The Common Object Request Broker:
Architecture and Specification

<@ CORBA

July 2002
Version 3.0
formal/02-06-33

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1998, 1999, Alcatel

Copyright © 1997, 1998, 1999 BEA Systems, Inc.

Copyright © 1995, 1996 BNR Europe Ltd.

Copyright © 1998, Borland International

Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright © 2001, Concept Five Technologies

Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 2001, Eternal Systems, Inc.

Copyright © 1995, 1996, 1998, Expersoft Corporation

Copyright © 1996, 1997 FUJITSU LIMITED

Copyright © 1996, Genesis Development Corporation

Copyright © 1989- 2001, Hewlett-Packard Company

Copyright © 2001, HighComm

Copyright © 1998, 1999, Highlander Communications, L.C.
Copyright © 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright © 1998, 1999, Inprise Corporation

Copyright © 1996 - 2001, International Business Machines Corporation
Copyright © 1995, 1996 ICL, plc

Copyright © 1998 - 2001, Inprise Corporation

Copyright © 1998, International Computers, Ltd.

Copyright © 1995 - 2001, IONA Technologies, Ltd.

Copyright © 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright © 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright © 1996, 1997 Micro Focus Limited

Copyright © 1991, 1992, 1995, 1996 NCR Corporation

Copyright © 1998, NEC Corporation

Copyright © 1998, Netscape Communications Corporation
Copyright © 1998, 1999, Nortel Networks

Copyright © 1998, 1999, Northern Telecom Corporation
Copyright © 1995, 1996, 1998, Novell USG

Copyright © 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright © 1991- 2001 Object Management Group, Inc.
Copyright © 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright © 1998, 1999, Object-Oriented Concepts, Inc.
Copyright © 1998, 2001, Oracle Corporation

Copyright © 1998, PeerLogic, Inc.

Copyright © 1996, Siemens Nixdorf Informationssysteme AG
Copyright © 1991 - 2001, Sun Microsystems, Inc.

Copyright © 1995, 1996, SunSoft, Inc.

Copyright © 1996, Sybase, Inc.

Copyright © 1998, Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright © 1998, TIBCO, Inc.

Copyright © 1998, 1999, Tri-Pacific Software, Inc.

Copyright © 1996, Visual Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions ar
notices set forth below. This document does not represent a commitment to implement any portion of this specification in an
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid u
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyri
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification t
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, &
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise reso
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protectir
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations an
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (i) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 |
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations ai
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™ CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Softwar
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

July 2002

Contents

Preface
1. TheObjectModel.
1.1 OVEIVIEW . ottt e e
1.2 ObjectSemantics
1.21 Objects.
1.2.2 Requests.
1.2.3 Object Creation and Destruction
1.24 TYPES . oot
125 Interfaces........
126 Value TypesS e
1.2.7 AbstractiInterfaces.
128 Operations.
129 Attributes.
1.3 Object Implementation.
1.3.1 The Execution Model: Performing Services
1.3.2 The Construction Model
2. CORBA OVEIVIEW . . ottt et et e e e e
2.1 Structure of an Object Request Broker.
2.1.1 Object RequestBroker.......................
212 ClientS. ...
2.1.3 Object Implementations.
2.1.4 ObjectReferencest
2.1.5 OMG Interface Definition Language............
2.1.6 Mapping of OMG IDL to Programming Languages
217 ClientStubs.........
2.1.8 Dynamic Invocation Interface
2.19 Implementation Skeleton.
2.1.10 Dynamic Skeleton Interface.
Common Object Request Broker Architecture (CORBA), v3.0 i

Contents

2.1.11 ObjectAdapters. 2-10
2112 ORBlinterface 2-10
2.1.13 Interface Repository 2-11
2.1.14 Implementation Repository 2-11
22 Example ORBs....... 2-11
2.2.1 Client- and Implementation-resident ORB 2-11
2.2.2 Server-basedORB.......................... 2-12
223 System-basedORB 2-12
224 Library-basedORB 2-12
2.3 StructureofaClient......... i 2-12
2.4 Structure of an Object Implementation. 2-13
2.5 Structure of an Object Adapter. 2-15
2.6 CORBA Required Object Adapter. 2-17
2.6.1 Portable Object Adapter 2-17
2.7 The Integration of Foreign Object Systems 2-17
3. OMG IDL Syntax and Semanticsccv.uu... 3-1
3.1 OVEIVIEW . .o 3-2
3.2 Lexical Conventions. 3-3
321 TOKENS . .. 3-6
3.2.2 Comments 3-6
3.2.3 Identifiers. 3-6
3.24 Keywords. 3-8
3.25 Literals. 3-8
3.3 PreproCesSiNgviiiiii e 3-11
34 OMGIDLGrammar.ottt 3-12
3.5 OMGIDL Specification.cin... 3-18
3.6 ImportDeclaration............. 3-19
3.7 ModuleDeclaration 3-20
3.8 Interface Declaration 3-21
3.8.1 Interface Header 3-21
3.8.2 Interface Inheritance Specification 3-21
3.83 InterffaceBody............ 3-22
3.8.4 Forward Declaration 3-22
3.85 Interface Inheritance 3-23
3.8.6 AbstractiInterface 3-26
3.8.7 Local Interface. 3-26
3.9 Value Declaration 3-27
391 RegularValueType........... 3-27
3.9.2 BoxedValueType 3-29
3.9.3 AbstractValue Type., 3-30
3.9.4 Value Forward Declaration 3-30
3.9.5 Valuetype Inheritance 3-31

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

July 2002

4.

3.10 Constant Declaration 3-32
3101 SyntaX ..o e 3-32
3.10.2 SemantiCsS 3-33
3.11 TypeDeclaration 3-36
3111 BasiCTYpPeS . ..ot e 3-37
3.11.2 Constructed Types 3-39
3.11.3 Template Types 3-44
3.11.4 Complex Declarator. 3-46
3115 Native TYPeS . .o 3-46
3.11.6 Deprecated Anonymous Types 3-47
3.12 Exception Declaration 3-49
3.13 OperationDeclaration 3-50
3.13.1 Operation Attribute 3-51
3.13.2 Parameter Declarations 3-51
3.13.3 RaisesExpressions 3-52
3.13.4 ContextExpressions 3-53
3.14 Attribute Declaration 3-53
3.15 Repository Identity Related Declarations. 3-54
3.15.1 Repository Identity Declaration. 3-54
3.15.2 Repository Identifier Prefix Declaration 3-56
3.16 EventDeclaration................. 3-56
3.16.1 RegularEventType......... ..., 3-56
3.16.2 AbstractEventType 3-57
3.16.3 Event Forward Declaration 3-57
3.16.4 Eventtype Inheritance 3-57
3.17 ComponentDeclaration 3-58
3.17.1 Component 3-58
3.17.2 ComponentHeader 3-59
3.17.3 ComponentBody................ 3-60
3.17.4 Event Sources—publishers and emitters 3-61
3175 EventSinks 3-62
3.17.6 Basic and Extended Components. 3-63
3.18 Home Declaration 3-63
3181 HOomMe...... 3-63
3.182 HomeHeader.............. 3-64
3183 HomeBody............. ... 3-64
3.19 CORBAModule.......... .. i 3-66
3.20 Namesand Scopingcu ... 3-67
3.20.1 QualifiedNames 3-67
3.20.2 Scoping Rules and Name Resolution. 3-69
3.20.3 Special Scoping Rules for Type Names. 3-72
ORB Interface e 4-1
4.1 OVEIVIEW . .ttt 4-1

Common Object Request Broker Architecture (CORBA), v3.0 iii

Contents

4.2

4.3

4.4
4.5

4.6

4.7
4.8

4.9

4.10

The ORBOperations 4-2
421 ORBldentity........ ... 4-8
4.2.2 Converting Object References to Strings. 4-8
4,2.3 Getting Service Information 4-9
4.2.4 CreatingaNew Context. 4-9
4.25 Thread-Related Operations 4-9

Object Reference Operations 4-12
4.3.1 Determining the Object Interface. 4-14
4.3.2 Duplicating and Releasing Copies of

Object References 4-14
4.3.3 Nil Object References 4-15
4.3.4 Equivalence Checking Operation. 4-15
4.3.5 Probing for Object Non-Existence. 4-16
4.3.6 Object Reference ldentity 4-16
4.3.7 Type Coercion Considerations. 4-18
4.3.8 Getting Policy Associated with the Object 4-18
4.3.9 Overriding Associated Policies on an

Object Reference. 4-20
4.3.10 \Validating Connection....................... 4-21
4.3.11 Getting the Domain Managers Associated

withthe Object 4-21
4.3.12 Getting Component Associated with the Object ... 4-22
4.3.13 LocalObject Operations. 4-22

ValueBase Operations. 4-23

ORB and OA Initialization and Initial References. 4-24
45.1 ORBlnitialization 4-24
4.5.2 Obtaining Initial Object References. 4-27
4.5.3 Configuring Initial Service References 4-29

ContextObject. 4-32
4.6.1 Introduction. 4-32
4.6.2 Context Object Operations. 4-32

CurrentObject 4-36

Policy Object 4-37
4.8.1 Definition of Policy Object 4-37
4.8.2 Creation of Policy Objects. 4-38
4.8.3 Usagesof PolicyObjects. 4-40
4.8.4 Policy Associated with the Execution Environment 4-40
4.8.5 Specification of New Policy Objects 4-41
4.8.6 Standard Policies. 4-43

Management of Policies. 4-43
4.9.1 Client Side Policy Management. 4-43
4.9.2 Server Side Policy Management 4-44
4.9.3 Policy Management Interfaces. 4-44

Management of Policy Domains 4-46

iv Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

July 2002

4.10.1 BasicCONCeptSt 4-46
4.10.2 Domain Management Operations 4-49
411 TYypeCodes 4-52
4.11.1 The TypeCode Interface. 4-52
4,11.2 TypeCodeConstants 4-57
4.11.3 Creating TypeCodes. v, 4-58
412 EXCEPLiONSt ti 4-62
4.12.1 Definitionof Terms 4-62
4.12.2 System Exceptions. 4-63
4.12.3 Standard System Exception Definitions 4-65
4.12.4 Standard Minor Exception Codes 4-72
5. Value Type Semantics. 5-1
5.1 OVEIVIEW . ..o 5-1
5.2 Architecture 5-2
5,21 AbstractValues 5-3
5,22 0perations.t 5-3
5.2.3 Value Typevs. Interfaces. 5-4
5,24 ParameterPassing 5-4
5.2.5 Substitutability Issues 5-5
5.2.6 Widening/Narrowing 5-6
5,27 ValueBaseType 5-6
5.2.8 LifeCycleissues.............. ... 5-7
B 2.9
Security Considerations. 5-7
5.3 Standard Value Box Definitions 5-9
5.4 Language Mappings.t e 5-9
5.4.1 General Requirements....................... 5-9
5.4.2 Language Specific Marshaling. 5-9
5.4.3 Language Specific Value Factory Requirements ... 5-9
5.4.4 Value Method Implementation. 5-10
55 CustomMarshaling 5-10
5.5.1 Implementation of Custom Marshaling.......... 5-11
5.,5.2 Marshaling Streams. 5-11
5.6 Access to the Sending Context Run Time 5-18
6. Abstract Interface Semantics. 6-1
6.1 OVEeIVIEW . ..ot 6-1
6.2 Semantics of Abstract Interfaces 6-1
6.3 Usage Guidelines. 6-3
6.4 Example. 6-3
6.5 Security Considerations 6-4
6.5.1 Passing Values to Trusted Domains. 6-4

Common Object Request Broker Architecture (CORBA), v3.0 Y

Contents

7. Dynamic Invocation Interface. 7-1
7.1 OVEIVIEW . .ottt 7-1
7.1.1 Common Data Structures. 7-2
7.1.2 Memory Usagec.iiiiinnn.. 7-4
7.1.3 Return Status and Exceptions 7-4
7.2 RequestOperations, 7-4
7.2.1 create_request 7-5
722 add arg 7-7
7.23 invoke 7-8
724 delete.. 7-8
725 send. ... 7-8
7.26 poll_response.iiiii 7-9
7.2.7 get_responsecuuiiiinini, 7-9
7.28 sendp....... .. e 7-10
7.2.9 Prepare. 7-10
7210 sendc........ .. 7-10
7.3 ORBOperations.coi .. 7-11
7.3.1 send_multiple_requests L. 7-11
7.3.2 get_next_response and poll_next_response....... 7-11
7.4 Polling ... 7-12
7.4.1 Abstract Valuetype Pollable 7-14
7.4.2 Abstract Valuetype DIIPollable 7-14
7.4.3 interface PollableSet 7-14
7.5 ListOperations. 7-16
751 create list 7-17
752 additem 7-17
753 free. ... 7-18
754 free_memory. 7-18
7.55 get_count.......... ... 7-18
7.5.6 create_operation list........................ 7-18
8. Dynamic Skeleton Interface. 8-1
8.1 Introduction 8-1
8.2 OVEIVIEW . . .o 8-2
8.3 ServerRequestPseudo-Object....................... 8-3
8.3.1 ExplicitRequest State:
ServerRequestPseudo-Object. 8-3
8.4 DSl:Language Mappingcuuiiiiiinen... 8-4

8.4.1 ServerRequest’'s Handling of Operation Parameters 8-4
8.4.2 Registering Dynamic Implementation Routines ... 8-5

9. Dynamic Managementof Any Values 9-1
9.1 OVEIVIEW . .ot 9-1
9.2 DynAny APL. 9-3

Vi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

9.2.1 Creatinga DynAny Object 9-9
9.2.2 TheDynAnyiInterface....................... 9-11
9.2.3 The DynFixed Interface. 9-16
9.2.4 The DynEnum nterface...................... 9-17
9.2.5 The DynStruct Interface 9-17
9.2.6 The DynUnion Interface 9-19
9.2.7 The DynSequence Interface. 9-22
9.2.8 The DynArray Interface. 9-23
9.2.9 The DynValueCommon Interface 9-24
9.2.10 The DynValue Interface...................... 9-24
9.2.11 The DynValueBox Interface 9-25
9.3 UsageinC++Language.ovuiiiinnnnn... 9-26
9.3.1 Dynamic Creation of CORBA::Any Values. 9-26
9.3.2 Dynamic Interpretation of CORBA::Any Values. .. 9-27
10. The Interface Repository. i i 10-1
10.1 OVEIVIEW . .ot e e 10-1
10.2 Scope of an Interface Repository 10-2
10.3 Implementation Dependencies. 10-4
10.3.1 Managing Interface Repositories. 10-4
10.4 BaSiCS. .. i it 10-5
10.4.1 Names and ldentifiers 10-6
10.4.2 Typesand TypeCodes 10-6
10.4.3 Interface Repository Objects 10-6
10.4.4 Structure and Navigation of the
Interface Repository 10-8
10.5 Interface Repository Interfaces. 10-11
10.5.1 Supporting Type Definitions 10-12
10.5.2 IRObjeCt o 10-13
1053 Contained i 10-14
10.5.4 Container. 10-16
1055 IDLTYpE. . oot 10-22
10.5.6 RepoSitory 10-22
10.5.7 ModuleDef. 10-24
10.5.8 ConstantDef............. 10-25
10.5.9 TypedefDef 10-26
10.5.10 StructDef. 10-26
10.5.11 UnionDef. 10-27
10.5.12 EnumDef. 10-28
10.5.13 AliasDef 10-28
10.5.14 PrimitiveDef 10-29
10.5.15 StringDef. 10-29
10.5.16 WstringDef 10-30
10.5.17 FixedDef 10-30
10.5.18 SequenceDef....... 10-30

July 2002

Common Object Request Broker Architecture (CORBA), v3.0

vii

Contents

viii

10.5.19 ArrayDef 10-31

10.5.20 ExceptionDef. 10-32

10.5.21 AttributeDef. 10-32

10.5.22 ExtAttributeDef. 10-33

10.5.23 OperationDef. 10-34

10.5.24 InterfaceDef. 10-36

10.5.25 ExtinterfaceDef. 10-38

10.5.26 AbstractinterfaceDef.......... 10-39

10.5.27 ExtAbstractinterfaceDef 10-41

10.5.28 LocalinterfaceDef 10-41

10.5.29 ExtLocallnterfaceDef 10-43

10.5.30 ValueMemberDef. 10-43

10.5.31 ValueDef 10-44

10.5.32 ExtValueDef 10-48

10.5.33 ValueBoxDef....... 10-49

10.5.34 NativeDef 10-50
10.6 Component Interface Repository Interfaces. 10-50
10.6.1 ComponentiR::Container. 10-50

10.6.2 ComponentIR::Repository. 10-52

10.6.3 ComponentIR::ProvidesDef. 10-53

10.6.4 ComponentlR::UsesDef. 10-53

10.6.5 ComponentiR::EventDef..................... 10-54

10.6.6 ComponentiR::EventPortDef. 10-55

10.6.7 ComponentIR::EmitsDef..................... 10-56

10.6.8 ComponentIR::PublishesDef.................. 10-56

10.6.9 ComponentIiR::ConsumesDef 10-57

10.6.10 ComponentIR::ComponentDef 10-57

10.6.11 ComponentlR::FactoryDef 10-60

10.6.12 ComponentlR::FinderDef 10-61

10.6.13 ComponentlR::HomeDef. 10-62
10.7 Repositorylds. 10-64
10.7.1 OMGIDLFormat..........., 10-65

10.7.2 RMIHashed Format 10-65

10.7.3 DCEUUIDFormat............couiuuuuno... 10-67

10.74 LOCALFormat.............cciiin... 10-67

10.7.5 Pragma Directives for Repositoryld 10-67

10.7.6 For More Information 10-73

10.7.7 RepositorylDs for OMG-Specified Types 10-73

10.7.8 Unigueness Constraints on Repository IDs 10-73

10.8 OMG IDL for Interface Repository 10-75
11. The Portable Object Adapter, 11-1
111 OVEIVIEW . oottt e e et e 11-1
11.2 Abstract Model Description. 11-2
11.2.1 ModelComponents, 11-2

11.2.2 Model Architecture 11-4

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

Contents

11.2.3 POACreation 11-6
11.2.4 Reference Creation 11-7
11.2.5 Object Activation States 11-8
11.26 RequestProcessingouuuuin.... 11-9
11.2.7 Implicit Activation. 11-10
11.2.8 Multi-threading 11-11
11.2.9 Dynamic Skeleton Interface. 11-13
11.2.10 Location TransSparency.ouveuuun ... 11-14
11.3 Interfaces 11-14
11.3.1 TheServantIDLType........ ..., 11-15
11.3.2 POAManageriInterface 11-15
11.3.3 POAManagerFactory Interface 11-21
11.3.4 AdapterActivator Interface 11-22
11.3.5 ServantManager Interface 11-24
11.3.6 ServantActivator Interface. 11-25
11.3.7 ServantLocator Interface 11-27
11.3.8 POAPolicyObjects. 11-30
11.3.9 POAInterfacec.ciiiiiinnnns 11-34
11.3.10 CurrentOperations., 11-45
11.4 IDL for PortableServer Module 11-46
11.5 UML Description of PortableServer. 11-52
11.6 Usage SCenarios.ttt 11-54
11.6.1 Gettingthe RootPOA 11-54
11.6.2 CreatingaPOA i 11-55
11.6.3 Explicit Activation with POA-assigned Object Ids . 11-55
11.6.4 Explicit Activation with User-assigned Object Ids . 11-56
11.6.5 Creating References before Activation 11-57
11.6.6 Servant Manager Definition and Creation 11-57
11.6.7 Object ActivationonDemand 11-59
11.6.8 Persistent Objects with POA-assigned Ids. 11-60
11.6.9 Multiple Object Ids Mapping to a Single Servant .. 11-61
11.6.10 One Servant for All Objects. 11-61
11.6.11 Single Servant, Many Objects and Types,
UsingDSI. 11-64
12. Interoperability Overview 12-1
12.1 Elements of Interoperability. 12-1
12.1.1 ORB Interoperability Architecture 12-2
12.1.2 Inter-ORB Bridge Support. 12-2
12.1.3 General Inter-ORB Protocol (GIOP) 12-3
12.1.4 Internet Inter-ORB Protocol (IIOP)® 12-3
12.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS) . . 12-4
12.2 Relationship to Previous Versions of CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5

July 2002

Common Object Request Broker Architecture (CORBA), v3.0

Contents

1231 Example 1 12-5
1232 Example 2 12-5
12.3.3 Example 3 12-5
12.3.4 Interoperability Compliance 12-5
12.4 Motivating Factors 12-8
12.4.1 ORB Implementation Diversity 12-8
12.42 ORBBoundaries, 12-8
12.4.3 ORBs Vary in Scope, Distance, and Lifetime 12-9
12.5 Interoperability Design Goals. 12-9
1251 Non-Goals. 12-10
13. ORB Interoperability Architecture. 13-1
131 OVEIVIEW . oot e e 13-1
13.1.1 DOMAINS ..ottt 13-2
13.1.2 BridgingDomains 13-2
13.2 ORBsandORB Services 13-3
13.2.1 The Nature of ORB Services.................. 13-3
13.2.2 ORB Services and Object Requests. 13-3
13.2.3 Selectionof ORB Services 13-4
13.3 DOMains. . ..ot 13-5
13.3.1 DefinitionofaDomain 13-5
13.3.2 Mapping Between Domains: Bridging. 13-6
13.4 Interoperability Between ORBS 13-7
13.4.1 ORB Servicesand Domains 13-7
13.42 ORBsandDomains......................... 13-7
13.4.3 Interoperability Approaches 13-8
13.4.4 Policy-Mediated Bridging 13-10
13.4.5 Configurations of Bridges in Networks 13-11
13.5 Object Addressing i 13-11
13.5.1 Domain-relative Object Referencing............ 13-12
13.5.2 Handling of Referencing Between Domains 13-12
13.6 An Information Model for Object References 13-14
13.6.1 What Information Do Bridges Need? 13-14
13.6.2 Interoperable Object References: IORs.......... 13-14
13.6.3 IORProfiles. ... 13-15
13.6.4 Standard IORProfiles 13-17
13.6.5 IORCOmMpoNents.ovuiiunnn. .. 13-18
13.6.6 Standard IOR Components 13-19
13.6.7 Profile and Component Compositionin IORs 13-22
13.6.8 IOR Creationand Scope 13-22
13.6.9 Stringified Object References 13-22
13.6.10 ObjectURLS i 13-24
13.7 Service Contextt 13-28
13.7.1 Standard Service Contexts. 13-30

X Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

13.7.2 Service Context ProcessingRules 13-31
13.8 Coder/Decoder Interfaces.ci.. 13-32
13.8.1 Codeclinterface 13-32
13.82 CodecFactory 13-34
13.9 Feature Support and GIOP Versions. 13-35
13.10 Code Set Conversionuuiinnnnnnn. 13-37
13.10.1 Character Processing Terminology 13-37
13.10.2 Code Set Conversion Framework 13-40
13.10.3 Mapping to Generic Character Environments 13-48
13.10.4 Example of Generic Environment Mapping 13-49
13.10.5 Relevant OSFM Registry Interfaces 13-50
14. Building Inter-ORBBridges. 14-1
14.1 IntroducCtion 14-1
14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-lineBridging. i 14-3
14.2.2 Request-level Bridging 14-3
14.2.3 CollocatedORBSs. 14-4
14.3 Proxy Creation and Management.................... 14-5
14.4 Interface-specific Bridges and Generic Bridges 14-6
14.5 Building Generic Request-Level Bridges. 14-6
14.6 Bridging Non-Referencing Domains 14-7
14.7 Bootstrapping Bridges o 14-7
15. General Inter-ORB Protocol 15-1
15.1 Goals of the General Inter-ORB Protocol. 15-2
15.2 GIOP OVeIVIEWo 15-2
15.2.1 Common Data Representation (CDR)........... 15-3
15.2.2 GIOP Message Overview 15-3
15.2.3 GIOP Message Transfer. 15-4
153 CDR TransferSyntax.............c..uiiiineean. 15-4
15.3.1 Primitive TypeS oo 15-5
15.3.2 OMG IDL Constructed Types 15-11
15.3.3 Encapsulation oL 15-14
1534 Value TYpeSttt 15-15
15.3.5 Pseudo-ObjectTypes.............ciin.... 15-23
15.3.6 ObjectReferences 15-30
15.3.7 Abstract Interfaces. 15-30
154 GIOP Message Formats 15-31
15.4.1 GIOP Message Header 15-31
1542 RequestMessage.vuuiiiinineenn. 15-34
1543 ReplyMessage., 15-37
15.4.4 CancelRequestMessage 15-41

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Xi

Contents

Xii

15.45 LocateRequestMessage.c.. ... 15-41
15.4.6 LocateReplyMessage 15-43
15.4.7 CloseConnection Message. 15-45
15.4.8 MessageErrorMessage 15-45
1549 FragmentMessage.y 15-45
15.5 GIOP Message Transport. 15-47
15.5.1 Connection Management. 15-47
1552 Message Ordering, 15-49
15.6 ObjectLocation, 15-50
15.7 Internet Inter-ORB Protocol (IIOP) 15-51
15.7.1 TCP/IP ConnectionUsage. 15-52
15.7.2 1IOPIORProfiles 15-52
15.7.3 1IOP IOR Profile Components. 15-55
15.8 Bi-Directional GIOP, 15-56
15.8.1 Bi-Directional lIOP 15-58
15.9 Bi-directional GIOP policy. 15-60
15,20 OMG IDL. . .ot it e e e 15-60
15.10.1 GIOP Module i 15-60
15.10.2 lIOP Module i 15-64
15.10.3 BiDirPolicy Module 15-65
16. The DCEESIOP e 16-1
16.1 Goals of the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.2.1 DCE-CIOPRPC 16-2
16.2.2 DCE-CIOP Data Representation 16-3
16.2.3 DCE-CIOPMessagescouiiininnnnn. 16-4
16.2.4 Interoperable Object Reference (IOR)........... 16-5
16.3 DCE-CIOP Message Transport 16-5
16.3.1 Pipe-based Interface 16-6
16.3.2 Array-based Interface 16-8
16.4 DCE-CIOP Message Formats. 16-11
16.4.1 DCE_CIOP Invoke Request Message 16-11
16.4.2 DCE-CIOP Invoke Response Message 16-12
16.4.3 DCE-CIOP Locate Request Message. 16-14
16.4.4 DCE-CIOP Locate Response Message 16-15
16.5 DCE-CIOP Object References. 16-16
16.5.1 DCE-CIOP String Binding Component. 16-17
16.5.2 DCE-CIOP Binding Name Component.......... 16-18
16.5.3 DCE-CIOP No Pipes Component 16-19
16.5.4 Complete Object Key Component. 16-19
16.5.5 Endpoint ID Position Component 16-20
16.5.6 Location Policy Component 16-20
16.6 DCE-CIOP ObjectLocation. 16-21

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

16.6.1 Location Mechanism Overview. 16-22
16.6.2 Activation 16-23
16.6.3 Basic Location Algorithm 16-23
16.6.4 Use of the Location Policy and the Endpoint ID ... 16-24
16.7 OMG IDL forthe DCE CIOP Module 16-25
16.8 References forthisChapter 16-26
17. Interworking Architecture 17-1
17.1 Purpose of the Interworking Architecture 17-2
17.1.1 Comparing COM Objects to CORBA Objects. 17-2
17.2 Interworking Object Model 17-3
17.2.1 Relationship to CORBA Object Model 17-3
17.2.2 Relationship to the OLE/COM Model. 17-4
17.2.3 Basic Description of the Interworking Model 17-4
17.3 Interworking Mapping Issues. 17-8
17.4 Interface Mapping« 17-8
1741 CORBA/COM. e 17-9
17.4.2 CORBA/Automation........................ 17-9
1743 COM/CORBA i 17-10
17.4.4 Automation/CORBA........................ 17-10
17.5 Interface Composition Mappings. 17-11
1751 CORBA/ICOM........ . i 17-11
17.5.2 Detailed MappingRules 17-13
17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interface Identity 17-16
17.6 Object Identity, Binding, and Life Cycle 17-18
17.6.1 ObjectldentitylIssues 17-19
17.6.2 BindingandLifeCycle...................... 17-20
17.7 Interworking Interfaces 17-23
17.7.1 SimpleFactory Interface. 17-23
17.7.2 IMonikerProvider Interface and Moniker Use. 17-23
17.7.3 ICORBAFactory Interface. 17-24
17.7.4 IForeignObject Interface 17-26
17.7.5 ICORBAObject Interface. 17-27
17.7.6 ICORBAObjeCt2 17-28
17.7.7 10RBObjectInterface 17-28
17.7.8 Naming Conventions for View Components 17-30
17.8 Distribution 17-32
17.8.1 Bridge Locality 17-32
17.8.2 Distribution Architecture. 17-33
17.9 Interworking Targets 17-34
17.10 Compliance to COM/CORBA Interworking. 17-34
17.10.1 Products Subject to Compliance 17-34
17.10.2 Compliance Points. 17-36

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 Xiii

Contents

18. Mapping: COMand CORBA 18-1
18.1 DataTypeMapping 18-1
18.2 CORBAto COM Data Type Mapping 18-2

18.2.1 Mapping for Basic Data Types 18-2
18.2.2 Mapping for Constants 18-2
18.2.3 Mapping for Enumerators 18-3
18.2.4 Mapping for String Types 18-4
18.2.5 Mapping for Struct Types 18-5
18.2.6 MappingforUnionTypes 18-6
18.2.7 Mapping for Sequence Types. 18-8
18.2.8 Mapping for Array Types 18-9
18.2.9 Mapping fortheany Type 18-9
18.2.10 Interface Mapping 18-11
18.2.11 Inheritance Mapping, 18-26
18.2.12 Mapping for Pseudo-Objects. 18-29
18.2.13 Interface Repository Mapping. 18-32
18.3 COM to CORBA Data Type Mapping 18-33
18.3.1 Mapping for Basic Data Types 18-33
18.3.2 Mapping for Constants 18-34
18.3.3 Mapping for Enumerators 18-34
18.3.4 Mapping for String Types 18-35
18.3.5 Mapping for Structure Types. 18-37
18.3.6 MappingforUnionTypes 18-38
18.3.7 Mapping for Array Types 18-40
18.3.8 Mapping for VARIANT. 18-41
18.3.9 Mapping for Pointers. 18-43
18.3.10 Interface Mapping 18-44
18.3.11 Mapping for Read-Only Attributes 18-49
18.3.12 Mapping for Read-Write Attributes. 18-49
19. Mapping: Automationand CORBA 19-1
19.1 Mapping CORBA Obijects to Automation 19-2
19.1.1 Architectural Overview 19-2
19.1.2 Main Features of the Mapping. 19-3
19.2 Mapping forinterfaces................. 19-3
19.2.1 Mapping for Attributes and Operations. 19-4
19.2.2 Mapping for OMG IDL Single Inheritance 19-5
19.2.3 Mapping of OMG IDL Multiple Inheritance.. 19-6
19.3 Mapping for Basic Data Types. 19-9
19.3.1 Basic Automation Types 19-9
19.3.2 Special Cases of Basic Data Type Mapping. 19-10
19.3.3 Mapping for Strings. oo 19-11
194 IDLtoODLMapping., 19-12
19.4.1 A Complete IDL to ODL Mapping for the
BasicData Types. oot 19-12
Xiv Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

19.5 Mapping for Object References 19-15
1951 TypeMappingcoiiiiiiinennnn.. 19-15
19.5.2 Object Reference Parameters
and IForeignObject 19-16
19.6 Mapping for Enumerated Types. 19-17
19.7 Mapping for Arrays and Sequences 19-18
19.8 Mapping for CORBA Complex Types 19-19
19.8.1 Mapping for Structure Types. 19-20
19.8.2 MappingforUnionTypes 19-21
19.8.3 Mapping for TypeCodes 19-22
19.8.4 Mappingforanys. 19-24
19.8.5 Mapping for Typedefs 19-25
19.8.6 MappingforConstants 19-25
19.8.7 Getting Initial CORBA Object References 19-26
19.8.8 Creating Initial in Parameters for Complex Types.. 19-27
19.8.9 Mapping CORBA Exceptions to
Automation Exceptions, 19-30
19.8.10 ConventionsforNamingComponentsofthe AutomationView
19-36
19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Unions,
and Pseudo-Exceptions 19-36
19.8.12 Automation View Interface as a Dispatch
Interface (Nondual) 19-36
19.8.13 Aggregation of Automation Views 19-38
19.8.14 DllandDSI. ... 19-38
19.9 Mapping Automation Objects as CORBA Objects. 19-38
19.9.1 Architectural Overview 19-38
19.9.2 Main Features of the Mapping. 19-39
19.9.3 Getting Initial Object References 19-40
19.9.4 Mapping for Interfaces 19-40
19.9.5 Mapping for Inheritance 19-40
19.9.6 Mapping for ODL Properties and Methods 19-41
19.9.7 Mapping for Automation Basic Data Types. 19-42
19.9.8 Conversion Errors 19-43
19.9.9 Special Cases of Data Type Conversion. 19-43
19.9.10 A Complete OMG IDL to ODL Mapping
forthe BasicData Types 19-44
19.9.11 Mapping for Object References. 19-46
19.9.12 Mapping for Enumerated Types. 19-47
19.9.13 Mapping for SafeArrays 19-48
19.9.14 Mapping for Typedefs 19-48
19.9.15 Mapping for VARIANTS oot 19-48
19.9.16 Mapping Automation Exceptions to CORBA 19-49
19.10 Older Automation Controllers 19-49

19.10.1 Mapping for OMG IDL Arrays and Sequences
to Collections. 19-49

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 XV

Contents

19.11 Example Mappings. it 19-51
19.11.1 Mapping the OMG Naming Service
to Automation 19-51
19.11.2 Mapping a COM ServicetoOMG IDL 19-51
19.11.3 Mapping an OMG Object Service to Automation .. 19-55
20. Interoperability with non-CORBA Systems 20-1
20.1 IntroducCtion 20-1
20.1.1 COM/CORBAPartA, 20-2
20.2 Conformance ISSUes. 20-2
20.2.1 Performancelssues 20-3
20.2.2 Scalability Issues. 20-3
20.2.3 CORBA Clients for DCOM Servers 20-3
20.3 LocalityoftheBridge 20-4
20.4 Extent Definition 20-5
20.4.1 Marshaling Constraints 20-6
20.4.2 MarshalingKey......... ... i 20-6
2043 ExtentFormat 20-7
20.5 Request/Reply Extent Semantics 20-8
20.6 CONSIStENCYt 20-9
20.6.1 IValueObject 20-10
20.6.2 ISynchronize and DISynchronize 20-11
20.7 DCOM Value Objects. 20-11
20.7.1 Passing Automation Compound Types as
DCOM Value Objects 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects
as DCOM Value Objects 20-12
20.7.3 IForeignObject. 20-12
20.7.4 DIForeignComplexType 20-12
20.7.5 DlIForeignException 20-12
20.7.6 DISystemException., 20-12
20.7.7 DICORBAUserException 20-13
20.7.8 DICORBASHIUCE . . oo 20-13
20.7.9 DICORBAUNION 20-13
20.7.10 DICORBATypeCode and ICORBATypeCode 20-13
20.7.11 DICORBAANY. . . . ot 20-14
20.7.12 ICORBAANY 20-15
20.7.13 User ExceptionsINCOM. 20-15
20.8 ChainAvoidance 20-16
20.8.1 CORBA Chain Avoidance.................... 20-16
20.8.2 COM Chain Avoidance 20-17
209 Chain Bypassot 20-19
20.9.1 CORBAChainBypass.............ccviu.... 20-19
209.2 COMChainBypass...........coiiiiennn.. 20-20

XVi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

20.10 Thread Identification 20-21
21. Portable Interceptors 21-1
21.1 IntroduCtion 21-1
21.1.1 ObjectCreation............ 21-2
21.1.2 ClientSendsRequest. 21-3
21.1.3 ServerReceivesRequest 21-4
21.1.4 ServerSendsReply 21-4
21.15 ClientReceivesReply 21-5
21.2 Interceptorinterface............. 21-5
21.3 RequestiInterceptors. 21-6
21.3.1 DesignPrinciples. L 21-6
21.3.2 GeneralFlowRules......................... 21-7
21.3.3 The Flow Stack Visual Model 21-8
21.3.4 The Request Interceptor Points 21-8
21.3.5 Client-Side Interceptor 21-9
21.3.6 Client-Side Interception Points 21-9
21.3.7 Client-Side Interception Point Flow 21-11
21.3.8 Server-Side Interceptor 21-14
21.3.9 Server-Side Interception Points. 21-14
21.3.10 Server-Side Interception Point Flow 21-17
21.3.11 RequestInformation 21-20
21.3.12 Requestinfo Interface 21-21
21.3.13 ClientRequestinfo Interface. 21-25
21.3.14 ServerRequestinfo Interface 21-29
21.3.15 ForwardRequest Exception 21-33
21.4 Portable Interceptor Current. 21-33
2141 OVEIVIEW . . oottt e e 21-33
21.4.2 Obtaining the Portable Interceptor Current 21-34
21.4.3 Portable Interceptor Current Interface. 21-34
21.4.4 Use of Portable Interceptor Current. 21-35
21.5 IOR Interceptor 21-40
2151 OVeIVIEWottt e e 21-40
21.5.2 An Abstract Model for Object Adapters 21-40
21.5.3 Object Reference Template 21-43
21.5.4 IORInterceptoriInterface 21-45
2155 IORInfolInterface 21-46
21.6 PolicyFactory 21-50
21.6.1 PolicyFactoryInterface 21-50
21.7 Registering Interceptors. i 21-50
21.7.1 ORSBInitializer Interface 21-51
21.7.2 ORBInitinfo Interface 21-51
21.7.3 register_orb_initializer Operation 21-55
21.7.4 Notes about Registering Interceptors. 21-57
21.8 Dynamic Initial References 21-57

Common Object Request Broker Architecture (CORBA), v3.0 XVii

Contents

21.8.1 register_initial_reference..................... 21-57

21.9 Module DynamicCc i 21-58
21.9.1 NVList PIDL Represented by ParameterList IDL.. 21-58
21.9.2 ContextList PIDL Represented by

ContextList IDL. 21-58
21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL., 21-58
21.9.4 Context PIDL Represented by
RequestContextIDL 21-59
21.10 Consolidated IDL. 21-59
21.10.1 DYNamiC . ..o it 21-59
21.10.2 Portions of IOP Relevant to Portable Interceptor. .. 21-59
21.10.3 Portablelnterceptor 21-60
22. CORBAMESSAQINGottt et et et et e e e e 22-1
22.1 Section |- Introduction, 22-2
22.2 Messaging Quality of Service 22-2
22.2.1 Rebind Support 22-5
22.2.2 Synchronization Scope 22-6
22.2.3 Request and Reply Priority 22-7
22.2.4 Requestand Reply Timeout. 22-8
2225 ROULING . ..ot 22-10
2226 QueueOrdering. 22-11
22.3 Propagation of Messaging QoS 22-12
22.3.1 Structures. 22-12
22.3.2 Messaging QoS Profile Component. 22-13
22.3.3 Messaging QoS Service Context. 22-13
22.4 Sectionll - Introduction. 22-13
225 Running Example. 22-15
22.6 Async Operation Mapping 22-16
22.6.1 Callback Model Signatures (sendc). 22-16
22.6.2 Polling Model Signatures (sendp) 22-18
22.7 Exception Delivery in the Callback Model. 22-20
22.7.1 Messaging::ExceptionHoldesluetype. 22-20
22.8 Type-Specific ReplyHandler Mapping 22-21
22.8.1 ReplyHandler Operations for
NO_EXCEPTION Replies. 22-22
22.8.2 ReplyHandler Operations for Exceptional Replies . 22-23
22.8.3 Example. 22-23
22.9 GenericPollerValue. L. 22-24
22.9.1 operation_target. 22-25
22.9.2 operation_ hame.iiinnn... 22-25
22.9.3 associated handler.......................... 22-25
2294 is from_poller...... L. 22-25

Xviii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

22.10 Type-Specific Poller Mapping 22-26
22.10.1 Basic Type-SpecificPoller. 22-26
22.10.2 Persistent Type-SpecificPoller 22-28
22.10.3 Example. 22-29
22.11 Example ProgrammerUsage 22-30
22.11.1 Example Programmer Usage (Examples
Mappedto C++) 22-30
22.11.2 Client-Side C++ Example for the
Asynchronous Method Signatures. 22-30
22.11.3 Client-Side C++ Example of the Callback Model .. 22-31
22.11.4 Client-Side C++ Example of the Polling Model ... 22-38
22.11.5 ServerSide 22-44
22.12 Section lll - Introduction 22-45
22.13 Routing Object References. 22-46
2214 Message Routing 22-46
22.14.1 StrUCtUreS.o 22-48
22.14.2 Interfaces. 22-50
22.14.3 Routing Protocol 22-52
22.15 Router Administration 22-59
22.15.1 CoNnstantS. 22-62
22.15.2 EXCEPLIONSot i 22-63
22.15.3 Valuetypes. 22-63
22154 Interfaces. 22-64
22.16 CORBAMessaging IDL. i, 22-65
22.16.1 MessagingModule 22-65
22.16.2 MessageRoutingModule. 22-68
Appendix A Overall Design Rationale 22-72
Appendix B Conformance and Compatibility Issues 22-84
23. Fault Tolerant CORBA. e 23-1
23.1 Fault Tolerant CORBA. i 23-1
23.1.1 Fault Tolerance for Diverse Applications 23-1
23.1.2 ODbJeCtiveso 23-2
23.1.3 BasicConceptscuiiiiiiiii, 23-3
23.1.4 Architectural Overview 23-4
23.1.5 Requirements. 23-8
23.1.6 Limitations 23-11
23.2 Basic Fault Tolerance Mechanisms 23-12
2321 OVEIVIEW . . . ittt e e e e e e 23-12
23.2.2 Interoperable Object Group References. 23-13
23.2.3 Interoperable Object Group Reference
Operations 23-16
23.2.4 Modes of Profile Addressing. 23-18
23.2.5 Accessing Server Object Groups. 23-19
July 2002 Common Object Request Broker Architecture (CORBA), v3.0 XiX

Contents

23.2.6 Extensions to CORBA Failover Semantics 23-21
23.2.7 Most Recent Object Group Reference........... 23-22
23.2.8 Transparent Reinvocation 23-23
23.2.9 TransportHeartbeats 23-27
23.3 Replication Management 23-31
23.3.1 OVEIVIEW . . .o 23-31
23.3.2 Fault Tolerance Properties. 23-32
23.3.3 FaultMonitoringintervalAndTimeout. 23-37
23.3.4 Checkpointinterval 23-37
23.3.5 CommonTypeso ... 23-38
23.3.6 Replication Manager 23-44
23.3.7 PropertyManager. 23-45
23.3.8 ObjectGroupManagerccovu.... 23-49
23.3.9 GenericFactory 23-56
23.3.10 Obtaining the Reference for the
Replication Manager 23-61
23.3.11 UsSe CasSesS ..o vttt 23-61
23.4 FaultManagement 23-66
2341 OVEIVIEW . . .ottt e e e 23-66
23.4.2 Architecture. 23-67
23.4.3 Connecting Fault Detectors to Applications 23-70
23.4.4 Pull-Based Monitoring 23-71
23.45 FaultEventTypes 23-72
23.4.6 Fault Notifier. 23-73
2347 UseCases ...t 23-79
23.5 Logging & Recovery Management. 23-81
23.5.1 OVeIVIEW. . ..ottt 23-81
23.5.2 Logging Mechanism 23-81
23.5.3 Recovery Mechanism 23-82
23.5.4 Checkpointable and Updateable Interfaces 23-84
2355 UseCaseo 23-87
23.6 Consolidated IDL. 23-88
23.6.1 OMGIDL ... 23-88
Appendix A GloSSary 23-96
Appendix B Compliance. 23-105
24. Secure Interoperability. 24-1
241 OVEIVIEW . ..t e 24-1
2411 ASSUMPLIONSt 24-3
24.2 Protocol Message Definitions. 24-4
24.2.1 The Security Attribute Service Context Element. .. 24-4
24.2.2 SAS context_data Message Body Types 24-5
24.2.3 Authorization Token Format 24-10
24.2.4 Client Authentication Token Format 24-11
24.2.5 Identity TokenFormat....................... 24-14

XX Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Contents

July 2002

24.2.6 Principal Names and Distinguished Names. 24-15
24.3 Security Attribute Service Protocol 24-16
24.3.1 Compound Mechanisms 24-16
24.3.2 SessionSemanticsS 24-21
24.3.3 TSS State Machine 24-23
24.34 CSSStateMachine 24-27
24.3.5 ContextError Values and Exceptions. 24-30
24.4 Transport Security Mechanisms. 24-31
24.4.1 Transport Layer Interoperability 24-31
24.4.2 Transport Mechanism Configuration. 24-31
24.5 Interoperable Object References 24-32
24.5.1 Target Security Configuration 24-32
24.5.2 Client-side Mechanism Selection 24-43
24.5.3 Client-Side Requirements and Location Binding. . . 24-44
24.6 Conformance Levels. 24-45
24.6.1 Conformance LevelO........................ 24-45
24.6.2 ConformancelLevel1........................ 24-47
24.6.3 Conformance Level2........................ 24-47
24.6.4 Stateful Conformance 24-48
24.7 Sample Message Flows and Scenarios. 24-48
24.7.1 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection. 24-49

24.7.2 Confidentiality and Trust in Server Established in the
Connection - Stateless Trust in Client Established in
ServiceContext. 24-51

24.7.3 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Trust Association
Established in Service Context 24-53

24.7.4 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Forward Trust

Association Established in Service Context. 24-56
24.8 ReferencesforthisChapter 24-57
24.9 IDL. .. 24-58
24.9.1 Module GSSUP - Username/Password
GSSAPI Token Formats. 24-58

24.9.2 Module CSI - Common Secure Interoperability ... 24-59
24.9.3 Module CSIIOP - CSIv2 IOR Component
Tag Definitions 24-63

AppendiX A-OMG IDLTagS . ..« vt A-1
GloSSary 1

Common Object Request Broker Architecture (CORBA), v3.0 XXi

Contents

XXii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

About This Document

Preface

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available dtttp://www.omg.og/.

The Open Group

July 2002

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

Common Object Request Broker Architecture (CORBA), v3.0 xXiii

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

®* Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

® Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

® Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

* Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX

Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,

Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available atttp://www.opengroup.ay/ .

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guidhe ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

« Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual

XXIV Common Object Request Broker Architecture (CORBA), v3.0 July 2002

» Object Services a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

« Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be containedG®RBAfacilities:

Common Facilities Architecture

» Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

Associated Documents

July 2002

The CORBA documentation set includes the following books:

« Object Management Architecture Guidefines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and
accepted.

* CORBA: Common Object Request Broker Architecture and Specificetiatains
the architecture and specifications for the Object Request Broker.

+ CORBAservices: Common Object Services Specificatimbains specifications
for the Object Services.

+ CORBAfacilities: Common Facilities Architectuecentains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

CORBA, v3.0: Associated Documents XXV

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren't required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to th€EORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in theC++ Language Mapping Specification

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in th©MA Guide the OMG'’s Core Object Model consists of a core and
components. Likewise, the body GIORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAcore specifications are categorized as follows:
CORBA Core, as specified in Chapters 1-11

CORBA Interoperability , as specified in Chapters 12-16
CORBA Interworking , as specified in Chapters 17-21
CORBA Quiality of Service, as specified in Chapters 22-24

Note —The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to the Specifications
Catalog for this information.

XXVi Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Structure of This Manual

July 2002

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specificatiotains the
following chapters:

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semanticsdescribes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semanticsexplains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interfacedescribeghe DSI, the server's-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Management of Any Valuesdetails the interface for the

Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repositoryexplains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

CORBA, v3.0: Structure of This Manual XXVii

XXViil

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and 11OP); and environment-specific, inter-
ORB protocols (ESIOPS).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (II1OP).

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Winl16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services such
as security to be inserted in the invocation path.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Quiality of Service (QoS)

Chapter 22 - CORBA Messagingincludes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery
management.

Chapter 24 - Common Secure Interoperabilitydefines the CORBA Security

Attribute Service (SAS) protocol and its use within the CSIv2 architecture to address
the requirements of CORBA security for interoperable authentication, delegation, and
privileges.

Typographical Conventions

Acknowledgements

July 2002

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.
Helvetica - Exceptions

Terms that appear iitalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to becG@BRBA:

e Adiron, LLC

* Alcatel

* BEA Systems, Inc.

* BNR Europe Ltd.

 Borland International, Inc.

« Compaqg Computer Corporation

» Concept Five Technologies

« Cooperative Research Centre for Distributed Systems Technology (DSTC)
» Defense Information Systems Agency
« Digital Equipment Corporation
 Ericsson

« Eternal Systems, Inc.

CORBA, v3.0: Typographical Conventions XXiX

» Expersoft Corporation

» France Telecom

e FUJITSU LIMITED

» Genesis Development Corporation

* Gensym Corporation

* Hewlett-Packard Company

* HighComm

« Highlander Communications, L.C.

¢ Humboldt-University

» HyperDesk Corporation

* ICL, Plc.

* Inprise Corporation

« International Business Machines Corporation
« International Computers, Inc.

* IONA Technologies, Plc.

» Lockheed Martin Federal Systems, Inc.
* Lucent Technologies, Inc.

* Micro Focus Limited

* MITRE Corporation

* Motorola, Inc.

* NCR Corporation

* NEC Corporation

* Netscape Communications Corporation
* Nortel Networks

* Northern Telecom Corporation

* Novell, Inc.

» Object Design, Inc.

» Objective Interface Systems, Inc.

» Object-Oriented Concepts, Inc.

¢ OC Systems, Inc.

* Open Group - Open Software Foundation
» Oracle Corporation

» PeerlLogic, Inc.

