
Biomolecular Sequence Analysis
Specification

OMG document: lifesci/99-12-01
Draft Adopted Specification: December 1999

 paid up,
ified
 copyright
ving

ire use
y be
at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
form or
nd

 in

IDL,
, Inc.
Copyright 1999, Concept Five Technologies, Inc.
Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Genome Informatics Corporation
Copyright 1999, Millennium Pharmaceuticals, Inc.
Copyright 1999, Neomorphic Software, Inc.
Copyright 1999, NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ers to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

1
1

1

2

2

1-1
1-1

1-1

1-2

1-2
1-2
-3
-3
1-3
3
1-4

-1
2-1
2-2
2-2
2-3
-4

2-5
-9

-13
16
-20
-26
-31
-33
35
37
39
47
-49
-50
53
-55
Preface .
About the Object Management Group .

What is CORBA?. .

Associated OMG Documents .

Acknowledgments .

1. Biomolecular Sequence Analysis
Overview .
1.1 Module DsLSRBioObjects. .

1.2 Module DsLSRAnalysis. .

1.3 Domain Model .

1.4 General Remarks .
1.4.1 Objects-by-value. .
1.4.2 Returning multiple results 1
1.4.3 Identifier . 1
1.4.4 Composite pattern. .
1.4.5 BioObject immutability 1-
1.4.6 Rationale for metadata approach

2. BSA Modules and Interfaces . 2
2.1 Module DsLSRBioObjects. .

2.1.1 General .
2.1.2 StrandType .
2.1.3 Basis .
2.1.4 Interval . 2
2.1.5 SeqRegion .
2.1.6 Annotation . 2
2.1.7 SeqAnnotation . 2
2.1.8 Identifier . 2-
2.1.9 BioSequence. 2
2.1.10 Sub-types of BioSequence 2
2.1.11 CodeRule . 2
2.1.12 GeneticCode . 2
2.1.13 AlignmentElement . 2-
2.1.14 AlignmentElementIterator 2-
2.1.15 Alignment. 2-
2.1.16 Alignment Examples . 2-
2.1.17 Assembly . 2
2.1.18 SearchHit . 2
2.1.19 SimilaritySearchHit . 2-
2.1.20 BioSequenceIdentifierResolver 2
Biomolecular Sequence Analysis V1.0 December 1999 i

Contents

-56
60
-62
-65
70
72
76
79

-80
-81
82
-84
-86
-87
-89
90

-92
-96
-98
102

3-1

3-1
-1
-2

3-3

3-5
3-5
-5
-6

A-1

B-1

C-1

-1

E-1

ary-1
2.1.21 SearchResult . 2
2.1.22 AnnotationFactory (Optional). 2-
2.1.23 BioSequence factories (Optional) 2
2.1.24 BioSequence iterators (Optional) 2
2.1.25 GeneticCodeFactory (Optional) 2-
2.1.26 CharacterAlignmentEncoder (Optional) 2-
2.1.27 SingleCharacterAlignmentEncoder (Optional) . 2-
2.1.28 AlignmentEncoder factories (Optional) 2-

2.2 Module DsLSRAnalysis. 2
2.2.1 General . 2
2.2.2 AnalysisType . 2-
2.2.3 InputPropertySpec . 2
2.2.4 OutputPropertySpec . 2
2.2.5 AnalysisState . 2
2.2.6 AnalysisEvent. 2
2.2.7 Sub-types of AnalysisEvent 2-
2.2.8 AnalysisService . 2
2.2.9 JobControl . 2
2.2.10 AnalysisInstance. 2
2.2.11 Sequence Diagrams . 2-

3. Domain Model .

3.1 Metadata. .
3.1.1 Role of XML . 3
3.1.2 Role of DTD. 3
3.1.3 Domain Metadata .

3.2 Classification of Analyses .
3.2.1 Searching .
3.2.2 Alignment. 3
3.2.3 Utilities. 3

Appendix A - References.

Appendix B - Genetic Codes .

Appendix C - Complete IDL .

Appendix D - Domain Model DTD and XML D

Appendix E - Future Direction of Metamodel.

Glossary . Gloss
ii Biomolecular Sequence Analysis V1.0 December 1999

Preface
d by
users.
nol-
of
e-

. Con-
plica-

tion

ent
er of
ica-

ic
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numb
hardware and software products available today. Simply stated, CORBA allows appl
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specif
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Biomolecular Sequence Analysis V1.0 December 1999 1

 are
ides
 are

tion,
ating
f the

 OMG

t. To
con-
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Informa
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Concept Five Technologies, Inc.

• EMBL-EBI (European Bioinformatics Institute)

• Genome Informatics Corporation

• Millennium Pharmaceuticals, Inc.

• Neomorphic Software, Inc.

• NetGenics, Inc.

• Oxford Molecular Group

• Sanger Centre
2 Biomolecular Sequence Analysis V1.0 December 1999

Biomolecular Sequence Analysis
Overview 1
ical
ibed in

a-

ces.

.g.,

sis
alyses
ll as
 by
The domain of biomolecular sequence analysis comprises the sub-domains of biolog
objects and analysis mechanisms. The modules that address these areas are descr
this order.

1.1 Module DsLSRBioObjects

Biological objects that are central to this specification include BioSequence , which is
specialized into NucleotideSequence and AminoAcidSequence . An Annotation
object is provided, which is specialized into SeqAnnotation for usage with BioSe-
quences . SeqAnnotations can apply to specific parts of a sequence, and the mech
nism to refer to these regions is provided by SeqRegion and Interval.
CompositeSeqRegion provides the ability to nest SeqRegions . GeneticCode ,
associated with an organism, is an auxiliary object needed when translating sequen
The interface Alignment and ancillary types are used for representing comparisons
between sequences or sequence families. It is also used in describing SimilaritySearch-
Hits (i.e., matches found in sequence database, and Assemblies . SearchHit and
SearchResult are used primarily for representing the results of similarity searches (e
BLAST).

The Annotation factory, the BioSequence iterators and factories, GeneticCode fac-
tory, and AlignmentEncoders and factories are optional interfaces.

1.2 Module DsLSRAnalysis

The DsLSRAnalysis module defines the components for supporting sequence analy
through a generic analysis design. The module provides the means to interrogate an
inputs, output, and functionality. An analysis can be executed asynchronously as we
synchronously based on the client invocation. Executing analyses can be monitored
subscribing to an event channel or polling for state.
Biomolecular Sequence Analysis V1.0 December 1999 1-1

1

ifica-
serves
hers

 of a

rom-

t

fol-

 lan-
1.3 Domain Model

The domain model is expressed in XML. The domain model includes a simple class
tion of analyses. This is in response to the mandatory requirement of the RFP, and
to organize the analyses into groups in a way that matches closely with how researc
and bioinformaticists think about and utilize such analyses.

This classification of analyses consists of three broad categories.

• Searching - including similarity searching (e.g., BLAST)

• Alignment - including contig assembly

• Utilities - including molecular weight and GC content

1.4 General Remarks

This document contains a proposal for a standard that addresses the representation
number of biological objects, as well as mechanisms for analyzing them.

A few design principles and patterns that we have used are outlined first.

1.4.1 Objects-by-value

This document makes extensive use of objects-by-value (OBV, OMG Document
orbos/98-01-18). This is a new OMG standard for the so-called valuetype, which is an
entity that is halfway between an IDL interface and an IDL struct. They are not yet
widely supported by all ORBs, but we think they are a very useful construct, as they p
ise to provide:

• choice: the client can choose to make the object ‘local’ or leave it remote

• better scalability: only a single round trip transfers the whole state of the objec

• extendibility through inheritance

• null value semantics.

We have used OBV valuetypes essentially as if they were extendible structs, using the
lowing constraints:

• no methods

• all members / attributes are public

• inheritance only of valuetypes (no “supports SomeInterface”)

• inheritance using truncatable (i.e., truncation of sub-types to super-type is
allowed).

Note that we have not used factory methods in our valuetypes. See the appropriate
guage mapping specifications for details on using ValueFactories.
1-2 Biomolecular Sequence Analysis V1.0 December 1999

1

f
ion of

een
s hav-

r
, or
, and

t to
, the

 a
ins

these

nt hier-

ng

lysis,
roduce
he
1.4.2 Returning multiple results

If a method has to return a multi-valued result to the caller, there is a design choice o
returning these elements directly as a list, or through an iterator, or using a combinat
both. We have adopted the latter, hybrid approach, to allow the client to choose betw
the convenience of directly returned lists and the scalability of iterators. The method
ing a multi-valued result use have:

• a list return type

• a parameter in unsigned long how_many

• a parameter out AnIterator the_rest.

The client specifies that it wishes to receive a list of no more than how_many elements as
the direct result. The remaining elements, if any, can be retrieved through the iterato
returned in the out parameter. The iterators allow the retrieval of one element at a time
several at once. This pattern was in fact taken directly from the CosPropertyService
provides maximum flexibility to client programs.

A multi-valued result, either returned directly or through an iterator, is guaranteed no
contain duplicates. If a multi-valued result type is ordered and iterators are involved
ordering is the same as that achieved by not having used any iterators.

1.4.3 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify it in
certain context. The current document also uses strings for ID attributes, but constra
their syntax and semantics to improve interoperability. To make the intended use of
strings clearer,

typedef string Identifier;

is provided and used in this proposal.

1.4.4 Composite pattern

The CompositeSeqRegion valuetype implements the Composite design pattern
[Gamma et al., 1995]. This pattern composes entities into tree structures to represe
archies. The Composite pattern treats individual objects and composites uniformly.

A biological example using the Composite pattern is a gene being composed of codi
regions from a set of exons.

1.4.5 BioObject immutability

All BioObjects in this specification, with the single exception of BioSequence , are
immutable. Modifying other BioObjects is considered out of scope for sequence ana
as defined by the RFP. Since it is clear that the results of many sequence analyses p
information that is frequently attached to sequences as annotations, we do provide t
add_annotation() method in BioSequence .
BSA V1.0 General Remarks December 1999 1-3

1

 for

se of
 to a

or
and

of via-
verage
ata
rrent
 for

 well.
en

g that

 in the

 based
Implementers are free to choose to support mutable BioObjects, taking responsibility
the associated life cycle issues.

1.4.6 Rationale for metadata approach

A number of the initial submissions to the RFP for sequence analysis explored the u
metadata to describe the various types of sequence analyses that might be available
client. In response to the RFP requirement for the specification of a domain model f
sequence analysis, the metadata approaches varied from string descriptors, structs
arrays of structs to well defined IDL interfaces.

In the process of preparing this RFP response the submitters considered a number
ble approaches to metadata for sequence analyses. There was a strong desire to le
existing solutions if possible. A predecessor to this submission described the metad
model using valuetype based extensible structs. This approach is carried into the cu
submission. In recognition of the increasing use of XML to provide data descriptions
application metadata, the submission was enhanced to also support retrieval of XML
based metadata. An XML DTD defining the metadata model has been introduced as
Additionally the mechanism used to fetch metadata descriptions for analyses has be
enhanced to support the introduction of new XML based metadata by supplying a ta
identifies the type of metadata described. It is expected that this tag-based retrieval
approach could be used to provide access to OCL, XMI, or other formatted metadata
future. In particular the submitters would have liked to leverage XMI for metadata
description but, in the absence of clear examples of its use, chose to adopt a model
on our previous joint submission and to provide for extension in the future.
1-4 Biomolecular Sequence Analysis V1.0 December 1999

BSA Modules and Interfaces 2
r
pidly
t is

ese
evant

ions

ew
eve
k this

extent
le

ious
 the

ment
mic
2.1 Module DsLSRBioObjects

The analysis of biomolecular sequence information takes place within the broade
domain of computational biology. This domain presents a very heterogeneous, ra
evolving environment that has proven difficult to standardize. To offer a design tha
both complete and practical for the field of sequence analysis, this specification
includes an IDL specification for Annotations and so-called SeqAnnotations ,
which can be likened to Features in the DDBJ/EMBL/GenBank flat file format. Th
two data components serve to incorporate and organize additional information rel
to the sequence data. Examples include organism source information, biological
descriptors, cross-references, molecular characterizations, known sites and variat
within the sequence, bibliographic references, and relations to known diseases.
Annotations and SeqAnnotations can also be attached to a sequence to carry n
information that is computationally inferred, or experimentally determined. We beli
that it is necessary to offer users an easy, extensible interface to organize and lin
resulting information to biomolecular sequences either as whole-sequence
Annotations or region-specific SeqAnnotations (Features).

Existing standards that can be represented with the current proposal and to some
have shaped it are: the NCBI datamodels; the DDBJ/EMBL/GenBank Feature Tab
Document; various sequence file formats (Fasta, EMBL/GenBank, GCG), and var
sequence analysis tools (BLAST, FastA, Smith-Waterman, ClustalW, Wise2, Grail,
GCG suite).

The alignment portion of the response is aimed to effectively model all types of
BioSequence and BioSequence related alignment problems in biomolecular
sequence analysis. This ranges from the relatively simple cases of a pairwise align
of two DNA sequences, to the complex case of a profile-HMM compared to geno
DNA.
Biomolecular Sequence Analysis V1.0 December 1999 2-1

2

d all
NS

to 3'

r
2.1.1 General

//File: DsLSRBioObjects

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

// ...
};

#endif // _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

To prevent name space pollution and name clashing of IDL types, this module (an
modules defined in this specification) uses the pragma prefix that is the OMG's D
name.

#include <CosLifeCycle.idl>

NucleotideSequence , AminoAcidSequence , Annotation , GeneticCode ,
Alignment , and SearchResul t all inherit from LifeCycleObject .

#include <CosPropertyService.idl>

Properties are used in Annotation , SearchHit , and SearchResult .

StringList

2.1.2 StrandType

There is an intrinsic directionality of biological sequence data, which proceeds 5'
for nucleic acids and N-terminal to C-terminal for proteins. For
NucleotideSequences , StrandType provides an indication of whether the
SeqRegion refers to the original plus-strand, the complementary minus-strand, o
both strands of a double-stranded molecule. The StrandType values are used in
SeqRegion .

typedef sequence<string> StringList;

Description: Used to pass and return a set of strings .
2-2 Biomolecular Sequence Analysis V1.0 December 1999

2

tion
Figure 2-1 The StrandType enumeration.

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

2.1.3 Basis

The Basis enumeration values are used to specify whether an Annotation originated
from an experimental result or a computational analysis, such as from the applica
of a sequence analysis program.

STRAND_NOT_KNOWN STRAND_NOT_KNOWN should be used in all cases
not indicated below.

STRAND_NOT_APPLICABLE STRAND_NOT_APPLICABLE should be used for
regions of AminoAcidSequences .

STRAND_PLUS STRAND_PLUS should be used to indicate the
original plus-strand of a NucleotideSequence .

STRAND_MINUS STRAND_MINUS should be used to indicate the
reverse complement of the plus-strand of a
NucleotideSequence .

STRAND_BOTH STRAND_BOTH should be used to indicate both
strands of a double-stranded NucleotideSequence .

StrandType

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE
STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

<<enum>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-3

2

-

m

Figure 2-2 The Basis enumeration

enum Basis {BASIS_NOT_KNOWN, BASIS_EXPERIMENTAL,
BASIS_COMPUTATIONAL, BASIS_BOTH};

2.1.4 Interval

A contiguous sub-string within a larger string is specified using the Interval valuetype.
An Interval consists of a start and length, defining the starting position of the sub
string and the size of the sub-string (number of units). BioSequences are numbered
starting at start 1, in keeping with the existing practice in the field of molecular
biology. An Interval on a BioSequence of start=5, length=10 would start at the fifth
position and include up to the 14th position of a sequence.

The use of a start and length instead of start and end provides a powerful mechanis
for defining intervals along biological sequence that works well for both linear and
circular molecules.

BASIS_NOT_KNOWN BASIS_NOT_KNOWN should be used in all cases
not indicated below.

BASIS_EXPERIMENTAL BASIS_EXPERIMENTAL should be used to indicate
an experimental result.

BASIS_COMPUTATIONAL BASIS_COMPUTATIONAL is used to indicate a
computational analysis, such as from the application
of a sequence analysis program.

BASIS_BOTH Any result determined both experimentally and
computationally should use BASIS_BOTH .

Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

<<enum>>
2-4 Biomolecular Sequence Analysis V1.0 December 1999

2

vals
lude
exons.

lysis

Figure 2-3 The Interval valuetype

valuetype Interval
{

public unsigned long start;
public unsigned long length;

};

2.1.5 SeqRegion

A SeqRegion is a specialization of Interval and specifies a location on a
BioSequence . A further specialization, CompositeSeqRegion , may contain zero
or more sub-regions. In this specification, SeqRegion is used primarily to specify the
location along a BioSequence to which a SeqAnnotation pertains.

The SeqRegion model is not intended to address all types of sequence region
specification found in the GenBank/EMBL/DDBJ feature table. Supported are inter
with non-fuzzy end points and composites of such intervals. Examples of these inc
a PROSITE pattern located at 74 and ending at 80, or a gene made of 5 spliced

We believe the definition of SeqRegion is broad enough to handle many kinds of
commonly occurring sequence-based regions and addresses the needs of most
molecular biologists. Due to their complexity and rarity of usage in sequence ana

public unsigned long start;

Description: start is an unsigned long integer that defines the starting
position of the sub-string. BioSequences are numbered
starting at 1.

Return value: Returns an unsigned long .

public unsigned long length;

Description: length is an unsigned long integer that defines the size of the
sub-string (number of units).

Return value: Returns an unsigned long .

Interval

start : unsigned long
length : unsigned long

<<valuetype>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-5

2

. It is
software, fuzzy sequence regions are not explicitly supported at the present time
not currently possible with the present IDL to associate a single SeqRegion with a set
of BioSequences .

Figure 2-4 The SeqRegion and CompositeSeqRegion valuetypes

SeqRegion

A SeqRegion extends Interval and contains the strand_type and
start_relative_to_seq_end members that specialize it for use with biological
sequences.

valuetype SeqRegion : Interval
{

public StrandType strand_type;
public boolean start_relative_to_seq_end;

};

In t e rva l

s t a rt : u n s ig n e d lo n g
le n g t h : u n s ig n e d lo n g

< < va lu e t y p e > >

S e q R e g io n O p e ra t o r

N O N E
J O IN
O R D E R

< < e n u m > >

S t ra n d Ty pe

S T R A N D _ N O T _ K N O W N
S T R A N D _ N O T _ A P P L IC A B L E
S T R A N D _ P L U S
S T R A N D _ M IN U S
S T R A N D _ B O T H

< < e n u m > >

S e q R e g io n

s tr a n d _t y p e : S t ra n d Ty pe
s ta r t_ r e la ti ve _ t o_ s e q _ e n d : b o o le a n

< < va lu e t y p e > >

C o m p o s it e S e q R e g io n

s u b _ re g io n s : S e q R e g io n L is t
r eg io n_ o p e ra t o r : S e q R e gio n O p e ra t o r

< < va lu e t y p e > >

1

110 .. *

1

0 .. *
2-6 Biomolecular Sequence Analysis V1.0 December 1999

2

y

o
SeqRegionList

CompositeSeqRegion

CompositeSeqRegion , a specialization of SeqRegion , may contain zero or more
sub-regions. A CompositeSeqRegion 's sub-regions may overlap. The nested or
hierarchical behavior is useful in describing complex features on BioSequences .
There is no limit to nesting.

