. Commission faults must be
handled by active replication with majority voting.

ConsistencyStyle The value of the ConsistencyStyle is either
CONS_INF_CTRL or CONS_APP_CTRL .

Distributed Logging A logging strategy in which a co-located log is
maintained for each replica of an object.

Duplicates Duplicate requests and duplicate replies can arise in
active replication and in passive replication when the
primary fails and a new primary is introduced. To
maintain exactly once semantics and strong replica
consistency, the Fault Tolerance Infrastructure provides
mechanisms to detect and suppress duplicates.

Failure A failure is the event of a system’s generating a result
that does not satisfy the system specification or not
generating a result that is required by the system
specification. A failure is defined by the system
specification, without reference to any enclosing system
of which the system is a component.

Fault A fault is behavior of a component of a system that
causes incorrect behavior of the system. A fault is the
external manifestation of a failure of the component.
July 2002 CORBA, v3.0: List of Terms 23-97

23

s.
Fault Analyzer A component of the Fault Tolerance Infrastructure that
registers for fault notifications and aggregates multiple
related fault notifications into a single fault report.

Fault Containment Region One or more locations that can be affected by a single
fault. Each member of an object group is assigned to a
different fault containment region to ensure that, if one
member incurs a fault, the other members are not
affected.

Fault Monitor A component of the system, also known as a Fault
Detector, that monitors the occurrence of faults in other
entities, such as objects, hosts, processes, and network
Fault detectors are typically based on timeouts and are
unreliable (inaccurate) because they cannot determine
whether an entity has failed or is merely slow.

FaultMonitoringGranularity The value of theFaultMonitoringGranularity of an
object group is eitherMEMB, LOC, or
LOC_AND_TYPE . TheFaultMonitoringGranularity
provides a means of scalably monitoring the members of
many object groups.

FaultMonitoringIntervalAndTimeout The value of the
FaultMonitoringIntervalAndTimeout is a structure
that contains an interval of time between successive
pings of an object, and the time allowed for subsequent
responses from the object to determine whether it is
faulty.

FaultMonitoringStyle The value of theFaultMonitoringStyle is eitherPULL ,
PUSH, or NOT_MONITORED.

Fault Tolerance The ability to provide continuous service, unperturbed by
the presence of faults. In contrast, with high availability,
existing operations can be disrupted by a fault but
subsequent new operations, or retired existing
operations, are serviced.

Fault Tolerance Domain For scalability, large applications are divided into
multiple fault tolerance domains, each managed by a
single Replication Manager. The members of an object
group are located within a single fault tolerance domain
but can invoke, or can be invoked by, objects of other
fault tolerance domains. A host can support objects from
multiple fault tolerance domains.

Fault Transparency A server object group is fault transparent to a client
object if, in the presence of a faulty server replica, the
server object group interacts with the client object as if
there were no faults.
23-98 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23
Gateway A gateway provides access into a fault tolerance domain
for objects outside that domain, and provides protocol
conversion between the IIOP protocol used outside the
fault tolerance domain and the group communication
protocol used inside that domain.

GenericFactory An interface of the Replication Manager that creates
object groups, as well as individual members of object
groups.

Group Communication Protocol A protocol that provides communication between object
groups, typically multicasting, reliable delivery, causal
ordering, total ordering, group membership, and virtual
synchrony.

Group Membership The set of members of a group, which may change
dynamically in time, as members fail and are removed
from the group and as new and recovered members are
added.

FT_GROUP_VERSION Service
Context

A service context, included in a request message, that
allows a server to determine whether the client is using
an obstacle object group reference and, if so, to return a
LOCATION_FORWARD_PERM response that
contains the most recent object reference for the server
object group.

HEARTBEAT_POLICY A client-side policy that allows a client to request
heartbeating to determine that its connection to a server
has failed.

HEARTBEAT_ENABLED_POLICY A server-side policy that allows a client to determine that
its connection to a server has failed.

Incremental State Transfer A form of state transfer that is used for transferring large
states of an object in fragments.

Infrastructure-Controlled
Consistency

A ConsistencyStyle in which the Fault Tolerance
Infrastructure is responsible for checkpointing, logging,
activation and recovery and for maintaining Strong
Replica Consistency.

Infrastructure-Controlled
Membership

A MembershipStyle in which the application directs
the Replication Manager to create the object group and
the Replication Manager invokes the individual factories,
for the appropriate locations, to create the members of
the object group both initially to satisfy the
InitialReplicas property and after the loss of a member
because of a fault to satisfy the
MinimumNumberReplicas property.
July 2002 CORBA, v3.0: List of Terms 23-99

23

t

o

s

l

f

n

InitialNumberReplicas The InitialNumberReplicas property of an object
group specifies the number of replicas of the object to be
created when the object group is first created.

Location A set of hosts that form a single fault containment
region. Members of object groups are created at differen
locations.

Log A record of messages and object states that is created t
ensure that recovery is possible after a fault.

LoggingMechanism A component of the Fault Tolerance Infrastructure that
records all of the actions of an object group in a log.

MembershipStyle The value of theMembershipStyle of an object group
is eitherMEMB_INF_CTRL or MEMB_APP_CTRL .

Membership Handling Mechanism A component of the Fault Tolerance Infrastructure that
ensures that GIOP messages addressed to object group
are delivered to the appropriate members of those
groups. It detects and suppresses duplicate messages,
passes messages to the Logging Mechanism to put into
the log, and applies to the objects messages that the
Recovery Mechanism has retrieved from the log.

MinimumNumberReplicas The MinimumNumberReplicas property of an object
group specifies the smallest number of replicas of the
object needed to maintain the desired fault tolerance. The
application or the Replication Manager creates additiona
replicas of the object to ensure that the number of
replicas does not fall below the specified minimum
number.

Multicasting For replicated client and server objects, messages are
originated by a client (server) within a client (server)
object group and are multicast to the client and server
object groups. Messages are delivered to the members o
both the client and server object groups to facilitate the
detection and suppression of duplicates.

Object Group A set of member objects, each of which implements the
same set of interfaces and has the same implementatio
code.

ObjectGroupManager An interface of the Replication Manager that contains
operations for creating a member of an object group at a
particular location, adding a member to an object group
at a particular location, removing a member from an
object group at a particular location, getting the locations
of the members of an object group, and setting the
primary member of a passively replicated object group.
23-100 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

.

Object Group Reference An interoperable object reference that contains multiple
TAG_INTERNET_IOP profiles that represent primary
and backup members of a passively replicated object
group or that represent gateways. All of the
TAG_INTERNET_IOP profiles contain a
TAG_FT_GROUP component that contains the fault
tolerance domain identifier, object group identifier, and
object group reference version number for the server
object group. If the profiles are those of members of a
passively replicated server object group, then one of the
profiles contains theTAG_FT_PRIMARY component
for the profile that addresses the primary member of the
server object group.

Passive Replication Only the primary member of an object group executes
the methods that have been invoked on the object group
The object group contains additional backup replicas.

Primary Member In passive replication, the member of an object group
that executes the methods invoked on the object group.

Property Manager An interface of the Replication Manager that contains
operations for setting and getting the fault tolerance
properties.

Pull Monitor A Fault Monitor that interrogates the monitored object
periodically to determine whether it is alive.

Push Monitor A Fault Monitor to which the monitored object
periodically reports that it is alive.

Recovery The restoration of the state of a member of an object
group so that it can continue the operation of the object
group.

Recovery Mechanism A component of the Fault Tolerance Infrastructure that
sets the state of a member of an object group, either
when a backup member is promoted to be the primary
member after a fault occurs, or alternatively when a new
member is introduced into the group.

Reliable Delivery Every message addressed to a group, or originated by a
group, is delivered to every member of the group, except
for members suspected of being faulty.

Replica Determinism Replica determinism requires that two or more members
of an object group, when presented with the same
sequence of requests and replies, behave in exactly the
same manner.

Replication The fundamental technique used in building fault-
tolerant systems.
July 2002 CORBA, v3.0: List of Terms 23-101

23

d

ts

e

r

Replication Manager A component of the Fault Tolerance Infrastructure that
provides access to the Fault Notifier and that inherits
three interfaces.PropertyManager , GenericFactory
andObjectGroupManager . Logically, there is one
Replication Manager per fault tolerance domain. The
Replication Manager interacts with the Fault Monitors
and Fault Notifier, and with the Logging and Recovery
Mechanisms of the Fault Tolerance Infrastructure.

ReplicationStyle The value of the ReplicationStyle of an object group is
eitherSTATELESS , COLD_PASSIVE ,
WARM_PASSIVE , ACTIVE, or
ACTIVE_WITH_VOTING.

Replication Transparency A client object is unaware that it is interacting with a
group of server objects, but rather ‘‘thinks’’ that it is
interacting with an individual server object.

Repository Identifier The identifier of a type within the Interface Repository.

REQUEST_DURATION_POLICY A client-side policy that defines the time interval over
which a client’s request to a server remains valid and
should be retained by the server ORB to detect repeate
requests.

FT_REQUEST Service Context A service context, included in a request message, that
allows a server to detect and suppress duplicate reques
and to garbage collect requests that are obsolete.

Shared Logging A logging strategy in which the primary member of an
object group logs its state by writing the log records onto
stable storage.

State Transfer In both passive and active replication, when a new or
recovered member of an object group is activated, a stat
transfer is required to transfer the state of the object to
the new or recovered member, so that the new or
recovered member will have the same state as the othe
members of the object group.

Stateless Object The behavior of a stateless object is unaffected by its
history of invocations. A typical example of a stateless
object is a server that provides read-only access to a
database.

Strong Membership Consistency Strong Membership Consistency means that, for each
method invocation on an object group, the Fault
Tolerance Infrastructure on all hosts agree on the
membership of the object group.
23-102 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

e

t

t

Strong Replica Consistency For passive replication, Strong Replica Consistency
means that, at the end of each state transfer, each of th
members of the object group have the same state. For
active replication, Strong Replica Consistency means
that, at the end of each method invocation on the object
group, each of the members of the object group have the
same state.

TAG_FT_GROUP Component A component of all of the profiles of the Object Group
Reference that contains the fault tolerance domain
identifier, object group identifier, and object group
reference version number of the server object group with
that reference.

TAG_FT_HEARTBEAT_ENABLED
Component

A component of aTAG_INTERNET_IOP profile of an
object group reference that indicates that a member of a
server object group, or gateway, is heartbeat enabled.

TAG_FT_PRIMARY Component A component of one of theTAG_INTERNET_IOP
profiles of an object group reference that is intended to
address the primary member of the object group, and tha
indicates that thisTAG_INTERNET_IOP profile should
be used in preference to otherTAG_INTERNET_IOP
profiles within the object group reference.

Total Order The ordered beforerelation is the transitive closure of:
• If message m1 is delivered to object replica O before

message m2 is delivered to O, then m1 is ordered
before m2.

• If message m1 precedes message m2, then m1 is
ordered before m2.

• If both m1 and m2 are delivered to object replica O,
and m1 is ordered before m2, then m1 is delivered to
O before m2 is delivered to O.

The ordered before relation is acyclic.

Unique Primary Replica For passive replication, one and only one member of the
object group executes the methods invoked on the objec
group.
July 2002 CORBA, v3.0: List of Terms 23-103

23

r

f

Unreplicated Client Object An unreplicated client object communicates with a
replicated server object using IIOP. The client may
communicate directly with a member of the server object
group or, if multicasting is provided, the client may
communicate with a gateway, which then multicasts the
message to the server object group.

Virtual Synchrony If object replicas O1 and O2 are in the same view of the
object group membership M and they transition together
to the next view of the object group membership M’,
then the same messages are delivered to O1 and O2
while they are members of M. Virtual synchrony is used
to ensure that a state transfer to initialize a new membe
of object group membership M occurs at the point in the
message order corresponding to a membership change.
Thus, at the start of the next view of the object group
membership M’, all of the members in M’ will have the
same state.

Warm Passive Replication A form of passive replication in which only the primary
member executes the methods invoked on the object
group by the client objects. Several other members
operate as backups. The backups do not execute the
methods invoked on the object group; rather, the state o
the primary is transferred to the backups periodically.
23-104 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

23

tics

tics
Appendix B Compliance

B.1 Compliance Points

B.1.1 Fault Tolerant CORBA Passive Replication Compliance Point

This compliance point requires support of all specifications defined previously.
However, the implementation of these specifications need only support the seman
for the STATELESS , COLD_PASSIVE , andWARM_PASSIVE values of the
ReplicationStyle property.

B.1.2 Fault Tolerant CORBA Active Replication Compliance Point

This compliance point requires support of all specifications defined previously.
However, the implementation of these specifications need only support the seman
for the STATELESS andACTIVE values of theReplicationStyle property.
July 2002 CORBA, v3.0: Compliance Points 23-105

23
23-106 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Secure Interoperability 24
se

text
ased
er
ge
This chapter defines the CORBA Security Attribute Service (SAS) protocol and its u
within the CSIv2 architecture to address the requirements of CORBA security for
interoperable authentication, delegation, and privileges.

Contents

This chapter contains the following sections.

24.1 Overview

The SAS protocol is designed to exchange its protocol elements in the service con
of GIOP request and reply messages that are communicated over a connection-b
transport. The protocol is intended to be used in environments where transport lay
security, such as that available via SSL/TLS or SECIOP, is used to provide messa

Section Title Page

“Overview” 24-1

“Protocol Message Definitions” 24-4

“Security Attribute Service Protocol” 24-16

“Transport Security Mechanisms” 24-31

“Interoperable Object References” 24-32

“Conformance Levels” 24-45

“Sample Message Flows and Scenarios” 24-48

“References for this Chapter” 24-57

“IDL” 24-58
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 24-1

24

n.
hat
t.
l

t

ss

at
r

te to
n
r on
roxy
ume

en

SAS
t

te-
yed

e
y

t

protection (that is, integrity and or confidentiality) and server-to-client authenticatio
The protocol provides client authentication, delegation, and privilege functionality t
may be applied to overcome corresponding deficiencies in an underlying transpor1

The SAS protocol facilitates interoperability by serving as the higher-level protoco
under which secure transports may be unified.

The SAS protocol is divided into two layers:

• The authentication layer is used to perform client authentication where sufficien
authentication could not be accomplished in the transport.

• The attribute layer may be used by a client to push (that is, deliver) security
attributes (identity and privilege) to a target where they may be applied in acce
control decisions.

The attribute layer also provides a means for a client to assert identity attributes th
differ from the client’s authentication identity (as established in the transport and/o
SAS authentication layers). This identity assertion capability is the foundation of a
general-purpose impersonation mechanism that makes it possible for an intermedia
act on behalf of some identity other than itself. An intermediate’s authority to act o
behalf of another identity may be based on trust by the target in the intermediate, o
trust by the target in a privilege authority that endorses the intermediate to act as p
for the asserted identity. Identity assertion may be used by an intermediate to ass
the identity of its callers in its calls.

The SAS protocol is modeled after the Generic Security Service API (GSSAPI) tok
exchange paradigm. A client initiates a context exchange by including a protocol
element in the service context of its request that instructs the target to initiate a
security context. The target either rejects or accepts the context.2 When a target rejects
a context, the target will reject the request and return an exception that contains a
protocol element that identifies the reason the context was rejected. When a targe
accepts a context, the reply to the request will carry a SAS protocol element that
indicates that the context was accepted.

The SAS protocol element sent to initiate a security context carries layer-specific
security tokens as necessary to establish the SAS authentication-layer and attribu
layer functionality corresponding to the context. Standard token formats are emplo
to represent the layer-specific authentication and attribute tokens. If the context
includes SAS authentication-layer functionality, the protocol element will contain a
mechanism-specific GSSAPI initial context token that authenticates the client to th
target. If the context includes attribute-layer privilege attributes (and possibly prox

1. For example, the SSL/TLS protocol does not enforce client authentication. Moreover, in a
given environment, certificate-based client authentication may not be feasible because
clients often do not have a certificate.

2. In the GSSAPI protocol, a target can challenge a client for additional context-establishmen
information. This is not true of the SAS context protocol, which assumes that at most one
message in each direction may be used to establish a context.
24-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

ge
an

dard

rity

texts,
nced

n

input

tify

et.

AS
urity

exts

.

se
endorsements), they will be contained in an attribute certificate signed by a privile
authority and corresponding to the subject of the invocation. If the context includes
attribute-layer identity assertion, the asserted identity will be represented in a stan
name form corresponding to the technology domain of the asserted identity.

The SAS protocol supports the establishment of both transient and reusable secu
contexts. Transient contexts, also known as stateless contexts, exist only for the
duration of the GIOP request that was used to establish the context. Reusable con
also known as stateful contexts, endure until they are discarded, and can be refere
for use with subsequent requests. The SAS protocol includes a simple negotiation
protocol that defines a least-common-denominator form of interoperability betwee
implementations that support only transient contexts and those that support both
transient and reusable forms.

24.1.1 Assumptions

The SAS protocol was designed under the following assumptions:

• Secure interoperability is predicated on the use of a common transport-layer
security mechanism, such as that provided by SSL/TLS.3

• The transport layer provides message protection as necessary to protect GIOP
and output request arguments.

• The transport layer provides target-to-client authentication as necessary to iden
the target for the purpose of ensuring that the target is the intended target.

• Transport-layer security can ensure that the client does not have to issue a
preliminary request to establish a confidential association with the intended targ4

• To support clients that cannot authenticate using transport-layer security
mechanisms, the SAS protocol shall provide for client authentication above the
transport layer.

• To support the formation of security contexts using GIOP service context, the S
protocol shall require at most one message in each direction to establish a sec
context.

• The protocol shall support security contexts that exist only for the duration of a
single request/reply pair.

• The protocol shall support security contexts that can be reused for multiple
request/reply pairs.

• Targets cannot rely on clients to manage the lifecycle of reusable security cont
accepted by the target.

3. Transport security mechanisms include unprotected transports within trusted environments

4. This assumption does not preclude the use of such mechanisms, but rather sustains the u
of this protocol in environments where such mechanisms are not considered favorably.
July 2002 CORBA, v3.0: Overview 24-3

24

exts

s of

OP
• Clients that reuse security contexts shall be capable of processing replies that
indicate that the context has been discarded by the target.

Figure 24-1 CSIv2 Security Architecture

24.2 Protocol Message Definitions

24.2.1 The Security Attribute Service Context Element

This specification defines a new GIOP service context element type, the security
attribute service (SAS) element.

The SAS context element may be used to associate any or all of the following cont
with GIOP request and reply messages:

• Identity context, to be accepted based on trust

• Authorization context, including authorization-based delegation context

• Client authentication context

A new context_id has been defined for the SAS element.

const ServiceId SecurityAttributeService = 15;

The context_data of a SAS element is an encapsulation octet stream containing a
SAS message body marshalled according to the CDR encoding rules. The format
the SAS message bodies are defined in the next section.

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};

At most one instance of this new service context element may be included in a GI
request or reply.

Security Attribute Layer

Supplemental Client
Authentication Layer

Transport Layer

SAS Service

Message Protection
Target-to-Client Authentication

Client Authentication

Client Authentication

Identity Assertion
Pushed Privilege Attributes

Proxy Endorsement

Context Protocol

SSL/TLS or SECIOP
24-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

body

in

ed to

rded,

t is

are
SS

o the

s
.

ing

e
issue
24.2.2 SAS context_data Message Body Types

Four message types comprise the security attribute service context management
protocol. Each security attribute service context element shall contain a message
that carries one of the following message body types:

• EstablishContext

Sent by a client security service (CSS) to establish a security attribute service
context.

• ContextError

Sent by a target security service (TSS) to indicate errors that were encountered
context creation, in the message protocol, or in use of a context.

• CompleteEstablishContext

Sent by a target security service (TSS) to indicate the outcome of a successful
request to establish a security attribute service context.

• MessageInContext

Sent by a client security service (CSS) to associate request messages with an
existing stateful security attribute service context. This message may also be us
indicate that the context should be discarded after processing the request.

Stateful contexts, also known as reusable contexts, endure until they are disca
and can be referenced for use with subsequent requests.

A client security service (CSS) is the security service associated with the ORB tha
used by the client to invoke the target object. A target security service (TSS) is the
security service associated with the ORB that hosts the target object.

24.2.2.1 EstablishContext Message Format

An EstablishContext message is sent by a CSS to establish a SAS context with a
TSS. The SAS context and the context identifier allocated by the CSS to refer to it
scoped to the transport layer connection or association over which the CSS and T
are communicating. When an association is dismantled, all SAS contexts scoped t
connection shall be invalidated and may be discarded. TheEstablishContext
message contains the following fields:

• client_context_id

The CSS allocated identifier for the security attribute service context. A stateles
CSS shall set theclient_context_id to 0, indicating to the TSS that it is stateless
A stateful CSS may allocate a nonzero client_context_id. See Section 24.3.2.2,
“Stateful/Reusable Contexts,” on page 24-22 for a definition of the rules govern
the use and allocation of context identifiers.

• authorization_token

May be used by a CSS to “push” privilege information to a TSS. A CSS may us
this token to send proxy privileges to a TSS as a means to enable the target to
calls as the client.
July 2002 CORBA, v3.0: Protocol Message Definitions 24-5

24

y

g

r(s),

lient

nt.

this
TSS

an
t).
tion

l not

or

ert
e

hall
the
• identity_token

Carries a representation of the invocation identity for the call (that is, the identit
under which the call is to be authorized). Theidentity_token carries a
representation of the invocation identity in one of the following forms:

• A typed mechanism-specific representation of a principal name

• A chain of identity certificates representing the subject and a chain of verifyin
authorities

• A distinguished name

• The anonymous principal identity (a type, not a name)

An identity_token is used to assert a caller identity when that identity differs from
the identity proven by authentication in the authentication layer(s). If the caller
identity is intended to be the same as that established in the authentication laye
then it does not need to be asserted in anidentity_token .

• client_authentication_token

Carries a mechanism-specific GSS initial context token that authenticates the c
to the TSS. It contains a mechanism type identifier and the mechanism-specific
evidence (that is, the authenticator) required by the TSS to authenticate the clie

When an initial context token contains private credentials, such as a password,
message may be safely sent only after a confidential connection with a trusted
has been established. The determination of when it is safe to send a client
authentication token in anEstablishContext message shall be considered in the
context of the CORBA location-binding paradigm for persistent objects (where
invocation may be “location forwarded” by a location daemon to the target objec
This issue is considered in Section 24.5.3, “Client-Side Requirements and Loca
Binding,” on page 24-44.

When a TSS is unable to validate a security attribute service context, the TSS shal
dispatch on the target object method invocation. The TSS shall reply with a
ContextError message that carries major and minor codes indicating the reason f
the failure.

If an EstablishContext message contains an identity token, then it is the
responsibility of the TSS to extract a principal identity from the identity token and
determine if the identity established in the authentication layer(s) is trusted to ass
the extracted identity. If so, the asserted identity is used as the caller identity in th
target’s authorization determination.

The processing of a request to establish a context that arrives on a one-way call s
be the same as an ordinary call, except that the TSS will not send an indication of
success (CompleteEstablishContext) or failure (ContextError) of the context
validation.
24-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

or.
der

text

SS
is

xt

he

xt is
TSS

shall
24.2.2.2 ContextError Message Format

A ContextError message is sent by a TSS in response to anEstablishContext or
MessageInContext message to indicate to the client that the TSS detected an err
Section 24.3.4, “CSS State Machine,” on page 24-27 defines the circumstances un
which a TSS returns specific error values and exceptions. TheContextError message
contains the following fields:

• client_context_id

The value of theclient_context_id that identifies the CSS context in the
EstablishContext or MessageInContext message in response to which the
ContextError is being returned.

• major_status

The reason the TSS rejected the context.

• minor_status

A more specific error code that further defines the reason for rejection in the con
of the major status.

• error_token

A GSS mechanism-specific error token. When anEstablishContext message is
rejected because it contains aclient_authentication_token (a GSS initial context
token) that is invalidated by the TSS, then depending on the mechanism, the T
may return a CDR encapsulation of a mechanism-specific GSS error token in th
field. Not all GSS mechanisms produce error tokens in response to initial conte
token validation failures.

In all circumstances where a TSS returns aContextError , the GIOP request that
carried the rejected SAS context shall not be dispatched by the target ORB.

24.2.2.3 CompleteEstablishContext Message Format

A CompleteEstablishContext message is sent by a TSS in response to an
EstablishContext message to indicate that the context was established. The
CompleteEstablishContext message contains the following fields:

• client_context_id

The CSS allocated identifier for the security attribute context. It is returned by t
target so that a stateful CSS can link this message to theEstablishContext
request. A TSS shall always return the value of theclient_context_id it received
in the EstablishContext message.

• context_stateful

The value returned by the TSS to indicate whether or not the established conte
stateful, and thus reusable. A stateless TSS shall always return false. A stateful
shall return true if the established context is reusable. Otherwise a stateful TSS
return false.
July 2002 CORBA, v3.0: Protocol Message Definitions 24-7

24

e
t
the

sms
ns

ame

with

o

quest
• final_context_token

The GSS mechanism-specific final context token that is returned by a TSS if th
client requests mutual authentication. When a TSS accepts an EstablishContex
message containing an initial context token that requires mutual authentication,
TSS shall return a mechanism-specific final context token. Not all GSS mechani
support mutual authentication, and thus not all responses to initial context toke
may include final (or output) context tokens.5

When aCompleteEstablishContext message contains afinal_context_token ,
the token shall be applied (withGSS_Init_sec_context) to the client-side GSS
state machine.

Two or more stateful SAS contexts are equivalent if they are established over the s
transport layer connection or association, have the same non-zeroclient_context_id
and have byte-equivalent identity, authorization, and authentication tokens.

A multithreaded CSS may issue multiple concurrent requests to establish (that is,
an EstablishContext message) an equivalent stateful SAS context.

A TSS shall not create a duplicate stateful SAS context in response to a request t
establish a context that is equivalent to an existing context.

A TSS shall return an exception containing aContextError service context element if
it receives a statefulEstablishContext message with aclient_context_id that
matches that of an existing context (established over the same transport layer
connection or association) and for which any of the security tokens arriving in the
message are not byte-equivalent to those recorded in the existing context. The re
shall also be rejected. The exception and error values to be returned are defined in
Section 24.3.4, “CSS State Machine,” on page 24-27.

5. SAS layer authentication capabilities are designed to authenticate client to server where
such authentication did not occur in the transport. The SAS protocol is predicated on server-
to-client authentication having occurred in the transport layer, and in advance of the request.
Server-to-client authentication in service context (which requires that the target return a
final_context_token) is not the typical use model for SAS layer authentication capabilities.
24-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

it has

shes
ose
p

f

s
TSS
an

r

24.2.2.4 MessageInContext Message Format

A MessageInContext message is used by a CSS that wishes to reuse an existing
context with a request. A CSS may also use this message to release context that
established with a stateful TSS. TheMessageInContext message contains the
following fields:

• client_context_id

The nonzero context identifier allocated by the client in theEstablishContext
message used to create the context.

• discard_context

A boolean value that indicates whether the CSS wishes the TSS to discard the
context after it processes the request. A value of true indicates that the CSS wi
the context to be discarded, a value of false, indicates that it does not. The purp
of the discard_context field is to allow a CSS to help a TSS manage the cleanu
of reusable contexts.6

Any request message may be used to carry aMessageInContext message to a target.
A TSS that receives aMessageInContext message shall complete the processing o
the request before it discards the context (ifdiscard_context is set to true).

A TSS may receive aMessageInContext message that refers to a context that doe
not exist at the TSS. This can occur either because the context never existed at the
or because it has been discarded by the TSS. In either case, the TSS shall return
exception containing aContextError service context element with major and minor

Table 24-1CompleteEstablishContext Message Semantics

client_context_id in
EstablishContext
Message

client_context_id in
CompleteEstablishContext
Message

context_stateful in
CompleteEstablishContext
Message

Semantic

0 0 False Client requested stateless context.

N != 0 N False TSS is stateless or TSS did not
choose to remember context. In
either case, if the client attempts to
reuse the context (via
MessageInContext) it should expect
to receive an error.

True Stateful TSS accepted reusable
context.

6.Stateful clients are under no obligation to manage TSS state, so their use of this message fo
that purpose is discretionary.
July 2002 CORBA, v3.0: Protocol Message Definitions 24-9

24

nd

ll

t

ne

ain.
g

error codes indicating that the referenced context does not exist. The exception a
error values to be returned are defined in Section 24.3.4, “CSS State Machine,” on
page 24-27.

The processing of aMessageInContext message that arrives on a one-way call sha
be the same as for an ordinary call, except that the TSS will not return a
ContextError when the referenced context does not exist.

24.2.3 Authorization Token Format

The authorization_token field of the EstablishContext message of the Security
Attribute Service context element is used to carry a sequence (0 or more) of typed
representations of authorization data. TheAuthorizationElementType defines the
contents and encoding of the contents ofthe_element field.

The high order 20-bits of eachAuthorizationElementType constant shall contain
the Vendor Minor Codeset ID (VMCID) of the organization that defined the elemen
type. The low order 12 bits shall contain the organization-scoped element type
identifier. The high-order 20 bits of all element types defined by the OMG shall
contain the VMCID allocated to the OMG (that is, 0x4F4D0).

Organizations must register their VMCIDs with the OMG before using them to defi
an AuthorizationElementType .

typedef unsigned long AuthorizationElementType;

typedef sequence <octet> AuthorizationElementContents;

struct AuthorizationElement {
AuthorizationElementType the_type;
AuthorizationElementContents the_element;

};

typedef sequence <AuthorizationElement> AuthorizationToken;

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

This specification has defined one element encoding type, an X509AttributeCertCh
For this type, the fieldthe_element contains an encapsulation octet stream containin
an ASN.1 type composed of an X.509AttributeCertificate and a sequence of 0 or
more X.509 Certificates. The corresponding ASN.1 definition appears below:

VerifyingCertChain ::= SEQUENCE OF Certificate

AttributeCertChain ::= SEQUENCE {
attributeCert AttributeCertificate,
certificateChain VerifyingCertChain,

}

24-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

on
f

s
t

t of

al

act
t

e

es

en.
The chain of identity certificates may be provided to certify the attribute certificate.
Each certificate in the chain shall directly certify the one preceding it. The first
certificate in the chain shall certify the attribute certificate. The ASN.1 representati
of Certificate shall be as defined in [IETF RFC 2459]. The ASN.1 representation o
AttributeCertificate shall be as defined in [IETF ID PKIXAC].

24.2.3.1 Extensions of the IETF AC Profile for CSIv2

The extensions field of the X.509 Attribute Certificates (AC) provides for the
association of additional attributes with the holder or subject of the AC.