» Persistence Software, Inc.

* Promia, Inc.

» Siemens Nixdorf Informationssysteme AG
*« SPAWAR Systems Center

* Sun Microsystems, Inc.

* SunSoft, Inc.

» Sybase, Inc.

« Telefénica Investigacion y Desarrollo S.A. Unipersonal
* TIBCO, Inc.

XXX Common Object Request Broker Architecture (CORBA), v3.0 July 2002

* Tivoli Systems, Inc.

« Tri-Pacific Software, Inc.

« University of California, Santa Barbara
* University of Rhode Island

* Visual Edge Software, Ltd.

* Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References
IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’'Donnell, June 1994.

RPC Runtime Support For 18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

July 2002 CORBA, v3.0: References XXXi

XXXii Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1.1 Overview

July 2002

The Object Model 1

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in tl@@bject Management Architecture Guide

(Information about th®©MA Guideand other books in the CORBA documentation set

is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-9

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directly realized by any particular technology. The
model described here is@ncreteobject model. A concrete object model may differ
from the abstract object model in several ways:

® |t may elaboratethe abstract object model by making it more specific, for example,
by defining the form of request parameters or the language used to specify types.

® |t may populatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

Common Object Request Broker Architecture (CORBA), v3.0 1-1

® [t mayrestrictthe model by eliminating entities or placing additional restrictions on
their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example ofctassical object modelwhere a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientsclient of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects.ofjectis an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

1.2.2 Requests

Clients request services by issuing requests.

The termrequestis broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally associated
with that initiation. For example:

« the client receives the final response associated withrédtatestfrom the server,
« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated withréigiestterminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object, zero
or more (actual) parameters, and an optional request context.

A request formis a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to th®ynamic Invocation Interfacehapter for descriptions of these
request forms).

A valueis anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An object referencés a value that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context that provides additional information about the request. A
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valueas well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

® Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

CORBA, v3.0: Object Semantics 1-3

® The order in which aliased output parameters are written is not guaranteed.

® The return result and the values stored into the output and input-output parameters
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.4,
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An esdtigfiesa
type if the predicate is true for that entity. An entity that satisfies a type is called a
member of the type

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a types the set of entities that satisfy the type at any particular time.

An object typeis a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

1.2.4.1 Basictypes
® 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

® Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

® Fixed-point decimal numbers of up to 31 significant digits.

® Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

®* A boolean type taking the values TRUE and FALSE.

® An 8-bit opaque detectable, guaranteech¢d undergo any conversion during
transfer between systems.

®* Enumerated types consisting of ordered sequences of identifiers.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

July 2002

1.2.4.2

® A string type, which consists of a variable-length array of characters; the length of
the string is a non-negative integer, and is available at run-time. The length may
have a maximum bound defined.

* A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, and
is available at run-time. The length may have a maximum bound defined.

® A container type “any,” which can represent any possible basic or constructed type.
® Wide characters that may represent characters from any wide character set.

® Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

Constructed types
* Arecord type (called struct), which consists of an ordered set of (name,value) pairs.

® A discriminated union type, which consists of a discriminator (whose exact value is
always available) followed by an instance of a type appropriate to the discriminator
value.

®* A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

® An array type, which consists of a fixed-shape multidimensional array of a single
type.

®* An interface type, which specifies the set of operations that an instance of that type
must support.

® A value type, which specifies state as well as a set of operations that an instance of
that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal
entities are shown in . No particular representation for entities is defined.

CORBA, v3.0: Object Semantics 1-5

Short
Obiject Reference Long
LongLong
UShort
Ulong
UlongLong
—— Abstract Interface Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Values

Figure 1-1 Legal Values

1.2.5 Interfaces

An interfaceis a description of a set of possible operations that a client may request of
an object, through that interface. It provides a syntactic description of how a service
provided by an object supporting this interface, is accessed via this set of operations.
An objectsatisfiesan interface if it provides its service through the operations of the
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

Theinterface typefor a given interface is an object type, such that an object reference
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces.prireipal
interfaceis simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used where
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value typeis an entity, which shares many of the characteristics of interfaces and
structs. It is a description of both a set of operations that a client may request and of
state that is accessible to a client. Instances of a value type are always local concrete
implementations in some programming language.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

A value type, in addition to the operations and state defined for itself, may also inherit
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value typedescribes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interfacds an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see

Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pass-by-
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operationis an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to as
invoking the operationAn operation is identified by anperation identifier

An operation has gignaturethat describes the legitimate values of request parameters
and returned results. In particularsenatureconsists of:

* A specification of the parameters required in requests for that operation.
® A specification of the result of the operation.

® An identification of the user exceptions that may be raised by an invocation of the
operation.

® A specification of additional contextual information that may affect the invocation.

® An indication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentiallygeneric meaning that a single operation can be uniformly
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (parami, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where:

®* The optionaloneway keyword indicates that best-effort semantics are expected of
requests for this operation; the default semantics are exactly-once if the operation
successfully returns results or at-most-once if an exception is returned.

July 2002 CORBA, v3.0: Object Semantics 1-7

®* The<op_type_spec> is the type of the return result.
®* The<identifier> provides a name for the operation in the interface.

®* The operation parameters needed for the operation; they are flagged with the
modifiersin, out, orinout to indicate the direction in which the information flows
(with respect to the object performing the request).

®* The optionalraises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

® The optionalcontext expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request.

1.2.8.1 Parameters

A parameter is characterized by its mode and its type.bdeindicates whether the
value should be passed from client to serua)),(from server to clientdut), or both
(inout). The parameter’s type constrains the possible value, which may be passed in
the directions dictated by the mode.

1.2.8.2 Return Result

The return result is a distinguishedit parameter.

1.2.8.3 Exceptions

An exceptioris an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on
page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in Section 4.12.2, “System Exceptions,” on page 4-63.

1.2.8.4 Contexts
A request contexprovides additional, operation-specific information that may affect
the performance of a request.

1.2.8.5 Execution Semantics

Two styles of execution semantics are defined by the object model:

® At-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once.

1-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

® Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return
any results and the requester never synchronizes with the completion, if any, of the
request).

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

July 2002

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledezhod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute callechathod formathat defines the set of
execution engines that can interpret the method eR@cution enginés an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is calteettaod
activation

CORBA, v3.0: Object Implementation 1-9

1-10

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and inpu
output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is callectivation the reverse process is called
deactivation

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation-or implementationfor short—is a definition that provides

the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

CORBAOverview

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes

more clear.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-1
“Example ORBSs” 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-17

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. The
Client is the entity that wishes to perform an operation on the object and the Object
Implementation is the code and data that actually implements the object.

Common Object Request Broker Architecture (CORBA), v3.0

2-2

Client

) G)bject Implementation

equest

ORB

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Client Object Implementation

Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter
ORB Core

WNNNN\N\N\N] Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3).

Client

Invocation

DNNNNNNNY - Interface identical for all ORB implementations

B There are stubs and a skeleton for each object type
[1 ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Object Implementation

NN ___ 1NN

ORB Static IDL | | Dynamic
Interface Skeleton Skeleton

Object
Adapter

ORB Core

N\N\NN\NN\N\NY Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-5

2-6

IDL

Definitions Installation

Implementation

Implementation
Interface Stubs Skeletons RepOSIt_Ory
Repository — ||
Client Object Implementation

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations.
2. Operations that are specific to particular types of objects.
3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBS),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have access to

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

July 2002

two object references managed by different ORB implementations. When two ORBs
are intended to work together, those ORBs must be able to distinguish their object
references. It is not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’'s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

CORBA, v3.0: Structure of an Object Request Broker 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines

must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

Generally, the client stubs will present access to the OMG IDL-defined operations on
an object in a way that is easy for programmers to predict once they are familiar with
OMG IDL and the language mapping for the particular programming language. The
stubs make calls on the rest of the ORB using interfaces that are private to, and
presumably optimized for, the particular ORB Core. If more than one ORB is

available, there may be different stubs corresponding to the different ORBs. In this
case, it is necessary for the ORB and language mapping to cooperate to associate the
correct stubs with the particular object reference.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

July 2002 CORBA, v3.0: Structure of an Object Request Broker 2-9

2-10

2.1.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of

ORB objects. For example, debugging information, administrative control, resource

allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

July 2002

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

CORBA, v3.0: Example ORBs 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

2-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

have access to the object reference representation and interact with the ORB to perform
the invocation. (See the C Language Mapping specification for additional, general
information on language mapping of object references.)

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

_

J

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation

July 2002

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBA, v3.0: Structure of an Object Implementation 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of ways
to establish its identity, to create new objects, and to obtain ORB-dependent services. It
primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

Object Implementation

Methods for
Interface A

~

o Object data

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

,

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

July 2002

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

« Generation and interpretation of object references

* Method invocation

» Security of interactions

» Object and implementation activation and deactivation

» Mapping object references to the corresponding object implementations

» Registration of implementations
These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.

It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

CORBA, v3.0: Structure of an Object Adapter 2-15

2-16

o

Object Implementation

Interface A Interface B

Methods Methods

Dynamic Interface A Interface B Obiect
Skeleton Skeleton jec
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter is implicitly involved in invocation of the
methods, although the direct interface is through the skeletons. For example, the Object
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For example,
an object-oriented database system may wish to implicitly register its many thousands
of objects without doing individual calls to the Object Adapter. In such a case, it would

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

be impractical and unnecessary for the object adapter to maintain any per-object state.
By using an object adapter interface that is tuned towards such object implementations,
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See Floetable Object Adaptechapter

for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,

following the language mapping rules. (The primary task left for a language mapping

is the definition of the Servant type.)

2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual.

July 2002 CORBA, v3.0: CORBA Required Object Adapter 2-17

2-18

Object system as
a POA object
implementation

Object system as
an implementation
with a special-purpose
object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core another ORB

Object system as

interoperating via a

atewa
Gateway g 4

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

OMG IDL Syntax and Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-11
“OMG IDL Grammar” 3-12
“OMG IDL Specification” 3-18
“Module Declaration” 3-20
“Interface Declaration” 3-20
“Value Declaration” 3-27
“Constant Declaration” 3-32
“Type Declaration” 3-36
“Exception Declaration” 3-49
“Operation Declaration” 3-50
“Attribute Declaration” 3-53
“Repository Identity Related Declarations” 3-55
“Event Declaration” 3-57

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 3-1

3-2

3.1 Overview

Section Title Page
“Component Declaration” 3-58
“Home Declaration” 3-63
“CORBA Module” 3-66

“Names and Scoping” 3-67

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL’s lexical conventions is presented in Section 3.2,

“Lexical Conventions,” on page 3-3. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-11. The scope rules for identifiers
in an OMG IDL specification are described in Section 3.20, “Names and Scoping,” on
page 3-67.

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “OMG
IDL Grammar,” on page 3-12 and associated semantics is described in the rest of this
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table 3-1 IDL EBNF
Symbol Meaning
= Is defined to be

| Alternatively

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Table 3-1 IDL EBNF (Continued)

Symbol Meaning

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{3 The enclosed syntactic units are grouped as a single syntactic unit
1] The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

July 2002

This sectiort presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

OMG IDL uses the ASCII character set, except for string literals and character literals,
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (blank)
character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. | Description Char. | Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D A& Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above

Gg Upper/Lower-case G FEeaxe Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla

li Upper/Lower-case | Ee Upper/Lower-case E with grave accent

1. This section is an adaptationTdie Annotated C++ Reference Manu@hapter 2; it

differs in the list of legal keywords and punctuation.

CORBA, v3.0: Lexical Conventions

3-3

Table 3-2 The 114 Alphabetic Characters (Lette(€ontinued)

Char. | Description Char. | Description
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Ee Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M 0 Upper/Lower-case | with grave accent
Nn Upper/Lower-case N ii Upper/Lower-case | with acute accent
Oo Upper/Lower-case O) Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P i Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q \fj Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 0o Upper/Lower-case O with acute accent
Tt Upper/Lower-case T 06 Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (o)} Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W (0] Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X Uu Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
Y Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table 3-3 Decimal Digits

0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. | Description Char. | Description

! exclamation point i inverted exclamation mark
" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign o currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe 8§ section/paragraph sign

(left parenthesis diaeresis

) right parenthesis © copyright sign

* asterisk a feminine ordinal indicator

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

Table 3-4 The 65 Graphic Characte(€ontinued)

Char. | Description Char. | Description
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus B macron
colon ° ring above, degree sign
; semicolon plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
> greater-than sign acute
? guestion mark micro
@ commercial at q pilcrow
[left square bracket . middle dot
\ reverse solidus s cedilla
] right square bracket ! superscript one
A circumflex ° masculine ordinal indicator
low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde ¥ multiplication sign
division sign

The formatting characters are shown in Table 3-5.

Table 3-5 The Formatting Characters

Description | Abbreviation | ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015

CORBA, v3.0: Lexical Conventions

3-5

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore
(“_") characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:
« Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.
« All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identically
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the same
identifier for a constant and an interface, for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;

interface thing { /I error: reuse of identifier
void doit (
in Foo foo /I error: Foo and foo collide and refer to

different things

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The language
mapping rules for the renamed IDL identifiers will cause the mapped identifier names
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention that
ONLY turns off keyword checking. The resulting identifier follows all the other rules
for identifier processing. For example, the identifieknldentifier is treated as if it

were Anldentifier .

The following is a non-exclusive list of implications of these rules:
e The underscore does not appear in the Interface Repository.

* The underscore is not used in the DIl and DSI.

» The underscore is not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {
attribute boolean abstract; /I error: abstract collides with
/I keyword abstract
attribute boolean _abstract; // ok: abstract is an identifier
%
%

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces
only use the escaped form of identifiers when the unescaped form clashes with a newly
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are only
recommended for IDL that expresses legacy interface, or for IDL that is mechanically
generated.

July 2002 CORBA, v3.0: Lexical Conventions 3-7

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise, unless escaped with a leading underscore.

Table 3-6 Keywords

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For example,
“boolean " is a valid keyword; ‘Boolean ” and “BOOLEAN" are illegal identifiers.

For example:

module M {
typedef Long Foo;
typedef boolean BOOLEAN,;

Il Error: keyword is long not Long
/I Error: BOOLEAN collides with
/I the keyword boolean;

2
OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
} : , = + - () < > []
' " \ | N & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

#) I &&
3.2.5 Literals
This section describes the following literals:
* Integer

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

» Character

* Floating-point
* String

* Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with O is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by Ox or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'x.’
Character literals have typshar.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the 1ISO 646 standard (see Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below i
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \\
question mark \?
single quote \
double quote \"
octal number \ooo

July 2002 CORBA, v3.0: Lexical Conventions 3-9

3-10

3.2.5.3

3.2.5.4

Table 3-9 Escape SequencéSontinued)

Description Escape Sequence
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed by
one, two, three or four hexadecimal digits. This represents a unicode character literal.
Thus the literal “\uOO2E" represents the unicode period ‘.’ character and the literal
“\UBBC” represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Because a wide string literal is defined as a sequence of
wide character literals a sequence of \u literals can be used to define a wide string
literal. Attempts to set a char type to a \u defined literal or a string type to a sequence
of \u literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not
an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest char.

Wide character literals have dnprefix, for example:

const wchar C1 = L'X;

Attempts to assign a wide character literal to a non-wide character constant or to
assign a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from the
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Character
Literals,” on page 3-9), with the exception of the character with numeric value 0,
surrounded by double quotes, as in “...".

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

3.3 Preprocessing

July 2002

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"WXA" "B"

contains the two characters "\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB").

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. Within a string, the double quote chardatenst be preceded by
a\

A string literal may not contain the character \0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the 1SO
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL is preprocessed according to the specification of the preprocessor in
“International Organization for Standardization. 1998. ISO/IEC 14882 Standard for the
C++ Programming Language. Geneva: International Organization for Standardization.”
The preprocessor may be implemented as a separate process or built into the IDL
compiler.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

CORBA, v3.0: Preprocessing 3-11

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-6), a file name as in#nclude directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as if
it appeared in the including file, except thRépositoryld related pragmas are
handled in a special way. The special handling of these pragmas is described in
Section 10.7, “Repositorylds,” on page 10-64.

Note that whether a particular IDL compiler generates code for included files is an
implementation-specific issue. To support separate compilation, IDL compilers may
not generate code for included files, or do so only if explicitly instructed.

3.4 OMG IDL Grammar

(1) <specification> ::= <import>* <definition> +
(2) <definition> <type_dc|> “;n
<Const_dcl> n;n

<except_dcl> “;

|
|
| <interface>*;
| <module>*“;"

| <value>*"

| <type_id _dcI>*"

| <type_prefix_dcl>“;"

| <event>*”

| <component>*;"

| <home_dcl>*}"
€)) <module> ::= “module” <identifier> “{* <definition> e
(4) <interface> := <interface_dcl>

| <forward_dcl>
(5) <interface_dcl> ::= <interface header> “{" <interface_body> “}’
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> := [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> := <export> *
(9) <export> = <type dcl>*"
<const_dcl>*}"
<except_dcl>“;"
<attr_dcl> "
<op_dcl>*"
<type_id_dcl>*;"
<type_prefix_dcl>“;"
(10)<interface_inheritance_spec>::="." <interface_name>
{"] <interface_name> }*

(11) <interface_name> := <scoped_name>
(12) <scoped_name> := <identifier>

| “:” <identifier>

| <scoped_name> “:” <identifier>

3-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

(13)

(14)
(15)
(16)

17)
(18)

<value>

<value_forward_dcl>
<value_bhox_dcl>
<value_abs_dcl>

<value_dcl>
<value_header>

(19)<value_inheritance_spec>

(20)
(21)
(22)
(23)
(24)
(25)

(26)
(27)

(28)

(29)
(30)

(31)
(32)

(33)

July 2002

<value_name>
<value_element>
<state_member>

<init_dcl>
<init_param_decls>
<init_param_decl>

<init_param_attribute>
<const_dcl>

<const_type>

2= Min

= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)
= [“abstract”] “valuetype” <identifier>
::= “valuetype” <identifier> <type_spec>
= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“* <export>* “}”
<value_header> “{* <value_element>* “}"

[“‘custom”] “valuetype” <identifier>
[<value_inheritance_spec>]

u= [“truncatable” | <value_name>

{") <value_name>}*]
[“supports” <interface_name>
{") <interface_name> }*]
.= <scoped_name>
= <export> | < state_member> | <init_dcl>
= (“public” | “private”)
<type_spec> <declarators> *“;"
;= “factory” <identifier>
“(* [<init_param_decls>] “)"
[<raises_expr>]1"“"
= <init_param_decl> {)" <init_param_decl> }*
::= <init_param_attribute> <param_type_spec>
<simple_declarator>

“const” <const_type>
<identifier> “=" <const_exp>

<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

<const_exp> := <or_expr>
<or_expr> = <Xor_expr>
| <or_expr>"“|” <xor_expr>
<xor_expr> = <and_expr>
| <xor_expr> """ <and_expr>
<and_expr> = <shift_expr>
| <and_expr> “&" <shift_expr>
<shift_expr> := <add_expr>
| <shift_expr> “>>" <add_expr>
| <shift_expr> “<<” <add_expr>
CORBA, v3.0: OMG IDL Grammar 3-13

3-14

(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)
(42)

(43)
(44)
(45)

(46)

(47)

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>
<type_dcl>

<type_declarator>
<type_spec>

<simple_type spec>

<base_type_spec>

<template_type spec>

1= <mult_expr>
| <add_expr>“+" <mult_expr>
| <add_expr>*“-" <mult_expr>

;1= <unary_expr>

| <mult_expr>“*" <unary_expr>
| <mult_expr>"“/" <unary_expr>
| <mult_expr>“%" <unary_expr>

;1= <unary_operator> <primary_expr>

<primary_expr>
oy
<scoped_name>
<literal>
“(” <const_exp> “)”
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

= “TRUE”

“FALSE”"
<const_exp>
= “typedef” <type_declarator>
<struct_type>
<union_type>
<enum_type>

“native” <simple_declarator>
<constr_forward_decl>
<type_spec> <declarators>
= <simple_type_spec>

| <constr_type_spec>
= <base_type_ spec>

| <template_type_spec>

|

<scoped_name>

= <floating_pt_type>

<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>

1= <sequence_type>

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

(48) <constr_type spec>
(49) <declarators>
(50) <declarator>
(52) <simple_declarator>
(52) <complex_declarator>

(53) <floating_pt_type>
(54) <integer_type>
(55) <signed_int>
(56) <signed_short_int>

(57) <signed_long_int>
(58) <signed_longlong_int>

(59) <unsigned_int>

(60) <unsigned_short_int>

(61) <unsigned_long_int>
(62) <unsigned_longlong_int>
(63) <char_type>
(64) <wide_char_type>
(65) <boolean_type>
(66) <octet_type>
(67) <any_type>
(68) <object_type>
(69) <struct_type>
(70) <member_list>
(71) <member>
(72) <union_type>
(73) <switch_type_spec>
(74) <switch_body>

| <string_type>
| <wide_string_type>
| <fixed_pt_type>
= <struct_type>
| <union_type>
| <enum_type>
= <declarator> { " <declarator> }
::= <simple_declarator>
| <complex_declarator>
::= <identifier>
.= <array_declarator>

= “float”
| “double”
| “long” “double”
= <signed_int>
| <unsigned_int>
'= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>
= “short”
= “long”
= “long” “long”
= <unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>
= “unsigned” “short”
;= “unsigned” “long”

= “unsigned” “long” “long”

= “char”
= “wchar”
“boolean”
= “octet”
i= fany”
“Object”
“struct” <identifier> “{” <member _list> “}"
<member> *
.:= <type_spec> <declarators> *;”
= “union” <identifier> “switch”
“(" <switch_type_spec> “)”
‘" <switch_body> “}"
= <integer_type>
| <char_type>
| <boolean_type>
|
|

<enum_type>

<scoped_name>

<case> "~

July 2002 CORBA, v3.0: OMG IDL Grammar 3-15

3-16

(75)
(76)

(77)
(78)

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)

(92)

(93)
(94)

(95)

(96)

(97)
(98)
(99)

<case>
<case_label>

<element_spec>
<enum_type>

<enumerator>
<sequence_type>
<string_type>
<wide_string_type>
<array_declarator>
<fixed_array_size>
<attr_dcl>
<except_dcl>
<op_dcl>
<op_attribute>
<op_type_spec>
<parameter_dcls>

<param_dcl>

<param_attribute>

<raises_expr>
<context_expr>

<param_type_spec>

<fixed_pt_type>

<fixed_pt_const_type>
<value_base_type>
<constr_forward_decl>

w.n

<case_label> * <element_spec> “

“case” <const_exp>“"
“default” “:"

<type_spec> <declarator>

“enum” <identifier>

wn

“{" <enumerator> { “”’ <enumerator>} U}’
<identifier>
“sequence” “<” <simple_type_spec> “"
<positive_int_const> “>"
“sequence” “<” <simple_type_spec> “>"
“string” “<” <positive_int_const> “>"
“string”
“wstring” “<” <positive_int_const> “>"
“wstring”
<identifier> <fixed_array_size>
“[" <positive_int_const> “”
<readonly_attr_spec>
<attr_spec>
“exception” <identifier> “{* <member>* “}”
[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

+

= “oneway”

<param_type_spec>
“void”

“(" <param_dcl> { “” <param_dcl>} U
a(r oy

<param_attribute> <param_type spec>
<simple_declarator>

sin”
“out”
“inout”

“raises” “(" <scoped_name>
{“" <scoped_name>} U«

“context” “(” <string_literal>
{“r <string_literal>} M%)

<base_type_spec>
<string_type>
<wide_string_type>
<scoped_name>

“fixed” “<" <positive_int_const>*“
<positive_int_const> “>"

“fixed”

“ValueBase”

“struct” <identifier>

“union” <identifier>

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

(100) <import> ::= “import” <imported_scope> “;"

(101) <imported_scope> ::= <scoped_name> | <string_literal>

(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>
(104) <readonly attr_spec> ::= “readonly” “attribute” <param_type_spec>

<readonly_attr_declarator>
(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>
| <simple_declarator>
{" <simple_declarator> }*

(106) <attr_spec> :=‘“attribute” <param_type_spec>
<attr_declarator>
(207) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
{“” <simple_declarator> }*

(108) <attr_raises_expr> 1= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(209) <get_excep_expr> := “getraises” <exception_list>

(110) <set_excep_expr> .= “setraises” <exception_list>

(112) <exception_list> = “(" <scoped_name>

{" <scoped_name>} +")"

Note —Grammar rules 1 through 111 with the exception of the last three lines of rule
2 constitutes the portion of IDL that is not related to components.

(112) <component> := <component_dcl>
| <component_forward_dcl>

(113)<component_forward_dcl>::= “component” <identifier>

(114) <component_dcl> ::= <component_header>
“{" <component_body> “}"
(115) <component_header> ::=“component” <identifier>

[<component_inheritance_spec>]

[<supported_interface_spec>]
(116)<supported_interface_spec>::= “supports” <scoped_name>

{" <scoped_name> }*
(117)<component_inheritance_spec>::= “:" <scoped_name>
(118) <component_body> <component_export>*
(119) <component_export> ::= <provides_dcl>*;"

| <uses_dcl>*“}"

| <emits_dcl>*“”
| <publishes_dcl>*“;”
|
|

<consumes_dcl> ;"
<attr_dcl> ;"

(120) <provides_dcl> “provides” <interface_type> <identifier>
(121) <interface type> .= <scoped_name>

| “Object”
(122) <uses_dcl> ::= “uses” [“multiple”]

< interface_type> <identifier>

July 2002 CORBA, v3.0: OMG IDL Grammar 3-17

(123)
(124)
(125)
(126)
(127)

(128)<home_inheritance_spec> ::

(129)
(130)
(131)

(132)

(133)

(134)

(135)

(136)

(137)
(138)

<emits_dcl>
<publishes_dcl>
<consumes_dcl>
<home_dcl>
<home_header>

<primary_key spec>
<home_body>
<home_export

<factory_dcl>

<finder_dcl>

<event>

<event_forward_dcl>
<event_abs_dcl>

<event_dcl>
<event_header>

3.5 OMG IDL Specification

1)
(2)

3-18

<specification>
<definition>

Common Object Request Broker Architecture (CORBA), v3.0

“emits” <scoped_name> <identifier>
“publishes” <scoped name> <identifier>
“consumes” <scoped_name> <identifier>
<home_header> <home_body>
“home” <identifier>
[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_nhame>
[<primary_key spec>]
“” <scoped_name>
“primarykey” <scoped_name>
“{” <home_export>* “}"

<export>
| <factory_dcl>*“;"
| <finder_dcl> ;"

“factory” <identifier>
“(* [<init_param_decls>]")"
[<raises_expr>]
“finder” <identifier>
“(* [<init_param_decls>1“)"
[<raises_expr>]
(<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)

= [“abstract”] “eventtype” <identifier>

“abstract” “eventtype” <identifier>

[<value_inheritance_spec>]

‘" <export>* “}”
<event_header> “{" <value_element> * “}"
[“custom”] “eventtype”

<identifier> [<value_inheritance_spec>]

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<import>* <definiton> *

<type_dcl>“;"
<const_dcl>*}"
<except_dcl>“;"
<interface> ;"
<module>*;"
<value> *“;"
<type_id_dcl>*}"
<type_prefix_dcl> ;"
<event>*“”
<component> “;"
<home_dcl>*"

July 2002

3

See Section 3.6, “Import Declaration,” on page 3-19, for the specification of <import>.

See Section 3.7, “Module Declaration,” on page 3-20, for the specification of
<module>.

See Section 3.8, “Interface Declaration,” on page 3-20, for the specification of
<interface>.

See Section 3.9, “Value Declaration,” on page 3-27, for the specification of <value>.

See Section 3.10, “Constant Declaration,” on page 3-32, Section 3.11, “Type
Declaration,” on page 3-36, and Section 3.12, “Exception Declaration,” on page 3-49
respectively for specifications efconst_dcl> , <type_dcl> , and<except_dcl> .

See Section 3.15, “Repository Identity Related Declarations,” on page 3-55, for
specification of Repository Identity declarations which include <type_id_dcl> and
<type_prefix_dcl>.

See Section 3.16, “Event Declaration,” on page 3-57, for specification of <event>.

See Section 3.17, “Component Declaration,” on page 3-58, for specification of
<component>.

See Section 3.18, “Home Declaration,” on page 3-63, for specification of <home_dcl>.

3.6 Import Declaration

July 2002

The grammar for the import statement is described by the following BNF:
<import> ::= “import” <imported_scope> ;"
<imported_scope> := <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name
denoting an IDL name scope, or a string containing the interface repository ID of an
IDL name scope, i.e., a definition object in the repository whose interface derives from
CORBA::Container .

The definition of import obviates the need to define the meaning of IDL constructs in
terms of “file scopes”. This specification defines the concepts gfpecificationas a

unit of IDL expression. In the abstract,specificationconsists of a finite sequence of
ISO Latin-1 characters that form a legal IDL sentence. The physical representation of
the specification is of no consequence to the definition of IDL, though it is generally
associated with a file in practice.

Any scoped name that begins with the scope token”()“is resolved relative to the
global scope of the specification in which it is defined. In isolation, the scope token
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-
defined set of IDL specifications whose union constitutes the space from within which
name scopes are imported. By “a well-defined set of IDL specifications,” we mean any
identifiable representation of IDL specifications, such as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is

CORBA, v3.0: OMG IDL Specification 3-19

the means by which importing is implemented, nor is the means by which a particular
set of IDL specifications (such as an interface repository) is associated with the context
in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

The contents of the specified name scope are visible in the context of the importing
specification. Names that occur in IDL declarations within the importing
specification may be resolved to definitions in imported scopes.

Imported IDL name scopes exist in the same space as names defined in subsequent
declarations in the importing specification.

IDL module definitions may re-open modules defined in imported name scopes.

Importing an inner name scope (i.e., a name scope nested within one or more
enclosing name scopes) does not implicitly import the contents of any of the
enclosing name scopes.

When a name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope exposedwithin the context of the
importing specification, but their contents are not imported. An importing
specification may not re-define or re-open a name scope which has been exposed
(but not imported) by an import statement.

Importing a name scope recursively imports all name scopes nested within it.

For the purposes of this specification, name scopes that can be imported (i.e.,
specified in an import statement) include the followimgodules , interfaces ,
valuetypes , andeventtypes .

Redundant imports (e.g., importing an inner scope and one of its enclosing scopes
in the same specification) are disregarded. The union of all imported scopes is
visible to the importing program.

This specification does not define a particular form for generated stubs and
skeletons in any given programming language. In particular, it does not imply any
normative relationship between units specification and units of generation and/or
compilation for any language mapping.

3.7 Module Declaration

A module definition satisfies the following syntax:

3)

<module> := “module” <identifier> “{* <definition> e

The module construct is used to scope OMG IDL identifiers; see Section 3.19,
“CORBA Module,” on page 3-66 for details.

3.8 Interface Declaration

An interface definition satisfies the following syntax:

(4)

<interface> ::= <interface_dcl>
| <forward_dcl>

3-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

<type_id_decl>“}"
<type_prefix_decl>“;"

(5) <interface_dcl> ::= <interface_header> “{" <interface_body> “}’
(6) <forward_dcl> ::= [“abstract” | “local”’] “interface” <identifier>
(7) <interface_header> := [“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]

(8) <interface_body> := <export> ~
(9) <export> = <type dcl>*"

| <const dcl>*"

| <except dcl>*"

| <attr_dcl>*"

| <op_dcl>*"

I

3.8.1 Interface Header

The interface header consists of three elements:
1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keymterthce , and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described in
the next section.

The<identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere aidentifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member, which is an interface
type is as aeferenceto an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular”
interfaces, as described in Section 3.8.6, “Abstract Interface,” on page 3-26. They also
follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interfaces,
as described in Section 3.8.7, “Local Interface,” on page 3-26. They also follow
different language mapping rules.

3.8.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

July 2002

(10)<interface_inheritance_spec>::="" <interface_name>
{*") <interface_name> }*
(12) <interface_name> := <scoped_name>
(12) <scoped_name> := <identifier>
| " <identifier>

<scoped_name> “:.” <identifier>

CORBA, v3.0: Interface Declaration 3-21

3-22

Each<scoped_name> in an<interface_inheritance_spec> must denote a
previously defined interface. See Section 3.8.5, “Interface Inheritance,” on page 3-23
for the description of inheritance.

3.8.3 Interface Body

The interface body contains the following kinds of declarations:

Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.10, “Constant Declaration,” on
page 3-32.

Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in Section 3.11, “Type Declaration,” on page 3-36.

Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.12, “Exception
Declaration,” on page 3-49.

Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.14, “Attribute
Declaration,” on page 3-53.

Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types of
all parameters of an operation, legal exceptions that may be returned as a result of
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.13, “Operation Declaration,”
on page 3-50.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

3.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optionally
either the keywordbstract or the keywordocal , followed by the keyword

interface , followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not yet
been seen:

module Example {

interface base; // Forward declaration

...

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

interface derived : base {}; I/l Error
interface base {}; /I Define base
interface derived : base {}; Il OK

3

3.8.5 Interface Inheritance

An interface can be derived from another interface, which is then callzaka

interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that
have been inherited; the scope rules for such names are described in Section 3.20,
“Names and Scoping,” on page 3-67.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is a
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec>

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A{... }
interface B: A{... }
interface C: A{... }
interface D: B, C { ... }
interface E: A,B{... }; Il OK

CORBA, v3.0: Interface Declaration 3-23

3-24

/\
B\/C B<—E C
D

The relationships between these interfaces is shown in Figure 3-1. This “diamond”
shape is legal, as is the definition of E on the right.

A

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base
interface element is ambiguous if the name is declared as a constant, type, or exception
in more than one base interface. Ambiguities can be resolved by qualifying a hame
with its interface name (that is, using<acoped_name>). It is illegal to inherit from

two interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 |_1);
3

interface B {
typedef short L1;
L1 opB(in long I);

3
interface C: B, A {
typedef L1 L2; [/l Error: L1 ambiguous
typedef A::L1 L3; /I A::L1 is OK
B::L1 opC(in L3 |_3); // all OK no ambiguities
3

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent glokatoped name> s). This guarantees

that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

constlong L = 3;

interface A {

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

typedef float coord[L]:
void f (in coord s); /I s has three floats

3

interface B {
constlong L = 4;

2
interface C: B, A{}; /I what is C::f()'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be redefined
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thus in

interface A {
typedef string<128> string_t;

h

interface B {
typedef string<256> string_t;

¥

interface C: A, B {
attribute string_t Title; Il Error: string_t ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; Il OK

¥

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As a result, all operations attributes that might apply to a particular object
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attributes
with the same name.

interface A {
void make_it_so();

3

interface B: A {

CORBA, v3.0: Interface Declaration 3-25

3-26

short make_it_so(in long times); // Error: redefinition of make_it_so
%

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.6 Abstract Interface

An interface declaration containing the keywalstract in its header, declares an
abstract interface. The following special rules apply to abstract interfaces:

» Abstract interfaces may only inherit from other abstract interfaces.

e Value types may support any number of abstract interfaces.

See Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for CORBA
implementation semantics associated with abstract interfaces.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.7 Local Interface

An interface declaration containing the keywdodal in its header, declares a local
interface. An interface declaration not containing the keywooal is referred to as

an unconstrained interface. An object implementing a local interfaces is referred to as
a local object. The following special rules apply to local interfaces:

» Alocal interface may inherit from other local or unconstrained interfaces.

* An unconstrained interface may not inherit from a local interface. An interface
derived from a local interface must be explicitly declared local.

* A valuetype may support a local interface.

* Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of a local interface.

» Alocal interface is a local type, as is any non-interface type declaration constructed
using a local interface or other local type. For example, a struct, union, or exception
with a member that is a local interface is also itself a local type.

» Alocal type may be used as a parameter, attribute, return type, or exception
declaration of a local interface or of a valuetype.

« Alocal type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

See Section 4.3.13, “LocalObject Operations,” on page 4-22 for CORBA
implementation semantics associated with local objects.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.9 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

(13) <value> := (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.9.1 Regular Value Type

A regular value type satisfies the following syntax:

a7 <value_dcl> := <value_header> “{" <value_element>*“}"
(18) <value_header> := [‘custom”] “valuetype” <identifier>
[<value_inheritance_spec>]
(22) <value_element> := <export>
| < state_member> |
| <init_dcl>

3.9.1.1 Value Header
The value header consists of two elements:

1. The value type’s name and optional modifier specifying whether the value type uses
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is
described in the next section.

3.9.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of
state members, and initializers for that state.

3.9.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> := ["“"[“truncatable”] <value_name>
{" <value_name>}*]
[“supports” <interface_name>
{") <interface_name> }*]

(20) <value_name> := <scoped hame>

Each<value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.9.5, “Valuetype
Inheritance,” on page 3-30 for the description of value type inheritance.

Thetruncatable modifier may not be used if the value type being defined is a custom
value.

July 2002 CORBA, v3.0: Value Declaration 3-27

A valuetype that supports a local interface does not itself bedows (i.e.
unmarshalable) as a result of that support.

3.9.1.4 State Members

(22) <state_member> = (“public’ | “private”)
<type_spec> <declarators> *;"

Each<state_member> defines an element of the state, which is marshaled and sent

to the receiver when the value type is passed as a parameter. A state member is either
public or private. The annotation directs the language mapping to hide or expose the
different parts of the state to the clients of the value type. The private part of the state
is only accessible to the implementation code and the marshaling routines.

A valuetype that has a state member thdbisal (i.e. non-marshalable like a local
interface), is itself rendereldcal. That is, such valuetypes behave similar to local
interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

3.9.1.5 Initializers

(23) <init_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>] “)”
[<raises_expr>]"“;"

(24) <init_param_decls> := <init_param_decl> { " <init_param_decl> }*

(25) <init_param_decl> := <init_param_attribute> <param_type_spec>
<simple_declarator>

(26) <init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operation signatures except that they are prefixed with the
keywordfactory , have no return type, and must use only in parameters. There may be
any number of factory declarations. The names of the initializers are part of the name
scope of the value type. Initializers defined in a valuetype are not inherited by derived
valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of
creating a runtime instance of its type. There is no default initializer. This allows the
definition of IDL value types, which are not intended to be directly instantiated by
client code.

3.9.1.6 Value Type Example

interface Tree {
void print()

3-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
[initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
2
valuetype WTree: WeightedBinaryTree supports Tree {};

3.9.2 Boxed Value Type
(15) <value_box_dcl> := “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with
a single state member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an
error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have
to create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... I* anything */
3
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
3
3

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.

module Example {
interface Foo {
... [*anything */
3
valuetype FooSeq {
public sequence<Foo> data;
3

interface Bar {

July 2002 CORBA, v3.0: Value Declaration 3-29

3-30

void dolt (in FooSeq seq);
3
3

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a construction
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used
subsequent to its initial use and prior to the completion of the boxed value declaration.

3.9.3 Abstract Value Type

(16)

<value_abs_dcl> := “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
u{u <eXpOI’t>* u}n

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.9.4 Value Forward Declaration

(14)

<value_forward _dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keywordvaluetype followed by an<identifier> that names the value
type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer
to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not yet
been seen.

3.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to
that used to describe interface inheritance (see Section 3.8.5, “Interface Inheritance,”
on page 3-23).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

The name scoping and name collision rules for valuetypes are identical to those for
interfaces. In addition, no valuetype may be specified as a direct abstract base of a
derived valuetype more than once; it may be an indirect abstract base more than once.
See Section 3.8.5, “Interface Inheritance,” on page 3-23 for a detailed description of
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interface and abstract interfaces that it
supports are listed following theupports keyword.

While a valuetype may only directly support one interface, it is possible for the
valuetype to support other interfaces as well through inheritance. In this case, the
supported interface must be derived, directly or indirectly, from each interface that the
valuetype supports through inheritance. This rule does not apply to abstract interfaces
that the valuetype supports. For example:

interface 11 { };
interface 12 { };
interface 13: 11, 12 { };

abstract valuetype V1 supports 11 { };
abstract valuetype V2 supports 12 { };
valuetype V3: V1, V2 supports 13 { }; // legal
valuetype V4: V1 supports 12 { }; // illegal

A stateful value that derives from another stateful value may specify that it is
truncatable . This means that it is to “truncate” (see Section 5.2.5.3, “Value instance -
> Value type,” on page 5-5) an instance to be an instance of any of its truncatable
parent (stateful) value types under certain conditions. Note that all the intervening
types in the inheritance hierarchy must be truncatable in order for truncation to a
particular type to be allowed.

Because custom values require an exact type match between the sending and receiving
context,truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything else.

CORBA, v3.0: Value Declaration 3-31

These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit Interface Abstract Abstract Boxed
from: Interface Value Stateful Value | value
Interface multiple multiple no no no
Abstract no multiple no no no
Interface

supports supports multiple no no
Abstract Value single multiple

supports supports multiple single (may be | no
Stateful Value single multiple truncatable)
Boxed Value no no no no no

3.10 Constant Declaration

This section describes the syntax for constant declarations.

3.10.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type>
<identifier> “=" <const_exp>
= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
|
|
|
|

(27)

(28) <const_type>

<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>
<const_exp> = <or_expr>
<or_expr> = <Xor_expr>
| <or_expr>"“|" <xor_expr>
<xor_expr> := <and_expr>
| <xor_expr> """ <and_expr>
<and_expr> = <shift_expr>
| <and_expr>“&" <shift_expr>
<shift_expr> := <add_expr>
| <shift_expr> “>>" <add_expr>
| <shift_expr> “<<” <add_expr>
<add_expr> = <mult_expr>
| <add_expr>“+" <mult_expr>
| <add_expr>“-" <mult_expr>

(29)
(30)

(31)
(32)

(33)

(34)

3-32 Common Object Request Broker Architecture (CORBA), v3.0

July 2002

July 2002

(35)

(36)

(37)

(38)

(39)

(40)

(41)

<mult_expr> := <unary_expr>
| <mult_expr>“*" <unary_expr>
| <mult_expr>*“/" <unary_expr>
| <mult_expr>“%" <unary_expr>

<unary_expr> = <unary_operator> <primary_expr>
| <primary_expr>
<unary_operator> = “"
| H+”
<primary_expr> := <scoped_name>

<literal>
H(H <COnSt_eXp> “)"
<literal> ::= <integer_literal>

<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”
“FALSE”

<const_exp>

<boolean_literal>

<positive_int_const>

3.10.2 Semantics

The<scoped_name> in the<const_type> production must be a previously defined
name of arxinteger_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet_type> , or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned to
integer type ¢hort , long, long long) constants. Only positive integer values can be
assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the
left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

const octet o = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point typdidat , double , long double) constants. If the value of
the right hand side is too large to fit in the actual type of the constant to which it is
being assigned it shall be flagged as a compile time error.

CORBA, v3.0: Constant Declaration 3-33

3-34

Fixed point literals have fixed point values. Only fixed point values can be assigned to
fixed point type constants. If the fixed point value in the expression on the right hand
side is too large to fit in the actual fixed point type of the constant on the left hand side,
then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constantlieng or unsigned long , then each subexpression
of the associated constant expression is treated assigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedidyie ¢r unsigned
long), or if a final expression value (of typensigned long) exceeds the precision of
the target typeléng).

If the type of an integer constantlisng long or unsigned long long , then each
subexpression of the associated constant expression is treatediasigmed long
long by default, or a signetbng long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned typelgng long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target typeng long).

If the type of a floating-point constant double , then each subexpression of the
associated constant expression is treated dgudle. It is an error if any
subexpression value exceeds the precisiodafble .

If the type of a floating-point constant isng double , then each subexpression of the
associated constant expression is treatedlaagdouble . It is an error if any
subexpression value exceeds the precisioloing double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent number of total and fractional digits. For exardp8.450d is
considered to béixed<7,3> and3000.00d is fixed<6,2> . Prefix operators do not

affect the precision; a prefix is optional, and does not change the result. The upper
bounds on the number of digits and scale of the result of an infix expression,
fixed<dl,s1> op fixed<d2,s2> , are shown in the following table:

Op | Result: fixed<d,s>

+ fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1l-s1+s2) + sinf, sinf>

A quotient may have an arbitrary number of decimal places, denoted by a scglg of s
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary (+ -) and binary f / + -) operators are applicable in floating-point and fixed-
point expressions. Unary-(- ~) and binary ¥/ % + - << >> & | *) operators are
applicable in integer expressions.

The “~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “M" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

const octet O1 = Ox1;

July 2002 CORBA, v3.0: Constant Declaration 3-35

constlong L = 3;
constoctet 02 =5 + L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The
scoped name is resolved using the normal scope resolution rules Section 3.20, “Names
and Scoping,” on page 3-67. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red,;

module M {

enum Size { small, medium, large };
2
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one
of the enumerators defined for the enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

3.11 Type Declaration

3-36

(42)

(43)

(44)

(45)

(46)

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL usesyhedef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union , enum, andnative declarations; the syntax is:

<type_dcl> := “typedef” <type_declarator>
| <struct_type>

| <union_type>

| <enum_type>

| “native” <simple_declarator>
| <constr_forward_decl>

<type_declarator> <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

<type_spec> := <simple_type_ spec>
<constr_type_spec>

<template_type spec>
<scoped_name>
<base_type spec> := <floating_pt type>
| <integer_type>
| <char_type>
| <wide_char_type>

|
<simple_type_spec> := <base_type_spec>

|

|

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

(47) <template_type spec>

(48) <constr_type_spec> <struct_type>

<union_type>

<enum_type>
(49) <declarators> = <declarator> { “” <declarator>} "
(50) <declarator> ::= <simple_declarator>

| <complex_ declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> := <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type

introduced by an interface declarationir{terface_dcl> - see Section 3.8, “Interface

Declaration), a value declaratiorvalue_dcl> , <value_box_dcl> or

<abstract _value_dcl> - see Section 3.9, “Value Declaration) or a type declaration
(<type_dcl> - see Section 3.11, “Type Declaration). Note that exceptions are not

considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed
type specifiers.

3.11.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type> ::= “float”
| “double”
| “long” “double”
(54) <integer_type> := <signed_int>
| <unsigned_int>
(55) <signed_int> := <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>
(56) <signed_short_int> ::= “short”
(57) <signed_long_int> := “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> <unsigned_short_int>

<unsigned_longlong_int>

| <unsigned_long_int>
|
= “unsigned” “short”

(60) <unsigned_short_int>

July 2002 CORBA, v3.0: Type Declaration 3-37

3-38

(61) <unsigned_long_int> := “unsigned” “long”

(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> := “char”

(64) <wide_char_type> ::= “wchar”

(65) <boolean_type> := “boolean”

(66) <octet_type> := “octet”

(67) <any_type> := “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard system exceptions that are to be raised in such situations are
defined in Section 4.12, “Exceptions,” on page 4-63.

3.11.1.1 Integer Types

3.11.1.2

3.11.1.3

OMG IDL integer types arshort , unsigned short , long, unsigned long , long

long andunsigned long long , representing integer values in the range indicated
below in Table 3-11.

Table 3-11 Range of integer types

short 215 2151
long 281 281
long long 263 2831
unsigned short 0.216.1
unsigned long 0.2%.1
unsigned long long 0.264-1

Floating-Point Types

OMG IDL floating-point types ardloat , double andlong double . Thefloat type
represents IEEE single-precision floating point numbersdihgble type represents

IEEE double-precision floating point numbers.Tlbag double data type represents

an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. l#eE Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-1985, for a detailed specification.

Char Type

OMG IDL defines achar data type that is an 8-bit quantity that (1) encodes a single-
byte character from any byte-oriented code set, or (2) when used in an array, encodes a
multi-byte character from a multi-byte code set. In other words, an implementation is
free to use any code set internally for encoding character data, though conversion to
another form may be required for transmission.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

The ISO 8859-1 (Latinl) character set standard defines the meaning and representation
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

3.11.1.4 Wide Char Type

OMG IDL defines awchar data type that encodes wide characters from any character
set. As with character data, an implementation is free to use any code set internally for
encoding wide characters, though, again, conversion to another form may be required
for transmission. The size efchar is implementation-dependent.

3.11.1.5 Boolean Type

Theboolean data type is used to denote a data item that can only take one of the
valuesTRUE andFALSE.

3.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

3.11.1.7 Any Type

Theany type permits the specification of values that can express any OMG IDL type.

An any logically contains alypeCode (see Section 4.11, “TypeCodes,” on
page 4-53) and a value that is described byTipeCode . Each IDL language
mapping provides operations that allow programers to insert and accebg#eode
and value contained in an any.

3.11.2 Constructed Types

(42)

Structs , unions andenums are the constructed types. Their syntax is presented in
this section:
<type_dcl> := “typedef” <type declarator>
| <struct_type>
| <union_type>
| <enum_type>

CORBA, v3.0: Type Declaration 3-39

| “native” <simple_declarator>
| <constr_forward_decl>
(48) <constr_type spec> := <struct type>
| <union_type>
| <enum_type>
= “struct” <identifier>
| “union” <identifier>

(99) <constr_forward_decl>

3.11.2.1 Structures

The syntax forstruct type is

(69) <struct_type> ::= “struct” <identifier> “{" <member_list> "}’
(70) <member_list> = <member> *
(71) <member> := <type spec> <declarators> “;"

The<identifier> in <struct_type> defines a new legal type. Structure types may also
be named using typedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unique. The value of atruct is the value of all of its members.
3.11.2.2 Discriminated Unions

The discriminatedinion syntax is:

(72) <union_type> := “union” <identifier> “switch”
“(” <switch_type_spec> “)”
‘" <switch_body> “}"

(73) <switch_type_spec> := <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped _name>
(74) <switch_body> ::= <case> *
(75) <case> := <case_label> * <element_spec> ;"
(76) <case_label> := “case” <const_exp>""
| “default” “:"
(77) <element_spec> := <type_spec> <declarator>

OMG IDL unions are a cross between theu@ion andswitch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following theunion keyword defines a new legal type. Union types may
also be named usingtgpedef declaration. Thesconst_exp> in a<case_label>

must be consistent with theswitch_type _spec> . A default case can appear at most
once. The<scoped_name> in the <switch_type_spec> production must be a
previously definednteger, char, boolean or enum type.