A CompositeSeqRegion with sub-regions will itself not have start and length data
defined. The whole CompositeSeqRegion tree will be passed as an object graph b
the objects by value (OBV) functionality.

public StrandType strand_type;

Description: For NucleotideSequences , strand_type provides an
indication of whether the SeqRegion refers to the original
plus-strand, the complementary minus-strand, or both
strands of a double-stranded molecule. STRAND_MINUS
should be used to indicate a region on the reverse
complement of a NucleotideSequence . For these
regions, start and length (inherited from Interval) refer to
positions within the coordinate system of the original, given
strand. strand_type should be
STRAND_NOT_APPLICABLE for regions of
AminoAcidSequences .

Return value: Returns a StrandType .

public boolean start_relative_to_seq_end;

Description: The start_relative_to_seq_end member can modify the
semantics of the start member: if
start_relative_to_seq_end is TRUE, start is to be taken
from the end of the sequence, rather than the beginning. N
reverse-complement is implied. That is, if sequence has a
length 100, and SeqRegion has start =20 length =10, and
start_relative_to_seq_end =TRUE, the region runs from
position 81 up to and including 90.

Return value: Returns a boolean .

typedef sequence<SeqRegion> SeqRegionList;

Description: Used to pass a set of SeqRegions .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-7

2

n
valuetype CompositeSeqRegion : SeqRegion
{

enum SeqRegionOperator
{

NONE, // Region has no sub regions or the sub regions
// don't need special treatment.

JOIN, // Sub regions should be joined end-to-end to
// form a contiguous region.

ORDER // Sub region order is important.
};

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

};

enum SeqRegionOperator {NONE, JOIN, ORDER};

NONE NONE should be used when JOIN and ORDER are no
applicable.

JOIN JOIN should be used when the sub-regions are to be
concatenated into a single region.

ORDER ORDER should be used when the sub-regions are to be take
as an ordered set of sub-regions.

public SeqRegionList sub_regions;

Description: sub_regions contains the constituent SeqRegions . If there
are no sub-regions, then SeqRegion should be used instead
of CompositeSeqRegion .

Return value: Returns a SeqRegionList .

public SeqRegionOperator region_operator;

Description: The region_operator takes on a value of the
SeqRegionOperator enumeration. It specifies how the sub-
regions are to be treated. The sub-regions could be
concatenated into a single region (JOIN) or taken as an
ordered set of sub-regions (ORDER). In the latter case,
unknown segments of sequence may intervene.

Return value: Returns a SeqRegionOperator .
2-8 Biomolecular Sequence Analysis V1.0 December 1999

2

ted

s
2.1.6 Annotation

The Annotation interface defines an annotation that could, in principle, be associa
with any bio-object that requires description using name-value pairs.

All attributes in Annotations are readonly, in keeping with our immutability policy
for this specification.

Annotation inherits from CosLifeCycle::LifeCycleObject .

Figure 2-5 The Annotation interface

interface Annotation : CosLifeCycle::LifeCycleObject
{

readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

};

readonly attribute string name;

Description: The name attribute specifies the general type of the
annotation that is contained in the value attribute that contain
the annotation itself. The value is of type any and therefore
could contain anything from a block of free text to a
specialized datatype.

Return value: Returns a string .

LifeCycleObject
<<Interface>>

Annotation

name : string
value : any
the_basis : Basis
qualifiers : CosPropertyService::Properties

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-9

2

e-

AnnotationList

readonly attribute any value;

Description: The value attribute contains the annotation itself.

Return value: The value is of type any and therefore could contain anything
from a block of free text to a specialized datatype.

readonly attribute Basis the_basis;

Description: Annotation has a basis attribute, which specifies whether
the annotation originated from an experimental result
(BASIS_EXPERIMENTAL) or a computational analysis
(BASIS_COMPUTATIONAL), such as from the application
of a sequence analysis program. Basis provides for a coars
grained classification of an Annotation.

Return value: The value is of type BASIS .

readonly attribute CosPropertyService::Properties qualifiers;

Description: Annotation contains additional information in the form of
so-called qualifiers, represented by the
CosPropertyService::Property struct, which enables
them to support many kinds of keyword controlled attributes.
These properties are essential for covering the full spectrum
of current annotation and feature information.

Return value: The qualifiers attribute is of type
CosPropertyService::Properties and so provides a place
for arbitrary name-value pairs.

typedef sequence<Annotation> AnnotationList;

Description: Used to pass a set of Annotations .
2-10 Biomolecular Sequence Analysis V1.0 December 1999

2

d
IteratorInvalid

AnnotationIterator

AnnotationIterator provides a strongly typed iterator for Annotations .

Figure 2-6 The AnnotationIterator interface

interface AnnotationIterator
{

boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AnnotationList annotations)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception IteratorInvalid
{

string reason;
};

Description: The IteratorInvalid exception is raised for cases where the
iterator is no longer valid (e.g., new elements have been adde
to the underlying collection).

Return value: Returns a string containing the reason that the iterator is
invalid.

AnnotationIterator

next()
next_n()
reset()
destroy()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-11

2

s
boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

Description: The next() operation gets the next Annotation in its out
parameter the_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and set
the output the_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
 out AnnotationList annotations)

raises(IteratorInvalid);

Description: next_n() returns Annotations in the AnnotationList out
parameter annotations , containing at most the number
specified in the first parameter (how_many) and returns a
boolean value directly. When it is at the end of the set it
returns FALSE and the annotations parameter will have
length zero. In all cases the length of annotations will be
the minimum of how_many and the number of elements
remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-12 Biomolecular Sequence Analysis V1.0 December 1999

2

ed

e

of

e

ions
e

w:

ion

n

icular

s
2.1.7 SeqAnnotation

For biomolecular sequences, Annotations are specialized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). Essentially, this attribute indicates to which part of the sequence the
annotation pertains, and is analogous to features in the DDBJ/EMBL/GenBank
formats. Typical examples include gene, promotor region, and exons.

SeqAnnotation is used to describe an annotation that applies only to a specified
region. Annotation should be used for an annotation that applies to the associat
BioSequence as a whole. Although SeqAnnotations with null regions are also
interpreted to apply to the BioSequence as a whole, this should be avoided.

SeqAnnotation can associate a BioSequence with analytical results or descriptiv
information such as biological function. A sequence analysis run could generate
SeqAnnotation objects as output. In addition, BioSequence factories can be used
to attach SeqAnnotations to the BioSequences .

It is not currently possible to navigate from a SeqAnnotation to a BioSequence
using the interfaces defined in this specification. One can, however, obtain a set
SeqAnnotations given a BioSequence . This is sufficient from the point of view of
a sequence analysis application, which could produce annotated sequences. Th
submitters of this proposal feel that there are richer models for annotations on
sequences (e.g., complex hierarchies or graphs of relationships between annotat
and sequences as well as the annotations themselves). Sequence annotations ar
expected to be addressed in a future RFP.

To illustrate the uses and coverage of Annotations and SeqAnnotations with
regard to the results of Sequence Analyses, a few more examples are listed belo

• A motif analysis returns a labeled pattern (e.g., KRINGLE) matching a given reg
of the protein sequence.

• A restriction map analysis returns a list of sites, for the given enzymes, that ca
then be used to annotate the DNA sequence.

• The result of homology analysis suggests that the sequence belongs to a part
gene family, which can be annotated onto the NucleotideSequence including
information regarding degree of certainty.

• ORF and gene-finding analyses identify coding regions that are later added as
oriented gene features on the sequence.

• Homologous regions found by using an alignment analysis can be annotated a
SeqAnnotations on the query sequence.

• An EMBL-curated phosphorylation site on a protein stored (imported) as a
SeqAnnotation on the AminoAcidSequence .

• Identified mutations from multiple DNA sequences can be merged into
SeqAnnotations on a consensus sequence.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-13

2

atures

te for

ed
or
Extending SeqAnnotation provides a mechanism for creating strongly typed
sequence features. This may be appropriate for certain stereotypical sequence fe
such as genes, exons, and transcriptional regulatory sites that have complex but
reasonably well defined semantics. These specialized SeqAnnotations could define
the necessary data types and sub-feature containment relationships as appropria
the specific feature.

The issue of annotating BioSequences as well as other bio-objects is complex and
we are not proposing a definitive solution in the present specification. The propos
IDL is workable for biomolecular sequence analysis and there is sufficient room f
elaboration by a future LSR Annotation RFP.

Figure 2-7 The SeqAnnotation interface

2.1.7.1 SeqAnnotation Interface

For biomolecular sequences, Annotations are specialized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). If region is null, the annotation applies to the associated BioSequence (s) as
a whole. Otherwise, the annotation applies only to the specified region. Annotations
should be used instead of SeqAnnotations with null SeqRegions .

interface SeqAnnotation : Annotation
{

readonly attribute SeqRegion seq_region;
};

readonly attribute SeqRegion seq_region;

Description: Contains the sequence position information.

Exceptions: Returns a SeqRegion .

A nnotat ion
< < Interfac e> >

S eqA nnotat ion

region : S eqRegion

< < Interfac e> >
S eqRegion

s trand_ty pe : S trandTy pe
s tart_relat ive_to_s eq_end : boolean

< < valu ety pe> >

1 111
2-14 Biomolecular Sequence Analysis V1.0 December 1999

2

s
SeqAnnotationList

SeqAnnotationIterator

SeqAnnotationIterator provides a strongly typed iterator for SeqAnnotations .

Figure 2-1 The SeqAnnotationIterator interface

interface SeqAnnotationIterator
{

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SeqAnnotationList seq_annotations)

raises(IteratorInvalid);
void reset();
void destroy();

};

typedef sequence<SeqAnnotation> SeqAnnotationList;

Description: Used to pass a set of SeqAnnotations .

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

Description: The next() operation gets the next SeqAnnotation in its out
parameter seq_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and set
the output seq_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

SeqAnnotationIterator

next()
next_n()
reset()
destroy()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-15

2

ons.
ntages

n be
 of
rd

way

r

2.1.8 Identifier

There is a need for a data type to indicate an entity's identity in very many situati
In most cases, this need is, or can be addressed by using a string type. The adva
are that it is simple, lightweight, and used universally throughout the realm of
computing (and indeed outside). However, the risk of using strings is that they ca
too flexible, both in terms of syntax and semantics. This easily results in the lack
interoperability. To allow strings, yet mitigate their potential for abuse, this standa
uses the syntax convention of CosNaming::StringName as described in the
Interoperable Naming service. This convention is mainly a syntactical one; in no
is the use of a naming service implementation required or implied (but it is not
precluded either).

boolean next_n(in unsigned long how_many,
 out SeqAnnotationList seq_annotations)

raises(IteratorInvalid);

Description: next_n() returns SeqAnnotations in the
SeqAnnotationList out parameter seq_annotations ,
containing at most the number specified in the first paramete
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the
seq_annotations parameter will have length zero. In all
cases the length of seq_annotations will be the minimum
of how_many and the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-16 Biomolecular Sequence Analysis V1.0 December 1999

2

ted
, they

ts of
s do

ithin
ent;
s.

:

' or
tics

2.1.8.1 Identifier Description

A brief description is as follows: CosNaming::Name is a list of struct
NameComponents . (For the purpose of illustration, a NameComponent can
likened to a directory or filename, whereas CosNaming::Name constitutes a full
path-name). The struct NameComponent has string members id and kind. To
transform a CosNaming::Name into a string, all its NameComponents are
represented as strings "id.kind".

• If the kind-field is empty, this becomes simply "id";

• if the id-field is empty, this becomes ".kind";

• finally, the Naming service allows both id and kind to be empty, which is
represented as ".".

The full stringified CosNaming::Name is obtained by concatenating all the
NameComponents using "/" as a separator character. The character "\" is designa
as an escape character; if it precedes any of the special characters ".", "/" and "\"
are taken as literal characters. The typedef string CosNaming::StringName is
provided for strings used as object names using this convention.

This specification adopts this syntax convention, but requests that the componen
the Identifier data type adhere to some additional semantic constraints. These rule
not follow from, nor are implied by any semantics of the Naming Service. The
additional constraints make this data type sufficiently different from
CosNaming::StringName to warrant the dedicated typedef string Identifier .

The rules are as follows:

• Names can refer to collections of entities (such as databases), or to entities w
such collections. Names referring to collections consist of exactly one compon
names referring to entities within collections consist of at least two component

• The first component represents the data source. Data sources can be anything
transient collections, local databases, public repositories. It is up to the
implementation to document the accepted names for the data source.

• The empty name (".") is valid for the first component, and represents the 'local
'default' collection. It is up to the implementation to document what the seman
of 'local' or 'default' is.

typedef string Identifier;

Description: In this description, 'component' means: the sub-string of an
Identifier that corresponds to one
CosNaming::NameComponent ; likewise, id-field and
kind-field correspond to the equivalent fields of
NameComponent .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-17

2

ts.
n the
r

an

tual

nd

has

tive
or
ty
 to
ype-

 the
f the

pty.
ld

on.
• Names that refer to entities within collections consist of two or more componen
The second component of such names represents an identifier that is unique i
context of the data source. No empty id-fields are allowed in this or any furthe
components.

• If two components are not enough to uniquely identify an entity, an Identifier c
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach tex
information.

• The only characters valid in a component are "a" through "z", "0" through "9", a
"-" (hyphen), "_" (under_score), "$" and "." (period). Use of the latter is
discouraged since it has a special meaning in the stringifying convention, and
therefore to be escaped.

• To comply with existing practice in the field of public data repositories, it is
strongly advised that implementations do string comparisons in a case-insensi
manner. The Naming Service standard fails to mention whether type-case is, f
identification purposes, significant or not. Implementations that use a third-par
implementation of the Naming Service may therefore wish to restrict Identifiers
only use one type-case. It is up to an implementation to state whether mixed t
case is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of Identifier are used as follows:

• The id-field of a component contains the principal value that makes it unique in
scope provided by the preceding component. It may only be empty in the case o
first component of an Identifier.

• The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be em
If kind is empty and entities with non-empty kind-fields exist, an empty kind fie
becomes synonymous with 'the latest release or version'. It is up to the
implementation to document the syntax and semantics of the version informati

The adoption of this convention has the following advantages:

• it is simple and lightweight,

• it has a well-defined and 're-used' syntax,

• it is compatible with existing practice,

• it is sufficiently flexible to allow for sub-ids if necessary.
2-18 Biomolecular Sequence Analysis V1.0 December 1999

2

t

IdentifierList

IdentifierNotFound

IdentifierNotResolvable

IdentifierNotUnique

typedef sequence<Identifier> IdentifierList;

Description: Used to pass a set of Identifiers .

exception IdentifierNotFound
{

Identifier id;
};

Description: The IdentifierNotFound exception is raised for cases where
the database and the identifier within the database can be
resolved but the Identifier is not present.

Return value: Returns the Identifier that could not be found.

exception IdentifierNotResolvable
{

Identifier id;
string reason;

};

Description: The IdentifierNotResolvable exception is raised for cases
where database and the identifier within the database canno
be resolved such that the Identifier cannot even be searched
for.

Return value: Returns the Identifier that could not be resolved and a string
containing the reason resolution was not possible.

exception IdentifierNotUnique
{

Identifier id;
IdentifierList ids;

};

Description: The IdentifierNotUnique exception is raised for cases when
the Identifier specification is ambiguous and returns more
than one object.

Return value: Returns the non-unique Identifier and an IdentifierList
containing Identifiers for all objects that id identifies.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-19

2

ule.
t it

string

d to

e. A
2.1.9 BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molec
A BioSequence can be of any length and significance; there is no implication tha
corresponds to (e.g., a gene). The BioSequence interface provides essential
characteristics of biological sequences (name , id , description , length) and
operations for obtaining the sequence string itself or a sub-sequence as an ASCII
of IUPAC-IUB upper case single letter codes (seq() , seq_interval()).

Additional operations within BioSequence provide access to any annotations
associated with the BioSequence (get_annotations()) or the number of annotations
(num_annotations()).

Annotations can be attached to BioSequences directly using the
add_annotation() method of BioSequence or by using the BioSequence
factories. Thus, BioSequences are mutable at the level of their associated
annotations. This minimal mutability model permits new annotations to be attache
a BioSequence and prevents situations where multiple BioSequences might exist
on a server with different sets of annotations but representing the same sequenc
NotUpdateable exception can be used to indicate that an Annotation cannot be
added to this BioSequence .

Standard container behavior applies here. If a client destroys a BioSequence , it is
also up to the client to manage the contents, namely the Annotations .

Figure 2-9 The BioSequence interface

Basis

BASIS_NOT_KNOW N
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

<<enum>>

AnnotationIterator
<<Int erface>>

BioSequence

name : string
id : Identifier
description : string
seq : s tring
length : unsigned long
the_basis : Basis

seq_interval()
get_annotations()
num_annotations()
add_annotation()

<<Interface>>

Annotation

name : string
value : any
the_basis : Basis
qualifiers : CosPropertyService::Properties

<<Int erface>>

1 11 11 1

1

0..*0..*

1

2-20 Biomolecular Sequence Analysis V1.0 December 1999

2

IntervalOutOfBounds

SeqRegionOutOfBounds

exception IntervalOutOfBounds
{

Interval invalid;
Interval valid;

};

Description: The IntervalOutOfBounds exception is raised if an
Interval's start is less than 1 or if its start +length -1 is greater
than the length of the BioSequence . If a BioSequence
represents circular DNA, then this exception should not be
raised.

Return value: Returns the invalid Interval and the valid Interval . The valid
Interval has start equal to 1 and length equal to the length
of the BioSequence , the largest allowed Interval .

exception SeqRegionOutOfBounds
{

SeqRegion invalid;
Interval valid;

};

Description: The SeqRegionOutOfBounds exception is raised if a
SeqRegion 's start is less than 1 or if its start+length-1 is
greater than the length of the BioSequence . The exception
is also raised if a nested sub-region of a
CompositeSeqRegion is invalid. If a BioSequence
represents circular DNA, then this exception should not be
raised.

Return value: Returns the invalid SeqRegion and the valid Interval . The
valid Interval has start equal to 1 and length equal to the
length of the BioSequence , the largest allowed Interval.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-21

2

ule.
ces

r
SeqRegionInvalid

NotUpdateable

BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molec
The BioSequence interface provides essential characteristics of biological sequen
(name , id , description , length) and operations for obtaining the sequence string
itself or a sub-sequence as an ASCII string of IUPAC-IUB upper case single lette
codes (seq() , seq_interval()).

interface BioSequence
{

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
unsigned long num_annotations(in SeqRegion seq_region)

exception SeqRegionInvalid
{

string reason;
};

Description: The SeqRegionInvalid exception is raised if a SeqRegion
is invalid for sequence translation (e.g., StrandType is
STRAND_BOTH).