Each extension includes anextnID (an object identifier), anextnValue (an octet
string), and acritical field (a boolean). TheextnID identifies the extension, and the
extnValue contains the value of the instance of the identified extension. Thecritical
field indicates whether a certificate-using system shall reject the certificate if it doe
not recognize the extension. If thecritical field is set to TRUE and the extension is no
recognized (by itsextnID), then the certificate shall be rejected. A non-critical
extension that is not recognized may be ignored.

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

}

[IETF ID PKIXAC] defines a profile for ACs that defines a collection of extensions
that may be used in ACs that conform to the profile. An AC that includes any subse
these extensions conforms to the profile. An AC that includes any other critical
extension does not conform to the profile. An AC that includes any other non-critic
extension conforms to the profile.

The CSIv2 AC profile adds the Proxy Info extension to the collection of extensions
defined by the IETF profile. This critical extension may be used to define who may
as proxy for the AC subject. Refer to [IETF ID PKIXAC] for the details of the forma
and semantics of the Proxy Info extension.

A TSS shall reject a security context that contains an authorization element of typ
X509AttributeCertChain that contains critical extensions or attributes not
recognized by the TSS. In this case, the TSS shall return aContextError service
context element containing major and minor error codes indicating the evidence is
invalid (that is, “Invalid evidence”) as defined in Section 24.3.5, “ContextError Valu
and Exceptions,” on page 24-30.

24.2.4 Client Authentication Token Format

A CSIv2 client authentication token is a mechanism-specific GSS initial context tok
It contains a mechanism type identifier (an object identifier) and the mechanism-
specific evidence (that is, the authenticator) required to authenticate the client.
July 2002 CORBA, v3.0: Protocol Message Definitions 24-11

24

al

text
loy
s

S to

ed by

that

al

3]
hall

ated
The following ASN.1 basic token definition describes the format of all GSSAPI initi
context tokens. The definition of the inner context tokens is mechanism-specific.

-- basic Token Format
[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType
-- MechType is an Object Identifier

innerContextToken ANY DEFINED BY thisMech
-- contents mechanism specific

};

The client authentication token has been designed to accommodate the initial con
token corresponding to any GSSAPI mechanism. Implementations are free to emp
GSSAPI mechanisms other than those required for conformance to CSIv2, such a
Kerberos.

The format of the mechanism OID in GSS initial context tokens is defined in [IETF
RFC 2743] Section 3.1, “Mechanism-Independent Token Format,” pp. 81-82.

24.2.4.1 Username Password GSS Mechanism (GSSUP)

This specification defines a GSSAPI mechanism to support the delivery of
authentication secrets above the transport such that they may be applied by a TS
authenticate clients at shared secret authentication systems.

The GSSUP mechanism assumes that transport layer security, such as that provid
SSL/TLS, will be used to achieve confidentiality and trust in server, such that the
contents of the initial context token do not have to be protected against exposures
occur as the result of networking.

The object identifier allocated for the GSSUP mechanism is defined as follows:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism (1) }

GSSUP Initial Context Token

For the GSSUP mechanism, only an inner context token corresponding to the initi
context token is defined.

The format of a GSSUP initial context token shall be as defined in [IETF RFC 274
Section 3.1, “Mechanism-Independent Token Format,” pp. 81-82. This GSSToken s
contain an ASN.1 tag followed by a token length, an authentication mechanism
identifier, and a CDR encapsulation containing a GSSUP inner context token as
defined by the typeGSSUP::InitialContextToken in Section 24.9.1, “Module
GSSUP - Username/Password GSSAPI Token Formats,” on page 24-58 (and repe
below).

// GSSUP::InitialContextToken

struct InitialContextToken {
CSI::UTF8String username;
24-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

SS

t of

is
ror

s

CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;

};

The target_name field of the GSSUP::InitialContextToken contains the name of
the authentication domain in which the client is authenticating. This field aids the T
in processing the authentication should the TSS support several authentication
domains. A CSS shall fill thetarget_name field of the
GSSUP::InitialContextToken with the contents of thetarget_name field of the
CSIIOP::AS_ContextSec structure of the chosen CSI mechanism.

The format of the name passed in theusername field depends on the authentication
domain. If the mechanism identifier of the target domain is GSSUP, then the forma
the username shall be a Scoped-Username (withname_value) as defined in “Scoped-
Username GSS Name Form” on page 24-15.

GSSUP Mechanism-Specific Error Token

The GSSUP mechanism-specific error token contains a GSSUP fatal error code.

typedef unsigned long ErrorCode;

// GSSUP Mechanism-Specific Error Token
struct ErrorToken {

ErrorCode error_code;
};

The following fatal error codes are defined by the GSSUP mechanism:

// The context validator has chosen not to reveal the GSSUP
// specific cause of the failure.
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

// The user identified in the username field of the
// GSSUP::InitialContextToken is unknown to the target.
const ErrorCode GSS_UP_S_G_NOUSER = 2;

// The password supplied in the GSSUP::InitialContextToken was
// incorrect.
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

// The target_name supplied in the GSSUP::InitialContextToken does
// not match a target_name in a mechanism definition of the target.
const ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

A TSS is under no obligation to return a GSSUP error token; however, returning th
token may facilitate the transition of the client-side GSS state machine through er
processing. Accordingly, a TSS may indicate that SAS context validation failed in
GSSUP client authentication by returning a GSSUP error token in a SAS
ContextError message. In this case, a TSS that chooses not to reveal specific
information as to the cause of the failed GSSUP authentication shall return a statu
value ofGSS_UP_S_G_UNSPECIFIED.
July 2002 CORBA, v3.0: Protocol Message Definitions 24-13

24

the

ty

e

tes
s

d

ng an
all

s or
his

dent

.501

in of
24.2.5 Identity Token Format

An identity token is used in anEstablishContext message to carry a “spoken for” or
asserted identity. The following table lists the five identity token types and defines
type of identity value that may be carried by each of the token types.

In addition to the identity token types described in the following table, the
IdentityTokenType as defined in Section 24.9.2, “Module CSI - Common Secure
Interoperability,” on page 24-59 provides for the definition of additional CSIv2 identi
token types through the default selector of theIdentityToken union type. Additional
standard identity token types shall only be defined by the OMG. All
IdentityTokenType constants shall be a power of 2.

Identity tokens of typeITTX509CertChain contain an ASN.1 encoding of a sequenc
of 1 or more X.509 certificates. The asserted identity may be extracted as a
distinguished name from the subject field of the first certificate. Subsequent certifica
shall directly certify the certificate they follow. The ASN.1 encoding of identity token
of this type is defined as follows:

CertificateChain ::= SEQUENCE SIZE (1..MAX) OF Certificate

Interpretation of identity tokens that carry a GSS mechanism-independent exporte
name object (that is, an identity token type ofITTPrincipalName) is dependent on
support for GSS mechanism-specific name manipulation functionality.

When a TSS rejects a request because it carries an identity token constructed usi
identity type or naming mechanism that is not supported by the target, the TSS sh
return aContextError service context element containing major and minor status
codes indicating the mechanism was invalid.

Asserting entities may choose to overcome limitations in a target’s supported
mechanisms by mapping GSS mechanism-specific identities to distinguished name
certificates. The specifics of such mapping mechanisms are outside the scope of t
specification.

Table 24-2Identity Token Types

IdentityTokenType
(Union Discriminator)

Meaning

ITTAbsent Identity token is absent; the message conveys no representation of identity assertion

ITTAnonymous Identity token is being used to assert a valueless representation of an unauthenticated caller

ITTPrincipalName Identity token contains an encapsulation octet stream containing a GSS mechanism-indepen
exported name object as defined in [IETF RFC 2743]

ITTDistinguishedName Identity token contains an encapsulation octet stream containing an ASN.1 encoding of an X
distinguished name

ITTX509CertChain Identity token contains an encapsulation octet stream containing an ASN.1 encoding of a cha
X.509 identity certificates
24-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

g
of
3].

an
ot be

ec”

that
ame
GSS Exported Name Object Form for GSSUP Mechanism

The mechanism OID within the exported name object shall be that of the GSSUP
mechanism.

{ iso-itu-t (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism (1) }

The name component within the exported name object shall be a contiguous strin
conforming to the syntax of the scoped-username GSS name form. The encoding
GSS mechanism-independent exported name objects is defined in [IETF RFC 274

Scoped-Username GSS Name Form

The scoped-username GSS name form is defined as follows, wherename_value and
name_scope contain a sequence of 1 or more UTF8 encoded characters.

scoped-username ::= name_value | name_value@name_scope |
@name_scope

The '@' character shall be used to delimitname_value from name_scope . All non-
delimiter instances of '@' and all non-quoting instances of '\' shall be quoted with
immediately-preceding '\'. Except for these cases, the quoting character, '\', shall n
emitted within a scoped-username.

The Object Identifier corresponding to the GSS scoped-username name form is:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) naming (2)
scoped-username(1) }

24.2.6 Principal Names and Distinguished Names

Principal names are carried inEstablishContext messages of the SAS protocol,
where they may appear in theidentity_token (the ITTPrincipalName discriminated
type of anIdentityTokenType) or in theclient_authentication_token , which is a
GSS initial context token.

Principal names are also present in the compound mechanisms defined within a
TAG_CSI_SEC_MECH_LIST tagged component within IORs. Thetarget_name
field of the AS_ContextSec structure may contain a sequence of principal names
corresponding to the authentication identities of the target (see “struct AS_ContextS
on page 24-39). A principal name may be used as one variant of the
ServiceSpecificName form used to identify one of theprivilege_authorities
within theSAS_ContextSec structure of a compound mechanism definition within a
target IOR (see “struct SAS_ContextSec” on page 24-40).

The principal names appearing in initial context tokens are in mechanism-specific;
is, internal form, and may be converted to GSS mechanism-independent exported n
object format; that is, an external form by calling a mechanism-specific
implementation ofGSS_Export_name . The inverse translation is performed by a
July 2002 CORBA, v3.0: Protocol Message Definitions 24-15

24

ific

ntity

rt

ames

ith
ocol
und

to

nt.

.

e

mechanism-specific implementation ofGSS_Import_name . A mechanism-specific
implementation ofGSS_Display_name allows its caller to convert an internal name
representation into a printable form with an associated mechanism type identifier.7

The principal names in identity tokens — those in thetarget_name field of
AS_ContextSec structures and those in theprivilege_authorities field of
SAS_ContextSec structures — are in external form (GSS_NT_ExportedName),
and may be converted to internal form by calling the appropriate mechanism-spec
GSS_import_name function.

Distinguished names may appear within an identity token, either as an asserted ide
or indirectly as the subject distinguished name within an asserted X.509 Identity
Certificate. Distinguished names may also be derived from the underlying transpo
authentication layer if client authentication is done using SSL certificates.
Distinguished names may also be used as a form of GeneralName in the GeneralN
variant of the ServiceSpecificName type. TheServiceSpecificName type is used to
identify privilege_authorities within the SAS_ContextSec structure of a
compound mechanism definition within a target IOR.

24.3 Security Attribute Service Protocol

24.3.1 Compound Mechanisms

The SAS protocol combines common authorization (security attribute) functionality
with client authentication functionality and is intended to be used in conjunction w
a transport-layer security mechanism, so that there may be as many as three prot
layers of security functionality. This section describes the semantics of the compo
security mechanisms that may be realized using this interoperability architecture.

The three protocol layers build on top of each other. The transport layer is at the
bottom. The client authentication functionality of the SAS protocol provides a way
layer additional client authentication functionality above the transport layer. The
common authorization functionality provides a way to layer security attribute
functionality above the authentication layers. Any or all of the layers may be abse

A target describes in its IORs the CSI compound security mechanisms it supports
Each mechanism defines a combination of layer-specific security functionality
supported by the target, as defined in Section 24.5.1.5,
“TAG_CSI_SEC_MECH_LIST,” on page 24-38.

The mechanisms a client uses to interact with a target shall be compatible with th
target’s capabilities and sufficient to satisfy its requirements.

7. As defined in “IETF RFC 2743” on page 24-58, “Generic Security Service Application
Program Interface Version 2, Update 1”, J. Linn, January 2000.
24-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

at
the

rget.

4.6,

We
.

t that

and

er a
t

r(s)

t by

he
24.3.1.1 Context Validation

A target indicates its requirements for client authentication in its IORs. The layers
which a CSS authenticates to a TSS shall satisfy the requirements established by
target (see the description in Section 24.5.1, “Target Security Configuration,” on
page 24-32). When a CSS attempts to authenticate with a TSS using the client
authentication functionality of the SAS context layer protocol (by including a
client_authentication_token in anEstablishContext message), the authentication
context established in the TSS will reflect the result of the service context
authentication (after having satisfied the target’s requirement for transport level
authentication, if any).

If the service context authentication fails, the following shall happen:

• The request shall be rejected, whether or not authentication is required by the ta

• An exception containing aContextError service context element shall be returned
to the CSS. TheContextError service context element shall contain major and
minor status codes indicating that client authentication failed.

If the request does not include aclient_authentication_token , the client
authentication identity is derived from the transport layer.

When a request includes an identity token, the TSS shall determine if the identity
established as the client authentication identity is trusted to assert the identity
represented in the identity token.

A TSS that does not support authorization-token-based delegation (see Section 2
“Conformance Levels,” on page 24-45) shall evaluate trust by applying the client
authentication identity and the asserted identity to trust rules stored at the target.
call the evaluation of trust based on rules of the target a backward trust evaluation

When a TSS that supports authorization-token-based delegation receives a reques
includes both an identity token and an authorization token with embedded proxy
attributes, the TSS shall evaluate trust by determining whether the proxy attributes
were established (that is, signed) by a privilege authority acceptable to the target
whether the client authentication identity is included in the identities named in the
proxy attributes. We call the evaluation of trust based on rules provided by the call
forward trust evaluation. A TSS shall not accept requests that failed a forward trus
evaluation based on a backward trust evaluation.

A TSS shall determine that a trusted identity established in the authentication laye
is trusted to assert exactly the same identity (in terms of identifier value and
identification mechanism) in an identity token.

In either case of forward or backward trust evaluation, if trust is established, the
context is considered correctly formed. Otherwise, the TSS shall reject the reques
returning an exception containing aContextError service context element. The
ContextError element shall contain major and minor status codes indicating that t
evidence was invalid.
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-17

24

the
ame
SS
n. A
uest

to
. A
uest
ity

on
ables
t
t 1.
n

o as
ct

of

ject 2
an
ted
by

lish

d

r

e

d by
he
tity
If a request includes an authorization token but does not include an identity token,
TSS shall ensure that the access identity named in the authorization token is the s
as the client authentication identity. If the request includes an identity token, the T
shall ensure that the access identity is the same as the identity in the identity toke
TSS that supports authorization-token-based privilege attributes shall reject any req
that does not satisfy this constraint and return an exception containing aContextError
service context element. TheContextError element shall contain major and minor
status codes indicating that the evidence was invalid.

When a request includes an authorization token, it is the responsibility of the TSS
determine if the target trusts the authorities that signed the privileges in the token
TSS that supports authorization-token-based privilege attributes shall reject any req
with an authorization token that contains privilege information signed by an author
that is not trusted by the target. In this case, the TSS shall return an exception
containing aContextError service context element. TheContextError element shall
contain major and minor status codes indicating that the evidence was invalid.

24.3.1.2 Legend for Request Principal Interpretations

This section serves as a key to the invocation scenarios represented in Table 24-3
page 24-19, Table 24-4 on page 24-20, and Table 24-5 on page 24-21. The three t
describe the interpretation of security context information arriving at a target objec
from a calling object, object 2, that may have been called by another object, objec
The authentication identity of object 2, as seen by the target object, may have bee
established in the transport layer, or the SAS context layer, or both. If the
authentication identity was established at the transport layer it is referred to as P2A. If
the authentication identity was established at the SAS context layer it is referred t
P2B. The authentication identity seen by object 2 when it is called by another obje
(that is, object 1) is referred to as P1, the authentication identity of object 1. No
distinction is made between the transport and SAS layer authentication identities
object 1 as seen by object 2. Object 1 may also call object 2 anonymously.

P1 is also used to represent a non-anonymous identity that may be asserted by ob
when it calls the target object. When object 2 calls the target object, it may include
asserted identity in the form of an identity token in its SAS layer context. The asser
identity may be the anonymous identity or, a non-anonymous identity (represented
P1). When object 2 asserts an identity to the target object, it may (or may not) estab
proof of its own identity by authenticating at either or both of the transport (P2A), or
SAS (P2B) layers. When the target object receives a request made with an asserte
identity, the target object will determine if it trusts the client authentication identity
(that of object 2, or P2) acting as proxy for the asserted identity (that of object 1, o
P1).

When object 2 asserts a non-anonymous identity to the target object, it may includ
with its request a SAS layer authorization token containing PACs. Each PAC may
include an attribute that assigns proxy to a collection of identities that are endorse
the authority that created the PAC to assert the identity to which the privileges in t
PAC apply. When the target object receives a request made with an asserted iden
24-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

oxy

an
e a

. In
rence

are

tials
nd to
ail).
and an authorization token containing proxy rules, the target object will use the pr
rules to determine if it may trust the client authentication identity (P2A or P2B) as
proxy for the asserted identity(P1).

Figure 24-2 Invocation Scenarios

24.3.1.3 Anonymous Identity Assertion

The anonymous identity is used to represent an unauthenticated entity. To assert
anonymous caller identity, a CSS (perhaps acting as an intermediate) shall includ
SAS context element containing anEstablishContext message with an
identity_token containing the anonymousIdentityTokenType in its request.

24.3.1.4 Presumed Trust

Presumed trust is a special case of the evaluation of identity assertions by a TSS
presumed trust, a TSS accepts identity assertions based on the fact of their occur
and without consideration of the authentication identity of the asserting entity. The
presumption is that communications are constrained such that only trusted entities
capable of asserting an identity to the TSS.

24.3.1.5 Failed Trust Evaluations

Table 24-3 shows the circumstances under which the interpretation of caller creden
by a TSS results in a failed trust evaluation. None of these circumstances correspo
presumed trust, where trust evaluations are not performed (and therefore cannot f

A failed trust evaluation shall result in the request being rejected with an indication
that client authentication failed.

Table 24-3Conditions under which Trust Evaluation Fails

Transport
Client Principal

SAS Client
Authentication Principal

SAS Identity
Token Identity

Does Target Trust P2, or Is P2 Named as Proxy
in Authorization Elements?

None None P1 Not Applicable

None P2B P1 No (with respect to P2B)

P2A None P1 No (with respect to P2A)

P2A P2B P1 No (with respect to P2B)

object 1 Object 2
target
object

P1

SAS: P2B

Transport: P2AP2
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-19

24

fter
ated

-20,

arry

s

bes
24.3.1.6 Request Principal Interpretations

The entries in Table 24-4 describe the interpretation of client credentials by a TSS a
an incoming call has satisfied the target’s security requirements and has been valid
by the TSS.

The entries in Table 24-5 describe additional TSS interpretation rules to support
delegation. These rules have been separated from those in Table 24-4 on page 24
because they describe functionality required of implementations that conform to a
higher level of secure interoperability as defined in Section 24.6.3, “Conformance
Level 2,” on page 24-47. The entries in Table 24-5 correspond to invocations that c
an identity token and an authorization token with embeddeddelegation token (that is, a
proxy endorsement attribute)in an EstablishContext service context element. Invocation
that do not carry all of these tokens are represented in Table 24-4.

An authorization token may contain authorization elements that contain proxy
statements, which endorse principals to proxy for other entities. Table 24-5 descri
delegation scenarios in which endorsements from the issuer of the authorization

Table 24-4TSS Interpretation of Client Credentials After Validation

Transport
Client
Principal

SAS Client
Authentication
Principal

SAS
Identity Token
Identity

Client Principal is
Trusted

Invocation
Principal

Scenario

None None Absent Not applicable Anonymous Unauthenticated

None P2B Absent Not applicable P2 Client authentication

P2A None Absent Not applicable P2 Client authentication

P2A P2B (by rule 11)

1. Rule 1: TSS trusts P2A to use authenticator for P2B is implied by P2B having been authenticated.

Absent Not applicable P2B Client authentication

None None P1 Yes if rule 22

2. Rule 2: TSS presumes trust in transport to accept None, P2A, or P2B speaking for P1.

P1 identity assertion

None P2B P1 Yes if rule 2 or rule 33

3. Rule 3: TSS trusts P2A, or P2B to speak for P1.

P1 identity assertion

P2A None P1 Yes if rule 2 or rule 3 P1 identity assertion

P2A P2B (by rule 1) P1 Yes if rule 2 or rule 3 P1 identity assertion

None None Anonymous Yes if rule 44

4. Rule 4: TSS trusts None, P2A, or P2B to speak for Anonymous. A TSS shall support the configuration of rule 4, such that Anonymous
identity assertions are accepted independent of authentication of the asserter.

Anonymous assertion of anonymous

None P2B Anonymous Yes if rule 4 Anonymous assertion of anonymous

P2A None Anonymous Yes if rule 4 Anonymous assertion of anonymous

P2A P2B (by rule 1) Anonymous Yes if rule 4 Anonymous assertion of anonymous

none No SAS Message Not Applicable Anonymous Unauthenticated

P2 No SAS Message Not Applicable P2 Client authentication
24-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

nt”
1,

”
t as
bed
o

TSS.
ble
is

at

shall
an

s by

rget
element authorize the authenticated identity, which is P2A or P2B, to proxy for the
asserted identity. In this table, the column “Proxies Named in Authorization Eleme
defines the identities who are endorsed by the authorization element to proxy for P
the asserted identity and the subject of the authorization element. The value “Any
indicates that the authorization element contains a blanket endorsement, such tha
far as its issuer is concerned, any identity may proxy for P1. The outcomes descri
in Table 24-5 assume that the TSS trusts the issuer of the authorization element t
endorse principals to proxy for others.

24.3.2 Session Semantics

This section describes the negotiation of security contexts between a CSS and a
A TSS is said to be stateless if it does not operate in the mode of accepting reusa
(that is, stateful) security contexts. A TSS that accepts reusable security contexts
said to be stateful. A CSS is said to be stateless if it operates in the mode of
establishing transient, non-reusable (that is, stateless) security contexts. A CSS th
issues requests to establish reusable security contexts is said to be stateful.

24.3.2.1 Negotiation of Statefulness

A client initiates a stateless interaction by specifying aclient_context_id of 0. A
client issues a request to establish a stateful context by including a nonzero
client_context_id in an EstablishContext message.

When a stateless TSS receives a request to establish a stateful session, the TSS
attempt to validate the security tokens bound to the request. If the validation fails,
exception containing an appropriateContextError service context element shall be
returned to the client. If the validation succeeds, the TSS shall negotiate to stateles
responding with aCompleteEstablishContext message withcontext_stateful set
to false.

A client that initiates a stateful interaction shall be capable of accepting that the ta
negotiated the context to stateless.

Table 24-5Additional TSS Rules to Support Delegation

Transport
Client
Principal

SAS Client
Authentication
Principal

SAS Identity
Token
Identity

Proxies Named in
Authorization Element

Invocation
Principal

Scenario

None P2B P1 Any P1 Delegation

P2A None P1 Any P1 Delegation

P2A P2B P1 Any P1 Delegation

None P2B P1 Restricted to set including P2B P1 Restricted delegation

P2A None P1 Restricted to set including P2A P1 Restricted delegation

P2A P2B P1 Restricted to set including P2B P1 Restricted delegation
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-21

24

ts

rries

o

teful

if

erally

ful
does
24.3.2.2 Stateful/Reusable Contexts

Each transport layer session defines a context identifier numberscope. The CSS selects
context identifiers for use within a scope.

A CSS may use theEstablishContext message to issue multiple concurrent reques
to establish a stateful security context within a scope.

To avoid duplicate sessions, when the statefulEstablishContext requests sent within
a scope carry equivalent security contexts, the CSS shall assign to them the same
nonzeroclient_context_id .

Within a scope, a TSS shall reject any request to establish a stateful context that ca
a different security context from an established context with the same
client_context_id . In this case, an exception containing aContextError service
context element shall be returned to the caller.

Two security contexts are equivalent if all of the authentication, identity, and
authorization tokens match both in existence and in value. Token values shall be
evaluated for equivalence by comparing the corresponding byte sequences used t
carry the tokens inEstablishContext messages.

When a target that supports stateful contexts receives a request to establish a sta
context, the TSS shall attempt to validate the security tokens in theEstablishContext
element. If the validation succeeds, the request shall be accepted, and the reply (
there is one) shall carry aCompleteEstablishContext element that indicates (that
is, context_stateful = true) that the context is available at the TSS for the caller’s
reuse. If the validation fails, an exception containing an appropriateContextError
service context element shall be returned to the caller.

A TSS that accepts stateful contexts shall bear the responsibility for managing the
lifecycle of these sessions. Clients that reuse stateful contexts shall capable of
processing replies that indicate that an established stateful context has been unilat
discarded by the TSS.

A TSS shall not establish a stateful context in response to a request to establish a
stateless context (that is, one with aclient_context_id of zero)

A TSS that supports stateful contexts may negotiate a request to establish a state
context to a stateless context in order to preserve resources. It may do so only if it
not already have an established matching stateful context.

Conversely, a stateful TSS that has negotiated a request to stateless may respond
statefully to a subsequent context with the same (non-zero)client_context_id .

Relationship to Transport-Layer

A SAS context shall not persist beyond the lifetime of the transport-layer secure
association over which it was established.

Stateful SAS contexts are not compatible with transports that do not make the
relationship between the connection and the association transparent.
24-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

and
ate

at

the

o not
24.3.3 TSS State Machine

The TSS state machine is defined in the state diagram, Figure 24-3 on page 24-24
in the TSS state table, Table 24-6 on page 24-25. Each TSS call thread shall oper
independently with respect to this state machine. Where necessary, thread
synchronization at shared state shall be handled in the actions called by this state
machine.

An ORB must not invoke the TSS state machine if the target object does not exist
the ORB. The TSS state machine has no capacity to reject or forward8 a request
because the target object does not exist, and must rely on the ORB to only invoke
TSS when the target object exists at the ORB.

In response to a one-way call, a TSS shall not perform any of the send actions
described by the state machine.

The shaded rows in Table 24-6 on page 24-25 indicate transitions and states that d
exist in a stateless implementation of the SAS protocol.

The state names, function names, and function signatures that appear in the state
diagram and the state table are not prescriptive.

8.A TSS uses the LOCATION_FORWARD status to return an IOR containing up-to-date
security mechanism configuration for an existing object.
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-23

24
Figure 24-3 TSS State Machine
24-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

tate

st
24.3.3.1 TSS State Machine Actions

This section defines the intended semantics of the actions appearing in the TSS s
machine. As noted above, the function names and function signatures are not
prescriptive.

• accept_context (tokens, N, Out stateful)

Table 24-6 TSS State Table

State Event Action New State

1 Waiting for
Request

receive request without SAS message accept_transport_context() Verify Transport
Context

receive Request + EstablishContext
{client_context_id = N, tokens}

accept_context(tokens, N, Out stateful) Establish Context

receive Request + MessageInContext
{client_context_id = N,
discard_context = D}

reference_context(N) Request In Context

2 Verify
Transport
Context

accept_transport_context() returned
success

process request Send Only
Reply

accept_transport_context() returned failure send exception (NO_PERMISSION) Waiting for Reque

3 Send Only
Reply

request processing completed send Reply Waiting for Request

4 Send Reply request processing completed send Reply +
CompleteEstablishContext { N, stateful}

Waiting For Request

5 Establish
Context

accept_context (tokens, N, Out stateful)
returned success

process request Send Reply

accept_context (tokens, N, Out stateful)
returned failure (invalid evidence)

send exception +
ContextError (invalid evidence)

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (invalid mechanism)

send exception +
ContextError (invalid mechanism)

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (policy change)

send Reply + LOCATION_FORWARD
status + updated IOR

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (conflicting evidence)

send exception +
ContextError (conflicting evidence)

Waiting for Request

6 Request in
Context

reference_context(N)
returned reference

process request Reuse Context

reference_context(N)
returned empty reference

send exception +
ContextError (context does not exist)

Waiting for Request

7 Reuse
Context

request processing completed send Reply
if (D) discard_context(N)

Waiting for Request
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-25

24

ring
f a

. If

e;

the
This action validates the security context captured in the tokens including ensu
that they are compatible with the mechanisms supported by the target object. I
context is not validated,accept_context returns error codes that describe the
reason the context was rejected.

When called by a stateless TSS,accept_context always returns false in the output
argument “stateful .”

When called by a stateful TSS,accept_context may (depending on the effective
policy of the target object) attempt to record state corresponding to the context
state for the identified context already exists and the received tokens are not
equivalent to those captured in the existing context,accept_context shall reject
the context. If the context state either already existed, or was recorded,
accept_context returns true in the output argument “stateful .”

An implementation ofaccept_context shall implement the error semantics
defined in the following table.

Whenaccept_context returns any ofInvalid evidence , Conflicting evidence ,
or Invalid mechanism , the TSS shall reject the request and send a
NO_PERMISSION exception containing aContextError service context
element with error codes as defined in Table 24-9 on page 24-31. When
accept_context returnsPolicy change , the TSS action shall reject the request
and return a reply with statusLOCATION_FORWARD and containing a new IOR
for the target object that contains an up-to-date representation of the target’s
security mechanism configuration.

• accept_transport_context()

This action validates that a request that arrives without a SAS protocol messag
that is,EstablishContext or MessageInContext satisfies the CSIv2 security
requirements of the target object. This routine returns true if the transport layer
security context (including none) over which the request was delivered satisfies
security requirements of the target object. Otherwise,accept_transport_context
returns false. Whenaccept_transport_context returns false, the TSS shall reject
the request and send aNO_PERMISSION exception.

Table 24-7Accept Context Error Semantics

Semantic Returned Error Code

tokens match mechanism definition of target object but could not be validated Invalid evidence

context has non-zero client_context_id that matches that of an exiting context but tokens are not
equivalent to those used to establish the existing context

Conflicting evidence

the mechanism configuration of the target object has changed and request indicates that CSS is not
aware of the current mechanism configuration

Policy change

the mechanism configuration of the target object has not changed, and request is not consistent with
target mechanism configuration

Invalid mechanism
24-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

ad,

am,
Each
here
called

te to

ist in
• reference_context (N)

If there is an existing context withclient_context_id = N , reference_context
returns a reference to it. Otherwise,reference_context returns an empty
reference.