3-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules require that the element declarators in a particular
union be unique. If theswitch_type spec> is an<enum_type> , the identifier for

the enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:

 If the discriminator value was explicitly listed in@ase statement, the value of the
element associated with thease statement;

» If a defaultcase label was specified, the value of the element associated with the
defaultcase label;

* No additional value.

The values of the constant expressions for the case labels of a single union definition
must be distinct. A union type can contain a default label only where the values given
in the non-default labels do not cover the entire range of the union's discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

Note —While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in a union definition whose discriminator typedhkar, not all of these
characters are present in all transmission code sets that may be negotiated by GIOP or
in all native code sets that may be used by implementation language compilers and
runtimes. When an attempt is made to marshal to CDRian whose discriminator
value ofchar type is not available in the negotiated transmission code set, or to
demarshal from CDR anion whose discriminator value afar type is not available

in the native code set,RBATA_CONVERSION system exception is raised. Therefore,
to ensure portability and interoperability, care must be exercised when assigning the
<case_label> for aunion member whose discriminator typedébkar. Due to these
issues, use ofhar types as the discriminator type fanion s is not recommended.

3.11.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members
that have a sequence type. The element type of a recursive sequence struct or union
member must identify a struct, union, or valuetype. (A valuetype is allowed to have a
member of its own type either directly or indirectly through a member of a constructed
type—see Section 3.9.1.6, “Value Type Example,” on page 3-28.) For example, the
following is legal:

struct Foo {

long value;
sequence<Foo> chain; // Deprecated (see Section 3.11.6)

CORBA, v3.0: Type Declaration 3-41

3-42

See Section 3.11.3.1, “Sequences,” on page 3-44 for details sktieence template
type.

IDL supports recursive types via a forward declaration for structures and unions (as
well as for valuetypes—see Section 3.9.1.6, “Value Type Example,” on page 3-28).
Because anonymous types are deprecated (see Section 3.11.6, “Deprecated Anonymou
Types,” on page 3-47), the previous example is better written as:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

3

The forward declaration for the structure enables the definition of the sequence type
FooSeq, which is used as the type of the recursive member.

Forward declarations are legal for structures and unions.A structure or union type is
termed incomplete until its full definition is provided; that is, until the scope of the
structure or union definition is closed by a terminating "}". For example:

struct Foo; /I Introduces Foo type name,
/I Foo is incomplete now
...
struct Foo {
...
h /I Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if this rule is violated. Multiple forward declarations of the same structure
or union are legal.

If a recursive structure or union member is used, sequence members that are recursive
must refer to an incomplete type currently under definition. For example

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq;
struct Bar {
long value;
FooSeq chain; /Nlegal, Foo is not an enclosing struct or union

%
Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; // Forward declaration

typedef sequence<Bar> BarSeq;

union Bar switch(long) { // Define incomplete union
case 0O:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

long I_mem;
case 1:
struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing
/I incomplete type
}s_mem;

3

An incomplete type can only appear as the element type of a sequence definition. A
sequence with incomplete element type is termedhanmplete sequence type

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; /I incomplete

An incomplete sequence type can appear only as the element type of another sequence,
or as the member type of a structure or union definition. For example:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq; /I OK
typedef sequence<FooSeq> FooTree; // OK

interface | {
FooSeq opl(); /I lllegal, FooSeq is incomplete
void op2(/I lllegal, FooTree is incomplete
in FooTree t
);
2
struct Foo { /I Provide definition of Foo
long |_mem;
FooSeq chain; Il OK
FooTree tree; / OK
2

interface J {
FooSeq opl(); /I OK, FooSeq is complete
void op2(
in FooTreet // OK, FooTree is complete
);
2

Compilers shall issue a diagnostic if this rule is violated.

3.11.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

(78) <enum_type> := “enum” <identifier>
“{” <enumerator> { “,” <enumerator> } D“}”
(79) <enumerator> := <identifier>

July 2002 CORBA, v3.0: Type Declaration 3-43

3-44

A maximum of 22 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usingypedef declaration.

3.11.3 Template Types

(47)

The template types are:
<template_type_spec> := <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt type>

3.11.3.1 Sequences

(80)

OMG IDL defines the sequence typequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:
<sequence_type> := “sequence” “<” <simple_type_spec> ")
<positive_int_const> “>"
| “sequence” “<” <simple_type_spec> “>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. If no maximum size is specified, size of the sequence is
unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as a
field in a structure or union), the length of the sequence must be set in a language-
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may be
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred,;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.”
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

3.11.3.2 Strings

(81)

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> 1= “string” “
| “string”

<" <positive_int_const> “>"

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-ir
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

3.11.3.3 Wstrings

(82)

Thewstring data type represents a sequence of wchar, except the wide character null.
The type wstring is similar to that of type string, except that its element type is wchar
instead of char. The actual length of a wstring is set at run-time and, if the bounded
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

”

<wide_string_type> ::= "wstring” “<” <positive_int_const> “>"
| “wstring”

3.11.3.4 Fixed Type

(96)

Thefixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is a non-negative integer less than or equal to the total number
of digits (note that constants with effectively negative scale, such as 10000, are always
permitted).

Thefixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then the
IDL mapping for that language will provide a fixed point data type. Applications that
use the IDL fixed point type across multiple programming languages must take into
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed type is:

<fixed_pt_type> 1= “fixed” “<* <positive_int_const> *,
<positive_int_const> “>"

CORBA, v3.0: Type Declaration 3-45

3-46

(97)

<fixed_pt_const_type> := “fixed”

3.11.4 Complex Declarator

3.11.4.1 Arrays

(83)
(84)

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

+

<array_declarator> <identifier> <fixed_array_size>
<fixed_array_size> := “[" <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.11.5 Native Types

(42)
(51)

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> := "native” <simple_declarator>
<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar to
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

A native type may be used only to define operation parameters, results and exceptions.
If a native type is used for an exception, it must be mapped to a type in a programming
language that can be used as an exception. Native type parameters are permitted only
in operations ofocal interface s orvaluetype s. Any attempt to transmit a value of a
native type in a remote invocation may raise MARSHAL standard system

exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {

native Servant;
interface HOA {

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Object activate_object(in Servant x);
2
2

The IDL type Servant would map tdypotheticalObjectAdapter::Servant in C++
and theactivate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ typélypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.

Note — The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it hot be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL compiler.

3.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; // Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and use a typedef to
name such types instead. Compilers need not issue a warning if a deprecated construct
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous
types.

Anonymous bounded string and bounded wide string types are deprecated. This rule
affects constant definitions, attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception,
and valuetype member declarations. For example

const string<5> GREETING = “Hello”; I/l Deprecated
interface Foo {
readonly attribute wstring<5> name; /I Deprecated
wstring<5> op(in wstring<5> param); /I Deprecated

CORBA, v3.0: Type Declaration 3-47

h
typedef sequence<wstring<5> > WS5Seq; /I Deprecated
typedef wstring<5> NameVector [10]; /I Deprecated
struct A {

wstring<5> mem; /I Deprecated
h

/I Anonymous member type in unions, exceptions,
/l and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
h
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {
GreetingType mem;

h

Anonymous fixed-point types are deprecated. This rule affects attribute declarations,
return value and parameter type declarations, sequence and array element declarations.
and structure, union, exception, and valuetype member declarations.

struct Foo {
fixed<10,5> member; /I Deprecated

3
This is better written as:
typedef fixed<10,5> MyType;

struct Foo {
MyType member;

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {

case 1:

long array_mem[10]; I/ Deprecated
case 2:

sequence<long> seq_mem,; /I Deprecated
case 3:

string<5> bstring_mem;

3-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {
case 1:
LongArray array_mem;
case 2:
LongSeq seq_mem;
case 3:
ShortName bstring_mem;

h

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following example is
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long I_mem;

double d_mem,;
} bar_mem_1; /I OK, not anonymous
Bar bar_mem_2; /I OK, not anonymous

h

typedef sequence<Foo::Bar> FooBarSeq; /I Scoped names are OK

3.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

(86) <except_dcl> 1= "exception” <identifier> “{* <member>* “}”

July 2002 CORBA, v3.0: Exception Declaration 3-49

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified bynteenber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time
errors, which may occur during the execution of a request. These standard system
exceptions are documented in Section 4.12, “Exceptions,” on page 4-63.

3.13 Operation Declaration

3-50

(87)

(88)
(89)

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:
<op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_attribute> ::= “oneway”
<op_type_spec> := <param_type_spec>
| “void”

An operation declaration consists of:

* An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in Section 3.13.1, “Operation Attribute,” on page 3-51.

» The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specifyaic

type.

* An identifier that names the operation in the scope of the interface in which it is
defined.

» A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.13.2, “Parameter
Declarations,” on page 3-51.

» An optional raises expression that indicates which exceptions may be raised as a
result of an invocation of this operation. Raises expressions are described in
Section 3.13.3, “Raises Expressions,” on page 3-52.

» An optional context expression that indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in Section 3.13.4, “Context Expressions,” on page 3-53.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.13.1 Operation Attribute

(88)

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with tbeeway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must speedida
return type. An operation defined with tlomeway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard system
exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.13.2 Parameter Declarations

(90)
(91)

(92)

(95)

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls> ::= “(" <param_dcl>{ "’ <param_dcl> } ey
I
<param_dcl> := <param_attribute> <param_type_spec>
<simple_declarator>
<param_attribute> “in”
“out”
“inout”

<string_type>
<wide_string_type>

|

|
<param_type_spec> := <base_type spec>

|

|

| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

* in - the parameter is passed from client to server.
» out - the parameter is passed from server to client.

* inout - the parameter is passed in both directions.

CORBA, v3.0: Operation Declaration 3-51

3-52

It is expected that an implementation wilbt attempt to modify arn parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and
anyout andinout parameters are undefined.

3.13.3 Raises Expressions

There are two kinds of raises expressions as described in this section.

3.13.3.1 Raises Expression

(93)

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation or accessing (invoking the _get operation of) a readonly
attribute. The syntax for its specification is as follows:

<raises_expr> = “raises” “(" <scoped_name>
{“» <scoped_name>} Dy

The <scoped_name> s in theraises expression must be previously defined
exceptions or native types. If a native type is used as an exception for an operation, the
operation must appear in either a local interface or a valuetype.

In addition to any operation-specific exceptions specified inrthges expression,

there are a standard set of system exceptions that may be signalled by the ORB. These
standard system exceptions are described in Section 4.12.3, “Standard System
Exception Definitions,” on page 4-66. However, standard system exceptionaohbg

listed in araises expression.

The absence of eaises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

3.13.3.2 getraises and setraises Expressions

(108)

(109)
(110)
(111)

getraises andsetraises expressions specify which exceptions may be raised as a
result of an invocation of the accessogét) and a mutator (set) functions of an
attribute. The syntax for its specification is as follows:

<attr_raises_expr> 1= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>
<get_excep_expr> = “getraises” <exception_list>
<set_excep_expr> 1= “setraises” <exception_list>
<exception_list ::= “(" <scoped_name>

{" <scoped_name>} «")"

The <scoped_name> s in thegetraises andsetraises expressions must be
previously defined exceptions.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

In addition to any attribute-specific exceptions specified indge&aises and

setraises expressions, there are a standard set of exceptions that may be signalled by
the ORB. These standard exceptions are described in Section 4.12.3, “Standard System
Exception Definitions,” on page 4-66. However, standard exceptionsmaglye listed

in agetraises or setraises expression.

The absence of getraises or setraises expression on an attribute implies that there
are no accessor-specific or mutator-exceptions respectively. Invocations of such an
accessor or mutator are still liable to receive one of the standard exceptions.

Note —The exceptions associated with the accessor operation corresponding to a
readonly attribute is specified using a simpleises expression as specified in
Section 3.13.3.1, “Raises Expression,” on page 3-52.Jdimises andsetraises
expressions are used only attribute s that are noteadonly .

3.13.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

(94) <context_expr> ::= “context” “(" <string_literal>
{“7 <string_literal>} %"

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is a non-empty string. If the character *' appears in
string_literal , it must appear only once, as the last charactestiofig_literal , and
must be preceded by one or more characters other than '*.

The mechanism by which a client associates values with the context identifiers is
described in Section 4.6, “Context Object,” on page 4-32.

3.14 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax forattribute declaration is:

(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

July 2002 CORBA, v3.0: Attribute Declaration 3-53

(104) <readonly attr_spec> := “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>
(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>
| <simple_declarator>
{“ <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec>
<attr_declarator>
(207) <attr_declarator> := <simple_declarator> <attr_raises_expr>

| <simple_declarator>
{"“ <simple_declarator> }*

The optionalreadonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

h

attribute float radius;
attribute material_t material,
readonly attribute position_t position;

h

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_’'s is removed by application of the
Escaped ldentifier rule described in Section 3.2.3.1, “Escaped ldentifiers,” on page 3-7:

float __get_radius ();

void __set_radius (in float r);
material_t __ get _material ();

void __set_material (in material_t m);

position_t __ get_position ();

The actual accessor function names are language-mapping specific. The attribute name
is subject to OMG IDL's name scoping rules; the accessor function names are
guaranteedhot to collide with any legal operation names specifiable in OMG IDL.

Attributes are inherited. An attribute namsannotbe redefined to be a different type.
See Section 3.19, “CORBA Module,” on page 3-66 for more information on
redefinition constraints and the handling of ambiguity.

3-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.15 Repository Identity Related Declarations

Two constructs that are provided for specifying information related to Repository Id
are described in this section.

3.15.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:
(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:
» the keywordtypeid

» a<scoped_namezhat denotes the named IDL construct to which the repository
identifier is assigned

e a string literal that must contain a valid repository identifier value

The<scoped_namess resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

e module

* interface

« component
e home

« facet

* receptacle
» event sink
* event source
« finder

« factory
 event type
* value type
 value type member
* value box
* constant

* typedef

* exception
* attribute

* operation
e enum

* local

July 2002 CORBA, v3.0: Attribute Declaration 3-55

The value of the string literal is assigned as the repository identity of the specified type
definition. This value will be returned as tiiepositoryld by the interface repository
definition object corresponding to the specified type definition. Language mappings
constructs, such as Java helper classes, that return repository identifiers shall return the
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition.
An attempt to redefine the repository identity for a type definition is illegal, regardless
of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository
identifier for the type definition shall be an IDL format repository identifier, as defined
in Section 10.7.1, “OMG IDL Format,” on page 10-65.

3.15.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:
» the keywordtypeprefix
e a<scoped_namexhat denotes an IDL name scope to which the prefix applies

» a string literal that must contain the string to be prefixed to repository identifiers in
the specified hame scope

The<scoped_namess resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

* module

« interface (including abstract or local interface)

« value type (including abstract, custom, and box value types)

« event type (including abstract and custom value types)

* specification scope {)

The specified string is prefixed to the body of all repository identifiers in the specified
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier,” we mean that the specified string is
inserted into the default IDL format repository identifier immediately after the format
name and colon (“IDL:") at the beginning of the identifier. A forward slash

(‘') character is inserted between the end of the specified string and the remaining
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly
assigned by a typeid declaration. The prefix is applied to all such repository identifiers
in the specified name scope, including the identifier of the construct that constitutes the
name scope.

3-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.16 EventDeclaration

Event type is a specialization of value type dedicated to asynchronous component
communication. There are several kinds of event type declarations: “regular” event
types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134) <event> := (<event_dcl>|<event_abs_dcl> |
<event_forward_dcl>)

3.16.1 Regular Event Type

A regular event type satisfies the following syntax:
(137) <event dcl> := <event_header> “{" <value_element> *‘}’

(138) <event_header> := [“custom”] “eventtype”
<identifier> [<value_inheritance_spec>]

3.16.1.1 EventHeader

The event header consists of two elements:

« The event type’s name and optional modifier specifying whether the event type
uses custom marshaling.

* An optional value inheritance specification described in Section 3.9.1.3, “Value
Inheritance Specification,” on page 3-27.

3.16.1.2 Event Element

An event can contain all the elements that a value can as described in Section 3.9.1.2,
“Value Element,” on page 3-27 (i.e., attributes, operations, initializers, state members).

3.16.2 Abstract Event Type

(136) <event_abs_dcl> := “abstract” “eventtype” <identifier>
[<value_inheritance_spec> |
“{ﬂ <export>* “}”

Event types may also be abstract. They are called abstract because an abstract event
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.

3.16.3 Event Forward Declaration

(135) <event_forward_dcl> ::= [“abstract’] “eventtype” <identifier>

July 2002 CORBA, v3.0: Attribute Declaration 3-57

A forward declaration declares the name of an event type without defining it. This
permits the definition of event types that refer to each other. The syntax consists

simply of the keywordeventtype followed by an<identifier> that names the event

type.

Multiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type whose definition has not yet
been seen.

3.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is directly
analogous to value inheritance (see Section 3.9.1.3, “Value Inheritance Specification,”
on page 3-27 for a detailed description of the analogous properties for valuetypes). In
addition, an event type could inherit from a single immediate base concrete event type,
which must be the first element specified in the inheritance list of the event
declaration’s IDL. It may be followed by other abstract values or events from which it
inherits.

3.17 Component Declaration

3-58

3.17.1 Component

3.17.1.1

(112)

A component declaration describes an interface for a component. The salient
characteristics of a component declaration are as follows:

* A component declaration specifies the name of the component.

» A component declaration may specify a list of interfaces that the component
supports.

» Component declarations support single inheritance from other component
definitions.

« Component declarations may include in its body any attribute declarations that are
legal in normal interface declarations, together with declarations of facets and
receptacles of the component, and the event sources and sinks that the component
defines.

Syntax

The syntax for declaring a component is as follows:

<component> ::= <component_dcl>
| <component_forward_dcl>

(113)<component_forward_dcl>::= “component” <identifier>

(114)

<component_dcl> := <component_header>
“{” <component_body> “}’

<component_forward_dcl> is described in Section 3.17.1.2, “Forward Declaration.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

<component_header> is described in Section 3.17.2, “Component Header.

<component_body> is described in Section 3.17.3, “Component Body.

3.17.1.2 Forward Declaration

A forward declaration declares the name of a component without defining it. This
permits the definition of components that refer to each other. The syntax consists
simply of the keywordcomponent followed by an<identifier> that names the
component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component whose definition has not yet

been seen.

3.17.2 Component Header

A <component_header> declares the primary characteristics of a component
interface.

3.17.2.1 Syntax

The syntax for declaring a component header is as follows:
(115) <component_header> ::=“component” <identifier>
[<component_inheritance_spec>]
[<supported_interface_spec>]
(116)<supported_interface_spec>::= “supports” <scoped_name>
{"] <scoped_name> }*
(117)<component_inheritance_spec>::= “:" <scoped_name>

A component header comprises the following elements:
» the keywordcomponent.
* an<identifier> that names the component type.

» an optionakinheritance_specyconsisting of a colon and a singiscoped_name>
that must denote a previously-defined component type.

* an optional<supported_interface_specthat must denote one or more previously-
defined IDL interfaces.

3.17.2.2 Supported interfaces

A component may optionally support one or more interfaces. When a component
definition header includes a supports clause as follows:

component < component_name> supports <interface_name> { ... };

For further detail see thEORBA Componentspecification, chapter 1, section 1.4.5
(Supported Interfaces).

CORBA, v3.0: Attribute Declaration 3-59

3-60

3.17.2.3 Component Inheritance

A component may optionally inherit from a component that supports one or more
interfaces. This is specified by using the inheritance construct that looks like:

component <component_name> : <component_name>{ ... };

The following rules apply to component inheritance:

A derived component type may not directly support an interface.

The interface for a derived component type is derived from the interface of its base
component type.

A component type may have at most one base component type.

The features of a component that are inherited by the derived component are:
 theprovides statements

* theuses statements

* theemits statements

 the publishes statements

 theconsumes statements

* attributes

See Section 3.17.2.3, “Component Inheritance,” on page 3-60 for details of component
inheritance.

3.17.3 Component Body

(118)
(119)

<component_body> := <component_export>*
<component_export> <provides_dcl>*;"
<uses_dcl>*"
<emits_dcl>*}"

<consumes_dcl>*"

|
|
| <publishes_dcl> “;"
|
| <attr_dcl>*"

A component forms a naming scope, nested within the scope in which the component
is declared. A component body can contain the following kinds of declarations:

Facet declarationgfovides)

Receptacle declarationages)

Event source declarationsrfits or publishes)
Event sink declarationconsumes)

Attribute declarationsdttribute andreadonly attribute)

These declarations and their meanings are described in detail DQRBA
Componentspecification, Component Model chapter, “Facets and Navigation”
through “Events” sections.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.17.3.1 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form
of facets. Facets are intended to be the primary vehicle through which a component
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

3.17.3.1.1 Syntax

A facet is declared with the following syntax:

(120) <provides_dcl> ::="“provides” <interface_type> <identifier>
(121) <interface type> ::= <scoped_name>
| “Object”

The interface type shall be either the keyw@dject, or a scoped name that denotes

a previously-declared interface type which is not a component interface, i.e., is not the
interface corresponding to a component definition. The identifier names the facet
within the scope of the component, allowing multiple facets of the same type to be
provided by the component.

See theCORBA Componentspecification, Component Model chapter, “Facets and
Navigation” for further details.

3.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon which
the component may invoke operations. When a component accepts an object reference
in this manner, the relationship between the component and the referent object is called
a connectionthey are said to beonnectedThe conceptual point of connection is

called areceptacle A receptacle is an abstraction that is concretely manifested on a
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

3.17.3.2.2 Syntax

The syntax for describing a receptacle is as follows:
(122) <uses_dcl> ::= “uses” [“multiple”]
< interface_type> <identifier>

A receptacle declaration comprises the following elements:
e The keyworduses.

» The optional keywordnultiple . The presence of this keyword indicates that the
receptacle may accept multiple connections simultaneously, and results in different
operations on the component’s associated interface.

* An <interface_type> which must be either the keywofdbject or a scoped name
that denotes the interface type that the receptacle will accept. The scoped name
must denote a previously-defined non-component interface type.

» An <identifier> that names the receptacle in the scope of the component.

July 2002 CORBA, v3.0: Attribute Declaration 3-61

3-62

See theCORBA Componentspecification, Component Model chapter, “Receptacles”
section for further details.

3.17.4 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources.

There are two categories of event sourqashlishersandemitters Both are

implemented using event channels supplied by the container. An emitter can be
connected to at most one consumer. A publisher can be connected through the channel
to an arbitrary number of consumers, who are saiduoscribeto the publisher event
source. A component may exhibit zero or more emitters and publishers.

3.17.4.1 Publishers

3.17.4.1.3 Syntax

The syntax for an event publisher is as follows:
<publishes_dcl> := “publishes” <scoped_name> <identifier>

A publisher declaration consists of the following elements:

» the keywordpublishes

e a<scoped_name:xhat denotes a previously-defined event type

» an<identifier> that names the publisher event source in the scope of the component

See theCORBA Componentspecification, Component Model chapter, “Publisher”
section for further details.

3.17.4.2 Emitters

3.17.4.2.4 Syntax

The syntax for an emitter declaration is as follows:
<emits_dcl> := “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:
* the keywordemits
* a<scoped_namehat denotes a previously-defined event type

» an<identifier> that names the event source in the scope of the component.

See theCORBA Componentspecification, Component Model chapter, “Emitters”
section for further details.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.17.5 Event Sinks

An event sink embodies the potential for the component to receive events of a specified
type. An event sink is, in essence, a special-purpose facet whose type is an event
consumer. External entities, such as clients or configuration services, can obtain the
reference for the consumer interface associated with the sink.

A component may exhibit zero or more consumers.
See theCORBA Componentspecification, Component Model chapter, “Event Sinks”

section for further details.

3.17.5.1 Syntax

The syntax for an event sink declaration is as follows:
(125) <consumes_dcl> := “consumes” <scoped_name> <identifier>

An event sink declaration contains the following elements:
» the keywordconsumes
e a<scoped_name:xhat denotes a previously-defined event type

» an<identifier> that names the event sink in the component’s scope

See theCORBA Componentspecification, Component Model chapter, “Event Sinks”
section for further details.

3.17.6 Basic and Extended Components

A component that satisfies the following properties is known &asic Component
* It does not inherit from another component.

» Its declaration does not contain any provides statements.

 Its declaration does not contain any uses statements.

 Its declaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of Basic Componertfits the pattern:

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr._dcl> H;H}* H}H

A component that is not Basic Componeris referred to as aikxtended Component

3.18 Home Declaration

A home declaration describes an interface for managing instances of a specified
component type.

July 2002 CORBA, v3.0: Attribute Declaration 3-63

3-64

3.18.1 Home

The salient characteristics of a home declaration are as follows:

« A home declaration must specify exactly one component type that it manages.
Multiple homes may manage the same component type.

* A home declaration may specify a primary key type. Primary keys are values
assigned by the application environment that uniquely identify component instances
managed by a particular home. Primary key types must be value types derived from
Components::PrimaryKeyBase . There are more specific constraints placed on
primary key types, which are specified in tf®RBA Componentsgpecification,
Component Model chapter, “Primary key type constraints” section.

» Home declarations may include any declarations that are legal in normal interface
declarations.

» Home declarations support single inheritance from other home definitions, subject
to a number of constraints that are described inG@RBA Components
specification, Component Model chapter, “Home inheritance” section.

» Home declarations may specify a list of interfaces that the home supports.

3.18.1.1 Syntax

The syntax for a home definition is as follows:
(126) <home_dcl> ::= <home_header> <home_body>

<home_header > is described in Section 3.18.2, “Home Header.

<home_body> is described in Section 3.18.3, “Home Body.

3.18.2 Home Header

A <home_header>describes fundamental characteristics of a home interface.

3.18.2.1 Syntax

The syntax for a home header declaration is as follows:
(227) <home_header> ::= “home” <identifier>
[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]
(128)<home_inheritance_spec> ::= “:" <scoped_name>
(129) <primary_key _spec> := “primarykey” <scoped_name>

A <home_header>onsists of the following elements:
* The keywordhome.

» An <identifier> that names the home in the enclosing name scope.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

An optional<home_inheritance_spec¢xonsisting of a colon:” and a single
<scoped_namehat denotes a previously defined home type.

An optional<supported_interface_specthat must denote one or more previously
defined IDL interfaces.

The keywordmanages .
A <scoped_namexhat denotes a previously defined component type.

An optional primary key definition, consisting of the keywgsdmarykey

followed by a<scoped_namexhat denotes a previously defined value type that is
derived from the abstract value ty@®mponents::PrimaryKeyBase . Additional
constraints on primary keys are described in@@RBA Componentpecification,
Component Model chapter, “Primary key type constraints” section.

Details of semantics can be found in tB®RBA Componentspecification,
Component Model chapter, “Homes” section.

3.18.3 Home Body

(130)
(131)

<home_body> “{" <home_export>* “}"

<home_export ::= <export>
| <factory_dcl>“;"
| <finder_dcl> “;"

3.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operation
may be afactory operation, dinder operation, or a normal operation or attribute.

3.18.3.1.1 Factory operations

The syntax of a factory operation is as follows:

(132)

<factory_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>]")"
[<raises_expr>]

A factor operation declaration consists of the following elements:

the keywordfactory
an <identifier> that names the operation in the scope of the home declaration

an optional list of initialization parametersifit_param_decls} enclosed in
parentheses

an optionakraises_expr>declaring exceptions that may be raised by the operation

A factory declaration has an implicit return value of type reference to component.

See theCORBA Componentspecification, Component Model chapter, “Factory
operations” section for further details.

CORBA, v3.0: Attribute Declaration 3-65

3.18.3.1.2 Finder operations

The syntax of a finder operation is as follows:
<finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>]")"
[<raises_expr>]

A finder operation declaration consists of the following elements:
» the keywordfinder
* an identifier that names the operation in the scope of the storage home declaration

* an optional list of initialization parametersifit_param_decls>) enclosed in
parentheses

* an optionakraises_expr>declaring exceptions that may be raised by the operation
A finder declaration has an implicit return value of type reference to component.

See theCORBA Componentgpecification, Component Model chapter, “Finder
operations” section for further details.

3.19 CORBA Module

3-66

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such @bject must not be
preceded by aCORBA:: " prefix. Other interface names such &gpeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.qg.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>

module M {
typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; /I Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
h

The file orb.idl contains the IDL definitions for th€ORBA module. Except for
CORBA::TypeCode , the file orb.idl must be included in IDL files that use names
defined in theCORBA module. IDL files that us€ ORBA::TypeCode may obtain its
definition by including either the fil@rb.idl or the file TypeCode.idI .

The exact contents dffypeCode.idl are implementation dependent. One possible
implementation offypeCode.idl may be:

/I PIDL

#ifndef _TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

interface TypeCode;
2
#endif // _TYPECODE_IDL_

For IDL compilers that implicitly defineCORBA::TypeCode , TypeCode.idl could
consist entirely of a comment as shown below:

/l PIDL
/I CORBA::TypeCode implicitly built into the IDL compiler
/I Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the
requirement for compliance.

The version ofCORBA specified in this release of the specification is versfouy>,
and this is reflected in the IDL for thEeORBA module by including the following
pragma version (see Section 10.7.5.3, “The Version Pragma,” on page 10-71):

#pragma version CORBA <x.y>

as the first line immediately following the very fir@@ORBA module introduction line,

which in effect associates that version number with@@RBA entry in thelR. The

version number in that version pragma line must be changed whenever any changes are
made to any remotely accessible parts of @@RBA module in an officially released

OMG standard.

3.20 Names and Scoping

July 2002

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. This
allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface | {
typedef long MyLong;
myLong op1(/l Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

CORBA, v3.0: Names and Scoping 3-67

3-68

3.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“") and the name of the current scope is initially empty
(“"). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of themodule , the trailing “::” and identifier are deleted from the name of
the current root. Whenever anterface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination ofitkerface , struct , union,

or exception , the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::", and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-12).

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to
be visible in derived interfaces. Such identifiers are considered to be semantically the
same as the original definition. Multiple paths to the same original identifier (as results
from the diamond shape in Figure 3-1 on page 3-24) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;
5
void f() raises(E);
5

interface B: A {
void g() raises(E);

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

2
In this example, the exception is known by the global nam&sE and::B:E .

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;
2

interface B {
typedef string<256> string_t;

2

interface C: A, B {
attribute string_t Title; I/ Error: Ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; Il OK

2

The declaration of attribut@itle in interfaceC is ambiguous, since the compiler does
not know whichstring_t is desired. Ambiguous declarations yield compilation errors.

3.20.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced
by #include statements, forms a haming scope. Definitions that do not appear inside a
scope are part of the global scope. There is only a single global scope, irrespective of
the number of source files that form a specification.

The following kinds of definitions form scopes:
* module

* interface

» valuetype

» struct

* union

* operation

» exception

* eventtype

e component

 home

The scope for module, interface, valuetype, struct, exception, eventtype, component,
and home begins immediately following its opening ‘{* and ends immediately
preceding its closing ‘}'. The scope of an operation begins immediately following its
‘(‘ and ends immediately preceding its closing ‘). The scope of a union begins

CORBA, v3.0: Names and Scoping 3-69

3-70

immediately following the ‘(* following the keywordwitch , and ends immediately
preceding its closing ‘}'. The appearance of the declaration of any of these kinds in
any scope, subject to semantic validity of such declaration, opens a nested scope
associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined
in nested scopes. An identifier declaring a module is considered to be defined by its
first occurrence in a scope. Subsequent occurrences of a module declaration with the
same identifier within the same scope reopens the module and hence its scope,
allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

module M {
typedef short M; /I Error: M is the name of the module
I in the scope of which the typedef is.
interface | {

void i (in short j); // Error: i clashes with the interface name |
3
3

An identifier from a surrounding scope is introduced into a scope if it is used in that
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope of the
scoped name. For example in:

module M {
module Innerl {
typedef string S1;

h

module Inner2 {
typedef string innerl; /I OK
3
}

The declaration ofnner2::innerl is OK because the identifidnnerl, while visible
in modulelnner2, has not been introduced into moduitmer2 by actual use of it. On
the other hand, if modultnner2 were:

module Inner2{
typedef Innerl::S1 S2; /l Innerl introduced
typedef string innerl; /I Error
typedef string S1; I OK

h

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

The definition ofinnerl is now an error because the identiflanerl referring to the
module Innerl has been introduced in the scope of modualger2 in the first line of
the module declaration. Also, the declarationSdf in the last line is OK since the
identifier S1 was not introduced into the scope by the usénofer1::S1 in the first
line.

Only the first identifier in a qualified name is introduced into the current scope. This is
illustrated bylnnerl::S1 in the example above, which introducdsrierl” into the
scope of Thner2” but does not introduceS1.” A qualified name of the form

“:X:1Y::Z " does not causeX” to be introduced, but a qualified name of the form
“X:Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated
like any other declaration in that scope. For example:

interface A {
enum E { E1, E2, E3 }; /l'line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
/['into the A scope in line 1 above

h

interface C {
enum AnotherE { E1, E2, E3 };

h

interface D : C, A {
union U switch (E) {
case A::E1 : boolean b;// OK.
case E2 : long |; /I Error: E2 is ambiguous (notwithstanding
/l the switch type specification!!)
%
%

Type names defined in a scope are available for immediate use within that scope. In
particular, see Section 3.11.2, “Constructed Types,” on page 3-39 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking into
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; // line I3
ArgType opb(in AType i); //line 12
2
2

July 2002 CORBA, v3.0: Names and Scoping 3-71

3-72

module N {
typedef char ArgType; /lline 14
interface Y : M::B {
void opy(in ArgType i); /l'line 15
3
3

The following scopes are searched for the declaratioArgfiype used online 15 :
1. Scope oiN::Y before the use ofrgType .

2. Scope oiN::Y'’s base interfacé::B. (inherited scope)

3. Scope ofmodule N before the definition oN::Y.

4. Global scope before the definition f

M::B::ArgType is found instep 2 in line I3, and that is the definition that is used in
line I5, henceArgType in line IS is string . It should be noted thakrgType is not
char in line I5. Now if line I3 were removed from the definition of interfadé::B
thenArgType online I5 would bechar from line 14, which is found instep 3.

Following analogous search steps for the types used in the opehdtiBriopb on
line 12, the type ofAType used orline 12 islong from thetypedef in line I1 and the
return typeArgType is string from line 13.

3.20.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module,
interface or valuetype, or within the scope of a derived interface or valuetype. For
example:

typedef short TempType; Il Scope of TempType begins here
module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {

:M::ArgType al; // Nothing introduced here

M::ArgType a2; // M introduced here

TempType temp; // Nothing introduced here
b /I Scope of (introduced) M ends here

3 I Scope of ArgType ends here

/I Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its
enclosing scope.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

However, if atypename isintroducedinto a scope that is nested in a non-module

scope definition, itpotentialscope extends over all its enclosing scopes out to the
enclosing non-module scope. (For types that are defined outside an inon-module scope,
the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long I = 10;

typedef short Y;
interface A {
struct S {
struct T {
ArgType X[I; /I ArgType and | introduced
long y; /l anewy is defined, the existing Y
/l'is not used
pm;
%
typedef string ArgType; // Error: ArgType redefined
enum I {11, 12 }; /I Error: | redefined
typedef short Y; Il OK

}; // Potential scope of ArgType and | ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { /I OK, redefined in derived interface
ArgType X; /I x is a long
A:ArgTypey; /l'y is a string
%
%
%

A type may not be redefined within its scope or potential scope, as shown in the
preceding example. This rule prevents type names from changing their meaning
throughout a non-module scope definition, and ensures that reordering of definitions in
the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition dfl::A::U::l is legal because it is outside
the potential scope of the | introduced in the definitionMifA::S::T::ArgType
However, the definition oM::A::l is still illegal because it is within the potential scope
of the | introduced in the definition dfl::A::S::T::ArgType

module M {
typedef long ArgType;
const long I = 10;

interface A {
struct S {
struct T {
ArgType X[I]; /I ArgType and | introduced
pm;

July 2002 CORBA, v3.0: Names and Scoping 3-73

h
struct U {

long I; /Il OK, lis not a type name
h

enum I {I11,12}; // Error: | redefined
}; // Potential scope of ArgType and | ends here
h

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;

module M {
struct S {
ArgType X; /I x is a long
3
typedef string ArgType; // OK!
struct T {
ArgTypey; /' Ugly but OK, y is a string
3

3-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

ORB Interface 4

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-1
“The ORB Operations” 4-2
“Object Reference Operations” 4-12
“ValueBase Operations” 4-23
“ORB and OA Initialization and Initial References” 4-24
“Context Object” 4-32
“Current Object” 4-36
“Policy Object” 4-37
“Management of Policies” 4-43
“Management of Policy Domains” 4-46
“TypeCodes” 4-52
“Exceptions” 4-62

4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the interface
to those ORB functions that do not depend on which object adapter is used. These

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 4-1

operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Obiject interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /I forward declaration

typedef short PolicyErrorCode;

/I for the definition of consts see “PolicyErrorCode” on page 4-39
typedef unsigned long PolicyType;

interface Request; /l forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld,;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/' UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10
typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

3

struct Servicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

I3

native ValueFactory;
typedef string ORBId;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBiId id();

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

);
/I Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req
);

July 2002 CORBA, v3.0: The ORB Operations 4-3

void send_multiple_requests_deferred(
in RequestSeq req
);

boolean poll_next_response();

void get_next_response(
out Request req

);
/I Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
);

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_maodifier,
in TypeCode concrete_base,

in ValueMembersSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

July 2002 CORBA, v3.0: The ORB Operations 4-5

);

TypeCode create_native_tc (

in Repositoryld id,
in Identifier name
);
TypeCode create_recursive_tc(
in Repositoryld id
);
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
);
TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name
);
TypeCode create_component_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_home_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_event_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_maodifier,
in TypeCode concrete_base,

in ValueMemberSeq members

);

/I Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

void destroy();
/I Policy related operations

Policy create_policy(
in PolicyType type,
in any val
) raises (PolicyError);

/I Dynamic Any related operations deprecated and removed
[/l from primary list of ORB operations

/I Value factory operations

ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory_factory

);
void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
I3
I3

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed bB§ORBA:: "

The operation®bject_to_string andstring_to_object are described in
“Converting Object References to Strings” on page 4-8.

For a description of thereate_list andcreate_operation_list operations, see

Section 7.4, “Polling” on page 7-12. Thyet _default_context operation is described

in Section 4.2.4.1, “get_default_context” on page 4-9. The
send_multiple_requests_oneway andsend_multiple_requests_deferred

operations are described in Section 7.3.1, “send_multiple_requests” on page 7-11. The
poll_next_response andget_next_response operations are described in Section
7.3.2, “get_next_response and poll_next_response” on page 7-11.

Thelist_intial_services andresolve_initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References” on page 4-27.

The Type code creation operations with names of the fommate <type> tc are
described in Section 4.11.3, “Creating TypeCodes” on page 4-58.

Thework_pending , perform_work , shutdown , destroy andrun operations are
described in Section 4.2.5, “Thread-Related Operations” on page 4-9.

July 2002 CORBA, v3.0: The ORB Operations 4-7

The create_policy operations is described in Section 4.8.2.3, “Create_policy” on
page 4-39.

Theregister_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements” on page 5-9.

Theregister_initial_reference operation is described in Section 21.8.1,
“register_initial_reference” on page 21-57

4.2.1 ORB ldentity

42.1.1 id

ORBid id();

Theid operation returns the identity of the ORB. The retur@®Bid is the string

that was passed ©ORB _init (see Section 4.5.1, “ORB Initialization” on page 4-24) as
theorb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with-thBBid tag in thearg_list

parameter. Callingd on the default ORB returns the empty string.

4.2.2 Converting Object References to Strings

4.2.2.1 object_to_string

string object_to_string (
in Object obj
);

4.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently,dtiing_to_object operation will
accept a string produced lmpject_to_string and return the corresponding object
reference.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

July 2002

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBS, ifobj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed on
different ORBs.

4.2.3 Getting Service Information

4.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

);

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in pararseteice_type , the

values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parametervice_information , and the
operation returns the value TRUE. If no information for the requested services type is
available, the operation returns FALSE (i.e., the service is not supported by this ORB).

4.2.4 Creating a New Context

4.2.4.1 get_default_context

void get_default_context(/ PIDL
out Context ctx /I context object

);

This operation creates a new empty Context object every time it is called. The
operation is defined in th®RB interface.

4.2.5 Thread-Related Operations

To support single-threaded ORBSs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the
ORB::run andORB::shutdown are useful in fully multi-threaded programs.

CORBA, v3.0: The ORB Operations 4-9

These operations are defined on the ORB rather than on an object adapter to allow the
main thread to be used for all kinds of asynchronous processing by the ORB. Defining
these operations on the ORB also allows the ORB to support multiple object adapters,
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.

4.2.5.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

4.2.5.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

Thework_pending() andperform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

/I C++
for ;) {
if (orb->work_pending()) {
orb->perform_work();
h
/I do other things
Il sleep?

h

Once the ORB has shutdowwprk_pending andperform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.2.5.3 run

void run();

4-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

July 2002

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call eitmen or perform_work on

its main threadrun may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread calkhutdown .

4.25.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB.

In the case of th€OA, all POAManager s are deactivated prior to destruction of all
POAs. The deactivation that the ORB performs should be the equivalent of calling
deactivate with the valu€RUE for etherealize_objects and with the
wait_for_completion parameter same as whsgtiutdown was called with.

Shut down is complete when all ORB processing (including request processing and
object deactivation or other operations associated with object adapters) has completed
and the object adapters have been destroyed. In the case BOgethis means that

all object etherealizations have finished and rB@A has been destroyed (implying

that all descenderROAs have also been destroyed).

If the wait_for_completion parameter iSTRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing an
invocation, the ORB will not shutdown, and tBAD_INV_ORDER system

exception will be raised with the OMG minor code 3, and completion status
COMPLETED_NO, since blocking would result in a deadlock.

If the wait_for_completion parameter iSALSE, thenshutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call taun or perform_work after shutdown has been called with

its parameter set tBALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11)
shutdown behaves as IPOA::destroy is called on the RooPOA with its first
parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter thashutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete whikudown

is pending.

CORBA, v3.0: The ORB Operations 4-11

Once an ORB has shutdown, only object reference management opecuijaitste ,
release andis_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise tH2AD_INV_ORDER system exception
with the OMG minor code 4.

4.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call
to ORB_init with the sameORBId will return a reference to a newly constructed
ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. The
behavior is similar to that achieved by callisputdown with the

wait_for_completion parameter set tsRUE. If an application callglestroy in a
thread that is currently servicing an invocation, BAD_INV_ORDER system
exception will be raised with the OMG minor code 3, since blocking would result in a
deadlock.

For maximum portability and to avoid resource leaks, an application should always call
shutdown anddestroy on all ORB instances before exiting.

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interfad@bject to represent the object reference, we define an

interface forObject :

module CORBA {

interface DomainManager; / forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; // forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> PolicyTypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };
interface Context; // forward declaration

typedef string Identifier;

4-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

interface Request; /I forward declaration
interface NVList; /I forward declaration
struct NamedValue{}; /I an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface Object { / PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (

in Repositoryld logical_type_id
);
boolean non_existent();

boolean is_equivalent (

in Object other_object
);
unsigned long hash(
in unsigned long maximum
);
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type
);
DomainManagersList get_domain_managers ();
Object set_policy_overrides(
in PolicyList policies,

in SetOverrideType set_add
) raises (InvalidPolicies);

July 2002 CORBA, v3.0: Object Reference Operations 4-13

Policy get_client_policy(
in PolicyType type
);

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

boolean validate_connection(
out PolicyList inconsistent_policies

);
Object get_component ();

h

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require access to
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

get_interface , returns an object in the Interface Repository that describes the most
derived type of the object addressed by the reference. See the Interface Repository
chapter for a definition of operations on the Interface Repository. The implementation
of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not availablget_interface raisesINTF_REPOS with
standard minor code 1. If the interface repository does not contain an entry for the
object's (most derived) interfacget_interface raisesINTF_REPOS with standard
minor code 2.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

4-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

July 2002

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations defined
to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of theelease operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
therelease operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An obiject reference whose value@BJECT_NIL denotes no object. An object
reference can be tested for this value by idienil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

is_a

boolean is_a(
in Repositoryld logical_type_id
);

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

Thelogical_type_id is a string denoting a shared type identifiepositoryld).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible withldggcal_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote end.i¢f a cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enables the application to distinguish among TRUE, FALSE, and indeterminate
cases.

CORBA, v3.0: Object Reference Operations 4-15

4-16

This operation exposes to application programmers functionality that must already
exist in ORBs that support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

This operation always returifeRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively

that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

4.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be
accessed by applications using tmesh operation. The value of this identifier does

not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object referencesaidentical.

Themaximum parameter to thbash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object
);

Theis_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references that in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.
Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

July 2002 CORBA, v3.0: Object Reference Operations 4-17

4-18

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4.3.7 Type Coercion Considerations

Many programming languages m&bject to programming constructs that support
inheritance. Mappings to languages (such as C++ and Java) typically provide a
mechanism for narrowing (down-casting) an object reference from a base interface to a
more derived interface. To do such down-casting in a type safe way, knowledge of the
full inheritance hierarchy of the target interface may be required. The implementation
of down-cast must either contact an interface repository or the target itself, to
determine whether or not it is safe to down-cast the clientis object reference. This
requirement is not acceptable when a client is expecting only asynchronous
communication with the target. Therefore, for the appropriate languages an unchecked
down-cast operation (also referred to as unchecked narrow operation) shall be provided
in the mapping of Object. This unchecked narrow always returns a stub of the
requested type without checking that the target really implements that interface.

4.3.8 Getting Policy Associated with the Object

4.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Section
4.8, “Policy Object” on page 4-37), which applies to this object. It returnseffextive
Policy for the object reference. The effectilicy is the one that would be used if a
request were made.

This Policy is determined first by obtaining the effective override for BadicyType

as returned bget client_policy . The effective override is then compared with the
Policy as specified in théOR. The effectivePolicy is determined by reconciling the
effective override and thEDR-specifiedPolicy (see Section 4.9.2, “Server Side Policy
Management” on page 4-44). If the two policies cannot be reconciled, the standard
system exceptiolNV_POLICY is raised with standard minor code 1. The absence of
a Policy value in thelOR implies that any legal value may be used.

Invoking non_existent on an object reference prior tget_policy ensures the
accuracy of the returned effecti®olicy . If get_policy is invoked prior to the object
reference being bound, the returned effectadicy is implementation dependent. In
that situation, a compliant implementation may do any of the following: raise the
standard system excepti@@AD_INV_ORDER, return some value for that

PolicyType which may be subject to change once a binding is performed, or attempt
a binding and then return the effectifolicy . Note that if the effectivéd?olicy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

in PolicyType policy_type
);

Parameter(s)
policy type - The type of policy to be obtained.

Return Value
A Policy object of the type specified by theolicy _type parameter.

Exception(s)
CORBA::INV_POLICY - raised when the value of policy type is not valid either

because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(e.g.,DomainManager::get_domain_policy = for some security policies) for some

policy types.

4.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type
);

Returns theeffective overridingolicy for the object reference. The effective override

is obtained by first checking for an override of the giveolicyType at theObject

scope, then at th€urrent scope, and finally at the ORB scope. If no override is
present for the requestdtblicyType , the system-dependent default value for that
PolicyType is used. Portable applications are expected to set the desired “defaults” at
the ORB scope since defaltolicy values are not specified.

4.3.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types
)i
Returns the list oPolicy overrides (of the specified policy types) set at kject
scope. If the specified sequence is emptyPallicy overrides at this scope will be

returned. If none of the request@adlicyTypes are overridden at th®bject scope,
an empty sequence is returned.

July 2002 CORBA, v3.0: Object Reference Operations 4-19

4-20

4.3.9 Overriding Associated Policies on an Object Reference

4.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parapelieies

is a sequence of referencesRolicy objects. The second paramesat_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exisADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object refereis&l(OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of theORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter(s)

policies - a sequence dPolicy objects that are to be associated with the new copy of
the object reference returned by this operation. If the sequence contains two or more
Policy objects with the samPolicyType value, the operation raises the standard
system exceptioBAD _PARAM with minor code 30.

set_add - whether the association is in addition t8¥D_OVERRIDE) or as a
replacement of $ET_OVERRIDE) any existing overrides already associated with the
object reference. If the value of this parameteSIEET _OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object reference.
If the value of this parameter BDD_OVERRIDE, the suppliegolicies are added to

the existing overrides associated with the object reference, except that if a supplied
Policy object has the samRolicyType value as an existing override, the supplied
Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides frpolicies associated with it in
accordance with the value skt_add .

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cannot
be overridden.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.3.10 Validating Connection

4.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for @igect will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a rebind
will be attempted regardless of the setting of &wgbindPolicy override. The
validate_connection operation is the only way to force such a rebind when implicit
rebinds are disallowed by the current effectRebindPolicy . The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB.

Returns the value FALSE if the current effective policies would cause an invocation to
raise the standard system exceptidl/_POLICY. If the current effective policies are
incompatible, the out parametigrconsistent_policies contains those policies

causing the incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy overrides, the
appropriate standard system exception is raised.

4.3.11 Getting the Domain Managers Associated with the Object

4.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies” on page 4-43), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

CORBA, v3.0: Object Reference Operations 4-21

4.3.12 Getting Component Associated with the Object

4.3.12.1 get_component

Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the
component itself), thget_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided refeggtcepmponent
returns a nil reference.