Return value: Returns a string containing the reason the SeqRegion is
invalid.

exception NotUpdateable
{

string reason;
};

Description: The NotUpdateable exception is raised if the
BioSequence is immutable.

Return value: Returns a string containing the reason the BioSequence
cannot be updated.
2-22 Biomolecular Sequence Analysis V1.0 December 1999

2

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
void add_annotation(

in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

};

readonly attribute string name;

Description: The name attribute represents a human-readable common
name for the BioSequence (such as a gene name).

Return value: Returns a string .

readonly attribute Identifier id;

Description: The id attribute represents an ID for the BioSequence .
Typically a database name and key will be encoded in the
Identifier .

Return value: Returns an Identifier .

readonly attribute string description;

Description: The description attribute is a concise description of the
sequence typically would include functional information (e.g.,
the contents of the description line from a Fasta file).

Return value: Returns a string .

readonly attribute string seq;

Description: The seq attribute contains the actual sequence data. The
entire sequence is returned. Use seq_interval() to access
sub-sequences.

Return value: Returns an ASCII string of IUPAC-IUB upper case single
letter codes representing the entire sequence.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-23

2

e

e
readonly attribute unsigned long length;

Description: The length attribute is the length of the BioSequence . The
BioSequence is numbered from 1 to length .

Return value: Returns an unsigned long .

readonly attribute Basis the_basis;

Description: The BioSequence basis attribute can be any of the values
of the Basis enumeration and specifies whether the sequenc
has been experimentally determined
(BASIS_EXPERIMENTAL), computationally determined
(BASIS_COMPUTATIONAL), or both (BASIS_BOTH), or
if this information is not known (BASIS_NOT_KNOWN).
An example of a computational sequence would be a protein
sequence that was determined by in silico translation of an
experimentally determined DNA sequence.

Return value: Returns a Basis value.

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description: Provides access to sub-sequences of the BioSequence . The
Interval argument indicates which sub-sequence should be
returned. The entire sequence may also be obtained using th
seq attribute.

Return value: Returns an ASCII string of IUPAC-IUB upper case single
letter codes representing the appropriate sub-sequence.

Exceptions: Raises IntervalOutOfBounds if the Interval's start is less
than 1 or if its start+length-1 is greater than the length of
the BioSequence . If a BioSequence represents circular
DNA, then this exception should not be raised.
2-24 Biomolecular Sequence Analysis V1.0 December 1999

2

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: Uses the list/iterator hybrid to provide access to the
Annotations . A list of no more than how_many elements
is returned as the direct result. The remaining elements, if
any, are available through the iterator returned in the out
parameter. Only the SeqAnnotations that overlap
seq_region will be returned. If seq_region is null, only
Annotations are returned.

Return value: Returns an AnnotationList containing no more than
how_many elements. The AnnotationIterator provides
access to any remaining elements.

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of
bounds for this BioSequence .

Raises SeqRegionInvalid if seq_region has an incorrect
StrandType .

unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: Provides access to the number of Annotations associated
with this BioSequence . Only the SeqAnnotations that
overlap seq_region will be counted. If seq_region is null,
only Annotations are counted.

Return value: Returns an unsigned long .

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of
bounds for this BioSequence .

Raises SeqRegionInvalid if seq_region has an incorrect
StrandType .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-25

2

l

ized

e-

 from
BioSequenceList

2.1.10 Sub-types of BioSequence

The data type BioSequence is an interface representing biological sequences. Al
instances of actual biological sequences are expected to derive from one of the
BioSequence sub-types, NucleotideSequence or AminoAcidSequence (or special
sub-types thereof).

Sequence information input to a BioSequence or used for querying purposes is cas
insensitive. Sequence information output from a BioSequence is returned using
upper-case ASCII strings of IUPAC-IUB single-letter character codes.

AminoAcidSequence represents a protein sequence and does not contain any
operations. A reverse translation operation that produces a nucleic acid sequence
the amino acid sequence is a complex operation that is not straightforward to
standardize at this time.

void add_annotation(in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

Description: Annotations can be attached to BioSequences directly
using the add_annotation() method of BioSequence .

Return value: Raises NotUpdateable if the BioSequence is immutable.

Raises SeqRegionOutOfBounds if the Annotation is a
SeqAnnotation and the corresponding SeqRegion is out of
bounds for this BioSequence .

typedef sequence<BioSequence> BioSequenceList;

Description: Used to pass a set of BioSequences .
2-26 Biomolecular Sequence Analysis V1.0 December 1999

2

ta.
Figure 2-10 The NucleotideSequence and AminoAcidSequence interfaces

UnsignedLongList

ReadingFrameInvalid

NucleotideSequence

NucleotideSequence extends BioSequence and represents a DNA or RNA
sequence and provides a number of operations for manipulating the sequence da
There is an intrinsic directionality of nucleotide sequence data, from 5' to 3'.

NucleotideSequence also inherits from CosLifeCycle::LifeCycleObject .

interface NucleotideSequence : BioSequence, CosLifeCycle::LifeCycleObject
{

readonly attribute boolean circular;

string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

typedef sequence<unsigned long> UnsignedLongList;

Description: Used to pass a set of unsigned longs .

exception ReadingFrameInvalid
{

short invalid;
};

Description: The ReadingFrameInvalid exception is raised if the reading
frame is not between -3 and +3, excluding zero.

Return value: Returns a short containing the invalid reading frame.

Nuc leot ideS equenc e

c irc u la r : boo lean

revers e_c om plem ent()
revers e_c om plem ent_inte rval()
t rans late_s eq()
t rans late_s eq_region()

< < Interfa c e> >
A m inoA c idS equenc e

< < Interfac e> >

LifeCy c leO bjec t
< < Interfac e> >

B ioS equenc e
< < Interfa c e> >
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-27

2

raises(IntervalOutOfBounds);
string translate_seq(

in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);
string translate_seq_region(

in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
};

readonly attribute boolean circular;

Description: The circular attribute provides a mechanism to indicate
whether a NucleotideSequence is circular, as is the case
for plasmids or certain microbial chromosomes.

Return value: Returns a TRUE if the NucleotideSequence is circular and
FALSE otherwise.

string reverse_complement();

Description: reverse_complement() returns an upper-case ASCII string
consisting of the reverse complement of the given
NucleotideSequence .

Return value: Returns an upper-case ASCII string.

string reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description: reverse_complement_interval() permits the retrieval of a
reverse complement string for a sub-sequence of the given
sequence defined by the Interval argument.

Return value: Returns an upper-case ASCII string .

Exceptions: Raises IntervalOutOfBounds if the Interval's start is less
than 1 or its start+length-1 is greater than the length of the
NucleotideSequence . If the NucleotideSequence
represents circular DNA, then this exception should not be
raised.
2-28 Biomolecular Sequence Analysis V1.0 December 1999

2

e
string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);

Description: translate_seq() returns a string representing the conceptual
amino acid translation of the nucleic acid sequence.
translate_seq() requires the reading frame in which the
translation is to be performed. The reading_frame should be
a signed integer (short) between -3 and +3, excluding zero. If
reading_frame is positive, (reading_frame - 1) nucleotides
at the beginning (5' end) of the sequence are ignored. If
reading_frame is negative, its absolute value should be
applied to the 5' end of the complementary (minus) strand.

Return value: The returned string consists of upper-case single-letter
IUPAC/IUB character codes for the translated amino acids.
Any internal stop codons are represented by '*'. The
UnsignedLongList out parameter stop_locations
contains the locations of any internal stops (terminators) in th
protein translation.

Exceptions: Raises ReadingFrameInvalid if reading_frame is not
between -3 and +3, excluding zero.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-29

2

nd
ucleic

tein

e

e
NucleotideSequenceList

AminoAcidSequence

AminoAcidSequence extends BioSequence and represents a protein sequence a
does not contain any operations. A reverse translation operation that produces a n
acid sequence from the amino acid sequence is a complex operation that is not
straightforward to standardize at this time. There is an intrinsic directionality of pro
sequence data, from N-terminal to C-terminal.

AminoAcidSequence also inherits from CosLifeCycle::LifeCycleObject ..

string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: translate_seq_region() performs a translation of a defined
region of a NucleotideSequence specified by the
SeqRegion argument. No reading frame is necessary becaus
the SeqRegion defines the frame. A SeqRegion is
required here instead of an interval because non-contiguous
segments of a NucleotideSequence may need to be
specified, as in the case of a DNA sequence containing
introns. If a region submitted for translation contains sub-
regions, all sub-regions are concatenated in depth-first order
prior to translation.

Return value: The returned string consists of upper-case single-letter
IUPAC/IUB character codes for the translated amino acids.
Any internal stop codons are represented by '*'. The
UnsignedLongList out parameter stop_locations
contains the locations of any internal stops (terminators) in th
protein translation.

Exceptions: Raises SeqRegionOutOfBounds if any contained
Interval's start is less than 1 or its start+length-1 is greater
than the length of the NucleotideSequence . If the
NucleotideSequence represents circular DNA, then this
exception should not be raised.

Raises SeqRegionInvalid if seq_region has an incorrect
StrandType .

typedef sequence<NucleotideSequence> NucleotideSequenceList;

Description: Used to pass a set of NucleotideSequences .
2-30 Biomolecular Sequence Analysis V1.0 December 1999

2

des

interface AminoAcidSequence : BioSequence, CosLifeCycle::LifeCycleObject
{
};

AminoAcidSequenceList

2.1.11 CodeRule

CodeRule is a valuetype that defines the correspondence between a Codon and a
Residue type. The Residue member (residue) is a single ASCII character
representing an amino acid in the IUPAC/IUB standard. The Codon member (codon)
is an array of three Bases , which are characters representing unambiguous nucleoti
using the IUPAC/IUB symbols for nucleotide nomenclature (see References).

Residue

Base

Codon

CodeRule

CodeRule is a valuetype that defines the correspondence between a Codon and a
Residue type.

typedef sequence<AminoAcidSequence> AminoAcidSequenceList;

Description: Used to pass a set of AminoAcidSequences .

typedef char Residue;

Description: The Residue member (residue) is a single ASCII character
representing an amino acid using the IUPAC/IUB symbols for
amino acid nomenclature (see References).

typedef char Base;

Description: A Base is a character representing an unambiguous
nucleotide using the IUPAC/IUB symbols for nucleotide
nomenclature (see References).

typedef Base Codon[3];

Description: A Codon is an array of three Bases .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-31

2

Figure 2-11 The CodeRule valuetype

valuetype CodeRule
{

public Codon the_codon;
public Residue the_residue;

};

Coding

public Codon the_codon;

Description: The Codon member (codon) is an array of three Bases ,
which are characters representing unambiguous nucleotides
using the IUPAC/IUB symbols for nucleotide nomenclature
(see References).

Return value: Returns a Codon .

public Residue the_residue;

Description: The Residue member (residue) is a single ASCII character
representing an amino acid using the IUPAC/IUB symbols for
amino acid nomenclature (see References).

Return value: Returns a Residue .

typedef CodeRule Coding[64];

Description: A Coding is an array of sixty-four CodeRules . Sixty-four is
the number of combinations of the four Bases (A, G, C, U)
taken three at a time.

CodeRule

the_codon : Codon
the_residue : Residue

<<valuetype>>
2-32 Biomolecular Sequence Analysis V1.0 December 1999

2

 a

).
GeneticCodeName

GeneticCodeNameList

InvalidResidue

2.1.12 GeneticCode

The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. A GeneticCode object
should be created with its name member set to one of these GeneticCodeNames .
The GeneticCode object is used for translating a string of nucleic acid bases into
string of amino acid residues. The GeneticCodeName defines the particular Coding
that is used to convert Codons into Residues so one need only specify the
GeneticCodeName when creating a GeneticCode object from one of the known
types. Codings for the GeneticCodeNames listed below in GeneticCodeFactory
can be found in Appendix B “Genetic Codes”.

GeneticCode inherits from CosLifeCycle::LifeCycleObject .

typedef string GeneticCodeName;

Description: A GeneticCodeName is a string that contains the name of
a currently known genetic code.

typedef sequence<GeneticCodeName> GeneticCodeNameList;

Description: Used to pass a set of GeneticCodeNames .

exception InvalidResidue
{

Residue the_residue;
unsigned long offset;

};

Description: The InvalidResidue exception is raised if the Residue is
inconsistent with the IUPAC-IUB single letter codes. Note
that residue may be interpreted to mean base (see Glossary

Return value: Returns the invalid Residue and its offset within the
BioSequence .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-33

2

g
Figure 2-12 The GeneticCode interface

interface GeneticCode : CosLifeCycle::LifeCycleObject
{

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

};

readonly attribute Coding the_coding;

Description: The coding attribute consists of an array of 64 CodeRules ,
which allows the GeneticCode object to be used for translatin
a string of nucleic acid bases into a string of amino acid
residues. Codings for the GeneticCodeNames listed
below in GeneticCodeFactory can be found in Appendix B.

Return value: Returns a Coding .

readonly attribute GeneticCodeName name;

Description: The name attribute should be one of the known
GeneticCodeNames listed in GeneticCodeFactory . If
the desired genetic code is not represented, an appropriate
name should be used.

Return value: Returns a GeneticCodeName .

GeneticCode

the_coding : Coding
name : GeneticCodeName

translate_codon()

<<Interface>>

CodeRule

the_codon : Codon
the_residue : Residue

<<valuetype>>

641 641
2-34 Biomolecular Sequence Analysis V1.0 December 1999

2

er

ov
2.1.13 AlignmentElement

An AlignmentElement corresponds to one 'row' in a traditional alignment. Howev
to make it general, it is represented by a wrapper that allows any Object to be used in
an Alignment . This approach allows the occurrence of one and the same Object in
different 'rows' (using the key), and also avoids the combinatorial problem of having
every type of BioSequence duplicated just so it can be used in an Alignment . This
approach allows other objects, not yet defined in this standard (e.g., hidden Mark
models, to be used in the alignment). Most commonly, however, AlignmentElement
will contain an element of type BioSequence .

The key provides a unique reference to each AlignmentElement to be maintained
between the client and the server of the Alignment . Notice that there may be more
than one copy of a particular Object in the Alignment . There is no proscribed
semantics to how the key is structured. The following provides examples of keys that
could be used if the Objects are BioSequences .

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

Description: translate_codon () uses coding's array of sixty-four
CodeRules to translate a string of nucleic acid bases into a
string of amino acid residues.

Return value: Returns a Residue .

Exceptions: Raises InvalidResidue if the codon is inconsistent with the
IUPAC-IUB single letter codes. Note that residue is
interpreted to mean base here (see Glossary).

Table 2-1 Key Examples

Unique BioSequence Identifiers

Identifiers Example Key Set 1 Example Key Set 2

emb/X04427 emb/X04427 0

emb/XX1111 emb/XX1111 1

emb/X75541 emb/X75541 2

emb/Y10276 emb/Y10276 3

emb/X95248 emb/X95248 4

Non-unique BioSequence Identifiers (repeated sequence)

Identifiers Example Key Set 1 Example Key Set 2

emb/X04427 emb/X04427 0

emb/XX1111 emb/XX1111 1
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-35

2

Figure 2-13 The AlignmentElement valuetype.

AlignmentElement

valuetype AlignmentElement
{

public Object element;
public SeqRegion seq_region;
public string key;

};

emb/X75541 emb/X75541 2

emb/Y10276 emb/Y10276 3

emb/X95248 emb/X95248/0 4

emb/X95248 emb/X95248/1 5

public Object element;

Description: The analysis that constructs the Alignment is responsible for
determining if the Object is appropriate in the given context.
Most commonly, AlignmentElement will simply contain an
element of type BioSequence .

Return value: Returns an Object .

AlignmentElement

element : Object
seq_region : SeqRegion
key : string

<<valuetype>>
2-36 Biomolecular Sequence Analysis V1.0 December 1999

2

AlignmentElementList

2.1.14 AlignmentElementIterator

AlignmentElementIterator provides a strongly typed iterator for
AlignmentElements .

public SeqRegion seq_region;

Description: The seq_region represents the coordinates of a particular
segment of the element (typically a BioSequence) that is
aligned in the current Alignment , and that is considered one
'row' in the Alignment . The coordinates are those of the
original Object , not those of the Alignment . Notice that a
particular Object might be represented more than once in the
Alignment , and seq_region will provide the information as
to the region of the Object that is used. The only valid
SeqRegionOperator is JOIN.

Return value: Returns a SeqRegion .

public string key;

Description: The key provides a unique reference to each
AlignmentElement to be maintained between the client and
the server of the Alignment . Notice that there may be more
than one copy of a particular Object in the Alignment .
There is no proscribed semantics to how the key is structured.
It is used in the get_seq_region() method in Alignment to
provide a unique key for this AlignmentElement .

Return value: Returns a string .

typedef sequence<AlignmentElement> AlignmentElementList;

Description: Used to pass a set of AlignmentElements .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-37

2

e
Figure 2-14 The AlignmentElementIterator interface.

interface AlignmentElementIterator
{

boolean next(out AlignmentElement element)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out AlignmentElement element)
raises(IteratorInvalid);

Description: The next() operation gets the next AlignmentElement in its
out parameter element and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets th
output element parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

AlignmentElementIterator

next()
next_n()
reset()
destroy()

<<Interface>>
2-38 Biomolecular Sequence Analysis V1.0 December 1999

2

any
o acid)
nting
lled a

r

 the

r
2.1.15 Alignment

An Alignment is built from a set of correspondences of regions of sequences. In m
cases the sequence region is only a single residue (a single base or a single amin
long, but this need not be. For example, a region of three DNA base pairs, represe
a single amino acid, is a common region size. Each correspondence, which is ca
'column' due to the common visual interpretation of an alignment, indicates that a
particular region of one sequence is in some manner equivalent to set of particula
regions on other sequences. The exact nature of this equivalence differs between
different alignment methods, the most common being that these regions shared a
common evolutionary ancestor. An alternative is that these regions were read from
same region of physical DNA, as in a DNA assembly.

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);

Description: next_n() returns AlignmentElements in the
AlignmentElementList out parameter elements ,
containing at most the number specified in the first paramete
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the elements
parameter will have length zero. In all cases the length of
elements will be the minimum of how_many and the
number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-39

2

d
ntally

ften '-')
 other

gle
re

ov
vey
sue

 be

 will
 a

he
a
tions
 the

A

 are
rty of
 as a
nces,
Alignment representation in sequence analysis has been dominated by text base
representation of the correspondences as columns, with sequences running horizo
and each correspondence being represented by a column. Padding characters (o
are placed in sequences to align the residues with the correct correspondences in
sequences.