• discard_context (N)

If contextN exists and it is not needed to complete the processing of another thre
discard_context causes the context to be deleted.

24.3.4 CSS State Machine

A proposed implementation of the CSS state machine is defined in the state diagr
Figure 24-4 on page 24-28, and in the CSS state table, Table 24-8 on page 24-29.
CSS call thread shall operate independently with respect to this state machine. W
necessary, thread synchronization at shared state shall be handled in the actions
by this state machine.

When a CSS processes a one-way call, it returns to the caller and sets its next sta
done, as no response will be sent by the TSS.

The shaded rows in the state table indicate transitions and states that need not ex
a stateless CSS client side implementation.

The state names, function names, and function signatures that appear in the state
diagram and state table are not prescriptive.
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-27

24
Figure 24-4 CSS State Machine
24-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

ntials

ion

ry
Table 24-8CSS State Table

State Event Action New State

1 start Request + client policy + IOR ready to send get_mechanism (policy, thisIOR, Out mech) Try Mechanism

2 Try
Mechanism

the selected mechanism is unprotected get_connection (mech, Out c) Unprotected
Request

the selected mechanism is protected get_client_creds (policy, mech, Out creds) Wait for Crede

3 Unprotecte
d Request

connection ready send request Wait for Reply

connection rejected raise exception and return to caller1 done

4 Wait for
Reply

receive reply return to caller done

5 Wait for
Credentials

client credentials ready get_connection (policy, mech, creds, Out c) Wait for Connect

necessary credentials not obtained raise exception and return to caller2 done

6 Wait for
Connection

connection ready get_context_element (c, policy, creds, mech,
Out element)

Wait for Context

connection rejected raise exception and return to caller3 done

7 Wait for
Context

get_context_element returned
EstablishContext {N = 0, tokens}

send Request + EstablishContext
{client_context_id = N = 0, tokens}

Wait for SAS Reply

get_context_element returned
EstablishContext {N != 0, tokens}

send Request + EstablishContext
{client_context_id = N != 0, tokens}

Wait for SAS Reply

get_context_element returned NULL send request Wait for Reply

get_context_element returned
MessageInContext {N != 0, D}

send Request + MessageInContext
{client_context_id = N != 0, D}

Request In Context

8 Wait for
SAS Reply

receive exception +
ContextError (invalid evidence)

raise exception and return to caller4 done

receive exception +
ContextError (invalid mechanism)

raise exception and return to caller done

receive exception +
ContextError (conflicting evidence)

invalidate_context (c, N) done

raise exception and return to caller

receive Reply + LOCATION_FORWARD
status + updated IOR

return to caller done

receive Reply + CompleteEstablishContext
{N, context_stateful}

complete_context (c, N, context_stateful) done

return to caller

9 Request in
Context

receive exception +
ContextError (context does not exist)

invalidate_context (c, N)
get_context_element (c, policy, creds, mech,
Out element)

Wait for Context

receive Reply return to caller done

1. A CSS may do next mechanism processing, in which case it might call get_next_mechanism(policy,thisIOR) and transition to state T
Mechanism.

2. Same note as 1.

3. Same note as 1.
July 2002 CORBA, v3.0: Security Attribute Service Protocol 24-29

24

tate

.

able

y

s and

d

24.3.4.1 CSS State Machine Actions

This section defines the intended semantics of the actions appearing in the CSS s
machine. As noted above the function names and function signatures are not
prescriptive. The descriptions appearing in the following sections are provided to
facilitate understanding of the proposed implementation of the CSS state machine

• get_mechanism (policy, IOR, Out mech)

Select from theIOR a mechanism definition that satisfies the client policy.

• get_client_creds (policy, mech, Out creds)

Get the clientcredentials as necessary to satisfy the clientpolicy and the target
policy in themechanism .

• get_connection (mech, Out c)

Open a connection based on the port information in themechanism argument.

• get_connection (policy, mech, creds, Out c)

Open a secure connection based on the clientpolicy , the target policy in the
mechanism argument, and using the client credentials in thecreds argument.

• get_context_element (c, policy, creds, mech, Out element)

In the scope of connectionc, use the clientcreds to create a SAS protocol context
element that satisfies the clientpolicy and the target policy in themechanism . If
the CSS supports reusable contexts, and the client policy is to establish a reus
context, the CSS allocates aclient_context_id , and initializes a context element in
the context table of the connection. A NULL context element may be returned b
get_context_element when the target mechanism definition either does not
support or require SAS layer security functionality, and the client establishes a
policy not to use such functionality unless required to do so.

• invalidate_context (c, N)

Mark contextN in connection scopec as invalid such that no more requests may
(re)use it.

• complete_context (c, N, context_stateful)

This action applies the contents of a returnedCompleteEstablishContext
message to contextN, in connection scopec, to change its state to completed. In a
stateful CSS,get_context_element will not return aMessageInContext
element untilcomplete_context is called withcontext_stateful true.

24.3.5 ContextError Values and Exceptions

Table 24-9 on page 24-31 defines the circumstances under which error values and
exceptions shall be returned by a TSS. The state and event columns contain state
events appearing in Table 24-6 on page 24-25.

4. A CSS may re-collect authentication evidence and try again, in which case it might call get_client_creds(policy, mech, Out creds) an
transition to state Wait for Credentials.
24-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

ns
he

port

re

. This
OR

d
all

rt

fine

ites

ded
24.4 Transport Security Mechanisms

24.4.1 Transport Layer Interoperability

The secure interoperability architecture that is defined by this specification partitio
secure interoperability into three layers: the transport layer, authentication above t
transport layer, and the secure attribute layer. This specification defines secure
interoperability that uses transport-layer security for message protection and
authentication of the target to the client.

24.4.2 Transport Mechanism Configuration

The configuration of transport-layer security mechanisms is specified in IORs. Sup
for CSI is indicated within an IOR profile by the presence of at most one
TAG_CSI_SEC_MECH_LIST tagged component that defines the mechanism
configuration pertaining to the profile. This component contains a list of one or mo
CompoundSecMech structures, each of which defines the layer-specific security
mechanisms that comprise a compound mechanism that is supported by the target
specification does not define support for CSI mechanisms in multiple-component I
profiles.

EachCompoundSecMech structure contains atransport_mech field that defines
the transport-layer security mechanism of the compound mechanism. A compoun
mechanism that does not implement security functionality at the transport layer sh
contain theTAG_NULL_TAG component in itstransport_mech field. Otherwise,
the transport_mech field shall contain a tagged component that defines a transpo
protocol and its configuration. Section 24.5.1.3, “TAG_TLS_SEC_TRANS,” on
page 24-35 and Section 24.5.1.4, “TAG_SECIOP_SEC_TRANS,” on page 24-37 de
valid transport-layer components that can be used in thetransport_mech field.

24.4.2.1 Recommended SSL/TLS Ciphersuites

This specification recommends that implementations support the following ciphersu
in addition to the mandatory ciphersuites identified in [IETF RFC 2246]. Of these
additional ciphersuites, those which use weak encryption keys are only recommen

Table 24-9ContextError Codes and Exceptions

State Event Semantic Major Minor Exception

Establish Context accept_context returned failure Invalid evidence 1 1 NO_PERMISSION

Invalid mechanism 2 1 NO_PERMISSION

Conflicting evidence 3 1 NO_PERMISSION

Request In Context reference_context (N) returned
false

No Context 4 1 NO_PERMISSION
July 2002 CORBA, v3.0: Transport Security Mechanisms 24-31

24

ing

ing
t
ll

e

for use in environments where strong encryption of SAS protocol elements (includ
GSSUP authenticators) and request arguments is not required. Some of the
recommended ciphersuites are known to be encumbered by licensing constraints.

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_DES_CBC_SHA

• SSL_DHE_DSS_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

24.5 Interoperable Object References

24.5.1 Target Security Configuration

A target that supports unprotected IIOP invocations shall specify in the correspond
TAG_INTERNET_IOP profile a nonzero port number at which the target will accep
unprotected invocations.9 A target that supports only protected IIOP invocations sha
specify a port number of 0 (zero) in the correspondingTAG_INTERNET_IOP profile.
A target may support both protected and unprotected IIOP invocations at the sam
port, but it is not required to do so.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles = {

ProfileId tag = TAG_INTERNET_IOP;
struct ProfileBody_1_1 profile_data = {

Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;
sequence <IOP::TaggedComponent> components;

};
};

};

9. The OMG has registered port numbers for IIOP (683) and IIOP/SSL (684) with IANA.
Although the existence of these reservations does not prescribe their use, it may be useful to
recognize these port numbers as defaults for the corresponding protocols.
24-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

isms

n

on.

l
an

SS
A target that supports protected invocations shall describe in aCompoundSecMech
structure the characteristics of each of the alternative compound security mechan
that it supports. TheCompoundSecMech structure shall be included in a list of such
structures in the body of aTAG_CSI_SEC_MECH_LIST tagged component.

sequence <IOP::TaggedComponent> components = {
IOP::TaggedComponent {

ComponentId tag = TAG_CSI_SEC_MECH_LIST;
sequence <octet> component_data = {

CSIIOP::CompoundSecMechList = {
boolean stateful;
CompoundSecMechanisms mechanism_list = {

CompoundSecMech;
};

};
};

};
};

The order of occurrence of the alternative compound mechanism definitions in a
TAG_CSI_SEC_MECH_LIST component indicates the target’s mechanism
preference. The target prefers mechanism definitions occurring earlier in the list. A
IOR profile shall contain at most oneTAG_CSI_SEC_MECH_LIST tagged
component. An IOR profile that contains multipleTAG_CSI_SEC_MECH_LIST
tagged components is malformed and should be rejected by a client implementati

24.5.1.1 AssociationOptions Type

The AssociationOptions type is an unsigned short bit mask containing the logica
OR of the configured options. The properties of security mechanisms are defined in
IOR in terms of the association options supported and required by the target. A C
shall be able to interpret the association options defined in Table 24-10.
July 2002 CORBA, v3.0: Interoperable Object References 24-33

24

rted

y of

hen

t
n

ue a
.

ation
in

es

es

et,

ot
The representation of supported options is used by a client to determine if a
mechanism is capable of supporting the client’s security requirements. The suppo
association options shall be a superset of those required by the target.

When theIdentityAssertion bit is set intarget_supports , it indicates that the
target accepts asserted caller identities based on trust in the authentication identit
the asserting entity. When theDelegationByClient bit is not set, the target will
evaluate trust based on rules of the target (that is, a backward trust evaluation). W
the IdentityAssertion andDelegationByClient bits are set, they indicate that the
target is also capable of evaluating trust in an asserting entity based on trust rules
delivered in an authorization token (that is, a forward trust evaluation). A target tha
can perform a forward trust evaluation does so when trust rules are delivered in a
authorization token. Otherwise a backward trust evaluation is performed.

When theDelegationByClient bit is set intarget_requires , it indicates that the
target requires a delegation token to complete the processing of a request. Such
circumstances will occur when a target, acting as an intermediate, attempts to iss
request as its caller and sanctioned by the delegation token delivered by its caller

The rules for interpreting asserted identities in the presence or absence of a deleg
token (that is, a proxy attribute contained in an authorization token) are as defined
Section 24.3.1.1, “Context Validation,” on page 24-17.

Table 24-10Association Options

Association Option target_supports target_requires

Integrity Target supports integrity protected messages Target requires integrity protected messag

Confidentiality Target supports privacy protected messages Target requires privacy protected messag

EstablishTrustInTarget Target can authenticate to a client Not applicable. This bit should never be s
and should be ignored by CSS

EstablishTrustInClient Target can authenticate a client Target requires client authentication

IdentityAssertion Target accepts asserted caller identities based on trust in
the authentication identity of the asserting entity. Target
can evaluate trust based on trust rules of the target. If
DelegationByClient is set, target can also evaluate trust
when provided with a delegation token (that is, a proxy
attribute contained in an authorization token).1

Not applicable. This bit should never be set,
and should be ignored by CSS

DelegationByClient When it occurs in conjunction with support for
IdentityAssertion, this bit indicates that target can
evaluate trust in an asserting entity based on a
delegation token.2

Target requires that CSS provide a delegation
token that endorses the target as proxy for the
client.3

1. A target policy that accepts only identity assertions based on forward trust cannot be communicated in an IOR (although it can be
enforced).

2. If an incoming request includes an identity token and a delegation token, the request shall be rejected if the delegation token does n
endorse the asserting entity (see Section 24.3.1.1, “Context Validation,” on page 24-17)

3. A target with DelegationByClient set intarget_requiresshall also have this bit set intarget_supports. As noted in the table, this has
an impact on the target’ s identity assertion policy (if any).
24-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

e

ther
fined

is

e

otted-

SS
The security mechanism configuration in an IOR being used by a CSS may (as th
result of target policy administration) no longer represent the actual security
mechanism configuration of the target object.

Alternative Transport Association Options

Implementations that choose to employ the service context protocol defined in this
specification to achieve interoperability over an alternative secure transport (one o
than SSL/TLS) may also be required to support the message protection options de
in Table 24-11.

24.5.1.2 Transport Address

The TransportAddress structure indicates an INTERNET address where the TSS
listening for connection requests.

struct TransportAddress {
string host_name;
unsigned short port;

};

typedef sequence <TransportAddress> TransportAddressList;

Thehost_name field identifies the Internet host to which connection requests will b
made. Thehost_name field shall not contain an empty string. Thehost_name field
shall contain a host name or an IP address in standard numerical address (e.g., d
decimal) form.

The port field contains the TCP/IP port number (at the specified host) where the T
is listening for connection requests. The port number shall not be zero.

24.5.1.3 TAG_TLS_SEC_TRANS

An instance of theTAG_TLS_SEC_TRANS component may occur in the
transport_mech field within a CompoundSecMech structure in a
TAG_CSI_SEC_MECH_LIST component.

When an instance of theTAG_TLS_SEC_TRANS component occurs in the
transport_mech field of theCompoundSecMech structure, it defines the sequence
of transport addresses at which the target will be listening for SSL/TLS protected

Table 24-11Alternative Transport Association Options

Association Option target_supports target_requires

DetectReplay Target can detect replay of
requests (and request fragments)

Target requires security associations to detect
replay

DetectMisordering Target can detect sequence errors of request
(and request fragments)

Target requires security associations to detect
message sequence errors
July 2002 CORBA, v3.0: Interoperable Object References 24-35

24

rity

s

4-15

d

n

invocations. The supported (target_supports) and required (target_requires)
association options defined in the component shall define the transport level secu
characteristics of the target at the given addresses.

const IOP::ComponentId TAG_TLS_SEC_TRANS = 36;

struct TLS_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
TransportAddressList addresses;

};

The addresses field provides a shorthand for defining multiple security mechanism
that differ only in their transport addresses. Theaddresses field shall contain at least
one address.

Table 24-12, Table 24-13 on page 24-36, Table 24-14 on page 24-37, and Table 2
on page 24-37 describe the association option semantics relating to the
TAG_TLS_SEC_TRANS tagged component that shall be interpreted by a CSS an
enforced by a TSS. TheIdentityAssertion andDelegationByClient association
options shall not occur in an instance of this component.

Table 24-12Integrity Semantics

Integrity Semantic

Not supported None of the ciphersuites supported by the target designate a MAC algorithm

Supported Target supports one or more ciphersuites that designate a MAC algorithm

Required All the ciphersuites supported by the target designate a MAC algorithm

Table 24-13Confidentiality Semantics

Confidentiality Semantic

Not supported None of the ciphersuites supported by the target designate a bulk encryptio
algorithm1

1. Bulk encryption algorithms include both block and stream ciphers.

Supported Target supports one or more ciphersuites that designate a bulk encryption
algorithm

Required All the ciphersuites supported by the target designate a bulk encryption
algorithm
24-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

hall

ing

s

7,
lating
a

ill

s no
24.5.1.4 TAG_SECIOP_SEC_TRANS

A tagged component with theTAG_SECIOP_SEC_TRANS tag is a valid component
for the transport_mech field of the CompoundSecMech structure. The presence
of this component indicates the generic use of the SECIOP protocol as a secure
transport underneath the CSI mechanisms. A component tagged with this value s
contain the CDR encoding of theSECIOP_SEC_TRANS structure.

The SECIOP_SEC_TRANS structure defines the transport addresses for SECIOP
messages, the association options pertaining to the particular GSS mechanism be
supported, the GSS mechanism identifier, and the target's GSS exported name.

const IOP::ComponentId TAG_SECIOP_SEC_TRANS = 35;

struct SECIOP_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID mech_oid;
CSI::GSS_NT_ExportedName target_name;
TransportAddressList addresses;

};

The addresses field provides a shorthand for defining multiple security mechanism
that differ only in their transport addresses. Theaddresses field shall contain at least
one address.

Table 24-12 on page 24-36, Table 24-13 on page 24-36, Table 24-14 on page 24-3
and Table 24-15 on page 24-37 also describe the association option semantics re
to theTAG_SECIOP_SEC_TRANS tagged component that shall be interpreted by
CSS and enforced by a TSS.

Table 24-14EstablishTrustInTarget Semantics

EstablishTrustInTarget Semantic

Not supported None of the ciphersuites supported by the target designate a key exchange algorithm that w
authenticate the target to the client

Supported Target supports one or more ciphersuites that designate a key exchange algorithm that will
authenticate the target to the client

Required Not applicable. This bit should never be set, and should be ignored by CSS

Table 24-15EstablishTrustInClient Semantics

EstablishTrustInClient Semantic

Not supported Target does not support client authentication during the handshake. Moreover, target provide
opportunity for client to authenticate in the handshake (that is, target does not send certificate
request message).

Supported Target provides client with an opportunity to authenticate in handshake. Target will accept
connection if client does not authenticate.

Required Target accepts connections only from clients who successfully authenticate in the handshake
July 2002 CORBA, v3.0: Interoperable Object References 24-37

24

s

ed

in

xt,

ing)
24.5.1.5 TAG_CSI_SEC_MECH_LIST

This new tagged component,TAG_CSI_SEC_MECH_LIST, is used to describe
support in the target for a sequence of one or more compound security mechanism
represented in themechanism_list field of a CompoundSecMechList structure.
The mechanism descriptions in themechanism_list occur in decreasing order of
target preference.

const IOP::ComponentId TAG_CSI_SEC_MECH_LIST = 33;

struct CompoundSecMech {
AssociationOptions target_requires;
IOP::TaggedComponent transport_mech;
AS_ContextSec as_context_mech;
SAS_ContextSec sas_context_mech;

};

typedef sequence <CompoundSecMech> CompoundSecMechanisms;

struct CompoundSecMechList {
boolean stateful;
CompoundSecMechanisms mechanism_list;

};

The CompoundSecMech structure is used to describe support in the target for a
compound security mechanism that may include security functionality that is realiz
in the transport and/or security functionality realized above the transport in service
context. Where a compound security mechanism implements security functionality
the transport layer, the transport functionality shall be represented in a transport-
specific component (for example,TAG_TLS_SEC_TRANS) contained in the
transport_mech field of the CompoundSecMech structure. Where a compound
security mechanism implements client authentication functionality in service conte
the mechanism shall be represented in anAS_ContextSec structure contained in the
as_context_mech field of the CompoundSecMech structure. Where a compound
security mechanism supports identity assertion or supports authorization attributes
delivered in service context, the mechanism shall be represented in a
SAS_ContextSec structure contained in thesas_context_mech field of the
CompoundSecMech structure.

At least one of thetransport_mech , as_context_mech , or sas_context_mech
fields shall be configured. TheTAG_NULL_TAG component shall be used in the
transport_mech field to indicate that a mechanism does not implement security
functionality at the transport layer. A value of “no bits set” in thetarget_supports
field of either theas_context_mech or sas_context_mech fields shall be used to
indicate that the mechanism does not implement security functionality at the
corresponding layer.

The target_requires field of theCompoundSecMech structure is used to designate
a required outcome that shall be satisfied by one or more supporting (but not requir
layers. Thetarget_requires field also represents all the options required
independently by the various layers as defined within the mechanism.
24-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

at

lize

y

e
are

nism

n
or

t.
Each compound mechanism defines a combination of layer-specific functionality th
is supported by the target. A target’s mechanism configuration is the sum of the
combinations defined in the individual mechanisms.

A value of TRUE in thestateful field of the CompoundSecMechList structure
indicates that the target supports the establishment of stateful or reusable SAS
contexts. This field is provided to assist clients in their selection of a target that
supports stateful contexts. It is also provided to sustain implementations that seria
stateful context establishment on the client side as a means to conserve precious
server-side authentication capacity.10

A TSS shall set thestateful bit to FALSE in theCompoundSecMechList structure
of IORs corresponding to target objects at which it will not accept reusable securit
contexts.

struct AS_ContextSec

The AS_ContextSec structure is used in theas_context_mech field within a
CompoundSecMech structure in aTAG_CSI_SEC_MECH_LIST component to
describe the client authentication functionality that the target expects to be layered
above the transport in service context by means of theclient_authentication_token
of the EstablishContext element of the SAS protocol.

struct AS_ContextSec{
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID client_authentication_mech;
CSI::GSS_NT_ExportedName target_name;

};

A value of “no bits set” in thetarget_supports field indicates that the mechanism
does not implement client authentication functionality above the transport in servic
context. In this case, the values present in any of the other fields in this structure
irrelevant.

If the target_supports field indicates that the mechanism supports client
authentication in service context, then theclient_authentication_mech field shall
contain a GSS OID that identifies the GSS mechanism that the compound mecha
supports for client authentication above the transport.

The target uses thetarget_name field to make its security name and or authenticatio
domain available to clients. This information may be required by the client to obtain
construct (depending on the mechanism) a suitable initial context token.

10.This serialization is only done when an attempt is being made to establish a stateful contex
July 2002 CORBA, v3.0: Interoperable Object References 24-39

24

ll be
tion

end
n

lso
Table 24-16 describes the association options that are supported by conforming
implementations.

When a compound mechanism that implements client authentication functionality
above the transport also contains a transport mechanism (in thetransport_mech
field), any required association options configured in the transport component sha
interpreted as a prerequisite to satisfying the requirements of the client authentica
mechanism.

struct SAS_ContextSec

The SAS_ContextSec structure is used in thesas_context_mech field within a
CompoundSecMech structure in aTAG_CSI_SEC_MECH_LIST component to
describe the security functionality that the target expects to be layered above the
transport in service context by means of theidentity_token and
authorization_token of the EstablishContext element of the SAS service context
protocol. The security functionality represented by this structure is configured as
association options in thetarget_supports and target_requires fields.

// The high order 20-bits of each ServiceConfigurationSyntax
// constant shall contain the Vendor Minor Codeset ID (VMCID) of
// the organization that defined the syntax. The low order 12 bits
// shall contain the organization-scoped syntax identifier. The
// high-order 20 bits of all syntaxes defined by the OMG shall
// contain the VMCID allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long ServiceConfigurationSyntax;

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSI::OMGVMCID | 1;

typedef sequence <octet> ServiceSpecificName;

// The name field of the ServiceConfiguration structure identifies
// a privilege authority in the format identified in the syntax
// field. If the syntax is SCS_GeneralNames, the name field
// contains an ASN.1 (BER) SEQUENCE[1..MAX] OF GeneralName, as
// defined by the type GeneralNames in [IETF RFC 2459]. If the
// syntax is SCS_GSSExportedName, the name field contains a GSS

Table 24-16EstablishTrustInClient Semantics

EstablishTrustInClient Semantic

1 Not supported Target does not support client authentication in service context (at this
compound mechanism)

2 Supported Target supports client authentication in service context. If a CSS does not s
an initial context token (in an EstablishContext service context element), the
the caller identity is obtained from the transport

3 Required Target requires client authentication in service context. The CSS may have a
authenticated in the transport, but the caller identity is obtained from the
service context layer
24-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

43]

igh-
to

ne

for

y

// exported name encoded according to the rules in [IETF RFC 2743]
// Section 3.2, "Mechanism-Independent Exported Name Object
// Format," p. 84.

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

};

typedef sequence <ServiceConfiguration> ServiceConfigurationList;

struct SAS_ContextSec{
AssociationOptions target_supports;
AssociationOptions target_requires;
ServiceConfigurationList privilege_authorities;
CSI::OIDList supported_naming_mechanisms;
CSI::IdentityTokenType supported_identity_types;

};

The privilege_authorities field contains a sequence of zero or more
ServiceConfiguration elements. A non-empty sequence indicates that the target
supports the CSS delivery of anAuthorizationToken , which is delivered in the
EstablishContext message. A CSS shall not be required to look beyond the first
element of this sequence unless required by the first element.

The syntax field within the ServiceConfiguration element identifies the format
used to represent the authority. Two alternative formats are currently defined: an
ASN.1 encoding of theGeneralNames (as defined in [IETF RFC 2459]) which
identify a privilege authority, or a GSS exported name (as defined in [IETF RFC 27
Section 3.2) encoding of the name of a privilege authority.

The high order 20-bits of eachServiceConfigurationSyntax constant shall contain
the Vendor Minor Codeset ID (VMCID) of the organization that defined thesyntax .
The low order 12 bits shall contain the organization-scoped syntax identifier. The h
order 20 bits of all syntaxes defined by the OMG shall contain the VMCID allocated
the OMG (that is, 0x4F4D0).

Organizations must register their VMCIDs with the OMG before using them to defi
a ServiceConfigurationSyntax .

The supported_naming_mechanisms field contains a list of GSS mechanism
OIDs. A TSS shall set the value of this field to contain the GSS mechanism OIDs
which the target supports identity assertions using an identity token of type
ITTPrincipalName . The Identity token types are defined in Section 24.2.5, “Identit
Token Format,” on page 24-14.

The value of thesupported_identity_types field shall be the bitmapped
representation of the set of identity token types supported by the target. A target
always supports ITTAbsent.
July 2002 CORBA, v3.0: Interoperable Object References 24-41

24

by

et

d as
ute

e

arget.

d to

e

d to

et

at

at
The value insupported_identity_types shall be non-zero if and only if the
IdentityAssertion bit is non-zero in target_supports. The bit corresponding to the
ITTPrincipalName identity token type shall be non-zero in
supported_identity_types if and only if the value in
supported_naming_mechanisms contains at least one element.

Table 24-17 describes the combinations of association options that are supported
conforming implementations. Each combination in the table describes the attribute
layer functionality of a target that may be defined in a mechanism definition. A targ
that defines multiple mechanisms may support multiple combinations.

A compound mechanism definition with theDelegationByClient bit set shall include
the name of at least one authority in theprivilege_authorities field.

When a compound mechanism configuration that defines SAS attribute layer
functionality also defines client authentication layer or transport layer functionality,
any required association options configured in these other layers shall be interprete
a prerequisite to satisfying the requirements of the functionality defined in the attrib
layer

Table 24-17Attribute Layer Association Option Combinations

DelegationByClient IdentityAssertion Semantic

1 Not supported Not supported Target does not support identity assertion (that is, identity tokens in th
EstablishContext message of the SAS protocol).
The caller identity will be obtained from the authentication layer(s).

2 Not supported Supported Target evaluates asserted caller identities based on trust rules of the t
In the absence of an asserted identity, the caller identity will be obtained
from the authentication layer(s).

3 Supported Not supported Target accepts delegation tokens that indicate who has been endorse
assert an identity.
Target does not accept asserted caller identities. The caller identity will b
obtained from the authentication layer(s).

4 Supported Supported Target accepts delegation tokens that indicate who has been endorse
assert an identity.
Target evaluates asserted caller identities based on trust rules of the targ
or based on endorsements in a delegation token.
In the absence of an asserted identity, the caller identity will be obtained
from the authentication layer(s).

5 Required Not supported Same as 3, with the addition that target requires a delegation token th
endorses the target as proxy for the caller

6 Required Supported Same as 4, with the addition that target requires a delegation token th
endorses the target as proxy for the caller
24-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

t

the

f the

ns
24.5.1.6 TAG_NULL_TAG

This new tagged component is used in thetransport_mech field of a
CompoundSecMech structure to indicate that the compound mechanism does no
implement security functionality at the transport layer.

// The body of the TAG_NULL_TAG component is a sequence of octets of
// length 0.
const IOP::ComponentId TAG_NULL_TAG = 34;

24.5.2 Client-side Mechanism Selection

A client should evaluate the compound security mechanism definitions contained
within the CompoundSecMechList in the TAG_CSI_SEC_MECH_LIST
component in an IOR to select a mechanism that supports the options required by
client.

The options supported by a compound mechanism are the union (the logical OR) o
options supported by thetransport_mech , as_context_mech , and
sas_context_mech fields of theCompoundSecMech structure.

The following table defines the semantics defined by the union of association optio
in compound mechanism definitions. Association options for server to client
authentication and message protection add additional semantics that are not
represented in the table.

Table 24-18Interpretation of Compound Mechanism Association Options

Semantic EstablishTrustInClient IdentityAssertion DelegationByClient

Supported Required Supported Supported Required

1 No client identification Don’t care2

2 Presumed trust X

3 Authentication optional X Don’t care

4 Authentication optional, assertion
supported

X X

5 Authentication Required X X Don’t care

6 Authentication Required, assertion
supported

X X X

7 Presumed trust including support for
provided target restrictions

X X

8 Authentication optional, assertion
supported including forward trust
rules

X X X

9 Authentication required, assertion
supported including forward trust
rules

X X X X
July 2002 CORBA, v3.0: Interoperable Object References 24-43

24

rity

ll be
ys)

ys)
ntial
lient

a
a

get,

ken.
n.
24.5.3 Client-Side Requirements and Location Binding

The primary assumption of this interoperability protocol is that transport layer secu
can ensure that it is not necessary to issue a preliminary request to establish a
confidential association with the intended target.

In order to sustain this assumption, trust in target and a confidential transport sha
established prior to issuing any call that may contain arguments (including object ke
or service context elements that the client considers confidential. A CSS acting on
behalf of a client may trust a target to locate an object (process a locate request)
without having to trust the target with confidential arguments (other than object ke
or service context elements. For example, a CSS may have established a confide
connection to an address it learned from an IOR, and may then determine if the c
trusts the target with its request arguments and any associated service context
elements. If the client does not trust the target with its request, the CSS may send
locate request.11 If the locate reply contains a new address, the CSS may establish
new confidential connection, evaluate the level of trust the client has in the new tar

10 Presumed Trust including support for
provided target restrictions, delegation
token required which implies
assertion required1

X X X

11 Authentication optional, assertion
supported including forward trust
rules, delegation token required which
implies either client authentication or
assertion required

X X X X

12 Authentication required, delegation
token required

X X X X

13 Authentication required, assertion
supported including forward trust
rules, delegation token required

X X X X X

1. If a delegation token is required, a non-anonymous client identity shall be established so that it can be endorsed by the delegation to
This same rule applies to row 11, and explains why there is no row that supports client authentication and requires a delegation toke

2. If DelegationByClient is supported, a delegation token may be provided, but it is not required to process the request

11.This requires that the CSS be provided with a method to cause the ORB to issue a locate
request. There is no standard API to cause an ORB to issue a locate request.