4.3.13 LocalObject Operations

Local interfaces are implemented by usi@@RBA::LocalObject , which derives

from CORBA::Object and provides implementations of Object pseudo operations and
any other ORB specific support mechanisms that are appropriate for such objects.
Object implementation techniques are inherently language mapping specific.
Therefore, thd.ocalObject type is not defined in IDL, but is specified by each
language mapping.

e TheLlocalObject type provides implementations of the followit@pject pseudo-
operations that raise tiéO_IMPLEMENT system exception with standard minor
code 3:

» get_interface

» get_domain_managers
* get_policy

» get_client_policy

» set_policy_overrides

» get_policy_overrides

« validate_connection

» get_component

e TheLlocalObject type provides implementations of the following pseudo-
operations:

* non_existent - always returns false.

» hash - returns a hash value that is consistent for the lifetime of the object.

* is_equivalent - returns true if the references refer to the sdmealObject
implementation.

* is_a - returnsTRUE if the LocalObject derives from or is itself the type
specified by thdogical_type id argument.

» Attempting to use a LocalObject to create a DIl request shall result in a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify a LocalObject shall result ilVBARSHAL system exception
with standard minor code 4. Narrowing and widening of references to
LocalObject s must work as for regular object references.

4-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

* Local types cannot be marshaled and references to local objects cannot be converted
to strings. Any attempt to marshal a local object, such as via an unconstrained base
interface, as a®bject, or as the contents of amny, or to pass a local object to
ORB::object_to_string , shall result in dIJARSHAL system exception with
OMG minor code 4.

» The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

» Language mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

» The usage of client side language mappings for local types shall be identical to
those of equivalent unconstrained types.

» Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context
of a local object does not have ORB servicarrent object contexts that are
distinct from those of the caller. Implementations of local interfaces are responsible
for providing the parameter copy semantics expected by clients.

» Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

» Instances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained fromresolve_initial_references

4.4 ValueBase Operations

July 2002

ValueBase serves a similar role for value types tHabject serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined onValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of th®bject interface for implicit operations of object
references, the implicit operations dalueBase are defined on a pseud@luetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
¥
¥

The get_value_def() operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.31, “ValueDef” on page 10-44).

CORBA, v3.0: ValueBase Operations 4-23

4

4.5 ORB and OA Initialization and Initial References

4-24

Before an application can enter the CORBA environment, it must first:
» Be initialized into the ORB and possibly the object adapter (POA) environments.

» Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization” on page 4-24.

» Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in Section 4.5.2, “Obtaining Initial Object References” on page
4-27.

4.5.1 ORSB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operations. The
ORB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB_init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications calRi init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, ancaem list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB _init (inout arg_list argv, in ORBId orb_identifier);
2

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

The identifier for the ORB will be a name of tyf@ORBA::ORBid . All ORBId

strings other than the empty string are allocated by ORB administrators and are not
managed by the OMG. ORB administration is the responsibility of each ORB supplier.
ORB suppliers may optionally delegate this responsibil@iRBid strings other than

the empty string are intended to be used to uniquely identify each ORB used within the
same address space in a multi-ORB application. These spgeRiBId strings are

specific to each ORB implementation and the ORB administrator is responsible for
ensuring that the names are unambiguous.

If an emptyORBId string is passed tORB_init , then thearg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching tlaeg_list parameters for one preceded b¥ORBid” for
example, “ORBid example_orb ” (the white space after the-ORBIid"” tag is

ignored) or “ORBidMyFavoriteORB " (with no white space following the-ORBId "

tag). Alternatively, two sequential parameters with the first being the stri@&RBid”
indicates that the second is to be treated a®RBid parameter. If an empty string is
passed and narg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identifiagginlist , for

example, Hostname ,” “ SpawnedServer ,” and so forth. To allow for other

parameters to be specified without causing applications to be re-written, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one singlg_list parameter:

—ORB<suffix><optional white space> <value>

or as two sequentiarg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-emP®Bid string is passed tORB _init ,
thearg_list arguments are examined to determine if any ORB parameters are given. If
a non-emptyORBId string is passed tORB_init , all ORBid parameters in the

arg_list are ignored. All otherORB<suffix> parameters in tharg_list may be of
significance during the ORB initialization process.

Before ORB _init returns, it will remove from therg_list parameter all strings that
match the-ORB<suffix> pattern described above and that are recognized by that
ORB implementation, along with any associated sequential parameter strings. If any
strings inarg_list that match this pattern are not recognized by the ORB
implementationORB_init will raise theBAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the sar@RBid string is passed, either explicitly as an argument
to ORB_init or through thearg_list . All other -ORB<suffix> parameters in the

arg_list may be considered on subsequent call©R®B_init .

CORBA, v3.0: ORB and OA Initialization and Initial References 4-25

Note —Whenever arORB_init argument of the formORBxxx is specified, it is
understood that the argument may be represented in different ways in different
languages. For example, in Jad@RBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx .

45.1.1 ServerlD

A Server ID must uniquely identify a server to an IMR. This specification only
requires unique identification using a string of some kind. We do not intend to make
more specific requirements for the structure of a server ID.

The server ID may be specified by &@RB_init argument of the form
-ORBServerld

The value assigned to this property istang . All templates created in thi©RB will
return this server ID in theerver_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific
environments may choose to impleme@®RBServerld in ways that automatically
enforce this requirement.

For example, th@rg.omg.CORBA.Serverld system property may be set to the
server ID in Java when a Java server is activated. This system property is then picked
up as part of theORB_init call for everyORB created in the server.

4.5.1.2 Server Endpoint

The server endpoint information is passed i@®BB_init by an argument of the form
-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this

specification is that each tim@RB_init is called with the same value for this

argument, the resultin@RB will listen for requests on the same set of endpoints, so
that persistent object references for tBRB will continue to function correctly.

4.5.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:
-ORBNOoProprietaryActivation

shall avoid the use of any proprietary activation framework.

4-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of object
references that are essential to its operation. Because only a small well-defined set of
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references operation is an operation on the ORB rather than

the Naming Service'®NamingContext . The interface differs from the Naming

Service’s resolve in thaDbjectld (a string) replaces the more complex Naming

Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the nhame space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, theObjectld name space requires careful management. To achieve this, the
OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

resolve_initial_references never returns ail reference. Instead, the non-
availability of a particular reference is indicated by throwinglavalidName
exception (even if ail reference is explicitly configured for a@bjectld).

CORBA, v3.0: ORB and OA Initialization and Initial References 4-27

Currently, reserve®bjectlds are RootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent,

DynAnyFactory, ORBPolicyManager, PolicyCurrent

, NotificationService,

TypedNotificationService, CodecFactory, PICurrent,
ComponentHomeFinder andPSS.

Table 4-1 Obijectlds for resolve_initial_references

Objectld Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.9, “POA Interface” on
page 11-34

POACurrent PortableServer::Current Section 11.3.9, “POA Interface” on
page 11-34

InterfaceRepository CORBA::Repository Section 10.5.6, “Repository” on

CORBA::ComponentIR::Repository page 10-22

Section 10.6.2,
“ComponentIR::Repository” on
page 10-52

NameService CosNaming:: Naming Servicepecification

NamingContext

(formal/01-02-65), the CosNaming
Module section.

TradingService

CosTrading::Lookup

Trading Object Service
specification (formal/00-06-27), the
Functional Interfaces section.

D

SecurityCurrent

SecurityLevell::Current or
SecurityLevel2::Current

Security Servicapecification
(formal/02-03-11), the Security
Operations on Current section.

TransactionCurrent

CosTransaction::Current

Transaction Servicepecification
(formal/01-11-03), the Transaction
Service Interfaces section.

DynAnyFactory

DynamicAny::
DynAnyFactory

Section 9.2.1, “Creating a DynAny
Object” on page 9-9

ORBPolicyManager

CORBA::PolicyManager

Section 4.9.3, “Policy Management
Interfaces” on page 4-44

PolicyCurrent

ICORBA::PolicyCurrent

—

Section 4.9.3, “Policy Managemer
Interfaces” on page 4-44

NotificationService CosNotifyChannelAdmin:: Notification Servicespecification
EventChannelFactory (formal/00-06-20)
TypedNotificationService CosTypedNotifyChannelAdmin:: Typed Notification Servicespecification
EventChannelFactory (formal/00-06-20)
4-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Table 4-1 Obijectlds for resolve_initial_references

Objectld Type of Object Reference Reference

CodecFactory IOP::CodecFactory Section 13.8.2, “Codec Factory” on
page 13-34

PICurrent Portablelnterceptors::Current Section 21.4.3, “Portable
Interceptor Current Interface” on
page 21-34

ComponentHomeFinder Components::HomeFinder CORBA Componentspecification.

PSS CosPersistentState:: Persistent Statspecification

ConnectorRegistry (ptc/01-12-02).

To allow an application to determine which objects have references available via the
initial references mechanism, thist_initial_services operation (also a call on the
ORB) is provided. It returns a®bjectldList , which is a sequence @bjectlds .
Objectlds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined; thatlidetfaceRepository ”
returns an object of typRepository , or ComponentIR::Repository , which is

derived fromRepository , depending on whether the ORB supports components or
not, and NameService ” returns aCosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type that was requested in the Objectld. For
example, forinterfaceRepository the object returned would be narrowed to
Repository type orComponentlR::Repository type, depending on whether the
ORB supports components.

Specifications for Object Services (see individual service specifications) state whether
it is expected that a service’s initial reference be made available via the
resolve_initial_references operation or not; that is, whether the service is necessary
or desirable for bootstrap purposes.

4.5.3 Configuring Initial Service References

4.5.3.1 ORB-specific Configuration

July 2002

It is required that an ORB can be administratively configured to return an arbitrary
object reference frol€ORBA::ORB::resolve _initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB _init arguments are provided to override the ORB initial reference
configuration.

CORBA, v3.0: ORB and OA Initialization and Initial References 4-29

4-30

4.5.3.2 ORBInitRef

The ORB initial reference argumen©RBInitRef , allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB ...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trade r

<ObjectID> represents the well-know@bjectID for a service defined in the CORBA
specification, such aslameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Section 13.6.10, “Object URLS” on page 13-24),
with the exception of the corbaloc URL scheme with the rir protocol (i.e.,
corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid
in an implementation defined mann€@RB_init raises eBAD_PARAM exception.

4.5.3.3 ORBDefaultInitRef

The ORB default initial reference argumer@RBDefaultInitRef , assists in

resolution of initial references not explicitly specified wHORBInitRef
-ORBDefaultinitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NotificationService”) with this
argument results in a new URL:

corbaloc::5550bjs.com/NotificationService

That URL is passed t€ORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
corbaname URLs

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference fratring_to_object . (In this example,
Prod/Local/NameService represents a stringifie@osNaming::Name).

Section 13.6.7, “Profile and Component Composition in IORs” on page 13-22 provides
details of thecorbaloc andcorbaname URL schemes. TheORBDefaultinitRef
argument naturally extends to URL schemes that may be defined in the future,
provided the final part of the URL is an object key.

4.5.3.4 Configuration Effect olasolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given<ObjectID> is:

1. Resolve withregister_initial_reference entry if possible.
1. Resolve withrORBInitRef for this <ObjectID> if possible
2. Resolve with pre-configured ORB settings if possible.
3

. Resolve with anrORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use eORBDefaultinitRef may have unintended resolution side effects.
For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a client
from unknowingly diverting the ORB’s reference to an implementation repository from
another vendor. To prevent this, an ORB is allowed to ignore@®BDefaultinitRef
argument for any or akObjectID> s for those services that are not OMG-specified
services with a well-known service name as acceptekbglve _initial_references

An ORB can only ignore theORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

4.5.3.5 Configuration Effect on list_initial_services

The <ObjectID> s of all -ORBInitRef argument s to ORB_init appear in the list of
tokens returned biyst_initial_services as well as all ORB-configuredObjectID> s.
Any other tokens that may appear are implementation-dependent.

The list of <ObjectID> s returned hylist_initial_services can be a subset of the
<ObjectID> s recognized as valid byesolve_initial_references

CORBA, v3.0: ORB and OA Initialization and Initial References 4-31

4

4.6 Context Object

4.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are passed
as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application's environment that is
meant to be propagated to (and made available to) a server's environment (for example,
a window identifier, or user preference information). Once an operation has been
invoked in the server, the operation implementation may query its context object for
these properties.

An operation definition may contain a context clause that specifies the context
properties that may be of interest to a particular operation. These context properties (if
present for the actual call) are propagated to the server. A client-side ORB may choose
to pass more properties than are specified by an operation's context clause. An example
of an operation with a context clause is

interface Example {
void op() context("USER", "X*");

h

This context clause specifies that the "USER" property is to be made available to the
server, as well as all properties with names beginning with "X". Note that there is no
obligation on the client to actually pass values for these properties at run time; if the
client omits one or more properties, the call proceeds normally and the operation

implementation simply will not be able to retrieve the corresponding property values.

Property names are non-empty strings that cannot contain the character '*'; there are no
other syntactic restrictions on property names. Property names that differ only in case
are distinct names, so the following is a legal context clause that transmits two distinct
properties:

interface Example2 {
void op() context("FOO", "foo");

h
Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed viaQbetext interface. AContext
object represents a collection of property valuésntext objects may be connected
into hierarchies; properties defined in chitbntext objects lower in the hierarchy
override properties in pare@ontext objects higher in the hierarchy.

4.6.2 Context Object Operations

Properties are represented as named value lists.

4-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

module CORBA {
interface Context { / PIDL
void set_one_value(
in Identifier ~ prop_name, // property name to set

in string value Il property value to set
);
void set_values(

in NVList values /I property values to set
).

void get_values(
in Identifier ~ start_scope, // search scope

in Flags op_flags, Il operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values Il requested property(s)

);
void delete_values(
in Identifie prop_name // name of property(s) to delete

);
void create_child(
in Identifier ~ ctx_name, /I name of context object
out Context child_ctx /I newly created context object
);
void delete(
in Flags del_flags /I flags controlling deletion
);

4.6.2.1 set_one_value

void set_one_value(
in Identifier prop_name, // property name to set
in string value Il property value to set

);

This operation sets a single context object propertgrdipp_name is the empty string
or contains the character ', the operation raiB&®_ PARAM with minor code 35.

4.6.2.2 set values

void set_values(
in NVLis values /I property values to set

);

This operation sets one or more property values in its context object. If a property
name appears more than once in Ni¢List, the value with higher index (later in the
list) overwrites the value with lower index.

Theflags field of each passeNVList element must be zero. A non-zero flag in any of
the NVList elements raiseBN\V_FLAGS.

July 2002 CORBA, v3.0: Context Object 4-33

The property name of eadiiVList element must be a non-empty string not containing
the character *'; otherwise, the operation raiBé®d PARAM with minor code 35.

The value of each property of the pass$édList must be a (possibly empty)
unbounded string. Property values other than unbounded strings raise
BAD_TYPECODE with minor code 3.

4.6.2.3 get_values

void get_values(
in Identifie start_scope, // search scope

in Flags op_flags, Il operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values Il requested property(s)

);

This operation returns aNVList with those properties that match theop_name
parameter. Legal values f@prop_name are:

* a non-empty string that does not contain the character "*'

In this case, th@alues parameter returns the property with the name specified by
prop_name .

» a string beginning with one or more characters other than *', followed by a single
' at the end, such as "XYZ"

In this case, th@alues parameter contains the properties that have names beginning
with "XYZ" (such as "XYZABC" or "XYZ").

If prop_name is the empty string, the string "*", contains more than one "*' character,
or contains a "*" anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36.

The start_scope parameter controls theontext object level at which to initiate the
search for the specified properties as follows:

* Thestart_scope parameter specifies the name of dentext object in which the
search for properties is to start.

 If the context object on whiclyet values is invoked has a hame equal to
start_scope , that context object becomes the startountext object for the
search.

» |If start_scope is"", the context object on whicbet_values is invoked becomes
the startingcontext object for the search.

« If the context object on whichget values is invoked does not have a name
equal tostart_scope (andstart_scope is not "), the parent context object is
retrieved and its name comparedstart_scope ; this process repeats until
either a startingontext object whose name equadtart_scope is found, or
the search terminates because it runs out of parent objects.

4-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

The name of the roatontext object created bget default_context is
"RootContext".

If no startingcontext object can be found, the operation raises
BAD_CONTEXT with minor code 1.

» Once a startingontext object is foundget values searches for properties in
the matchingcontext object.

* If op_flags isSCORBA::CTX_RESTRICT_SCOPE, get_values searches only
the startingcontext object for properties that matgirop_name . (The value
of CTX_RESTRICT_SCOPE is 15.)

» If op_flags is zero,get_values searches the startingpntext and its parent
contexts for properties that matcprop_name . The property values that are
returned are taken from the firsbntext object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matchpop_name , the operation raises
BAD_CONTEXT with minor code 2.

4.6.2.4 delete_values

void delete_values(
in ldentifie prop_name // name of property(s) to delete

);

This operation deletes the properties that madp_name . prop_name may have
a trailing ™' character, in which case all properties whose name matches the specified
prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one "*' character,
or contains a "*' anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36. The operation only affects the context object on
which it is invoked (that is, parent contexts are never affecteddigte_values).

If no property name matchgsop_name , the operation raiseBAD_CONTEXT with
minor code 2.

4.6.2.5 create_child

void create_child(
in ldentifier ctx_name, /l name of context object
out Context child_ctx /I newly created context object

);

This operation creates an empty child context object. The child context has the name
ctx_name . ctx_name may hot be the empty string or "RootContext"; otherwise, the
operation raiseBAD_PARAM with minor code 37. Callingreate_child more than

once with the same name on the same parent context is legal and results in the creation
of a new, empty child context for each call.

July 2002 CORBA, v3.0: Context Object 4-35

4.7 Current Object

4-36

4.6.2.6 delete

void delete(
in Flags del_flags /I flags controlling deletion

);
This operation deletes the context object on which it is invoked:

« If del_flags is zero, the context object is deleted only if it has no child contexts;
otherwise, ifdel_flags is zero and the context object has child contexts, the
operation raiseBAD_PARAM with minor code 38.

» If del_flags is CORBA::.CTX_DELETE_DESCENDANTS , the context object on
which delete is invoked is destroyed, together with (recursively) its child contexts.
The value ofCTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero 67 X_DELETE_DESCENDANTS, the
operation raisetNV_FLAGS.

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived fro@utient interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module'sCurrent . Users of the service can obtain an instance of the
appropriateCurrent interface by invokingORB::resolve _initial_references . For
example the Security service obtains errent relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {

/I interface for the Current object
local interface Current {
3
3

Operations on interfaces derived frdDurrent access state associated with the thread

in which they are invoked, not state associated with the thread from whidbuhrent

was obtained. This prevents one thread from manipulating another thread's state, and
avoids the need to obtain and narrow a néwrrent in each method's thread context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exceptiorCurrent s are per-process singleton objects, so
no destroy operation is needed.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.8 Policy Object

4.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from thePolicy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to do
so. TheSecurity Servicin particular uses this technique for associat8egurity Policy

with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

h

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
¥

PolicyType defines the type oPolicy object. In general the constant values that are
allocated are defined in conjunction with the definition of the corresponBuoigy
object. The values dPolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bitendor PolicyType Valueset I(WPVID) for their own use.

PolicyType which is an unsigned long consists of the 20MRVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bitsVA\EDs 0
through \xfare reserved for OMG. All values for the stand&alicyTypes are
allocated within this range by OMG. Additionally, th&PVIDs \xfffff is reserved for
experimental use an@MGVMCID (Section 4.12.3, “Standard System Exception
Definitions” on page 4-65) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocationv#fVID by sending mail to tag-
request@omg.org

When aVMCID (Section 4.12, “Exceptions” on page 4-62) is allocated to a vendor
automatically the same value ¥PVID is reserved for the vendor and vice versa. So
once a vendor gets eithendICID or a VPVID registered they can use that value for
both their minor codes and their policy types.

4.8.1.1 Copy

Policy copy();

July 2002 CORBA, v3.0: Policy Object 4-37

Return Value

This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

4.8.1.2 Destroy

void destroy();
This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it
cannot be destroyed.

4.8.1.3 Policy_type

readonly attribute policy type

Return Value

This readonly attribute returns the constant value of typkcyType that corresponds
to the type of thePolicy obiject.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as
described in this section.

module CORBA {

typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY = 0;

const PolicyErrorCode UNSUPPORTED_POLICY =1;

const PolicyErrorCode BAD_POLICY_TYPE = 2;

const PolicyErrorCode BAD_POLICY_VALUE = 3;

const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};
interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

4-38 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.8.2.1 PolicyErrorCode

A request to create BRolicy may be invalid for the following reasons:
BAD_POLICY - the requestefPolicy is not understood by the ORB.

UNSUPPORTED_POLICY - the requeste@olicy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for tRelicy is not valid
for that PolicyType .

BAD_POLICY_VALUE - The value requested for tiolicy is of a valid type but
is not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for ttplicy is of a
valid type and within the valid range for that type, but this valid value is not currently
supported.

4.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to
the ORB::create_policy operation. Possible reasons are described above.

4.8.2.3 Create_policy

The ORB operatiorcreate_policy can be invoked to create new instances of policy
objects of a specific type with specified initial statecteate policy fails to
instantiate a newPolicy object due to its inability to interpret the requested type and
content of the policy, it raises tHeolicyError exception with the appropriate reason
as described in Section 4.8.2.1, “PolicyErrorCode” on page 4-39.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - thePolicyType of the policy object to be created.

val - the value that will be used to set the initial state oPtilcy object that is created.
ReturnValue

Reference to a newly creat@&wlicy object of type specified by thgype parameter
and initialized to a state specified by thal parameter.

CORBA, v3.0: Policy Object 4-39

4-40

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passaddte_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

Objects with which policy objects are typically associated are Domain Managers,

POA, the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in fPartable Object Adaptechapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in the
Security Servicepecification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies” on page 4-43 the
use of Policy objects in association with Domain Managers is discussed.

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism,
invocation credentials, etc.) are associated by default with the process/capsule(RM-
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the said
capsule. The Security service provides operations for modulating these policies on a
per-execution thread basis using operations inGheaent interface. Certain of these
policies (e.g., invocation credentials, qop, mechanism, etc.) which pertain to the
invocation of an operation through a specific object reference can be further modulated
at the client end, using theet_policy_overrides operation of theDbject reference.

For a description of this operation see Section 4.3.9, “Overriding Associated Policies
on an Object Reference” on page 4-20. It associates a specified set of policies with a
newly created object reference that it returns.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

July 2002

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security specification. Attempts to override any other policy

will result in the raising of theCORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so then
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsule is
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Specification of New Policy Objects

When newPolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not:

» Specify the assigne@ORBA::PolicyType and the policy's interface definition.

» If the Policy can be created througpORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the initial
state/behavior of tha®olicy (such as initial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy will
receive some complex data for the implementation to initialize the state of the
specific policy:

/DL
struct MyPolicyRange {
long low;
long high;
¥
const CORBA::PolicyType MY_POLICY_TYPE = 666;

interface MyPolicy : Policy {
readonly attribute long low;

CORBA, v3.0: Policy Object 4-41

readonly attribute long high;
h

If this sampleMyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instanceBlgPolicy are created,

a value of typeMyPolicyRang e is passed t€ORBA::ORB::create_policy and
the resulting MyPolicy’s attribute ‘low’ has the same value asMy®olicyRange
member ‘low’ and attribute ‘high’ has the same value ashh#olicyRange
member ‘high.

» If the Policy can be passed as an argumenPf{A:.create_ POA , specify the
effects of the new policy on th&®OA. Specifically define incompatibilities (or
inter-dependencies) with othBOA policies, effects on the behavior of invocations
on objects activated with thROA, and whether or not presence of the POA policy
implies somdOR profile/component contents for object references created with
that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

« If the component that is used to carry this information can be set within a client to
tune the client’s behavior, specify the policy’s effects on the client specifically with
respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

» If the Policy can be used witl?OA creation to tundOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy’s presence
from both the client and server. It is strongly recommended to avoid this case! As
an exercise in completeness, mB€A policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

» Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

» For certain policy types, override operations may be disallowed. If this is the case,
the policy specification must clearly state what happens if such overrides are
attempted.

4-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.8.6 Standard Policies

Note —See Appendix A for a list of the standard policy types that are defined by
various parts of CORBA and CORBAservices in this version of CORBA.

4.9 Management of Policies

4.9.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the
following contexts:

» ORB-level Policies - A locality-constraine@olicyManager is accessible through
the ORB interface. Thi®olicyManager has operations through which a set of
Policies can be applied and the current overriding Policy settings can be obtained.
Policies applied at the ORB level override any system defaults. The ORB'’s
PolicyManager is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of
“ORBPolicyManager.”

» Thread-level Policie - A standardPolicyCurrent is defined with operations for
the querying and applying of quality of service values specific to a thread. Policies
applied at the thread level override any system defaults or values set at the ORB
level. The locality-constraineHolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of “PolicyCurrent.”
When accessed from a newly spawned thread PaiecyCurrent initially has no
overridden policies. Th€olicyCurrent also has no overridden values when a
POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation
to a servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to have no
overridden values.

» Object-level Policies - Operations are defined on the base Object interface through
which a set of Policies can be applied. Policies applied at the Object level override
any system defaults or values set at the ORB or Thread levels. In addition, accessors
are defined for querying the curreaterriding Policies set at the Object level, and
for obtaining the currengffective client-sid®olicy of a givenPolicyType . The
effective client-sidéPolicy is the value of &olicyType that would be in effect if
a request were made. This is determined by checking for overrides at the Object
level, then at the Thread level, and finally at the ORB level. If no overriding policies
are set at any level, the system-dependent default value is returned. Portable
applications are expected to override the ORB-level policies since default values are
not specified in most cases.

July 2002 CORBA, v3.0: Management of Policies 4-43

4-44

4.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a POA.
Since all policy objects are derived from interfaelicy , those that are applicable to
server-side behavior can be passed as argumem®#a:create_ POA . Any such

Policies that affect the behavior of requests (and therefore must be accessible to the
ORB at the client side) are exported within the Object references that the POA creates.
It is clearly noted in a POAPolicy definition when thatolicy is of interest to the

Client. For those policies that can be exported within an Object reference, the absence
of a value for that policy type implies that the target supports any legal value of that
PolicyType .

Most Policies are appropriate only for management at either the Server or Client, but
not both. For those Policies that can be established at the time of Object reference
creation (through POA Policies) and overridden by the client (through overrides set at
the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy
basis. Such Policies are clearly noted in their definitions and describe the mechanism
of reconciliation between the Policies that are set by the POA and overridden in the
client. Furthermore, obtaining the effectiBolicy of some PolicyTypes requires
evaluating the effectiv®olicy of other types of Policies. Such hierarchi¢adlicy
definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of
policies and for overriding these settings are encapsulated iRdheyManager
interface.

4.9.3 Policy Management Interfaces

module CORBA {
local interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set _add
) raises (InvalidPolicies);

2
local interface PolicyCurrent : PolicyManager, Current {

3
3

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.9.3.1 interface PolicyManager

ThePolicyManager operations are used for setting and accesBiolicy overrides at

a particular scope. For example, an instance ofRbkcyCurrent is used for
specifyingPolicy overrides that apply to invocations from that thread (unless they are
overridden at the Object scope as described in Section 4.9.1, “Client Side Policy
Management” on page 4-43).

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter

ts a sequence of overridden policy types identifying the policies that
are to be retrieved.

Return Value
policy list the list of overridden policies of the types specified by ts.

Exceptions
none

Returns &olicyList containing the overridden Polices for the requested PolicyTypes.
If the specified sequence is empty, Bibdlicy overrides at this scope will be returned.

If none of the requested PolicyTypes are overridden at the t®gjetyManager , an
empty sequence is returned. This accessor returns only Balgyy overrides that

have been set at the specific scope corresponding to the RotieyManager (no
evaluation is done with respect to overrides at other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter

policies a sequence Bblicy objects that are to be associated with the
PolicyManager object. If the sequence contains two or more
Policy objects with the sanfeolicyType value, the operation
raises the standard system excepB#kD_PARAM with standard
minor code 30.

set_add whether the association is in additiordD OVERRIDE) or as
a replacement oSET_OVERRIDE) any existing overrides
already associated with tiRolicyManager object. If the value of
this parameter iISET_OVERRIDE, the suppliegolicies
completely replace all existing overrides associated with the

CORBA, v3.0: Management of Policies 4-45

PolicyManager object. If the value of this parameter is
ADD_OVERRIDE, the suppliegolicies are added to the
existing overrides associated with thalicyManager object,
except that if a supplielolicy object has the sanfolicyType
value as an existing override, the suppkedicy object replaces
the existing override.

Return Value
none.

Exceptions

InvalidPolicies a list of indices identifying the position in the input policies list that
are occupied by invalid policies.

Modifies the current set of overrides with the requested lisPalicy overrides. The

first parameter policies is a sequence of referencd?oticy objects. The second
parameteset_add of type SetOverrideType indicates whether these policies should
be added onto any other overrides that already eABiJ_ OVERRIDE) in the
PolicyManager , or they should be added to a cleBalicyManager free of any

other overridesRET_OVERRIDE). Invokingset_policy_overrides with an empty
sequence of policies and a modeSET OVERRIDE removes all overrides from a
PolicyManager . Only certain policies that pertain to the invocation of an operation at
the client end can be overridden using this operation. Attempts to override any other
policy will result in the raising of th€€ ORBA::NO_PERMISSION exception. If

the request would put the set of overriding policies for the taRgpdicyManager in

an inconsistent state, no policies are changed or added, and the exception
InvalidPolicies is raised. There is no evaluation of compatibility with policies set
within otherPolicyManagers .

4.9.3.2 interface PolicyCurrent

This specificPolicyManager provides access to policies overridden at the Thread
scope. A reference to a threadPslicyCurrent is obtained through an invocation of
CORBA::ORB::resolve_initial_references

4.10 Management of Policy Domains

4-46

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section describing
Policy objects.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain
apply. These objects are the domain members. The policies represent the rules and
criteria that constrain activities of the objects which belong to the domain. On object
reference creation, the ORB implicitly associates the object reference with one or more
policy domains. Policy domains provide leverage for dealing with the problem of scale
in policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual policy,
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the application
that is creating object references using POA operations to ensure that object references
to the same object are not created by the server of that object with different domain
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to
be resolved. The specification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

CORBA, v3.0: Management of Policy Domains 4-47

4-48

Policy domain managers and policy objects have two types of interfaces:

« The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a policy
and then enforcing it does not see the domain manager objects and the domain
structure.

e The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the scope of
what he is administering.

Note —This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing, and removing policies applied to
the domains.

4.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

* One or morePolicy Domains defining all the policies to which the object
associated with the object reference is subject.

» TheTechnology Domainssharacterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creation
operations of the POA is called. Some or all of these associations may subsequently be
explicitly referenced and modified by administrative or application activity, which

might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain; that is, a domain manager object to be
created whenever an object reference of that type is created and the newly created
object reference associated with the new domain manager. This construction policy is
enforced at the same time as the domain membership; that is, by the POA when it
creates an object reference.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) calls one
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating object,
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the domain to
which the parent belongs. Non-object applications on the client side are associated
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with theonstr_policy parameter

set to TRUE to indicate to the ORB that new object references of the specified type are
to be associated their own separate domains. Once such a construction policy is set, it
can be reversed by invokingake _domain_manager again with the

constr_policy parameter set to FALSE.

When creating an object reference of the type specified in the

make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object. A
reference to this domain manager can be found by cafjetgdomain_managers

on the newly created object reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the

enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

Since the ORB has control only over domain associations with object references, it is
the responsibility of the creator of new object to ensure that the object references that
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies are
associated with domains.

CORBA, v3.0: Management of Policy Domains 4-49

4-50

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
)
3

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy
)
3

typedef sequence <DomainManager> DomainManagersList;

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:
» Establishing and navigating relationships to superior and subordinate domains.

» Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a pre-existing
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces
for adding new policies to domains or for changing domain memberships have not
currently been standardized.

All domain managers provide thget_domain_policy operation. By virtue of being
an object, the Domain Managers also havedkée policy and

get_domain_managers operations, which is available on all objects (see Section
4.3.8, “Getting Policy Associated with the Object” on page 4-18 and Section 4.3.11,
“Getting the Domain Managers Associated with the Object” on page 4-21).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

);

Parameter(s)

policy type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described Setheity
Servicespecification, Security Policies Introduction section.

Return Value
A reference to the policy object for the specified type of policy in this domain.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which thi€onstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by the
input parameter is created, a new domain manager will be created and the newly
created object reference will respondget_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate the
newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);
Parameter(s)

object_type - The type of the object references for which Domain Managers will be
created. If this is nil, the policy applies to all object references in the domain.

CORBA, v3.0: Management of Policy Domains 4-51

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this domain.
If FALSE construction policy is set to associate the newly created object references
with the domain of the creator or a default domain as described above.

4.11 TypeCodes

TypeCode s are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCode s have a number of uses. They are used in the dynamic invocation interface
to indicate the types of the actual arguments. They are used by an Interface Repository
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of gy type.

Abstractly, TypeCode s consist of a “kind” field, and a set of parameters appropriate
for that kind. For example, th€&ypeCode describing OMG IDL typdong has kind
tk_long and no parameters. ThigspeCode describing OMG IDL type
sequence<boolean,10> has kindtk_sequence and two parameters:0 and

boolean .

4.11.1 The TypeCode Interface

The PIDL interface fofTypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wechar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

3

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {

4-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

exception Bounds {};
exception BadKind {};

/I for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface, tk_except

/I tk_component, tk_home and tk_event

Repositoryld id () raises (BadKind);

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface, tk_except

/[tk_component, tk_home and tk_event

Identifier name () raises (BadKind);

/I for tk_struct, tk_union, tk_enum, tk_value,

/I tk_except and tk_event

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises(BadKind, Bounds);

/I for tk_struct, tk_union, tk_value,

Il tk_except and tk_event

TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

/I for tk_union

any member_label (in unsigned long index)
raises(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

/I for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

/I for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

/I for tk_value and tk_event

CORBA, v3.0: TypeCodes

4-53

4-54

Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);
¥
¥

With the above operations, affiypeCode can be decomposed into its constituent
parts. TheBadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on aiypeCode . Theequal operation returns
TRUE if and only if for the targefTfypeCode and theTypeCode passed through the
parametetc, the set of legal operations is the same and invoking any operation from
that set on the tw@ypeCode s return identical results.

The equivalent operation is used by the ORB when determining type equivalence for
values stored in an IDlany. TypeCodes are considered equivalent based on the
following semantics:

 If the result of thekind operation on eithefypeCode is tk_alias , recursively
replace thélypeCode with the result of callingcontent_type , until the kind is no
longertk_alias .

 |If results of thekind operation on each typecode diffequivalent returns false.

» If the id operation is valid for th&ypeCode kind , equivalent returnsTRUE if
the results ofd for both TypeCodes are non-empty strings and both strings are
equal. If both ids are non-empty but are not equal, thgmvalent returnsFALSE.
If either or both id is an empty string, or tAgpeCode kind does not support the
id operation,equivalent will perform a structural comparison of thig/peCodes
by comparing the results of the othBypeCode operations in the following bullet
items (ignoring aliases as described in the first bullet.). The structural comparison
only calls operations that are valid for the givEéyppeCode kind . If any of these
operations do not return equal results, tlegivalent returnsFALSE. If all
comparisons are equagquivalent returns true.

» The results of themame andmember_name operations are ignored and not
compared.

» The results of thenember_count , default_index , length , digits , scale, and
type_modifier operations are compared.

« The results of thenember_label operation for each member index ofiaion
TypeCode are compared for equality. Note that this means thmabns whose
members are not defined in the same order are not considered structurally
equivalent.

» The results of thaliscriminator_type, member_type , and
concrete_base type operation and for each member index, and the result of the
content_type operation are compared by recursively calleguivalent .

» The results of thenember_visibility operation are compared for each member
index.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

Applications that need to distinguish between a type and different aliases of that type
can supplemengquivalent by directly invoking theid operation and comparing the
results.

The get_compact_typecode operation strips out all optionalame andmember
name fields, but it leaves all alias typecodes intact.

Thekind operation can be invoked on aiypeCode . Its result determines what
other operations can be invoked on thgeCode .

Theid operation can be invoked on object reference, valuetype, boxed valuetype,
abstract interface, local interface, native, structure, union, enumeration, alias,
exception, component, home, and evéppeCode s. It returns theRepositoryld
globally identifying the type. Object reference, valuetype, boxed valuetype, native,
exception, component, home, and evéppeCode s always have &epositoryld .
Structure, union, enumeration, and alBgeCode s obtained from the Interface
Repository or theéDRB::create_operation_list operation also always have a
Repositoryld . Otherwise, thed operation can return an empty string.

When theid operation is invoked on an object refereriggeCode that contains a
baseObject, the returned value iEDL:omg.org/CORBA/Object:1.0

When it is invoked on a valuetypg/peCode that contains &alueBase , the returned
value isIDL:omg.org/CORBA/ValueBase:1.0

When it is invoked on a componeiiypeCode that contains a
Components::CCMObject , the returned value is
IDL:omg.org/Components/CCMObiject:1.0

When it is invoked on a hom&ypeCode that contains &omponents::CCMHome,
the returned value ifDL:omg.org/Components/CCMHome:1.0

When it is invoked on an eventtypg/peCode that contains a
Components::EventBase |, the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, abstract interface, local interface, value type, boxed valuetype,
native, and exceptioflypeCode s. It returns the simple name identifying the type
within its enclosing scope. Since names are local Repository , the name returned
from aTypeCode may not match the name of the type in any particiapository ,
and may even be an empty string.

The order in which members are presented in the interface repository is the same as the
order in which they appeared in the IDL specification, and this ordering determines the
index value for each member. The first member has index value 0. For example for a
structure definition:

struct example {
short memberl;
short memberz;
long member3;

3

July 2002 CORBA, v3.0: TypeCodes 4-55

4-56

In this examplememberl hasindex = 0, member2 hasindex = 1, andmember3
hasindex = 2. The value oimember_count in this case is 3.

The member_count andmember_name operations can be invoked on structure,
union, non-boxed valuetype, non-boxed eventtype, exception, and enumeration
TypeCode s. Member_count returns the number of members constituting the type.
Member_name returns the simple name of the member identifiedrmex . Since
names are local to Bepository , the name returned fromB/peCode may not match
the name of the member in any particuRepository , and may even be an empty
string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-
boxed eventtype, exception and unidypeCode s. It returns theTypeCode
describing the type of the member identified ingex .

The member_label , discriminator_type , anddefault_index operations can only

be invoked on uniomypeCode s. Member_label returns the label of the union
member identified byndex . For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_visibility operation can only be invoked on non-boxed valuetype and
non-boxed eventtypdypeCodes . It returns theVisibility of the valuetype/eventtype
member identified by index.

The member_name , member_type , member_label andmember_visibility
operations rais8ounds if the index parameter is greater than or equal to the number
of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and
aliasTypeCode s. For sequences and arrays, it returns the element type. For aliases, it
returns the original type. For boxed valuetype, it returns the boxed type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nestiygeCode s, one per dimension. The
outermosttk_array Typecode describes the leftmost array index of the array as
defined in IDL. Itscontent_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

Thetype_modifier andconcrete_base_type operations can be invoked on non-
boxed valuetype and non-boxed eventfijggeCode s. Thetype _modifier operation
returns thevValueModifier that applies to the valuetype/eventtype represented by the
targetTypeCode . If the valuetype/eventtype represented by the tafgpeCode has

a concrete base valuetype/eventtype,dbecrete_base_type operation returns a
TypeCode for the concrete base, otherwise it returns aTgipeCode reference.

Thelength operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bound, with zero indicating an
unbounded string or sequence. For arrays, it returns the number of elements in the
array. For wide strings, it returns the bound, or zero for unbounded wide strings.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

4.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a
TypeCode constant. See the language mapping rules for more information about the
names of the generatdypeCode constantsTypeCode constants include tk_alias
definitions wherever an IDL typedef is referenced. These constants can be used with
the dynamic invocation interface and other routines that requipeCode s.

The predefinediypeCode constants, named according to the C language mapping,
are:

TC_null

TC_void

TC_short

TC_long

TC_longlong

TC_ushort

TC_ulong

TC_ulonglong

TC float

TC_double

TC_longdouble

TC_boolean

TC_char

TC_wchar

TC_octet

TC_any

TC_TypeCode

TC_Obiject = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{0}/// unbounded
TC_ValueBase = tk_value {ValueBase}
TC_Component = tk_component {CCMObject}
TC_Home = tk_home {CCMHome}
TC_EventBase = tk_event {EventBase}

For theTC_Object TypeCode constant, callingd returns
"IDL:omg.org/CORBA/Object:1.0 " and callingname returns ‘Object ."

For theTC_ValueBase TypeCode constant, callingd returns
"IDL:omg.org/CORBA/ValueBase:1.0 ," calling name returns ValueBase ,"
calling member_count returnsO, callingtype_modifier returns
CORBA::VM_NONE, and callingconcrete_base_type returns anil TypeCode .

For theTC_Component TypeCode constant, callingd returns
"IDL:omg.org/Components/CCMObject:1.0 " and callingname returns
"CCMObject ."

For theTC_Home TypeCode constant, callingd returns
"IDL:omg.org/Components/CCMHome:1.0 " and callingname returns
"CCMHome."

CORBA, v3.0: TypeCodes 4-57

For theTC_EventBase TypeCode constant, callingd returns
"IDL:omg.org/Components/EventBase:1.0 ," calling name returns
"EventBase ," calling member_count returns0, calling type_modifier returns
CORBA::'VM_NONE, and callingconcrete_base_type returns anil TypeCode .

4.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in
terms of object references, and thgpeCode s describing them are generated
automatically.

In some situations, such as bridges between ORBseCode s need to be constructed
outside of any Interface Repository. This can be done using operations @RBe
pseudo-object.

module CORBA {
interface ORB {
/I other operations ...

TypeCode create_struct_tc (
in Repositoryld id;
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (

in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,

in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

4-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_maodifier,
in TypeCode concrete_base,

in ValueMemberSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);
TypeCode create_native_tc (

in Repositoryld id,
in Identifier name

July 2002 CORBA, v3.0: TypeCodes 4-59

4-60

TypeCode create_recursive_tc(
in Repositoryld id
);

TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_component_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_home_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_event_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_maodifier,
in TypeCode concrete_base,

in ValueMemberSeq members

h
h

Most of these operations are similar to corresponding IR operations for creating type
definitions.TypeCode s are used here insteadl8fLType object references to refer to
other types. In thé&tructMember , UnionMember andValueMember structures,

only thetype is used, and thégype_def should be set to nil.

Typecode creation operations that tal@me as an argument shall check that the name
is a valid IDL name or is a null string. If not, they shall raise BAD_PARAM
exception with standard minor code 15. Operations that taRepositoryld

argument shall check that the argument passed in is a string of the form
<format>:<string> and if not, then raise BAD_PARAM exception with standard
minor code 16. Operations that takentent or member types as arguments shall
check that they are legitimate (i.e., that they don't have kitkdsull , tk_void or
tk_exception). If not, they shall raise th8 AD_TYPECODE exception with
standard minor code 2. Operations that take members shall check that the member
names are valid IDL names and that they are unique within the member list, and if the
name is found to be incorrect, they shall raisBAD PARAM with standard minor
code 17.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

July 2002

Thecreate_union_tc operation shall check that there are no duplicate label values. It
shall also check that each labBlpeCode compares equivalent to the discriminator
TypeCode . If a duplicate label is found, raidBAD_PARAM with standard minor
code 18. If incompatibl@ypeCode of label and discriminator is found, raise
BAD_PARAM with standard minor code 19. Theeate_union_tc operation shall
also check that the supplied discriminator type is legitimate, and if the check fails,
raiseBAD_PARAM with standard minor code 20.

Note —Thecreate_recursive_sequence_tc operation is deprecated. No new code
should make use of this operation. Its functionality is subsumed by the new operation
create_recursive_tc . Thecreate_recursive_sequence_tc operation will be

removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to crealgpeCodes

describing recursive sequences that are members of structs or unions. The result of this
operation should be used as the typecode inSttectMemberSeq or

UnionMemberSeq arguments of thereate_struct_tc or create_union_tc

operations. Theffset parameter specifies which enclosing struct or union is the target
of the recursion, with the valug indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions. For example,
the offset would bel for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

h

Once the recursive sequentgpeCode has been properly embedded in its enclosing
TypeCodes , it will function as a normal sequendg/peCode . Invoking operations

on the recursive sequendgpeCode before it has been embedded in the required
number of enclosingypeCodes will result in undefined behavior. Attempt to
marshal incomplete typecodes shall raise %D TYPECODE exception with
standard minor code 1. Attempt to use an incomplgtgeCode as a parameter of any
operation when detected shall cause B&D PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, theeoncrete_base parameter is 8ypeCode for
the immediate concrete valuetype base of the valuetype for whichygpeCode is
being created. If the valuetype does not have a concrete bassprnbeete _base
parameter is a niTypeCode reference.

The create_recursive_tc operation is used to create a recursiygeCode , which
serves as a place holder for a concrégpeCode during the process of creating
TypeCode s that contain recursion. The parameter specifies the repository id of the
type for which the recursiv@ypeCode is serving as a place holder. Once the
recursiveTypeCode has been properly embedded in the encloSimgeCode , which
corresponds to the specified repository id, it will function as a norfiypeCode .
Invoking operations on the recursiigpeCode before it has been embedded in the
enclosingTypeCode will result in undefined behavior. For example, the following
IDL type declarations contain recursion:

CORBA, v3.0: TypeCodes 4-61

struct foo {
long value;
sequence<foo> chain;

h
valuetype V {

public V member;
h

To create arypeCode for valuetype V, you would invoke theTypeCode creation
operations as shown below:

/I C++
TypeCode_var recursive_tc
= orb->create_recursive_tc(“IDL:V:1.0");

ValueMemberSeq v_seq;

v_seq.length();

v_seg[0].name = string_dup(“member”);

v_seq[0].type = recursive_tc;

v_seq[0].access = PUBLIC_MEMBER,;

TypeCode_varv_val_tc

= orb->create_value_tc(“IDL:V:1.0",

BV
VM_NONE,
TypeCode::_nil(),
v_seq);

For create_event_tc operation, theeoncrete_base parameter is dypeCode for
the immediate concrete base of the eventtype for whichTiipeCode is being
created. If the eventtype does not have a concrete baseptiveete_base parameter
is a nil TypeCode reference.

4.12 Exceptions

The terms “system” and “user” exception are defined in this section. Further the terms
“standard system exception” and “standard user exception” are defined, and then a list
of “standard system exceptions” is provided.

4.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards
documents to refer to exceptions:

Standard Exceptiont Any exception that is defined in an OMG Standard.

System Exception Clients must be prepared to handle these exceptions even though
they are not declared in a raises clause. These exceptions cannot appear in a raises
clause. These have the structure defined in section 3.17.2 “System Exception,” and
they are of typeSYSTEM_EXCEPTION (see PIDL below).

4-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Standard System Exception A System Exception that is part of the CORBA
Standard as enumerated in section 3.17. (e.g., BAD_PARAM). These are enumerated
in Section 3.17.2 “Standard System Exceptions.”

Non-Standard System ExceptionsSystem exceptions that are proprietary to a
particular vendor/implementation.

User Exception Exceptions that can be raised only by those operations that explicitly
declare them in the raises clause of their signature. These exceptions are of type
USER_EXCEPTION (see IDL below).

Standard User Exception Any User Exception that is defined in a published OMG
standard (e.g., WrongTransaction). These are documented in the documentation of
individual interfaces.

Non-standard User Exception User exceptions that are not defined in any published
OMG specification.

4.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

3

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION
2
2

Each system exception includes a minor code to designate the subcategory of the
exception.

CORBA, v3.0: Exceptions 4-63

4-64

Minor exception codes are of typmsigned long and consist of a 20-bit “Vendor
Minor Codeset ID"¥MCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the
VMCID assigned to OMG, defined as the unsigned long constant
CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high
order 20 bits. The minor exception codes associated with the standard exceptions that
are found in Appendix A, Section A.5, “Exception Codes” are or-ed WiMGVMCID

to get the minor code value that is returned in &xebody structure (see Section

4.12.3, “Standard System Exception Definitions” on page 4-65 and Section 4.12.4,
“Standard Minor Exception Codes” on page 4-72).

Within a vendor assigned space, the assignment of values to minor codes is left to the
vendor. Vendors may request allocation\@¥ICIDs by sending email to tag-
request@omg.org

The VMCID 0 andOxfffff are reserved for experimental use. MCID OMGVMCID
(Section 4.12.3, “Standard System Exception Definitions” on page 4-65} émdugh
Oxf are reserved for OMG use.

Each standard system exception also includesrapletion_status code that takes
one of the values {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE]}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing
prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated prior
to the exception being raised.

COMPLETED_MAYBE | The status of implementation completion is
indeterminate.

Client applications must be prepared to handle system exceptions other than the
standard system exception defined below in Section 4.12.3, “Standard System
Exception Definitions” on page 4-65, both because future versions of this specification
may define additional standard system exceptions, and because ORB implementations
may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are
discouraged because they are non-portable. A non-standard system exception, when
passed to an ORB that does not recognize it, shall be presented by that ORB as an
UNKNOWN standard system exception. The completion status shall be preserved in
the UNKNOWN exception, and the minor code shall be set to standard value 2 for
system exception and standard value 1 for user exception.