This provides a compact representation of the alignment, but relies heavily on sin
characters being the basis of the correspondence, which makes representing mo
complex but still common types of alignment challenging. Examples include
alignments of DNA and protein sequences and alignments of profile Hidden Mark
Models and protein sequences. In addition, text based representation cannot con
any additional information about the nature of the correspondence, which is an is
for more complex alignments. A final drawback to this method of representing an
alignment is that it is generally hard to examine only part of the alignment, as the
entire text must be processed before the correspondences between positions can
represented explicitly in computer terms.

An IDL definition of an alignment can provide a much richer description of an
alignment, but it must be kept in mind that the most common use of an alignment
be to view it, probably in a form very close to Table 2-2 on page 2-40. Generating
similar text representation must be simple operation for a client of the Alignment
interface.

For complex alignments it is convenient to associate with each correspondence t
assumption on which the correspondence is made. For example, when aligning
protein sequence to a DNA sequence, it is important to be able to distinguish inser
in the DNA sequence which are due to sequencing errors in the determination of
DNA sequence and insertions due to the evolutionary insertion of bases in the DN
sequence. This implies that each correspondence needs an indication of the
assumptions made for the grouping of regions on sequences. Such assumptions
generally made during the alignment process. As such, they are not a fixed prope
one particular sequence in the alignment, but they rather belong to the alignment
whole. Therefore, it is better to associate the assumption(s) with the corresponde
rather than with the sequences.

Table 2-2 Multiple Alignment of AminoAcidSequences

seq1 10 RSDGFAFVEF 19

seq2 15 RT-GFAYVEM 23

seq3 20 RTHGFAFVEM 29

Correspondence 1: (Seq1, position 10, Seq2, position 15, Seq3 position 20)

Correspondence 2: (Seq1, position 11, Seq2, position 16, Seq3 position 21)

Correspondence 3: (Seq1, position 12, Seq2, none, Seq3 position 22)

...

Correspondence 10: (Seq1, position 19, Seq2, position 23, Seq3 position 29)
2-40 Biomolecular Sequence Analysis V1.0 December 1999

2

ls.
y that
The

 and

f

t want
 a
mats.

r

t are
 that
Although many of the alignments involve BioSequences , there are a number which
also involve other objects, such as regular expressions and hidden Markov mode
These objects are not part of the current submission, and, in any case, it is unlikel
any submission could cover all possible objects that will be designed in this field.
proposed specification can handle any CORBA object through the
AlignmentElement wrapper.

The proposed Alignment interface can model simple and complex alignments in a
complete way. The object provides accessors to retrieve all the correspondences
the individual regions inside a correspondence. There is no explicit correspondence
or column object, as it seems of little value. Users will generally be using a set o
correspondences (i.e., an alignment).

We recognize that there are many uses of an alignment where the client does no
to process the actual alignment information itself, but simply wants to display it to
user or pass it onto programs which are based around old text based alignment for
The optional CharacterAlignmentEncoder interface provides a way for a client to
get a more traditional view of an Alignment . In addition, this interface lets the serve
take responsibility for the representation of an Alignment . This way, servers can offer
clients a complete solution, including representation. For complex alignments tha
non-trivial to render, this is an important mechanism. We cannot stress too highly
the representation of an Alignment , especially that of gaps, is the job of the
CharacterAlignmentEncoder and not that of the corresponding Alignment .

AlignmentObjectInvalid

ElementNotInAlignment

exception AlignmentObjectInvalid
{

Object element;
string reason;

};

Description: The AlignmentObjectInvalid exception is raised if the
Object is not valid for this Alignment . This exception will
be raised by analyses that construct Alignments .

Return value: Returns the invalid Object and a string containing the reason
the element is invalid.

exception ElementNotInAlignment
{
};

Description: The ElementNotInAlignment exception is raised if the
AlignmentElement is not associated with this Alignment ..
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-41

2

IndexOutOfBounds

Alignment

Figure 2-15 The Alignment interface

interface Alignment : CosLifeCycle::LifeCycleObject
{

typedef string AlignType;
typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)

exception IndexOutOfBounds
{

unsigned long invalid;
Interval valid;

};

Description: The IndexOutOfBounds exception is raised if an index is
out of bounds.

Return value: Returns the invalid unsigned long and the valid Interval .
The valid Interval contains the largest allowed Interval for
the index.

A lignm entE lem ent

elem ent : O bjec t
s eq_region : S eqRegion
k ey : s tring

< < valuety pe> >

A lignm ent

P RO TE IN : A lignTy pe = "P RO TE IN"
NO N_P RO TE IN : A lignTy pe = "NO N_P RO TE IN"
S E Q UE NCE _E RRO R : A lignTy pe = "S E Q UE NCE _E RRO R"
UNK NO W N : A lignTy pe = "UNK NO W N"

get_alignm ent_elem ents ()
num _rows ()
num _c olum ns ()
get_s eq_region()
get_align_ty pe_by _c olum n()

< < Int erface> >

1..*1 1..*1

L ifeCy c le Objec t
< < Int erface> >
2-42 Biomolecular Sequence Analysis V1.0 December 1999

2

.
raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SeqRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

};

typedef string AlignType;

Description: An AlignType is a string that contains the type of the
assumption made for this grouping of regions on sequences
Several kinds of AlignTypes are given below.

typedef sequence<AlignType> AlignTypeList;

Description: Used to pass a set of AlignTypes .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-43

2

id
of

e

s

n
const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

Description: Common alignment assumptions are provided as simple
strings, with constant types as a starting point for a list of
assumptions. UNKNOWN indicates that no additional
information is provided with the alignment, as would be the
case for (e.g., Smith-Waterman alignments). PROTEIN
indicates that this column does encode (part of) a protein.
This can be either because it contains one or more amino ac
residues, or more importantly, because the column consists
triplet(s) of DNA bases that encode amino acid(s). A very
common region size is 1 for amino acids, and 3 for nucleotid
triplets. However, more complex regions (e.g., a
transmembrane spanning protein sequence segment, are
entirely possible). SEQUENCE_ERROR indicates that the
column contains bases that are considered to be erroneous.
For example, in aligning a protein to a DNA sequence it
possible to distinguish insertions due to evolutionary processe
(PROTEIN) from insertions due to sequencing error
(SEQUENCE_ERROR). More involved alignment methods,
for example hidden Markov models, could use the AlignType
string to provide a sensible decoding of the alignment, and i
these cases, the AlignType maybe more informative than the
SeqRegion provided by the Alignment
2-44 Biomolecular Sequence Analysis V1.0 December 1999

2

s

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)

raises(IndexOutOfBounds);

Description: This method allows the retrieval of AlignmentElements .
They correspond to the rows in a traditional textually
represented alignment; typically, the AlignmentElements
are sequences. Uses the list/iterator hybrid to provide acces
to the AlignmentElements . A list of no more than
how_many elements starting at start is returned as the direct
result. The remaining elements, if any, are available through
the iterator returned in the out parameter. This is particularly
useful for Assemblies , where for a particular region, only a
few sequences from thousands are relevant.

Return value: Returns an AlignmentElementList containing no more than
how_many elements starting at start . The
AlignmentElementIterator provides access to any
remaining elements to the right of those in
AlignmentElementList .

Exceptions: Raises IndexOutOfBounds if start is less than 1 or more
than the number of aligned elements. This upper limit is
returned by num_rows ().

unsigned long num_rows();

Description: The Alignment interface provides access to the
AlignmentElements that make up the alignment. The key
data member uniquely identifies an AlignmentElement
within the Alignment . The total number of
AlignmentElements is given by num_rows ().

Return value: Returns an unsigned long .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-45

2

by

e
unsigned long num_columns();

Description: The Alignment interface provides access to the
correspondences that make the alignment. The
correspondences are numbered 1 to length inclusive, and can
be considered the equivalent of alignment columns in a
traditional text view of an alignment. The total number of
correspondences is given by num_columns ()

Return value: Returns an unsigned long .

SeqRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds);

Description: For each correspondence, each AlignmentElement will have
a particular SeqRegion , returned by get_seq_region() . A
null SeqRegion indicates that there is no region for this
correspondence (i.e., a gap). Multiple gaps are represented
multiple SeqRegions . To find the "length" of a gap, it is
necessary to check other correspondences in the column. A
null SeqRegion contains no length information.

The input parameter the_interval represents an interval in
the coordinates of the Alignment , not that of the underlying
Object . If the interval includes a gap at the start, middle or
end, the returned SeqRegion does not show it, because the
start and end of it are in the coordinate system of the
underlying Object which is unaware of any gaps. Instead, the
corresponding segment of the underlying Object is indicated.
It is assumed that the numbering of the correspondences is
relevant, i.e., that the second correspondence comes after th
first, with all the intervals abutting. This allows an Interval
of correspondences to be a valid concept.

Return value: Returns a SeqRegion .

Exceptions: Raises ElementNotInAlignment if the AlignmentElement
is not associated with this Alignment .

Raises IntervalOutOfBounds if the Interval's start is less
than 1 or if its start+length-1 is greater than the total
number of correspondences given by num_columns ().
2-46 Biomolecular Sequence Analysis V1.0 December 1999

2

d
d.

e

AlignmentList

2.1.16 Alignment Examples

The precise interpretation of this specification for alignments is illustrated with a
number of examples. Firstly a standard protein multiple alignment is provided, an
secondly a more complicated, protein to EST sequence tag alignment is presente

Protein Multiple Alignment

This alignment is a fragment of an alignment from the Pfam database. A text
representation of this alignment is given below.

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

Description: get_align_type_by_column () provides a mechanism to
retrieve the assumptions used for this correspondence from th
Alignment . There is not additional machinery in an
Alignment itself to help interpret these AlignTypes . For
specific instances of an Alignment constructor, a client that
use the constructor should read the documentation as to how
to interpret the AlignType , as it will be part of definition of
what the Alignment constructor actually provides. For clients
that do not want to interpret the Alignment but would like a
sensible representation of it to pass onto other programs or
visually to a user, the AlignmentEncoders ,
CharacterAlignmentEncoder and
SingleCharacterAlignmentEncoder will provide an entire
server-side solution for the client.

Return value: Returns an AlignType .

Exceptions: Raises IndexOutOfBounds if col is less than 1 or greater
than the total number of correspondences given by
num_columns ().

typedef sequence<Alignment> AlignmentList;

Description: Used to pass a set of Alignments .

Table 2-3 Protein Multiple Alignment

CAJ1_YEAST/6-24 EYYDILGIKP-------EATPTEIKK
YIS4_YEAST/6-24 EYYDLLGVST-------TASSIEIKK
YNW7_YEAST/4-22 CYYELLGVET-------HASDLELKK
YGM8_YEAST/79-104 NLYDVLELPTPLDVHTIYDDLPQIKR
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-47

2

ade
of
ed.

r the

e.

me-
. A
The Alignment object which represented this would return four AlignmentElement
objects from the get_alignment_elements () method. The first object would have the
AminoAcidSequence Object that presented the sequence CAJ1_YEAST in the
element attribute and the SeqRegion would have the start attribute of 6 and a length
attribute of 19. Calling the get_seq_region () method with this AlignmentElement
and an Interval of start 1, length 1 would provide a SeqRegion with start 6,
length 1, being the sixth residue in CAJ1_YEAST, a Glutamate 'E'. The following
table shows the results of this call to get_seq_region () and several other similar
calls, each with different input Intervals . All calls are for the sequence
CAJ1_YEAST.

The get_align_type_by_column() method would return either UNKNOWN or
PROTEIN depending on the implementer. Potentially, if the alignment had been m
with a more involved method, for example, a hidden Markov model with a notion
structural state, the structural state that was used in each column could be return

Of course, for clients whose main purpose is display, the laborious business of
querying each position for the region and then looking into the sequence object fo
residue at that position is a convoluted route for retrieving the information. If the
implementer provided a CharacterAlignmentEncoder for this Alignment , then a
text representation of the Alignment could be quickly retrieved and displayed,
potentially using the large-scale transport methods provided in
SingleCharacterAlignmentEncoder as this alignment has a single character per
correspondence. Once displayed, a client could quickly interpret a query on a
particular character in the alignment, as it would simply have to call
get_seq_region() with the column position to retrieve the position in the sequenc

Protein vs. EST alignment

This example is of a drosophila protein compared to an EST sequence with a fra
shift error occurring, as one would find in GCG's FrameSearch, FASTX, and Wise2
fragment of the alignments is shown in the following table.

Table 2-4 Call Results

input Interval output SeqRegion string

start length start length

1 1 6 1 a Glutamate 'E

2 1 7 1 a Tyrosine 'Y

2 3 7 3 the peptide "YYD"

11 1 null a gap '-'

12 1 null a gap '-'

12 10 16 4 the peptide "EATP"
2-48 Biomolecular Sequence Analysis V1.0 December 1999

2

the

e
ed.
 or a

The
 of
od

T. A
 the

racter.

ill
The Alignment would have two AlignmentElements , one with the EST and one with
the protein. Querying the Alignment with the get_seq_region() method would reveal
the sequence regions listed above for each of the sequences. More importantly,
get_align_type_by_column() method for Column 22 would return a type
SEQUENCE_ERROR, whereas for the other columns it would return a type
PROTEIN. This way a program can confidently interpret the alignment. To indicat
how important this information is, imagine if in Column 22 three bases were align
It would be ambiguous as to whether this indicated a protein insertion of a codon
sequence error. The AlignType here provides this additional information.

The ability to associate a CharacterAlignmentEncoder with a more complex
Alignment as this example is provides a way for clients to retrieve both the
Alignment and a desired interpretation of the Alignment from the server, which
facilitates writing alignment clients separately from actual alignment constructors.
AlignmentEncoder s provide a route for at least a character-based representation
the Alignment to be provided by the server, however complex the alignment meth
is. In this case, one might have one AlignmentEncoder which provided the amino
acids from the protein as three letter codes lined up with three bases from the ES
different encoder might use one letter amino acid codes throughout, and not show
DNA sequence at all, choosing to encode the sequencing error with a special cha

2.1.17 Assembly

Assembly extends Alignment . Assembly contains no additional functionality. The
technical domain is evolving rapidly and it's not clear what additional functionality w
be necessary. However, the submitters believe it is important to establish the
relationship between Assembly and Alignment .

Table 2-5 Protein vs. EST Alignment

column 20 21 22 23

EST 111-113
(codon)

114-116
(codon)

117 118-120
(codon)

protein 55 56 57

AlignType PROTEIN PROTEIN SEQUENCE_ ERROR PROTEIN
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-49

2

me

n for
Figure 2-16 The Assembly interface

interface Assembly : Alignment
{
};

2.1.18 SearchHit

The SearchHit valuetype provides a generic mechanism to return the results of so
type of query against a collection of BioSequence objects. The SearchHit provides
information about a particular sequence that was found and associated informatio
this hit relevant to this particular search, for an example, a score.

The SearchHit valuetype is used as a base class for the SimilaritySearchHit , which
provides a specialisation of the SearchHit for similarity searches

Figure 2-17 The SearchHit valuetype

SearchHit

valuetype SearchHit
{

public Identifier id;
public CosPropertyService::Properties hit_info;

};

Alignment
<<Interface>>

Assembly
<<Interface>>

SearchHit

id : Identifier
hit_info : CosPropertyService::Properties

<<valuetype>>
2-50 Biomolecular Sequence Analysis V1.0 December 1999

2

ed

d
The following BLAST example illustrates the type of information that would be plac
in hit_info . The example is taken from NCBI's BLAST help page. The associated
alignment information is discussed below in the description of SimilaritySearchHit .

SearchHitList

public Identifier id;

Description: The Identifier string identifies a sequence. It can be used
with a BioSequenceIdentifierResolver to access the actual
sequence.

Return value: Returns an Identifier string.

public CosPropertyService::Properties hit_info;

Description: The hit_info provides additional information that is not
contained in the BioSequence but is relevant from the
perspective of the search. Common information would be the
score in a similarity comparison, the statistical probability of
the hit or the relevance of the hit in a text search. Content an
type of information returned will vary with analysis type.

Return value: Returns a CosPropertyService::Properties .

 Smallest
 Sum
 High Probability

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, P... 176 1.8e-65 4

[information deleted - ed.]

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
 (MONOCYTE ARG- SERPIN).
 Length = 415

 Score = 176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
 Identities = 38/89 (42%), Positives = 50/89 (56%)

typedef sequence<SearchHit> SearchHitList;

Description: Used to pass a set of SearchHits .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-51

2

SearchHitIterator

Figure 2-18 The SearchHitIterator interface

interface SearchHitIterator
{

boolean next(out SearchHit hit)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out SearchHit hit)
raises(IteratorInvalid);

Description: The next() operation gets the next SeachHit in its out
parameter hit and returns a boolean value. If the iterator is at
the end of the set, it returns FALSE and sets the output hit
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

SearchHitIterator

next()
next_n()
reset()
destroy()

<<Interface>>
2-52 Biomolecular Sequence Analysis V1.0 December 1999

2

,

2.1.19 SimilaritySearchHit

The SimilaritySearchHit valuetype provides a specialisation of the SearchHit
valuetype for searches of BioSequence collections that are on the basis of similarity
such as BLAST, Fasta, or Smith-Waterman searches.

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);

Description: next_n() returns SearchHits in the SearchHitList out
parameter hit_list , containing at most the number specified in
the first parameter (how_many) and returns a boolean value
directly. When it is at the end of the set it returns FALSE and
the hit_list parameter will have length zero. In all cases the
length of hit_list will be the minimum of how_many and
the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-53

2

Figure 2-19 The SimilaritySearchHit valuetype

valuetype SimilaritySearchHit : SearchHit
{

public AlignmentList alignment_list;
};

The following BLAST example illustrates the alignment information that may be
associated with a SimilaritySearchHit . The example is taken from NCBI's BLAST
help page.

public AlignmentList alignment_list;

Description: This attribute provides a list of Alignments that are
associated with this hit. Not all hits may have alignments. In
the Alignments , the sequence or object that was used as a
query is the first AlignmentElement and the other objects
(in most cases, just one) follow.

Return value: Returns a list of Alignments .

SearchHit
<<valuetype>>

Alignment
<<Interfa ce> >Sim ilaritySearchHit

alignment_list : A lignmentLis t

<<valuety pe>>
0.. *0.. *
2-54 Biomolecular Sequence Analysis V1.0 December 1999

2

SimilaritySearchHitList

2.1.20 BioSequenceIdentifierResolver

The BioSequenceIdentifierResolver provides a mechanism to retrieve the actual
BioSequence object from a collection search, using the Identifier string.

Implementers may want to consider multiply inheriting from
BioSequenceIdentifierResolver interface with the optional BioSequence
factories to provide sequence creation for an Identifier .