Table 24-18Interpretation of Compound Mechanism Association Options

Semantic EstablishTrustInClient IdentityAssertion DelegationByClient

Supported Required Supported Supported Required
24-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

to
tial

m if
sted

d

re

in

he
0 and

of
.

and determine whether it can issue the client’s request to the target. If in response
the request, the CSS receives a location forward, it will establish another confiden
connection with the new address and repeat its trust determination.

Compound security mechanisms appearing in IORs leading to a location daemon
should not require clients to authenticate using the username/password mechanis
doing so would cause an overly trusting caller to share its password with an untru
location daemon.

The way in which a location daemon derives an IOR for a target object is not
prescribed by this specification.

24.5.3.1 Comments on Establishing Trust in Client

A client that does not have the artifacts necessary to provide evidence of its
authenticity over at least one of the transports supported by it and its target shoul
search the IOR for a security mechanism definition that does not require client
authentication to occur in a transport mechanism.

24.6 Conformance Levels

24.6.1 Conformance Level 0

Level 0 defines the base level of secure interoperability that all implementations a
required to support. Level 0 requires support for SSL/TLS protected connections.
Level 0 implementations are also required to support username/password client
authentication and identity assertion by using the service context protocol defined
this specification.

24.6.1.1 Transport-Layer Requirements

Implementations shall support the Security Attribute Service (SAS) protocol within t
service context lists of GIOP request and reply messages exchanged over SSL 3.
TLS 1.0 protected connections.

Implementations shall also support the SAS protocol within the service context lists
GIOP request and reply messages over unprotected transports defined within IIOP12

12.SAS protocol elements should only be sent over unprotected transports within trusted
environments.
July 2002 CORBA, v3.0: Conformance Levels 24-45

24

d

ng to

n the
sage

or

ts
.

pe

en
Required Ciphersuites

Conforming implementations are required to support both SSL 3.0 and TLS 1.0 an
the mandatory TLS 1.0 ciphersuites identified in [IETF RFC 2246]. Conforming
implementations are also required to support the SSL 3.0 ciphersuites correspondi
the mandatory TLS 1.0 ciphersuites.

An additional set of recommended ciphersuites is identified in Section 24.4.2.1,
“Recommended SSL/TLS Ciphersuites,” on page 24-31.

24.6.1.2 Service Context Protocol Requirements

All implementations shall support the Security Attribute Service (SAS) context
element protocol in the manner described in the following sections.

Stateless Mode

All implementations shall support the stateless CSS and stateless TSS modes of
operation as defined in Section 24.3.2, “Session Semantics,” on page 24-21, and i
protocol message definitions appearing in Section 24.2.2, “SAS context_data Mes
Body Types,” on page 24-5.

Client Authentication Tokens and Mechanisms

All implementations shall support the username password (GSSUP) mechanism f
client authentication as defined in Section 24.2.4.1, “Username Password GSS
Mechanism (GSSUP),” on page 24-12.

Identity Tokens and Identity Assertion

All implementations shall support the identity assertion functionality defined in
Section 24.3.1.1, “Context Validation,” on page 24-17 and the identity token forma
and functionality defined in Section 24.2.5, “Identity Token Format,” on page 24-14

All implementations shall support GSSUP mechanism specific identity tokens of ty
ITTPrincipalName .

Authorization Tokens (not required)

At this level of conformance, implementations are not required to be capable of
including an authorization token in the SAS protocol elements they send or of
interpreting such tokens if they are included in received SAS protocol elements.

The format of authorization tokens is defined in Section 24.2.3, “Authorization Tok
Format,” on page 24-10.
24-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

in
hat

-33.

ion
in

of

e

e in
ned

n-

on
ty

hat
24.6.1.3 Interoperable Object References (IORs)

The security mechanism configuration of CSIv2 target objects, shall be as defined
Section 24.5.1, “Target Security Configuration,” on page 24-32, with the exception t
Level 0 implementations are not required to support theDelegationByClient
functionality described in Section 24.5.1.1, “AssociationOptions Type,” on page 24

24.6.2 Conformance Level 1

Level 1 adds the following additional requirements to those of Level 0.

24.6.2.1 Authorization Tokens

Level 1 implementations shall support the push model for privilege attributes.

Level 1 requires that a CSS provide clients with an ability to include an authorizat
token, as defined in Section 24.2.3, “Authorization Token Format,” on page 24-10,
SAS EstablishContext protocol messages.

Level 1 requires that a TSS be capable of evaluating its support for a received
authorization token according to the rules defined in Section 24.2.3.1, “Extensions
the IETF AC Profile for CSIv2,” on page 24-11.

A Level 1 TSS shall recognize the standard attributes and extensions defined in th
attribute certificate profile defined in [IETF ID PKIXAC].

Level 1 requires that a target object that supports pushed privilege attributes includ
its IORs the names of the privilege authorities trusted by the target object (as defi
in “struct SAS_ContextSec” on page 24-40).

24.6.3 Conformance Level 2

Level 2 adds to Level 1 the following additional requirements.

24.6.3.1 Authorization-Token-Based Delegation

Level 2 adds to Level 1 a requirement that implementations support the authorizatio
token-based delegation mechanism implemented by the SAS protocol.

A Level 2 TSS shall be capable of evaluating proxy rules arriving in an authorizati
token to determine whether an asserting entity has been endorsed (by the authori
which vouched for the privilege attributes in the authorization token) to assert the
identity to which the privilege attributes pertain. The semantics of the relationship
between the identity token and authorization token shall be as defined in
Section 24.3.1.1, “Context Validation,” on page 24-17.

A Level 2 TSS shall recognize the Section 24.2.3.1, “Extensions of the IETF AC
Profile for CSIv2,” on page 24-11” (that is, the Proxy Info extension) as defined on t
page.
July 2002 CORBA, v3.0: Conformance Levels 24-47

24

in

or its
4-42.

the
xts.

ess

s

Level 2 requires that a target object that accepts identity assertions based on
endorsements in authorization tokens represent this support in its IORs as defined
Table 24-17 on page 24-42.

Level 2 requires that a target object that requires an endorsement to act as proxy f
callers represent this requirement in its IORs as defined in Table 24-17 on page 2

24.6.4 Stateful Conformance

Implementations are differentiated not only by the conformance levels described in
preceding sections but also by whether or not they support stateful security conte

For an implementation to claim stateful conformance, it shall implement the statel
and stateful functionality as defined in Section 24.3.2, “Session Semantics,” on
page 24-21 and in Section 24.2.2, “SAS context_data Message Body Types,” on
page 24-5.

24.7 Sample Message Flows and Scenarios

This appendix contains sequence diagrams and sample IORs for a set of scenario
selected to illustrate the interoperability protocols defined in this specification. The
sample IORs are expressed in pseudocode.
24-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

he

S.
.

24.7.1 Confidentiality, Trust in Server, and Trust in Client Established in t
Connection

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TS
CSS evaluates its trust in target authentication identity and decides to continue
Client (P2) authenticates to TSS in the handshake.

3. Send request (with no security service context element).

4. Receive reply (with no security service context element).

5. Same as 3.

6. Same as 4.

Client (P2) :
SecurityService

Target :
SecurityService

1: connect to target()

2: accept connection(authenticate client P2)

3: request()

4: reply()

5: request()

6: reply()
July 2002 CORBA, v3.0: Sample Message Flows and Scenarios 24-49

24

46
24.7.1.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {};
...

};
};

};
};

Note that based on the ciphersuites listed in “Required Ciphersuites” on page 24-
and the rules for target_supports and target_requires appearing in the tables in
Section 24.5.1.3, “TAG_TLS_SEC_TRANS,” on page 24-35, all target IORs should
include {Integrity, Confidentiality, EstablishTrustInTarget} intarget_supports and at
least {Integrity, Confidentiality} intarget_requires . This statement applies to all the
sample IORs corresponding to all the scenarios described in this chapter.
24-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

-

S.
.

24.7.2 Confidentiality and Trust in Server Established in the Connection
Stateless Trust in Client Established in Service Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TS
CSS evaluates its trust in target authentication identity and decides to continue

3. Send request (with stateless security service context element containing a
client_authentication_token).

4. Receive reply withCompleteEstablishContext service context element
indicating context (and request) was accepted.

5. Same as 3.

6. Same as 4.

Client (P2) :
SecurityService

Target :
SecurityService

1: connect to target()

2: accept connection()

3: request(EstablishContext(0,,IT(absent),CAT(P2+password)))

4: reply(CompleteEstablishContext(0,FALSE))

6:reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,,IT(absent),CAT(P2+password)))
July 2002 CORBA, v3.0: Sample Message Flows and Scenarios 24-51

24
24.7.2.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {EstablishTrustInClient};
target_requires = {EstablishTrustInClient};
client_authentication_mech = GSSUPMechOID;
target_name = (GSSUPMechOID + name_scope);

};
sas_context_mech = {

target_supports = {};
...

};
};

};
};
24-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

he

S.
.

n for
24.7.3 Confidentiality, Trust in Server, and Trust in Client Established in t
Connection - Stateless Trust Association Established in Service
Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TS
CSS evaluates its trust in target authentication identity and decides to continue
Client (P2) authenticates to TSS in the handshake.

3. Send request (with stateless security service context element containing spoke
identity (P1) inidentity_token).

4. TSS validates that target trusts P2 to speak for P1.

5. Receive reply withCompleteEstablishContext service context element
indicating context (and request) was accepted.

6. Same as 3.

Intermediate (P2) :
SecurityService

1: connect to target()

3: request(EstablishContext(0,,IT(P1),))

6: request(EstablishContext(0,,IT(P1),))

8: reply(CompleteEstablishContext(0,FALSE))

2: accept connection(authenticate client P2)

5: reply(CompleteEstablishContext(0,FALSE))
apply trust
rule to validate
intermediary
(P2)

7:

4:

apply trust
rule to validate
intermediary
(P2)

Target :
SecurityService
July 2002 CORBA, v3.0: Sample Message Flows and Scenarios 24-53

24

king
the
for
the
7. Same as 4.

8. Same as 5.

24.7.3.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
 EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};

24.7.3.2 Validating the Trusted Server

If trust is not presumed, then the TSS shall evaluate the trustworthiness of the spea
for identity (i.e., the client identity established in the authentication layer(s) - P2 in
preceding example) in order to determine if it is authorized to speak for the spoken
identity (i.e., the non-anonymous identity represented as P1 in the identity token in
preceding example).
24-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24

in

ed,
24.7.3.3 Presuming the Security of the Connection

There are variants of this scenario where either no security is established in the
connection, or the connection is used to establish confidentiality only, and/or trust
the target only. These cases all fall under what is referred to as a presumed trust
association. Where the security of the connection and the party using it is presum
the TSS will not validate the trustworthiness of the speaking-for identity.

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInTarget};
target_requires = {Integrity, Confidentiality};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};
July 2002 CORBA, v3.0: Sample Message Flows and Scenarios 24-55

24

he

S.
.

for
24.7.4 Confidentiality, Trust in Server, and Trust in Client Established in t
Connection - Stateless Forward Trust Association Established in
Service Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TS
CSS evaluates its trust in target authentication identity and decides to continue
Intermediate (P2) authenticates to TSS in the handshake.

3. Send request with stateless security service context element containing spoken
identity (P1) inidentity_token , and trust rule from P1 inauthorization_token
delegating proxy to P2.

4. Receive reply withCompleteEstablishContext service context element
indicating context (and request) was accepted.

5. Same as 3.

Intermediate(P2) :
SecurityService

Target :
SecurityService

1: connect to target()

3: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),))

4: reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),))

6: reply(CompleteEstablishContext(0,FALSE))

2: accept connection(authenticate client P2)
24-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24
6. Same as 4.

24.7.4.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {IdentityAssertion, DelegationByClient};
target_requires = {};
privilege_authorities = {

ServiceConfigurationSyntax {
syntax = s;
name = n;

};
};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};

24.8 References for this Chapter

CORBASEC
CORBA Security Service, Revision 1.2, http://www.omg.org/docs/ptc/98-01-02

CORBA Security Service, Revision 1.5, http://www.omg.org/docs/ptc/98-12-03

CORBA Security Service, Revision 1.7, http://www.omg.org/docs/ptc/99-12-03
July 2002 CORBA, v3.0: References for this Chapter 24-57

24

.

IETF ID PKIXAC
An Internet Attribute Certificate Profile for Authorization, <draft-ietf-pkix-
ac509prof-05.txt>, S. Farrell, Baltimore Technologies, R. Housley, SPYRUS,
August 2000.

IETF RFC 2246
The TLS Protocol Version 1.0, T. Dierks, C. Allen, January 1999.

IETF RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile, R Housley, W
Ford, W. Polk, and D. Solo, January 1999.

IETF RFC 2743
Generic Security Service Application Program Interface Version 2, Update 1, J.
Linn, January 2000.

X.501-93
ITU-T Recommendation X.501: Information Technology - Open Systems
Interconnection - The Directory: Models, 1993.

24.9 IDL

24.9.1 Module GSSUP - Username/Password GSSAPI Token Formats

#ifndef _GSSUP_IDL_
#define _GSSUP_IDL_

import ::CSI;

module GSSUP {
typeprefix GSSUP “omg.org”;

// The GSS Object Identifier allocated for the
// username/password mechanism is defined below.
//
// { iso-itu-t (2) international-organization (23) omg (130)
// security (1) authentication (1) gssup-mechanism (1) }

const CSI::StringOID GSSUPMechOID = "oid:2.23.130.1.1.1";

// The following structure defines the inner contents of the
// username password initial context token. This structure is
// CDR encapsulated and appended at the end of the
// username/password GSS (initial context) Token.

struct InitialContextToken {
CSI::UTF8String username;
CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;
24-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24
};

typedef unsigned long ErrorCode;

// GSSUP Mechanism-Specific Error Token
struct ErrorToken {

ErrorCode error_code;
};

// The context validator has chosen not to reveal the GSSUP
// specific cause of the failure.
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

// The user identified in the username field of the
// GSSUP::InitialContextToken is unknown to the target.
const ErrorCode GSS_UP_S_G_NOUSER = 2;

// The password supplied in the GSSUP::InitialContextToken was
// incorrect.
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

// The target_name supplied in the GSSUP::InitialContextToken does
// not match a target_name in a mechanism definition of the target.
const ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

}; // GSSUP

#endif

24.9.2 Module CSI - Common Secure Interoperability

#ifndef _CSI_IDL_
#define _CSI_IDL_

module CSI {
typeprefix CSI “omg.org”;

// The OMG VMCID; same value as CORBA::OMGVMCID. Do not change ever.

const unsigned long OMGVMCID = 0x4F4D0;

// An X509CertificateChain contains an ASN.1 BER encoded SEQUENCE
// [1..MAX] OF X.509 certificates encapsulated in a sequence of octets. The
// subject’s certificate shall come first in the list. Each following
// certificate shall directly certify the one preceding it. The ASN.1
// representation of Certificate is as defined in [IETF RFC 2459].

typedef sequence <octet> X509CertificateChain;

// an X.501 type name or Distinguished Name encapsulated in a sequence of
// octets containing the ASN.1 encoding.

typedef sequence <octet> X501DistinguishedName;
July 2002 CORBA, v3.0: IDL 24-59

24
// UTF-8 Encoding of String

typedef sequence <octet> UTF8String;

// ASN.1 Encoding of an OBJECT IDENTIFIER

typedef sequence <octet> OID;

typedef sequence <OID> OIDList;

// A sequence of octets containing a GSStoken. Initial context tokens are
// ASN.1 encoded as defined in [IETF RFC 2743] Section 3.1,
// "Mechanism-Independent token Format", pp. 81-82. Initial context tokens
// contain an ASN.1 tag followed by a token length, a mechanism identifier,
// and a mechanism-specific token (i.e. a GSSUP::InitialContextToken). The
// encoding of all other GSS tokens (e.g. error tokens and final context
// tokens) is mechanism dependent.

typedef sequence <octet> GSSToken;

// An encoding of a GSS Mechanism-Independent Exported Name Object as
// defined in [IETF RFC 2743] Section 3.2, "GSS Mechanism-Independent
// Exported Name Object Format," p. 84.

typedef sequence <octet> GSS_NT_ExportedName;

typedef sequence <GSS_NT_ExportedName> GSS_NT_ExportedNameList;

// The MsgType enumeration defines the complete set of service context
// message types used by the CSI context management protocols, including
// those message types pertaining only to the stateful application of the
// protocols (to insure proper alignment of the identifiers between
// stateless and stateful implementations). Specifically, the
// MTMessageInContext is not sent by stateless clients (although it may
// be received by stateless targets).

typedef short MsgType;

const MsgType MTEstablishContext = 0;
const MsgType MTCompleteEstablishContext = 1;
const MsgType MTContextError = 4;
const MsgType MTMessageInContext = 5;

// The ContextId type is used carry session identifiers. A stateless
// application of the service context protocol is indicated by a session
// identifier value of 0.

typedef unsigned long long ContextId;

// The AuthorizationElementType defines the contents and encoding of
// the_element field of the AuthorizationElement.

// The high order 20-bits of each AuthorizationElementType constant
// shall contain the Vendor Minor Codeset ID (VMCID) of the
// organization that defined the element type. The low order 12 bits
24-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24
// shall contain the organization-scoped element type identifier. The
// high-order 20 bits of all element types defined by the OMG shall
// contain the VMCID allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long AuthorizationElementType;

// An AuthorizationElementType of X509AttributeCertChain indicates that
// the_element field of the AuthorizationElement contains an ASN.1 BER
// SEQUENCE composed of an (X.509) AttributeCertificate followed by a
// SEQUENCE OF (X.509) Certificate. The two-part SEQUENCE is encapsulated
// in an octet stream. The chain of identity certificates is provided
// to certify the attribute certificate. Each certificate in the chain
// shall directly certify the one preceding it. The first certificate
// in the chain shall certify the attribute certificate. The ASN.1
// representation of (X.509) Certificate is as defined in [IETF RFC 2459].
// The ASN.1 representation of (X.509) AtributeCertificate is as defined
// in [IETF ID PKIXAC].

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

typedef sequence <octet> AuthorizationElementContents;

// The AuthorizationElement contains one element of an authorization token.
// Each element of an authorization token is logically a PAC.

struct AuthorizationElement {
AuthorizationElementType the_type;
AuthorizationElementContents the_element;

};

// The AuthorizationToken is made up of a sequence of
// AuthorizationElements

typedef sequence <AuthorizationElement> AuthorizationToken;

typedef unsigned long IdentityTokenType;

// Additional standard identity token types shall only be defined by the
// OMG. All IdentityTokenType constants shall be a power of 2.

const IdentityTokenType ITTAbsent = 0;
const IdentityTokenType ITTAnonymous = 1;
const IdentityTokenType ITTPrincipalName = 2;
const IdentityTokenType ITTX509CertChain = 4;
const IdentityTokenType ITTDistinguishedName = 8;

typedef sequence <octet> IdentityExtension;

union IdentityToken switch (IdentityTokenType) {
case ITTAbsent: boolean absent;
case ITTAnonymous: boolean anonymous;
case ITTPrincipalName: GSS_NT_ExportedName principal_name;
case ITTX509CertChain: X509CertificateChain certificate_chain;
case ITTDistinguishedName: X501DistinguishedName dn;
default: IdentityExtension id;
July 2002 CORBA, v3.0: IDL 24-61

24
};

struct EstablishContext {
ContextId client_context_id;
AuthorizationToken authorization_token;
IdentityToken identity_token;
GSSToken client_authentication_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean context_stateful;
GSSToken final_context_token;

};

struct ContextError {
ContextId client_context_id;
long major_status;
long minor_status;
GSSToken error_token;

};

// Not sent by stateless clients. If received by a stateless server, a
// ContextError message should be returned, indicating the session does
// not exist.

struct MessageInContext {
ContextId client_context_id;
boolean discard_context;

};

union SASContextBody switch (MsgType) {
case MTEstablishContext: EstablishContext establish_msg;
case MTCompleteEstablishContext: CompleteEstablishContext

complete_msg;
case MTContextError: ContextError error_msg;
case MTMessageInContext: MessageInContext in_context_msg;

};

// The following type represents the string representation of an ASN.1
// OBJECT IDENTIFIER (OID). OIDs are represented by the string "oid:"
// followed by the integer base 10 representation of the OID separated
// by dots. For example, the OID corresponding to the OMG is represented
// as: "oid:2.23.130"

typedef string StringOID;

// The GSS Object Identifier for the KRB5 mechanism is:
// { iso(1) member-body(2) United States(840) mit(113554) infosys(1)
// gssapi(2) krb5(2) }

const StringOID KRB5MechOID = "oid:1.2.840.113554.1.2.2";

// The GSS Object Identifier for name objects of the Mechanism-independent
// Exported Name Object type is:
24-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24
// { iso(1) org(3) dod(6) internet(1) security(5) nametypes(6)
// gss-api-exported-name(4) }

const StringOID GSS_NT_Export_Name_OID = "oid:1.3.6.1.5.6.4";

// The GSS Object Identifier for the scoped-username name form is:
// { iso-itu-t (2) international-organization (23) omg (130) security (1)
// naming (2) scoped-username(1) }

const StringOID GSS_NT_Scoped_Username_OID = "oid:2.23.130.1.2.1";

}; // CSI

#endif

24.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions

#ifndef _CSIIOP_IDL_
#define _CSIIOP_IDL_

import ::IOP;
import ::CSI;

module CSIIOP {
typeprefix CIIOP “omg.org”;

// Association options

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;
const AssociationOptions IdentityAssertion = 1024;
const AssociationOptions DelegationByClient = 2048;

// The high order 20-bits of each ServiceConfigurationSyntax constant
// shall contain the Vendor Minor Codeset ID (VMCID) of the
// organization that defined the syntax. The low order 12 bits shall
// contain the organization-scoped syntax identifier. The high-order 20
// bits of all syntaxes defined by the OMG shall contain the VMCID
// allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long ServiceConfigurationSyntax;

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSI::OMGVMCID | 1;
July 2002 CORBA, v3.0: IDL 24-63

24
typedef sequence <octet> ServiceSpecificName;

// The name field of the ServiceConfiguration structure identifies a
// privilege authority in the format identified in the syntax field. If the
// syntax is SCS_GeneralNames, the name field contains an ASN.1 (BER)
// SEQUENCE [1..MAX] OF GeneralName, as defined by the type GeneralNames in
// [IETF RFC 2459]. If the syntax is SCS_GSSExportedName, the name field
// contains a GSS exported name encoded according to the rules in
// [IETF RFC 2743] Section 3.2, "Mechanism-Independent Exported Name
// Object Format," p. 84.

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

};

typedef sequence <ServiceConfiguration> ServiceConfigurationList;

// The body of the TAG_NULL_TAG component is a sequence of octets of
// length 0.

// type used to define AS layer functionality within a compound mechanism
// definition

struct AS_ContextSec {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID client_authentication_mech;
CSI::GSS_NT_ExportedName target_name;

};

// type used to define SAS layer functionality within a compound mechanism
// definition

struct SAS_ContextSec {
AssociationOptions target_supports;
AssociationOptions target_requires;
ServiceConfigurationList privilege_authorities;
CSI::OIDList supported_naming_mechanisms;
CSI::IdentityTokenType supported_identity_types;

};

// type used in the body of a TAG_CSI_SEC_MECH_LIST component to
// describe a compound mechanism

struct CompoundSecMech {
AssociationOptions target_requires;
IOP::TaggedComponent transport_mech;
AS_ContextSec as_context_mech;
SAS_ContextSec sas_context_mech;

};

typedef sequence <CompoundSecMech> CompoundSecMechanisms;
24-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

24
// type corresponding to the body of a TAG_CSI_SEC_MECH_LIST
// component

struct CompoundSecMechList {
boolean stateful;
CompoundSecMechanisms mechanism_list;

};

struct TransportAddress {
string host_name;
unsigned short port;

};

typedef sequence <TransportAddress> TransportAddressList;

// Tagged component for configuring SECIOP as a CSIv2 transport mechanism

const IOP::ComponentId TAG_SECIOP_SEC_TRANS = 35;

struct SECIOP_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID mech_oid;
CSI::GSS_NT_ExportedName target_name;
TransportAddressList addresses;

};

// tagged component for configuring TLS/SSL as a CSIv2 transport mechanism

const IOP::ComponentId TAG_TLS_SEC_TRANS = 36;

struct TLS_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
TransportAddressList addresses;

};

 }; //CSIIOP

#endif
July 2002 CORBA, v3.0: IDL 24-65

24
24-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

OMGIDLTags A
s
uld
This appendix lists the standardized profile, service, component, policy tags and
exception codes described in the CORBA documentation. Implementor-defined tag
can also be registered in this manual. Requests to register tags with the OMG sho
be sent totag_request@omg.org.

A.1 Profile ID Tags

Tag Name Tag Value Described in

ProfileId TAG_INTERNET_IOP = 0 ORB Interoperability Architecture chapter,
“Interoperable Object References: IORs”
section.

ProfileId TAG_MULTIPLE_COMPONENTS = 1 ORB Interoperability Architecturechapter, “An
Information Model for Object References”
section.

ProfileId TAG_SCCP_IOP = 2 CORBA/TC Interworking specification
(formal/00-01-01)
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-1

A

A.2 Service ID Tags

Tag Name Tag Value Described in

ServiceId TransactionService = 0 Transaction Service specification
(formal/01-11-03)

ServiceId CodeSets = 1 ORB Interoperability Architecture chapter,
“Code Set Conversion Framework” section.

ServiceId ChainBypassCheck = 2 Interoperability with non-CORBA Systems
chapter, “Chain Bypass” section.

ServiceId ChainBypassInfo = 3 Interoperability with non-CORBA Systems
chapter, “Chain Bypass” section.

ServiceId LogicalThreadId = 4 Interoperability with non-CORBA Systems
chapter, “Thread Identification” section.

ServiceId BI_DIR_IIOP = 5 General Inter-ORB Protocol chapter, “Bi-
Directional GIOP” section.

ServiceId SendingContextRunTime = 6 Value Type Semantics chapter, “Access to the
Sending Context Run Time” section.

ServiceId INVOCATION_POLICIES = 7 CORBA Messaging chapter, “Propogation of
Messaging QoS” section.

ServiceId FORWARDED_IDENTITY = 8 Firewall specification (orbos/98-05-04)

ServiceId UnknownExceptionInfo = 9 Java to IDL Language Mapping specification
(formal/01-06-07)

ServiceId RTCorbaPriority = 10 Real-Time CORBA, v1.1 (formal/02-xx-xx),
“Client Propagated Priority Model” section.

ServiceId RTCorbaPriorityRange = 11 Real-Time CORBA, v1.1 (formal/02-xx-xx),
“Binding of Priority Banded Connection”
section.

ServiceId FT_GROUP_VERSION = 12 Fault Tolerant CORBA chapter,
“TAG_FT_GROUP Component” section.

ServiceId FT_REQUEST= 13 Fault Tolerant CORBA chapter,
“FT_REQUEST Service Context” section.

ServiceId ExceptionDetailMessage = 14 ORB Interoperability Architecture chapter,
“Standard Service Contexts” section.

ServiceId SecurityAttributeService = 15 Secure Interoperability chapter, “The Security
Attribute Service Context Element” section.

ServiceId ActivityService = 16 Additional Structuring Mechanisms for the
OTS (orbos/01-11-08).

ServiceId RMICustomMaxStreamFormat = 17 Java to IDL Language Mapping specification
(formal/01-06-07).
A-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A

A.3 Component ID Tags

Tag Name Tag Value Described in

ComponentId TAG_ORB_TYPE = 0 ORB Interoperability Architecture chapter,
“TAG_ORB_TYPE Component” section.

ComponentId TAG_CODE_SETS = 1 ORB Interoperability Architecture chapter,
“Code Set Conversion Framework” section.

ComponentId TAG_POLICIES = 2 CORBA Messagingchapter, “Propogation of
Messaging QoS” section.

ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3 General Inter-ORB Protocol chapter, “IIOP
IOR Profile Components” section.

ComponentId TAG_COMPLETE_OBJECT_KEY = 5 The DCE ESIOP chapter, “Complete Object
Key Component” section.

ComponentId TAG_ENDPOINT_ID_POSITION = 6 The DCE ESIOP chapter, “Endpoint ID
Position Component” section.

ComponentId TAG_LOCATION_POLICY = 12 The DCE ESIOP chapter, “Location Policy
Component” section.

ComponentId TAG_ASSOCIATION_OPTIONS =13 Security Service specification
(formal/02-03-11)ComponentId TAG_SEC_NAME = 14

ComponentId TAG_SPKM_1_SEC_MECH = 15

ComponentId TAG_SPKM_2_SEC_MECH = 16

ComponentId TAG_KerberosV5_SEC_MECH = 17

ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18

ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

ComponentId TAG_SSL_SEC_TRANS = 20

ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21

ComponentId TAG_GENERIC_SEC_MECH = 22

ComponentId TAG_FIREWALL_TRANS = 23 Firewall specification (orbos/98-05-04)

ComponentId TAG_SCCP_CONTACT_INFO = 24 CORBA/TC Interworking specification
(formal/00-01-01)

ComponentId TAG_JAVA_CODEBASE = 25 Java to IDL Language Mapping specification
(formal/01-06-07)

ComponentId TAG_TRANSACTION_POLICY = 26 Object Transaction Service specification
(formal/01-11-03).

ComponentId TAG_ FT_GROUP= 27 Fault Tolerant CORBA chapter,
“TAG_FT_GROUP Component” section

ComponentId TAG_ FT_PRIMARY= 28 Fault Tolerant CORBA chapter,
“TAG_FT_PRIMARY Component” section.

ComponentId TAG_ FT_HEARTBEAT_ENABLED = 29 Fault Tolerant CORBA chapter,
“TAG_FT_HEARTBEAT_ENABLED”
section.
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-3

A

ComponentId TAG_MESSAGE_ROUTERS = 30 CORBA Messaging chapter, “Routing Object
References” section.

ComponentId TAG_OTS_POLICY = 31 Object Transaction Service specification
(formal/01-11-03)

ComponentId TAG_INV_POLICY = 32 Object Transaction Service specification
(formal/01-11-03)

ComponentId TAG_CSI_SEC_MECH_LIST = 33 Secure Interoperability chapter,
“TAG_CSI_SEC_MECH_LIST” section.