Non-standard system exceptions shall have the same structure as of standard standard
system exceptions as specified in section Section 4.12.3, “Standard System Exception
Definitions” on page 4-65 (i.e., they have the same ex_body). They also shall follow

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4

the same language mappings as standard system exceptions. Although they are PIDL,
vendors should ensure that their names do not clash with any other names following
the normal naming and scoping rules as they apply to regular IDL exceptions.

4.12.3 Standard System Exception Definitions

The standard system exceptions are defined in this section.
module CORBA { // PIDL

exception UNKNOWN ex_body;

/I the unknown exception
exception BAD_PARAM ex_body;

/[an invalid parameter was passed
exception NO_MEMORY ex_body;

/I dynamic memory allocation failure
exception IMP_LIMIT ex_body;

/I violated implementation limit
exception COMM_FAILURE ex_body;

/Il communication failure
exception INV_OBJREF ex_body;

/linvalid object reference
exception NO_PERMISSION ex_body;

/I no permission for attempted op.
exception INTERNAL ex_body;

/I ORB internal error
exception MARSHAL ex_body;

/I error marshaling param/result
exception INITIALIZE ex_body;

// ORB initialization failure
exception NO_IMPLEMENT ex_body;

/I operation implementation unavailable
exception BAD_TYPECODE ex_body;

/l bad typecode
exception BAD_OPERATION ex_body;

/linvalid operation
exception NO_RESOURCES ex_body;

[/l insufficient resources for req.
exception NO_RESPONSE ex_body;

/I response to req. not yet available
exception PERSIST_STORE ex_body;

/I persistent storage failure
exception BAD_INV_ORDER ex_body;

/I routine invocations out of order
exception TRANSIENT ex_body;

/I transient failure - reissue request
exception FREE_MEM ex_body;

/I cannot free memory
exception INV_IDENT ex_body;

/I invalid identifier syntax

July 2002 CORBA, v3.0: Exceptions 4-65

exception INV_FLAG ex_body;
/I invalid flag was specified
exception INTF_REPOS ex_body;
/I error accessing interface repository
exception BAD_CONTEXT ex_body;
/I error processing context object
exception OBJ_ADAPTER ex_body;
/l failure detected by object adapter
exception DATA_CONVERSION ex_body;
/I data conversion error
exception OBJECT_NOT_EXIST ex_body;
/I non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;
/I transaction required
exception TRANSACTION_ROLLEDBACK x_body;
/I transaction rolled back
exception INVALID_TRANSACTION ex_body;
/l invalid transaction
exception INV_POLICY ex_body;
/l invalid policy
exception CODESET_INCOMPATIBLE ex_body
/I incompatible code set
exception REBIND ex_body;
// rebind needed
exception TIMEOUT ex_body;
/l operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;
/l no transaction
exception TRANSACTION_MODE ex_body;
/l invalid transaction mode
exception BAD_QOS ex_body;
/l bad quality of service
exception INVALID_ACTIVITY ex_body;
/l bad quality of service
exception ACTIVITY_COMPLETED ex_body;
/l bad quality of service
exception ACTIVITY_REQUIRED ex_body;
/l bad quality of service

4.12.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expressiaiNKNOWN is also raised if the server returns a system
exception that is unknown to the client. (This can happen if the server uses a later
version of CORBA than the client and new system exceptions have been added to the
later version.)

4-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.12.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB
may raise this exception if null values or null pointers are passed to an operation (for
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating requests with
incorrect parameters using the DII.

4.12.3.3 NO_MEMORY

The ORB run time has run out of memory.

4.12.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run
time. For example, an ORB may reach the maximum number of references it can hold
simultaneously in an address space, the size of a parameter may have exceeded the
allowed maximum, or an ORB may impose a maximum on the number of clients or
servers that can run simultaneously.

4.12.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress,
after the request was sent by the client, but before the reply from the server has been
returned to the client.

4.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example,
the repository ID may have incorrect syntax or the addressing information may be
invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect
them).INV_OBJREF is used to indicate this.

If the client invokes an operation that results in an attempt by the client ORB to
marshal wchar or wstring data for an in parameter (or to unmarshal wchar or wstring
data for an in/out parameter, out parameter or the return value), and the associated
object reference does not contain a codeset componeniiNMeOBJREF standard
system exception is raised.

4.12.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

July 2002 CORBA, v3.0: Exceptions 4-67

4-68

4.12.3.8 INTERNAL
This exception indicates an internal failure in an ORB, for example, if an ORB has
detected corruption of its internal data structures.

4.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if a reply
from the server indicates that the message contains 1000 bytes, but the actual message
is shorter or longer than 1000 bytes, the ORB raises this excefM&RSHAL can
also be caused by using the DIl or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

4.12.3.10 INITIALIZE
An ORB has encountered a failure during its initialization, such as failure to acquire
networking resources or detecting a configuration error.

4.12.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has
an IDL definition), no implementation for that operation exift0 IMPLEMENT

can, for example, be raised by an ORB if a client asks for an object's type definition
from the interface repository, but no interface repository is provided by the ORB.

4.12.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an
invalid TCKind value).

4.12.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object
does not support the operation that was invoked.

4.12.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time
may have reached the maximum permissible number of open connections.

4.12.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.12.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a
database connection or corruption of a database.

4.12.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For
example, it can be raised by an ORB if an application makes an ORB-related call
without having correctly initialized the ORB first.

4.12.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not
an indication that an object does not exist. Instead, it simply means that no further
determination of an object's status was possible because it could not be reached. This
exception is raised if an attempt to establish a connection fails, for example, because
the server or the implementation repository is down.

4.12.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap
corruption or memory segments being locked.

4.12.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised
if, for example, an identifier passed to the interface repository does not conform to IDL
identifier syntax, or if an illegal operation name is used with the DII.

4.12.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DIl request).

4.12.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other
failure relating to the interface repository is detected.

4.12.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed
context does not contain the context values required by the operation.

CORBA, v3.0: Exceptions 4-69

4-70

4.12.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server
may have made an attempt to register itself with an implementation repository under a
name that is already in use, or is unknown to the reposiOBJ_ADAPTER is also
raised by the POA to indicate problems with application-supplied servant managers.

4.12.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,

DATA _CONVERSION can be raised if wide character codeset conversion fails, or if
an ORB cannot convert floating point values between different representations.

4.12.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a
deleted object was performed. It is an authoritative “hard” fault report. Anyone
receiving it is allowed (even expected) to delete all copies of this object reference and
to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any of their own data structures.

4.12.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

4.12.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

4.12.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurred
when trying to register a resource.

4.12.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility
between Policy overrides that apply to the particular invocation.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.12.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” on
page 13-34.

4.12.3.32 REBIND

REBIND is raised when the current effecti®ebindPolicy , as described in Section
22.2.1.2, “interface RebindPolicy” on page 22-5, has a valud@f REBIND or
NO_RECONNECT and an invocation on a bound object reference results in a
LocateReply message with statO8JECT_FORWARD or a Reply message with
statusLOCATION_FORWARD . This exception is also raised if the current effective
RebindPolicy has a value oNO_RECONNECT and a connection must be re-
opened. The invocation can be retried once the effe®®kindPolicy is changed to
TRANSPARENT or binding is re-established through an invocation of
CORBA::Object::validate_connection

4.12.3.33 TIMEOUT

TIMEQOUT is raised when no delivery has been made and the specified time-to-live
period has been exceeded. It is a standard system exception because time-to-live QoS
can be applied to any invocation.

4.12.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot
process a transaction service context because its connection to the Transaction Service
has been abnormally terminated.

4.12.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a
mismatch between th&ansactionPolicy in the IOR and the current transaction
mode.

4.12.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of
service required by an invocation parameter that has a quality of service semantics
associated with it.

July 2002 CORBA, v3.0: Exceptions 4-71

4-72

4.12.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services’ resume methods if a transaction or Activity is resumed in a
context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

4.12.3.38 ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for
which Activity context is accessed. It indicates that the Activity context in which the
method call was made has been completed due to a timeout of either the Activity itself
or a transaction that encompasses the Activity, or that the Activity completed in a
manner other than that originally requested.

4.12.3.39 ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for
which an Activity context is required. It indicates that an Activity context was
necessary to perform the invoked operation, but one was not found associated with the
calling thread.

4.12.4 Standard Minor Exception Codes

Please refer to Appendix A for a table that specifies standard minor exception codes
that have been assigned for the standard system exceptions.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5.1 Overview

July 2002

Value Type Semantics 5

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 5-1
“Architecture” 5-2
“Standard Value Box Definitions” 5-9
“Language Mappings” 5-9
“Custom Marshaling” 5-10

Objects, more specifically, interface types that objects support, are defined by an IDL
interface, allowing arbitrary implementations. There is great value, which is described
in great detail elsewhere, in having a distributed object system that places almost no
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object
by value, rather than by reference. This may be particularly useful when an object’s
primary “purpose” is to encapsulate data, or an application explicitly wishes to make a
“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value receives a
description of the “state” of the object. It then instantiates a new instance with that

Common Object Request Broker Architecture (CORBA), v3.0 5-1

5-2

5.2 Architecture

state but having a separate identity from that of the sending side. Once the parameter
passing operation is complete, no relationship is assumed to exist between the two
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

» They support description of complex state (i.e., arbitrary graphs, with recursion and
cycles)

« Their instances are always local to the context in which they are used (because they
are always copied when passed as a parameter to a remote call)

» They support both public and private (to the implementation) data members.

e They can be used to specify the state of an object implementation (i.e., they can
support an interface).

» They support single inheritance (@&luetype) and can support aimterface .

e They may be also babstract .

The basic notion is relatively simple. yalue type is, in some sense, half way

between a “regular” IDL interface type and a struct. The use of a value type is a signal
from the designer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types.
This is reflected in both the semantics specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local.
That is, the explicit use of value type in a concrete programming language is always
guaranteed to use a local implementation, and will not require a remote call. They have
no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract
(stateless) ones. As explained below the essential characteristics of both are the same.
The differences between them result from the differences in the way they are mapped
in the language mappings. In this specification the semantics of value types apply to
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
» single derivation (from other value types)
* supports a single non-abstract interface

 arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using value

types.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

* null value semantics

When an instance of such a type is passed as a parameter, the sending context marshal
the state (data) and passes it to the receiving context. The receiving context instantiates
a new instance using the information in the GIOP request and unmarshals the state. It
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e., only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back obj&deBase) to the

sending context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. Only concrete types derived from them may be actually
instantiated and implemented. Their implementation, of course, is still local. However,
because no state information may be specified (only local operations are allowed),
abstract value types are not subject to the single inheritance restrictions placed upon
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappings
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They
are considered to be stateful, may be instantiated, marshaled and passed as actual
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only
be local. Because these operations are local, they must be directly implemented by a
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types passed
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA object reference semantics) and that a copy
is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not
mediated by the ORB, although the API to be used is specified in the language

mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of
these value types are passed as a parameter to an operation defined on a CORBA
interface, and hence mediated by the ORB. If an instance of a value type is passed as a
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and
programming language reference semantics apply.

CORBA, v3.0: Architecture 5-3

5-4

Operations on the value type are supported in order to guarantee the portability of the
client code for these value types. They have no representation on the wire and hence no
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types
do not inherit fromCORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value type
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter).

5.2.4 Parameter Passing

5.2.4.1

5.2.4.2

5.2.4.3

This section describes semantics when a value instance is passed as parameter in a
CORBA invocation. It does not deal with the case of calling another non-CORBA (i.e.,
local) programming method, which happens to have a parameter of the same type.

Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by
examining the parameter’s formal type (i.e., the signature of the operation it is being
passed to). If it is a value type then it is passed by value. If it is an ordinary interface
then it is passed by reference (the case today for all CORBA objects). This rule is
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of the
rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., value
types support sharing and null semantics. Instances of a value type can be shared by
others across or within other instances. They can also be null. This is unlike other IDL
data types such as structs, unions, and sequences that can never be shared. The sharin
of values within and between the parameters to an operation, is preserved across an
invocation; that is, the graph that is reconstructed in the receiving context is

structurally isomorphic to the sending context’s.

Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-
local interface, the effect in all cases shall be as if an independent copy of the instance
is instantiated in the receiving context. While certain implementation optimizations are
possible the net effect shall be as if the copy is a separate independent entity and there

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

July 2002

is no explicit or implicit sharing of state. This applies to all valuetypes involved in the
invocation, including those embedded in other IDL datatypes or in an any. This
notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out and return parameters when the invocation
completes. Optimization techniques such as copy on write etc. must make sure that the
semantics of copying as described above is preserved.

5.2.4.4 Any parameter type

When an instance of a value type is passed tamn as with all cases of passing
instances to aany, it is the responsibility of the implementor to insert and extract the
value according to the language mapping specification.

5.2.5 Substitutability Issues

5.2.5.1

5.2.5.2

5.2.5.3

The substitutability requirements for CORBA require the definition of what happens
when an instance of a derived value type is passed as a parameter that is declared to be
a base value type or an instance of a value type that supports an interface is passed as
a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the
parameter type is an abstract interface, and the parameter type is a value type.

Value instance -> Interface type

A value type that supports a regular interface is not a subtype of that interface, and
hence cannot be substituted for that interface in an invocation parameter. In this case
an object reference corresponding to the value type instance that has been registered
with the ORB must be obtained and this object reference must be used as the actual
parameter. Different language mappings provide different facilities to aid in such
parameter passing.

Value Instance -> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and can
be substituted for that interface in an invocation parameter.

Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiving
context currently has the appropriate implementation class then there is no problem.
If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

CORBA, v3.0: Architecture 5-5

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succeeds,
OK.

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because,
from a structural point view base types structurally subsume a derived type and an
object created in the receiving context bears no relationship with the original one.
However, it might be semantically puzzling, as the derived type may completely re-
interpret the meaning of the state of the base. For that reason a derived value needs
to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception If none of these work or are possible, then raise the
NO_IMPLEMENT exception with standard minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
/I state definition
private string name;
private string email;
private string SSN;
[l initializer
factory init(in string name, in string SSN);

h

valuetype ManagerRecord: truncatable EmployeeRecord {
/I state definition
private sequence<EmployeeRecord> direct_reports;

h

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other
value types. Each language mapping is responsible for specifying how these operations
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If
the interface designer wants to allow the receiving context to create a local
implementation of the value type (i.e., a value representing the interface) an operation
that returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type calfatleBase . This is a type, which
fulfills a role that is similar to that played b®bject . Conceptually it supports the
common operations available on all value types. See Section 4.4, “ValueBase

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

July 2002

Operations,” on page 4-23 for a description of those operations. In each language
mappingValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting
meta information about the type, may be found in the specifics for each language
mapping.

5.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a given
language mapping an instance of a value type is always created as a local “language”
object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passed by
reference when the formal parameter type is an interface type (see Section 5.2.4,
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with
the ORB (e.g.POA:activate_object() before they can be passed by reference. Not
registering the value as a CORBA object and/or not associating an appropriate policy
with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall GBJECT_NOT_EXIST with standard

minor code 1.

5.2.8.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositorylD, which is passed over the wire as
part of an invocation. The mapping between the type (as specified by the
RepositorylD) and the factory is language specific. In certain languages it may be
possible to specify default policies that are used to find the factory, without requiring
that specific routines be called. In others the runtime and/or generated code may have
to explicitly specify the mapping on a per type basis. In others a combination may be
used. In any event the ORB implementation is responsible for maintaining this
mapping See Section 5.4.3, “Language Specific Value Factory Requirements,” on
page 5-9 for more details on the requirements for each language mapping. Value box
types do not need or use factories.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to those
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling

CORBA, v3.0: Architecture 5-7

5-8

5.2.9.1

5.2.9.2

mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: how value types
manifest themselves as concrete programming language constructs and how they are
transmitted.

To see this consider how value types are actually used. The IDL definition of a value
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms
in the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adapter,
etc. The programmer may manipulate this programming construct just like any other
programming language construct. So far there are no security implications. As long as
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation (i.e., calls a stub that uses it as a parameter type,
or uses the DIl). There are two cases to consider: 1) Value as Value and 2) Value as
Object Reference.

Value as Value

The formal type of the parameter is a value. This case is no different from using any
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On the
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is then
unmarshaled to fill in the newly created construct. This is similar to using other values
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB’s skeleton/DSI engine.

Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value. The
program must have “registered” the value with an object adapter and is really using the
returned object reference (see for the specific rules.) Thus this case “reduces” to a
regular CORBA invocation, using a regular object reference. An IOR is passed to the
receiving context. All the “normal” security considerations apply. From the point of
view of the receiving context, the IOR is a “normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering an
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to allow
the ORB-mediated invocation to proceed. The fact that a value type is involved is not
material.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of
nulls are likely to be important, the following value box type definitions are added to
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

3

5.4 Language Mappings

July 2002

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each
programming language, plus possibly some helper classes where appropriate. In Java,
C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java,
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation
classes with “extra” data members and methods. When an instance of such a class is
used as a parameter, only the portions that correspond directly to the IDL declaration,
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling APl and the
entry point for custom marshaling/unmarshaling.

5.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are
used to find the appropriate factory for an instance of a value type so that it may be
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically
using RepositorylDs that are in common formats to find the appropriate factory. Such
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit
and implicit. The registration must occur before an attempt is made to unmarshal an
instance of a value type. If the ORB is unable to locate and use the appropriate factory,
then aMARSHAL exception with standard minor code 1 is raised.

CORBA, v3.0: Standard Value Box Definitions 5-9

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified as
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

/I DL
native ValueFactory;

h

5.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required
IDL operations. The means by which this association is accomplished is a language
mapping “detail” in much the same way that an IDL compiler is.

5.5 Custom Marshaling

5-10

Value types can override the default marshaling/unmarshaling model and provide their
own way to encode/decode their state. Custom marshaling is intended to be used to
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specifications
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in
the IDL. This explicit declaration has two goals:

« type safety stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

« efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated
the same as that of a non custom value type for mapping purposes (i.e., the fields show
up in the same fashion in the concrete programming language). It is provided to help
with application portability.

A custom marshaled value type is always a stateful value type.
/I Example IDL

custom valuetype T {
/I optional state definition

3

Custom value types can never be safely truncated to base (i.e., they always require an
exact match for their Repositoryld in the receiving context).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

Once a value type has been marked as custom, it needs to provide an implementation
that marshals and unmarshals the valuetype. The marshaling code encapsulates the
application code that can marshal and unmarshal instances of the value type over a
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.

5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value tyfggstomMarshal , as part of the
implementation of the value typ€ustomMarshal encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream using the
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream 0s);
void unmarshal (in DatalnputStream is);
¥
%

CustomMarshal is an abstract value type that is meant to be used by the ORB, not
the user. Semantically it is treated as a custom valuetype’s implicit base class, although
the custom valuetype does not actually inherit it in IDL. The implementor of a custom
value type provides an implementation of tBastomMarshal operations. The

manner in which this is done is specified for each language mapping. Each custom
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementor can use the skeletons generated by the IDL
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal , doing so will not make the type custom, nor will it cause the ORB
to treat it as custom.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e., the marshal buffers)
have to be manipulated.

5.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR format.

July 2002 CORBA, v3.0: Custom Marshaling 5-11

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSegq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

typedef sequence<long double> LongDoubleSeq;

typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

h

abstract valuetype DataOutputStream {
void write_any(in any value);
void write_boolean(in boolean value);
void write_char(in char value);
void write_wchar(in wchar value);
void write_octet(in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong(in long long value);
void write_ulonglong(in unsigned long long value);
void write_float(in float value);

void write_double(in double value);

void write_longdouble(in long double value);
void write_string(in string value);

void write_wstring(in wstring value);

void write_Object(in Object value);

void write_Abstract(in AbstractBase value);

void write_Value(in ValueBase value);
void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length

5-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

);
void write_boolean_array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_char_array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_wchar_array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_octet_array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_short_array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_ushort_array(
in UShortSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_array(
in LongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_ulong_array(
in ULongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_ulonglong_array(
in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_longlong_array(
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

CORBA, v3.0: Custom Marshaling

5-13

void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_double_array(
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_fixed(
in any fixed_value
) raises (BadFixedValue);
void write_fixed_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
) raises (BadFixedValue);

h

abstract valuetype DatalnputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Obiject();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

5-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

);

void read_boolean_array(
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_char_array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_wchar_array(
inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_octet_array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_short_array(
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_ushort_array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_array(
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_ulong_array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_ulonglong_array(
inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_longlong_array(
inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

CORBA, v3.0: Custom Marshaling

5-15

5-16

void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

any read_fixed(
in unsigned short digits,
in short scale

) raises (BadFixedValue);

void read_fixed_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
in short scale

) raises (BadFixedValue);

h
h

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.

Theread_* operations that have an inout parameter named seq are expected to extend
the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the
value’s encoding. The application marshaling code merely calls the above operations.
The details of writing the value tag, header information, end tag(s) are specifically not
exposed to the application code. In particular the size of the custom data is not written
by the application. This guarantees that the custom marshaling (and unmarshaling
code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exc@d#®dRSHAL is
raised.

A possible implementation might have the engine determine that a custom marshal
parameter is “next.” It would then write the value tag and other header information and
then return control back to the application defined marshaling policy, which would do
the marshaling by calling thBataOutputStream operations to write the data as
appropriate. (Note the stream takes care of breaking the data into chunks, if necessary.)

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

July 2002

When control was returned back to the engine, it performs any other cleanup activities
to complete the value type, and then proceeds onto the next parameter. How this is
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate
indirections or null encodings (even when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB
implicitly acts as a factory. In a sense they are always available.

For write_fixed , thefixed_value parameter must be an "any" containing a fixed
value. If the "any" passed in does not contain a fixed value, thBadFixedValue
exception is raised with the offset field set to O.

For write_fixed_array , the elements of the seq parameter that are specified by the
offset and length parameters must be a sequence of "any"s each of which contains a
fixed value. If any of these "any"s does not contain a fixed value, or if any of them
contains a fixed value whog#igits andscale (as specified by th@ypeCode in the
"any") differ from those of the first of these "any"s (as specified byTigpeCode),

then aBadFixedValue exception is raised with the offset field set to a zero-origin
ordinal number indicating the position of the first incorrect “any” within the
subsequence of fixed values written to the stream.

For bothwrite_fixed andwrite_fixed_array , the TypeCode within each “any”
being written specifies thdigits andscale to be used to write the fixed value
contained in the “any.” Th@ypeCode itself is not written to the
DataOutputStream .

Theread_fixed operation returns an “any” containing the fixed value that was read
from the DatalnputStream . The digits and scale in thEypeCode of the returned
“any” are set to theligits andscale parameters passed tead_fixed . If the fixed
value read from th®atalnputStream is incompatible with theligits andscale
parameters passed tead_fixed , then aBadFixedValue exception is raised with
the offset field set to 0.

Theread_fixed_array operation sets the elements of theg parameter that are
specified by theoffset andlength parameters. These elements are set to "any"s with
TypeCodes specifying a fixed value whosaigits andscale are the same as the
digits andscale parameters, and fixed values that were read from the
DatalnputStream . The previous contents of these “any”s, including their
TypeCodes , are destroyed by theead_fixed_array operation. Other "any"s in the
seq parameter (if any) are left unchanged. WgpeCode information is read from the
DatalnputStream . If any of the fixed values read from tH2atalnputStream is
incompatible with theligits andscale parameters, then BadFixedValue

exception is raised with theffset field set to a zero-origin ordinal number indicating
the position of the first incorrect “any” within the subsequence of fixed values read
from the stream.

The stream representation of a fixed value is considered incompatibledifyits and
scale values do not match theigits andscale values being used to read it from the
stream.

CORBA, v3.0: Custom Marshaling 5-17

5.6 Accesstothe Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

» To attempt the downloading of some missing implementation for the value.

» To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may
optionally be supported by the sending context (it can be seen as a service). If such a
callback object is supported its IOR may be added to an optional service context in the
GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServiceB2ndingContextRunTime (see

Section 13.7, “Service Context,” on page 13-28) contains an encapsulation of the IOR
for a SendingContext::RunTime object. Because ORBs are always free to skip a
service context they don't understand, this addition does not impact IIOP
interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
/I sending context run time
/ services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLS
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/I Operations to obtain a location of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

/l the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/I To obtain a type graph for a value type

/I same comment as before the IR can provide similar

/l information

CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);

5-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

Supporting theCodeBase interface for a given ORB run time is an issue of quality of
service. The point here is that if the sending context does not supjitotieBase ,
then the receiving context will simply raise an exception with which the sending
context had to be prepared to deal. There will always be cases where a receiving
context will get a value type and won't be able to interpret it because:

» It can't get a legal implementation for it (even if it knows where it is, possibly due
to security and/or resource access issues).

» lIts local version is so radically different that it cannot make sense out of the piece
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 4.12.4, “Standard Minor
Exception Codes,” on page 4-72).

Under certain conditions it is possible that when several values of the same CORBA
type (same repository id) are sent in either a request or reply, that the reality is that
they have distinct implementations. In this case, in addition to the codebase URL(S)
sent in the service context, each value that has a different codebase may have codebase
URL(s) associated with it. This is encoded by using a different tag to encode the value
on the wire.

The sending context does not need to resend the same value for this service context on
subsequent requests over the same underlying connection. Resending a different value
for this service context is only necessary if the callback object reference in use is
changed by the sending context within the lifetime of the underlying connection.

July 2002 CORBA, v3.0: Access to the Sending Context Run Time 5-19

5-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Abstract Interface Semantics 6

This chapter describes the semantics of abstract interfaces.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 6-1
“Semantics of Abstract Interfaces” 6-1
“Usage Guidelines” 6-3
“Example” 6-3
“Security Considerations” 6-4

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides this
capability. See Section 6.4, “Example,” on page 6-3 for an example of when this might
be useful.

6.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 6-1

6-2

1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type of the
actual parameter (regular interface or value) is used to make this determination
using the following rules:

* The actual parameter is passed as an object reference if it is a regular interface
type (or a subtype of a regular interface type), and that regular interface type is a
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

* The actual parameter is passed as a value if it cannot be passed as an object
reference but can be passed as a value. OtherwB&[R._PARAM exception is
raised.

2. Abstract interfaces do not implicitly inherit fro@ORBA::Object. This is because
they can represent either value types or CORBA object references, and value types
do not necessarily support the object reference operations (see Section 4.3, “Object
Reference Operations,” on page 4-12). If an IDL abstract interface type can be
successfully narrowed to an object reference type (a regular IDL interface), then the
CORBA::Object operations can be invoked on the narrowed object reference.

3. Abstract interfaces implicitly inherit frol@ORBA::AbstractBase . This type is
defined as native. It is the responsibility of each language mapping to specify the
actual programming language type that is used for this type.

module CORBA {
/I DL
native AbstractBase;

3

4. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 and
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these differences.

5. Special inheritance rules that apply to abstract interfaces are described in
Section 3.8.6, “Abstract Interface,” on page 3-26.

6. See Section 15.3.7, “Abstract Interfaces,” on page 15-30 for special consideration
when transmitting an abstract interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operatiorl() in abstract interfacéoo.

abstract interface foo {
void m1(in AninterfaceType X, in AnAbstractinterfaceType y,
in AValueType z);

3

x’s are always passed by reference,

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

z's are:
» passed as copied valuedfdfo refers to an ordinary interface.
« passed as non-copied valueddb refers to a value type

y's are:

» passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractinterfaceType (registered with the ORB), no matter wHab's
concrete type is.

« passed as copied values if their concrete type is valug@n'd concrete type is
ordinary interface.

« passed as non-copied values if their concrete type is valuéarslconcrete type
is value.

6.3 Usage Guidelines

6.4 Example

July 2002

Abstract interfaces are intended for situations where it cannot be known at compile
time whether an object reference or a value will be passed. In other cases, a regular
interface or value type should be used. Abstract interfaces are not intended to replace
regular CORBA interfaces in situations where there is no clear need to provide runtime
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

For example, in a business application it is extremely common to need to display a list
of objects of a given type, with some identifying attribute like account number and a
translated text description such as “Savings Account.” A developer might define an
interface such aBescribable whose methods provide this information, and

implement this interface on a wide range of types. This allows the method that displays
items to take an argument of tyf@escribable and query it for the necessary
information. TheDescribable objects passed in to thdisplay method may be either
CORBA interface types (passed in as object references) or CORBA value types (passed
in by value).

In this exampleDescribable is used as a polymorphic abstract type. No instances of
type Describable exist, but many different instances have interfaces that support the
Describable type abstraction. In C++Describable would be an abstract base class;
in Java, an interface. In statically typed languages, the compiler can check that the
actual parameter type passed by callersgisplay is a valid subtype obescribable

and therefore supports the methods definedkgcribable . Thedisplay method can
simply invoke the methods ddescribable on the objects that it receives, without
concern for any details of their implementation.

Describable could not be declared as a regular IDL interface. This is because
arguments of declared interface type are always passed as object references (see
Section 5.2.4, “Parameter Passing,” on page 5-4) and we also watlisfiay method

to be able to accept value type objects that can only be passed by value. Similarly we

CORBA, v3.0: Usage Guidelines 6-3

cannot defindDescribable as a value type because then tigplay method would
not be able to accept actual parameter objects that only support passing as an object
reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:

abstract interface Describable {
string get_description();

h

interface Example {
void display (in Describable anObject);

h

interface Account : Describable {// passed by reference
I/l add Account methods here

h

valuetype Currency supports Describable {// passed by value
// add Currency methods here

h

If Describable were defined as a regular interface instead of an abstract interface,
then it would not be possible to pas<arrency value to the display method, even
though theCurrency IDL type supports théescribable interface.

6.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces
and values (see Section 5.2.9, “Security Considerations,” on page 5-7). This is because
an abstract interface formal parameter type allows either a regular interface (IOR) or a
value to be passed. Likewise, an operation defined in an abstract interface can be
implemented by either a regular interface (with “normal” security considerations) or by
a value type (in which case it is a local call, not mediated by the ORB). The security
implication of making the choice between these alternatives a runtime determination is
that the programmer must ensure that for both alternatives, no security violations can
occur. For example, a technique similar to that described in Section 6.5.1, “Passing
Values to Trusted Domains,” on page 6-4 could be used to avoid inadvertently passing
values outside a domain of trust.

6.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies
will apply to any attempt to access anything through that object reference. When the
underlying object is passed as a value, the granularity and level/semantics of access
control are different. In the “by value” case, all the data for the object is passed, and
method invocations on the passed object are local calls that are not mediated by the

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

6

July 2002

ORB. Whether the server wants to use the (potentially more permissive) pass by value
access control or not could depend on the security domain, which is receiving the said
object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in
the form of an object reference Or' to a domain Du that it does not trust, but is willing
to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be
written to either always pass references or always pass values, irrespective of the level
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter tyllyType can be declared as an

abstract interface and the method invocation can be coded along the lines of

myExample->foo(security_check(myExample,mydata));
where thesecurity _check function determines the level of trust of
myExample's domain and returns an regular interface subtyp®lgType for

untrusted domains and a value subtypdvbfType for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.

CORBA, v3.0: Security Considerations 6-5

6-6

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

Dynamic Invocation Interface

v

The Dynamic Invocation Interface (DIl) describes the client’s side of the interface that
allows dynamic creation and invocation of request to objects. All types defined in this

chapter are part of the CORBA module.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 7-1
“Request Operations” 7-4
“ORB Operations” 7-11
“Polling” 7-12
“List Operations” 7-16

7.1 Overview

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type

specification.

A request consists of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements
of a list. Each element is an instance dlamedValue (see Section 7.1.1, “Common
Data Structures,” on page 7-2). Each parameter is passed in its native data form.

July 2002 Common Object Request Broker Architecture (CORBA), v3.0

7-1

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

The standard user exceptiddrongTransaction is defined in the CORBA module,
prior to the definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).

7.1.1 Common Data Structures

The typeNamedValue is a well-known data type in OMG IDL. It can be used either

as a parameter type directly or as a mechanism for describing arguments to a request.
The types are described in OMG IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; /[argument name
any argument; // argument
long len; /I length/count of argument value
Flags arg_modes;// argument mode flags

2

3

For out parameters, applications can setalgument member of theNamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If a
non-null storage pointer is provided for an out parameter, the ORB will attempt to use
the storage pointed to for holding the value of the out parameter. If the storage pointed
to is not sufficient to hold the value of the out parameter, the behavior is undefined.

A named value includes an argument name, argument value @syanlength of the
argument, and a set of argument mode flags. When named value structures are used to
describe arguments to a request, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-1ényan
consists of alypeCode and a pointer to the data value. ThgpeCode is a well-

known opaque type that can encode a description of any type specifiable in OMG IDL.
See this section for a full description ®fpeCode s.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

For most data typeden is the actual number of bytes that the value occupies. For
object referenceden is 1. Table 7-1shows the length of data values for the C language
binding. The behavior of &lamedValue is undefined if thden value is inconsistent

July 2002

with the TypeCode.

Table 7-1 C Type Lengths

Data type: X

Length (X)

short

sizeof (CORBA_short)

unsigned short

sizeof (CORBA _unsigned_short)

long

sizeof (CORBA_long)

unsigned long

sizeof (CORBA _unsigned_long)

long long

sizeof (CORBA_long_long)

unsigned long long

sizeof (CORBA _unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA _double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA _fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA _octet)

string strlen (string) /* does NOT include \0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S {}; sizeof (S)

Object 1

array N of type T1

Length (T1) * N

sequence V of type T2

Length (T2) *V /*V is the actual, dynamic, number of
elements */

Thearg_mode field is of typeFlags which is anunsigned long . This field is used
as follows in this structure. It should be noted tiédgs type is used as parameter

type in many operations and the meaning of the constants passed in those cases are

CORBA, v3.0: Overview

7-3

specific to those operations. Those values should not be confused with the specific use
of this type in the context of thllamedValue structure. These values are reserved, as
are the high order 16 bits of thensigned long .:

CORBA::ARG_IN 1 The associated value is an input only
argument.

CORBA::ARG_OUT 2 The associated value is an output only
argument.

CORBA::ARG_INOUT 3 The associated value is an in/fout argument

The specific usage dflags in other contexts are described as part of the description
of the operation that uses this type of parameters.

7.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a mechanism
for grouping, or keeping track of, this memory. If so specified, out-arg memory is
associated with the argument list passed to the create request routine. When the list is
deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the
programmer is responsible for freeing each out parameter SDRBA _free() ,

which is discussed in th€ Language Mappingpecification Mapping for Structure
Typessection).

7.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus, the
return type of these routines is void.

7.2 Request Operations

The request operations (excepeate_request) are defined in terms of thRequest
pseudo-object. ThRequest routines use th&VList definition defined in the
preceding section.
module CORBA {

native OpaqueValue;

interface Request { / PIDL

void add_arg (

7-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

in Identifier name, /[argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, /I argument value to be added
in long len, I/l length/count of argument value
in Flags arg_flags // argument flags
);
void invoke (
in Flags invoke_flags // invocation flags

);
void delete ();

void send (
in Flags invoke_flags // invocation flags

);

void get_response () raises (WrongTransaction);
boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
2
2

In IDL, The native type OpaqueValue is used to identify the type of the
implementation language representation of the value that is to be passed as a
parameter. For example in the C language this is the C languagdugied *)
Each language mapping specifies wkgdaqueValue maps to in that specific
language.

For eachRequest pseudo-object instance, only one call to either the invoke or the
send operations is legal during the lifetime of tiiequest object. In addition, once

a Request object was passed to one of tkend_multiple_requests_* operations,
neither invoke nor send can be called, nor can it be passed in another invocation of
send_multiple_request_* operation.Violations raisBAD_INV_ORDER with
standard minor code 5.

7.2.1 create_request

Because it creates a pseudo-object, this operation is defined DUjeet interface
(see Section 4.3, “Object Reference Operations,” on page 4-12 for the complete
interface definition). Thereate_request operation is performed on th@bject that
is to be invoked.

CORBA, v3.0: Request Operations 7-5

module CORBA{

interface Object{ /l PIDL

void create_request (

in Context ctx, /I context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation

inout NamedValue result, // operation result

out Request request, // newly created request

in Flags reg_flags // request flags

h

This operation creates an ORB request. The actual invocation occurs by ¢allokg
or by using thesend / get_response calls.

The operation name specified oreate_request is the same operation identifier that

is specified in the OMG IDL definition for this operation. In the case of attributes, it is
the name as constructed following the rules specified inShverRequest interface

as described in the DSI in Section 8.3, “ServerRequestPseudo-Object,” on page 8-3.

Thearg_list , if specified, contains a list of arguments (input, output, and/or
input/output) that become associated with the requestrglflist is omitted (specified
asNULL), the arguments (if any) must be specified usingdkd_arg call below.

Arguments may be associated with a request by passing in an argument list or by using
repetitive calls teadd_arg . One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, thearg_list becomes associated with the request; untilittveke call
has completed (or the request has been deleted), the ORB assumagthiat (and
any values it points to) remains unchanged.

When specifying an argument list, talue andlen for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may also
be specified; if so indicated, arguments are validated for data type, order, name, and
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operation result is placed in tiesult argument after the invocation completes.

Thereq_flags argument is defined as a bitmad&r(g) that may contain the following
flag values:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated
with the argument listNVList).

Setting theOUT_LIST_MEMORY flag controls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must also have been specified on
the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (see tleLanguage Mappingpecification Argument Passing
Considerationsection;C++ Language Mappingpecification NVListsection; and the
COBOL Language Mappingpecification, Argument Passing Consideratiossction).

The implicit object reference operationen_existent , is_a, andget_interface may
be invoked using DII. No other implicit object reference operations may be invoked via
DII.

To create a request for any one of these allowed implicit object reference operations,
create_request must be passed the name of the operation with"apftepended, in

the parameter “operation.” For example to create a DIl requesti$on”, the name
passed t@reate_request must be “is_a.” If the name of an implicit operation that

is not invocable through DIl is passed ¢eeate_request with a “_” prepended,
create_request shall raise BAD_PARAM standard system exception with the
standard minor code 32. For example, ifis_equivalent ” is passed to

create_request as the ‘bperation ” parameter will causereate_request to raise

the BAD_PARAM standard system exception with the standard minor code 32.

7.2.2 add_arg
void add_arg (/ PIDL
in Identifier name, /l argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, /I argument value to be added
in long len, I/l length/count of argument value
in Flags arg_flags // argument flags

);
add_arg incrementally adds arguments to the request.

For each argument, minimally italue andlen must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may also be specified. If so indicated,
arguments are validated for data type, order, name, and usage correctness against the
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

July 2002 CORBA, v3.0: Request Operations 7-7

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
Object::create_request call or by adding them via calls tadd_arg . Using both
methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2rg_flags may also take the flag valu®&l_COPY_VALUE.

The argument passing flags defined in Section 7.1.1, “Common Data Structures,” on
page 7-2 may be used here to indicate the intended parameter passing mode of an
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.

7.2.3 invoke

void invoke (/l PIDL
in Flags invoke flags I/l invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placedriestlie
argument specified ooreate_request . Callinginvoke on aRequest afterinvoke ,
send, or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 10.

7.2.4 delete

void delete (); /l PIDL

This operation deletes the request. Any memory associated with the request (i.e., by
using thelN_COPY_VALUE flag) is also freed.

7.2.5 send

void send (/ PIDL
in Flags invoke_flags Il invocation flags

);

Send initiates an operation according to the information in BRequest . Unlike

invoke, send returns control to the caller without waiting for the operation to finish.
To determine when the operation is done, the caller must usgaheesponse or
ORB::get_next_response operations described below. The out parameters and
return value must not be used until the operation is done.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

Although it is possible for some standard system exceptions to be raised bgrte
operation, there is no guarantee that all possible errors will be detected. For example,
if the object reference is not validend might detect it and raise an exception, or

might return before the object reference is validated, in which case the exception will
be raised whemget_response is called.

If the operation is defined to be oneway odlfV_NO_RESPONSE is specified, and
the effectiveSyncScopePolicy does not have a value ¥/ITH_SERVER or
WITH_TARGET, thenget_response does not need to be called. In such cases,
some errors might go unreported, since if they are not detected b&facke returns
there is no way to inform the caller of the error.

The following invocation flags are currently defined feend :

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to

be subject to the effectivByncScopePolicy . If the SyncScopePolicy has a

value of NONE or WITH_TRANSPORT, the invoker will not receive a response,

nor does it expect any of the output arguments (infout and out) to be updated. This
option may be specified even if the operation has not been defined codweay .

7.2.6 poll_response

/l PIDL
boolean poll_response ();

poll_response determines whether the request has completedRNE return
indicates that it hastALSE indicates it has not.

Return is immediate, whether the response has completed or not. Values in the request
are not changed.

7.2.7 get_response

//[PIDL
void get_response () raises (WrongTransaction);

get_response returns the result of a request.dét_response is called before the
request has completed, it blocks until the request has completed. Upon return, the out
parameters and return values defined in Rexjuest are set appropriately and they

may be treated as if thRequest invoke operation had been used to perform the
request.

A request has an associated transaction context if the thread originating the request had
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise thd/rongTransaction exception if the request

has an associated transaction context, and the thread invgkingesponse either

has a null transaction context or a non-null transaction context that differs from that of
the request.

July 2002 CORBA, v3.0: Request Operations 7-9

7.2.8 sendp

sendp initiates an operation according to the information in the Request and returns a
reference to MessageRouting::PersistentRequest as aCORBA::Object . As

with send, the results of invocations made wisendp will be available once the

caller useget_response or get_next_response . The out parameters and return
value must not be used before the operation is done. AGBRBA::Request may

be constructed (in this same or a different process) and used to poll for the response to
this request by callingreate_request , properly associating the out arguments and
return value with that request and then passingRéesistentRequest reference to

the new Requestprepare (described below). The caller can then invoke

get_response or get_next_response to obtain the operation results.

As with send, sendc may raise a standard system exception if a failure is detected
before control is returned to the client, but this is not guaranteed. All other exceptions
will be raised wherget_response is called.

7.2.9 prepare

prepare is called to associate an initializ&2lORBA::Request with a previous

operation that was initiated visendp . The Request must be created and associated
with the operation’s out arguments and return value prior to cafirggpare . Once

prepare has been called, it is as if that prepared Request was the one that actually had
sendp used. Each Request is subject only to one of these operations, which puts it in
a valid state for an invocation afet_response : send, sendp, sendc, or

prepare . Invoking prepare on a Request that had previously been used for a send (or
one of its variants) raises the standard system exce@®B INV_ORDER.

Invoking prepare with an object reference that was not previously returned from an
invocation ofsendp raises the standard system excepti®iD PARAM.

7.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike
send, the results of invocations made wiglendc will be available through the
callbackMessaging::ReplyHandler passed intsendc as a base
CORBA::Object . A truly dynamic client can implement thReplyHandler using
the DSI. Specifying a niReplyHandler is equivalent to invokingend with a flag of
CORBA::INV_NO_RESPONSE.

As with send, sendc may raise a standard system exception if a failure is detected
before control is returned to the client, but this is not guaranteed. All other exceptions
will be passed to th&®eplyHandler .

7-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7.3 ORB Operations

7.3.1 send_multiple_requests
module CORBA {

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req
);
3
3

send_multiple_requests initiates more than one request in parallel. Liéend,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on a request aftdnvoke , send, or send_multiple_requests for that
request was called rais€&AD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request afteinvoke , send, or
send_multiple_requests for that request was called raisBAD_INV_ORDER
with standard minor code 10. end_multiple_requests raises

BAD_INV_ORDER, the actual number of requests that were sent is implementation
dependent.

7.3.2 get_next_response and poll_next_response
module CORBA {

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

boolean poll_next_response();

void get_next_response(

July 2002 CORBA, v3.0: ORB Operations 7-11

out Request req
) raises (WrongTransaction);
h
h

Poll_next_response determines whether any request has complete@iRNE return
indicates that at least one h&LSE indicates that none have completed. Return is
immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there
is no guaranteed ordering among the completed requests, so the order in which they are
returned from successivget_next_response calls is not necessarily related to the

order in which they finish.

A request has an associated transaction context if the thread originating the request had
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise th&/rongTransaction exception if the
request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

Calling poll_response before send osend_multiple_requests for that request
raisesBAD _INV_ORDER with standard minor code 11. Callimgpll_response

after callinginvoke raisesBAD_INV_ORDER with standard minor code 13.
Calling poll_response after callingget_response raisesBAD_INV_ORDER

with standard minor code 12. Callinmpll_response after that request was returned
by get_next_response raisesBAD_INV_ORDER with standard minor code 12.

Callingget_next_response or poll_next_response at atime when no requests are
outstanding raiseBAD_INV_ORDER with standard minor code 11. If concurrent
calls toget_next_response or poll_next response are in progress, the exact
outcome is implementation dependent; howeget, next response is guaranteed
not to return the same completed request to more than one caller.

7.4 Polling

There are two types of Polling model invocations that allow a client to proceed before
the request finishes: The Dll'send (which supports deferred synchronous

invocations) and the typesendp variants of the interface stubs (which support both
deferred synchronous and asynchronous invocations). This section describes a single
mechanism that allows a client to query or block on the completion of outstanding
requests.

® For the typed polling modelkéndp), a client invokes the request’s type-specific
Poller to receive the response. This poll can either block (wait for the completion)
or return immediately if the request isn't finished yet, depending on the value of the
first parameter. Alternately, a client can simply query whether the request has
completed by using the generic non-blocki@@®RBA::Pollable::is_ready()
operation defined on the base interface that is inherited by all type-specific pollers.

7-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

7

July 2002

For the sake of efficiency, it must be possible to query or block on multiple async
pollers in a single operation. To do this, it is necessary to identify precisely, which
such pollers are to be polled.

® A client might want to mix deferred typed and dynamic operations. Deferred DI (in
some unholy combination of language mappings) has operations somewhat similar
to those of the typedoller: ORB::poll_next _response and
ORB::get_next_response . It should be possible to mix the two kinds of polling:
typed and dynamic.

® Other potential happenings might occur that are susceptible to polling in current or
future CORBA. This mechanism is designed for extensibility so that other ORB
services can perform a poll as a part of the single poll operation described here.

The mechanism for generalized polling on multiple types of occurrences uses the
CORBA::PollableSet interface.

module CORBA {
local interface PollableSet;

abstract valuetype Pollable {
boolean is_ready(
in unsigned long timeout

);

PollableSet create_pollable_set();

2
abstract valuetype DIIPollable : Pollable { };
local interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DllPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable get_ready_pollable(
in unsigned long timeout
) raises(NoPossiblePollable);

void remove(

in Pollable potential
) raises(UnknownPollable);

CORBA, v3.0: Polling 7-13

unsigned short number_left();
h
h

7.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered with
a pollable set to allow a single client thread to block on multiple potential happenings
at the same time.

7.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);

Returns the valudRUE if and only if the specific happening represented by the
pollable is ready to be consumed. Returns the v&INESE if the pollable is not yet
ready to be consumed. If thBneout argument is the maximum value fansigned
long, the operation will block until it can return the valT&RUE indicating that its
happening is ready to be consumed. If theeout argument is the value 0, the
operation returns immediately.

7.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is ®ollable , it is possible to create a set of such pollables, which can be
gueried or upon which a client can block. Tbreate pollable_set operation creates
a PollableSet object reference for an object with an empty set of pollable entities.

7.4.2 Abstract Valuetype DlIPollable

The specificPollable that indicates interest in DIl requests.NIPollable can be
used in conjunction with a pollable set to allow a client to block or poll for the
completion of DIl requests, similar to the use of

CORBA::ORB::get_next _response . When theDlIPollable is returned from
PollableSet::poll , the reply to some DIl request must be ready for processing.

7.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed. The
client adds potential happenings to the set and later queries the set to see if any have
occurred. PollableSet is a locality constrained object.

7-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Note —There is a factory foPollableSet on the generid®ollable interface. Some
implementation of this interface, such as a type-specific poller value, must first be
accessible before a client can creatéalableSet .

7.4.3.1 create_dii_pollable

DllPollable create_dii_pollable();

Returns an instance @llPollable that can subsequently be registered to indicate
interest in replies to DIl requests.

7.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);

Theadd_pollable operation adds a potential happening to ButlableSet . The
suppliedPollable parameter is some implementation that can be polled for readiness.
To register interest in DIl requests, an instanc®dPollable is added to the pollable
set.

7.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout
) raises(NoPossiblePollable);

Theget_ready_pollable operation asks thBollableSet if any of its potential
happenings have occurred. Thimeout parameter indicates how many milliseconds
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the standard system exception
TIMEOUT. Any delegated invocations used by the implementation of this polling
operation are subject to the sindglmeout parameter, which supersedes any ORB or
thread-level timeout quality of service. Two specific values are of interest:

« 0 - the call is a non-blocking query that raises the standard system exception
NO_RESPONSE if the reply is not immediately available.

« 2321 - the maximum value founsigned long indicates no timeout should be
used. The query will not return until the reply is available.

If the PollableSet contains no potential happenings, tNePossiblePollable
exception is raised. If an actual happening is returnedPtiableSet removes that
happening from the set. For the typBdller, removing the happening is necessary
since its usefulness ends once faler completes. In the case of a DIl happening,
there may still be deferred requests outstanding; if this is the case, the client
application must add thBllPollable again to thePollableSet .

July 2002 CORBA, v3.0: Polling 7-15

When theget_ready_pollable operation blocks, the ORB has control of the thread

and can process any work it has (such as receiving and dispatching requests through its
Object Adapter). Thget_ready_pollable operation can be used in an “event-style
main loop” usingORB::work_pending andORB::perform_work .

If the ORB supports multiple threads, one thread may be blocking BollableSet

while another is adding and removing potential happenings from the set. It is valid for
the PollableSet to change dynamically while poll is in progress. If another thread’s
PollableSet::remove operation leaves thBollableSet empty, any blocked threads
raise theNoPossiblePollable exception.