Figure 2-20 The BioSequenceIdentifierResolver interface

interface BioSequenceIdentifierResolver
{

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);
};

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
 (MONOCYTE ARG- SERPIN).
 Length = 415

 Score = 176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
 Identities = 38/89 (42%), Positives = 50/89 (56%)

Query: 1 QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNN 60
 +I +LL S D DT +VLVNA+YFKG WKT F + PF V + PVQMM +
Sbjct: 180 KIPNLLPEGSVDGDTRMVLVNAVYFKGKWKTPFEKKLNGLYPFRVNSAQRTPVQMMYLRE 239

Query: 61 SFNVATLPAEKMKILELPFASGDLSMLVL 89
 N+ + K +ILELP+A L+L
Sbjct: 240 KLNIGYIEDLKAQILELPYAGDVSMFLLL 268

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

Description: Used to pass a set of SimilaritySearchHits .

BioSequenceIdentifierResolver

resolve()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-55

2

st a
es
nt
h-

e

2.1.21 SearchResult

The SearchResult interface provides the complete results of a single search again
collection of BioSequences , including the individual hits and their associated scor
and information about the search as whole. This interface is designed to represe
results from both similarity queries on a database (such as BLAST, Fasta or Smit
Waterman) and text based searches on a database of BioSequences .

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);

Description: The resolve() method provides the BioSequence for the
particular Identifier .

Return value: Returns a BioSequence .

Exceptions: Raises IdentifierNotFound if the database and the identifier
within the database can be resolved but the Identifier is not
present.

Raises IdentifierNotResolvable if the database and the
identifier within the database cannot be resolved such that th
Identifier cannot even be searched for.

Raises IdentifierNotUnique if the Identifier specification is
ambiguous and returns more than one object.
2-56 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-21 The SearchResult interface

SearchResult

The SearchResult interface inherits from the BioSequenceIdentifierResolver to
allow the retrieval of the actual BioSequences from the collection. It also inherits
from CosLifeCycle::LifeCycleObject to allow management of its resources.

interface SearchResult :
BioSequenceIdentifierResolver,
CosLifeCycle::LifeCycleObject

{
readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);
};

readonly attribute BioSequence query_sequence;

Description: This attribute provides the query sequence that was used in
this SearchResult . It may be null in the case of non
similarity based searches.

Return value: Returns a BioSequence .

BioS equ enceId entifi erResolver
<< Interface>>

LifeCyc leObject
<< Interface>>

BioSequence
<<Interface>>

SearchHit
<<valuetype>>

SearchHitIterator
<< Interface>>

SearchResult

query_sequence : B ioSequ ence
collec t ion_info : CosPropertyS ervice:: Proper ties

get_ property_names ()
num_hit s()
get_ hits ()

<< Interface>>

11

0..*0..*

11
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-57

2

 in

e,
The following BLAST example illustrates the type of information that could be placed

collection_info . The example is taken from NCBI’s BLAST help page.

readonly attribute CosPropertyService::Properties collection_info;

Description: The collection_info provides additional information that is
not contained in the SearchHits but is relevant from the
perspective of the search. Common information would be the
database Identifier, the number of sequences in the databas
and some statistical information about the search.

Return value: Returns a CosPropertyService::Properties .

BLASTP 1.4.6MP [13-Jun-94] [Build 13:58:36 Sep 22 1994]

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol.
215:403-10.

Query = pir|A01243|DXCH 232 Gene X protein - Chicken (fragment)
 (232 letters)

Database: SWISS-PROT Release 29.0
38,303 sequences; 13,464,008 total letters.

Searching..done

 Observed Numbers of Database Sequences Satisfying
 Various EXPECTation Thresholds (E parameter values)

 Histogram units: = 31 Sequences : less than 31 sequences

EXPECTation Threshold
(E parameter)
 |
 V Observed Counts-->
 10000 4863 1861 |==
 6310 3002 782 |=========================
 3980 2220 812 |==========================
 2510 1408 303 |=========
 1580 1105 393 |============
 1000 712 179 |=====
 631 533 161 |=====

 398 372 80 |==
 251 292 73 |==
 158 219 50 |=
 100 169 32 |=
 63.1 137 18 |:
 39.8 119 9 |:
 25.1 110 6 |:
 15.8 104 9 |:
2-58 Biomolecular Sequence Analysis V1.0 December 1999

2

 >>>>>>>>>>>>>>>>>>>>> Expect = 10.0, Observed = 95 <<<<<<<<<<<<<<<<<
 10.0 95 4 |:
 6.31 91 3 |:
 3.98 88 1 |:
 2.51 87 3 |:
 1.58 84 0 |
 1.00 84 2 |:

[SearchHit information deleted – ed.]

WARNING: HSPs involving 86 database sequences were not reported due to the
 limiting value of parameter B = 9.

Parameters:
 V=15
 B=9
 H=1

 -ctxfactor=1.00
 E=10

 Query ----- As Used ----- ----- Computed ----
 Frame MatID Matrix name Lambda K H Lambda K H
 +0 0 BLOSUM62 0.316 0.132 0.370 same same same

 Query
 Frame MatID Length Eff.Length E S W T X E2 S2
 +0 0 232 232 10. 57 3 11 22 0.22 33

Statistics:
 Query Expected Observed HSPs HSPs
 Frame MatID High Score High Score Reportable Reported
 +0 0 62 (28.2 bits) 1191 (542.5 bits) 330 24

 Query Neighborhd Word Excluded Failed Successful Overlaps
 Frame MatID Words Hits Hits Extensions Extensions Excluded
 +0 0 4988 5661199 1146395 4504598 10187 13

 Database: SWISS-PROT Release 29.0
 Release date: June 1994
 Posted date: 1:29 PM EDT Jul 28, 1994
 # of letters in database: 13,464,008
 # of sequences in database: 38,303
 # of database sequences satisfying E: 95
 No. of states in DFA: 561 (55 KB)
 Total size of DFA: 110 KB (128 KB)
 Time to generate neighborhood: 0.03u 0.01s 0.04t Real: 00:00:00
 No. of processors used: 8
 Time to search database: 32.27u 0.78s 33.05t Real: 00:00:04
 Total cpu time: 32.33u 0.91s 33.24t Real: 00:00:05

WARNINGS ISSUED: 2
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-59

2

e
2.1.22 AnnotationFactory (Optional)

AnnotationFactory provides a means of creating new Annotation and
SeqAnnotation objects. This permits a clean separation of factory issues from th
Annotation objects themselves. Annotations are created via the factory method
create_annotation() , which accepts all of the components. Similarly,
SeqAnnotations are created via the factory method create_seq_annotation() ,
which accepts all of the components.

AnnotationFactory is an optional compliance point of this specification.

StringList get_property_names();

Description: The names of the hit_info properties in SearchHit are
available here so that clients have access to them before
processing the list of SearchHits .

Return value: Returns a StringList .

unsigned long num_hits();

Description: Provides the number of hits in this SearchResult .

Return value: Returns an unsigned long .

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);

Description: Uses the list/iterator hybrid to provide access to the actual
SearchHits , which could be SimilaritySearchHits . A list
of no more than how_many hits starting at start is returned
as the direct result. The remaining elements, if any, are
available through the iterator returned in the out parameter.

Return value: Returns a SearchHitList .

Exceptions: Raises IndexOutOfBounds if the index is less than 1 or
greater than the number of hits in the SearchResult . This
upper limit is returned by num_hits() .
2-60 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-22 The AnnotationFactory interface

interface AnnotationFactory
{

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

};

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

Description: The create_annotation() operation creates an Annotation
and populates it with the supplied attributes. No error
checking is performed.

Return value: Returns an Annotation with the appropriate content.

Annotat ionFactory

create_annotation()
create_seq_annotation()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-61

2

2.1.23 BioSequence factories (Optional)

Sequence factories permit a clean separation of object vending from BioSequence
data model issues. BioSequence factories are an optional compliance point of this
submission.

BioSequence factories provide a means of creating new NucleotideSequence and
AminoAcidSequence objects. Sequences are created via the factory method
create_sequence() , which accepts all of the components.

Implementers may want to consider mixing in the BioSequenceIdentifierResolver
interface to provide sequence creation for an Identifier .

Figure 2-23 The BioSequence factories

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

Description: The create_seq_annotation() operation creates a
SeqAnnotation and populates it with the supplied attributes.
No error checking is performed.

Return value: Returns a SeqAnnotation with the appropriate content.

NucleotideSequenceFactory

create_sequence()

<<Interface>>
AminoAcidSequenceFactory

create_sequence()

<<Interface>>
2-62 Biomolecular Sequence Analysis V1.0 December 1999

2

SeqAnnotationOutOfBounds

NucleotideSequenceFactory

NucleotideSequenceFactory provides a means of creating new
NucleotideSequences . NucleotideSequenceFactory is an optional compliance
point of this specification.

interface NucleotideSequenceFactory
{

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds);
};

exception SeqAnnotationOutOfBounds
{

SeqAnnotation invalid;
Interval valid;

};

Description: The SeqAnnotationOutOfBounds exception is raised if a
SeqAnnotation's SeqRegion has a start less than 1 or if
its start+length-1 is greater than the length of the
BioSequence . The exception is also raised if a nested sub-
region of a CompositeSeqRegion is invalid. If a
BioSequence represents circular DNA, then this exception
should not be raised.

Return value: Returns the invalid SeqAnnotation and the valid Interval .
The valid Interval has start equal to 1 and length equal to
the length of the BioSequence , the largest allowed Interval .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-63

2

.

).
AminoAcidSequenceFactory

AminoAcidSequenceFactory provides a means of creating new
AminoAcidSequences . AminoAcidSequenceFactory is an optional compliance
point of this specification.

interface AminoAcidSequenceFactory
{

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds);
};

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds);

Description: The create_sequence() operation creates a
NucleotideSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUB single letter codes
The residues need not be upper-case.
BioSequenceIdentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns a NucleotideSequence with the appropriate
content.

Exceptions: Raises InvalidResidue if the string of residues is
inconsistent with the IUPAC-IUB single letter codes. Note
that residue is interpreted to mean base here (see Glossary

Raises SeqAnnotationOutOfBounds if annotations
contains a SeqAnnotation whose seq_region is out of
bounds for this BioSequence .
2-64 Biomolecular Sequence Analysis V1.0 December 1999

2

rsions.

.
2.1.24 BioSequence iterators (Optional)

Iterator specifications are defined for iterating over a set of BioSequence ,
NucleotideSequence , or AminoAcidSequence objects. NucleicAcidIterator
and AminoAcidIterator are specialized versions of BioSequenceIterator having
the same operations but with signatures specialized for the corresponding
BioSequence sub-types. BioSequenceIterator and BioSequenceList may
contain both NucleotideSequences and AminoAcidSequences . Homogeneity in
the sequence types of iterators and lists can be achieved using the specialized ve

Figure 2-24 The BioSequence iterators

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds);

Description: The create_sequence() operation creates an
AminoAcidSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUB single letter codes
The residues need not be upper-case.
BioSequenceIdentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns a AminoAcidSequence with the appropriate
content.

Exceptions: Raises InvalidResidue if the string of residues is inconsistent
with the IUPAC-IUB single letter codes.

Raises SeqAnnotationOutOfBounds if annotations
contains a SeqAnnotation whose seq_region is out of
bounds for this BioSequence .

BioS equenceIterat or

next()
next_n()
reset()
destroy()

<<Interface>>
NucleotideSequenceIterator

nex t()
nex t_n()
reset ()
des troy()

<<Interface>>
Am inoAcidSequenceIterator

next()
next_n()
reset()
destroy()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-65

2

t

E
BioSequenceIterator

BioSequenceIterator provides a strongly typed iterator for BioSequences .

interface BioSequenceIterator
{

boolean next(out BioSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
 out BioSequenceList seqs)
raises(IteratorInvalid);

void reset();
void destroy();

};

boolean next(out BioSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next BioSequence in its out
parameter seq and returns a boolean value. If the iterator is a
the end of the set, it returns FALSE and sets the output seq
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and TRU
otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out BioSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns BioSequences in the BioSequenceList
out parameter seqs , containing at most the number specified
in the first parameter (how_many) and returns a boolean
value directly. When it is at the end of the sequence set it
returns FALSE and the seqs parameter will have length zero.
In all cases the length of seqs will be the minimum of
how_many and the number of sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).
2-66 Biomolecular Sequence Analysis V1.0 December 1999

2

e
NucleotideSequenceIterator

NucleotideSequenceIterator provides a strongly typed iterator for
NucleotideSequences .

interface NucleotideSequenceIterator
{

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next NucleotideSequence in
its out parameter seq and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets th
output seq parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-67

2

AminoAcidSequenceIterator

AminoAcidSequenceIterator provides a strongly typed iterator for
AminoAcidSequences .

interface AminoAcidSequenceIterator
{

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns NucleotideSequences in the
NucleotideSequenceList out parameter seqs , containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the sequence set it returns FALSE and the seqs
parameter will have length zero. In all cases the length of
seqs will be the minimum of how_many and the number of
sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-68 Biomolecular Sequence Analysis V1.0 December 1999

2

e

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next AminoAcidSequence in
its out parameter seq and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets th
output seq parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns AminoAcidSequences in the
AminoAcidSequenceList out parameter seqs , containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the sequence set it returns FALSE and the seqs
parameter will have length zero. In all cases the length of
seqs will be the minimum of how_many and the number of
sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-69

2

2.1.25 GeneticCodeFactory (Optional)

GeneticCodeFactory provides a means of creating new GeneticCodes .
GeneticCodeFactory is an optional compliance point of this specification.

InvalidGeneticCodeName

GeneticCodeFactory

The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. The genetic_code_names
attribute provides access to the supported GeneticCodeNames .
create_genetic_code() creates the appropriate GeneticCode . Codings for the
GeneticCodeNames listed below can be found in Appendix B.

Figure 2-25 The GeneticCodeFactory interface

interface GeneticCodeFactory
{

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";

exception InvalidGeneticCodeName
{

string invalid_name;
};

Description: The InvalidGeneticCodeName exception is raised when an
invalid GeneticCodeName is passed to
GeneticCodeFactory’s create_genetic_code() .

Return value: Returns a string containing the invalid name.

G ene t ic C odeF ac tory

S TA N D A RD : Ge neti cC odeN am e = "s t andard "
B A C TE R IA L : Gene ti c C odeN am e = " bac t e ri al"
Y E A S T_M ITO C H ON D R IA L : Ge ne tic C odeN am e = "y eas t m itoc hond ri a l"
V E R TE B RA TE _M IT OC H O N DR IA L : G ene t ic C odeT y pe = "vert ebra te m i toc hon d ri al"
M O LD _MITO CH O N D R IA L : Gene ti c C odeN ame = " m o ld m i toc h ondria l "
IN V ER TE B R A TE _M ITO C HO N D R IA L : Gen eti cC odeN am e = " in ve rteb r a te m ito c hond r ia l"
E C H IN O D E RM _M ITO C H O ND R IA L : G ene t ic C odeN am e = "ec h inode rm m it oc hond r ia l"
A S C ID IA N _M ITO CH O N D R IA L : Gene ti c C odeN am e = " as c i d ian m it ochond r ia l"
F LA TW OR M _M ITO C H ON D R IA L : Ge ne tic C odeN am e = "f la t w o rm m itoc hond ri a l"
C ILIA TE _N U C LE A R : G enet ic C odeN am e = "c ilia t e nuc lea r "
E U P LO TID _N U C LE A R : G enet ic C odeN am e = "eup lo t id nuc l ea r"
A LT_Y E A S T_N U CL EA R : Gene ti c C odeN am e = " alte r na ti ve yeas t nuc lear "
B LE P H A RIS M A _M A C RO N U C LE AR : Ge ne tic C odeN am e = "b l epha r is m a m ac r onuc l ear"
ge ne ti c_c ode_n am es : G enet ic C odeN am eLis t

c rea t e_gene t ic _c ode ()
2-70 Biomolecular Sequence Analysis V1.0 December 1999

2

const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL = "invertebrate mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL = "echinoderm mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL = "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";

readonly attribute GeneticCodeNameList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)

raises(InvalidGeneticCodeName);
};

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIA = "invertebrate mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL = "echinoderm mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL = "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";

Description: The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. The GeneticCodeName
defines the particular Coding that is used to convert Codons into Residues so one
need only specify the GeneticCodeName when creating a GeneticCode object from
one of the known types. Codings for the GeneticCodeNames listed above can be
found in Appendix B.

readonly attribute GeneticCodeNameList genetic_code_names;

Description: The genetic_code_names attribute provides access to the supported
GeneticCodeNames .

Return value: Returns a GeneticCodeName .
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-71

2

r

 the
he
ch as

id
lient

 it to

nt
e
nts
t to

ment.
2.1.26 CharacterAlignmentEncoder (Optional)

The CharacterAlignmentEncoder and its specialization
SingleCharacterAlignmentEncoder are optional parts of the specification that
facilitate the representation of the Alignment for thin clients. It is important that these
interfaces have a proposed standard, as it will allow clients which do not want to
investigate Alignments directly to get useful information for passing on to a user o
to another, text format based application.

A CharacterAlignmentEncoder ’s role is to produce string text similar to that in
Table 2-2 on page 2-40, with columns of text indicating the correspondences and
row indicating each sequence. The exact format isn’t specified or standardized. T
factory that makes the encoder will govern the precise nature of the encoding, su
what pad character is used. The CharacterAlignmentEncoder might have more
than one character per column, allowing the transmission of three-letter amino ac
code or more than one base of DNA sequence in a single column. To allow the c
to format the resulting data, max_column_width() returns the maximum length of
characters in a column. Rows and columns are numbered starting at 1.

The Alignment and the CharacterAlignmentEncoder interfaces work well for
both view-based clients and programmatic clients. The interfaces provide viewing
clients with an easy, low cost route of gathering the alignment data and displaying
the user. The coordinate system of the string encoded alignment maps to the
underlying alignment, allowing the client to retrieve specific regions of the alignme
of interest. Since the Interval valuetype can be used to retrieve only portions of th
BioSequences , these very complex objects can remain on the server, with the clie
displaying only portions of interest to the user. For programmatic clients, that wan
use the alignment as the basis of further analysis, the Alignment interface provides a
mapping system of moving from one sequence to another sequence via the align

CharacterAlignmentEncoder is an optional compliance point of this submission.

GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

Description: create_genetic_code() creates the appropriate
GeneticCode corresponding to the GeneticCodeName .
Codings for the GeneticCodeNames listed above can be
found in Appendix B.

Return value: Returns a GeneticCode .

Exceptions: Raises InvalidGeneticCodeName if the
GeneticCodeName is not supported (i.e., returned by the
genetic_code_names attribute).
2-72 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-26 The CharacterAlignmentEncoder interface

interface CharacterAlignmentEncoder
{

readonly attribute Alignment the_alignment;

unsigned long num_rows(); // number of aligned
// objects. Delegate

unsigned long num_columns(); // Delegate to Alignment

string get_name(in unsigned long row) // first object is in row
raises(IndexOutOfBounds); // one etc...