ComponentId TAG_NULL_TAG = 34 Secure Interoperabilitychapter,
“TAG_NULL_TAG” section.

ComponentId TAG_SECIOP_SEC_TRANS = 35 Secure Interoperability chapter,
“TAG_SECIOP_SEC_TRANS”

ComponentId TAG_TLS_SEC_TRANS = 36 Secure Interoperability chapter,
“TAG_TLS_SEC_TRANS” section.

ComponentId TAG_ACTIVITY_POLICY = 37 Additional Structuring Mechanisms for OTS
(orbos/01-11-08).

ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT =
38

Java-IDL

ComponentId TAG_DCE_STRING_BINDING = 100 The DCE ESIOP chapter, “DCE-CIOP String
Binding Component” section.

ComponentId TAG_DCE_BINDING_NAME = 101 The DCE ESIOPchapter, “DCE-CIOP Binding
Name Component” section.

ComponentId TAG_DCE_NO_PIPES = 102 The DCE ESIOP chapter, “DCE-CIOP No
Pipes Component” section.

ComponentId TAG_DCE_SEC_MECH = 103 Security Service specification
(formal/02-03-11)

ComponentId TAG_INET_SEC_TRANS = 123 Security Service specification
(formal/02-03-11)

Tag Name Tag Value Described in
A-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A

A.4 Policy Type Tags

The table below lists the standard policy types that are defined by various parts of
CORBA and CORBA Services in this version of CORBA/IIOP.

Policy Type Policy Interface Defined in
Uses
create
_polic
y

SecClientInvocationAccess = 1 SecurityAdmin::AccessPolicy Security
Service
(formal/
02-03-11)

N

SecTargetInvocationAccess = 2 SecurityAdmin::AccessPolicy N

SecApplicationAccess = 3 SecurityAdmin::AccessPolicy N

SecClientInvocationAudit = 4 SecurityAdmin::AuditPolicy N

SecTargetInvocationAudit = 5 SecurityAdmin::AuditPolicy N

SecApplicationAudit = 6 SecurityAdmin::AuditPolicy N

SecDelegation = 7 SecurityAdmin::Delegation Policy N

SecClientSecureInvocation = 8 SecurityAdmin::SecureInvocationPolicy N

SecTargetSecureInvocation = 9 SecurityAdmin::SecureInvocationPolicy N

SecNonRepudiation = 10 NRService::NRPolicy N

SecConstruction = 11 CORBA::SecConstruction CORBA Core -
ORB Interface
(chapter 4)

N

SecMechanismPolicy = 12 SecurityLevel2::MechanismPolicy Security
Service
(formal/
02-03-11)

Y

SecInvocationCredentialsPolicy = 13 SecurityLevel2::InvocationCredentialsPolicy Y

SecFeaturesPolicy = 14 SecurityLevel2::FeaturesPolicy Y

SecQOPPolicy = 15 SecurityLevel2::QOPPolicy Y

THREAD_POLICY_ID = 16 PortableServer::ThreadPolicy CORBA Core -
Portable Object
Adapter
(chapter 11)

Y

LIFESPAN_POLICY_ID = 17 PortableServer::LifespanPolicy Y

ID_UNIQUENESS_POLICY_ID = 18 PortableServer::IdUniquenessPolicy Y

ID_ASSIGNMENT_POLICY_ID = 19 PortableServer::IdAssignmentPolicy Y

IMPLICIT_ACTIVATION_POLICY_ID = 20 PortableServer::ImplicitActivationPolicy Y

SERVENT_RETENTION_POLICY_ID = 21 PortableServer::ServentRetentionPolicy Y

REQUEST_PROCESSING_POLICY_ID = 22 PortableServer::RequestProcessingPolicy Y
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-5

A

REBIND_POLICY_TYPE = 23 Messaging::RebindPolicy CORBA Core
Asynchronous
Messaging
(chapter 22)

Y

SYNC_SCOPE_POLICY_TYPE = 24 Messaging::SyncScopePolicy Y

REQUEST_PRIORITY_POLICY_TYPE = 25 Messaging::RequestPriorityPolicy Y

REPLY_PRIORITY_POLICY_TYPE = 26 Messaging::ReplyPriorityPolicy Y

REQUEST_START_TIME_POLICY_TYPE = 27 Messaging::RequestStartTimePolicy Y

REQUEST_END_TIME_POLICY_TYPE = 28 Messaging::RequestEndTimePolicy Y

REPLY_START_TIME_POLICY_TYPE = 29 Messaging::ReplyStartTimePolicy Y

REPLY_END_TIME_POLICY_TYPE = 30 Messaging::ReplyEndTimePolicy Y

RELATIVE_REQ_TIMEOUT_POLICY_TYPE =
31

Messaging::RelativeRequestTimeoutPolicy Y

RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32 Messaging::
RelativeRoundtripTimeout
Policy

Y

ROUTING_POLICY_TYPE = 33 Messaging::RoutingPolicy Y

MAX_HOPS_POLICY_TYPE =34 Messaging::MaxHopsPolicy Y

QUEUE_ORDER_POLICY_TYPE = 35 Messaging::QueueOrderPolicy Y

FIREWALL_POLICY_TYPE = 36 Firewall::FirewallPolicy Firewall
(orbos/
98-05-04)

Y

BIDIRECTIONAL_POLICY_TYPE = 37 BiDirPolicy::BidirectionalPolicy CORBA Core -
General Inter-
ORB Protocol
(chapter 15)

Y

SecDelegationDirectivePolicy = 38 SecurityLevel2::DelegtionDirectivePolicy Security
Service
(formal/
02-03-11)

Y

SecEstablishTrustPolicy = 39 SecurityLevel2::EstablishTrustPolicy Y

PRIORITY_MODEL_POLICY_TYPE = 40 RTCORBA::PriorityModelPolicy Real-Time
CORBA , v1.1
(formal/02-xx-
xx)

Y

THREADPOOL_POLICY_TYPE = 41 RTCORBA::ThreadpoolPolicy Y

SERVER_PROTOCOL_POLICY_TYPE = 42 RTCORBA::ServerProtocolPolicy Y

CLIENT_PROTOCOL_POLICY_TYPE = 43 RTCORBA::ClientProtocolPolicy Y

PRIVATE_CONNECTION_POLICY_TYPE = 44 RTCORBA::PrivateConnectionpolicy Y

PRIORITY_BANDED_CONNECTION_POLICY_
TYPE = 45

RTCORBA::
PriorityBandedConnection
Policy

Y

Policy Type Policy Interface Defined in
Uses
create
_polic
y

A-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A

a
se a
ut

ned
A.5 Exception Codes

If an exception that is to be raised for an error condition does not explicitly specify
specific standard minor code for that error condition, implementations can either u
minor code of zero, or use a vendor-specific minor code to convey more detail abo
the error.

The following table specifies standard minor exception codes that have been assig
for the standard system exceptions. The actual value that is to be found in theminor
field of the ex_body structure is obtained by or-ing the values in this table with the
OMGVMCID constant. For example “Missing local value implementation” for the
exceptionNO_IMPLEMENT would be denoted by theminor value0x4f4d0001 .

TransactionPolicyType = 46 CosTransactions::TransactionPolicy Object
Transaction
Service
(formal/
01-11-03)

Y

IMMEDIATE_SUSPEND_POLICY_TYPE = 50 valuetype MessageRouting::
ImmediateSuspend

CORBA Core-
Asynchronous
Messaging
(chapter 22)

N

UNLIMITED_PING_POLICY_TYPE = 51 valuetype MessageRouting::UnlimitedPing N

LIMITED_PING_POLICY_TYPE = 52 valuetype MessageRouting::LimitedPing N

DECAY_POLICY_TYPE = 53 valuetype MessageRouting::DecayPolicy N

RESUME_POLICY_TYPE = 54 valuetype MessageRouting::ResumePolicy N

INVOCATION_POLICY_TYPE = 55 CosTransactions::InvocationPolicy Object
Transaction
Service
(formal/
01-11-03)

Y

OTS_POLICY_TYPE = 56 CosTransactions::OTSPolicy Y

NON_TX_TARGET_POLICY_TYPE = 57 CosTransactions::NonTxTargetPolicy Y

ActivityPolicyType = 58 CORBA::PolicyType Additional
Structuring
Mechanisms
for OTS
(ptc/01-10-16)

Y

OSA_MANAGER_POLICY = 59 Security Domain
Membership
(orbos/01-06-01)

ODM_MANAGER_POLICY = 60 Security Domain
Membership
(orbos/01-06-01)

Policy Type Policy Interface Defined in
Uses
create
_polic
y

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-7

A

.

g

t

t.

to
.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

ACTIVITY_COMPLETED 1 Indicates that the Activity context in which the method call was
made has been completed due to a timeout of either the Activity
itself or a transaction that encompasses the Activity, or that the
Activity completed in a manner other than that originally requested

ACTIVITY_REQUIRED 1 Indicates that an Activity context was necessary to perform the
invoked operation, but one was not found associated with the callin
thread.

BAD_CONTEXT 1 IDL context not found.

2 No matching IDL context property.

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object.

2 Attempt to destroy indestructible objects in IFR.

3 Operation would deadlock.

4 ORB has shutdown

5 Attempt to invoke send or invoke operation of the same Reques
object more than once.

6 Attempt to set a servant manager after one has already been se

7 ServerRequest::arguments called more than once or after a call
ServerRequest:: set_exception.

8 ServerRequest::ctx called more than once or before
ServerRequest::arguments or after ServerRequest::ctx,
ServerRequest::set_result or ServerRequest::set_exception.

9 ServerRequest::set_result called more than once or before
ServerRequest::arguments or after ServerRequest::set_result or
ServerRequest::set_exception.

10 Attempt to send a DII request after it was sent previously.

11 Attempt to poll a DII request or to retrieve its result before the
request was sent.

12 Attempt to poll a DII request or to retrieve its result after the
result was retrieved previously.

13 Attempt to poll a synchronous DII request or to retrieve results
from a synchronous DII request.

14 Invalid portable interceptor call.

15 Service context add failed in portable interceptor because a
service context with the given id already exists.

16 Registration of PolicyFactory failed because a factory already
exists for the given PolicyType.
A-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A

ic

n

.

BAD_INV_ORDER 17 POA cannot create POAs while undergoing destruction

18 Attempt to reassign priority.

19 An OTS/XA integrationxa_start call returned
XAER_OUTSIDE.

20 An OTS/XA integrationxa_ call returnedXAER_PROTO.

BAD_OPERATION 1 ServantManager returned wrong servant type.

2 Operation or attribute not known to target object

BAD_PARAM 1 Failure to register, unregister, or lookup value factory.

2 RID already defined in IFR.

3 Name already used in the context in IFR.

4 Target is not a valid container.

5 Name clash in inherited context.

6 Incorrect type for abstract interface.

7 string_to_object conversion failed due to bad scheme name.

8 string_to_object conversion failed due to bad address.

9 string_to_object conversion failed due to bad bad schema specif
part.

10 string_to_object conversion failed due to non specific reason.

11 Attempt to derive abstract interface from non-abstract base
interface in the Interface Repository.

12 Attempt to let a ValueDef support more than one non-abstract
interface in the Interface Repository.

13 Attempt to use an incomplete TypeCode as a parameter.

14 Invalid object id passed to POA::create_reference_by_id.

15 Bad name argument in TypeCode operation.

16 Bad RepositoryId argument in TypeCode operation.

17 Invalid member name in TypeCode operation.

18 Duplicate label value in create_union_tc.

19 Incompatible TypeCode of label and discriminator in
create_union_tc.

20 Supplied discriminator type illegitimate in create_union_tc.

21 Any passed to ServerRequest::set_exception does not contain a
exception.

22 Unlisted user exception passed to ServerRequest::set_exception

23 wchar transmission code set not in service context.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-9

A

.

h-
BAD_PARAM 24 Service context is not in OMG-defined range.

25 Enum value out of range.

26 Invalid service context Id in portable interceptor

27 Attempt to call register_initial_reference with a null Object

28 Invalid component Id in portable interceptor

29 Invalid profile Id in portable interceptor

30 Two or more Policy objects with the same PolicyType value
supplied to Object::set_policy_overrides or
PolicyManager::set_policy_overrides.

31 Attempt to define a oneway operation with non-void result, out or
inout parameters or user exceptions.

32 DII asked to create request for an implicit operation.

33 An OTS/XA integrationxa_ call returnedXAER_INVAL .

34 Union branch modifier called with bad case label discriminator.

35 Illegal IDL context property name.

36 Illegal IDL property search string.

37 Illegal IDL context name.

38 Non-empty IDL context.

39 Unsupported RMI/IDL custom value type stream format.

40 ORB output stream does not support ValueOutputStream
interface.

41 ORB input stream does not support ValueInputStream interface

BAD_TYPECODE 1 Attempt to marshal incomplete TypeCode.

2 Member type code illegitimate in TypeCode operation.

3 Illegal parameter type.

DATA_CONVERSION 1 Character does not map to negotiated transmission code set.

2 Failure ofPriorityMapping object.

IMP_LIMIT 1 Unable to use any profile in IOR.

INITIALIZE 1 Priority range too restricted for ORB.

INTERNAL 1 An OTS/XA integrationxa_ call returnedXAER_RMERR.

2 An OTS/XA integrationxa_ call returnedXAER_RMFAIL .

INTF_REPOS 1 Interface Repository not available

2 No entry for requested interface in Interface Repository

INVALID_ACTIVITY 1 May be raised on the Activity or Transaction services' resume met
ods if a transaction or Activity is resumed in a context different to
that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity's
current state.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
A-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A

a

n

all
INV_OBJREF 1 wchar Code Set support not specified.

2 Codeset component required for type using wchar or wstring dat

INV_POLICY 1 Unable to reconcile IOR specified policy with effective policy
override.

2 Invalid PolicyType.

3 No PolicyFactory has been registered for the given PolicyType.

MARSHAL 1 Unable to locate value factory.

2 ServerRequest::set_result called before ServerRequest::ctx whe
the operation IDL contains a context clause.

3 NVList passed to ServerRequest::arguments does not describe
parameters passed by client.

4 Attempt to marshal Local object.

5 wchar or wstring data erroneosly sent by client over GIOP 1.0
connection

6 wchar or wstring data erroneously returned by server over GIOP
1.0 connection.

7 Unsupported RMI/IDL custom value type stream format.

NO_IMPLEMENT 1 Missing local value implementation.

2 Incompatible value implementation version.

3 Unable to use any profile in IOR.

4 Attempt to use DII on Local object.

5 Biomolecular Sequence Analysis iterator cannot be reset.

6 Biomolecular Sequence Analysis metadata is not available as
XML.

7 Genomic Maps iterator cannot be rest.

NO_RESOURCES 1 Portable Interceptor operation not supported in this binding.

2 No connection for request’s priority.

OBJ_ADAPTER 1 System exception in AdapterActivator::unknown_adapter.

2 Incorrect servant type returned by servant manager.

3 No default servant available [POA policy].

4 No servant manager available [POA Policy].

5 Violation of POA policy by ServantActivator::incarnate.

6 Exception inPortableInterceptor::
IORInterceptor.components_established .

7 Null servant returned by servant manager

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 A-11

A

t
OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an objec
reference.

2 Failed to create or locate Object Adapter.

3 Biomolecular Sequence Analysis Service is no longer available.

4 Object Adapter inactive.

TRANSACTION_ROLLEDBACK 1 An OTS/XA integrationxa_ call returnedXAER_RB .

2 An OTS/XA integrationxa_ call returnedXAER_NOTA .

3 OTS/XA integrationend was called with success set toTRUE
while transaction rollback was deferred.

TRANSIENT 1 Request discarded because of resource exhaustion in POA, or
because POA is indiscarding state.

2 No usable profile in IOR.

3 Request cancelled.

4 POA destroyed.

UNKNOWN 1 Unlisted user exception received by client.

2 Non-standard System Exception not supported.

3 An unkown user exception received by a portable interceptor

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
A-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Glossary
istent
xecu-

or-

ver

,
-

r,
oper-
r to

he
he
activation Preparing an object to execute an operation. For example, copying the pers
form of methods and stored data into an executable address space to allow e
tion of the methods on the stored data.

active replication All of the members of an object group independently execute the methods
invoked on the object, so that if a fault prevents one replica from operating c
rectly, the other replicas will produce the required results without the delay
incurred by recovery.

active replication with voting Active replication where the requests (replies) from the members of a client
(server) object group are voted, and are delivered to the members of the ser
(client) object group only if a majority of the requests (replies) are identical.

adapter Same as object adapter.

application-controlled consistency A ConsistencyStyle in which the application is responsible for checkpointing
logging, activation and recovery, and for maintaining whatever kind of consis
tency is appropriate for the application.

application-controlled membership A MembershipStyle in which the application, or an application-level manage
can create a member of the object group and then invoke the add_member()
ation of the ObjectGroupManager interface to cause the Replication Manage
add the member to the group. Alternatively, the application can invoke the
create_member() operation of the ObjectGroupManager interface to cause t
Replication Manager to create the member and add it to the object group. T
application is responsible for enforcing the InitialNumberReplicas and Mini-
mumNumberReplicas properties.

attribute An identifiable association between an object and a value. An attributeA is made
visible to clients as a pair of operations:get_A andset_A . Readonly attributes
only generate aget operation.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-1

e
pri-

ding
on,

or-

ssibly
he

2,

ally

des

ate

e pri-
en

s.
.

nce

ior
n of
backup member In passive replication, a member of an object group that does not execute th
methods invoked on the object group but is available to assume the role of the
mary member in the event of a fault.

behavior The observable effects of an object performing the requested operation inclu
its results binding. See language binding, dynamic invocation, static invocati
or method resolution for alternatives.

byzantine fault A form of commission fault that occurs when an object or host generates inc
rect results maliciously.

causal order Causal order ensures that if a multicast message m1 could have caused, po
indirectly, a message m2 then no object receives m2 before it receives m1. T
causally precedes relation is the transitive closure of:

• If message m1 is delivered to object replica O before O sends message m
then m1 causally precedes m2.

• If object replica O sends message m1 before message m2, then m1 caus
precedes m2.

• If both m1 and m2 are delivered to object replica O, and m1 causally prece
m2, then m1 is delivered to O before m2.

checkpoint A snapshot of the state of an object.

checkpoint interval An interval of time (in seconds and nanoseconds) between writing the full st
of an object to a log.

class See interface and implementation for alternatives.

client The code or process that invokes an operation on an object.

cold passive replication A form of passive replication in which only one replica, the primary replica, in
the object group executes the methods invoked on the object. The state of th
mary replica is extracted from the log and is loaded into the backup replica wh
needed for recovery.

commission fault A commission fault occurs when an object or host generates incorrect result
Commission faults must be handled by active replication with majority voting

ConsistencyStyle The value of the ConsistencyStyle is either CONS_INF_CTRL or
CONS_APP_CTRL.

context object A collection of name-value pairs that provides environmental or user-prefere
information.

CORBA Common Object Request Broker Architecture.

data type A categorization of values operation arguments, typically covering both behav
and representation (i.e., the traditional non-OO programming language notio
type).

deactivation The opposite of activation.
Glossary-2 Common Object Request Broker Architecture, v3.0 July 2002

oes
ay

f an

-
a dis-

pas-
in-

nce

ntil

ts

e in

he
spec-

r of
t.

ca-
ort.

f an
t, if

e
 net-
ccu-
ly

,
s

ns
ed
deferred synchronous request A request where the client does not wait for completion of the request, but d
intend to accept results later. Contrast with synchronous request and one-w
request.

distributed logging A logging strategy in which a co-located log is maintained for each replica o
object.

domain A concept important to interoperability, it is a distinct scope, within which com
mon characteristics are exhibited, common rules observed, and over which
tribution transparency is preserved.

duplicates Duplicate requests and duplicate replies can arise in active replication and in
sive replication when the primary fails and a new primary is introduced. To ma
tain exactly once semantics and strong replica consistency, the Fault Tolera
Infrastructure provides mechanisms to detect and suppress duplicates.

dynamic invocation Constructing and issuing a request whose signature is possibly not known u
run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle reques
whose signatures are possibly not known until run-time.

externalized object reference An object reference expressed as an ORB-specific string. Suitable for storag
files or other external media.

failure A failure is the event of a system’s generating a result that does not satisfy t
system specification or not generating a result that is required by the system
ification. A failure is defined by the system specification, without reference to
any enclosing system of which the system is a component.

fault A fault is behavior of a component of a system that causes incorrect behavio
the system. A fault is the external manifestation of a failure of the componen

fault analyzer A component of the Fault Tolerance Infrastructure that registers for fault notifi
tions and aggregates multiple related fault notifications into a single fault rep

fault containment region One or more locations that can be affected by a single fault. Each member o
object group is assigned to a different fault containment region to ensure tha
one member incurs a fault, the other members are not affected.

fault monitor A component of the system, also known as a Fault Detector, that monitors th
occurrence of faults in other entities, such as objects, hosts, processes, and
works. Fault detectors are typically based on timeouts and are unreliable (ina
rate) because they cannot determine whether an entity has failed or is mere
slow.

FaultMonitoringGranularity The value of the FaultMonitoringGranularity of an object group is either MEMB
LOC, or LOC_AND_TYPE. The FaultMonitoringGranularity provides a mean
of scalably monitoring the members of many object groups.

FaultMonitoringIntervalAndTimeout The value of the FaultMonitoringIntervalAndTimeout is a structure that contai
an interval of time between successive pings of an object, and the time allow
for subsequent responses from the object to determine whether it is faulty.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-3

ults.
ult

an
, or
ort

of a
s if

ter-
o, to
ent

tect
solete.

that
ut-

s

lti-
and

em-
s are

ter-
o, to
ent

that
FaultMonitoringStyle The value of the FaultMonitoringStyle is either PULL, PUSH, or
NOT_MONITORED.

fault tolerance The ability to provide continuous service, unperturbed by the presence of fa
In contrast, with high availability, existing operations can be disrupted by a fa
but subsequent new operations, or retired existing operations, are serviced.

fault tolerance domain For scalability, large applications are divided into multiple fault tolerance
domains, each managed by a single Replication Manager. The members of
object group are located within a single fault tolerance domain but can invoke
can be invoked by, objects of other fault tolerance domains. A host can supp
objects from multiple fault tolerance domains.

fault transparency A server object group is fault transparent to a client object if, in the presence
faulty server replica, the server object group interacts with the client object a
there were no faults.

FT_GROUP_VERSION Service Context A service context, included in a request message, that allows a server to de
mine whether the client is using an obstacle object group reference and, if s
return a LOCATION_FORWARD_PERM response that contains the most rec
object reference for the server object group.

FT_REQUEST Service Context A service context, included in a request message, that allows a server to de
and suppress duplicate requests and to garbage collect requests that are ob

gateway A gateway provides access into a fault tolerance domain for objects outside
domain, and provides protocol conversion between the IIOP protocol used o
side the fault tolerance domain and the group communication protocol used
inside that domain.

GenericFactory An interface of the Replication Manager that creates object groups, as well a
individual members of object groups.

group communication protocol A protocol that provides communication between object groups, typically mu
casting, reliable delivery, causal ordering, total ordering, group membership,
virtual synchrony.

group membership The set of members of a group, which may change dynamically in time, as m
bers fail and are removed from the group and as new and recovered member
added.

FT_GROUP_VERSION Service Context A service context, included in a request message, that allows a server to de
mine whether the client is using an obstacle object group reference and, if s
return a LOCATION_FORWARD_PERM response that contains the most rec
object reference for the server object group.

HEARTBEAT_POLICY A client-side policy that allows a client to request heartbeating to determine
its connection to a server has failed.

HEARTBEAT_ENABLED_POLICY A server-side policy that allows a client to determine that its connection to a
server has failed.
Glossary-4 Common Object Request Broker Architecture, v3.0 July 2002

w
-
sent
that

-
dor-

ple-

ts

in

for
ep-

 to
cto-
both

s.

 of

es
le-

the
fini-

the

es.
implementation A definition that provides the information needed to create an object and allo
the object to participate in providing an appropriate set of services. An imple
mentation typically includes a description of the data structure used to repre
the core state associated with an object, as well as definitions of the methods
access that data structure. It will also typically include information about the
intended interface of the object.

implementation definition language A notation for describing implementations. The implementation definition lan
guage is currently beyond the scope of the ORB standard. It may contain ven
specific and adapter-specific notations.

implementation inheritance The construction of an implementation by incremental modification of other
implementations. The ORB does not provide implementation inheritance. Im
mentation inheritance may be provided by higher level tools.

implementation object An object that serves as an implementation definition. Implementation objec
reside in an implementation repository.

implementation repository A storage place for object implementation information.

incremental state transfer A form of state transfer that is used for transferring large states of an object
fragments.

Infrastructure-Controlled Consistency A ConsistencyStyle in which the Fault Tolerance Infrastructure is responsible
checkpointing, logging, activation and recovery and for maintaining Strong R
lica Consistency.

Infrastructure-Controlled Membership A MembershipStyle in which the application directs the Replication Manager
create the object group and the Replication Manager invokes the individual fa
ries, for the appropriate locations, to create the members of the object group
initially to satisfy the InitialReplicas property and after the loss of a member
because of a fault to satisfy the MinimumNumberReplicas property.

inheritance The construction of a definition by incremental modification of other definition
Seeinterface andimplementation inheritance.

InitialNumberReplicas The InitialNumberReplicas property of an object group specifies the number
replicas of the object to be created when the object group is first created.

instance An object is an instance of an interface if it provides the operations, signatur
and semantics specified by that interface. An object is an instance of an imp
mentation if its behavior is provided by that implementation.

interface A listing of the operations and attributes that an object provides. This includes
signatures of the operations, and the types of the attributes. An interface de
tion ideally includes the semantics as well. An objectsatisfies an interface if it
can be specified as the target object in each potential request described by
interface.

interface inheritance The construction of an interface by incremental modification of other interfac
The IDL language provides interface inheritance.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-5

 inter-

er

-

t

ry is

ons

es-
 of
ges to
ges

o one

lest
ce.

min-

nd
ient
ates.

trac-
e of
interface object An object that serves to describe an interface. Interface objects reside in an
face repository.

interface repository A storage place for interface information.

interface type A type satisfied by any object that satisfies a particular interface.

interoperability The ability for two or more ORBs to cooperate to deliver requests to the prop
object. Interoperating ORBs appear to a client to be a single ORB.

language binding or mapping The means and conventions by which a programmer writing in a specific pro
gramming language accesses ORB capabilities.

location A set of hosts that form a single fault containment region. Members of objec
groups are created at different locations.

log A record of messages and object states that is created to ensure that recove
possible after a fault.

LoggingMechanism A component of the Fault Tolerance Infrastructure that records all of the acti
of an object group in a log.

MembershipStyle The value of the MembershipStyle of an object group is either
MEMB_INF_CTRL or MEMB_APP_CTRL.

membership handling mechanism A component of the Fault Tolerance Infrastructure that ensures that GIOP m
sages addressed to object groups are delivered to the appropriate members
those groups. It detects and suppresses duplicate messages, passes messa
the Logging Mechanism to put into the log, and applies to the objects messa
that the Recovery Mechanism has retrieved from the log.

method An implementation of an operation. Code that may be executed to perform a
requested service. Methods associated with an object may be structured int
or more programs.

method resolution The selection of the method to perform a requested operation.

MinimumNumberReplicas The MinimumNumberReplicas property of an object group specifies the smal
number of replicas of the object needed to maintain the desired fault toleran
The application or the Replication Manager creates additional replicas of the
object to ensure that the number of replicas does not fall below the specified
imum number.

multicasting For replicated client and server objects, messages are originated by a client
(server) within a client (server) object group and are multicast to the client a
server object groups. Messages are delivered to the members of both the cl
and server object groups to facilitate the detection and suppression of duplic

multiple inheritance The construction of a definition by incremental modification of more than one
other definition.

object A combination of state and a set of methods that explicitly embodies an abs
tion characterized by the behavior of relevant requests. An object is an instanc
Glossary-6 Common Object Request Broker Architecture, v3.0 July 2002

d it
tions
r-

rs

r

es

 a
ject
 par-
 set-

P
d
-

 pas-

em-

r

s it
chro-

hich

ive
an implementation and an interface. An object models a real-world entity, an
is implemented as a computational entity that encapsulates state and opera
(internally implemented as data and methods) and responds to request or se
vices.

object adapter The ORB component which provides object reference, activation, and state
related services to an object implementation. There may be different adapte
provided for different kinds of implementations.

object creation An event that causes the existence of an object that is distinct from any othe
object.

object destruction An event that causes an object to cease to exist.

object group A set of member objects, each of which implements the same set of interfac
and has the same implementation code.

ObjectGroupManager An interface of the Replication Manager that contains operations for creating
member of an object group at a particular location, adding a member to an ob
group at a particular location, removing a member from an object group at a
ticular location, getting the locations of the members of an object group, and
ting the primary member of a passively replicated object group.

object group reference An interoperable object reference that contains multiple TAG_INTERNET_IO
profiles that represent primary and backup members of a passively replicate
object group or that represent gateways. All of the TAG_INTERNET_IOP pro
files contain a TAG_FT_GROUP component that contains the fault tolerance
domain identifier, object group identifier, and object group reference version
number for the server object group. If the profiles are those of members of a
sively replicated server object group, then one of the profiles contains the
TAG_FT_PRIMARY component for the profile that addresses the primary m
ber of the server object group.

object implementation Same as implementation.

object reference A value that unambiguously identifies an object. Object references are neve
reused to identify another object.

objref An abbreviation for object reference.

one-way request A request where the client does not wait for completion of the request, nor doe
intend to accept results. Contrast with deferred synchronous request and syn
nous request.

operation A service that can be requested. An operation has an associated signature, w
may restrict which actual parameters are valid.

operation name A name used in a request to identify an operation.