7.4.3.4 remove

void remove(
in Pollable potential
) raises(UnknownPollable);

Theremove operation deletes the potential happening identified bypibtential
parameter from th@ollableSet . If it was not a member of the set, the
UnknownPollable exception is raised.

7.4.3.5 number_left

unsigned short number_left();

Thenumber_left operation returns the number of potential happenings in the pollable
set. A returned value of zero means that there are no potential happenings in the set, in
which case a query on the set would raise M@PossibleHappening exception.

7.5 List Operations

NVList is a pseudo-interface that facilitates manipulation of list of name value pairs.
The operations that creaMV/List objects are defined in thORB interface section of
Chapter 4, but are described in this section. N\dList pseudo-interface is shown

below.
interface NVList { / PIDL

void add_item (
in Identifier item_name, // name of item
in TypeCode item_type, /I item datatype
in OpaqueValue value, /I item value
in long value_len, I/l length of item value
in Flags item_flags /I item flags

);

void free ();

void free_memory ();

7-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

void get_count (
out long count /l number of entries in the list
);
2

InterfaceNVList is defined in the CORBA module.

7.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

void create_list (//PIDL

in long count, /[number of items to allocate for list
out NVList new_list // newly created list

);

This operation allocates a list and clears it for initial use. The specified count is a
“hint” to help with the storage allocation. List items may be added to the list using the

add_item routine. Items are added starting with thadot() ,” in the next available
slot.

An NVList is a partially opaque structure. It may only be allocated via a call to
create_list.

7.5.2 add_item

void add_item (/I PIDL
in Identifier item_name, /I name of item
in TypeCode item_type, /I item datatype
in OpaqueValue value, /[item value
in long value_len, I/l length of item value
in Flags item_flags /I item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-&em_flags may also take the following flag values:
IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in
Section 7.1.1, “Common Data Structures,” on page 7-2 may be used here to indicate
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If a list structure is added as an item (e.g., a “sublist”), EHEPENDENT _LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.

CORBA, v3.0: List Operations 7-17

7.5.3 free

void free (); / PIDL

This operation frees the list structure and any associated memory (an implicit call to
the listfree_memory operation is done).

7.5.4 free_memory

void free_memory (); / PIDL

This operation frees any dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

7.5.5 get_count

void get_count (/ PIDL
out long count /l number of entries in the list

);

This operation returns the total number of items added to the list.

7.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (/ PIDL
in OperationDef oper, I/ operation
out NVList new_list /I argument definitions
);

This operation returns aNVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be usdayimamic
Invocationrequests. The arguments are returned in the same order as they were defined
for the operation.

The listfree operation is used to free the returned information.

7-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Dynamic Skeleton Interface 8

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations.
That is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provides
access to the operation name and parameters in a manner analogous to the client side’s
Dynamic Invocation Interface. Purely static knowledge of those parameters may be
used, or dynamic knowledge (perhaps determined through an Interface Repository)
may also be used, to determine the parameters.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 8-1
“Overview” 8-2
“ServerRequestPseudo-Object” 8-3
“DSI: Language Mapping” 8-4

8.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons, but
serves the same architectural role.

July 2002 Common Object Request Broker Architecture (CORBA) , v3.0 8-1

8-2

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DI). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DI, the client who invokes an object cannot determine
whether the implementation is using a type-specific skeleton or the DSI to connect the
implementation to the ORB.

Dynamic Object Implementation

Dynamy€ Skeleton Skeleton

/ Object Adapter

/ ORB Core

8.2 Overview

Figure 8-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DIl, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

The basic idea of the DSl is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, and the
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters
that provide a DSI. See Section 11.6.11, “Single Servant, Many Objects and Types,
Using DSI,” on page 11-64 for the specification of the DSI for the Portable Object
Adapter.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

8.3 ServerRequestPseudo-Object

July 2002

8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the DIl. The object adapter dispatches an
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {

interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

2

3

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target object will
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's “most-derived” interface. Note that the operation names for
getting and setting attributes arget_<attribute_name> and

set<attribute_name> , respectively. The operation attribute can be accessed by the
DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values will
be retrieved, witrarguments . Unless it callsset_exception , the DIR must call
arguments exactly once, even if the operation signature contains no parameters. Once
arguments or set_exception has been called, callingrguments on the same
ServerRequest will resultin aBAD_INV_ORDER system exception with standard
minor code 7. The DIR must pass inaoguments anNVList initialized with

TypeCodes and Flags describing the parameter types for the operation, in the order in
which they appear in the IDL specification (left to right). A potentially-differBivList

will be returned fromarguments , with the “in” and “inout” argument values supplied.

If it does not callset_exception , the DIR must supply the returnétVList with return
values for any “out” arguments before returning, and may also change the return values
for any “inout” arguments.

When the operation is not an attribute access, and the operation's IDL definition contains
a context expressiortx will return the context information specified in IDL for the
operation. Otherwise it will return a nfontext reference. Callingtx before

CORBAV3.0: ServerRequestPseudo-Object 8-3

arguments has been called or aftetx, set_result , or set_exception has been
called will resultin aBAD_INV_ORDER system exception with standard minor code
8.

Theset_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type,
set_result must be called exactly once before the DIR returns. If the operation has a
void result typeset_result may optionally be called once with akny whose type is
tk_void . Callingset_result beforearguments has been called or afteet_result

or set_exception has been called will result inBAD_INV_ORDER system
exception with standard minor code 8. Calling set_result without having previously
called ctx when the operation IDL contains a context expression will result in a
MARSHAL system exception with standard minor code 2. If M\éList passed to
arguments did not describe all parameters passed by the client, it may result in a
MARSHAL system exception with standard minor code 3.

The DIR may callset_exception at any time to return an exception to the client. The
Any passed teet_exception must contain either a system exception or one of the user
exceptions specified in thaises expression of the invoked operation’s IDL definition.
Passing in ar\ny that does not contain an exception will result iBAD PARAM
system exception with standard minor code 21. Passing in an unlisted user exception
will result in either the DIR receiving BAD_PARAM system exception with standard
minor code 22 or in the client receiving &NKNOWN system exception with

standard minor code 1.

See each language mapping for a description of the memory management aspects of the
parameters to th8erverRequest operations.

8.4 DSI: Language Mapping

Because DSl is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping the
Dynamic Skeleton Interface to programming languages. Each language provides its
own mapping for DSI.

8.4.1 ServerRequest’'s Handling of Operation Parameters

There is no requirement thaterverRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passed from skeletons into statically typed implementation routines, and vice
versa.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

8.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through
the Object Adapter. An Object Adapter does not have to support the Dynamic Skeleton
Interface but, if it does, the Object Adapter is responsible for the detalils.

July 2002 CORBAv3.0: DSI: Language Mapping 8-5

8-6

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

9.1 Overview

July 2002

Dynamic Managementof Any Values 9

An any can be passed to a program that doesn’t have any static information for the
type of theany (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receivingutlye

does not have a portable method of using it.

The facility presented here enables traversal of the data value associated afith an
runtime and extraction of the primitive constituents of the data value. This is especially
helpful for writing powerful generic servers (bridges, event channels supporting
filtering).

Similarly, this facility enables the construction of any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools).

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 9-1
“DynAny API” 9-3
“Usage in C++ Language” 9-26

Unless explicitly stated otherwise, all IDL presented in Section 9.1, “Overview,” on
page 9-1 through Section 9.3, “Usage in C++ Language,” on page 9-26 is part of the
DynamicAny module.

Common Object Request Broker Architecture (CORBA), v3.0 9-1

9-2

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. ADynAny obiject is associated with a data value, which corresponds
to a copy of the value inserted into any.

A DynAny object may be viewed as an ordered collection of compobgntAny s.

For DynAny s representing a basic type, suchl@y , or a type without components,
such as an empty exception, the ordered collection of components is empty. Each
DynAny object maintains the notion of a current position into its collection of
componenDynAny s. The current position is identified by an index value that runs
from 0 to n-1, where n is the number of components. The special index vélue
indicates a current position that points nowhere. For values that cannot have a current
position (such as an empty exception), the index value is fixedLatf a DynAny is
initialized with a value that has components, the index is initialized to 0. After creation
of an uninitializedDynAny (that is, aDynAny that has no value but @&ypeCode

that permits components), the current position depends on the type of value
represented by thBynAny . (The current position is set to 0 efl, depending on
whether the newbynAny gets default values for its components.)

The iteration operationsewind , seek, andnext can be used to change the current
position and theurrent_component operation returns the component at the current
position. Thecomponent_count operation returns the number of components of a
DynAny . Collectively, these operations enable iteration over the components of a
DynAny , for example, to (recursively) examine its contents.

A constructeddynAny object is aDynAny object associated with a constructed type.
There is a different interface, inheriting from tBynAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

A constructedDynAny object exports operations that enable the creation of new
DynAny obijects, each of them associated with a component of the constructed data
value.

As an example, ®ynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for each
structure member. THBynStruct object exports operations that enable the creation of
new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (construdigaiAny object,
such as @ynAny representing a structure member that was created from a
DynStruct , the membeDynAny is logically contained in th®ynStruct .

Destroying a top-leveDynAny object (one that was not obtained as a component of
anotherDynAny) also destroys any componddynAny objects obtained from it.
Destroying a non-top levédynAny object does nothing. Invoking operations on a
destroyed top-leveDynAny or any of its descendants raises
OBJECT_NOT_EXIST. Note that simply releasing all references tDynAny

object does not delete tH@ynAny or components; eaddynAny created with one of
the create operations or with tisepy operation must be explicitly destroyed to avoid
memory leaks.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

9.2 DynAny API

July 2002

If the programmer wants to destroyDynAny object but still wants to manipulate

some component of the data value associated with it, then he or she should first create
aDynAny for the component and, after that, make a copy of the cre@yed\ny

object.

The behavior oDynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of abDyagsy
objects are intended to be used for traversing values extracteddings or
constructing values adinys at runtime. Their use for other purposes is not
recommended.

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

/I 1DL

/I File: DynamicAny.id|

#ifndef _DYNAMIC_ANY_IDL
#define _DYNAMIC_ANY_IDL_
import ::CORBA,

module DynamicAny {
typeprefix DynamicAny “omg.org”;

local interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};
CORBA::TypeCode type();
void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();
boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

CORBA, v3.0: DynAny API 9-3

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);
void insert_char(in char value)
raises(TypeMismatch, InvalidValue);
void insert_short(in short value)
raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);
void insert_long(in long value)
raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);
void insert_float(in float value)
raises(TypeMismatch, InvalidValue);
void insert_double(in double value)
raises(TypeMismatch, InvalidValue);
void insert_string(in string value)
raises(TypeMismatch, InvalidValue);
void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);
void insert_any(in any value)
raises(TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

long get_long()
raises(TypeMismatch, InvalidValue);

unsigned long get_ulong()
raises(TypeMismatch, InvalidValue);
float get_float()
raises(TypeMismatch, InvalidValue);
double get_double()
raises(TypeMismatch, InvalidValue);
string get_string()
raises(TypeMismatch, InvalidValue);
Object get_reference()
raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);
long long get_longlong()
raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);
long double get_longdouble()
raises(TypeMismatch, InvalidValue);
wchar get_wchar()
raises(TypeMismatch, InvalidValue);
wstring get_wstring()
raises(TypeMismatch, InvalidValue);
any get_any()
raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);
ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);

void rewind();

boolean next();

unsigned long component_count();

DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidValue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ushort_seq(in CORBA::UShortSeq value)

July 2002 CORBA, v3.0: DynAny API

9-6

raises(TypeMismatch, InvalidValue);

void insert_long_seq(in CORBA::LongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulong_seq(in CORBA::ULongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_float_seq(in CORBA::FloatSeq value)
raises(TypeMismatch, InvalidValue);

void insert_double_seq(in CORBA::DoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longlong_seq(in CORBA::LongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong_seq(in CORBA::ULongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble_seq(in CORBA::LongDoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_wchar_seq(in CORBA::WCharSeq value)
raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);
CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);
CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);
CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidValue);
CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongLongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidValue);
CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidValue);

h

local interface DynFixed : DynAny {
string get_value();

boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

h

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

2
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

2
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

3

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

3

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidVvalue);
FieldName member_name() raises(InvalidValue);
CORBA:: TCKind member_kind() raises(InvalidValue);

2

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

July 2002 CORBA, v3.0: DynAny API 9-7

9-8

local interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len) raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

h

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

h

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

h

local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);

h

local interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

July 2002

exception MustTruncate { };

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny
create_dyn_any_from_type_code(in CORBA:: TypeCode type)
raises(InconsistentTypeCode);

DynAny create_dyn_any_without_truncation(in any value)
raises(InconsistentTypeCode, MustTruncate);
DynAnySeq create_multiple_dyn_anys(
in AnySeq values,
in boolean allow_truncate)
raises(InconsistentTypeCode, MustTruncate);

AnySeq create_multiple_anys(in DynAnySeq values);
h
}; I module DynamicAny

#endif // _DYNAMIC_ANY_IDL_

9.2.1 Creating a DynAny Obiject

A DynAny object can be created as a result of:
® invoking an operation on an existirigynAny object

® invoking an operation on BynAnyFactory object

A constructedDynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constitgmény
objects also support theopy operation for creating ne®@ynAny objects.

In addition,DynAny objects can be created by invoking operations on the
DynAnyFactory object. A reference to thBynAnyFactory object is obtained by
calling CORBA::ORB::resolve_initial_references with the identifier parameter
set to“DynAnyFactory”

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny create_dyn_any from_type code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

3

Thecreate_dyn_any operation creates a nelynAny object from anany value. A
copy of theTypeCode associated with thany value is assigned to the resulting
DynAny object. The value associated with tbgnAny object is a copy of the value
in the original any. Thereate_dyn_any operation sets the current position of the

CORBA, v3.0: DynAny API 9-9

9-10

createdDynAny to zero if the passed value has components; otherwise, the current
position is set to-1. The operation raisdsconsistentTypeCode if value has a
TypeCode with a TCKind of tk_Principal or tk_native.

Thecreate_dyn_any from_type code operation creates BynAny from a
TypeCode . Depending on thd&ypeCode, the created object may be of type
DynAny, or one of its derived types, such BynStruct . The returned reference can
be narrowed to the derived type.

For bothcreate_dyn_any andcreate_dyn_any from_type code |, the source type
code is copied into thBynAny object unchanged. This means that, after creation of a
DynAny obiject, the source type code and the type code insid®ymAAny must
compare equal as determined BypeCode::equal . The same is true for type codes
extracted from @ynAny with the type operation and for type codes that are part of
any values that are constructed fronDgnAny : such type codes compare equal to to
the type code that was originally used to create@yaAny . For a given parent
DynAny with its associatedypeCode , the TypeCode of a componenDynAny

also compares equal to the corresponding results ofra@ber_type or
component_type operation on the parerfiypeCode .

The create_dyn_any_without_truncation operation has the same semantics as
create_dyn_any , but will raise theMustTruncate exception if it cannot avoid
truncating a valuetype.

The create_multiple_dyn_anys operation converts a sequence of anys into a
sequence obynAnys , ensuring that each reference to a valuetype instance is
converted consistently to the sarbgnValue or DynValueBox instance. If the
allow_truncate parameter is false, the operation will raiseMustTruncate
exception if it cannot avoid truncating a valuetype.

The create_multiple_anys operation converts a sequence®fnAnys into a
sequence oénys, ensuring that eacBynValue or DynValueBox instance is
consistently converted to the same valuetype instance.

Creation ofDynAnys with TCKind tk_null andtk void is legal and results in the
creation of abynAny without a value and with zero components.

In all cases, dynAny constructed from dypeCode has an initial default value. The
default values of basic types are:

®* FALSE for Boolean

® zero for numeric types

® zero for typesoctet, char, andwchar

® the empty string fosstring andwstring

® nil for object references

® atype code with &CKind value oftk_null for type codes

® for any values, amany containing a type code with 8CKind value oftk_null
type and no value

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

July 2002

For complex types, creation of the correspondiygAny assigns a default value as
follows:

®* For DynSequence , the operation sets the current position-tband creates an
empty sequence.

® For DynEnum , the operation sets the current position-tband sets the value of
the enumerator to the first enumerator value indicated byTiipeCode .

* For DynFixed , operations set the current position-th and sets the value zero.

® For DynStruct , the operation sets the current position-tb for empty exceptions
and to zero for all otheTypeCode s. The members (if any) are (recursively)
initialized to their default values.

® For DynArray , the operation sets the current position to zero and (recursively)
initializes elements to their default value.

® For DynUnion , the operation sets the current position to zero. The discriminator
value is set to a value consistent with the first named member of the union. That
member is activated and (recursively) initialized to its default value.

* DynValue andDynValueBox are initialized to a null value.

Dynamic interpretation of aany usually involves creating BynAny object using
DynAnyFactory::create_dyn_any as the first step. Depending on the type of the
any, the resultingDynAny object reference can be narrowed t®gnFixed ,
DynStruct , DynSequence , DynArray , DynUnion , DynEnum , or DynValue

object reference.

Dynamic creation of amny involves creating &ynAny object using
DynAnyFactory:.create_dyn_any from_type code , passing thélypeCode
associated with the value to be created. The returned reference is narrowed to one of
the complex types, such &ynStruct , if appropriate. Then, the value can be

initialized by means of invoking operations on the resulting object. Finallyiahany
operation can be invoked to create amy value from the constructebynAny .

9.2.2 The DynAny Interface

The following operations can be applied t®gnAny object:

® Obtaining theTypeCode associated with th®ynAny object.

® Generating arany value from theDynAny object.

® Comparing twoDynAny objects for equality.

® Destroying theDynAny obiject.

® Creating aDynAny object as a copy of thBynAny object.

® Inserting/getting a value of some basic type into/from Ehy@Any object.
® |[terating through the components oDgnAny .

® |nitializing a DynAny object from anotheDynAny object.

® Initializing a DynAny object from anany value.

CORBA, v3.0: DynAny API 9-11

9-12

9.2.2.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny obiject is created with aypeCode value assigned to it. ThiSypeCode
value determines the type of the value handled througlbh®Any object. Thetype
operation returns th&ypeCode associated with ®ynAny object.

Note that theTypeCode associated with ®ynAny obiject is initialized at the time the
DynAny is created and cannot be changed during lifetime ofDiipAny object.

9.2.2.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

Theassign operation initializes the value associated witBynAny object with the
value associated with anothBynAny object.

If the type of the passeDBynAny is not equivalent to the type of targBynAny, the
operation raise§ypeMismatch. The current position of the targBlynAny is set to
zero for values that have components and-1dfor values that do not have
components.

9.2.2.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

Thefrom_any operation initializes the value associated witBynAny object with
the value contained in aany.

If the type of the passedny is not equivalent to the type of targBynAny, the
operation raisedypeMismatch. If the passediny does not contain a legal value
(such as a null string), the operation raisegalidValue. The current position of the
targetDynAny is set to zero for values that have components andlttor values that
do not have components.

9.2.2.4 Generating an any value from a DynAny object

any to_any();

Theto_any operation creates amny value from aDynAny object. A copy of the
TypeCode associated with th®ynAny object is assigned to the resultiagy. The
value associated with tHBynAny object is copied into thany.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9.2.2.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares t®ynAny references for equality and returns true if

the DynAny s are equal, false otherwise. HOynAny references that are not derived
from DynValueCommon , they are equal if theiTypeCode s are equivalent and,
recursively, all componeriDynAny s are equal. FobynAny references that are

derived fromDynValueCommon , they are equal only if they are exactly the same
reference. The current position of the tidynAny s being compared has no effect on

the result of equal. To determine equality of object references, the equal operation uses
Object::is_equivalent . To determine equality of type codes, the equal operation uses
TypeCode::equivalent .

Note —If two DynAny s happen to contain *values* of typg/peCode , these values
are compared usinypeCode::equal . The type codes that *describe* the values of
DynAny s are always compared usifigpeCode::equivalent , however. (In the case
of comparing twoDynAny s containing type code values, the type codes describing
these type code values atk TypeCode in eachDynAny, and will therefore always
compare as equivalent.)

9.2.2.6 Destroying a DynAny object

void destroy();

Thedestroy operation destroys BynAny object. This operation frees any resources
used to represent the data value associated widhreAny object.destroy must be
invoked on references obtained from one of the creation operations on the
DynAnyFactory interface or on a reference returned BynAny::copy to avoid
resource leaks. Invokindestroy on componenDynAny objects (for example, on
objects returned by theurrent_component operation) does nothing.

Destruction of aDynAny object implies destruction of abynAny objects obtained
from it. That is, references to components of a destrdygdAny become invalid;
invocations on such references ra®@8JECT_NOT_EXIST.

It is possible to manipulate a component dbgnAny beyond the life time of the
DynAny from which the component was obtained by making a copy of the component
with the copy operation before destroying tligynAny from which the component

was obtained.

July 2002 CORBA, v3.0: DynAny API 9-13

9-14

9.2.2.7

9.2.2.8

Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a nelynAny object whose value is a deep copy of the
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it on
one of the types derived fromynAny , such aDynStruct , creates the derived type
but returns its reference as tBynAny base type.

Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values
into/from aDynAny object.

Both bounded and unbounded strings are inserted usgegt_string and
insert_wstring . These operations raise thesalidValue exception if the string
inserted is longer than the bound of a bounded string.

Calling an insert or get operation orDynAny that has components but has a current
position of-1 raiseslnvalidVvalue .

Get operations rais€ypeMismatch if the accessed component in tBynAny is of
a type that is not equivalent to the requested type. (Notegémtstring and
get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value ifitgpeCode is equivalent to
the TypeCode contained in thddynAny or, if the DynAny has components, is
equivalent to théefypeCode of the DynAny at the current position.

Theget dyn_any andinsert_dyn_any operations are provided to deal widimy
values that contain anothany. The operations behave identicallyget_any and
insert_any , but use parameters of tyfig/nAny (instead of any); they are useful to
avoid otherwise redundant conversions between anyDymd\ny .

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle lagiény objects but are also helpful to
handle constructeBynAny objects. Inserting a basic data type value into a
constructedDynAny object implies initializing the current component of the
constructed data value associated with Eh@mAny object. For example, invoking
insert_boolean on aDynStruct implies inserting a boolean data value at the current
position of the associated struct data valuedyth_construct points to a
constructeddynAny object, then:

result = dyn_construct->get_boolean();

has the same effect as:
DynamicAny::DynAny_var temp =

dyn_construct->current_component();
result = temp->get_boolean();

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

July 2002

Calling an insert or get operation onDynAny whose current component itself has
components raisefypeMismatch.

In addition, availability of these operations enable the traversahgt associated with
sequences of basic data types without the need to geneEytaAny object for each
element in the sequence.

In the same way that basic types are inserted/extracted frBynany object, arrays
or sequences of basic types can be inserted/extracted fioymAny . For example,
theget_boolean_seq operation extracts a sequencebmiblean s from aDynAny
that contains either a sequence or an arraparflean s, and the
insert_boolean_seq operation stores the sequence back intoDaAny .

The TypeCode of the DynAny, or theTypeCode of the component at the current
position of theDynAny , must be equivalent to a sequence or arfggeCode with
the basic type as its element, otherwise the operations TgigeMismatch. For the
insert operations, if the length of the sequence is incompatible with a bounded
sequence or array represented by EhaAny , then the operations raise
InvalidValue.

9.2.2.9 lterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values
pointed to byDynStruct , DynSequence , DynArray , DynUnion , DynAny , and
DynValue objects.

As mentioned previously, BynAny object may be seen as an ordered collection of
components, together with a current position.

boolean seek(in long index);

The seek operation sets the current positionitmlex . The current position is indexed

0 to n-1, that is, index zero corresponds to the first component. The operation returns
true if the resulting current position indicates a component oDjigAny and false if
index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current positior1ao

indicate no component and returns false. Passing a non-negative index value for a
DynAny that does not have a component at the corresponding position sets the current
position to—1 and returns false.

void rewind();

Therewind operation is equivalent to callingeek(0);

boolean next();

Thenext operation advances the current position to the next component. The operation
returns true while the resulting current position indicates a component, false otherwise.
A false return value leaves the current position-at Invoking next on aDynAny

without components leaves the current positiorhtand returns false.

CORBA, v3.0: DynAny API 9-15

9-16

unsigned long component_count();

The component_count operation returns the number of components @fyaAny .

For aDynAny without components, it returns zero. The operation only counts the
components at the top level. For examplegdimponent_count is invoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of the
member.

For sequences, the operation returns the current number of elements. For structures,
exceptions, and valuetypes, the operation returns the number of members. For arrays,
the operation returns the number of elements. For unions, the operation returns 2 if the
discriminator indicates that a named member is active; otherwise, it returns 1. For
DynFixed andDynEnum , the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns thBynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call toewind , next, or seek return the
same component.

The returneddynAny object reference can be used to get/set the value of the current
component. If the current component represents a complex type, the returned reference
can be narrowed based on tihgpeCode to get the interface corresponding to the to

the complex type.

Calling current_component on aDynAny that cannot have components, such as a
DynEnum or an empty exception, raisdypeMismatch. Calling

current_component on aDynAny whose current position isl returns a nil
reference.

The iteration operations, together withrrent_component , can be used to
dynamically compose aany value. After creating a dynamic any, such as a
DynStruct , current_component andnext can be used to initialize all the
components of the value. Once the dynamic value is completely initialteedny
creates the correspondiegy value.

9.2.3 The DynFixed Interface

DynFixed objects are associated with values of the Ifided type.

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)
raises (TypeMismatch, InvalidValue);

h

Because IDL does not have a generic type that can represent fixed types with arbitrary
number of digits and arbitrary scale, the operations use thestilhg type.

The get_value operation returns the value oflynFixed .

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

Theset_value operation sets the value of tilynFixed . Theval string must contain
afixed string constant in the same format as used for IDL fixed-point literals.
However, the trailingl or D is optional. Ifval has more fractional digits than specified
by the scale of th®ynFixed , the extra digits are truncated. If the truncated value has
more digits than th®ynFixed , the operation raiseisivalidValue. If the value is not
too large,set_value returnsTRUE if no truncation was required;ALSE otherwise.
The return value iFRUE if val can be represented as tBgnFixed without loss of
precision. Ifval has more fractional digits than can be represented irDgrd=ixed ,
fractional digits are truncated and the return valuBA&SE. If val does not contain a
valid fixed-point literal or contains extraneous characters other than leading or trailing
white space, the operation raisBgpeMismatch.

9.2.4 The DynEnum Interface

DynEnum objects are associated with enumerated values.

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

2
Theget_as_string operation returns the value of tbgnEnum as an IDL identifier.

Theset_as_string operation sets the value of tiynEnum to the enumerated value
whose IDL identifier is passed in thalue parameter. Ifvalue contains a string that

is not a valid IDL identifier for the corresponding enumerated type, the operation raises
InvalidValue.

Theget _as_ulong operation returns the value of tiynEnum as the enumerated
value’s ordinal value. Enumerators have ordinal values 0-h as they appear from
left to right in the corresponding IDL definition.

Theset_as_ulong operation sets the value of tilynEnum as the enumerated
value’s ordinal value. Ifalue contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation laigakdValue.

The current position of ®ynEnum is always-1.

9.2.5 The DynStruct Interface

DynStruct objects are associated with struct values and exception values.

July 2002 CORBA, v3.0: DynAny API 9-17

9-18

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

¥

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
h
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If thédynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raisesinvalidValue.

This operation may return an empty string since TgpeCode of the value being
manipulated may not contain the names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns theTCKind associated with the member at the
current position. If theDynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raiseslnvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the
name and the value of each member in the struct associated ®ynStruct object.
The sequence contains members in the same order as the declaration order of members

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

9

as indicated by th®ynStruct 's TypeCode . The current position is not affected. The
member names in the returned sequence will be empty strings BDyh&truct ’s
TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the current
position to zero if the passed sequences has non-zero length; otherwise, if an empty
sequence is passed, the current position is selto

Members must appear in tiNameValuePairSeq in the order in which they appear in

the IDL specification of the struct. If one or more sequence elements have a type that
is not equivalent to th@ypeCode of the corresponding member, the operation raises
TypeMismatch. If the passed sequence has a number of elements that disagrees with
the number of members as indicated by EynStruct 's TypeCode , the operation
raiseslnvalidValue.

If member names are supplied in the passed sequence, they must either match the
corresponding member name in tBgnStruct 's TypeCode or must be empty

strings, otherwise, the operation raisggpeMismatch. Members must be supplied in
the same order as indicated by thgnStruct 's TypeCode . (The operation makes no
attempt to assign member values based on member names.)

Theget members_as_dyn_any andset members_as_dyn_any operations
have the same semantics as th&iry counterparts, but accept and return values of
type DynAny instead ofAny.

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

9.2.6 The DynUnion Interface

DynUnion objects are associated with unions.

local interface DynUnion : DynAny {

DynAny get_discriminator();

void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidValue);

CORBA::TCKind discriminator_kind();

DynAny member()
raises(InvalidValue);

FieldName member_name()
raises(InvalidValue);

July 2002 CORBA, v3.0: DynAny API 9-19

CORBA:: TCKind member_kind()
raises(InvalidValue);
boolean is_set_to_default_member();

h

The DynUnion interface allows for the insertion/extraction of an OMG IDL union
type into/from aDynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active member.cbhgonent_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()

The get_discriminator operation returns the current discriminator value of the
DynUnion .

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of tBynUnion to the
specified value. If théfypeCode of thed parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation raisBgpeMismatch.

Setting the discriminator to a value that is consistent with the currently active union
member does not affect the currently active member. Setting the discriminator to a
value that is inconsistent with the currently active member deactivates the member and
activates the member that is consistent with the new discriminator value (if there is a
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discriminator
value indicates a non-existent union membeay_no_active_member returns true

in this case). Otherwise, if the discriminator value indicates a named union member,
the current position is set to hds _no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

Theset_to_default_ member operation sets the discriminator to a value that is
consistent with the value of thdefault case of a union; it sets the current position to
zero and causesomponent_count to return 2. Callingset_to_default_member

on a union that does not have an expliditfault case raise3ypeMismatch.

9-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

void set_to_no_active_member()
raises(TypeMismatch);

Theset _to_no_active_member operation sets the discriminator to a value that does
not correspond to any of the union’s case labels; it sets the current position to zero and
causesomponent_count to return 1. Callingset_to_no_active_member on a

union that has an explicdefault case or on a union that uses the entire range of
discriminator values for explicitase labels raiseSypeMismatch.

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an exptiage label). Calling this
operation on a union that hasdafault case returns false. Calling this operation on a
union that uses the entire range of discriminator values for explisé labels returns
false.

CORBA::TCKind discriminator_kind();

Thediscriminator_kind operation returns th& CKind value of the discriminator’s
TypeCode .

CORBA:: TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns th&CKind value of the currently active
member’sTypeCode . Calling this operation on a union that does not have a currently
active member raiseivalidValue.

DynAny member()
raises(InvalidValue);

Themember operation returns the currently active member. If the union has no active
member, the operation raisésvalidValue. Note that the returned reference remains
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

Themember_name operation returns the name of the currently active member. If the
union’s TypeCode does not contain a member name for the currently active member,
the operation returns an empty string. Callimgmber_name on a union without an
active member raisdgivalidValue.

boolean is_set_to_default_member();

Theis_set_to_default_member operation returns TRUE if a union has an explicit
default label and the discriminator value does not match any of the union's other case
labels.

CORBA, v3.0: DynAny API 9-21

9-22

9.2.7 The DynSequence Interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len)
raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a
sequence adds new elements at the tail without affecting the values of already existing
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added
element if the previous current position was. Otherwise, if the previous current
position was not-1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting
the value of those elements that remain. The new current position after decreasing the
length of a sequence is determined as follows:

* |f the length of the sequence is set to zero, the current position is sdt to
® |f the current position is-1 before decreasing the length, it remains-ht

® |f the current position indicates a valid element and that element is not removed
when the length is decreased, the current position remains unaffected.

® |f the current position indicates a valid element and that element is removed, the
current position is set tel.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length ofalue . The current position is set to zero if
value has non-zero length and td if value is a zero-length sequence.

If value contains one or more elements whadgpeCode is not equivalent to the
elementTypeCode of the DynSequence , the operation raisesypeMismatch. If

the length of value exceeds the bound of a bounded sequence, the operation raises
InvalidValue.

Theget_elements_as_dyn_any andset_elements_as dyn_any operations have
the same semantics, but accept and return values oflypAny instead ofAny.

9.2.8 The DynArray Interface

DynArray objects are associated with arrays.

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements();

The get_elements operation returns the elements of thgnArray .

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

Theset_elements operation sets thBynArray to contain the passed elements. If the
sequence does not contain the same number of elements as the array dimension, the
operation raisefnvalidValue. If one or more elements have a type that is inconsistent
with the DynArray s TypeCode, the operation raisesypeMismatch.

Theget_elements_as_dyn_any andset_elements_as _dyn_any operations have
the same semantics as th@iny counterparts, but accept and return values of type
DynAny instead ofAny.

Note that the dimension of the array is contained inThpeCode , which is
accessible through thgpe attribute. It can also be obtained by calling the
component_count operation.

July 2002 CORBA, v3.0: DynAny API 9-23

9.2.9 The DynValueCommon Interface

DynValueCommon provides operations supported by both ¢nValue and
DynValueBox interfaces.

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

I3
boolean is_null();

Theis_null operation return§RUE if the DynValueCommon represents a null
valuetype.

void set_to_null();

Theset_to_null operation changes the representation &fyaValueCommon to a
null valuetype.

void set_to_value();

If the DynValueCommon represents a null valuetype, theet_to_value replaces it
with a newly constructed value, with its components initialized to default values as in
DynAnyFactory:.create_dyn_any from_type code . If the DynValueCommon
represents a non-null valuetype, then this operation has no effect.

A reference to &@ynValueCommon interface (and interfaces derived from it) exhibit
the same sharing semantics as the underlyaigetype that it represents. This means
that the relationships betweenluetypes in a graph of valuetypes will remain
unchanged when converted inBynAny form and vice versa. This is necessary to
ensure that applications that use b andDSI can correctly view and preserve the
semantics of thealuetype graph.

9.2.10 The DynValue Interface

DynValue objects are associated with non-boxed valuetypes.

9-24 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA:: TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidVvalue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidVvalue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

3

The DynValue interface can represent both null and non-null valuetypes. For a
DynValue representing a non-null valuetype, tbgnValue 's components comprise
the public and private members of the valuetype, including those inherited from
concrete base valuetypes, in the order of definitiorDyxValue representing a null
valuetype has no components and a current positiofi.of

The remaining operations on tli®/nValue interface generally have equivalent
semantics to the same operationsiynStruct . When invoked on &ynValue
representing a null valuetypget members andget members_as_dyn_any raise
InvalidValue. When invoked on @ynValue representing a null valuetype,
set_members andset_members_as_dyn_any convert theDynValue to a non-
null valuetype.

Warning — Indiscriminately changing the contents of private valuetype members can
cause the valuetype implementation to break by violating internal constraints. Access
to private members is provided to support such activities as ORB bridging and
debugging and should not be used to arbitrarily violate the encapsulation of the
valuetype.

9.2.11 The DynValueBox Interface

DynValueBox objects are associated with boxed valuetypes.

local interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

CORBA, v3.0: DynAny API 9-25

The DynValueBox interface can represent both null and non-null valuetypes. For a
DynValueBox representing a non-null valuetype, tBgnValueBox has a single
component of the boxed type. BynValueBox representing a null valuetype has no
components and a current position-af

any get_boxed_value()
raises(InvalidValue);

The get_boxed_value operation returns the boxed value as an any. If the
DynBoxedValue represents a null valuetype, the operation ralswslidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

Theset_boxed_value operation replaces the boxed value with the specified value. If
the type of the passed Any is not equivalent to the boxed type, the operation raises
TypeMismatch . If the passed\ny does not contain a legal value, the operation raises
InvalidValue . If the DynBoxedValue represents aull valuetype , it is converted to

a non-null value.

Theget boxed value _as dyn_any andset boxed value as dyn _any have
the same semantics as their any counterparts, but accept and return values of type
DynAny instead of any.

9.3 Usagein C++ Language

9-26

9.3.1 Dynamic Creation of CORBA::Any Values

9.3.1.1 Creating an any that contains a struct

Consider the following IDL definition:

/' 'DL

struct MyStruct {
long memberl;
boolean member2;

3

The following example illustrates how@ORBA::Any value may be constructed on
the fly containing a value of typ#lyStruct :

Il C++
CORBA::ORB varorb = ...;
DynamicAny::DynAnyFactory var dafact

= orb->resolve_initial_references(“DynAnyFactory”);
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::Long valuel =99;
CORBA::Boolean value2 = 1;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

mems.length(2);

mems[0].name = CORBA::string_dup(“memberl”);
mems[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup(“member2”);

mems[1].type
= CORBA:: TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
“IDL:MyStruct:1.0",
“MyStruct”,
mems

);

/I Construct the DynStruct object. Values for members are
/l the valuel and value2 variables

DynamicAny::DynAny_ptr dyn_any

= dafact->create_dyn_any(new_tc);
DynamicAny::DynStruct_ptr dyn_struct

= DynamicAny::DynStruct::_narrow(dyn_any);
CORBA::release(dyn_any);
dyn_struct->insert_long(valuel);

dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

9.3.2 Dynamic Interpretation of CORBA::Any Values

9.3.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events,
which correspond to a data structure containing a member dallattgent whose
value is true.

The following fragment of code corresponds to a method that determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

/I C++

CORBA::Boolean Tester::eval_filter(
DynamicAny::DynAnyFactory ptr dafact,
const CORBA::Any & event

CORBA::Boolean success = FALSE;
DynamicAny::DynAny_var;
try {

July 2002 CORBA, v3.0: Usage in C++ Language 9-27

/I First, convert the event to a DynAny.
/I Then attempt to narrow it to a DynStruct.
/I The _narrow only returns a reference
/I if the event is a struct.
dyn_var = dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);
if {CORBA::is_nil(dyn_struct)) {
CORBA::Boolean found = FALSE;
do {
CORBA::String_var member_name
= dyn_struct->current_member_name();
found = (strcmp(member_name, "is_urgent") == 0);
} while (ffound && dyn_struct->next());
if (found) {
/l We only create a DynAny object for the member
/l we were looking for:
DynamicAny::DynAny_var dyn_member
= dyn_struct->current_component();
success = dyn_member->get_boolean();

}
}
catch(...) {};
if /{CORBA::is_nil(dyn_var))

dyn_var->destroy();
return success;

}

9-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10.1 Overview

July 2002

The Interface Repository 10

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 10-1
“Scope of an Interface Repository” 10-2
“Implementation Dependencies” 10-4
“Basics” 10-5
“Interface Repository Interfaces” 10-11
“Repositorylds” 10-64
“OMG IDL for Interface Repository” 10-75

The Interface Repository is the component of the ORB that provides persistent storage
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provides
for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of
two forms:

Common Object Request Broker Architecture (CORBA), v3.0 10-1

10

1. By incorporating the information procedurally into stub routines (e.g., as code that
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e.,
as interface objects accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository
to interpret and handle the values provided in a request to:

® Provide type-checking of request signatures (whether the request was issued
through the DIl or through a stub).

® Assist in checking the correctness of interface inheritance graphs.

® Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used to:

® Manage the installation and distribution of interface definitions.
* Provide components of a CASE environment (for example, an interface browser).
® Provide interface information to language bindings (such as a compiler).

® Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 10.8,
“OMG IDL for Interface Repository,” on page 10-75; however, fragments of the
specification are used throughout this chapter as necessary.

10.2 Scope of an Interface Repository

10-2

Interface definitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interface definitions. An interface
definition contains a description of the operations it supports, including the types of the
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface and value definitions or might simply be defined for programmer
convenience and it stores TypeCodes [Section 4.11, “TypeCodes,” on page 4-52],
which are values that describe a type in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface/component/home definitions, and other modules. Modules may, for example,
correspond to the organization of OMG IDL definitions. They may also be used to
represent organizations defined for administration or other purposes.

The Interface Repository consists of a setraérface repository objecthat represent
the information in it. There are operations that operate on this apparent object
structure. It is an implementation’s choice whether these objects exist persistently or

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

are created when referenced in an operation on the repository. There are also
operations that extract information in an efficient form, obtaining a block of
information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because

* two ORBs have different requirements for the implementation of the Interface
Repository,

® an object implementation (such as an OODB) prefers to provide its own type
information, or

® it is desired to have different additional information stored in different repositories.

The use of TypeCodes (Section 4.11, “TypeCodes,” on page 4-52) and repository
identifiers is intended to allow different repositories to keep their information
consistent.

As shown in Figure 10-1 on page 10-3, the same interf2oe is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

SoftCo, Inc., Repository Customer, Inc., Repository
module softco { module testfirst {

interface Doc <id 123> { module softco {

void print(); interface Doc <id 123> {

¥ \ void print();

h h
3
3

module newrelease {
interface Doc <id 456> {
void print();
3
3

Figure 10-1 Using Repository IDs to establish correspondence between repositories

July 2002 CORBA, v3.0: Scope of an Interface Repository 10-3

10

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface. However, widely used interfaces will
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additional
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs together.
When an object is passed in a request from one ORB to another, it may be necessary to
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in the sending ORB, it is possible

to look up the interface in a repository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

10.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple
copies of interface definitions may be maintained each of which is distributed across
several machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy per
community of users. The object store may also determine whether or not all clients of
an interface set see exactly the same set at any given point in time or whether latency
in distributing copies of the set gives different users different views of the set at any
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with the
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

10.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attempt to
access the interface repository at any time by usingy#teinterface operation on

the object reference. Once information has been installed in the repository, programs,
stubs, and objects may depend on it. Updates to the repository must be done with care
to avoid disrupting the environment. A variety of techniques are available to help do
So.

10-4 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

10.4 Basics

July 2002

A coherent repository is one whose contents can be expressed as a valid collection of
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have known types, and so
forth. As information is added to the repository, it is possible that it may pass through
incoherent states. Media failures or communication errors might also cause it to appear
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository IDs, the repositories can
establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to their
repositories, but administrators may control updates to widely used repositories. Some
repository implementations might permit sharing of information, for example, several
developers’ repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common information. In any case, the result
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information,
and it may be possible to enter information that does not make sense. The repository
will report errors that it detects (e.g., defining two attributes with the same name) but
might not report all errors, for example, adding an attribute to a base interface may or
may not detect a name conflict with a derived interface. Despite these limitations, the
expectation is that a combination of conventions, administrative controls, and tools that
add information to the repository will work to create a coherent view of the repository
information.

Transactions and concurrency control mechanisms defined by the Object Services may
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update the
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as the
Transaction interface, which contains the transaction management operations. (For
more information about Object Services, including the Transaction and Concurrency
Control Services, refer to the individual CORBA Services specifications).

Often, rather than change the information, new versions will be created, allowing the
old version to continue to be valid. The new versions will have distinct repository IDs
and be completely different types as far as the repository and the ORBs are concerned.
The IR provides storage for version identifiers for named types, but does not specify
any additional versioning mechanism or semantics.

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

®* Names and |dentifiers

CORBA, v3.0: Basics 10-5

10

®* Types and TypeCodes
® |nterface Repository Objects

® Structure and Navigation of the Interface Repository

10.4.1 Names and ldentifiers

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface, struct,
union, exception and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, components, homes, value and
event types, value members, value boxes, constant, typedefs, exceptions, attributes, and
operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, components, homes, value
and event types, value members, value boxes, constants, typedefs, exceptions,
attributes, and operations. They can be used to synchronize definitions across multiple
ORBs and Repositories.

10.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data
value called a TypeCode. From the TypeCode alone it is possible to determine the
complete structure of a type. See Section 4.11, “TypeCodes,” on page 4-52 for more
information on the internal structure of TypeCodes.

10.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is
maintained as a collection a@fiterface repository objectsf the following types:

® Repository : the top-level module for the repository name space; it contains
constants, typedefs, exceptions, interface , component, home, value or event type
definitions, and modules.

®* ModuleDef : a logical grouping of interfaces and value types; it contains constants,
typedefs, exceptions, interface, component, home, value or event type definitions,
and other modules.

* |nterfaceDef : an interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

® ExtinterfaceDef : an extended version dfiterfaceDef that is capable of
accommodating attributes with exceptions.

® AbstractinterfaceDef : an abstract interface definition; it contains lists of
constants, types, exceptions, operations, and attributes.

® ExtAbstractinterfaceDef : an extended version &bstractinterfaceDef that is
capable of accommodating attributes with exceptions.

10-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

LocalinterfaceDef : a local interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

ExtLocallnterfaceDef : an extended version dfocallnterfaceDef that is capable
of accommodating attributes with exceptions.

ValueDef: a value type definition that contains lists of constants, types, exceptions,
operations, attributes and members

ExtValueDef : an extended version &alueDef that is capable of accommodating
attributes and initializers with exceptions.

EventDef : an event type definition that contains lists of constants, types,
exceptions, operations, attributes and members.

ValueBoxDef : the definition of a boxed value type.
ValueMemberDef : the definition of a member of the value type.
AttributeDef : the definition of an attribute of the interface or value type.

ExtAttributeDef : an extended version dttributeDef that is capable of
accommodating attributes with exceptions.

OperationDef : the definition of an operation of the interface, value or event type;
it contains lists of parameters and exceptions raised by this operation.

TypedefDef : base interface for definitions of named types that are not interfaces
components, homes, or value and event types.

ConstantDef : the definition of a named constant.
ExceptionDef : the definition of an exception that can be raised by an operation.

ComponentDef : a component definition; it contains lists of provides, uses,
consumes, publishes, supports, emits and attributes.

HomeDef: a home definition; it contains lists of constants, types, exceptions,
operations, attributes, factories and finders.

FactoryDef : the definition of a factory; it is an operation that is specifically used
for creating new instances of components in a home.

FinderDef : the definition of a finder; it is an operation that is specifically used to
find components within a home.

ProvidesDef : the definition of an interface that is provided by a component.
UsesDef: the definition of an interface that is used by a component.
EmitsDef : the definition of events that are emitted by a component.
PublishesDef : the definition of events that are published by a component.

ConsumesDef : the definition of events that are consumed by a component.

The interface specifications for eaaiterface repository objedists the attributes
maintained by that object (see Section 10.5, “Interface Repository Interfaces,” on
page 10-11). Many of these attributes correspond directly to OMG IDL statements. An
implementation can choose to maintain additional attributes to facilitate managing the

CORBA, v3.0: Basics 10-7

10

10-8

Repository or to record additional (proprietary) information about an interface.
Implementations that extend the IR interfaces shall do so by deriving new interfaces,
not by modifying the standard interfaces.

The CORBAspecification defines a minimal set of operations iftterface repository
objects Additional operations that an implementation of the Interface Repository may
provide could include operations that provide for the versioning of entities and for the
reverse compilation of specifications (i.e., the generation of a file containing an
object’s OMG IDL specification).

10.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a sateface
repository objectsThese objects are structured the same way definitions are
structured—some obijects (definitions) “contain” other objects.

The containment relationships for threerface repository objectypes in the Interface
Repository are shown in Figure 10-2.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

Repository or ComponentIR::Repository Each interface repository is represented
by a global root repository object.

ConstantDef The Repository IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes and modules that are defined outside
[Ext]interfaceDef the scope of a module.

[Ext]ValueDef

EventDef - only in ComponentIR::Repository
ValueBoxDef

ModuleDef

ComponentDef - only in ComponentIR::Repository
HomeDef - only in ComponentIR::Repository

ConstantDef The Module IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes, eventtypes, components, homes and other
ValueBoxDef modules defined within the scope of the module.

ModuleDef
[Ext][Abstract | local]InterfaceDef

An Interface IR object represents constants,

ConstantDef typedefs, exceptions, attributes, and operations
E&%%%%L?gef defined within or inherited by the interface.
[Ext]AttributeDef . .

OperationDef Operation IR objects reference

exception objects.
[Ext]ValueDef | EventDef - only in ComponentIR::Repository
ConstantDef A Valuetype IR object represents constants,

typedefs, exceptions, attributes, and operations
TypedefDef defined within or inherited by the interface.

ExceptionDef

[Ext]AttributeDef))

OperationDef Operation IR objects reference
ValueMemberDef ExceptionDef exception objects.

CompongntDef - only in ComponentIR::Repository
ProvidesDef A ComponentDef IR object represents the provides, uses,

ESQSDDeff emits, publishes, consumes and attributes
Pmt;FS he Def contained in the component.

ublishesbe Emits, publishes and consumes refers to event objects.
ConsumesDef

Provides and uses refers to interface objects.

[Ext]AttributeDef AttributeDef IR objects reference exception objects

HomeDef - only in ComponentIR::Repository

A HomeDef IR object represents factory and finder
defined within or inherited by home.
Factory and finder refer to exception objects.

FactoryDef
FinderDef

Figure 10-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining arinterfaceDef object directly from the ORB.

July 2002 CORBA, v3.0: Basics 10-9

10

2. Navigating through the module name space using a sequence of hames.

3. Locating thenterfaceDef object that corresponds to a particular repository
identifier.

There are four ways to locate a component in the Interface Repository, by:

1. Obtaining arComponentDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating theComponentDef object that corresponds to a particular repository

identifier.
4. Obtaining theComponentDef from theHomeDef object corresponding to its
home.

There are three ways to locate a home in the Interface Repository, by:
1. Obtaining arHomeDef object directly from the ORB.
2. Navigating through the module name space using a sequence of names.

3. Locating theHomeDef object that corresponds to a particular repository
identifier.

Note —It should be noted that given@omponentDef IR object, it is not possible to
obtain theHomeDef IR object for the home that manages this component, since there
could be multiple such homes, and the actual relation of a specific component to a
specific home is available only at runtime. To get to themeDef object

corresponding to the home of a given component, one needs to do a
CCMObject::get_home , and then do &£CMHome::get_home_def on the home

thus obtained.