StringList get_all_names(); // all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();
};

readonly attribute Alignment the_alignment;

Description: Provides access to the underlying Alignment .

Return value: Returns an Alignment .

CharacterAlignmentEncoder

the_alignment : A lignment

num_rows()
num_columns()
get_name()
get_all_names()
get_cell_contents()
is_cell_a_gap()
get_cell_width()
max_column_width()
max_width()

<<Interface>>

Alignment
<<Interface>>1 0..*1 0..*
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-73

2

his
unsigned long num_rows();

Description: Provides access to the number of rows
(AlignmentElements) in this Alignment . The return value
of num_rows() is the same as that of the Alignment’s
num_rows() .

Return value: Returns an unsigned long .

unsigned long num_columns();

Description: Provides access to the total number of correspondences in t
Alignment . The return value of num_columns() is the
same as that of the Alignment’s num_columns() .

Return value: Returns an unsigned long .

string get_name(in unsigned long row)
raises(IndexOutOfBounds);

Description: Provides access to the name associated with the
AlignmentElement referenced by row .

Return value: Returns a string .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

StringList get_all_names();

Description: Provides access to the names associated with each of the
AlignmentElements .

Return value: Returns a StringList , one string per AlignmentElement .
2-74 Biomolecular Sequence Analysis V1.0 December 1999

2

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description: Provides access to the string associated with a single cell.
The cell corresponds to the correspondence col in the
AlignmentElement referenced by row .

Return value: Returns a string .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

Also raises IndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned by num_columns() .

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description: Indicates if a single cell represents a gap in the alignment.
The cell corresponds to the correspondence col in the
AlignmentElement referenced by row .

Return value: Returns a boolean .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

Also raises IndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned by num_columns() .

unsigned long get_cell_width
(in unsigned long row,
in unsigned long col)

raises(IndexOutOfBounds);
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-75

2

e
2.1.27 SingleCharacterAlignmentEncoder (Optional)

A SingleCharacterAlignmentEncoder is one in which each correspondence is
guaranteed to have only a single character for all AlignmentElements . Therefore,
more bulk transport mechanisms can be employed, using strings to get rows of th
Alignment or the entire Alignment as a block of text.

SingleCharacterAlignmentEncoder is an optional compliance point of this
specification.

Description: To allow the client to format the resulting data,
get_cell_width() returns the width of a single cell. The cell
corresponds to the correspondence col in the
AlignmentElement referenced by row .

Return value: Returns an unsigned long .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

Also raises IndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned by num_columns() .

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

Description: To allow the client to format the resulting data,
max_column_width() returns the maximum length of
characters in a column defined by col .

Return value: Returns an unsigned long .

Exceptions: Raises IndexOutOfBounds if col is less than 1 or greater
than the number of columns. This upper limit is returned by
num_columns() .

unsigned long max_width();

Description: To allow the client to format the resulting data, max_width()
returns the maximum length of characters in the widest
column.

Return value: Returns an unsigned long .
2-76 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-27 The SingleCharacterAlignmentEncoder interface

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder
{

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds);

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);

StringList get_entire_alignment(); // probably the most common!
};

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

Description: Provides the text for part of a single AlignmentElement as a
string . row identifies the AlignmentElement . There is one
character per cell.

Return value: Returns a string .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() , inherited from
CharacterAlignmentEncoder .

CharacterA lignm entEncoder
<<Interface>>

SingleCharact erA l ignment Encoder

get_row()
get_row_interval()
get_row_colum n_interval()
get_entire_alignm ent()

<<Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-77

2

ne
string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds);

Description: Provides the text for part of a single AlignmentElement as a
string . row identifies the AlignmentElement . cols allows
a subset of the correspondences to be referenced. There is o
character per cell.

Return value: Returns a string .

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows (), inherited from
CharacterAlignmentEncoder .

Raises IntervalOutOfBounds if cols’ start is less than 1 or
start+length-1 is greater than the number of columns. This
upper limit is returned by num_cols (), inherited from
CharacterAlignmentEncoder .

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);

Description: Provides the sub-block of text for the portion of the
Alignment defined by rows and cols Intervals as an array
of strings . rows allows a subset of the
AlignmentElements to be referenced. cols allows a subset
of the correspondences to be referenced. There is one
character per cell.

Return value: Returns a StringList , one string per row.

Exceptions: Raises IntervalOutOfBounds if rows ’ start is less than 1
or start+length-1 is greater than the number of rows. This
upper limit is returned by num_rows() , inherited from
CharacterAlignmentEncoder .

Also raises IntervalOutOfBounds if cols ’ star t is less than
1 or start+length-1 is greater than the number of columns.
This upper limit is returned by num_cols() , inherited from
CharacterAlignmentEncoder .
2-78 Biomolecular Sequence Analysis V1.0 December 1999

2

2.1.28 AlignmentEncoder factories (Optional)

AlignmentEncoder factories provide a means of creating new
CharacterAlignmentEncoder and SingleCharacterAlignmentEncoder objects.
This permits a clean separation of factory issues from the AlignmentEncoder objects
themselves.

AlignmentEncoder factories are an optional compliance point of this specification.

Figure 2-28 The AlignmentEncoder factories

CannotEncodeAlignment

CharacterAlignmentEncoderFactory

CharacterAlignmentEncoderFactory provides a means of creating new
CharacterAlignmentEncoders for an Alignment .
CharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface CharacterAlignmentEncoderFactory
{

CharacterAlignmentEncoder create(in Alignment the_alignment)

StringList get_entire_alignment();

Description: Provides the block of text for the entire Alignment as an
array of strings . There is one character per cell.

Return value: Returns a StringList , one string per row.

exception CannotEncodeAlignment
{

string reason;
};

Description: The CannotEncodeAlignment exception is raised if an
AlignmentEncoder can not be created for this Alignment .

Return value: Returns a string containing the reason the
AlignmentEncoder could not be created for this
Alignment .

Charac terA lignm entEncoderFac tory

c reat e()

<< Interface>>
S ingle Ch arac terA li gnm e ntE ncode rFactory

c re ate()

<< Interface>>
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-79

2

ence
d
t and
raises(CannotEncodeAlignment);
};

SingleCharacterAlignmentEncoderFactory

SingleCharacterAlignmentEncoderFactory provides a means of creating new

SingleCharacterAlignmentEncoders for an Alignment .

SingleCharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface SingleCharacterAlignmentEncoderFactory
{

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};

2.2 Module DsLSRAnalysis

The DsLSRAnalysis module defines the component interfaces for supporting sequ
analysis through a generic analysis design. The module encapsulates the require
elements for analysis. It provides the means to interrogate analyses inputs, outpu

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: The create() operation creates a
CharacterAlignmentEncoder for the given Alignment .

Return value: Returns a CharacterAlignmentEncoder .

Exceptions: Raises CannotEncodeAlignment if a
CharacterAlignmentEncoder cannot be created for this
Alignment .

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: The create () operation creates a
SingleCharacterAlignmentEncoder for the given
Alignment .

Return value: Returns a SingleCharacterAlignmentEncoder .

Exceptions: Raises CannotEncodeAlignment if a
SingleCharacterAlignmentEncoder can not be created
for this Alignment .
2-80 Biomolecular Sequence Analysis V1.0 December 1999

2

sly
ng to

NS
functionality. An analysis can be executed asynchronously as well as synchronou
based on the client invocation. Executing analyses can be monitored by subscribi
an event channel or polling for state.

The Client is responsible for:

• determining which Biomolecular Sequence Analysis (BSA) analysis tool (e.g.,
BLAST, Smith-Waterman, etc.) it wants to employ;

• locating an AnalysisService that represent the BSA analysis tool;
• retrieving a handle to an AnalysisInstance object that implements the BSA

analysis tool;
• providing the AnalysisInstance with complete input information;
• invoking the AnalysisInstance to perform its function (via a synchronous or

asynchronous mechanism);
• retrieving results generated by the BSA analysis tool execution; and
• when it no longer requires an AnalysisInstance (and its related input and output

objects), invoking their removal from the system.

A Client can learn about processing events that occur during the execution of an
AnalysisInstance either by asking the AnalysisInstance for its most recent
processing event or listening to an event channel on which the AnalysisInstance
publishes its events. A Client can also ask for an AnalysisInstance’s execution
status.

2.2.1 General

//File: DsLSRAnalysis

#ifndef _DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>
#include <TimeBase.idl>

module DsLSRAnalysis
{

// …
};

#endif // _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG’s D
name.
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-81

2

alysis

as a
#include <CosPropertyService.idl>

Properties are used in AnalysisService and AnalysisInstance .

#include <CosEventChannelAdmin.idl>

EventChannel is used in AnalysisInstance .

#include <CosLifeCycle.idl>

AnalysisInstance inherits from LifeCycleObject .

#include <TimeBase.idl>

TimeT is used in TimeProgressEvent and JobControl . UtcT is used in
JobControl .

StringList

2.2.2 AnalysisType

An AnalysisType provides information for a client to determine the types of BSA
analyses available in the system. It can also be used to distinguish the type of an
offered by an AnalysisService . An AnalysisType provides information sufficient to
determine whether two AnalysisServices create identical BSA AnalysisInstances .
Such information may be of use to a computation management subsystem such
load balancing or queuing system. In order to provide enough information to
distinguish analysis types, there are several attributes of an AnalysisType .

It is important to note that the AnalysisType is defined as a valuetype that can be
extended by a vendor requiring additional attributes.

typedef sequence<string> StringList;

Description: Used to pass and return a set of strings .
2-82 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-29 The AnalysisType valuetype

valuetype AnalysisType
{

public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

};

public string type;

Description: The type attribute is used to specify both the correct
classification of the analysis as well as a qualifier to specify
category and additionally, provides information about the
inputs to the analysis. The classification of the analysis could
come from the BSA specified classification hierarchy as well
as it could come from a hierarchy defined by a certain
installation. A ‘/’ is used to delimit the qualifier and a ‘.’ is
used to delimit the general input kind. An example of a
specified type attribute would be
alignment.collection/assembly.

Return value: Returns a string .

public string name;

Description: The name attribute is used to further identify the analysis in
the system.

Return value: Returns a string .

AnalysisType

type : string
name : string
supplier : string
version : string
installation : string
description : string

<<valuetype>>
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-83

2

,
nal or
sible
2.2.3 InputPropertySpec

An InputPropertySpec is used to provide metadata that describes required and
optional input parameters used to perform an analysis. The InputPropertySpec
provides an input name and CORBA::TypeCode to allow the client to interrogate the
interface repository for more information about the analysis parameter. Additionally
there are some useful attributes that help the client determine if a parameter is optio
required, the default value of an input parameter if one exists, and finally some pos
values useful for validation or user-interface presentation.

public string supplier;

Description: The supplier attribute is used to identify the supplier or
vendor of a custom analysis implementation.

Return value: Returns a string .

public string version;

Description: The version attribute specifies the particular form or
variation of the analysis.

Return value: Returns a string .

public string installation;

Description: The installation attribute is used to differentiate similar
analysis implementations at a particular installation.

Return value: Returns a string .

public string description;

Description: The description attribute is used to provide useful
descriptive information about the AnalysisInstances
created by the AnalysisService .

Return value: Returns a string .
2-84 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-30 The InputPropertySpec valuetype

InputPropertySpec

valuetype InputPropertySpec
{

public string name;
public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

};

public string name;

Description: This is the name of the parameter that can be submitted to
initialize the analysis.

Return value: Returns a string .

public CORBA::TypeCode type;

Description: This is a CORBA::TypeCode allowing the client to find
more detailed information in the interface repository about
the data type.

Return value: Returns a CORBA::TypeCode .

InputPropert ySpec

name : string
type : CORB A::TypeCode
mandatory : boolean
default _value : any
possible_values : any

<<valuetype>>
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-85

2

alue

ll
InputPropertySpecList

2.2.4 OutputPropertySpec

An OutputPropertySpec is used to provide metadata that describes each output v
generated by an analysis. The OutputPropertySpec provides an output argument
name and CORBA::TypeCode to allow the client to interrogate the interface
repository for more information about the output value.

public boolean mandatory;

Description: The mandatory attribute specifies if the analysis requires the
parameter with TRUE and if the parameter is optional with
FALSE.

Return value: Returns a boolean .

public any default_value;

Description: This attribute specifies the default value if one is applicable.
If no default value is applicable, return a null in the any.

Return value: Returns a CORBA any.

public any possible_values;

Description: This attribute specifies suggested allowed values that are
applicable. If no possible values are applicable, return a nu
in the any.

Return value: Returns a CORBA any.

typedef sequence<InputPropertySpec> InputPropertySpecList;

Description: Used to pass a set of InputPropertySpecs .
2-86 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-31 The OutputPropertySpec valuetype

OutputPropertySpec

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

};

OutputPropertySpecList

2.2.5 AnalysisState

There are five defined analysis states:

1. CREATED - created but not yet invoked.

2. RUNNING – invoked.

public string name;

Description: This is the name of the identifier that contains an analysis
output value.

Return value: Returns a string .

public CORBA::TypeCode type;

Description: This is a CORBA::TypeCode allowing the client to find
more detailed information in the interface repository about the
data type.

Return value: Returns a CORBA::TypeCode .

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

Description: Used to pass a set of OutputPropertySpecs .

OutputPropertySpec

name : string
type : CORBA::TypeCode

<<valuetype>>
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-87

2

ides
ese

n. It
3. COMPLETED – execution ended normally.

4. TERMINATED_BY_REQUEST – execution was terminated by a user request.

5. TERMINATED_BY_ERROR – execution terminated abnormally.

When an AnalysisInstance is first created it will be in the CREATED state. When
the AnalysisInstance is successfully run () it will move into the Running state. In
due course, the AnalysisInstance will then enter either the COMPLETED,
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR state.

Note that an AnalysisInstance in the TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial, incomplete) results that
can be retrieved by the client. There is no obligation that an implementation prov
results in these two cases. Further, the results for an analysis that is in one of th
two states is likely to be different than for an analysis that ran to normal completio
is recommended that client software convey this information to the end-user.

Figure 2-32 The AnalysisState enumeration

enum AnalysisState
{

CREATED, // Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, // The instance has completed execution.
TERMINATED_BY_REQUEST,// The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.

};

CREATED CREATED should be used when the
AnalysisInstance has been created but not
yet invoked.

RUNNING RUNNING should be used when the
AnalysisInstance has been invoked.

AnalysisState

CREATED
RUNNING
COMPLETED
TERMINATED_BY_REQUEST
TERMINATED_BY_ERROR

<<enum>>
2-88 Biomolecular Sequence Analysis V1.0 December 1999

2

ve
2.2.6 AnalysisEvent

There are five defined types of analysis events. They all inherit from the base
valuetype, which has a single message string. For all events the string should gi
some free-form text description of the current progress.

• StateChangedEvent
• HeartbeatProgressEvent
• PercentProgressEvent
• StepProgressEvent
• TimeProgressEvent

Figure 2-33 The AnalysisEvent valuetype

valuetype AnalysisEvent
{

public string message;
};

COMPLETED COMPLETED should be used to indicate
that the execution of the AnalysisInstance
ended normally.

TERMINATED_BY_REQUEST TERMINATED_BY_REQUEST should be
used to indicate that the execution of the
AnalysisInstance was terminated by a user
request.

TERMINATED_BY_ERROR TERMINATED_BY_ERROR should be to
indicate that the execution of the
AnalysisInstance was terminated
abnormally.

public string message;

Description: For all events message should give some free-form text
description of the current progress.

Return value: Returns a string .

AnalysisEvent

message : string

<<valuetype>>
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-89

2

e

 a
nts

ling

e
2.2.7 sub-types of AnalysisEvent

If an analysis has a non-null event channel then it must publish
StateChangedEvents onto that channel whenever the analysis enters a new stat
(apart from the CREATED) state.

The frequency of publication of other events onto the event channel is considered
quality of implementation issue. There is no restriction on the ordering of the eve
published onto the event channel.

An analysis may also publish other events (not necessarily derived from
AnalysisEvent) onto the event channel. Clients, therefore, must be capable of dea
with unknown events (e.g. by discarding them).

Figure 2-34 The sub-types of AnalysisEvent

StateChangedEvent

StateChangedEvent indicates that an AnalysisInstance has changed from one of
the five defined AnalysisStates to another.

If an analysis has a non-null event channel then it must publish
StateChangedEvents onto that channel whenever the analysis enters a new stat
(apart from the CREATED) state.

valuetype StateChangedEvent : AnalysisEvent
{

public AnalysisState previous_state;
public AnalysisState new_state;

};

S t ate C h an g ed E ve nt

pr evi ou s _ s tat e : A n al ys is S ta te
ne w _ s tat e : A na ly s is S ta te

< < va lu ety p e> >

H e a rtb ea tP ro gr es s E ven t
< < valu e typ e > >

P er c e nt P rog re ss E ve n t

p e rce n tag e : f loa t

< < va lu e typ e > >

S t ep P ro gr es sE ven t

to ta l_ s te p s : un s i g ne d lo ng
s tep s _c om p le te d : un s ig ne d lon g

< < va lu ety p e> >

A n a ly s i sE ve n t

m es sa g e : s t rin g

< < va lu e ty p e> >

A n a ly s i sS t ate

C R E A TE D
R U N N IN G
C O M P L E T E D
T E R M IN A TE D _B Y _R E Q U E S T
T E R M IN A TE D _B Y _E R R O R

< < e nu m > >
2

T im e P ro gre s sE ve n t

t im e_ re m ai ni ng : T im e B a se ::T im eT

< < va lu e ty p e> >
2-90 Biomolecular Sequence Analysis V1.0 December 1999

2

k
ge

nt
HeartbeatProgressEvent

HeartbeatProgressEvent indicates that an AnalysisInstance is still alive and
running.

valuetype HeartbeatProgressEvent : AnalysisEvent
{
};

PercentProgressEvent

PercentProgressEvent provides information regarding the relative amount of wor
completed by an AnalysisInstance in terms of percentage complete. The percenta
parameter must be greater or equal to 0 and less than or equal to 100.

valuetype PercentProgressEvent : AnalysisEvent
{

public float percentage;
};

TimeProgressEvent

TimeProgressEvent indicates the estimated completion time relative to the curre
time. There is no requirement that the estimated completion time decreases!

valuetype TimeProgressEvent : AnalysisEvent
{

public TimeBase::TimeT time_remaining;
};

public AnalysisState previous_state;

Description: Provides the previous state of the AnalysisInstance .

Return value: Returns an AnalysisState .

public AnalysisState new_state;

Description: Provides the new state of the AnalysisInstance .

Return value: Returns an AnalysisState .

public float percentage;

Description: percentage must be greater or equal to 0 and less than or
equal to 100.