ORB Object Request Broker. Provides the means by which clients make and rece
requests and responses.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-7

been
pli-

ject

ods

and

ine

e.

inue

ber
ary

ed

iated

to

xactly

e
c-

per
ni-
e

ORB core The ORB component which moves a request from a client to the appropriate
adapter for the target object.

parameter passing mode Describes the direction of information flow for an operation parameter. The
parameter passing modes are IN, OUT, and INOUT.

passive replication Only the primary member of an object group executes the methods that have
invoked on the object group. The object group contains additional backup re
cas.

persistent object An object that can survive the process or thread that created it. A persistent ob
exists until it is explicitly deleted.

portable object adapter The object adapter described in Chapter 9.

primary member In passive replication, the member of an object group that executes the meth
invoked on the object group.

property manager An interface of the Replication Manager that contains operations for setting
getting the fault tolerance properties.

pull monitor A Fault Monitor that interrogates the monitored object periodically to determ
whether it is alive.

push monitor A Fault Monitor to which the monitored object periodically reports that it is aliv

recovery The restoration of the state of a member of an object group so that it can cont
the operation of the object group.

recovery mechanism A component of the Fault Tolerance Infrastructure that sets the state of a mem
of an object group, either when a backup member is promoted to be the prim
member after a fault occurs, or alternatively when a new member is introduc
into the group.

referential integrity The property ensuring that an object reference that exists in the state assoc
with an object reliably identifies a single object.

reliable delivery Every message addressed to a group, or originated by a group, is delivered
every member of the group, except for members suspected of being faulty.

replica determinism Replica determinism requires that two or more members of an object group,
when presented with the same sequence of requests and replies, behave in e
the same manner.

replication The fundamental technique used in building fault-tolerant systems.

replication manager A component of the Fault Tolerance Infrastructure that provides access to th
Fault Notifier and that inherits three interfaces. PropertyManager, GenericFa
tory and ObjectGroupManager. Logically, there is one Replication Manager
fault tolerance domain. The Replication Manager interacts with the Fault Mo
tors and Fault Notifier, and with the Logging and Recovery Mechanisms of th
Fault Tolerance Infrastructure.
Glossary-8 Common Object Request Broker Architecture, v3.0 July 2002

ut

sts of

to

tus
o

be a

te

ta
mal

.

er in

an
he
will

 A
s to a

-

ReplicationStyle The value of the ReplicationStyle of an object group is either STATELESS,
COLD_PASSIVE, WARM_PASSIVE, ACTIVE, or ACTIVE_WITH_VOTING.

replication transparency A client object is unaware that it is interacting with a group of server objects, b
rather ‘‘thinks’’ that it is interacting with an individual server object.

repository See interface repository and implementation repository.

repository identifier The identifier of a type within the Interface Repository.

request A client issues a request to cause a service to be performed. A request consi
an operation and zero or more actual parameters.

REQUEST_DURATION_POLICY A client-side policy that defines the time interval over which a client’s request
a server remains valid and should be retained by the server ORB to detect
repeated requests.

results The information returned to the client, which may include values as well as sta
information indicating that exceptional conditions were raised in attempting t
perform the requested service.

server A process implementing one or more operations on one or more objects.

server object An object providing response to a request for a service. A given object may
client for some requests and a server for other requests.

shared logging A logging strategy in which the primary member of an object group logs its sta
by writing the log records onto stable storage.

signature Defines the parameters of a given operation including their number order, da
types, and passing mode; the results if any; and the possible outcomes (nor
vs. exceptional) that might occur.

single inheritance The construction of a definition by incremental modification of one definition
Contrast with multiple inheritance.

skeleton The object-interface-specific ORB component which assists an object adapt
passing requests to particular methods.

state The time-varying properties of an object that affect that object’s behavior.

state transfer In both passive and active replication, when a new or recovered member of
object group is activated, a state transfer is required to transfer the state of t
object to the new or recovered member, so that the new or recovered member
have the same state as the other members of the object group.

stateless object The behavior of a stateless object is unaffected by its history of invocations.
typical example of a stateless object is a server that provides read-only acces
database.

static invocation Constructing a request at compile time. Calling an operation via a stub proce
dure.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-9

 an
ber-

f
 state.
ach

roup

tion

rast

ns
ref-

, is

, and
r-
e.

red

ore

that

tes

ing
ct
ay,
strong membership consistency Strong Membership Consistency means that, for each method invocation on
object group, the Fault Tolerance Infrastructure on all hosts agree on the mem
ship of the object group.

strong replica consistency For passive replication, Strong Replica Consistency means that, at the end o
each state transfer, each of the members of the object group have the same
For active replication, Strong Replica Consistency means that, at the end of e
method invocation on the object group, each of the members of the object g
have the same state.

stub A local procedure corresponding to a single operation that invokes that opera
when called.

synchronous request A request where the client pauses to wait for completion of the request. Cont
with deferred synchronous request and one-way request.

TAG_FT_GROUP Component A component of all of the profiles of the Object Group Reference that contai
the fault tolerance domain identifier, object group identifier, and object group
erence version number of the server object group with that reference.

TAG_FT_HEARTBEAT_ENABLED A component of a TAG_INTERNET_IOP profile of an object group
Component reference that indicates that a member of a server object group, or gateway

heartbeat enabled.

TAG_FT_PRIMARY Component A component of one of the TAG_INTERNET_IOP profiles of an object group
reference that is intended to address the primary member of the object group
that indicates that this TAG_INTERNET_IOP profile should be used in prefe
ence to other TAG_INTERNET_IOP profiles within the object group referenc

total order Theordered beforerelation is the transitive closure of:

• If message m1 is delivered to object replica O before message m2 is delive
to O, then m1 is ordered before m2.

• If message m1 precedes message m2, then m1 is ordered before m2.

• If both m1 and m2 are delivered to object replica O, and m1 is ordered bef
m2, then m1 is delivered to O before m2 is delivered to O.

The ordered before relation is acyclic.

transient object An object whose existence is limited by the lifetime of the process or thread
created it.

type Seedata type andinterface.

unique primary replica For passive replication, one and only one member of the object group execu
the methods invoked on the object group.

unreplicated client object An unreplicated client object communicates with a replicated server object us
IIOP. The client may communicate directly with a member of the server obje
group or, if multicasting is provided, the client may communicate with a gatew
which then multicasts the message to the server object group.
Glossary-10 Common Object Request Broker Architecture, v3.0 July 2002

erve

er-
ber-

itial-
mes-
 next
e

bers
e
riod-
value Any entity that may be a possible actual parameter in a request. Values that s
to identify objects are called object references.

virtual synchrony If object replicas O1 and O2 are in the same view of the object group memb
ship M and they transition together to the next view of the object group mem
ship M’, then the same messages are delivered to O1 and O2 while they are
members of M. Virtual synchrony is used to ensure that a state transfer to in
ize a new member of object group membership M occurs at the point in the
sage order corresponding to a membership change. Thus, at the start of the
view of the object group membership M’, all of the members in M’ will have th
same state.

warm passive replication A form of passive replication in which only the primary member executes the
methods invoked on the object group by the client objects. Several other mem
operate as backups. The backups do not execute the methods invoked on th
object group; rather, the state of the primary is transferred to the backups pe
ically.
July 2002 Common Object Request Broker Architecture, v3.0 Glossary-11

Glossary-12 Common Object Request Broker Architecture, v3.0 July 2002

n that
rs and
CORBA 3 Chapter Map

The following chapters represent the structure of the CORBA 3.0 specification. This is a new versio
includes changes as shown in the table below. You will find specific changes marked with change ba
colored text in the change bar version of CORBA 3.0.

CORBA 3.0 chapters: Changes based on these OMG documents:

 1. The Object Model unchanged

 2. CORBA Overview unchanged

 3. OMG IDL Syntax and Semantics CORE RTF, Components FTF

 4. ORB Interface CORE RTF, Components FTF, Object Reference Tem-
plate available specification

 5. Value Type Semantics unchanged

 6. Abstract Interface Semantics editorial changes only

 7. Dynamic Invocation Interface CORE 12/2000 RTF, Components specification

 8. Dynamic Skeleton Interface unchanged

 9. Dynamic Management of Any Values CORE 12/2000 RTF, Components specification

10. Interface Repository CORE 12/2000 RTF, Interop 12/2000 RTF, Components
specification + FTF

11. Portable Object Adapter CORE RTF, Components specification, Objecr Reference
Template available specification

12. Interoperability Overview unchanged

13. ORB Interoperability Architecture CORE/Interop 12.2000 RTF, Components specification +
FTF, Object Reference Template available specification

14. Building Inter-ORB Bridges unchanged

15. General Inter-ORB Protocol CORE/Interop RTF, Components specification

16. The DCE ESIOP unchanged

17. Interworking Architecture unchanged

18. Mapping: COM and CORBA unchanged

19. Mapping: OLE Automation and CORBA unchanged

20. Interoperability with non-CORBA Systems unchanged

21. Portable Interceptors CORE 12/2000 RTF, Object Reference Template available
specification

22. CORBA Messaging CORE 12/2000 RTF

23. Minimum CORBA removed - now a stand-alone document (formal/02-xx-xx)

24. Real-Time CORBA removed - now a stand-alone document (formal/02-xx-xx)
CORE 12/2000 RTF

23. Fault Tolerant CORBA text unchanged, chapter was renumbered

24. Secure Interoperability text unchanged, chapter was renumbered

Appendix A - OMG IDL Tags CORE RTF, Components FTF

Glossary, Index updated
CORBA 3 Chapter Map June 18, 2002 1

A 3.0

ents

ents
Approved OMG Documents

The following is an alphabetical list of the approved technology documents that comprise the CORB
release:

• Core RTF 12/2000
ptc/02-01-13 - Final report
ptc/02-01-14 - Core 3.0 draft changed chapters CORBA 2.6 + Core 12/2000 RTF + Compon
 FTF
ptc/02-01-15 - CORBA Core 3.0 IDL

• Interop RTF 12/2000
ptc/02-01-14 - Core 3.0 draft changed chapters CORBA 2.6 + Core 12/2000 RTF + Compon
 FTF
ptc/02-01-15 - CORBA Core 3.0 IDL
ptc/02-01-18 - Interop RTF Report

• Components
ptc/00-12-05 - FTF Final report
ptc/01-11-03 - updated CCM specification

• Object Reference Template
ptc/01-08-31 - Final adopted specification
ptc/01-10-23 - FTF Final report
ptc/01-01-04 - submission
2 September 18, 2002 CORBA 3 Chapter Map

Index
A
abstract interface 1-7
Abstract Interfaces

Semantics of 6-1
Abstract interfaces 6-1
Abstract Model Description

Dynamic Skeleton Interface 11-13
Implicit Activation 11-10
Location Transparency 11-14
Model Architecture 11-4
Model Components 11-2
Multi-threading 11-11
Object Activation States 11-8
POA Creation 11-6
Reference Creation 11-7
Request Processing 11-9

abstract object model 1-1
AbstractInterfaceDef 10-39, 10-41
activation 1-10
ACTIVE 22-62
AdapterActivator 11-7
add_pollable 7-15
Aggregation of Automation Views 19-38
AliasDef 10-28

OMG IDL for 10-28
alignment 15-11
AMI/TII Abstract Model Design 22-75
AMI/TII abstract model design 22-75
any type 3-39, 7-2, 15-29, 18-9, 18-39
Any values

dynamic management overview 9-2
array

sample mapping to OLE collection 19-49
syntax of 3-46

ArrayDef 10-31
OMG IDL for 10-31

associated_handler 22-25
Async Operation Mapping 22-16
async operation mapping 22-16
Asynchronous Method Invocation (AMI) 22-75
Asynchronous Method Invocation Components 22-75
Asynchronous Method Signatures 22-30
asynchrony

and narrowing of object references 22-81
AsyncOperation Mapping

Callback Model Signatures (sendc) 22-16
Polling Model Signatures (sendp) 22-18

attribute
defined 1-9
mapped to OLE 19-4
mapping to COM 18-24
mapping to OLE Automation 17-10

attribute associated_handler 22-52
Attribute Declaration 3-53
attribute declaration

syntax of 3-53
Attribute_Def

OMG IDL for 10-32
AttributeDef 10-32, 10-33
Automation View Dual interface, default name 17-31
Automation View interface 19-3, 19-15

non-dual 19-36
Automation View Interface as a Dispatch Interface

(Nondual) 19-36
Automation View interface class id 17-32
Automation View interface, default name 17-30

B
backoff_factor 22-63
base interface 3-23
base_interval_seconds 22-63
basic object adapter 19-38
Basic types 1-4
Basic Type-Specific Poller 22-26
Basics

Interface Repository Objects 10-6
Names and Identifiers 10-6
Structure and Navigation of the Interface Repository 10-8
Types and TypeCodes 10-6

Bi-Directional GIOP 15-56
Bi-Directional IIOP 15-58

Bi-directional GIOP policy 15-60
big-endian 15-7
binding 17-20
Binding and Life Cycle 17-20
BindingIterator interface 19-59
blocking 22-51
body 22-49
boolean 19-59
boolean is_a operation

OMG PIDL for 4-16
boolean types 3-39, 15-10
Bootstrapping Bridges 14-7
bridge

architecture of inter-ORB 13-2
in networks 13-11
inter-domain 13-9
inter-ORB 12-2, 12-5, 13-6
locality 17-33

Bridging 14-2
bridging techniques 13-8

C
C++

sample COM mapping 18-16
C++ Language

Usage in 9-26
Callback Model

Exception Delivery 22-20
exception delivery in 22-20
signatures 22-16

Callback Model Detailed Design 22-78
CDR 15-4

features of 15-3
CDR Transfer Syntax 15-4

Alignment 15-5
Boolean 15-10
Character Types 15-10
Encapsulation 15-14
Floating Point Data Types 15-7
Integer Data Types 15-6
Object References 15-30
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-1

Index
Octet 15-10
OMG IDL Constructed Types 15-11
Primitive Types 15-5
Pseudo-Object Types 15-23
Value Types 15-15

Chain Avoidance
COM Chain Avoidance 20-17
CORBA Chain Avoidance 20-16

Chain Bypass
COM Chain Bypass 20-20
CORBA Chain Bypass 20-19
Thread Identification 20-21

char type 3-39
Client

Structure 2-12
client 2-7
Client Stubs 2-9
Clients 2-7
client-side components

Asynchronous Method Invocation (AMI) 22-75
Poller 22-75
ReplyHandler 22-75

client-side policies 22-72
CLSID 17-32, 18-44
Collocated ORBs 14-4
COM 18-2

described 17-4
COM to CORBA Data Type Mapping

Inheritance Mapping 18-50
Interface Mapping 18-44
Mapping for Array Types 18-40
Mapping for Basic Data Types 18-33
Mapping for bounded string types 18-36
Mapping for COM Errors 18-44
Mapping for Constants 18-34
Mapping for Encapsulated Unions 18-38
Mapping for Enumerators 18-34
Mapping for Interface Identifiers 18-44
Mapping for nonencapsulated unions 18-39
Mapping for nonfixed arrays 18-40
Mapping for Operations 18-47
Mapping for Pointers 18-43
Mapping for Properties 18-48
Mapping for Read-Only Attributes 18-49
Mapping for Read-Write Attributes 18-49
Mapping for SAFEARRAY 18-40
Mapping for String Types 18-35
Mapping for Structure Types 18-37
Mapping for unbounded string types 18-35
Mapping for unicode bound string types 18-37
Mapping for Unicode Unbounded String Types 18-36
Mapping for Union Types 18-38
Mapping for VARIANT 18-41
Mapping of Names 18-47
Mapping of Nested Data Types 18-47
Type Library Mapping 18-52

COM View interface,default tag 17-30
COM/CORBA Interworking

Compliance to 17-34
COM/CORBA Part A 20-2

Common Data Representation
see CDR

Common Data Representation (CDR) 15-3
Common Data Structures 7-2
Complex Declarator

Arrays 3-46
Deprecated Anonymous Types 3-47

component
tags for A-1

Component Design 22-73
Component Object Model

see COM 17-4
Component Relationships 22-73, 22-76
concrete object model 1-1
Conformance Issues 22-84

CORBA Clients for DCOM Servers 20-3
Performance Issues 20-3
Scalability Issues 20-3

ConnectionPoint Service 19-52
Consistency 20-9
Constant Declaration

Semantics 3-33
Syntax 3-32

constant declaration
syntax of 3-32

ConstantDef 10-25
constructed data types 15-11
Constructed Recursive Types 3-41
Constructed types 1-5
Contained interface

OMG IDL for 10-14
Container interface 10-11

OMG IDL for 10-16
containment 13-6
Conventions for Naming Components of the

Automation View 19-36
Conversion Errors 19-43
CORBA

Any values
dynamic creation of 9-26
dynamic interpretation 9-27

object references and request level bridging 14-6
CORBA Exceptions 19-30
CORBA Module 3-66
CORBA module

types defined by 7-1
CORBA Required Object Adapter

Portable Object Adapter 2-17
CORBA System Exceptions 19-33
CORBA User Exceptions 19-31
CORBA_free 7-4
CORBAComposite interface 18-51
CORBAtoCOM Data Type Mapping 18-2
CosNaming interface 19-55
create_dii_pollable 7-15
create_persistent_request 22-52
create_pollable_set 7-14
create_request operation 4-14
CreateType method 19-28
Current 11-45
Index-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
D
data type

basic OMG IDL 3-37–3-39
constructed OMG IDL 3-39–3-44
constructs for OMG IDL 3-36
native 3-38
OMG IDL template 3-44–3-45

Data Type Mapping 18-1
DCE 12-1, 18-1
DCE CIOP

pipe interface, DCE IDL for 16-6
DCE CIOP module

OMG IDL for 16-25
DCE Common Inter-ORB Protocol

Goals 16-1
DCE Common Inter-ORB Protocol Overview 16-2
DCE ESIOP 13-28

see also DCE CIOP
DCE UUID 17-17
DCE-CIOP

storage in IOR 16-5
DCE-CIOP Data Representation 16-3
DCE-CIOP Message Formats 16-11

DCE_CIOP Invoke Request Message 16-11
DCE-CIOP Invoke Response Message 16-12
DCE-CIOP Locate Request Message 16-14
DCE-CIOP Locate Response Message 16-15

DCE-CIOP Message Transport 16-5
Array-based Interface 16-8
Pipe-based Interface 16-6

DCE-CIOP Messages 16-4
DCE-CIOP Object Location 16-21

Activation 16-23
Basic Location Algorithm 16-23
Location Mechanism Overview 16-22
Use of the Location Policy and the Endpoint ID 16-24

DCE-CIOP Object References 16-16
Complete Object Key Component 16-19
DCE-CIOP Binding Name Component 16-18
DCE-CIOP No Pipes Component 16-19
DCE-CIOP String Binding Component 16-17
Endpoint ID Position Component 16-20
Location Policy Component 16-20

DCE-CIOP RPC 16-2
DCOM Value Objects

DICORBAAny 20-14
DICORBAStruct 20-13
DICORBATypeCode and ICORBATypeCode 20-13
DICORBAUnion 20-13
DICORBAUserException 20-13
DIForeignComplexType 20-12
DIForeignException 20-12
DISystemException 20-12
ICORBAAny 20-15
IForeignObject 20-12
Passing Automation Compound Types as DCOM Value

Objects 20-11
Passing CORBA-Defined Pseudo-Objects as DCOM Value

Objects 20-12
User Exceptions in COM 20-15

DCORBATypeCode interface 19-23

DCORBAUnion interface 19-21
DCORBAUserException interface 19-32
deactivation 1-10
DecayPolicy 22-64
derived interface 3-23
DICORBAAny interface 17-27, 19-24
DICORBAFactory interface 17-25, 19-26, 19-27
DICORBAStruct interface 19-20
DICORBASystemException interface 19-34
DICORBAUnion interface 19-21, 19-22
DICORBAUserException interface 19-32
DIForeignComplexType interface 19-19
DII and DSI 19-38
DII Deferred Synchronous 22-81
DIIPollable interface 7-14
Distribution

Bridge Locality 17-32
Distribution Architecture 17-33
Interworking Targets 17-34

domain 13-2
architecture 13-5
containment 13-6
federation 13-6
naming objects for multiple 13-12
object references 13-12
object referencing for 13-12–13-14
security 14-4

DSI
Language Mapping 8-4

Dual interface 17-12, 19-4
Dynamic creation of CORBA

Any values 9-26
Dynamic interpretation of CORBA

Any values 9-27
Dynamic Invocation Interface 2-9, 7-1
Dynamic Invocation interface 18-29, 19-38

overview of 2-4, 2-9
parameters 7-2
request level bridging 14-6
request routines 7-4

dynamic protocol selection 22-82
dynamic routing 22-83
Dynamic Skeleton Interface 2-10, 8-1
Dynamic Skeleton interface 14-5, 19-38

overview of 2-5, 2-10, 8-1
DynAny 9-2

management overview 9-2
DynAny API 9-3
DynAny Api

Creating a DynAny object 9-9
The DynAny interface 9-11
The DynArray interface 9-23
The DynEnum interface 9-17
The DynFixed Interface 9-16
The DynSequence interface 9-22
The DynStruct interface 9-17
The DynUnion interface 9-19
The DynValue interface 9-24
The DynValueBox interface 9-25

DynAny interface 9-11
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-3

Index
DynAny object
basic data type values 9-14
copying 9-14
creating 9-9
destroying 9-13
generating an any value from 9-12, 9-13
initializing from an any value 9-12
initializing from another DynAny object 9-12
interface 9-11
TypeCode associated with 9-12

DynArray interface 9-23
DynArray objects

interface 9-23
DynEnum interface 9-17
DynEnum objects

interface 9-17
DynFixed interface 9-16
DynFixed objects

interface 9-16
DynSequence interface 9-22
DynSequence objects

interface 9-22
DynStruct interface 9-17
DynStruct objects

interface 9-17
DynUnion interface 9-19
DynUnion objects

interface 9-19
DynValue interface 9-24
DynValueBox interface 9-25

E
encapsulation 15-14

defined 15-5
enum 15-12
EnumDef 10-28
enumerated types 3-43
environment specific inter-ORB protocol for

OSF’s DCE environment
see DCE ESIOP

environment-specific inter_ORB protocol
see ESIOP

Environment-Specific Inter-ORB Protocols (ESIOPs) 12-4
ESIOP 12-1, 12-4
Example Programmer Usage

C++ Example of Callback Client Program 22-37
C++ Example of Generated ReplyHandler 22-31
C++ Example of Polling Client Program 22-39
C++ Example of User-Implemented ReplyHandler 22-33
C++ Example of Using PollableSet in a Client Program 22-42
Client-Side C++ Example for the Asynchronous Method

Signatures 22-30
Client-Side C++ Example of the Callback Model 22-31
Client-Side C++ Example of the Polling Model 22-38
Example Programmer Usage (Examples Mapped to C++) 22-30

Example Programmer Usge
Server Side 22-44

exception 1-8
Exception Declaration 3-49
Exception replies 22-79
ExceptionDef 10-32

ExceptionDef interface
OMG IDL for 10-32

exceptions
COM and CORBA compared 18-12
COM exception structure example 18-17
InvalidState 22-63
mapped to COM error codes 18-45, 19-35
mapped to COM interfaces 18-20
REBIND 4-71
TIMEOUT 4-71
TRANSACTION_UNAVAILABLE 4-71

ExplicitRequest State
ServerRequestPseudo-Object 8-3

expression
context 3-53
raises 3-52

Extent Definition
DVO_BLOB 20-8
DVO_EXTENT 20-8
DVO_IFACE 20-8
DVO_IMPLDATA 20-8
Extent Format 20-7
Marshaling Constraints 20-6
Marshaling Key 20-6

F
federation 13-6
FixedDef 10-30
floating point data type 15-7
floating point type 3-38
foreign object system

integration of 2-18
Foreign Object Systems

Integration of 2-17
Forward Declarations 3-41
full bridge 14-2

G
General Inter-ORB Protocol

Goals 15-2
general inter-ORB protocol

see GIOP
General Inter-ORB Protocol (GIOP) 12-3
Generic Bridges 14-6
Generic Poller Value

associated_handler 22-25
is_from_poller 22-25
operation_name 22-25
operation_target 22-25

Generic Poller value 22-24
get_client_policy 4-19
get_interface operation 4-14

OMG PIDL for 4-14
get_interface() operation 10-10
get_policy_overrides 4-19, 4-45
get_reply 22-51
GIOP 12-3, 13-28

alignment for primitive data types 15-6
and language mapping 15-11
and primitive data types 15-3, 15-5, 15-10
any type 15-29
Index-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
array type 15-12
cancel request header, OMG IDL for 15-41
close connection message 15-45
constructed data types 15-11
context pseudo object 15-30
exception 15-30
floating point data type 15-7
goals of 15-2
implementation on various transport protocols 15-47
integer data types 15-6
locate reply header, OMG IDL for 15-44
locate request header, OMG IDL for 15-42
mapping to TCP/IP transport protocol 15-51
message header, OMG IDL for 15-32
message type 15-31
primitive data types 15-5
principal pseudo object 15-29
relationship to IIOP 12-3
reply message, OMG IDL for 15-39
request header, OMG IDL for 15-35
TCKind 15-23
typecode 15-23

GIOP Message Formats 15-31
CancelRequest Message 15-41
CloseConnection Message 15-45
Fragment Message 15-45
GIOP Message Header 15-31
LocateReply Message 15-43
LocateRequest Message 15-41
MessageError Message 15-45
Reply Message 15-37
Request Message 15-34

GIOP Message Overview 15-3
GIOP Message Transfer 15-4
GIOP Message Transport 15-47

Connection Management 15-47
Message Ordering 15-49

GIOP module 15-34, 15-42
OMG IDL for 15-60

GIOP Overview 15-2
giop_version 22-49
global name 3-68

and inheritance 3-68
and Interface Repository ScopedName 10-13

H
handler 22-49
handler_type 22-49
hash operation 4-17
hexadecimal string 13-23
HRESULT 18-11, 19-5, 19-10, 19-37

constants and their values 18-12

I
IConnectionPointContainer interface 19-52
ICORBAFactory interface 17-24, 17-37
ICORBAObject interface 17-27
ICustomer

Get_Profile interface 18-26
IdAssignmentPolicy 11-32
identifier 3-21

IDispatch interface 17-4, 17-11, 19-10
IDL for PortableServer Module 11-46
IDL to ODL Mapping 19-12
IDLType interface 10-11
IdUniquenessPolicy 11-31
IEnumConnectionPoints interface 19-53
IEnumConnections interface 19-53
IForeignException interface 19-30
IForeignObject interface 17-26, 17-36, 19-16
IID 17-17, 17-30, 18-44
IIOP 13-16, 13-28, 15-2, 15-51, 17-17, 17-32, 17-33

defined 15-51
host 15-54
object key 15-54
port 15-54
relationship to GIOP 12-3
version 15-54

IIOP module 13-19, 15-53, 15-64
IIOP profile

OMG IDL for 15-52
ImmediateSuspend 22-63
IMonikerProvider interface 17-23, 17-36
implementation

defined 1-10
model for 1-9

Implementation Dependencies 10-4
Managing Interface Repositories 10-4

Implementation Repository 2-11
overview of 2-11

Implementation Skeleton 2-9
implementation skeleton

overview of 2-9
implicit context 13-10, 14-7
ImplicitActivationPolicy 11-34
incarnate operation 11-24
Indirection Levels for Operation Parameters 18-26
infix operator 3-34
inheritance

COM mapping for 18-26
OLE Automation mapping for 19-5

Inheritance Mapping 18-26
inheritance, multiple 17-11
inheritance, single 19-5
Initial Request Router 22-54
Initialization interfaces 19-40
In-line Bridging 14-3
in-line bridging 14-2
integer data type 15-6
integer tdata type 3-38
interface 1-6

defined 1-6
Interface Composition Mapping

CORBA/COM 17-11
Detailed Mapping Rules 17-13
Example of Applying Ordering Rules 17-14
Mapping Interface Identity 17-16

Interface Composition Mappings 17-11
Interface Declaration

Forward Declaration 3-22
Interface Body 3-22
Interface Header 3-21
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-5

Index
Interface Inheritance 3-23
Interface Inheritance Specification 3-21

interface identifier
see IID 17-17

Interface Mapping 18-11
Automation/CORBA 17-10
COM/CORBA 17-10
CORBA/Automation 17-9
CORBA/COM 17-9

interface object 10-8
Interface Repository 2-5, 2-11, 10-1

AliasDef, OMG IDL 10-28
and COM EX repository id 19-31
and COM mapping 17-11
and identifiers 10-12
and request level bridging 14-6
ArrayDef, OMG IDL 10-31
AttributeDef, OMG IDL 10-32
Contained interface, OMG IDL 10-14
Container 10-11
Container interface, OMG IDL 10-16
ExceptionDef interface 10-32
IDLType 10-11
inserting information 10-4
InterfaceDef, OMG IDL 10-36, 10-44
IRObject interface 10-11
IRObject interface, OMG IDL 10-13
location of interfaces in 10-9
mapped to OLE type library 18-52
ModuleDef interface, OMG IDL 10-24
OMG IDL for 10-75
OperationDef, OMG IDL 10-34
overview of 2-11, 10-1
PrimitiveDef, OMG IDL 10-29
Repository interface, OMG IDL 10-22, 10-52
SequenceDef, OMG IDL 10-30
StringDef, OMG IDL 10-29
StructDef, OMG IDL 10-26
TypeCode 4-58
TypeCode interface, OMG IDL 4-52

Interface Repository Interfaces
AbstractInterfaceDef 10-39
AliasDef 10-28
ArrayDef 10-31
ConstantDef 10-25
Contained 10-14
Container 10-16
EnumDef 10-28
ExceptionDef 10-32
FixedDef 10-30
IDLType 10-22
InterfaceDef 10-36
IRObject 10-13
LocalInterfaceDef 10-41
ModuleDef 10-24
NativeDef 10-50
OperationDef 10-34
PrimitiveDef 10-29
Repository 10-22
SequenceDef 10-30
StringDef 10-29

StructDef 10-26
Supporting Type Definitions 10-12
TypedefDef 10-26
UnionDef 10-27
ValueBoxDef 10-49
ValueDef 10-44, 10-48
ValueMemberDef 10-43
WstringDef 10-30

Interface Repository Mapping 18-32
interface repository objects 10-6
interface type 1-6
InterfaceDef 10-10, 10-36, 10-38