Obtaining aninterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using gle¢ interface operation on
the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on the
object. Similarly, by using th€CMObject::get component_def operation, it is
possible to retrieve the Component Repository information about a component.

Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is possible
to obtain entries by name.

Locating thelnterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique.
By using the same identifier in two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional information
about the interface.

Analogous operations are provided for manipulating value and event types.

10-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

The ComponentlR module contains the IR Objects that were added to reflect new
IDL constructs that were added to support Components. These are built upon the IR
interfaces defined iICORBA module includingextinterfaceDef , ExtValueDef , and
ExtAttributeDef and thus are backward compatible extensions of the 2.5 and earlier
versions of the IR.

10.5 Interface Repository Interfaces

Several interfaces are usedlzsse interface$or objects in the IR. Theskase
interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the interfalé®Sbject, Container , andContained
described below. All IR objects inherit from thBObject interface, which provides an
operation for identifying the actual type of the object. Objects that are containers
inherit navigation operations from tt@ontainer interface. Objects that are contained
by other objects inherit navigation operations from @entained interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types. TipedefDef interface is
inherited by all named non-interface types.

The base interface$RObject, Contained , Container , IDLType , TypedefDef
ComponentlR::Container andComponentIR::EventPortDef are not instantiable.

All string data in the Interface Repository are encoded as defined by the 1SO 8859-1
coded character set.

Interface Repository operations indicate error conditions using the system exceptions
BAD_PARAM andBAD_INV_ORDER with specific minor codes. The specific
operations that raise these exceptions are documented in the description of the
operations. For a description of how these minor codes are encodedér thedy of
standard exceptions see Section 4.12.2, “System Exceptions,” on page 4-63 and
Section 4.12.4, “Standard Minor Exception Codes,” on page 4-72. The exceptions and
minor codes that are used by Interface Repository interfaces are as follows:

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception

BAD_PARAM

Minor Code | Explanation

2 RID is already defined in IFR

3 Name already used in the context in IFR
4 Target is not a valid container

5 Name clash in inherited context

July 2002

CORBA, v3.0: Interface Repository Interfaces 10-11

10

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception Minor Code | Explanation
BAD_PARAM 31 Attempt to define a oneway operation with non-void
result, out or inout parameters or user exceptions.
BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this
object
2 Attempt to destroy indestructible objects in IFR

10.5.1 Supporting Type Definitions

10-12

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

3

3

Identifier s are the simple names that identify modules, interfaces, components, homes,
value and event types, value members, value boxes, constants, typedefs, exceptions,
attributes, operations, ports, and native types. They correspond exactly to OMG IDL
identifiers. Anldentifier is not necessarily unique within an entire Interface

Repository; it is unique only within a particul&epository, ModuleDef ,

InterfaceDef , ComponentDef , HomeDef, ValueDef , EventDef, OperationDef

FactoryDef , or FinderDef .

A ScopedName is a name made up of one or mddentifier s separated by the

characters “:;". They correspond to OMG IDL scoped names.

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

10

July 2002

An absoluteScopedName is one that begins with “::” and unambiguously identifies
a definition in aRepository . An absoluteScopedName in a Repository
corresponds to global namein an OMG IDL file. A relative ScopedName does not
begin with “:” and must be resolved relative to some context.

A Repositoryld is an identifier used to uniquely and globally identify a module,
interface, component, home, value type, event type, value member, value box, native
type, constant, typedef, exception, attribute or operationR@gositoryld s are

defined as strings, they can be manipulated (e.g., copied and compared) using a
language binding’s string manipulation routines.

A DefinitionKind identifies the type of an IR object.

10.5.2 IRObject

The base interfacdRObject represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

[l read interface
readonly attribute DefinitionKind def_kind;

/I write interface
void destroy ();

10.5.2.1 Read Interface

Thedef _kind type_name attribute identifies the type of the definition.

10.5.2.2 Write Interface

Thedestroy operation causes the object to cease to exist. If the object is a

Container , destroy is applied to all its contents. If the object contains|BhType
attribute for an anonymous type, thatLType is destroyed. If the object is currently
contained in some other object, it is removeddéfstroy is invoked on aRepository

or on aPrimitiveDef then theBAD_INV_ORDER exception is raised with minor
value 2. Implementations may vary in their handling of references to an object that is
being destroyed, but the Repository should not be left in an incoherent state. Attempt
to destroy an object that would leave the repository in an incoherent state shall cause
BAD_INV_ORDER exception to be raised with the minor code 1.

CORBA, v3.0: Interface Repository Interfaces 10-13

10

10.5.3 Contained

The base interfaceContained is inherited by all Interface Repository interfaces that
are contained by other IR objects. All objects within the Interface Repository, except
the root object Repository) and definitions of anonymoug\(rayDef , StringDef,
WstringDef, FixedDef and SequenceDef), and primitive types are contained by

other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/I read/write interface

attribute Repositoryld
attribute Identifier
attribute VersionSpec

/I read interface
readonly attribute Container

readonly attribute ScopedName
readonly attribute Repository

id;
name;
version;

defined_in;
absolute_name;
containing_repository;

struct Description {
DefinitionKind kind;
any value;

3

Description describe ();

/I write interface

void move (
in Container new_container,
in Identifier new_name,

in VersionSpec new_version

);

10.5.3.1 Read Interface

An object that is contained by another object hasdaattribute that identifies it
globally, and aname attribute that identifies it uniquely within the enclosing
Container object. It also has aersion attribute that distinguishes it from other
versioned objects with the samame. IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions will require mechanisms and policy not specified in this document.

10-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

Contained objects also have defined_in attribute that identifies th€ontainer

within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritancedefired _in

attribute identifies thénterfaceDef or ValueDef from which the object is inherited.

The absolute_name attribute is an absolut8copedName that identifies a
Contained object uniquely within its enclosinRepository . If this object’s
defined_in attribute references Repository , the absolute_name is formed by
concatenating the string “::” and this objectiame attribute. Otherwise, the
absolute_name is formed by concatenating thabsolute_name attribute of the
object referenced by this objectdefined_in attribute, the string:*”, and this
object’sname attribute.

The containing_repository attribute identifies thérepository that is eventually
reached by recursively following the objectigfined_in attribute.

Thewithin operation returns the list of objects that contain the object. If the object is
an interface or module it can be contained only by the object that defines it. Other
objects can be contained by the objects that define them and by the objects that inherit
them.

Thedescribe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by name of the structure
returned is provided with the returned structure. kive field of the returned
Description struct shall give théefinitionKind for the most derived type of the
object. For example, if thdescribe operation is invoked on an attribute object, the
kind field containsdk_Attribute name field contains “AttributeDescription” and the
value field contains arany, which contains théttributeDescription structure. The
kind field in this must contairdk_attribute and not the kind of anyRObject from
which theattribute object is derived. For example returnidg_all would be an error.

10.5.3.2 Wsrite Interface

Setting thed attribute changes the global identity of this definitionBAD_PARAM
exception is raised with minor code 2 if an object with the speciitedttribute
already exists within this objectRepository .

Setting thename attribute changes the identity of this definition within @sntainer .

A BAD_PARAM exception is raised with minor code 1 if an object with the specified
name attribute already exists within this objecontainer . The absolute_name
attribute is also updated, along with any other attributes that reflect the name of the
object. If this object is &ontainer , theabsolute_name attribute of any objects it
contains are also updated.

The move operation atomically removes this object from its curr€entainer , and
adds it to theContainer specified bynew_container must satisfy the following
conditions:

CORBA, v3.0: Interface Repository Interfaces 10-15

10

10-16

® |t must be in the samBepository. If it is not, thenBAD _PARAM exception is
raised with minor code .4

® |t must be capable of containing this object’s type (see Section 10.4.4, “Structure
and Navigation of the Interface Repository,” on page 10-8). If it is not, then
BAD_PARAM exception is raised with minor code 4.

® |t must not already contain an object with this object’s name (unless multiple
versions are supported by the IR). If this condition is not satisfied, then
BAD_PARAM exception is raised with minor code 3.

Thename attribute is changed toew_name , and theversion attribute is changed to
new_version .

Thedefined_in andabsolute_name attributes are updated to reflect the new
container anchame. If this object is also &ontainer , the absolute_name
attributes of any objects it contains are also updated.

10.5.4 Container

Thebase interfac&Container is used to form a containment hierarchy in the Interface
Repository. AContainer can contain any number of objects derived from the
Contained interface. AllContainer s, except folRepository , are also derived from
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

h

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);
/I write interface

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version
);
ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value
);
StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
);
UnionDef create_union (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members
);
EnumDef create_enum (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members
);
AliasDef create_alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-17

10

);
InterfaceDef create_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,
);
ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
);
ValueDef create_value(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base value,
in boolean is_truncatable,
in ValueDefSeq abstract_base values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers
);
ValueBoxDef create_value_box(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def
);
NativeDef create native(
in Repositoryld id,
in Identifier name,
in VersionSpec version

);

AbstractinterfaceDef create_abstract_interface(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create_local_interface(
in Repositoryld id,

10-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
ExtValueDef create_ext_value (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base values,

in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

10.5.4.1 Read Interface

Thelookup operation locates a definition relative to this container given a scoped
name using OMG IDL's name scoping rules. An absolute scoped name (beginning with

::") locates the definition relative to the enclosifgpository . If no object is found,
a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, and then all of the interfaces and value types within a specific module, and
SO on.

limit_type If limit_type is set to dk_all “all,” objects of all
interface types are returned. For example, if this is an
InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute
“AttributeDef”.

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-19

10

The lookup_name operation is used to locate an object by hame within a
particular object or within the objects contained by that object. Use of values of
levels_to_search of O or of negative numbers other than -1 is undefined.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well.

Setting levels_to_search to -1 searches the current object and all
contained objects. Setting levels_to_search to 1 searches only the current
object. Use of values of levels_to_search of 0 or of negative numbers
other than -1 is undefined.

The describe_contents operation combines the contents operation and the
describe operation. For each object returned by the contents operation,
the description of the object is returned (i.e., the object’s describe
operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the humber provided.
Setting the parameter to -1 means return all contained
objects.

contents anddescribe_contents return a list of elements in their original order
(i.e., the order in which the elements were created in or moved into the container). If
exclude_inherited is false, the ordering of inherited elements is undefined.

10.5.4.2 Write Interface

The Container interface provides operations to creeduleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, InterfaceDef s, ValueDefs
ValueBoxDef s, andNativeDef s as contained objects. Tliefined_in attribute of a
definition created with any of these operations is initialized to identifyGoatainer
on which the operation is invoked, and tbentaining_repository attribute is
initialized to itsRepository .

The create_<type> operations all takéd andname parameters that are used to
initialize the identity of the created definition. BAD PARAM exception is raised
with minor code 2 if an object with the specifiédi already exists in th&®epository .

A BAD_PARAM exception with minor code 3 is raised if the specifremine already
exists within thisContainer and multiple versions are not supported.Certain interfaces
derived fromContainer may restrict the types of definitions that they may contain.
Any create_<type> operation that would insert a definition that is not allowed by a
Container will raise thdBAD_PARAM exception with minor code 4.

10-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

The create_module operation returns a new empijoduleDef . Definitions can be
added usindContainer::create_<type> operations on the new module, or by using
the Contained::move operation.

Thecreate_constant operation returns a ne®onstantDef with the specifiedype
andvalue.

The create_struct operation returns a nestructDef with the specifiednembers .
Thetype member of theStructMember structures is ignored, and should be set to
TC_void . See Section 10.5.10, “StructDef,” on page 10-26 for more information.

The create_union operation returns a newnionDef with the specified
discriminator_type andmembers . Thetype member of thdJnionMember
structures is ignored, and should be seT@ void . See Section 10.5.11, “UnionDef,”
on page 10-27 for more information.

The create_enum operation returns a ne@numbDef with the specifiednembers .
See Section 10.5.12, “EnumDef,” on page 10-28 for more information.

The create_alias operation returns a newliasDef with the specified
original_type .

The create_interface operation returns a new empBxtinterfaceDef with the
specifiedbase_interfaces . Type, exception, and constant definitions can be added
usingContainer::.create_<type> operations on the newnterfaceDef .
OperationDefs can be added usinigterfaceDef::create_operation and
AttributeDefs can be added usinigterfaceDef::create_attribute . Definitions can
also be added using thi@ontained::move operation.

The create_abstract_interface operation returns a new empty
ExtAbstractinterfaceDef with the specifiedbase_interfaces . Type, exception, and
constant definitions can be added us®gntainer::.create_<type> operations on the
new AbstractinterfaceDef . OperationDef s can be added using
AbstractinterfaceDef::create_operation andAttributeDef s can be added using
AbstractinterfaceDef::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_local_interface operation returns a new empBxtLocallnterfaceDef

with the specifiecbase_interfaces . Type, exception, and constant definitions can be
added usindContainer::create_<type> operations on the newocallnterfaceDef .
OperationDef s can be added usirigocallnterfaceDef::create_operation and
AttributeDef s can be added usirigocallnterfaceDef::create_attribute

Definitions can also be added using tGentained::move operation.

The create_value operation returns a new emptalueDef with the specified base
interfaces and valueb#ése_value , supported_interfaces , and

abstract_base values) as well as the other information describing the new values
characteristicsi§_custom , is_abstract , is_truncatable , andinitializers). Type,
exception, and constant definitions can be added uSimigtainer::create_<type>
operations on the neWalueDef. OperationDefs can be added using

CORBA, v3.0: Interface Repository Interfaces 10-21

10

ValueDef::create_operation andAttributeDefs can be added using
ValueDef::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_value_box operation returns a neWalueBoxDef with the specified
original_type_def .

The create_exception operation returns a ne®xceptionDef with the specified
members. Thaeype member of theStructMember structures should be set to
TC_void .

The create_native operation returns a nelNativeDef with the specifiechame.

Thecreate_ext value operation returns a new empBxtValueDef with the

specified base interfaces and valubage_value , supported_interfaces , and
abstract_base values) as well as the other information describing the new values
characteristicsi§_custom , is_abstract , is_truncatable , andinitializers). The
initializers argument is of typéxtinitializerSeq allowing one to specify user
exceptions for initializers. Type, exception, and constant definitions can be added using
Container::create_<type> operations on the ne&xtValueDef . OperationDef s

can be added usingxtValueDef::create_operation andExtAttributeDef s can be
added usindgextValueDef::create_ext_attribute . Definitions can also be added

using theContained::move operation.

10.5.5 IDLType

The base interfacdDLType is inherited by all IR objects that represent OMG IDL
types. It provides access to tigpeCode describing the type, and is used in defining
other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute TypeCode type;
h
h

Thetype attribute describes the type defined by an object derived fidkiype .

10.5.6 Repository

Repository is an interface that provides global access to the Interface Repository that
does not support access to information related to CORBA Components. The
Repository object can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types, and modules. As it inherits fdontainer , it can be used

to look up any definition (whether globally defined or defined within a module or
interface) either byname or by id.

SinceRepository derives only fromContainer and not fromContained , it does not
have aRepositoryld associated with it. By default it is deemed to have the
Repositoryld " (the empty string) for purposes of assigning a value to the

10-22 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

defined_in field of the description structure ofModuleDef , InterfaceDef ,
ValueDef, ValueBoxDef, TypedefDef , ExceptionDef , andConstantDef that are
contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.

module CORBA {
interface Repository : Container {
/I read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

[l write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring(in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

10.5.6.1 Read Interface

Thelookup_id operation is used to lookup an object irRe@pository given its
Repositoryld . If the Repository does not contain a definition faearch_id , a nil
object reference is returned. Thekup_id operations always return a nil reference if
the value ofsearch_id is IDL:omg.org/CORBA/Object:1.0 , or
IDL:omg.org/CORBA/ValueBase:1.0 , signifying the fact that the implicit base
types are not contained in the Interface Repository.

CORBA, v3.0: Interface Repository Interfaces 10-23

10

10-24

The get_canonical_typecode operation looks up th&ypeCode in the Interface
Repository and returns an equivalé@iypeCode that includes alfepository ids ,
names, andmember_names . If the top levelTypeCode does not contain a
Repositoryld , such as array and sequenogeCodes , or TypeCodes from older
ORBs, or if it contains &epositoryld that is not found in the targdtepository ,
then a newTypeCode is constructed by recursively calling
get_canonical_typecode on each membeFypeCode of the originalTypeCode .

The get_primitive operation returns a reference tdamitiveDef (see
Section 10.5.14, “PrimitiveDef,” on page 10-29) with the specifatd attribute. All
PrimitiveDef s are immutable and are owned by tRepository .

10.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous
types. As these interfaces are not derived fréontained , it is the caller’s
responsibility to invokedestroy on the returned object if it is not successfully used in
creating a definition that is derived fro@ontained . Each anonymous type definition
must be used in defining exactly one other object.

1. Thecreate_string operation returns a ne®tringDef with the specifiecoound ,
which must be non-zero. Thget_primitive operation is used for unbounded
strings.

2. Thecreate_wstring operation returns a neWy/stringDef with the specified
bound , which must be non-zero. Thget_primitive operation is used for
unbounded strings.

3. Thecreate_sequence operation returns a ne®equenceDef with the specified
bound andelement_type .

4. Thecreate_array operation returns a nefrrayDef with the specifiedength
andelement_type .

5. Thecreate_fixed operation returns a newixedDef with the specified number of
digits and scale. The number of digits must be from 1 to 31, inclusive.

10.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types and other module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

VersionSpec version;
2
2
The inheriteddescribe operation for avoduleDef object returns a
ModuleDescription .

10.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute any value;
2
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
any value;

10.5.8.1 Read Interface

Thetype attribute specifies th@ypeCode describing the type of the constant. The
type of a constant must be one of the primitive types allowed in constant declarations
(see Section 3.10, “Constant Declaration,” on page 3-32).tfjpe_def attribute

identifies the definition of the type of the constant.

Thevalue attribute contains the value of the constant, not the computation of the value
(e.g., the fact that it was defined as “1+2").

The describe operation for aConstantDef object returns &onstantDescription

10.5.8.2 Write Interface

Setting thetype_def attribute also updates thgpe attribute.

When setting thevalue attribute, theTypeCode of the supplied any must be equal to
thetype attribute of theConstantDef .

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-25

10

10.5.9 TypedefDef

Thebase interfacélypedefDef is inherited by all named non-objetytpes (structures,
unions, enumerations, and aliases). TgpedefDef interface is not inherited by the
definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
%
%
The inheriteddescribe operation for interfaces derived frofypedefDef returns a
TypeDescription .

10.5.10 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {

struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

h
typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

h

10.5.10.1 Read Interface

Themembers attribute contains a description of each structure member. The inherited
type attribute is atk_struct TypeCode describing the structure.

10-26 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

10.5.10.2 Write Interface

Setting themembers attribute also updates thgpe attribute. When setting the
members attribute, thetype member of theStructMember structure should be set
to TC void .

A StructDef used as &ontainer may only containStructDef , UnionDef , or
EnumDef definitions.

10.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

3

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

3

10.5.11.1 Read Interface

Thediscriminator_type anddiscriminator_type def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member.|&bel of
eachUnionMemberDescription is a distinct value of théiscriminator_type
Adjacent members can have the samagne. Members with the sameame must also
have the samgype . A label with typeoctet and value 0O indicates the default union
member.

The inheritedtype attribute is atk_union TypeCode describing the union.

10.5.11.2 Write Interface

Setting thediscriminator_type def attribute also updates thidiscriminator_type
attribute and setting thaiscriminator_type _def or members attribute also updates
thetype attribute.

When setting thenembers attribute, thetype member of theJnionMember
structure should be set fbC_void .

CORBA, v3.0: Interface Repository Interfaces 10-27

10

A UnionDef used as &ontainer may only containStructDef , UnionDef , or
EnumDef definitions.

10.5.12 EnumDef

An EnumbDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

h

10.5.12.1 Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inheritedtype attribute is atk_enum TypeCode describing the enumeration.

10.5.12.2 Write Interface

Setting themembers attribute also updates thgpe attribute.

10.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

3
3

10.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.

The inheritedtype attribute is atk_alias TypeCode describing the alias.

10.5.13.2 Write Interface

Setting theoriginal_type _def attribute also updates thgpe attribute.

10-28 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

10.5.14 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived froypedefDef or Contained .

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk value base

3

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;
2
2

Thekind attribute indicates which primitive type therimitiveDef represents. There
are noPrimitiveDef s with kindpk_null . A PrimitiveDef with kind pk_string
represents an unbounded stringPAmitiveDef with kind pk_objref represents the
IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase .

The inheritedtype attribute describes the primitive type.

All PrimitiveDef s are owned by the Repository. References to them are obtained
using Repository::get_primitive

10.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented as RrimitiveDef . As string types are anonymous, this interface is not
derived fromTypedefDef or Contained .

module CORBA {
interface StringDef : IDLType {
attribute unsigned long bound;
¥

h

Thebound attribute specifies the maximum number of characters in the string and
must not be zero. The inheritegpe attribute is atk_string TypeCode describing
the string.

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-29

10

10.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented as RrimitiveDef . As wide string types are anonymous, this interface is
not derived fromTypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
%
%
Thebound attribute specifies the maximum number of wide characters in a wide

string, and must not be zero. The inheritgde attribute is ak_wstring TypeCode
describing the wide string.

10.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;
¥
¥

Thedigits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. Theeale attribute specifies the position of the
decimal point.

The inheritedtype attribute is atk_fixed TypeCode , which describes a fixed-point
decimal number.

10.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not derived fromypedefDef or Contained .

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

3
3

10-30 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

10.5.18.1 Read Interface

Thebound attribute specifies the maximum number of elements in the sequence. A
bound of zero indicates an unbounded sequence.

The type of the elements is describeddlgment_type and identified by
element_type def . The inheritedtype attribute is atk sequence TypeCode
describing the sequence.

10.5.18.2 Write Interface

Setting theelement_type_def attribute also updates thdement_type attribute.
Setting thebound or element_type_def attribute also updates thgpe attribute.

10.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived fromypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

3
3

10.5.19.1 Read Interface

Thelength attribute specifies the number of elements in the array.

The type of the elements is describeddigment_type and identified by
element_type def . Since anArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by muléplayDef objects, one
per array dimension. Thelement_type def attribute of theArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to theayDef
representing the next index to the right, and so on. The innerAroayDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array.

The inheritedtype attribute is atk_array TypeCode describing the array.

10.5.19.2 Write Interface

Setting theelement_type_def attribute also updates thdement_type attribute.
Setting thebound or element_type_def attribute also updates thgpe attribute.

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-31

10

10.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

I3

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

I3

10.5.20.1 Read Interface

Thetype attribute is ak_except TypeCode describing the exception. The members
attribute describes any exception members. Tescribe operation for a
ExceptionDef object returns afxceptionDescription

10.5.20.2 Write Interface

Setting themembers attribute also updates thgpe attribute. When setting the
members attribute, thetype member of theStructMember structure is ignored and
should be set tdC_void .

An ExceptionDef used as &€ontainer may only contairStructDef , UnionDef , or
EnumDef definitions.

10.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface,
component, home, valuetype, or eventtype.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

10-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

struct AttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

AttributeMode mode;

10.5.21.1 Read Interface

Thetype attribute provides th@ypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for amttributeDef object returns an
AttributeDescription

10.5.21.2 Write Interface

Setting thetype_def attribute also updates thgpe attribute.

10.5.22 ExtAttributeDef

An ExtAttributeDef represents the information that defines an attribute of an
interface, component, home, valuetype, or eventtype that can potentially have user
exceptions associated with it.

module CORBA{
struct ExtAttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

3
interface ExtAttributeDef : AttributeDef {
/I read/write interface

attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-33

10

/l read interface
ExtAttributeDescription describe_attribute();

J»
10.5.22.1 Read Interface

The operations inherited frorttributeDef behave exactly the same as in
AttributeDef . In particular, thedef kind attribute that has the valuik Attribute |,
exactly as inAttributeDef.

The get_exceptions andset_exceptions attributes specify the list of exception
types that can be raised by the attribute.

The describe_attribute operation for arExtAttributeDef object returns an
ExtAttributeDescription . that contains information about user exceptions in addition
to the information that is available throudtitributeDescription

10.5.22.2 Write Interface

Same as foAttributeDef .

10.5.23 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;

ParameterMode mode;
h

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;

10-34 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
2
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

10.5.23.1 Read Interface

Theresult attribute is aTypeCode describing the type of the value returned by the
operation. Theesult_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of tHearameterDescription s in the
sequence is significant. Theame member of each structure provides the parameter
name. Theype member is alypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. fioele
member indicates whether the parameter is an in, out, or inout parameter.

The operation’snode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

Theexceptions attribute specifies the list of exception types that can be raised by the
operation.

The inheriteddescribe operation for arDperationDef object returns an
OperationDescription

10.5.23.2 Write Interface

Setting theresult_def attribute also updates thesult attribute.

The mode attribute can be set@P_ONEWAY only if the result isTC _void and all
elements of params have a modeP&RAM_IN, and the list of exceptions is empty. If
the mode is set t&P_ONEWAY when these conditions do not hold, a
BAD_PARAM exception is raised with minor code 31.

CORBA, v3.0: Interface Repository Interfaces 10-35

10

10.5.24 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Repositoryld> RepositoryldSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq base_interfaces;
/I read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

h
FullinterfaceDescription describe_interface();
/I write interface

AttributeDef create_attribute (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

in ParDescriptionSeq params,

10-36 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

in ExceptionDefSeq exceptions,

in ContextldSeq contexts

);

2

struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

RepositoryldSeq base_interfaces;

10.5.24.1 Read Interface

Thebase_interfaces attribute lists all the interfaces from which this interface
inherits.

Theis_a operation return§RUE if the interface on which it is invoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returi/\LSE. If the value ofinterface_id is
IDL:omg.org/CORBA/Object:1.0 , is_a returnsTRUE signifying the fact that all
interfaces are implicitly derived from the base typbject .

The describe_interface operation returns &ullinterfaceDescription describing
the interface, including its operations and attributes. ®perations andattributes
fields of theFullinterfaceDescription structure include descriptions of all of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

The inheriteddescribe operation for arinterfaceDef returns an
InterfaceDescription

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thigterfaceDef and the list of attributes and operations either
defined or inherited in thignterfaceDef . If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set tBALSE, all attributes and operations are
returned.

10.5.24.2 Write Interface

Setting thebase_interfaces attribute causes BAD_PARAM exception with minor
code 5 to be raised if theame attribute of any object contained by tHigterfaceDef
conflicts with thename attribute of any object contained by any of the specified base
InterfaceDef s.

The create_attribute operation returns a newttributeDef contained in the
InterfaceDef on which it is invoked. Théd, name, version, type_def , andmode
attributes are set as specified. Tlype attribute is also set. Theefined_in attribute

CORBA, v3.0: Interface Repository Interfaces 10-37

10

10-38

is initialized to identify the containingnterfaceDef . A BAD_PARAM exception

with standard minor code 2 is raised if an object with the specifiedlready exists in
the Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the same@ame already exists in thisnterfaceDef .

The create_operation operation returns a ne@perationDef contained in the
InterfaceDef on which it is invoked. Thed, name, version , result_def , mode,
params, exceptions , andcontexts attributes are set as specified. Tiesult

attribute is also set. Theefined_in attribute is initialized to identify the containing
InterfaceDef . A BAD_PARAM exception with standard minor code 2 is raised if an
object with the specifieil already exists in th&®epository . BAD_PARAM

exception with standard minor code 3 is raised if an object with the same

already exists in thisnterfaceDef .

An InterfaceDef used as &ontainer may only containTypedefDef , (including
definitions derived fronTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.25 ExtinterfaceDef

An ExtinterfaceDef object represents interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes with exceptions.

module CORBA {
interface InterfaceAttrExtension {
/I read interface

struct ExtFullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

3

ExtFullinterfaceDescription describe_ext_interface();

/[write interface
ExtAttributeDef create_ext_attribute (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq get_exceptions,

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

in ExceptionDefSeq set_exceptions
);
2

interface ExtinterfaceDef : InterfaceDef,
InterfaceAttrExtension {

3

10.5.25.1 Read Interface

All operations and attributes inherited fromterfaceDef behave the same as for
InterfaceDef . In particular, thedef kind attribute has the valuék Interface ,
exactly as ininterfaceDef .

The inheriteddescribe_ext_interfaces operation returns the
ExtFullinterfaceDescription structure that contains information about attributes
with exceptions, in addition to the information foundFuallinterfaceDescription

10.5.25.2 Write Interface

All operations and attributes inherited fromterfaceDef behave the same as for
InterfaceDef .

The inheritedcreate_ext_attribute operation returns a newxtAttributeDef
contained in theextinterfaceDef on which it is invoked. Thed, name, version ,
type_def , mode, get_exceptions andset_exceptions attributes are set as
specified. Theype attribute is also set. Theefined_in attribute is initialized to
identify the containingextinterfaceDef . A BAD_PARAM exception with standard
minor code 2 is raised if an object with the specifiddalready exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the same@ame already exists in thig€xtinterfaceDef .

10.5.26 AbstractinterfaceDef

An AbstractinterfaceDef object represents a CORBA 2.3 abstract interface
definition. It can contain constants, typedefs, exceptions, operations, and attributes. Its
base interfaces can only contaMstractinterfaceDef s.

module CORBA {
interfaceAbstractinterfaceDef;
typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;

interface AbstractinterfaceDef : InterfaceDef {

3
3

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-39

10

10.5.26.1 Read Interface

The inheritedbase_interfaces attribute returns a list of abstract interfaces from
which this abstract interface inherits.

Note —base_interfaces is of typelnterfaceDefSeq , but since
AbstractinterfaceDef is derived frominterfaceDef , a list of
AbstractinterfaceDefs can legitimately be returned in dnterfaceDefSeq .

The inheritedis_a operation return§RUE if the interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the abstract interface
identified by itsinterface_id parameter, or if the value afterface_id is
IDL:omg.org/CORBA/AbstractBase:1.0 . Otherwise it return§&ALSE.

The inheriteddescribe_interface operation returns &ullinterfaceDescription
describing the abstract interface, including its operations and attributes.

The inheriteddescribe operation for arAbstractinterfaceDef returns an
InterfaceDescription

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thi8bstractinterfaceDef and the list of attributes and
operations either defined or inherited in tiibstractinterfaceDef . If the
exclude_inherited parameter is set t6RUE, only attributes and operations defined
within this abstract interface are returned. If tixclude_inherited parameter is set
to FALSE, all attributes and operations are returned.

10.5.26.2 Write Interface

Setting the inheritethase_interfaces attribute causes BAD_PARAM exception

with standard minor code 5 to be raised if the name attribute of any object contained
by this AbstractinterfaceDef conflicts with the name attribute of any object
contained by any of the specified ba&bstractinterfaceDef s. If any of the
InterfaceDef s in base_interface are notAbstractinterfaceDef s then a
BAD_PARAM exception with standard minor code 11 is raised.

The inheritedcreate_attribute operation returns a newttributeDef contained in

the AbstractinterfaceDef on which it is invoked. Thed, name, version ,

type_def , andmode attributes are set as specified. Tigpe attribute is also set. The
defined_in attribute is initialized to identify the containingbstractinterfaceDef .

A BAD_PARAM exception with standard minor code 2 is raised if an object with the
specifiedid already exists in th®epository . BAD_PARAM exception with

standard minor code 3 is raised if an object with the saarae already exists in this
AbstractinterfaceDef .

The inheriteccreate_operation operation returns a ne®@perationDef contained in
the AbstractinterfaceDef on which it is invoked. Thed, name, version ,
result_def , mode, params, exceptions , andcontexts attributes are set as
specified. Theresult attribute is also set. Théefined_in attribute is initialized to
identify the containingAbstractinterfaceDef . A BAD_PARAM exception with

10-40 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

standard minor code 2 is raised if an object with the specifiediready exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the same@ame already exists in thid\bstractinterfaceDef .

10.5.27 ExtAbstractinterfaceDef

An ExtAbstractinterfaceDef object represents an abstract interface definition. It can
contain constants, typedefs, exceptions, operations, and attributes with exceptions. Its
base interfaces can only contdiixtAbstractinterfaceDef s.

module CORBA {

interface ExtAbstaractinterfaceDef : AbstractinterfaceDef,
InterfaceAttrExtension {
3

3

10.5.27.1 Read Interface

All operations and attributes inherited froftbstractinterfaceDef behave the same
as for AbstaractinterfaceDef . In particular, thedef kind attribute has the value
dk_Abstractinterface , exactly as inAbstaractinterfaceDef.

The inheriteddescribe_ext_interface operation returns the
ExtFullinterfaceDescription structure which contains information about attributes
with exceptions, in addition to the information foundFuallinterfaceDescription

10.5.27.2 Write Interface

All operations and attributes inherited frofbstaractinterfaceDef behave the same
as forAbstractinterfaceDef .

The inheritedcreate_ext_attribute operation returns a newxtAttributeDef
contained in theéextAbstractinterfaceDef on which it is invoked. Théd, name,
version , type_def, mode, get_exceptions andset_exceptions attributes are set
as specified. Theype attribute is also set. Theefined_in attribute is initialized to
identify the containing=xtAbstractinterfaceDef . A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specifiediready exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the same@ame already exists in thi€xtAbstractinterfaceDef

10.5.28 LocallnterfaceDef

An LocallnterfaceDef object represents a local interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes. Its base interfaces can only
containinterfaceDefs or LocallnterfaceDefs .

module CORBA {
interfaceLocallnterfaceDef;

CORBA, v3.0: Interface Repository Interfaces 10-41

10

typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

interface LocallnterfaceDef : InterfaceDef {
h
h

10.5.28.1 Read Interface

The inheritedbase_interfaces attribute returns a list of interfaces, local or otherwise,
from which this local interface inherits.

Note —base_interfaces is of typelnterfaceDefSeq , but sincelLocallnterfaceDef
is derived frominterfaceDef , a list that consists of some regulaterfaceDefs and
someLocalinterfaceDefs can legitimately be returned in dnterfaceDefSeq .

The inheriteds_a operation return§RUE if the local interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the local interface identified
by itsinterface_id parameter, or if the value afiterface_id is
IDL:omg.org/CORBA/LocalBase:1.0 . Otherwise it return&ALSE.

The inheriteddescribe_interface operation returns &ullinterfaceDescription
describing the local interface, including its operations and attributes.

The inheriteddescribe operation for a_ocallnterfaceDef returns an
InterfaceDescription

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thisocallnterfaceDef and the list of attributes and operations
either defined or inherited in thisocallnterfaceDef . If the exclude_inherited
parameter is set ttRUE, only attributes and operations defined within this local
interface are returned. If thexclude_inherited parameter is set tBALSE, all
attributes and operations are returned.

10.5.28.2 Write Interface

Setting the inheritedase_interfaces attribute causes BAD_PARAM exception

with standard minor code 5 to be raised if the name attribute of any object contained
by this LocallnterfaceDef conflicts with the name attribute of any object contained
by any of the specified badaterfaceDef s (local or otherwise).

The inheritedcreate_attribute operation returns a newttributeDef contained in

the LocallnterfaceDef on which it is invoked. Thed, name, version , type_def,
andmode attributes are set as specified. Tiype attribute is also set. The
defined_in attribute is initialized to identify the containirigocalinterfaceDef . A
BAD_PARAM exception with standard minor code 2 is raised if an object with the
specifiedid already exists in thRepository . BAD_PARAM exception with

standard minor code 3 is raised if an object with the saarae already exists in this
LocallnterfaceDef .

10-42 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

The inheriteccreate_operation operation returns a ne®perationDef contained in
the LocallnterfaceDef on which it is invoked. Théd, name, version , result_def ,
mode, params, exceptions , andcontexts attributes are set as specified. The
result attribute is also set. Theefined_in attribute is initialized to identify the
containingLocallnterfaceDef . A BAD_PARAM exception with standard minor
code 2 is raised if an object with the specifigdalready exists in th&®epository .
BAD_PARAM exception with standard minor code 3 is raised if an object with the
samename already exists in thisocallnterfaceDef .

10.5.29 ExtLocalinterfaceDef

An ExtLocallnterfaceDef object represents a local interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes with exceptions. Its base
interfaces can only contaiBxtinterfaceDef s or ExtLocallnterfaceDef s.

module CORBA {

interface ExtLocallnterfaceDef : LocallnterfaceDef,
InterfaceAttrExtension {
3
3

10.5.29.1 Read Interface

All operations and attributes inherited fronocallnterfaceDef behave the same as
for LocallnterfaceDef . In particular, thedef kind attribute has the value
dk_Localinterface , exactly as inLocallnterfaceDef.

The inheriteddescribe_ext_interface operation returns the
ExtFullinterfaceDescription structure that contains information about attributes
with exceptions, in addition to the information foundFuallinterfaceDescription

10.5.29.2 Write Interface

All operations and attributes inherited frobocallnterfaceDef behave the same as
for LocallnterfaceDef .

The inheritedcreate_ext_attribute operation returns a ne®xtAttributeDef
contained in théextLocallnterfaceDef on which it is invoked. Thed, name,
version , type_def, mode, get_exceptions andset_exceptions attributes are set
as specified. Theype attribute is also set. Theefined_in attribute is initialized to
identify the containingextLocallnterfaceDef . A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specifiediready exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the sam@ame already exists in thi€xtLocallnterfaceDef .

10.5.30 ValueMemberDef

A ValueMemberDef IR Object represents a value member.

July 2002 CORBA, v3.0: Interface Repository Interfaces 10-43

10

module CORBA {
typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1,

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

h
typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

h

10.5.30.1 Read Interface

Thetype attribute provides th@ypeCode describing the type of this value member.
Thetype_def attribute identifies the object defining the type of this value member.
Theaccess attribute specifies private or public access for this value member. The
describe operation for ¥alueMemberDef object returns &alueMember .

10.5.30.2 Write Interface

Setting thetype_def attribute also updates thgpe attribute.

10.5.31 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs,
exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {

StructMemberSeq members;
Identifier name;

10-44 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

typedef sequence<initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {

/I read/write interface

attribute InterfaceDefSeq supported_interfaces;

attribute InitializerSeq initializers;

attribute ValueDef base_value;

attribute ValueDefSeq abstract_base values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/I read interface
boolean is_a(

in Repositoryld id

);

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;

OpDescriptionSeq operations;
AttrDescriptionSeq attributes;

ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;
TypeCode type;

h
FullValueDescription describe_value();
/[write interface

ValueMemberDef create_value_member(

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access
);
AttributeDef create_attribute(
in Repositoryld id,
in Identifier name,

CORBA, v3.0: Interface Repository Interfaces 10-45

10

in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq contexts

);

¥

struct ValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;

10.5.31.1 Read Interface
The supported_interfaces attribute lists the interfaces that this value type supports.
Theinitializers attribute lists the initializers this value type supports.
Thebase_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this
value inherits.

Theis_abstract attribute isTRUE if the value is an abstract value type.
Theis_custom attribute isTRUE if the value uses custom marshaling.

Theis_truncatable attribute iSTRUE if the value inherits “safely” (i.e., supports
truncation) from another value.

10-46 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

Theis_a operation returnRUE if the value on which it is invoked either is identical
to or inherits, directly or indirectly, from the interface or value identified byidts
parameter or if the value ofd is IDL:omg.org/CORBA/ValueBase:1.0. Otherwise
it returnsFALSE.

Thedescribe_value operation returns BullValueDescription describing the value,
including its operations and attributes.

The inheriteddescribe operation for arvalueDef returns arValueDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thigalueDef and the list of attributes, operations and members
either defined or inherited in thigalueDef. If the exclude_inherited parameter is

set toTRUE, only attributes, operations and members defined within this value are
returned. If theexclude_inherited parameter is set tBALSE, all attributes,
operations and members are returned.

10.5.31.2 Write Interface

Setting thesupported_interfaces, base value, or abstract_base values

attribute causes BAD_PARAM exception with minor code 5 to be raised if the

name attribute of any object contained by thi@lueDef conflicts with thename

attribute of any object contained by any of the specified bases. If an attempt is made to
set thesupported_interfaces attribute to aninterfaceDefSeq that contains more

than onelnterfaceDef that is not anAbstractinterfaceDef |, then the

BAD_PARAM exception shall be raised with standard minor code 12.

Thecreate_value_member operation returns a neWalueMemberDef contained in
theValueDef on which it is invoked. Théd, name, version, type_def , andaccess
attributes are set as specified. Tiype attribute is also set. Theefined_in attribute
is initialized to identify the containinyalueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specifiddalready exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the samename already exists in thi¥alueDef .

The create_attribute operation returns a nefttributeDef contained in the
ValueDef on which it is invoked. Thed, name, version, type_def , andmode
attributes are set as specified. Tlype attribute is also set. Theefined_in attribute
is initialized to identify the containinyalueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specifiddalready exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the samename already exists in thi¥alueDef .

The create_operation operation returns a ne@perationDef contained in the
ValueDef on which it is invoked. Thed, name, version , result_def , mode,
params, exceptions , andcontexts attributes are set as specified. Tiesult

attribute is also set. Theefined_in attribute is initialized to identify the containing
ValueDef. A BAD_PARAM exception with minor code 2 is raised if an object with
the specifiedd already exists in th®epository . A BAD_PARAM exception with
minor code 3 is raised if an object with the sammme already exists in this
ValueDef.

CORBA, v3.0: Interface Repository Interfaces 10-47

10

A ValueDef used as &ontainer may only containTypedefDef , (including
definitions derived fronTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.32 ExtValueDef

An ExtValueDef object represents a value definition. It can contain constants,
typedefs, exceptions, operations, and attributes with exceptions. Value definitions that
contain initializers with user exceptions can also be representedtialueDef

objects.

module CORBA {

struct Extlnitializer {

StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

h

typedef sequence <Extlnitializer> ExtlnitializerSeq;
interface ExtValueDef : ValueDef {

/l read/write interface
attribute ExtlnitializerSeq ext_initializers;

/I read interface

struct ExtFullValueDescription {

Identifier name;

Repositoryld id;

boolean is_abstract;

boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtlInitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;
TypeCode type;

%

ExtFullValueDescription describe_ext_value();
/[write interface

ExtAttributeDef create_ext_attribute (

in Repositoryld id,
in ldentifier name,

10-48 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

in VersionSpec version,

in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

10.5.32.1 Read Interface

All operations and attributes inherited frovalueDef behave the same as for
ValueDef. In particular, thedef_kind attribute has the valugk_Value , exactly as in
ValueDef.

The ext_initializers attribute lists the initializers with exceptions that this value type
supports.

The inheritednitializers attribute list the same initializers as éxt_initializers but
does not have the exception information.

The describe_ext_value operation returns thExtFullValueDescription structure
which contains information about attributes with exceptions and initializers with
exceptions, in addition to the information found FallValueDescription

10.5.32.2 Write Interface

All operations and attributes inherited frofalueDef behave the same as for
ValueDef.

Thecreate_ext_attribute operation returns a netxtAttributeDef contained in the
ExtValueDef on which it is invoked. Thed, name, version , type_def , mode,
get_exceptions andset_exceptions attributes are set as specified. Tiype

attribute is also set. Theefined_in attribute is initialized to identify the containing
ExtValueDef . A BAD_PARAM exception with standard minor code 2 is raised if an
object with the specifieil already exists in th&®epository . BAD _PARAM

exception with standard minor code 3 is raised if an object with the same

already exists in thig€xtValueDef .

10.5.33 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the IDL
type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;
¥
¥

CORBA, v3.0: Interface Repository Interfaces 10-49

10

10.5.33.1 Read Interface

Theoriginal_type_def attribute identifies the type being boxed. The inheritgge
attribute is atk_value_box TypeCode describing the value box.

10.5.33.2 Write Interface

Setting theoriginal_type_def attribute also updates thgpe attribute.

10.5.34 NativeDef

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

2
The inheritedtype attribute is atk_native TypeCode describing the native type.

10.6 Component Interface Repository Interfaces

The IRObject s that represent IDL concepts that are specific to the Components
extension are described in this section. These IRObjects can be contained only in a
ComponentlR::Repository described in this section.

10.6.1 ComponentIR::Container

The base interfaceComponentIR::Container is used to form a containment
hierarchy in the Component Interface Repository.

module CORBA {
module ComponentIR {

interface Container {
ComponentDef create_component (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in HomeDef base_home,
in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,

10-50 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

in ValueDef primary_key

);

EventDef create_event (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in boolean is_custom,

in boolean is_abstract,

in ValueDef base_value,

in boolean is_truncatable,

in ValueDefSeq abstract_base values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

10.6.1.1 Write Interface

The threecreate_<type> operations defined in thEomponentIR::Container

interface create new empty IR objects defining component, home, and event types. The
defined_in attribute of a definition created with any of these operations is initialized

to identify theComponentIR::Container on which the operation is invoked, and the
containing_repository attribute is initialized to itsComponentIR::Repository

Thesecreate _<type> operations all takéd andname parameters that are used to
initialize the identity of the created definition.

* A BAD_PARAM exception is raised with minor code 2 if an object with the
specifiedid already exists in th€omponentIR::Repository

* A BAD_PARAM exception with minor code 3 is raised if the specifieaime
already exists within thi€omponentIR::Container and multiple versions are not
supported.

The create_component operation returns a new emp8omponentDef with the
specifiedbase_component , and the specifiedupports_interfaces

AttributeDef s can be added usim@omponentDef::create_attribute
ComponentDef::.create_provides , ComponentDef::.create_uses ,
ComponentDef:.create_emits , ComponentDef:.create_publishes , and
ComponentDef::create_consumes can be used to addrovidesDef s, UsesDefs,
EmitsDef s, PublishesDef s andConsumesDef s respectively. Definitions can also
be added using th€ontained::move operation.

The create_home operation returns a netdiomeDef with the specified

base_home , managed_component, supported_interfaces, andprimary_key .
Type, exception, and constant definitions can be added using
Container::create_<type> operations on the neldomeDefs. OperationDef s can
be added usinglomeDef::create_operation andAttributeDef s can be added using

CORBA, v3.0: Component Interface Repository Interfaces 10-51

10

HomeDef::create_attribute . FinderDef s andFactoryDef s can be added using
HomeDef:.create_finder andHomeDef:.create factory respectively. Definitions
can also be added using tl®ntained::move operation.

The create_event operation returns a new empBrventDef with the specified base
interfaces and event®dse_value , supported_interfaces , and

abstract_base values) as well as the other information describing the new events
characteristicsi§_custom , is_abstract , is_truncatable , andinitializers). The
initializers argument is of typéxtinitializerSeq allowing one to specify user
exceptions for initializers. Type, exception, and constant definitions can be added using
Container:.create_<type> operations on the nelventDef. OperationDef s can

be added usingxtValueDef::create_operation andExtAttributeDef s can be

added usindgextValueDef::create_ext_attribute . Definitions can also be added

using theContained::move operation.

10.6.2 ComponentlR::Repository

ComponentlR::Repository is an interface that provides global access to the
Interface Repository that supports access to information related to CORBA
Components. Th€omponentlR::Repository object can contain components,

home, and event definitions in addition to everything else thRepository type can
contain. As it inherits fronContainer and ComponentIR::Container , it can be

used to look up any definition (whether globally defined or defined within a module or
interface) either by name or by id.

SinceComponentIR::Repository derives fromCORBA::Repository and hence
from Container and not fromContained , it does not have &epositoryld
associated with it. By default it is deemed to have Repositoryld " (the empty
string) for purposes of assigning a value to tefined_in field of the description
structure ofModuleDef , InterfaceDef , ValueDef, ValueBoxDef , ComponentDef ,
HomeDef, EventDef, TypedefDef , ExceptionDef , andConstantDef that are
contained immediately in thEomponentIR::Repository object. Since
ComponentlR::Repository derives fromComponentIR::Container , it can
containComponentDef s, HomeDefs as well aEventDefs.

module CORBA {
module ComponentIR {

interface Repository : CORBA::Repository, Container {};

h
h

10.6.2.1 Read Interface

ComponentlR::Repository has the same read operationsRepository .

10-52 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

10.6.2.2 Write Interface

Write operations inherited fror@omponentIR::Container behave the same way as
in ComponentIR::Container .

The rest of the write operations are inherited fr@@@RBA::Repository and behave
the same way as i@ORBA::Repository .

10.6.3 ComponentlIR::ProvidesDef

A ComponentIR::ProvidesDef object represents an interface that is provided by a
component.

module CORBA {
module ComponentIR {

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

3

struct ProvidesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;

10.6.3.1 Read Interface

The attributeinterface_type returns the object identifying the interface that is
provided by the component.

The inherited operatiodescribe returns aProvidesDescription

10.6.3.2 Write Interface

Setting the attributénterface _type changes the object identifying the interface that is
provided by the component.

The rest of the write operations are inherited frQ®RBA::Contained and behave
the same way as i@ORBA::Contained .

10.6.4 ComponentlR::UsesDef

A ComponentIR::UsesDef object represents an interface that is used by a
component.

CORBA, v3.0: Component Interface Repository Interfaces 10-53

10

module CORBA {
module ComponentIR {

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

h

struct UsesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;
boolean is_multiple;

10.6.4.1 Read Interface

The attributeinterface_type returns the object identifying the interface that is used
by the component.

The attributeis_multiple is TRUE if the interface is used multiple times.

The inherited operatiodescribe returns aUsesDescription .

10.6.4.2 Write Interface

Setting the attributénterface_type changes the object identifying the interface that is
used by the component. Setting the attribistamultiple changes the multiplicity of
the used interface.

The rest of the write operations are inherited frQ®RBA::Contained and behave
the same way as iI@ORBA::Contained .