Return value: Returns a float .
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-91

2

ber

sis

nt
StepProgressEvent

StepProgressEvent indicates the total number of steps to be executed by an
AnalysisInstance and the number of steps completed so far. Multiple
StepProgressEvents with the same progress string must have the same total num
of steps. The steps_completed parameter must be less than or equal to the
total_steps parameter.

valuetype StepProgressEvent : AnalysisEvent
{

public unsigned long total_steps;
public unsigned long steps_completed;

};

2.2.8 AnalysisService

An AnalysisService is a logical representation of a particular type of a BSA analy
tool available within a system. An AnalysisService provides enough information to
distinguish the service it provides from those offered by other AnalysisServices .

An AnalysisService provides metadata that describes input to its
AnalysisInstances and the output generated by its AnalysisInstances . Metadata
describing input and output parameters is available to the client in either IDL

public TimeBase::TimeT time_remaining;

Description: Indicates the estimated completion time relative to the curre
time.

Return value: Returns a TimeBase::TimeT .

public unsigned long total_steps;

Description: Indicates the total number of steps to be executed by the
AnalysisInstance . The steps_completed parameter must
be less than or equal to the total_steps parameter.

Return value: Returns an unsigned long .

public unsigned long total_steps;

Description: Indicates the number of steps completed so far. The
steps_completed parameter must be less than or equal to
the total_steps parameter.

Return value: Returns an unsigned long .
2-92 Biomolecular Sequence Analysis V1.0 December 1999

2

tion
sly
int
 a

ss

valuetypes or both IDL valuetypes and XML strings. If both are used, the informa
available in the IDL structures and XML strings must not be contradictory. Obviou
there is some information, such as constraints expressed in OCL (Object Constra
Language), that will only be available in the XML strings. Metadata is required for
compliant implementation.

An AnalysisService creates and returns references to AnalysisInstance objects
that implement the BSA analysis tool it represents. Arguments to create an
AnalysisInstance are in the form of CosPropertyService::Properties . Before
returning an AnalysisInstance , the input arguments must be checked for correctne
(according to the criteria represented in the metadata describing the
AnalysisService's input parameters).

The client that receives the returned reference to an AnalysisInstance is responsible
for the lifecycle management of that instance along with the objects populating the
AnalysisInstance’s input parameters and output parameters.

Figure 2-35 The AnalysisService interface

MetaData

DoesNotExistException

AnalysisService

interface AnalysisService

typedef string MetaData;

Description: Used to pass and return a string containing XML metadata.

exception DoesNotExistException { };

Description: The DoesNotExistException exception is raised if the
tagname used in describe () does not exist in the metadata.

Ana lys isService

Analys isTypeTag : s tring = "TAG_ANALYSIS_TYPE"
InputP ropertiesTag : s tring = "TAG_INPUT_PROPERTIES"
OutputPropertiesTag : s tring = "TAG_OUTPUT_PROPERTIES"
metadata_tags : S tringLis t
type : Analys isType
input_m etadata : InputP ropertySpecLis t
output_metadata : OutputP ropertySpecLis t

create_analys is()
describe()

<< Interface>>
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-93

2

.

{
const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)

raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

};

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

Description: The AnalysisService interface defines a set of const
strings that indicates the types of required metadata. The
strings correspond to the three attributes described below.

readonly attribute StringList metadata_tags;

Description: Provides the set of metadata tags for this analysis. The list
must include the three const strings listed above.

Return value: Returns a StringList .

MetaData describe(in string tagname)
raises (DoesNotExistException);

Description: describe() returns an XML string containing the metadata
corresponding to the tagname parameter. If metadata is
available as XML, describe() must support all tagnames
returned by the metadata_tags attribute.

Return value: Returns a MetaData string containing XML.

Exceptions: Raises DoesNotExistException if the tagname parameter
is not one of the list returned by the metadata_tags attribute

Raises CORBA::NO_IMPLEMENT if metadata is not
available as XML.
2-94 Biomolecular Sequence Analysis V1.0 December 1999

2

ta

be

readonly attribute AnalysisType type;

Description: type() returns the AnalysisType structure. This structure
must be populated.

Return value: Returns an AnalysisType .

readonly attribute InputPropertySpecList input_metadata;

Description: input_metadata() returns information about input
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array of InputPropertySpecs .

readonly attribute OutputPropertySpecList output_metadata;

Description: output_metadata() returns information about output
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array of OutputPropertySpecs .

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

Description: Arguments to create an AnalysisInstance are in the form of
CosPropertyService::Properties . Before returning an
AnalysisInstance , the input arguments must be checked for
correctness (according to the criteria represented in the metada
describing the AnalysisService's input parameters).

Return value: Returns an AnalysisInstance .

Exceptions: Raises CosPropertyService::MultipleExceptions if the input
parameters are incorrect for this analysis. The metadata should
consulted for information about the input parameters needed by
this analysis.
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-95

2

,

.
2.2.9 JobControl

Along with its basic interface, an AnalysisInstance implements a JobControl
interface. Via the JobControl , clients invoke and terminate AnalysisInstance
execution and retrieve execution performance information (e.g., execution duration
creation time, etc.).

Figure 2-36 The JobControl interface

NotRunnable

NotRunning

exception NotRunnable { };

Description: The NotRunnable exception is raised if the analysis cannot
be run (e.g., the service is currently unavailable). Raised by
run() .

This exception should not be used to indicate incorrect inputs
CosPropertyService::MultipleExceptions should be used
instead.

exception NotRunning { };

Description: The NotRunning exception is raised if the analysis is not
running. Raised by terminate() .

JobControl

created : TimeBase::UtcT
elapsed : TimeBase::TimeT
started : TimeBase::UtcT
ended : TimeBase::UtcT

run()
terminate()
wait()

<<Interface>>
2-96 Biomolecular Sequence Analysis V1.0 December 1999

2

g
NotTerminated

JobControl

interface JobControl
{

readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended;

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

void terminate()
raises (NotRunning, NotTerminated);

void wait();
};

exception NotTerminated
{

string reason;
};

Description: The NotTerminated exception is raised if the analysis is not
terminated. Raised by terminate() .

Return value: Returns a string containing the reason the analysis could not
be terminated.

readonly attribute TimeBase::UtcT created;

Description: Indicates the time the AnalysisInstance was created.

Return value: Returns a TimeBase::UtcT .

readonly attribute TimeBase::TimeT elapsed;

Description: Indicates the elapsed time since the analysis was started usin
run() .

Return value: Returns a TimeBase::TimeT .

readonly attribute TimeBase::UtcT started;

Description: Indicates the time the analysis was started.

Return value: Returns a TimeBase::UtcT .
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-97

2

is

ode

2.2.10 AnalysisInstance

An AnalysisInstance object is responsible for invoking an underlying BSA analys
tool.

An AnalysisInstance can be used in either a synchronous or an asynchronous m
to support clients with various needs. The run() method invokes the
AnalysisInstance to run asynchronously. If the client wants to be blocked waiting
for the underlying BSA analysis tool to run to completion, it can invoke the wait()
method which will block the client until service execution completes.

readonly attribute TimeBase::UtcT ended;

Description: Indicates the time the analysis ended.

Return value: Returns a TimeBase::UtcT .

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

Description: The run() method invokes the AnalysisInstance to run
asynchronously

Exceptions: Raises NotRunnable if the analysis cannot be run (e.g., the
service is currently unavailable).

Raises CosPropertyService::MultipleExceptions if the
inputs are not correct.

void terminate()
raises (NotRunning, NotTerminated);

Description: terminate() ends a currently running analysis.

Exceptions: Raises NotRunning if the analysis is not running.

Raises NotTerminated if the analysis was not terminated.

void wait();

Description: The wait() method blocks the client until service execution
completes.
2-98 Biomolecular Sequence Analysis V1.0 December 1999

2

ue

n

t

sis

bers

e

 a
An AnalysisInstance must ensure it can be executed only once, ensuring a uniq
coupling of inputs and results. If a client wants to employ an AnalysisInstance
identical to one it has already invoked, the client must create a new
AnalysisInstance , via an AnalysisService , and invoke it as a separate instance.

An AnalysisInstance makes available two kinds of execution information: executio
status and analysis events.

• An AnalysisInstance object must offer:

• the AnalysisService that created this AnalysisInstance ;

• its execution status (one of the enumerated AnalysisState values);

• the EventChannel to which it publishes its analysis events and the last even
that occurred during execution (represented as AnalysisEvents);

• the JobControl that clients can use to control the execution of the analysis;

• the input Properties that were used in its execution;

• an AnalysisType specifying the service it provides/provided;

• an output Properties containing the results generated by the execution of the
underlying BSA analysis.

An AnalysisInstance is responsible for ensuring that the results of the BSA analy
tool it represents are populated properly in its results .

To retrieve the results generated by an AnalysisInstance , clients use the
get_result() method. It takes a list of strings (the strings representing named mem
of the OutputPropertySpecList) as an argument. If the BSA analysis tool
underlying the AnalysisInstance terminated before it completed, either due to a
client request or an execution failure, some “partial” results may be available to th
client in the results .

As in all CORBA systems, an implementation of this system may choose to enforce
policy regarding automatically removing CORBA objects, such as AnalysisInstances
that appear to have been abandoned by clients.
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-99

2

Figure 2-37 The AnalysisInstance interface

interface AnalysisInstance : CosLifeCycle::LifeCycleObject
{

readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;
readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

};

readonly attribute AnalysisService service;

Description: Refers to the AnalysisService that created this
AnalysisInstance .

Return value: Returns an AnalysisService .

A naly s is Ins tance

servic e : A naly s is S ervic e
s tatus : A nalys isS tate
event_c hannel : CosE ventChannelA dm in::E ventChannel
las t_event : A nalys isE vent
job_c ontrol : JobControl
inputs : CosP ropertyS ervic e::P ropert ies
results : Cos P roperty S ervice::P roperties

< < Interfac e> >

LifeCy c leObjec t
(fro m Co sL ife Cycle)

< < Interfac e> >
2-100 Biomolecular Sequence Analysis V1.0 December 1999

2

readonly attribute AnalysisState status;

Description: Provides the current status of the analysis.

Return value: Returns one of the enumerated AnalysisState values. The
values are CREATED , RUNNING , COMPLETED ,
TERMINATED_BY_REQUEST , and
TERMINATED_BY_ERROR .

readonly attribute CosEventChannelAdmin::EventChannel event_channel;

Description: Provides the EventChannel to which the AnalysisInstance
publishes its analysis events.

Return value: Returns a CosEventChannelAdmin::EventChannel .

readonly attribute AnalysisEvent last_event;

Description: Provides the last event that occurred during execution.

Return value: Returns an AnalysisEvent .

readonly attribute JobControl job_control;

Description: Provides the management interface that clients can use to
control the execution of the analysis.

Return value: Returns a JobControl .

readonly attribute CosPropertyService::Properties inputs;

Description: Provides the input Properties that were used in this
AnalysisInstance ’s execution.

Return value: Returns a CosPropertyService::Properties .
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-101

2

ronous

in

in
2.2.11 Sequence Diagrams

The following sequence diagrams show how the analysis machinery is used. The
diagrams are examples of the steps necessary for both synchronous and asynch
invocation of an analysis service and retrieving its results.

Synchronous invocation can be achieved without using any EventChannel interface.
The client is blocked in wait() method until the analysis is finished.

readonly attribute CosPropertyService::Properties results;

Description: Provides the output Properties containing the results
generated by the execution of the underlying BSA analysis.

Note: An AnalysisInstance in the
TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial,
incomplete) results that can be retrieved by the client. There
is no obligation that an implementation provides results in
these two cases. Further, the results for an analysis that is
one of these two states is likely to be different than for an
analysis that ran to normal completion. It is recommended
that client software convey this information to the end-user.

Return value: Returns a CosPropertyService::Properties .

CosPropertyService::Properties get_result(in StringList name_list);

Description: The get_result() method takes a list of strings (the strings
representing named members of the
OutputPropertySpecList) as an argument and returns the
associated results.

Note: An AnalysisInstance in the
TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial,
incomplete) results that can be retrieved by the client. There
is no obligation that an implementation provides results in
these two cases. Further, the results for an analysis that is
one of these two states is likely to be different than for an
analysis that ran to normal completion. It is recommended
that client software convey this information to the end-user.

Return value: Returns a CosPropertyService::Properties .
2-102 Biomolecular Sequence Analysis V1.0 December 1999

2

t, or

Asynchronous invocation, using an EventChannel , can follow a "callback" pattern
where the server regularly pushes events back to an object prepared by the clien
the client can repeatedly poll the server.

Figure 2-38 Synchronous invocation without using an EventChannel

A naly s is
S ervic e

A naly s is
Ins tanc e

Job
Control

C lient

find analy s is s ervic e

c reate_analy s is ()

run()

c reate new
c reate new

res ults ()

wait ()
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-103

2

Figure 2-39 Asynchronous invocation, using an EventChannel and callbacks

Analysis
Service

Analysis
Instance

Event
Channel

Consumer
Admin

ProxyPush
Supplier

Push
Consumer

Job
Control Server

Client

find analysis service

create_analysis()

for_consumers()

obtain_push_supplier()

connect_push_consumer(PushConsumer)

run()

* push(AnalysisEvent)

create new
create new

create new

create new

create new

create new

results()
2-104 Biomolecular Sequence Analysis V1.0 December 1999

2

Figure 2-40 Asynchronous invocation, using an EventChannel and polling

Analysis
Service

Analysis
Instance

Event
Channel

Consumer
Admin

ProxyPull
Supplier

Job
Control

Client

find analysis service

create_analysis()

for_consumers()

obtain_pull_supplier()

connect_pull_consumer(nil)

run()

create new
create new

create new

create new

create new

results()

* try_pull() returning AnalysisEvent
BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-105

2

2-106 Biomolecular Sequence Analysis V1.0 December 1999

Domain Model 3
the

 favor
for-
h
L
section

dard
man
an-
cess
 in a
L) is
ein-
d tag
 of
e
gs.
l fea-
L
 ambi-
ML
The domain model is expressed in XML. A simple classification of analyses follows
explanation of XML metadata. The DTD and the entire XML file can be found in
Appendix D.

3.1 XML Metadata

Metadata is used in the AnalysisService for analysis type, input and output objects to
represent object implementation detail that has been abstracted out of the interface in
of using the standard, common BSA analysis interface. This can provide semantic in
mation beyond that provided by the IDL syntax, although information provided throug
XML must not be contradictory with information available through IDL structures. XM
has been chosen as the language with which to represent the object metadata. This
discusses the strategy for using the XML based metadata representation.

3.1.1 Role of XML

“Standard Generalized Markup Language (SGML), which became an ISO 8879 stan
in 1986, was the result of a decade’s long effort to produce a language for writing hu
consumable text that at the same time is machine processable. Hypertext Markup L
guage (HTML), a limited subset of SGML, is one of the driving forces behind the suc
of the internet. HTML is non-extensible and primarily designed to support rendering
browser and a limited amount of user interaction. Extensible Markup Language (XM
a larger subset of SGML which overcomes the non-extensible nature of HTML and r
troduces support for the machine processing of text via the definition of user specifie
sets. Since its inception, XML has offered the prospect of overcoming the limitations
HTML without unduly burdening development of processing software as has been th
case with SGML based systems. Unlike HTML, XML does not rely on a fixed set of ta
Arbitrary tag sets can be defined via use of a DTD. However, XML eliminates severa
tures of SGML which make it difficult to parse and therefore difficult to process SGM
documents. In particular, begin and end tags are both required and serve to reduce
guity in the processing of the hierarchical structure of XML documents, relative to SG
Biomolecular Sequence Analysis V1.0 December 1999 3-1

3

re-
nd
sibil-
L

e and
form
 at runt-
ion of

n-
nts.

con-
ishes
s are
ut

 set of
nt of
er to
urse,

ro-
sarily
stan-

TML
d doc-

alid
s the
h is

oped
used.

at
 For
nies
 doc-
ned to
documents. In short, XML provides a standardized, non-proprietary capability to rep
sent arbitrary structural information in a way that supports development of parsers a
other types of processing of that structural information. Thus, XML opens up the pos
ity of automated processing and interchange of information stored in the form of XM
documents.

With respect to metadata, it opens up the possibility of accessing metadata at runtim
using the structural information provided by the XML based tags to process and trans
that metadata. For example, the metadata for two separate processes could be used
ime to connect the output of one process to the input of another process via convers
the output format of the first process into the input format of the second process.”

[Concept Five Technologies, Inc., Trident Next Generation Metadata Design and
Generation Manual version 1.01, pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.2 Role of DTD

“As the XML proposal most succinctly puts, "The XML document type declaration co
tains or points to markup declarations that provide a grammar for a class of docume
This grammar is known as a document type definition, or DTD.

The markup grammar is a generic set of keywords, naming syntax, occurrence and
nector terms prescribed in the XML standard that the document structure designer w
to use to express literally any real world semantic notion. The basic markup keyword
ELEMENT, ENTITY and ATTRIBUTE although there are dozens of others to round o
the language. Any set of key words could have been chosen. Microsoft Word has its
formatting keywords and arguments that allow a .doc file to carry a formidable amou
information around for future processing. WordPerfect used to allow a document writ
make these codes visible and directly editable at the click of a menu item. And of co
there is post script.

There are many other document code sets, all of which are proprietary. Document p
cessing code that operates on these proprietarily marked up documents must neces
also be proprietary. Enter the DTD, or Document Type Definition. ISO 8879 makes
dard these markup codes so non-proprietary document software can be developed.

Hypertext Markup Language (HTML) is an example of a markup language. Although
HTML is not based on a DTD it does adhere to a standard and stems from SGML. H
was designed so that processing code could be developed for rendering HTML base
uments in a browser. The HTML standard (currently 4.0) specifies the structure of v
HTML documents. Changing one of the tags in this standard from <H3> to <J3> ha
potential to break all the processing code that relies on the use of the standard, whic
why changes to HTML are only made infrequently. Recently, DTD’s have been devel
for HTML, but these DTD’s do not adhere strictly to the standard, and are not widely

In general, DTD’s make it possible to specify the grammars of various domains so th
companies creating XML documents in these domains can interact with each other.
example, there is a DTD for the representation of chemical formulas in XML. Compa
complying with the grammar for this domain can expect to be able to exchange XML
uments describing chemical formulas and be able to use any processing code desig
3-2 Biomolecular Sequence Analysis V1.0 December 1999

3

crip-
uld be

blin
t

 The
od-
he
cu-

e
orted
utput
is
aths

ility
for-

ly
t prop-
mi-

 use

r the

d. It
-
ory
tion
 it
the

and
operate in this domain. For example, processing code that accepts XML based des
tions of chemical formulas and creates graphical representations of the formulas sho
able to handle any documents complying with the DTD.

At the present time, DTD’s are being generated for many different domains. The Du
Core is a DTD which provides a tag set designed for use in the description of Interne
information resources and which is patterned after the information in a card catalog.
UML DTD which is derived from the XMI specification covers the domain of object m
eling and is based on the UML semantics document. This DTD is likely to become t
standard for the description of object models in XML. Companies which produce do
ments which comply with standardized DTD’s will be able to exploit any processing
developed for use with those standardized DTD’s.”