OMG IDL for 10-36, 10-44
InterfaceDef interface 18-52
Interfaces 11-14

AdapterActivator Interface 11-22
attribute associated_handler 22-52
create_persistent_request 22-52
Current Operations 11-45
get_reply 22-51
Handling LOCATION_FORWARD Replies 22-58
Handling of Service Contexts 22-58
Initial Request Router 22-54
Intermediate Request Router 22-55
Invoking Client 22-53
PersistentRequest 22-51
PersistentRequestRouter 22-52
POA Interface 11-34
POA Policy Objects 11-30
POAManager Interface 11-15
readonly attribute reply_available 22-51
reply 22-51
ReplyHandler 22-50
Replying to a Type-specific ReplyHandler 22-57
Replying to an UntypedReplyHandler 22-57
Request Routing Algorithm 22-54
Router 22-50
Routing of Replies 22-58
Routing Protocol 22-52
send_multiple_requests 22-50
send_request 22-50
ServantActivator Interface 11-25
ServantLocator Interface 11-27
ServantManager Interface 11-24
Target Router 22-55
The Servant IDL Type 11-15
UntypedReplyHandler 22-51, 22-58

interfaces
interface MaxHopsPolicy 22-11
interface PolicyCurrent 4-46
interface PolicyManager 4-45
interface Pollable 7-14
interface PollableSet 7-14
interface QueueOrderPolicy 22-12
interface RelativeRequestTimeoutPolicy 22-9
interface RelativeRoundtripTimeoutPolicy 22-10
interface ReplyEndTimePolicy 22-9
interface ReplyPriorityPolicy 22-8
interface ReplyStartTimePolicy 22-9
interface RequestEndTimePolicy 22-9
interface RequestPriorityPolicy 22-7
Index-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
interface RequestStartTimePolicy 22-8
interface RoutingPolicy 22-11
interfaceRebindPolicy 22-5
PersistentRequest 22-51
PersistentRequestRouter 22-52
ReplyHandler 22-50
Router 22-50
RouterAdmin 22-64
SyncScopePolicy 22-7
UntypedReplyHandler 22-51

Interface-specific Bridges 14-6
Intermediate Request Router 22-55
Internet inter-ORB protocol

see IIOP
Internet Inter-ORB Protocol (IIOP) 12-3, 15-51

IIOP IOR Profile Components] 15-55
IIOP IOR Profiles 15-52
TCP/IP Connection Usage 15-52

Interoperabiity Design Goals 12-9
Interoperability

Elements of 12-1
interoperability

architecture of 13-1
compliance 12-5
domain 13-5
examples of 12-5
object service-specific information, passing 13-28, 15-4
overview of 12-2
primitive data types 15-5
RFP for 13-1

Interoperability Design Goals 12-9
Interoperability Solutions

Examples of 12-5
interoperable object reference

see IOR
Interoperable Object Reference (IOR) 16-5
Interoperable Routing Protocol 22-76
Inter-ORB Bridge Support 12-2
interval_limit 22-64
interworking 17-13

any type 18-39
array to collection mapping 19-49
Automation View Dual interface 17-31
Automation View interface 17-30, 17-32
BindingIterator interface, mapped to ODL 19-59
bridges 17-33
COM aggregation mechanism 19-38
COM data types mapped to CORBA types 18-2
COM Service 19-51
COM View interface 17-30
ConnectionPoint Service 19-52
CORBAComposite interface 18-51
CosNaming interface

mapped to ODL 19-55
DCORBATypeCode interface 19-23
DCORBAUnion interface 19-21
DCORBAUserException interface 19-32
DICORBAAny interface 17-27, 19-24
DICORBAFactory interface 17-25, 19-26, 19-27
DICORBAStruct interface 19-20
DICORBASystemException interface 19-34

DICORBAUnion interface 19-21, 19-22
DICORBAUserException interface 19-32
DIForeignComplexType interface 19-19
Dual interface 17-12, 19-4
HRESULT 18-11, 19-5, 19-10, 19-37
IConnectionPointContainer interface 19-52
ICORBAFactory interface 17-24, 17-37
ICORBAObject interface 17-27
ICustomer

Get_Profile interface 18-26
IDispatch interface 17-4, 19-10
IEnumConnectionPoints interface 19-53
IEnumConnections interface 19-53
IForeignException interface 19-30
IForeignObject interface 17-26, 17-36, 19-16
IMonikerProvider interface 17-23, 17-36
inheritance,mapping for 18-50
IORBObject interface 17-28
IProvideClassInfo interface 18-33, 18-52
ISO Latin1alphabetic ordering model 19-8
ISupportErrorInfo interface 18-15
ITypeFactory interface 19-29
ITypeInfo interface 18-33, 18-52
IUnknown interface 19-10
mapping between OMG IDL and OLE, overview 19-3
MIDL and ODL data types mapped to CORBA types 18-33
MIDL data types 18-2
MIDL pointers 18-44
multiple inheritance 19-6
OLE data types 19-9
OLE data types mapped to CORBA types 19-42
pseudo object mapping 18-29
QueryInterface 17-11, 19-7
sequence to collection mapping 19-49
SetErrorInfo interface 18-15
single inheritance 19-5
target 17-6
types of mappings 17-8
VARIANT 18-41, 19-5, 19-48
VARIANT data types 18-41
view 17-5
View interface program id 17-31

Interworking Architecture
Purpose of 17-2

Interworking Interfaces
ICORBAFactory Interface 17-24
ICORBAObject Interface 17-27
ICORBAObject2 17-28
IForeignObject Interface 17-26
IMonikerProvider Interface and Moniker Use 17-23
IORBObject Interface 17-28
Naming Conversions for View Components 17-30
SimpleFactory Interface 17-23

Interworking Mapping Issues 17-8
Interworking Object Model

Basic Description of the Interworking Model 17-4
Relationship to CORBA Object Model 17-3
Relationship to the OLE/COM Model 17-4

interworking object model 17-3
InvalidState 22-63
INVOCATION_POLICIES 22-72
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-7

Index
invocations
DII Deferred Synchronous 22-81

Invoking Client 22-53
IOP module

and DCE ESIOP 13-28
and GIOP 13-28
and IIOP 13-28

IOR 13-15, 13-22, 16-5
converting to object reference 13-23
externalized 13-23

IORBObject interface 17-28
IProvideClassInfo interface 18-33, 18-52
IRObject 10-13
IRObject interface 10-11

OMG IDL for 10-13
is_equivalent operation 4-17
is_from_poller 22-25
is_ready 7-14
ISupportErrorInfo interface 18-15
ISynchronize and DISynchronize 20-11
ITypeFactory interface 19-29
ITypeInfo interface 18-33, 18-52
IUknown interface 19-10
IValueObject 20-10

L
language mapping

overview 2-8
Lexical Conventions 3-3

Comments 3-6
Escaped Identifiers 3-7
Identifiers 3-6
Keywords 3-8
Tokens 3-6

LifespanPolicy 11-31
LimitedPing 22-63
Liskov substitution principle 1-6
List Operations 7-16

add_item 7-17
create_list 7-17
create_operation_list 7-18
free 7-18
free_memory 7-18
get_count 7-18

Literals
Character Literals 3-9
Fixed-Point Literals 3-11
Floating-point Literals 3-10
Integer Literals 3-9
String Literals 3-10

little endian 15-7
Local Interface 3-26
LocalInterfaceDef 10-41, 10-43
Locality of the Bridge 20-4
LocalObject 4-22
LOCATION_FORWARD Replies 22-58
logical_type_id string 4-16

M
magic 15-32, 15-61
Mapping

Array Types 18-9, 18-40
Attributes 18-24
Basic Data Types 18-2, 18-33
Bounded Sequence Types 18-8
Bounded String Types 18-5
bounded string types 18-36
COM Errors 18-44
COM to CORBA data type 18-33
Constants 18-2, 18-34
context pseudo-object 18-31
Encapsulated Unions 18-38
Enumerators 18-3, 18-34
exception types 18-11
Interface Identifiers 18-44
interface identifiers 18-11
Interface Repository 18-32
Names 18-47
Nested Data Types 18-47
nonencapsulated unions 18-39
Oneway Operations 18-24
Operations 18-22, 18-47
Pointers 18-43
principal pseudo-object 18-32
Properties 18-48
Pseudo-Objects 18-29
Read-Only Attributes 18-49
Read-Write Attributes 18-49
SAFEARRAY 18-40
String Types 18-4, 18-35
Struct Types 18-5
Structure Types 18-37
the any Type 18-9
TypeCode pseudo-object 18-29
Unbounded Sequence Types 18-8
Unbounded String Types 18-4
unbounded string types 18-35
unicode bound string types 18-37
Unicode Unbounded String Types 18-36
Union Types 18-6, 18-38
VARIANT 18-41

Mapping a COM Service to OMG IDL 19-51
Mapping an OMG Object Service to Automation 19-55
Mapping Automation Exceptions to CORBA 19-49
Mapping Automation Objects as CORBA Objects 19-38
Mapping CORBA Exceptions to Automation Exceptions 19-30
Mapping CORBA Objects to Automation 19-2
Mapping for Array Types 18-9
Mapping for Arrays and Sequences 19-18
Mapping for Attributes 18-24
Mapping for Attributes and Operations 19-4
Mapping for Automation Basic Data Types

Basic automation types 19-42
Mapping for Basic Data Types 18-2, 19-9

Basic Automation Types 19-9
Converting Automation boolean to CORBA boolean and

CORBA boolean to Automation boolean 19-11
Converting Automation long to CORBA unsigned long 19-10
Demoting Automation long to CORBA unsigned short 19-11
Demoting CORBAunsigned long to Automation long 19-11
Mapping for Strings 19-11

Mapping for Bounded Sequence Types 18-8
Index-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
Mapping for Bounded String Types 18-5
Mapping for Constants 18-2, 19-25
Mapping for context pseudo-object 18-31
Mapping for CORBA Complex Types 19-19

Creating Initial in Parameters for Complex Types 19-27
DIObjectInfo Interface 19-29
Getting Initial CORBA Object References 19-26
ITypeFactory Interface 19-29
Mapping for anys 19-24
Mapping for Constants 19-25
Mapping for Structure Types 19-20
Mapping for TypeCodes 19-22
Mapping for Typedefs 19-25
Mapping for Union Types 19-21

Mapping for Enumerated Types 19-17, 19-47
Mapping for Enumerators 18-3
Mapping for exception types 18-11
Mapping for Inheritance 19-40
Mapping for Interface identifiers 18-11
Mapping for Interfaces 19-3, 19-40
Mapping for Nested Types 18-21
Mapping for Object References 19-46

Object Reference Parameters and IForeignObject 19-16
Type Mapping 19-15

Mapping for ODL Properties and Methods 19-41
Mapping for OMG IDL Arrays and Sequences

to Collections 19-49
Mapping for OMG IDL Single Inheritance 19-5
Mapping for Oneway Operations 18-24
Mapping for Operations 18-22
Mapping for principal pseudo-object 18-32
Mapping for Pseudo-Objects 18-29
Mapping for SafeArrays 19-48
Mapping for Sequence Types 18-8
Mapping for String Types 18-4
Mapping for Strings 19-11
Mapping for Struct Types 18-5
Mapping for the any Type 18-9
Mapping for TypeCode pseudo-object 18-29
Mapping for Typedefs 19-25, 19-48
Mapping for Unbounded Sequence Types 18-8
Mapping for Unbounded String Types 18-4
Mapping for Union Types 18-6
Mapping for VARIANTs 19-48
Mapping of OMG IDL Multiple Inheritance 19-6
Mapping of OMG IDL to Programming Languages 2-8
Mapping the OMG Naming Service to Automation 19-51
max_backoffs 22-63
MaxHopsPolicy interfaces 22-11
mediated bridging 13-8
Memory Usage 7-4
message 22-50, 22-52
message payload 22-82
Message Routing 22-46
message routing 22-46
Message Routing Abstract Model Design 22-81
Message Routing Interoperability 22-45
MessageBody 22-48
Messaging

module 22-65
Messaging module 22-2, 22-12

Messaging Programming Model 22-13
Messaging QoS 22-12

propagation of 22-12
Messaging QoS Profile Component 22-13
Messaging QoS Service Context 22-13
Messaging Quality of Service 22-2
method 1-9
Microsoft Interface Definition Language

see MIDL 17-4
MIDL 17-4

transformation rules 17-13
mode 1-8
Mode Property 20-11
Model Components 22-72
module

Messaging 22-12
Module Declaration 3-20
ModuleDef 10-24
ModuleDef interface

OMG IDL for 10-24
modules

Messaging 22-2, 22-65
Multidimensional SafeArrays 19-48
multiple inheritance 3-23, 17-11, 19-6

N
NamedValue type 7-2
Names and Scoping

Qualified Names 3-67
Scoping Rules and Name Resolution 3-69
Special Scoping Rules for Type Names 3-72

Naming Conventions 19-36
Naming Conventions for Pseudo-Structs, Pseudo-Unions, and

Pseudo-Exceptions 19-36
NamingContext 14-7
NativeDef 10-50
NO_EXCEPTION 22-57
NO_REBIND 22-5
NO_RECONNECT 22-5
Non-Goals 12-10
NOT_REGISTERED 22-62
number_left 7-16
NVList 18-29
NVList interface

add_item operation 7-17
create_list operation 7-17
create_operation_list 7-18
get_count operation 7-18

NVList operation
free_memory operation 7-18

O
object 1-2

CORBA and COM compared 17-9
implementation 1-10, 2-7
invocation 2-9, 2-10
reference 2-8
reference canonicalization 13-13
reference embedding 13-12
reference encapsulation 13-13
references, stringified 13-22
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-9

Index
request 13-3
Object Adapter

Structure 2-15
object adapter 2-6, 2-9, 2-14

and request level bridging 14-6
functions of 2-15
overview of 2-5, 2-10

Object Adapters 2-10
Object Creation and Destruction

Abstract Interfaces 1-7
Attributes 1-9
Basic types 1-4
Constructed types 1-5
Interfaces 1-6
Operations 1-7
Types 1-4
Value Types 1-6

Object Definition Language 17-4
object duplicate operation

OMG PIDL for 4-15
object identifiers

and hash operation 4-17
Object Identity Issues 17-19
Object Identity, Binding, and Life Cycle 17-18
Object Implementation

Structure 2-13
The Construction Model 1-10
The Execution Model 1-9

Object Implementations 2-7
Object interface

create_request operation 4-14
OMG PIDL for 4-12

object key 15-30
Object Location 15-50
Object model 1-2
object reference 1-3

and COM interface pointers 17-4
obtaining for View interface 19-40
testing for equivalence 4-17

Object References 2-8
object references

obtaining for automation controller environments 19-26
Object Request Broker 2-6

explained 2-1
how implemented 2-6
interfaces to 2-2
sample implementations 2-11, 2-13
Structure 2-1

Object Semantics
Objects 1-2
Requests 1-3

Object Services
and GIOP module 15-37
and interoperability 14-7
and IOP module 13-28
Life Cycle 17-21, 17-23, 18-51, 19-26
Naming 14-7, 17-25, 19-26, 19-40
Naming, sample mapping to OLE 19-51, 19-55
Relationship 12-5
tags for A-1
Transaction 13-10

object system 1-2
object_key 22-49
object_to_string operation 4-8

OMG PIDL for 4-9
object-level policies 4-43
Objects 1-2
octet type 3-39, 15-4, 15-10
ODL 18-4, 19-1
Older Automation Controllers 19-49
OLE Automation 17-4

basic data types 19-9
basic data types mapped to CORBA types 19-42
relationship to OMG IDL 19-3
transformation rules 17-13

OLE automation controller 19-2
OMG IDL

BiDirPolicy Module 15-65
GIOP Module 15-60
IIOP Module 15-64
overview of 2-8
relationship to OLE 19-3
syntax of 3-18

OMG IDL for Interface Repository 10-75
OMG IDL for the DCE CIOP Module 16-25
OMG IDL global name 3-68
OMG IDL Grammar 3-12
OMG IDL Specification 3-18
OMG IDL tags

requests to allocate 13-22, A-1
OMG IDL to ODL Mapping for the Basic Data Types 19-44
OMG IDL, explained 2-3, 2-8
OMG IDL-to-programming language mapping

overview 2-8
OMG Interface Definition Language 2-8
oneway 18-24, 7
opaque data type 15-5
operation 1-7, 22-49

attribute,syntax of 3-51
declaration,syntax of 3-50
defined 1-7
signature of 1-7

Operation Declaration
Context Expressions 3-53
Operation Attribute 3-51
Parameter Declarations 3-51
Raises Expressions 3-52

operation_name 22-25, 22-51
operation_target 22-25
OperationDef 10-34

OMG IDL for 10-34
Operations 19-34
operations

oneway 22-81
Operations that raise system exceptions 19-34
Operations that Raise User Exceptions 19-32
ORB

backbone 13-11
connecting 10-4
core 13-3
kernel 13-3

ORB Boundaries 12-8
Index-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
ORB Implementation Diversity 12-8
ORB Interface 2-10

overview of 2-10
ORB interface

and create_list operation 7-17
and create_operation_list operation 7-18

ORB interoperability 12-1
ORB Interoperability Architecture 12-2
ORB Operations

get_next_response and poll_next_response 7-11
send_multiple_requests 7-11

ORB Services 13-3, 13-7
how selected 13-4
vs. Object Services 13-3

ORB-level policies 4-43
ORBs

Client- and Implementation-resident ORB 2-11
Library-based ORB 2-12
Server-based ORB 2-12
System-based ORB 2-12

ORBs Vary in Scope, Distance, and Lifetime 12-9
ORDER_ANY 22-11
ORDER_DEADLINE 22-12
ORDER_PRIORITY 22-12
ORDER_TEMPORAL 22-11
Ordering 22-11
OTS Behavior 22-85

P
parameter

defined 1-8
parameter declaration

syntax of 3-51
Persistent ReplyHandler 22-76
PersistentPoller 22-76
PersistentRequest 22-75
PersistentRequest interface 22-51
PersistentRequestRouter interface 22-52
POA

location transparency 11-14
POA Interface 11-34
POA Threading Models 11-11
POAManager Interface 11-15
POA-related interfaces 11-14
policies

object-level 4-43
thread-level 4-43

Policy 22-72
PolicyCurrent interface 4-46
PolicyList 22-72
PolicyManager 22-72
PolicyManager interface 4-45
PolicyValue 22-12
Pollable interface 7-14
PollableSet interface 7-14
Poller 22-26, 22-75
Poller operations

for Interface attributes 22-27
for Interface operations 22-26

Poller Value
generic 22-24

Poller/PersistentRequest Detailed Design 22-79
Poller/PersistentRequest detailed design 22-79
Polling 7-12

Abstract Valuetype DIIPollable 7-14
Abstract Valuetype Pollable 7-14
interface PollableSet 7-14

Polling Model
signatures 22-18

Portable Object Adapter 11-1
Portable Object Adaptor

abstract model description 11-2
AdaptorActivator interface 11-22
creating 11-35, 11-55
creating object references 11-7
creation 11-6
destroying 11-36
dynamic skeleton interface 11-13
finding 11-35
implicit activation 11-10
Implicit Activation policy 11-34
interface 11-34
model architecture 11-4
model components 11-2
multi-threading 11-11
overview 11-1
request processing 11-9
root POA 11-54
ServantActivator interface 11-25
ServantLocator Interface 11-27
ServantManager interface 11-24
SYSTEM_ID policy 11-55
usage scenarios 11-54

Portable Oject Adaptor
policy objects 11-30

PortableServer
UML description of 11-52

Pragma 10-71
pragma directive

and Interface Repository 10-67
id 10-68

Prefix Pragma 10-68
preinvoke operation 11-24
prepare 7-10
Preprocessing 3-11
PrimitiveDef 10-29

OMG IDL for 10-29
principal 15-14
principal pseudo object 18-29, 18-32
PriorityRange 22-7
profile

tags for A-1
profile_index 22-50, 22-52
proxy 14-5
Proxy Creation and Management 14-5

Q
QoS Abstract Model Design 22-72
qualified name 3-67
Quality of Service

framework 22-2
Quality of Service (QoS) 22-2
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-11

Index
QueryInterface 17-11, 19-7
QueueOrderPolicy 22-12
QueueOrderPolicy interface 22-12

R
REBIND 4-71
Rebind Support 22-5

Interface RebindPolicy 22-5
Request and Reply Priority 22-7
Request and Reply Timeout 22-8
Routing 22-10
Synchronization Scope 22-6
typedefshortRebindMode 22-5

RebindMode 22-5
RebindPolicy interface 22-5
ReCopy Method 20-11
reference encapsulation 14-5
reference model ii
reference translation 14-5
register_destination 22-64
Registering Dynamic Implementation Routines 8-5
RegistrationState 22-62
Relationship Service 12-5
RelativeRequestTimeoutPolicy 22-9
RelativeRequestTimeoutPolicy interface 22-9
RelativeRoundtripTimeoutPolicy interface 22-10
release operation 4-15
remove 7-16
reply 22-51
reply_body 22-51, 22-52
reply_destination 22-50
reply_type 22-51
ReplyDestination 22-49
ReplyEndTimePolicy 22-9
ReplyEndTimePolicy interfaces 22-9
ReplyHandler 22-21, 22-75, 22-78
ReplyHandler interface 22-50
ReplyHandler Operations

for NO_EXCEPTION Replies 22-22
ReplyHandler operations

for exceptional replies 22-23
for NO_EXCEPTION replies 22-22

ReplyHandler Operations for Exceptional Replies 22-23
ReplyHandler Operations for NO_EXCEPTION Replies 22-22
ReplyPriorityPolicy 22-8
ReplyPriorityPolicy interfaces 22-8
ReplyStartTimePolicy 22-9
ReplyStartTimePolicy interfaces 22-9
Repository interface

OMG IDL for 10-22, 10-52
RepositoryId

and COM interface identifiers 18-44
and COM mapping 18-11
and pragma directive 10-67
format of 10-64

RepositoryIds 10-64
DCE UUID Format 10-67
For More Information 10-73
LOCAL Format 10-67
OMG IDL Format 10-65
Pragma Directives for RepositoryId 10-67

RepositoryIDs for OMG-Specified Types 10-73
RMI Hashed Format 10-65

request 1-3
request context 1-8
request form 1-3
Request interface

get_response operation 7-9
send operation 7-8

request level bridging 14-2
types of 14-6

Request Operations
add_arg 7-7
create_request 7-5
delete 7-8
get_response 7-9
invoke 7-8
poll_response 7-9
prepare 7-10
send 7-8
sendc 7-10
sendp 7-10

Request Routing Algorithm 22-54
Request/Reply Extent Semantics 20-8
Request/Reply Routers 22-82
RequestEndTimePolicy 22-9
RequestEndTimePolicy interface 22-9
RequestInfo 22-49
Request-level Bridging 14-3
RequestMessage 22-48
RequestPriorityPolicy 22-7
RequestPriorityPolicy interface 22-7
RequestProcessingPolicy 11-32
Requests 1-3
reserved 22-49
response_flags 15-35, 22-49
result

defined 1-8
resume_destination 22-64
ResumePolicy 22-64
RetryPolicy 22-63
Return Status and Exceptions 7-4
ROUTE_FORWARD 22-10
ROUTE_NONE 22-10
ROUTE_STORE_AND_FORWARD 22-10
Router 22-76
Router Administration 22-59

Constants 22-62
Exceptions 22-63
Interfaces 22-64
Values 22-63

Router interface 22-50
RouterAdmin 22-59
RouterAdmin interface 22-64
Routing Object References 22-46
routing object references 22-46
RoutingPolicy interface 22-11
RoutingType 22-10
RoutingTypeRange 22-10
RPC 16-20, 16-24
Index-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Index
S
SAFEARRAY 17-10, 18-40
scoped name identifier 3-67
scoped_name 3-24
Security Considerations 6-4
Security Service 22-86
see ODL 17-4
selected_qos 22-50, 22-52
send_multiple_requests 22-50
send_request 22-50
sendc 7-10, 22-16
sendp 7-10, 22-18
sequence octet 15-14, 15-29
sequence type 3-42, 3-44, 15-12
SequenceDef 10-30

OMG IDL for 10-30
ServantRetentionPolicy 11-32
ServerRequest pseudo-object 8-3
ServerRequest’s Handling of Operation Parameters 8-4
ServerRequestPseudo-Object 8-3
server-side

policy management 4-44
server-side policies 22-73
Service Contexts 22-58
service_contexts 22-49
ServiceContext 13-29
ServiceID 13-30
set_policy_overrides 4-45
SetErrorInfo interface 18-15
signature 1-7
Special Cases of Data Type Conversion 19-43
static routing 22-83
string type 3-45
string_to_object operation 4-8

OMG PIDL for 4-9
StringDef 10-29

OMG IDL for 10-29
struct type 15-12
StructDef 10-26

OMG IDL for 10-26
Structures

MessageBody 22-48
ReplyDestination 22-49
RequestInfo 22-49
RequestMessage 22-48

stub interface 2-8
subject 3-54
suspend_destination 22-64
SUSPENDED 22-62
SYNC_NONE 22-6
SYNC_WITH_SERVER 22-6
SYNC_WITH_TARGET 22-7
SYNC_WITH_TRANSPORT 22-6
SyncNow Method 20-11
SyncScope 22-6
SyncScopePolicy 22-7
SyncScopePolicy interface 22-7
SYSTEM_EXCEPTION 22-57

T
tag

component 13-22
protocol 13-22
requests to allocate A-1

TAG_MULTIPLE_COMPONENTS tag 13-22
TAG_POLICIES 22-72
target 17-6, 17-34, 22-50, 22-52
Target Router 22-55
TCKind 15-23
TCP/IP 15-47, 15-51
thread-level policies 4-43
ThreadPolicy 11-30
TII 22-82
Time-Independent Invocation 22-76
Time-Independent Invocation Components 22-75
TIMEOUT 4-71
timeout 22-52
to_visit 22-50, 22-52
Transaction Service 13-10
Transaction service compatibility 22-84
TRANSACTION_MODE exception 4-71
TRANSACTION_UNAVAILABLE Exception 4-71
transfer syntax

between ORBs and inter-ORB bridges 15-3
Translating COM

Currency to Automation CURRENCY 19-43
Translating CORBA boolean to Automation boolean

and Automation boolean to CORBA boolean 19-43
Translating CORBA double to Automation DATE 19-43
transparency 13-4
transparency of location 13-2
TRANSPARENT 22-5
type 1-4
Type Declaration

Any Type 3-39
Basic Types 3-37
Boolean Type 3-39
Char Type 3-38
Constructed Types 3-39
Floating-Point Types 3-38
Integer Types 3-38
Native Types 3-46
Octet Type 3-39
Template Types 3-44
Wide Char Type 3-39

Type Library Mapping 18-52
type specifier

syntax of 3-36
TypeCode 7-2, 18-29

OMG IDL for 4-58
TypeCode constants 4-57
TypeCode interface

OMG IDL for 4-52
TypeCodes

Creating TypeCodes 4-58
The TypeCode Interface 4-52
TypeCode Constants 4-57

TypedefDef 10-26
types

any 1-5
basic 1-4
constructed 1-5
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Index-13

Index
defined 1-4
Type-Specific Poller Mapping 22-26

Basic Type-Specific Poller 22-26
Persistent Type-Specific Poller 22-28
Poller operations for Interface attributes 22-27
Poller operations for Interface operations 22-26

Type-specific ReplyHandler
Replying to a 22-57

Type-Specific ReplyHandler Mapping 22-21

U
UML Description of PortableServer 11-52
Unicode 17-10, 18-37, 19-11
union type 3-40, 15-12
UnionDef 10-27
UnlimitedPing 22-63
unregister_destination 22-65
UntypedReplyHandler 22-58

Replying to an 22-57
UntypedReplyHandler interface 22-51
Usage Guidelines 6-3
Usage Scenarios

Creating a POA 11-55
Creating References before Activation 11-57
Explicit Activation with POA-assigned Object Ids 11-55
Explicit Activation with User-assigned Object Ids 11-56
Getting the Root POA 11-54
Multiple Object Ids Mapping to a Single Servant 11-61
Object Activation on Demand 11-59
One Servant for All Objects 11-61
Persistent Objects with POA-assigned Ids 11-60
Servant Manager Definition and Creation 11-57
Single Servant, Many Objects and Types, Using DSI 11-64

USER_EXCEPTION 22-57

V
validate_connection 4-21
value 1-3
Value Declaration

Abstract Value Type 3-30
Boxed Value Type 3-29
Regular Value Type 3-27
Value Forward Declaration 3-30
Valuetype Inheritance 3-31

value type 1-6
Value types 5-2
ValueBoxDef 10-49
ValueDef 10-44, 10-48
ValueMemberDef 10-43
Values

DecayPolicy 22-64
ImmediatePing 22-63
ImmediateSuspend 22-63
LimitedPing 22-63
ResumePolicy 22-64

VARIANT 18-41, 19-5, 19-30, 19-48
OLE data types 18-41

Version Pragma 10-71
view 17-5, 17-22
View interface 17-31
visited 22-49
Visual Basic 17-9

W
Windows System Registry 17-25, 19-2, 19-25
WstringDef 10-30
Index-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

	Preface
	1. The Object Model
	1.1 Overview
	1.2 Object Semantics
	1.2.1 Objects
	1.2.2 Requests
	1.2.3 Object Creation and Destruction
	1.2.4 Types
	1.2.5 Interfaces
	1.2.6 Value Types
	1.2.7 Abstract Interfaces
	1.2.8 Operations
	1.2.9 Attributes

	1.3 Object Implementation
	1.3.1 The Execution Model: Performing Services
	1.3.2 The Construction Model

	2. CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object Implementations
	2.1.4 Object References
	2.1.5 OMG Interface Definition Language
	2.1.6 Mapping of OMG IDL to Programming Languages
	2.1.7 Client Stubs
	2.1.8 Dynamic Invocation Interface
	2.1.9 Implementation Skeleton
	2.1.10 Dynamic Skeleton Interface
	2.1.11 Object Adapters
	2.1.12 ORB Interface
	2.1.13 Interface Repository
	2.1.14 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 CORBA Required Object Adapter
	2.6.1 Portable Object Adapter

	2.7 The Integration of Foreign Object Systems

	3. OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.7 Module Declaration
	3.8 Interface Declaration
	3.8.1 Interface Header
	3.8.2 Interface Inheritance Specification
	3.8.3 Interface Body
	3.8.4 Forward Declaration
	3.8.5 Interface Inheritance
	3.8.7 Local Interface

	3.9 Value Declaration
	3.9.1 Regular Value Type
	3.9.2 Boxed Value Type
	3.9.3 Abstract Value Type
	3.9.4 Value Forward Declaration
	3.9.5 Valuetype Inheritance

	3.10 Constant Declaration
	3.10.1 Syntax
	3.10.2 Semantics

	3.11 Type Declaration
	3.11.1 Basic Types
	3.11.2 Constructed Types
	3.11.3 Template Types
	3.11.4 Complex Declarator
	3.11.5 Native Types
	3.11.6 Deprecated Anonymous Types

	3.12 Exception Declaration
	3.13 Operation Declaration
	3.13.1 Operation Attribute
	3.13.2 Parameter Declarations
	3.13.3 Raises Expressions
	3.13.3.1 Raises Expression