10.6.5 ComponentIR::EventDef

A ComponentIR::EventDef object represents an eventtype definition. It can contain
constants, typedefs, exceptions, operations, and attributes with exceptions. Eventtype
definitions that contain initializers with user exceptions can also be represented in
ComponentlR::EventDef objects.

module CORBA {
module ComponentIR {

interface EventDef : ExtValueDef {};

10-54 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

The read and write interfaces f@omponentIR::EventDef have the same semantics
as the read and write interfaces textValueDef .

10.6.6 ComponentIR::EventPortDef

A ComponentIR::EventPortDef object represents an event port definition. It refers

to anEventDef object which contains the actual information about the event. This
interface is never instantiated as itself. It is instantiated only as one of its derived types
(i.e., EmitsDef , PublishesDef , or ConsumesDef).

module CORBA {
module ComponentIR {

interface EventPortDef : Contained {

/I read/write interface
attribute EventDef event;

/I read interface
boolean is_a (in Repositoryld event_id);

2

struct EventPortDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld event;

10.6.6.1 Read Interface

The event attribute returns the object containing the definition of the event for this
event port.

Theis_a operation return§RUE if the event value associated with this
EventPortDef is identical to or inherits from the event value associated with the
EventPortDef identified by theevent_id .

The inheriteddescribe operation returns akventPortDescription

10.6.6.2 Write Interface

Setting the attributevent changes the object containing the definition of the event for
this event port.

The rest of the write operations are inherited fr@®RBA::Contained and behave
the same way as i@ORBA::Contained .

CORBA, v3.0: Component Interface Repository Interfaces 10-55

10

10.6.7 ComponentIR::EmitsDef

A ComponentlR::EmitsDef object represents the port definition of an event that is
emitted by a component.

module CORBA {
module ComponentIR {

interface EmitsDef : EventPortDef {};

h
h

10.6.7.1 Read Interface

The read interface foEmitsDef has the same semantics as the read interface for
EventPortDef.

10.6.7.2 Write Interface

The write interface foEmitsDef has the same semantics as the write interface for
EventPortDef.

10.6.8 ComponentIR::PublishesDef

A ComponentlIR::PublishesDef object represents the port definition of an event that
is published by a component.

module CORBA {
module ComponentIR {

interface PublishesDef : EventPortDef {};

h
h

10.6.8.1 Read Interface

The read interface foPublishesDef has the same semantics as the read interface for
EventPortDef .

10.6.8.2 Write Interface

The write interface folPublishesDef has the same semantics as the write interface
for EventPortDef .

10-56 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

10.6.9 ComponentlR::ConsumesDef

A ComponentlR::ConsumesDef object represents the port definition of an event
that is consumed by a component.

module CORBA {
module ComponentIR {

interface ConsumesDef : EventPortDef {};
¥
¥

10.6.9.1 Read Interface

The read interface foEonsumesDef has the same semantics as the read interface for
EventPortDef .

10.6.9.2 Write Interface

The write interface folConsumesDef has the same semantics as the write interface
for EventPortDef .

10.6.10 ComponentIR::ComponentDef

A ComponentIR::ComponentDef object represents the definition of a component.
It contains provides, uses, emits, publishes, consumes, and attributes.

module CORBA {
module ComponentIR {

interface ComponentDef : ExtinterfaceDef {
/ read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

[/l write interface
ProvidesDef create_provides (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,

CORBA, v3.0: Component Interface Repository Interfaces 10-57

10

in boolean is_multiple

);

EmitsDef create_emits (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event
);
¥

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;

typedef sequence<EventPortDescription>
EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld base_component;
RepositoryldSeq supported_interfaces;
ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

10-58 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

10.6.10.1 Read Interface

Thebase_component attribute returns the component that this component derives
from.

The supported_interfaces attribute lists the interfaces which this component type
supports.

The inheritedis_a operation return§RUE if the component on which it is invoked
either is identical to or inherits from the component identified byidtparameter.
Otherwise it return§$ALSE.

The inheriteddescribe operation for aComponentDef returns a
ComponentDescription

The inheritedcontents operation returns the list of attributes, provides, uses, emits,
publishes, and consumes either defined or inherited inGbimponentDef . If the
exclude_inherited parameter is set ttRUE, only attributes, provides, uses, emits,
publishes, and consumes defined within this object are returned. If the
exclude_inherited parameter is set tBALSE, all attributes, provides, uses, emits,
publishes, and consumes are returned.

10.6.10.2 Write Interface

Setting thebase_component attribute causes BAD_PARAM exception with minor
code 5 to be raised if theame attribute of any object contained by this
ComponentDef conflicts with thename attribute of any object contained by the
specified bas€omponentDef .

Setting thesupported_interfaces attribute changes the interfaces which this
component type supports.

The create_<type> operations defined in thEomponentIR::ComponentDef
interface create new corresponding empty IR objects. ddfined_in attribute is
initialized to identify the containin@€omponentDef , and the
containing_repository attribute is initialized to itsComponentIR::Repository

Thesecreate <type> operations all takéd andname parameters that are used to
initialize the identity of the created definition. BAD _PARAM exception is raised
with minor code 2 if an object with the specified already exists in the
ComponentlR::Repository . A BAD_PARAM exception with minor code 3 is
raised if the specifiethame already exists within thi€omponentDef and multiple
versions are not supported.

The inheritedcreate_ext_attribute operation returns a ne®xtAttributeDef
contained in the&ComponentDef on which it is invoked. Thed, name, version ,
type_def, mode, get_exceptions andset _exceptions attributes are set as
specified. Thetype attribute is also set.

The inheritedcreate_operation , and all othercreate_* operations inherited from
Container andContained returnBAD_PARAM exception with minor code 4.

CORBA, v3.0: Component Interface Repository Interfaces 10-59

10

The create_provides operation returns a neRrovidesDef contained in the
ComponentDef on which it is invoked. Théd, name, version andinterface_type
attributes are set as specified.

Thecreate_uses operation returns a neWsesDef contained in the
ComponentDef on which it is invoked. Thed, name, version , interface_type
andis_multiple attributes are set as specified.

The create_emits , create_publishes andcreate_consumes operations
respectively return newmitsDef , PublishesDef andConsumesDef contained in
the ComponentDef on which it is invoked. Thed, name, version , andevent
attributes are set as specified.

A ComponentDef used as &ontainer may not contain anyypedefDef (including
definitions derived froniTypedefDef) , ConstantDef , or ExceptionDef definitions.

A ComponentDef used as amnterfaceDef may only contairExtAttributeDef
definitions.

10.6.11 ComponentIR::FactoryDef

A ComponentIR::FactoryDef object represents the definition of a factory operation
in a home.

module CORBA {
module ComponentIR {

interface FactoryDef : OperationDef { // only PARAM_IN parameters
h
h
h

10.6.11.1 Read Interface

Theresult attribute is aTypeCode describing the type of the value returned by the
operation, which is alwaytk_component for FactoryDef . Theresult_def attribute
identifies the definition of the returned type, which is alwayS@mponentDef in
case offactoryDef .

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of tearameterDescription s in the
sequence is significant. Thrame member of each structure provides the parameter
name. Theype member is alypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. fioele
member indicates whether the parameter is an in, out, or inout parameter. For
FactoryDef the value of mode for all parametersRARAM_IN.

The operation’snode is alwaysnormal for FactoryDef .

Thekind attribute is alway$OP_IDL for FactoryDef .

10-60 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

The contexts attribute specifies the list of context identifiers that apply to the
operation, and is an empty list féiactoryDef .

Theexceptions attribute specifies the list of exception types that can be raised by the
operation.

The inheriteddescribe operation for a@~actoryDef object returns an
OperationDescription

10.6.11.2 Write Interface

Setting theresult_def attribute has no effect.

The mode andcontexts attributes cannot be changed.

10.6.12 ComponentlR::FinderDef

A ComponentIR::FinderDef object represents the definition of a finder operation in
a home.

module CORBA {
module ComponentIR {

interface FinderDef : OperationDef { // only PARAM_IN parameters
3
3
3

10.6.12.1 Read Interface

Theresult attribute is aTypeCode describing the type of the value returned by the
operation, which is alwaytk_component for FinderDef . Theresult_def attribute
identifies the definition of the returned type, which is alwayS@mponentDef in
case of ainderDef .

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of tHearameterDescription s in the
sequence is significant. Theame member of each structure provides the parameter
name. Theype member is alypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. Moge
member indicates whether the parameter is an in, out, or inout parameter. For
FinderDef the value of mode for all parametersR&RAM_IN.

The operation’snode is alwaysnormal for FinderDef .
Thekind attribute is alway$OP_IDL for FinderDef .

The contexts attribute specifies the list of context identifiers that apply to the
operation, and is an empty list fétinderDef .

CORBA, v3.0: Component Interface Repository Interfaces 10-61

10

Theexceptions attribute specifies the list of exception types that can be raised by the
operation.

The inheriteddescribe operation for arFinderDef object returns an
OperationDescription

10.6.12.2 Write Interface

Setting theresult_def attribute has no effect.

The mode andcontexts attributes cannot be changed.

10.6.13 ComponentIiR::HomeDef

A ComponentlIR::HomeDef object represents the definition of a home. It contains
attributes, operations, factories, and finders.

module CORBA {
module ComponentIR {

interface HomeDef : ExtinterfaceDef {

/I read/write interface

attribute HomeDef base_home;

attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

/I write interface
FactoryDef create_factory (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions
);
¥

struct HomeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

10-62 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

VersionSpec version;

Repositoryld base_home;
Repositoryld managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

10.6.13.1 Read Interface
Thebase_home attribute returns the home that this home definition derives from.

The supported_interfaces attribute lists the interfaces which this home type
supports.

The managed_component attribute returns the component that this home manages.
The primary_key attribute returns the primary key that is associated with this home.

The inheriteds_a operation return§RUE if the home on which it is invoked either is
identical to or inherits from the home identified by its parameter. Otherwise it
returnsFALSE.

The inheriteddescribe operation for aHomeDef returns aHomeDescription .

The inheritedcontents operation returns the list of constants, typedefs, exceptions,
attributes, operations, finders and factories defined or inherited irHbiseDef . If

the exclude_inherited parameter is set tBRUE, only objects defined within this
home are returned. If thexclude_inherited parameter is set tBALSE, all objects
are returned.

10.6.13.2 Write Interface

Setting thebase_home attribute causes BAD PARAM exception with minor code
5 to be raised if th@ame attribute of any object contained by thitomeDef conflicts
with the name attribute of any object contained by the specified bidseneDef.

The create_<type> operations defined in thelomeDef interface create new
corresponding empty IR objects. THefined_in attribute is initialized to identify the
containingHomeDef, and thecontaining_repository attribute is initialized to its
ComponentlIR::Repository

Thesecreate _<type> operations all takéd andname parameters that are used to
initialize the identity of the created definition. BAD _PARAM exception is raised
with minor code 2 if an object with the specified already exists in the

July 2002 CORBA, v3.0: Component Interface Repository Interfaces 10-63

10

ComponentlR::Repository . A BAD_PARAM exception with minor code 3 is
raised if the specifiedame already exists within thislomeDef and multiple versions
are not supported.

The inheritedcreate_ext_attribute operation returns a nextAttributeDef
contained in theHomeDef on which it is invoked. Thed, name, version
type_def, mode, get_exceptions , andset_exceptions attributes are set as
specified. Thetype attribute is also set.

The inheriteccreate_operation operation returns a ne@perationDef contained in
the HomeDef on which it is invoked. Thed, name, version , result_def , mode,
params, exceptions , andcontexts attributes are set as specified. Tiesult
attribute is also set.

Thecreate_factory operation returns a nefvactoryDef contained in theHomeDef
on which it is invoked. Thed, name, version, params , andexceptions attributes
are set as specified. The parameters inghmms attribute must all be of
PARAM_IN type.

Thecreate_finder operation returns a nefkinderDef contained in theHomeDef on
which it is invoked. Thdd, name, versions, params , andexceptions attributes
are set as specified. The parameters inghmms attribute must all be of
PARAM_IN type.

A HomeDef used as &ontainer may only containTypedefDef (including
definitions derived fronTypedefDef) , ConstantDef , andExceptionDef definitions.

10.7 Repositorylds

Repositorylds are values that can be used to establish the identity of information in
the repository. ARepositoryld is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does not matter
what format is used for any particul&epositoryld . However, conventions are used

to manage the name space created by these IDs.

Repositoryld s may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OMG
IDL source, or they might be supplied with the package to be installed. Ensuring
consistency oRepositoryld s with the IDL source or the IR contents is the
responsibility of the programmer allocatifgpositoryid s.

The format of the id is a short format name followed by a colon (*:") followed by
characters according to the format. This specification defines four formats:

1. one derived from OMG IDL names,

2. one that uses Java class names and Java serialization version UIDs,
3. one that uses DCE UUIDs, and
4

. another intended for short-term use, such as in a development environment.

10-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

Since new repository ID formats may be added from time to time, compliant IDL
compilers must accept any string value of the form

“<format>:<string>"

provided as the argument to the id pragma and use it as the repository ID. The OMG
maintains a registry of allocated format identifiers. ”fermat> part of the ID may
not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generated by
the IDL compiler using the IDL format.

10.7.1 OMG IDL Format

The OMG IDL format forRepositorylds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and major
and minor version numbers.

The Repositoryld consists of three components, separated by colons, (*:")
1. The first component is the format name, “IDL.”

2. The second component is a list of identifiers, separated by “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (*_"),
hyphen (“-"), and period (“.") characters. Typically, the first identifier is a unique
prefix, and the rest are the OMG IDL Identifiers that make up the scoped name of

the definition.

3. The third component is made up of major and minor version numbers, in decimal
format, separated by a “.”. When two interfaces hBepositoryld s differing only
in minor version number it can be assumed that the definition with the higher
version number is upwardly compatible with (i.e., can be treated as derived from)

the one with the lower minor version number.

10.7.2 RMI Hashed Format

The OMG IDL format defined above does not include any structural information.
Identity of IDL types determined for this format depends upon the names used in the
RepositorylD being correct. For interfaces, if stubs and skeletons are not actually in
synch, even though thRepositorylds report they are, the worst that can happen is
that the result of an invocation isBAD_OPERATION exception. With value types,
these kinds of errors are more problematic. An inconsistency between the stub and
skeleton marshaling/unmarshaling code can confuse the marshaling engine and may
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Java to
IDL Mapping (see the Java/IDL Language Mapping document). It is computed based
upon the structural information of the original Java definition. Whenever the Java
definition changes, the hash function will (statistically) produce a hash code, which is
different from the previous one. When an ORB run time receivealae with a

CORBA, v3.0: Repositorylds 10-65

10

10-66

different hash from what is expected, it is free to raiddAD PARAM exception. It
may also try to resolve the incompatibility by some means. If it is not successful, then
it shall raise theBAD_PARAM exception.

An RMI HashedRepositoryld consists of either three or four components, separated
by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned lgetNeame method of
java.lang.Class . Any characters not inSO Latin lare replaced by\U”
followed by the 4 hexadecimal characters (in upper case) representitntbede
value.

For classes that do not implemdata.io.Serializable , and for interfaces, the
hash code is always zero, and tRepositorylD does not contain aerial version
uiD.

For classes that implemejatva.io.Externalizable , the hash code is always
the 64-bit value 1

For classes that implemejava.io.Serializable but not
java.io.Externalizable , the hash code is @4-bit hash of a stream of bytes
(transcribed as a 16-digit upper case hex string). An instance of
java.lang.DataOutputStream is used to convert primitive data types to a
sequence of bytes. The sequence of items in the stream is as follows:

1. The hash code of the superclass, written as a 64-bit long.

2. The value 1 if the class has maiteObject method, or the value 2 if the class
has awriteObject method, written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Java
field name, in increasing order:

a. Java field name, ilTF encoding

b. field descriptor, as defined by tl#ava Virtual Machine Specificatioin UTF
encoding

The National Institute of Standards and Technold®IST) Secure Hash Algorithm
(SHA-) is executed on the stream of bytes producedlyaOutputStream
producing a20 byte array of values, sha[0..19The hash code is assembled from the
first 8 bytesof this array as follows:

long hash = 0;

for (inti = 0; i < Math.min(8, sha.length); i++) {
hash += (long)(shal[i] & 255) << (i * 8);

}

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

For Serializable (including Externalizable) classes, the Java serialization vérdign
transcribed as a 16 digit upper-case hex string, shall be appendedRepbsitoryld
following the hash code and a colon. The Java serialization vetsibnis defined in
the Java Object Serialization Specification.

Examples for the valuetypefoo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetyp®o::bar would be

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java class\u03bCy that contains a Unicode character not in ISO Latin 1, an
exampleRepositoryld is

RMI:foo.x\UO3BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard hash
algorithm defined above.

10.7.3 DCE UUID Format

DCE UUID formatRepositoryld s start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1".

10.7.4 LOCAL Format

Local formatRepositoryld s start with the characters “LOCAL:” and are followed by

an arbitrary string. Local format IDs are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local IDs
that are just consecutive integers might be used within a development environment to
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

10.7.5 Pragma Directives for Repositoryld

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitraryRepositoryld formats and still support the OMG IDRepositoryld format
with minimal annotation. The prefix and version pragma directives apply only to the
IDL format. An IDL compiler must interpret these annotations as specified.
Conforming IDL compilers may support additional non-standard pragmas, but must
not refuse to compile IDL source containing non-standard pragmas that are not
understood by the compiler.

July 2002 CORBA, v3.0: Repositorylds 10-67

10

10.7.5.1 TheID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitraRepositoryld string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which
the pragma is contained.Tkad> must be a repository ID of the form described in
Section 10.7, “Repositorylds,” on page 10-64.

An attempt to assign a repository ID to the same IDL construct a second time shall be
an error unless the repository ID used in the attempt is identical to the previous one.

interface A {};
#pragma ID A “IDL:A:1.1"
#pragma ID A “IDL:X:1.1” /I Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1”
#pragma ID B “IDL:BB:1.1” /I OK, same ID

It is also an error to apply an ID to a forward-declared IDL construct (interface,
valuetype, structure, and union) and then later assign a different ID to that IDL
construct.

10.7.5.2 The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>"

sets the current prefix used in generating OMG IDL forRapositoryld s. For
example, theRepositoryld for the initial version of interfac®rinter defined on
moduleOffice by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

BecauseRepositoryld s may be used in many different computing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them.
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, and so
forth, are preferable to generic names such as “document.”

The specified prefix applies tRepositoryld s generated after the pragma until the end

of the current scope is reached or another prefix pragma is encountered. An IDL file
forms a scope for this purpose, so a prefix resets to the previous prefix at the end of the
scope of an included file:

10-68 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

/I A.idl
#pragma prefix “A”
interface A {};

/I B.idI

#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

/I C.idl
interface C {};

/I D.idI

#pragma prefix “D”
#include “C.idl"”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly
resets to the empty prefix:

// E.idl
interface E {};

/I F.idl
module M {
#include <E.idl>

h
The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a
prefix pragma, the included file's prefix takes precedence, for example:

11 A.idl

#pragma prefix “A”
interface A {};

CORBA, v3.0: Repositorylds 10-69

10

// B.idl

#pragma prefix “B”
module M {
#include “A.idl"”

h

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must have
the same prefix in effect wherever they appear. Attempts to assign conflicting prefixes
to a forward-declared construct result in a compile-time diagnostic. For example:

#pragma prefix “A”
interface A; /I Forward decl.

#pragma prefix “B”
interface A; /I Compile-time error

#pragma prefix “C”

interface A { /I Compile-time error
void op();

2

A prefix pragma of the form

#pragma prefix

resets the prefix to the empty string. For example:

#pragma prefix “X”
interface X {};
#pragma prefix
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix
pragma does not affect the repository ID for an ID pragma, but does affect the
repository ID for a version pragma:

#pragma prefix “A”

interface A {};

interface B {};

interface C {};

#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

10-70 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

The repository IDs for this specification are

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a
#pragma prefix elsewhere has undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior

{
...

10.7.5.3 The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
Repositoryld for a specific OMG IDL name. Thename> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL name
lookup rules relative to the scope within which the pragma is contained<iitagor>
and<minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified with
an ID pragma, a compliant compiler shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1"
#pragma version A 9.9 /I Compile-time error

An attempt to assign a version to the same IDL construct a second time shall be an
error unless the version used in the attempt is identical to the existing one.

interface A {};

#pragma version A 1.1

#pragma version A 1.1 Il OK
#pragma version A 1.2 Il Error

interface B {};

#pragma ID B “IDL:myB:1.2”
#pragma version B 1.2 Il OK

July 2002 CORBA, v3.0: Repositorylds 10-71

10

10.7.5.4 Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - formaRepositoryld if no ID
pragma is encountered for it.

The ID string shall be generated by starting with the string "IDL:". Then, if the current
prefix pragma is a non-empty string, it is appended, followed by a "/" character. Next,
the components of the scoped name of the definition, relative to the scope in which any
prefix that applies was encountered, are appended, separated by “/” characters. Finally,
a “” and the version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

¥
#pragma prefix “P1”

module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
¥
typedef long T4;
#pragma version T4 2.4

¥

specifies types with the following scoped names &wgpositoryld s:
mM1:T1 IDL:M1/T1:1.0
mM1:T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
©M2::M3::T3 IDL:P2/T3:1.0
mM2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world where different entities independently evolve types,
a convention must be followed to avoid the saRepositoryld being used for two
different types. Only the entity that created the prefix has authority to create new IDs
by simply incrementing the version number. Other entities must use a new prefix, even
if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2"

10-72 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

module M3 {
#pragma prefix “P2”
typedef long T3;
I3
typedef long T4;
#pragma version T4 2.4

3

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

See Section 10.7.5.2, “The Prefix Pragma,” on page 10-68 for further details of the
effects of various prefix pragma settings on the gener&eplositoryld s.

10.7.6 For More Information

Section 10.8, “OMG IDL for Interface Repository,” on page 10-75 shows the OMG

IDL specification of the IR, including the #pragma directive. Section 3.3,
“Preprocessing,” on page 3-11 contains additional, general information on the pragma
directive.

10.7.7 RepositorylDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but
not limited to CORBA, CORBA Services, and CORBA Facilities, depends on
unambiguous specification &tepositoryld s for all IDL-defined types in such
specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of the
file (e.g., “‘w3c.org ").

Revisions to existing OMG specifications must not change the definition of an existing
type in any way. Two types with different repository Ids are considered different types,
regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability
requires it to derive a new interface from the standard interface, rather than modify the
standard definition.

10.7.8 Unigueness Constraints on Repository IDs

Within an IDL definition, a module must have the same repository ID throughout. For
example:

#pragma prefix "A"
module M {

CORBA, v3.0: Repositorylds 10-73

10

...
h

#pragma prefix "B"
module M { /Il Error, inconsistent repository 1D
...

h

This definition attempts to use the same type hame M with two different repository IDs
in the same compilation unit. Compilers shall issue a diagnostic for this error.

The same error can arise through inclusion of source files in the same compilation unit.
For example:

/I Filel.idl
module M {
module N {
...
3
#pragma ID N "abc"
3

/I File2.idl
module M {
module N {
...
I3
I3

/I File3.idI
#include "Filel.idl
#include "File2.idl // Error, inconsistent repository ID

Similarly:

/I Filel.idl
module M {
...

k

/I File2.idl

#include Filel.idl

#pragma prefix "X"

module M { /Il Error, inconsistent repository 1D
...

3

Such errors are detectable only if they occur in a single compilation unit (or in files
included in a single compilation unit); if, in different compilation units, different
repository IDs are used for the same module, and these compilation units are combined
into a single executable, the behavior is undefined.

10-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

10.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

module CORBA {
typeprefix CORBA “omg.org”;
typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

3

interface IRObject {
/ read interface
readonly attribute DefinitionKind def_kind;
[/l write interface
void destroy ();

3

typedef string VersionSpec;

interface Contained;

interface Repository;

interface Container;

interface Contained : IRObject {
/I read/write interface
attribute Repositoryld id;

attribute Identifier name;
attribute VersionSpec version;

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-75

10

10-76

/I read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind,;
any value;

h
Description describe ();

/I write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);

h

interface ModuleDef;

interface ConstantDef;

interface IDLType;

interface StructDef;

interface UnionDef;

interface EnumDef;

interface AliasDef;

interface InterfaceDef;

interface ExceptionDef;

interface NativeDef;

typedef sequence <InterfaceDef> InterfaceDefSeq;

interface ValueDef;

typedef sequence <ValueDef> ValueDefSeq;

interface ValueBoxDef;

interface AbstractinterfaceDef;

typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;

interface LocallnterfaceDef;

typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

interface ExtinterfaceDef;

typedef sequence <ExtInterfaceDef> ExtinterfaceDefSeq;

interface ExtValueDef;

typedef sequence <ExtValueDef> ExtValueDefSeq;

interface ExtAbstractinterfaceDef;

typedef sequence <ExtAbstractinterfaceDef>
ExtAbstractinterfaceDefSeq;

interface ExtLocallnterfaceDef;

typedef sequence <ExtLocallnterfaceDef>
ExtLocallnterfaceDefSeq;

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

10

July 2002

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

2
typedef sequence <StructMember> StructMemberSeq;
struct Initializer {

StructMemberSeq members;
Identifier name;

3

typedef sequence <Initializer> InitializerSeq;

struct ExceptionDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

3

typedef sequence <ExceptionDescription> ExcDescriptionSeq;

struct Extlinitializer {

StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

3

typedef sequence <Extlnitializer> ExtlnitializerSeq;

struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

2
typedef sequence <UnionMember> UnionMemberSeq;
typedef sequence <lIdentifier> EnumMemberSeq;

interface Container : IRObject {
/I read interface

Contained lookup (
in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

CORBA, v3.0: OMG IDL for Interface Repository

10-77

10

search_name,
levels_to_search,

limit_type,

exclude_inherited

contained_object;

kind;

value;

);

ContainedSeq lookup_name (
in Identifier
in long
in DefinitionKind
in boolean

);

struct Description {
Contained
DefinitionKind
any

3

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind
in boolean
in long

);

/I write interface

limit_type,

exclude_inherited,

max_returned_objs

ModuleDef create_module (

in Repositoryld
in Identifier
in VersionSpec

);

id,
name,
version

ConstantDef create_constant (

in Repositoryld
in Identifier

in VersionSpec
in IDLType

in any

);

StructDef create_struct (
in Repositoryld
in Identifier
in VersionSpec
in StructMemberSeq

);

UnionDef create_union (
in Repositoryld
in Identifier
in VersionSpec
in IDLType

id,
name,
version,

type,
value

id,

name,
version,
members

id,

name,

version,
discriminator_type,

10-78 Common Object Request Broker Architecture (CORBA), v3.0

July 2002

10

July 2002

in UnionMemberSeq

);

EnumDef create_enum (
in Repositoryld
in Identifier
in VersionSpec
in EnumMemberSeq

);

AliasDef create_alias (
in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

members

id,

name,
version,
members

id,

name,
version,
original_type

InterfaceDef create_interface (

in Repositoryld

in Identifier

in VersionSpec

in InterfaceDefSeq

);

ValueDef create_value(
in Repositoryld
in Identifier
in VersionSpec
in boolean
in boolean
in ValueDef
in boolean
in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

);

id,

name,

version,
base_interfaces,

id,

name,

version,

is_custom,

is_abstract,
base_value,
is_truncatable,
abstract_base values,
supported_interfaces,
initializers

ValueBoxDef create_value_box(

in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

id,

name,

version,
original_type_def

ExceptionDef create_exception(

in Repositoryld

in Identifier

in VersionSpec

in StructMemberSeq

id,

name,
version,
members

CORBA, v3.0: OMG IDL for Interface Repository

10-79

10

10-80

NativeDef create native(

in Repositoryld id,
in Identifier name,
in VersionSpec version

);

AbstractinterfaceDef create_abstract_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create_local_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
ExtValueDef create_ext_value (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base value,
in boolean is_truncatable,
in ValueDefSeq abstract_base values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

);
h

interface IDLType : IRODbject {
readonly attribute TypeCode type;

h

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

10

3

interface Repository : Container {
/I read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

[l write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type
);
ArrayDef create_array (
in unsigned long length,
in IDLType element_type
);
FixedDef create_fixed (
in unsigned short digits,
in short scale
);
2
interface ModuleDef : Container, Contained {
2
struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

3

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

3

struct ConstantDescription {
Identifier name;

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-81

10

Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
any value;

h

interface TypedefDef : Contained, IDLType {

h

struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

h

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

h

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

h

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

h

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

h

interface NativeDef : TypedefDef {
h

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind,;

h

interface StringDef : IDLType {
attribute unsigned long bound;

h

interface WstringDef : IDLType {
attribute unsigned long bound;

h

10-82 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

interface FixedDef : IDLType {

attribute unsigned short digits;
attribute short scale;
2
interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
2
interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
2

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

h
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;

2

struct AttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

2

struct ExtAttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

2

interface ExtAttributeDef : AttributeDef {

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-83

10

/l read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

/l read interface
ExtAttributeDescription describe_attribute ();

h

enum OperationMode {OP_NORMAL, OP_ONEWAY},
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

h

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq,;

interface OperationDef : Contained {

10-84

readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
h
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

h

typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;
typedef sequence <ExtAttributeDescription> ExtAttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {

/I read/write interface

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

attribute InterfaceDefSeq base_interfaces;
/I read interface

boolean is_a (

in Repositoryld interface_id
);
struct FullinterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

2
FullinterfaceDescription describe_interface();

/[write interface
AttributeDef create_attribute (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextldSeq contexts
);
2
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

RepositoryldSeq

base_interfaces;

3

interface InterfaceAttrExtension {

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-85

10

/I read interface

struct ExtFullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

h

ExtFullinterfaceDescription describe_ext_interface ();

/I write interface

ExtAttributeDef create_ext_attribute (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,

in ExceptionDefSeq
in ExceptionDefSeq
);
h

get_exceptions,
set_exceptions

interface ExtinterfaceDef : InterfaceDef,

h

typedef short Visibility;

InterfaceAttrExtension {

const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1,

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

h

10-86

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

3

interface ValueDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;

attribute ValueDef base_value;

attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/I read interface
boolean is_a(

in Repositoryld id

);

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;
TypeCode type;

2

FullValueDescription describe_value();
/[write interface

ValueMemberDef create_value_member(

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);
AttributeDef create_attribute(

in Repositoryld id,
in Identifier name,

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-87

10

in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextldSeq contexts

);

¥
struct ValueDescription {

Identifier name;

Repositoryld id;

boolean is_abstract;

boolean is_custom;

Repositoryld defined_in;

VersionSpec version;

RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;

h
interface ExtValueDef : ValueDef {

/l read/write interface
attribute ExtlnitializerSeq ext_initializers;

/I read interface

struct ExtFullValueDescription {

Identifier name;

Repositoryld id;

boolean is_abstract;

boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtlInitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;

10-88 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

July 2002

1

Repositoryld base_value;
TypeCode type;

2
ExtFullValueDescription describe_ext_value ();

/[write interface
ExtAttributeDef create_ext_attribute (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
3

interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

3

interface AbstractinterfaceDef : InterfaceDef {

3

interface ExtAbstractinterfaceDef: AbstractinterfaceDef,
InterfaceAttrExtension {

h

interface LocallnterfaceDef : InterfaceDef {

h

interface ExtLocallnterfaceDef : LocallnterfaceDef,
InterfaceAttrExtension {

h

module ComponentIR {
typeprefix ComponentIR “omg.org”;

interface ComponentDef;
interface HomeDef;

interface EventDef : ExtValueDef {};

interface Container{
ComponentDef create_component (
in Repositoryld id,
in Identifier name,
in VersionSpec version,

CORBA, v3.0: OMG IDL for Interface Repository

10-89

10

10-90

h

interface ModuleDef : CORBA::ModuleDef, Container{};

interface Repository : CORBA::Repository, Container{};

in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in HomeDef base _home,

in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
in ValueDef primary_key

);

EventDef create_event (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in boolean is_custom,

in boolean is_abstract,

in ValueDef base value,

in boolean is_truncatable,

in ValueDefSeq abstract_base values,

in InterfaceDefSeq supported_interfaces,

in ExtlnitializerSeq initializers

);

interface ProvidesDef : Contained {

h

attribute InterfaceDef interface_type;

struct ProvidesDescription {

h

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;

interface UsesDef : Contained {

h

attribute InterfaceDef interface_type;
attribute boolean is_multiple;

struct UsesDescription {

Identifier name;

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

10

Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;
boolean is_multiple;

2
interface EventPortDef : Contained {

/I read/write interface
attribute EventDef event;

/I read interface
boolean is_a (in Repositoryld event_id);

3

struct EventPortDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld event;

I3

interface EmitsDef : EventPortDef {};

interface PublishesDef : EventPortDef {};

interface ConsumesDef : EventPortDef {};

interface ComponentDef : ExtinterfaceDef {
/l read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;
[l write interface

ProvidesDef create_provides (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in Repositoryld id,

in Identifier name,

in VersionSpec version,

in InterfaceDef interface_type,
in boolean is_multiple

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-91

10

EmitsDef create_emits (
in Repositoryld id,

in ldentifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in Repositoryld id,

in ldentifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in Repositoryld id,

in ldentifier name,
in VersionSpec version,
in EventDef event

);
h

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;

typedef sequence<EventPortDescription>
EventPortDescriptionSeq;

struct ComponentDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
Repositoryld base_component;

RepositoryldSeq
ProvidesDescriptionSeq
UsesDescriptionSeq
EventPortDescriptionSeq
EventPortDescriptionSeq
EventPortDescriptionSeq
ExtAttrDescriptionSeq
TypeCode

h

supported_interfaces;
provided_interfaces;
used_interfaces;
emits_events;
publishes_events;
consumes_events;
attributes;

type;

interface FactoryDef : OperationDef {};
interface FinderDef : OperationDef {};
interface HomeDef : ExtinterfaceDef {

/I read/write interface

10-92 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

10

attribute HomeDef base_home;
attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

/I write interface
FactoryDef create_factory (

in Repositoryld id,
in Identifier name,
in VersionSpec version,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);
FinderDef create_finder (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions
);
2
struct HomeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld base_home;
Repositoryld managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;
2

July 2002 CORBA, v3.0: OMG IDL for Interface Repository 10-93

10

10-94 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

The Portable Object Adapter 11

This chapter describes the Portable Object Adapter, or POA. It presents the design goals,
a description of the abstract model of the POA and its interfaces, followed by a detailed
description of the interfaces themselves.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 111
“Abstract Model Description” 11-2
“Interfaces” 11-14
“IDL for PortableServer Module” 11-46
“UML Description of PortableServer” 11-52
“Usage Scenarios” 11-54

11.1 Overview

The POA is designed to meet the following goals:

* Allow programmers to construct object implementations that are portable between
different ORB products.

* Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 111

11

® Provide support for transparent activation of objects.
* Allow a single servant to support multiple object identities simultaneously.
® Allow multiple distinct instances of the POA to exist in a server.

® Provide support for transient objects with minimal programming effort and
overhead.

® Provide support for implicit activation of servants with POA-allocated Object Ids.

* Allow object implementations to be maximally responsible for an object’'s behavior.
Specifically, an implementation can control an object’s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object exists at any point in time.

® Avoid requiring the ORB to maintain persistent state describing individual objects,
their identities, where their state is stored, whether certain identity values have been
previously used or not, whether an object has ceased to exist or not, and so on.

® Provide an extensible mechanism for associating policy information with objects
implemented in the POA.

® Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computational
model. This section presents that model and defines terminology and basic concepts that
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intended
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and some of
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

® Client—A client is a computational context that makes requests on an object
through one of its references.

® Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Notdigmtand
serverare roles that programs play with respect to a given object. A program that is
a client for one object may be the server for another. The same process may be both
client and server for a single object.

11-2 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

® Object—In this discussion, we usebjectto indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and an
implementation. From a client’s perspective, the object’s identity is encapsulated in
the object’s reference. This specification defines the server’s view of object identity,
which is explicitly managed by object implementations through the POA interface.

® Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context of a
server process. Requests made on an object’s references are mediated by the ORB
and transformed into invocations on a particular servant. In the course of an object’s
lifetime it may be associated with (that is, requests on its references will be targeted
at) multiple servants.

® Object Id—An Object Id is a value that is used by the POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and managed
by the implementation. Object Id values are hidden from clients, encapsulated by
references. Object Ids have no standard form; they are managed by the POA as
uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device used by
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logical
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application developer, although
the SYSTEM_ID policy enables the POA to generate Object Id values for the
application.

®* Object Reference-An object reference in this model is the same as in the CORBA
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example, it
might contain the full name of the POA (the names of all POAs starting from the
root and ending with the specific POA). The reference might not, in fact, actually
contain the Object Id, but instead contain more compact values managed by the
ORB that can be mapped to the Object Id. This is a description of the abstract
information model implied by the POA. Whatever encoding is used to represent the
POA name and the Object Id must not restrict the ability to use any legal character
in a POA name or any legal octet in an Object Id.

®* POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or child)
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for objects
within a server.

® Policy—A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA's threading model as well as a

July 2002 CORBA, v3.0: Abstract Model Description 11-3

11

11-4

variety of other options related to the management of objects. Other specifications
may define other policies that affect how an ORB processes requests on objects
implemented in the POA.

®* POA Manager—A POA manager is an object that encapsulates the processing state

of one or more POAs. Using operations on a POA manager, the developer can cause
requests for the associated POAs to be queued or discarded. The developer can also
use the POA manager to deactivate the POAs.

® POA Manger Factory -A POA Manager Factory allows explicit creation of POA
managers and lookup of existing POA managers. With explicit creation, the
developer can control the identity (the name) of a POA manager as well as pass
configuration policies to the factory operation.

® Servant ManagerA servant manager is an object that the application developer
can associate with a POA. The ORB will invoke operations on servant managers to
activate servants on demand, and to deactivate servants. Servant managers are
responsible for managing the association of an object (as characterized by its Object
Id value) with a particular servant, and for determining whether an object exists or
not. There are two kinds of servant managers, cadledrantActivator and
ServantLocator ; the type used in a particular situation depends on policies in the
POA.

® Adapter Activator—An adapter activator is an object that the application developer
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exist.
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the
interactions between various components. The ORB is an abstraction visible to both the
client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make requests.
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

shows the detail of the relationship between the POA and the implementation.
Ultimately, a POA deals with an Object Id and an active servanta&ive servantwe

mean a programming object that exists in memory and has been presented to the POA
with one or more associated object identities. There are several ways for this association
to be made.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

Object Reference -
/ | Object Id
(" ORB %)
POA
5 o
O
User-supplied
servants
POA
@)
Client Server

July 2002

Figure 11-1 Abstract POA Model

If the POA supports th®ETAIN policy, it maintains a map, labele&tctive Object Map

that associates Object Ids with active servants, each association constituting an active
object. If the POA has thISE_DEFAULT_SERVANT policy, a default servant may

be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be

registered with the POA. If the Active Object Map is not used, or a request arrives for an
object not present in the Active Object Map, the POA either uses the default servant to
perform the request or it invokes the servant manager to obtain a servant to perform the
request. If the(RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process the one
request.

In this specification, the termactiveis applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA's Active Object Map contains an entry
that associates an Object Id with an existing servant. When this specification refers to
active Object Idsandactive servantsit means that the Object Id value or servant in
guestion is part of an entry in the Active Object Map. An Object Id can appear in a
POA's Active Object Map only once.

CORBA, v3.0: Abstract Model Description 11-5

11

11-6

POAManage
Factory

Object IdP

~—o~rp<——0 >

User-supplied
servant

/ POAA N\

default servantt—"1

User-supplied
servant

User-supplied

Active Object Map | servant
Object Id 8: User-supplied
Ob!ect ld O—T—9—— User-sunolied || ServantManagef.
Object Id O F—— servant PP 7
. \ ObjectIdO—/ >

User-supplied

Q servant
N p w’ S s
P ?(POA 5 \ ‘ e User-supplied
'I?/I <. servant mgr. |-° ’ servant
a . e
n Object Id O// User-suppli
) . -supplied
a i N Object Id O/// servant
g] .| Objectd O
e N
>/ “POAC _| User-supplied
|Object Id Ci >| servant
$ N bl

| - - | AdapterActivatof.
_ -

> Object reference

—> Servant pointer

Figure 11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA
object. A distinguished POA object, called tleot POA is managed by the ORB and
provided to the application using the ORB initialization interface under the initial object
name “RootPOA.” The application developer can create objects using the root POA if
those default policies are suitable. The root POA has the following policies.

® Thread PolicyORB_CTRL_MODEL

® Lifespan Policy:TRANSIENT

® Object Id Uniqueness Polic{JNIQUE_ID
® |d Assignment PolicySYSTEM_ID

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

11

July 2002

® Servant Retention Polic\RETAIN
® Request Processing PolidySE_ACTIVE_OBJECT_MAP_ONLY
® |mplicit Activation Policy: IMPLICIT_ACTIVATION

The developer can also create new POAs. Creating a new POA allows the application
developer to declare specific policy choices for the new POA and to provide a different
adapter activator and servant manager (these are callback objects used by the POA to
activate objects and nested POAs on demand). Creating nhew POAs also allows the
application developer to partition the name space of objects, as Object Ids are interpreted
relative to a POA. Finally, by creating new POAs, the developer can independently
control request processing for multiple sets of objects.

A POA is created as a child of an existing POA usingdheate POA operation on the
parent POA. When a POA is created, the POA is given a name that must be unique with
respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB. It
is the responsibility of the server application to create and initialize the appropriate POA
objects during server initialization or to set AdapterActivator to create POA objects
needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the POA that
created the object reference as well as all of its ancestor POAs. To ensure portability,
each POA must be created with the same name as the corresponding POA in the original
server process and with the same policies. (It is the user’s responsibility to create the
POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of the
ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of@RB_init call in an application has its
own separate root POA and POA namespace.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported tc
clients.

From this model’s perspective, object references encapsulate object identity information
and information required by the ORB to identify and locate the server and POA with
which the object is associated (that is, in whose scope the reference was created.)
References are created in the following ways:

® The server application may directly create a reference wittctbate reference
andcreate_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from

CORBA, v3.0: Abstract Model Description 11-7

11

11-8

information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object into
existence, but do not associate it with an active servant.

® The server application may explicitly activate a servant, associating it with an object
identity using theactivate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using tbervant_to_reference orid_to_reference
operations.

®* The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object reference
corresponding to an inactive servant, the POA may automatically assign a generated
unique Object Id to the servant and activate the resulting object. The reference may
be obtained by invokingOA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a reference
type in programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a variety
of ways. It can be advertised through the OMG Naming and Trading Services. It can be
converted to a string Vi@RB::object_to_string and published in some way that

allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the identity of
the object from the client’s perspective. As long as the client program holds and uses that
reference, requests made on the reference should be sent to the “same” object.

Note —The meaning of object identity and “sameness” is at present the subject of
debate in the OMG. This specification does not attempt to resolve that debate in any
way, particularly by defining a concrete notion of identity that is exposed to clients,
beyond the existing notions of identity described in the CORBA specifications and the
OMA guide.

The states of servers and implementation objects are opaque to clients. This specification
deals primarily with the view of the ORB from the server’s perspective.

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has thdRETAIN policy, the servant and its associated Object Id are entered
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

® The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

July 2002

® The server application instructs the POA to activate objects on demand by having the
POA invoke a user-supplied servant manager. The server application registers this
servant manager withet_servant_manager .

® Under some circumstances (when tMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implicitly
activate an object when the server application attempts to obtain a reference for a
servant that is not already active (that is, not associated with an Object Id).

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant with
set_servant .

If the POA has thé&NON_RETAIN policy, for every request, the POA may use either a
default servant or a servant manager to locate an active servant. From the POA'’s point of
view, the servant is active only for the duration of that one request. The POA does not
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the

identification of the POA that created the target object reference. When a client issues a

request, the ORB first locates an appropriate server (perhaps starting one if needed) and
then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity to re-
create the required POA by using an adapter activator. An adapter activator is a user-
implemented object that can be associated with a POA. It is invoked by the ORB when a
request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The
further processing of that request depends both upon the policies associated with that
POA as well as the object's current state of activation.

If the POA has théRETAIN policy, the POA looks in the Active Object Map to find out
if there is a servant associated with the Object Id value from the request. If such a servant
exists, the POA invokes the appropriate method on the servant.

If the POA has theNON_RETAIN policy or has theRETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

* |f the POA has thaJSE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception with standard minor code 3.

® [f the POA has thaJSE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invakearnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on the

CORBA, v3.0: Abstract Model Description 11-9

11

11-10

NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises ®BJ_ADAPTER system exception
with standard minor code 4.

* |f the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility. Any
system exception raised by the servant manager will be returned to the client in the reply.
In addition to standard system exceptions, a servant manager is capable of raising a
ForwardRequest exception. This exception includes an object reference. The ORB
will process this exception as specified in section 11.3.5.1.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policyIMPLICIT_ACTIVATION, also requires th& YSTEM_ID and
RETAIN policies.

When a POA supports implicit activation, an inactive servant may be implicitly activated
in that POA by certain operations that logically requireGiject Idto be assigned to

that servant.IMPLICIT_ACTIVATION does not disallow explicit activation; instead, it
enables both implicit and explicit activation.)

Implicit activation of an object involves allocating a system-generated Object Id and
registering the servant with th&bject Idin the Active Object MapThe interface
associated with the implicitly activated object is determined from the servant (using
static information from the skeleton, or, in the case of a dynamic servant, using the
_primary_interface() operation).

The operations that support implicit activation include:

®* ThePOA:servant_to_reference operation, which takes a servant parameter and
returns a reference.

®* ThePOA:servant_to_id operation, which takes a servant parameter and returns an
Object Id.

® Operations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, thihis() servant member function in C++
returns an object reference for the servant.

® |mplicit conversions supported by a language mapping that convert a servant to an
object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has th&JNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

If the POA has theMULTIPLE_ID policy, theservant_to_reference and

servant_to_id operations willalwaysperform implicit activation, even if the servant is
already associated with an Object Id. The behavior of language mapping operations in
theMULTIPLE_ID case is specified by the language mapping. For example, in C++, the
_this() servant member function will not implicitly activateMULTIPLE_ID

servant if the invocation ofthis() is immediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

Note —The exact timing of implicit activation is ORB implementation-dependent. For
example, instead of activating the object immediately upon creation of a local object
reference, the ORB could defer the activation until the Object Id is actually needed (for
example, when the object reference is exported outside the process).

11.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is needed
from a threads package. However, in order to allow the development of portable servers
that utilize threads, the behavior of the POA and related interfaces when used within a
multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does provide
support for multi-threading, these are the behaviors that will be supported by that ORB.
This allows a programmer to take advantage of multiple ORBs that support threads in a
portable manner across those ORBs.

The POA's processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run, andshutdown .

11.2.8.1 POA Threading Models

The POA supports three models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled, single thread and main-thread
behavior. The three models can be used together or independently. All can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by
including aThreadPolicy object in the policies parameter of the POAlgate POA
operation. Once a POA is created with one model, it cannot be changed to the other. All
uses of the POA within the server must conform to that threading model associated with
the POA.

July 2002 CORBA, v3.0: Abstract Model Description 11-11

11

11-12

11.2.8.2 Usingthe Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-threaded
environment, upcalls made by this POA to servants shall not be made concurrently. This
provides a degree of safety for code that is multi-thread-unaware.

Note —In a multi-threaded environment, requests to distinct single-threaded POAs may
be processed concurrently.

The POA will still allow reentrant calls from an object implementation to itself, or to
another object implementation managed by the same POA.

11.2.8.3 Usingthe ORB Controlled Model

The ORB controlled model of threading is used in environments where the developer
wants the ORB/POA to control the use of threads in the manner provided by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of
threads used with one or more POAs.

11.2.8.4 Usingthe Main Thread Model

Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are made in a
manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distinguished
"main" thread, servant upcalls will be processed on that thread. (See Section 4.2.5,
“Thread-Related Operations,” on page 4-9.)

Note —Not all environments have such a special requirement. If not, while requests will
be processed sequentially they might not all be processed by the same thread.

11.2.8.5 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server programmer
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and code
with it in mind.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

11

July 2002

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:
® type-specific skeletons, typically generated by OMG IDL compilers, or

® dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as type-
specific servants. Servants connected to dynamic skeletons are used to implement the
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific servant
is transparent to its clients. Two CORBA objects supporting the same interface may be
incarnated, one by a DSI servant and the other with a type-specific servant. Furthermore,
a CORBA object may be incarnated by a DSI servant only during some period of time,
while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language providing a
set of interfaces to the POA. These interfaces are used only by the POA. The interfaces
required are the following.

®* Take aCORBA::ServerRequest object from the POA and perform the processing
necessary to execute the request.

® Return the Interface Repository Id identifying the most-derived interface supported
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be able
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting different
interfaces.

The reason for the second interface can be understood by comparing DSI servants to
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for example,
an IDL interfaceWindow in moduleGraphicalSystem will generate a type-specific
skeleton class called/indow in namespac®OA_GraphicalSystem. A type-specific
servant that is directly derived from tfOA_GraphicalSystem::Window skeleton

class may incarnate several CORBA objects at a time, but all those CORBA objects will
support theGraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting the
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the
Interface Repository Id identifying the most-derived interface supported by the target
CORBA object in a request. The POA should be able to determine this by asking the
servant that is going to serve the CORBA object.

CORBA, v3.0: Abstract Model Description 11-13

11

In the case of type-specific servants, the POA obtains that information from the type-
specific skeleton class from which the servant is directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

11.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless
explicitly stated to the contrary, all POA behavior described in this specification applies
regardless of whether the client is local (same process) or remote. For example, like a
request from a remote client, a request from a local client may cause object activation if
the object is not active, block indefinitely if the target object's POA is in the holding
state, be rejected if the target object's POA is in the discarding or inactive states, be
delivered