	3.13.4 Context Expressions

	3.14 Attribute Declaration
	3.17.4 Event Sources—publishers and emitters
	3.17.5 Event Sinks
	3.18.2 Home Header
	3.18.3 Home Body

	3.19 CORBA Module
	3.20 Names and Scoping
	3.20.1 Qualified Names
	3.20.2 Scoping Rules and Name Resolution
	3.20.3 Special Scoping Rules for Type Names

	4. ORB Interface
	4.1 Overview
	4.2 The ORB Operations
	4.2.1 ORB Identity
	4.2.2 Converting Object References to Strings
	4.2.3 Getting Service Information
	4.2.4 Creating a New Context
	4.2.5 Thread-Related Operations

	4.3 Object Reference Operations
	4.3.1 Determining the Object Interface
	4.3.2 Duplicating and Releasing Copies of Object References
	4.3.3 Nil Object References
	4.3.4 Equivalence Checking Operation
	4.3.5 Probing for Object Non-Existence
	4.3.6 Object Reference Identity
	4.3.7 Type Coercion Considerations
	4.3.8 Getting Policy Associated with the Object
	4.3.9 Overriding Associated Policies on an Object Reference
	4.3.10 Validating Connection
	4.3.11 Getting the Domain Managers Associated with the Object
	4.3.12 Getting Component Associated with the Object
	4.3.13 LocalObject Operations

	4.4 ValueBase Operations
	4.5 ORB and OA Initialization and Initial References
	4.5.1 ORB Initialization
	4.5.2 Obtaining Initial Object References
	4.5.3 Configuring Initial Service References

	4.6 Context Object
	4.6.1 Introduction
	4.6.2 Context Object Operations

	4.7 Current Object
	4.8 Policy Object
	4.8.1 Definition of Policy Object
	4.8.2 Creation of Policy Objects
	4.8.3 Usages of Policy Objects
	4.8.4 Policy Associated with the Execution Environment
	4.8.5 Specification of New Policy Objects
	4.8.6 Standard Policies

	4.9 Management of Policies
	4.9.1 Client Side Policy Management
	4.9.2 Server Side Policy Management
	4.9.3 Policy Management Interfaces

	4.10 Management of Policy Domains
	4.10.1 Basic Concepts
	4.10.2 Domain Management Operations

	4.11 TypeCodes
	4.11.1 The TypeCode Interface
	4.11.2 TypeCode Constants
	4.11.3 Creating TypeCodes

	4.12 Exceptions
	4.12.1 Definition of Terms
	4.12.2 System Exceptions
	4.12.3 Standard System Exception Definitions
	4.12.4 Standard Minor Exception Codes

	5. Value Type Semantics
	5.1 Overview
	5.2 Architecture
	5.2.1 Abstract Values
	5.2.2 Operations
	5.2.3 Value Type vs. Interfaces
	5.2.4 Parameter Passing
	5.2.5 Substitutability Issues
	5.2.6 Widening/Narrowing
	5.2.7 Value Base Type
	5.2.8 Life Cycle issues
	5.2.9 Security Considerations

	5.3 Standard Value Box Definitions
	5.4 Language Mappings
	5.4.1 General Requirements
	5.4.2 Language Specific Marshaling
	5.4.3 Language Specific Value Factory Requirements
	5.4.4 Value Method Implementation

	5.5 Custom Marshaling
	5.5.1 Implementation of Custom Marshaling
	5.5.2 Marshaling Streams

	5.6 Access to the Sending Context Run Time

	6. Abstract Interface Semantics
	6.1 Overview
	6.2 Semantics of Abstract Interfaces
	6.3 Usage Guidelines
	6.4 Example
	6.5 Security Considerations
	6.5.1 Passing Values to Trusted Domains

	7. Dynamic Invocation Interface
	7.1 Overview
	7.1.1 Common Data Structures
	7.1.2 Memory Usage
	7.1.3 Return Status and Exceptions

	7.2 Request Operations
	7.2.1 create_request
	7.2.2 add_arg
	7.2.3 invoke
	7.2.4 delete
	7.2.5 send
	7.2.6 poll_response
	7.2.7 get_response
	7.2.8 sendp
	7.2.9 prepare
	7.2.10 sendc

	7.3 ORB Operations
	7.3.1 send_multiple_requests
	7.3.2 get_next_response and poll_next_response

	7.4 Polling
	7.4.1 Abstract Valuetype Pollable
	7.4.2 Abstract Valuetype DIIPollable
	7.4.3 interface PollableSet

	7.5 List Operations
	7.5.1 create_list
	7.5.2 add_item
	7.5.3 free
	7.5.4 free_memory
	7.5.5 get_count
	7.5.6 create_operation_list

	8. Dynamic Skeleton Interface
	8.1 Introduction
	8.2 Overview
	8.3 ServerRequestPseudo-Object
	8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

	8.4 DSI: Language Mapping
	8.4.1 ServerRequest’s Handling of Operation Parameters
	8.4.2 Registering Dynamic Implementation Routines

	9. Dynamic Management of Any Values
	9.1 Overview
	9.2 DynAny API
	9.2.1 Creating a DynAny Object
	9.2.2 The DynAny Interface
	9.2.3 The DynFixed Interface
	9.2.4 The DynEnum Interface
	9.2.5 The DynStruct Interface
	9.2.6 The DynUnion Interface
	9.2.7 The DynSequence Interface
	9.2.8 The DynArray Interface
	9.2.9 The DynValueCommon Interface
	9.2.10 The DynValue Interface
	9.2.11 The DynValueBox Interface

	9.3 Usage in C++ Language
	9.3.1 Dynamic Creation of CORBA::Any Values
	9.3.2 Dynamic Interpretation of CORBA::Any Values

	10.The Interface Repository
	10.1 Overview
	10.2 Scope of an Interface Repository
	10.3 Implementation Dependencies
	10.3.1 Managing Interface Repositories

	10.4 Basics
	10.4.1 Names and Identifiers
	10.4.2 Types and TypeCodes
	10.4.3 Interface Repository Objects
	10.4.4 Structure and Navigation of the Interface Repository

	10.5 Interface Repository Interfaces
	10.5.1 Supporting Type Definitions
	10.5.2 IRObject
	10.5.3 Contained
	10.5.4 Container
	10.5.5 IDLType
	10.5.6 Repository
	10.5.7 ModuleDef
	10.5.8 ConstantDef
	10.5.9 TypedefDef
	10.5.10 StructDef
	10.5.11 UnionDef
	10.5.12 EnumDef
	10.5.13 AliasDef
	10.5.14 PrimitiveDef
	10.5.15 StringDef
	10.5.16 WstringDef
	10.5.17 FixedDef
	10.5.18 SequenceDef
	10.5.19 ArrayDef
	10.5.20 ExceptionDef
	10.5.21 AttributeDef
	10.5.22 ExtAttributeDef
	10.5.23 OperationDef
	10.5.24 InterfaceDef
	10.5.25 ExtInterfaceDef
	10.5.26 AbstractInterfaceDef
	10.5.27 ExtAbstractInterfaceDef
	10.5.28 LocalInterfaceDef
	10.5.29 ExtLocalInterfaceDef
	10.5.30 ValueMemberDef
	10.5.31 ValueDef
	10.5.32 ExtValueDef
	10.5.33 ValueBoxDef
	10.5.34 NativeDef

	10.6 Component Interface Repository Interfaces
	10.6.1 ComponentIR::Container
	10.6.2 ComponentIR::Repository
	10.6.3 ComponentIR::ProvidesDef
	10.6.4 ComponentIR::UsesDef
	10.6.5 ComponentIR::EventDef
	10.6.6 ComponentIR::EventPortDef
	10.6.7 ComponentIR::EmitsDef
	10.6.8 ComponentIR::PublishesDef
	10.6.9 ComponentIR::ConsumesDef
	10.6.10 ComponentIR::ComponentDef
	10.6.11 ComponentIR::FactoryDef
	10.6.12 ComponentIR::FinderDef
	10.6.13 ComponentIR::HomeDef

	10.7 RepositoryIds
	10.7.1 OMG IDL Format
	10.7.2 RMI Hashed Format
	10.7.3 DCE UUID Format
	10.7.4 LOCAL Format
	10.7.5 Pragma Directives for RepositoryId
	10.7.6 For More Information
	10.7.7 RepositoryIDs for OMG-Specified Types
	10.7.8 Uniqueness Constraints on Repository IDs

	10.8 OMG IDL for Interface Repository

	11.The Portable Object Adapter
	11.1 Overview
	11.2 Abstract Model Description
	11.2.1 Model Components
	11.2.2 Model Architecture
	11.2.3 POA Creation
	11.2.4 Reference Creation
	11.2.5 Object Activation States
	11.2.6 Request Processing
	11.2.7 Implicit Activation
	11.2.8 Multi-threading
	11.2.9 Dynamic Skeleton Interface
	11.2.10 Location Transparency

	11.3 Interfaces
	11.3.1 The Servant IDL Type
	11.3.2 POAManager Interface
	11.3.3 POAManagerFactory Interface
	11.3.4 AdapterActivator Interface
	11.3.5 ServantManager Interface
	11.3.6 ServantActivator Interface
	11.3.7 ServantLocator Interface
	11.3.8 POA Policy Objects
	11.3.9 POA Interface
	11.3.10 Current Operations

	11.4 IDL for PortableServer Module
	11.5 UML Description of PortableServer
	11.6 Usage Scenarios
	11.6.1 Getting the Root POA
	11.6.2 Creating a POA
	11.6.3 Explicit Activation with POA-assigned Object Ids
	11.6.4 Explicit Activation with User-assigned Object Ids
	11.6.5 Creating References before Activation
	11.6.6 Servant Manager Definition and Creation
	11.6.7 Object Activation on Demand
	11.6.8 Persistent Objects with POA-assigned Ids
	11.6.9 Multiple Object Ids Mapping to a Single Servant
	11.6.10 One Servant for All Objects
	11.6.11 Single Servant, Many Objects and Types, Using DSI

	12.Interoperability Overview
	12.1 Elements of Interoperability
	12.1.1 ORB Interoperability Architecture
	12.1.2 Inter-ORB Bridge Support
	12.1.3 General Inter-ORB Protocol (GIOP)
	12.1.4 Internet Inter-ORB Protocol (IIOP)®
	12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	12.2 Relationship to Previous Versions of CORBA
	12.3 Examples of Interoperability Solutions
	12.3.1 Example 1
	12.3.2 Example 2
	12.3.3 Example 3
	12.3.4 Interoperability Compliance

	12.4 Motivating Factors
	12.4.1 ORB Implementation Diversity
	12.4.2 ORB Boundaries
	12.4.3 ORBs Vary in Scope, Distance, and Lifetime

	12.5 Interoperability Design Goals
	12.5.1 Non-Goals

	13.ORB Interoperability Architecture
	13.1 Overview
	13.1.1 Domains
	13.1.2 Bridging Domains

	13.2 ORBs and ORB Services
	13.2.1 The Nature of ORB Services
	13.2.2 ORB Services and Object Requests
	13.2.3 Selection of ORB Services

	13.3 Domains
	13.3.1 Definition of a Domain
	13.3.2 Mapping Between Domains: Bridging

	13.4 Interoperability Between ORBs
	13.4.1 ORB Services and Domains
	13.4.2 ORBs and Domains
	13.4.3 Interoperability Approaches
	13.4.4 Policy-Mediated Bridging
	13.4.5 Configurations of Bridges in Networks

	13.5 Object Addressing
	13.5.1 Domain-relative Object Referencing
	13.5.2 Handling of Referencing Between Domains

	13.6 An Information Model for Object References
	13.6.1 What Information Do Bridges Need?
	13.6.2 Interoperable Object References: IORs
	13.6.3 IOR Profiles
	13.6.4 Standard IOR Profiles
	13.6.5 IOR Components
	13.6.6 Standard IOR Components
	13.6.7 Profile and Component Composition in IORs
	13.6.8 IOR Creation and Scope
	13.6.9 Stringified Object References
	13.6.10 Object URLs

	13.7 Service Context
	13.7.1 Standard Service Contexts
	13.7.2 Service Context Processing Rules

	13.8 Coder/Decoder Interfaces
	13.8.1 Codec Interface
	13.8.2 Codec Factory

	13.9 Feature Support and GIOP Versions
	13.10 Code Set Conversion
	13.10.1 Character Processing Terminology
	13.10.2 Code Set Conversion Framework
	13.10.3 Mapping to Generic Character Environments
	13.10.4 Example of Generic Environment Mapping
	13.10.5 Relevant OSFM Registry Interfaces

	14.Building Inter-ORB Bridges
	14.1 Introduction
	14.2 In-Line and Request-Level Bridging
	14.2.1 In-line Bridging
	14.2.2 Request-level Bridging
	14.2.3 Collocated ORBs

	14.3 Proxy Creation and Management
	14.4 Interface-specific Bridges and Generic Bridges
	14.5 Building Generic Request-Level Bridges
	14.6 Bridging Non-Referencing Domains
	14.7 Bootstrapping Bridges

	15.General Inter-ORB Protocol
	15.1 Goals of the General Inter-ORB Protocol
	15.2 GIOP Overview
	15.2.1 Common Data Representation (CDR)
	15.2.2 GIOP Message Overview
	15.2.3 GIOP Message Transfer

	15.3 CDR Transfer Syntax
	15.3.1 Primitive Types
	15.3.2 OMG IDL Constructed Types
	15.3.3 Encapsulation
	15.3.4 Value Types
	15.3.5 Pseudo-Object Types
	15.3.6 Object References
	15.3.7 Abstract Interfaces

	15.4 GIOP Message Formats
	15.4.1 GIOP Message Header
	15.4.2 Request Message
	15.4.3 Reply Message
	15.4.4 CancelRequest Message
	15.4.5 LocateRequest Message
	15.4.6 LocateReply Message
	15.4.7 CloseConnection Message
	15.4.8 MessageError Message
	15.4.9 Fragment Message

	15.5 GIOP Message Transport
	15.5.1 Connection Management
	15.5.2 Message Ordering

	15.6 Object Location
	15.7 Internet Inter-ORB Protocol (IIOP)
	15.7.1 TCP/IP Connection Usage
	15.7.2 IIOP IOR Profiles
	15.7.3 IIOP IOR Profile Components

	15.8 Bi-Directional GIOP
	15.8.1 Bi-Directional IIOP

	15.9 Bi-directional GIOP policy
	15.10 OMG IDL
	15.10.1 GIOP Module
	15.10.2 IIOP Module
	15.10.3 BiDirPolicy Module

	16.The DCE ESIOP
	16.1 Goals of the DCE Common Inter-ORB Protocol
	16.2 DCE Common Inter-ORB Protocol Overview
	16.2.1 DCE-CIOP RPC
	16.2.2 DCE-CIOP Data Representation
	16.2.3 DCE-CIOP Messages
	16.2.4 Interoperable Object Reference (IOR)

	16.3 DCE-CIOP Message Transport
	16.3.1 Pipe-based Interface
	16.3.2 Array-based Interface

	16.4 DCE-CIOP Message Formats
	16.4.1 DCE_CIOP Invoke Request Message
	16.4.2 DCE-CIOP Invoke Response Message
	16.4.3 DCE-CIOP Locate Request Message
	16.4.4 DCE-CIOP Locate Response Message

	16.5 DCE-CIOP Object References
	16.5.1 DCE-CIOP String Binding Component
	16.5.2 DCE-CIOP Binding Name Component
	16.5.3 DCE-CIOP No Pipes Component
	16.5.4 Complete Object Key Component
	16.5.5 Endpoint ID Position Component
	16.5.6 Location Policy Component

	16.6 DCE-CIOP Object Location
	16.6.1 Location Mechanism Overview
	16.6.2 Activation
	16.6.3 Basic Location Algorithm
	16.6.4 Use of the Location Policy and the Endpoint ID

	16.7 OMG IDL for the DCE CIOP Module
	16.8 References for this Chapter

	17.Interworking Architecture
	17.1 Purpose of the Interworking Architecture
	17.1.1 Comparing COM Objects to CORBA Objects

	17.2 Interworking Object Model
	17.2.1 Relationship to CORBA Object Model
	17.2.2 Relationship to the OLE/COM Model
	17.2.3 Basic Description of the Interworking Model

	17.3 Interworking Mapping Issues
	17.4 Interface Mapping
	17.4.1 CORBA/COM
	17.4.2 CORBA/Automation
	17.4.3 COM/CORBA
	17.4.4 Automation/CORBA

	17.5 Interface Composition Mappings
	17.5.1 CORBA/COM
	17.5.2 Detailed Mapping Rules
	17.5.3 Example of Applying Ordering Rules
	17.5.4 Mapping Interface Identity

	17.6 Object Identity, Binding, and Life Cycle
	17.6.1 Object Identity Issues
	17.6.2 Binding and Life Cycle

	17.7 Interworking Interfaces
	17.7.1 SimpleFactory Interface
	17.7.2 IMonikerProvider Interface and Moniker Use
	17.7.3 ICORBAFactory Interface
	17.7.4 IForeignObject Interface
	17.7.5 ICORBAObject Interface
	17.7.6 ICORBAObject2
	17.7.7 IORBObject Interface
	17.7.8 Naming Conventions for View Components

	17.8 Distribution
	17.8.1 Bridge Locality
	17.8.2 Distribution Architecture

	17.9 Interworking Targets
	17.10 Compliance to COM/CORBA Interworking
	17.10.1 Products Subject to Compliance
	17.10.2 Compliance Points

	18.Mapping: COM and CORBA
	18.1 Data Type Mapping
	18.2 CORBA to COM Data Type Mapping
	18.2.1 Mapping for Basic Data Types
	18.2.2 Mapping for Constants
	18.2.3 Mapping for Enumerators
	18.2.4 Mapping for String Types
	18.2.5 Mapping for Struct Types
	18.2.6 Mapping for Union Types
	18.2.7 Mapping for Sequence Types
	18.2.8 Mapping for Array Types
	18.2.9 Mapping for the any Type
	18.2.10 Interface Mapping
	18.2.11 Inheritance Mapping
	18.2.12 Mapping for Pseudo-Objects
	18.2.13 Interface Repository Mapping

	18.3 COM to CORBA Data Type Mapping
	18.3.1 Mapping for Basic Data Types
	18.3.2 Mapping for Constants
	18.3.3 Mapping for Enumerators
	18.3.4 Mapping for String Types
	18.3.5 Mapping for Structure Types
	18.3.6 Mapping for Union Types
	18.3.7 Mapping for Array Types
	18.3.8 Mapping for VARIANT
	18.3.9 Mapping for Pointers
	18.3.10 Interface Mapping
	18.3.11 Mapping for Read-Only Attributes
	18.3.12 Mapping for Read-Write Attributes

	19.Mapping: Automation and CORBA
	19.1 Mapping CORBA Objects to Automation
	19.1.1 Architectural Overview
	19.1.2 Main Features of the Mapping

	19.2 Mapping for Interfaces
	19.2.1 Mapping for Attributes and Operations
	19.2.2 Mapping for OMG IDL Single Inheritance
	19.2.3 Mapping of OMG IDL Multiple Inheritance

	19.3 Mapping for Basic Data Types
	19.3.1 Basic Automation Types
	19.3.2 Special Cases of Basic Data Type Mapping
	19.3.3 Mapping for Strings

	19.4 IDL to ODL Mapping
	19.4.1 A Complete IDL to ODL Mapping for the Basic Data Types

	19.5 Mapping for Object References
	19.5.1 Type Mapping
	19.5.2 Object Reference Parameters and IForeignObject

	19.6 Mapping for Enumerated Types
	19.7 Mapping for Arrays and Sequences
	19.8 Mapping for CORBA Complex Types
	19.8.1 Mapping for Structure Types
	19.8.2 Mapping for Union Types
	19.8.3 Mapping for TypeCodes
	19.8.4 Mapping for anys
	19.8.5 Mapping for Typedefs
	19.8.6 Mapping for Constants
	19.8.7 Getting Initial CORBA Object References
	19.8.8 Creating Initial in Parameters for Complex Types
	19.8.9 Mapping CORBA Exceptions to Automation Exceptions
	19.8.10 Conventions for Naming Components of the Automation View
	19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo- Exceptions
	19.8.12 Automation View Interface as a Dispatch Interface (Nondual)
	19.8.13 Aggregation of Automation Views
	19.8.14 DII and DSI

	19.9 Mapping Automation Objects as CORBA Objects
	19.9.1 Architectural Overview
	19.9.2 Main Features of the Mapping
	19.9.3 Getting Initial Object References
	19.9.4 Mapping for Interfaces
	19.9.5 Mapping for Inheritance
	19.9.6 Mapping for ODL Properties and Methods
	19.9.7 Mapping for Automation Basic Data Types
	19.9.8 Conversion Errors
	19.9.9 Special Cases of Data Type Conversion
	19.9.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types
	19.9.11 Mapping for Object References
	19.9.12 Mapping for Enumerated Types
	19.9.13 Mapping for SafeArrays
	19.9.14 Mapping for Typedefs
	19.9.15 Mapping for VARIANTs
	19.9.16 Mapping Automation Exceptions to CORBA

	19.10 Older Automation Controllers
	19.10.1 Mapping for OMG IDL Arrays and Sequences to Collections

	19.11 Example Mappings
	19.11.1 Mapping the OMG Naming Service to Automation
	19.11.2 Mapping a COM Service to OMG IDL
	19.11.3 Mapping an OMG Object Service to Automation

	20.Interoperability with non-CORBA Systems
	20.1 Introduction
	20.1.1 COM/CORBA Part A

	20.2 Conformance Issues
	20.2.1 Performance Issues
	20.2.2 Scalability Issues
	20.2.3 CORBA Clients for DCOM Servers

	20.3 Locality of the Bridge
	20.4 Extent Definition
	20.4.1 Marshaling Constraints
	20.4.2 Marshaling Key
	20.4.3 Extent Format

	20.5 Request/Reply Extent Semantics
	20.6 Consistency
	20.6.1 IValueObject
	20.6.2 ISynchronize and DISynchronize

	20.7 DCOM Value Objects
	20.7.1 Passing Automation Compound Types as DCOM Value Objects
	20.7.2 Passing CORBA-Defined Pseudo-Objects as DCOM Value Objects
	20.7.3 IForeignObject
	20.7.4 DIForeignComplexType
	20.7.5 DIForeignException
	20.7.6 DISystemException
	20.7.7 DICORBAUserException
	20.7.8 DICORBAStruct
	20.7.9 DICORBAUnion
	20.7.10 DICORBATypeCode and ICORBATypeCode
	20.7.11 DICORBAAny
	20.7.12 ICORBAAny
	20.7.13 User Exceptions In COM

	20.8 Chain Avoidance
	20.8.1 CORBA Chain Avoidance
	20.8.2 COM Chain Avoidance

	20.9 Chain Bypass
	20.9.1 CORBA Chain Bypass
	20.9.2 COM Chain Bypass

	20.10 Thread Identification

	21.Portable Interceptors
	21.1 Introduction
	21.1.1 Object Creation
	21.1.2 Client Sends Request
	21.1.3 Server Receives Request
	21.1.4 Server Sends Reply
	21.1.5 Client Receives Reply

	21.2 Interceptor Interface
	21.3 Request Interceptors
	21.3.1 Design Principles
	21.3.2 General Flow Rules
	21.3.3 The Flow Stack Visual Model
	21.3.4 The Request Interceptor Points
	21.3.5 Client-Side Interceptor
	21.3.6 Client-Side Interception Points
	21.3.7 Client-Side Interception Point Flow
	21.3.8 Server-Side Interceptor
	21.3.9 Server-Side Interception Points
	21.3.10 Server-Side Interception Point Flow
	21.3.11 Request Information
	21.3.12 RequestInfo Interface
	21.3.13 ClientRequestInfo Interface
	21.3.14 ServerRequestInfo Interface
	21.3.15 ForwardRequest Exception

	21.4 Portable Interceptor Current
	21.4.1 Overview
	21.4.2 Obtaining the Portable Interceptor Current
	21.4.3 Portable Interceptor Current Interface
	21.4.4 Use of Portable Interceptor Current

	21.5 IOR Interceptor
	21.5.1 Overview
	21.5.2 An Abstract Model for Object Adapters
	21.5.3 Object Reference Template
	21.5.4 IORInterceptor Interface
	21.5.5 IORInfo Interface

	21.6 PolicyFactory
	21.6.1 PolicyFactory Interface

	21.7 Registering Interceptors
	21.7.1 ORBInitializer Interface
	21.7.2 ORBInitInfo Interface
	21.7.3 register_orb_initializer Operation
	21.7.4 Notes about Registering Interceptors

	21.8 Dynamic Initial References
	21.8.1 register_initial_reference

	21.9 Module Dynamic
	21.9.1 NVList PIDL Represented by ParameterList IDL
	21.9.2 ContextList PIDL Represented by ContextList IDL
	21.9.3 ExceptionList PIDL Represented by ExceptionList IDL
	21.9.4 Context PIDL Represented by RequestContext IDL

	21.10 Consolidated IDL
	21.10.1 Dynamic
	21.10.2 Portions of IOP Relevant to Portable Interceptor
	21.10.3 PortableInterceptor

	22.CORBA Messaging
	22.1 Section I - Introduction
	22.2 Messaging Quality of Service
	22.2.1 Rebind Support
	22.2.2 Synchronization Scope
	22.2.3 Request and Reply Priority
	22.2.4 Request and Reply Timeout
	22.2.5 Routing
	22.2.6 Queue Ordering

	22.3 Propagation of Messaging QoS
	22.3.1 Structures
	22.3.2 Messaging QoS Profile Component
	22.3.3 Messaging QoS Service Context

	22.4 Section II - Introduction
	22.5 Running Example
	22.6 Async Operation Mapping
	22.6.1 Callback Model Signatures (sendc)
	22.6.2 Polling Model Signatures (sendp)

	22.7 Exception Delivery in the Callback Model
	22.7.1 Messaging::ExceptionHolder valuetype

	22.8 Type-Specific ReplyHandler Mapping
	22.8.1 ReplyHandler Operations for NO_EXCEPTION Replies
	22.8.2 ReplyHandler Operations for Exceptional Replies
	22.8.3 Example

	22.9 Generic Poller Value
	22.9.1 operation_target
	22.9.2 operation_name
	22.9.3 associated_handler
	22.9.4 is_from_poller

	22.10 Type-Specific Poller Mapping
	22.10.1 Basic Type-Specific Poller
	22.10.2 Persistent Type-Specific Poller
	22.10.3 Example

	22.11 Example Programmer Usage
	22.11.1 Example Programmer Usage (Examples Mapped to C++)
	22.11.2 Client-Side C++ Example for the Asynchronous Method Signatures
	22.11.3 Client-Side C++ Example of the Callback Model
	22.11.4 Client-Side C++ Example of the Polling Model
	22.11.5 Server Side

	22.12 Section III - Introduction
	22.13 Routing Object References
	22.14 Message Routing
	22.14.1 Structures
	22.14.2 Interfaces
	22.14.3 Routing Protocol

	22.15 Router Administration
	22.15.1 Constants
	22.15.2 Exceptions
	22.15.3 Valuetypes
	22.15.4 Interfaces

	22.16 CORBA Messaging IDL
	22.16.1 Messaging Module
	22.16.2 MessageRouting Module

	23.Fault Tolerant CORBA
	23.1 Fault Tolerant CORBA
	23.1.1 Fault Tolerance for Diverse Applications
	23.1.2 Objectives
	23.1.3 Basic Concepts
	23.1.4 Architectural Overview
	23.1.5 Requirements
	23.1.6 Limitations

	23.2 Basic Fault Tolerance Mechanisms
	23.2.1 Overview
	23.2.2 Interoperable Object Group References
	23.2.3 Interoperable Object Group Reference Operations
	23.2.4 Modes of Profile Addressing
	23.2.5 Accessing Server Object Groups
	23.2.6 Extensions to CORBA Failover Semantics
	23.2.7 Most Recent Object Group Reference
	23.2.8 Transparent Reinvocation
	23.2.9 Transport Heartbeats

	23.3 Replication Management
	23.3.1 Overview
	23.3.2 Fault Tolerance Properties
	23.3.3 FaultMonitoringIntervalAndTimeout
	23.3.4 CheckpointInterval
	23.3.5 Common Types
	23.3.6 Replication Manager
	23.3.7 PropertyManager
	23.3.8 ObjectGroupManager
	23.3.9 GenericFactory
	23.3.10 Obtaining the Reference for the Replication Manager
	23.3.11 Use Cases

	23.4 Fault Management
	23.4.1 Overview
	23.4.2 Architecture
	23.4.3 Connecting Fault Detectors to Applications
	23.4.4 Pull-Based Monitoring
	23.4.5 Fault Event Types
	23.4.6 Fault Notifier
	23.4.7 Use Cases

	23.5 Logging & Recovery Management
	23.5.1 Overview
	23.5.2 Logging Mechanism
	23.5.3 Recovery Mechanism
	23.5.4 Checkpointable and Updateable Interfaces
	23.5.5 Use Case

	23.6 Consolidated IDL
	23.6.1 OMG IDL

	24.Secure Interoperability
	24.1 Overview
	24.1.1 Assumptions

	24.2 Protocol Message Definitions
	24.2.1 The Security Attribute Service Context Element
	24.2.2 SAS context_data Message Body Types
	24.2.3 Authorization Token Format
	24.2.4 Client Authentication Token Format
	24.2.5 Identity Token Format
	24.2.6 Principal Names and Distinguished Names

	24.3 Security Attribute Service Protocol
	24.3.1 Compound Mechanisms
	24.3.2 Session Semantics
	24.3.3 TSS State Machine
	24.3.4 CSS State Machine
	24.3.5 ContextError Values and Exceptions

	24.4 Transport Security Mechanisms
	24.4.1 Transport Layer Interoperability
	24.4.2 Transport Mechanism Configuration

	24.5 Interoperable Object References
	24.5.1 Target Security Configuration
	24.5.2 Client-side Mechanism Selection
	24.5.3 Client-Side Requirements and Location Binding

	24.6 Conformance Levels
	24.6.1 Conformance Level 0
	24.6.2 Conformance Level 1
	24.6.3 Conformance Level 2
	24.6.4 Stateful Conformance

	24.7 Sample Message Flows and Scenarios
	24.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
	24.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless Trust in Cli...
	24.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection - Stat...
	24.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the Connection - Stat...

	24.8 References for this Chapter
	24.9 IDL
	24.9.1 Module GSSUP - Username/Password GSSAPI Token Formats
	24.9.2 Module CSI - Common Secure Interoperability
	24.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions

	Appendix A - OMG IDL Tags
	Glossary
	Chapter Map
	Index