[Concept Five Technologies, Inc., Trident Next Generation Metadata Design and
Generation Manual version 1.01, pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.3 Domain Metadata

Interoperability requires convergence on data semantics description capabilities. Th
metadata in a BSA environment includes a description of the CORBA interfaces supp
as well as the meta semantics related to specification of the analysis and input and o
types supported by a particular analysis interface. The BSA metadata for the analys
type, inputs and outputs allows for the support of well understood multiple execution p
supported through the same simple interface.

The metadata provided by the valuetypes and XML is required to facilitate interoperab
for analyses, inputs and outputs. Interoperability is achieved by providing run-time in
mation about parameters required to perform an analysis. The client can dynamical
interrogate the analysis service, learn about the input parameters, populate the inpu
erty set and perform the analysis. When the analysis is finished, the client can dyna
cally check the analysis service to learn about the output properties. The client can
this knowledge to dissect the outputs into information of interest.

The elements in the DsLSRAnalysis DTD correspond to the attributes in the previously
defined AnalysisType , InputPropertySpec , and OutputPropertySpec value-
types. In addition to the required valuetypes, the XML metadata may be available fo
implementation to provide data about the analyses.

The elements have the same definition as the valuetype attributes previously specifie
is important to highlight the analysis type format. Again, the type element is used to spec
ify both the correct classification of the analysis as well as a qualifier to specify categ
and additionally, provides information about the inputs to the analysis. The classifica
of the analysis could come from the BSA specified classification hierarchy as well as
could come from a hierarchy defined by a certain installation. A ‘/’ is used to delimit
qualifier and a ‘.’ is used to delimit the general input kind. An example of a specified type
element would be alignment.collection/assembly.

The DTD has three places where vendor extension is available. The analysis, input
output elements specify an extension element that can be any valid content.
BSA V1.0 XML Metadata Dec. 1999 3-3

3

The following text presents the DTD for Biomolecular Sequence Analysis.

<!ELEMENT DsLSRAnalysis (analysis)+>

<!ELEMENT analysis (description?, input*, output*, extension?)>

<!ATTLIST analysis
type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description ANY>
<!ELEMENT extension ANY>

<!ELEMENT input (default?, allowed*, extension?)>

<!ATTLIST input
type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT default (#PCDATA)>
<!ELEMENT allowed (#PCDATA)>

<!ELEMENT output (extension?)>

<!ATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>

The following text provides example XML that would be used with respect to the
DsLSRAnalysis DTD.

<?xml version="1.0" ?>
<!DOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd" >

<DsLSRAnalysis>
<ANALYSIS TYPE = "search.list">

<INPUT
NAME = "query_sequence"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
MANDATORY = "true">

</INPUT>
<INPUT

NAME = "sequence_list"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
MANDATORY = "true">

</INPUT>
<OUTPUT
3-4 Biomolecular Sequence Analysis V1.0 December 1999

3

nt,

tA,

re
s
and

n is

frag-
NAME = "search_result"
TYPE = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</OUTPUT>
</ANALYSIS>

</DsLSRAnalysis>

3.2 Classification of Analyses

This classification of analyses consists of three broad categories: searching, alignme
and utilities. Commonly used analyses are nicely partitioned into these categories.

3.2.1 Searching

Searching includes the broad category of similarity searching analyses. BLAST, Fas
and Smith-Waterman fall into this group. Searching can include querying
BioSequences to identify Annotations that meet specified criteria. Searching also
includes finding patterns and motifs in BioSequences . The results of these searches a
SeqRegions . Examples include analyses such as PROSITE, BLOCKS, PRINTS, a
well as most gene and ORF finding algorithms (e.g., GRAIL, GeneScan, GeneFind,
GLIMMER). It also includes identifying potential restriction enzyme and proteolytic
cleavage sites.

The result of a search is a SearchResult . A SearchResult contains an array of
SearchHits , which may be the specialized SimilaritySearchHits .

The searching hierarchy is:

• search (against a list, collection, or database)

• search/annotation

• search/region

• search/similarity (against a list, collection, or database)

3.2.2 Alignment

The alignment category includes both pairwise and multiple alignments. No distinctio
made. The result of either is an Alignment .

A sequence assembly contains both aligned sequences and unaligned sequences (
ments). The aligned sequences are represented by an Alignment . If one considers a phy-
logeny as an alignment of alignments, it too falls in this category.

The alignment hierarchy is:

• alignment (of a list or collection)

• alignment/assembly (of a list or collection)

• alignment/phylogeny
BSA V1.0 Classification of Analyses Dec. 1999 3-5

3

 pro-

3.2.3 Utilities

There are several simple analyses that could either be viewed as analyses or simply
vided as methods on an appropriately typed BioSequence . We decided to view them as
simple analysis. This allowed us to keep the BioSequence interface simple. For example,
simple sequence translation, using the standard genetic code, is provided by
NucleotideSequence’s methods translate_seq() and translate_seq_region() . A
more sophisticated sequence translation, allowing a user specified GeneticCode , is pro-
vided here.

The utilities category provides:

• utility/molecular_weight

• utility/residue_composition

• utility/ambiguous_residues

• utility/gc_content

• utility/isoelectric_point

• utility/translate_seq (uses GeneticCode)

• utility/translate_seq.seq_region (uses GeneticCode)
3-6 Biomolecular Sequence Analysis V1.0 December 1999

References A

ture

L.

ent

with

8-

: 0-
A.1 List of References

Object Management Group. 1998. Biomolecular Sequence Analysis RFP. OMG
Document lifesci/98-03-05.

Object Management Group. 1998. The Common Object Request Broker: Architec
and Specification, v2.2. OMG Document formal/98-07-01.

Object Management Group. 1998. CORBAservices: Common Object Services
Specification. OMG Document formal/98-12-09.

Object Management Group. 1998. CORBAservices: Common Object Services ID
OMG Document formal/98-10-53.

Object Management Group. 1998. CORBA v2.3a - Core final revision. OMG PC
Document ptc/98-12-04.

Object Management Group. 1998. Interoperable Naming Service. OMG Docum
orbos/98-10-11.

Object Management Group. 1998. Joint Revised Objects by Value Submission -
Errata. OMG TC Document orbos/98-01-18.

Object Management Group. 1998. OMG IDL Style Guide. OMG Document ab/9
06-03.

Bairoch, Amos, et al. 1997. The Swiss-Prot Protein Sequence Data Bank User
Manual. Release 35; November 1997.

Baldi, Pierre and S¯ren Brunak. 1998. Bioinformatics: The Machine Learning
Approach. The MIT Press. ISBN: 0-262-02442-X.

Baxevanis, Andreas D. and B.F. Francis Ouellette, eds. 1998. Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience. ISBN
471-19196-5.
Biomolecular Sequence Analysis V1.0 December 1999 A-1

A

s.

n
N: 0-

ience

):

 Life:
y

97.
Elzanowski, Andrzej (Anjay) and Jim Ostell, compilers. 1996. The Genetic Code
National Center for Biotechnology Information (NCBI).
http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Desig
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISB
201-63361-2.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences: Computer Sc
and Computational Biology. Cambridge Univ Pr (Short). ISBN: 0-521-58519-8.

IUPAC-IUB symbols for nucleotide nomenclature. Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

IUPAC-IUB symbols for amino acid nomenclature Biochem J. 1984 Apr 15; 219(2
345-373.

IUPAC-IUB symbols for amino acid nomenclature Eur J Biochem. 1993 Apr 1;
213(1): 2.

Lander, Eric S., and Michael S. Waterman, eds. 1995. Calculating the Secrets of
Applications of the Mathematical Sciences in Molecular Biology. National Academ
Press. ISBN: 0-309-04886-9.

National Center for Biotechnology Information, et al. 1997. The
DDJB/EMBL/GenBank Feature Table: Definitions. Version 2.0. December 15, 19

Waterman, Michael S. 1995. Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman & Hall. ISBN: 0-412-99391-0.
A-2 Biomolecular Sequence Analysis V1.0 December 1999

Genetic Codes B
m

ia-
The genetic codes listed below were compiled by Andrzej (Anjay) Elzanowski and Ji
Ostell (National Center for Biotechnology Information). See
http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t. “i” indicates init
tion and alternative initiation codons.

B.1 Standard

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.2 Bacterial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
Biomolecular Sequence Analysis V1.0 December 1999 B-1

B

TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA I Ile i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.3 Yeast Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT T Thr CCT P Pro CAT H His CGT R Arg
CTC T Thr CCC P Pro CAC H His CGC R Arg
CTA T Thr CCA P Pro CAA Q Gln CGA R Arg
CTG T Thr CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA M Met i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.4 Vertebrate Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
B-2 Biomolecular Sequence Analysis V1.0 December 1999

B

CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA M Met i ACA T Thr AAA K Lys AGA * Ter
ATG M Met i ACG T Thr AAG K Lys AGG * Ter

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.5 Mold Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu i TCA S Ser TAA * Ter TGA W Trp
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA I Ile i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.6 Invertebrate Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
Biomolecular Sequence Analysis V1.0 December 1999 B-3

B

ATA M Met i ACA T Thr AAA K Lys AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.7 Echinoderm Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA N Asn AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.8 Ascidian Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA M Met ACA T Thr AAA K Lys AGA G Gly
ATG M Met i ACG T Thr AAG K Lys AGG G Gly

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
B-4 Biomolecular Sequence Analysis V1.0 December 1999

B

GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.9 Flatworm Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA Y Tyr TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA N Asn AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.10 Ciliate Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA Q Gln TGA * Ter
TTG L Leu TCG S Ser TAG Q Gln TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly
Biomolecular Sequence Analysis V1.0 December 1999 B-5

B

B.11 Euplotid Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA C Cys
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.12 Alternative Yeast Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG S Ser i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.13 Blepharisma Macronuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
B-6 Biomolecular Sequence Analysis V1.0 December 1999

B

TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG Q Gln TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly
Biomolecular Sequence Analysis V1.0 December 1999 B-7

B

B-8 Biomolecular Sequence Analysis V1.0 December 1999

Complete IDL C
C.1 File: DsLSRBioObjects.idl

//File: DsLSRBioObjects
// version: 20 October 1999.

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

typedef sequence<string> StringList;

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
 STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

enum Basis {BASIS_NOT_KNOWN, BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL,
BASIS_BOTH};

valuetype Interval
{

public unsigned long start;
public unsigned long length;

};

valuetype SeqRegion : Interval
{

public StrandType strand_type;
public boolean start_relative_to_seq_end;
Biomolecular Sequence Analysis V1.0 December 1999 C-1

C

};

typedef sequence<SeqRegion> SeqRegionList;

valuetype CompositeSeqRegion : SeqRegion
{

enum SeqRegionOperator
{

NONE, // Region has no sub regions or the sub regions
// don't need special treatment.

JOIN, // Sub regions should be joined end-to-end to
// form a contiguous region.

ORDER // Sub region order is important.
};

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

};

interface Annotation : CosLifeCycle::LifeCycleObject
{

readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

};

typedef sequence<Annotation> AnnotationList;

exception IteratorInvalid
{

string reason;
};

interface AnnotationIterator
{

boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
 out AnnotationList annotations)
raises(IteratorInvalid);

void reset();
void destroy();

};

interface SeqAnnotation : Annotation
{

readonly attribute SeqRegion seq_region;
};

typedef sequence<SeqAnnotation> SeqAnnotationList;
C-2 Biomolecular Sequence Analysis V1.0 December 1999

C

interface SeqAnnotationIterator
{

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
 out SeqAnnotationList seq_annotations)
raises(IteratorInvalid);

void reset();
void destroy();

};

typedef string Identifier;
typedef sequence<Identifier> IdentifierList;

exception IdentifierNotFound
{

Identifier id;
};

exception IdentifierNotResolvable
{

Identifier id;
string reason;

};

exception IdentifierNotUnique
{

Identifier id;
IdentifierList ids;

};

exception IntervalOutOfBounds
{

Interval invalid;
Interval valid;

};

exception SeqRegionOutOfBounds
{

SeqRegion invalid;
Interval valid;

};

exception SeqRegionInvalid
{

string reason;
};

exception NotUpdateable
{

Biomolecular Sequence Analysis V1.0 December 1999 C-3

C

string reason;
};

interface BioSequence
{

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
unsigned long num_annotations(in SeqRegion seq_region)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
void add_annotation(

in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

};

typedef sequence<BioSequence> BioSequenceList;

typedef sequence<unsigned long> UnsignedLongList;

exception ReadingFrameInvalid
{

short invalid;
};

interface NucleotideSequence : BioSequence, CosLifeCycle::LifeCycleObject
{

readonly attribute boolean circular;

string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

raises(IntervalOutOfBounds);
string translate_seq(

in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);
string translate_seq_region(

in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
};
C-4 Biomolecular Sequence Analysis V1.0 December 1999

C

typedef sequence<NucleotideSequence> NucleotideSequenceList;

interface AminoAcidSequence : BioSequence, CosLifeCycle::LifeCycleObject
{
};

typedef sequence<AminoAcidSequence> AminoAcidSequenceList;

typedef char Residue;
typedef char Base;
typedef Base Codon[3];

valuetype CodeRule
{

public Codon the_codon;
public Residue the_residue;

};

typedef CodeRule Coding[64];
typedef string GeneticCodeName;
typedef sequence<GeneticCodeName> GeneticCodeNameList;

exception InvalidResidue
{

Residue the_residue;
unsigned long offset;

};

interface GeneticCode : CosLifeCycle::LifeCycleObject
{

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

};

valuetype AlignmentElement
{

public Object element;
public SeqRegion seq_region;
public string key;

};

typedef sequence<AlignmentElement> AlignmentElementList;

interface AlignmentElementIterator
{

boolean next(out AlignmentElement element)
raises(IteratorInvalid);
Biomolecular Sequence Analysis V1.0 December 1999 C-5

C

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception AlignmentObjectInvalid
{

Object element;
string reason;

};

exception ElementNotInAlignment
{
};

exception IndexOutOfBounds
{

unsigned long invalid;
Interval valid;

};

interface Alignment : CosLifeCycle::LifeCycleObject
{

typedef string AlignType;
typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)

raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SeqRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

};
C-6 Biomolecular Sequence Analysis V1.0 December 1999

C

typedef sequence<Alignment> AlignmentList;

interface Assembly : Alignment
{
};

valuetype SearchHit
{

public Identifier id;
public CosPropertyService::Properties hit_info;

};

typedef sequence<SearchHit> SearchHitList;

interface SearchHitIterator
{

boolean next(out SearchHit hit)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

valuetype SimilaritySearchHit : SearchHit
{

public AlignmentList alignment_list;
};

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

interface BioSequenceIdentifierResolver
{

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);
};

interface SearchResult :
BioSequenceIdentifierResolver,
CosLifeCycle::LifeCycleObject

{
readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
Biomolecular Sequence Analysis V1.0 December 1999 C-7

C

in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);
};

// optional interfaces

interface AnnotationFactory
{

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

};

exception SeqAnnotationOutOfBounds
{

SeqAnnotation invalid;
Interval valid;

};

interface NucleotideSequenceFactory
{

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds);
};

interface AminoAcidSequenceFactory
{

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)
C-8 Biomolecular Sequence Analysis V1.0 December 1999

C

raises (InvalidResidue, SeqAnnotationOutOfBounds);
};

interface BioSequenceIterator
{

boolean next(out BioSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out BioSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

interface NucleotideSequenceIterator
{

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

interface AminoAcidSequenceIterator
{

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception InvalidGeneticCodeName
{

string invalid_name;
};

interface GeneticCodeFactory
{

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate

mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL= "invertebrate

mitochondrial";
Biomolecular Sequence Analysis V1.0 December 1999 C-9

C

const GeneticCodeName ECHINODERM_MITOCHONDRIAL= "echinoderm
mitochondrial";

const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL= "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma

macronuclear";

readonly attribute GeneticCodeNameList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)

raises(InvalidGeneticCodeName);
};

interface CharacterAlignmentEncoder
{

readonly attribute Alignment the_alignment;

unsigned long num_rows(); // number of aligned
// objects. Delegate

unsigned long num_columns(); // Delegate to Alignment

string get_name(in unsigned long row) // first object is in row
raises(IndexOutOfBounds); // one etc...

StringList get_all_names(); // all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();
};

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder
{

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds);

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);

StringList get_entire_alignment(); // probably the most common!
};

exception CannotEncodeAlignment
{

C-10 Biomolecular Sequence Analysis V1.0 December 1999

C

string reason;
};

interface CharacterAlignmentEncoderFactory
{

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};

interface SingleCharacterAlignmentEncoderFactory
{

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};
};

#endif // _DS_LSR_BIOOBJECTS_IDL_

C.2 File: DsLSRAnalysis.idl

//File: DsLSRAnalysis
// version: 5 October 1999.

#ifndef _DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>
#include <TimeBase.idl>

module DsLSRAnalysis
{
typedef sequence<string> StringList;

valuetype AnalysisType
{

public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

};

valuetype InputPropertySpec
{

public string name;
Biomolecular Sequence Analysis V1.0 December 1999 C-11

C

public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

};

typedef sequence<InputPropertySpec> InputPropertySpecList;

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

};

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

enum AnalysisState
{

CREATED, // Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, // The instance has completed execution.
TERMINATED_BY_REQUEST, // The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.

};

valuetype AnalysisEvent
{

public string message;
};

valuetype StateChangedEvent : AnalysisEvent
{

public AnalysisState previous_state;
public AnalysisState new_state;

};

valuetype HeartbeatProgressEvent : AnalysisEvent
{
};

valuetype PercentProgressEvent : AnalysisEvent
{

public float percentage;
};

valuetype TimeProgressEvent : AnalysisEvent
{

public TimeBase::TimeT time_remaining;
};

valuetype StepProgressEvent : AnalysisEvent
C-12 Biomolecular Sequence Analysis V1.0 December 1999

C

{
public unsigned long total_steps;
public unsigned long steps_completed;

};

interface AnalysisInstance;

typedef string MetaData;

exception DoesNotExistException { };

interface AnalysisService
{

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)

raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

};

exception NotRunnable { };
exception NotRunning { };
exception NotTerminated
{

string reason;
};

interface JobControl
{

readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended;

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

void terminate()
raises (NotRunning, NotTerminated);

void wait();
};

interface AnalysisInstance : CosLifeCycle::LifeCycleObject
Biomolecular Sequence Analysis V1.0 December 1999 C-13

C

{
readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;
readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

};
};

#endif // _DS_LSR_ANALYSIS_IDL_
C-14 Biomolecular Sequence Analysis V1.0 December 1999

Domain Model DTD and XML D
D.1 File: DsLSRAnalysis.dtd

<!ELEMENT DsLSRAnalysis (analysis)+>

<!ELEMENT analysis (description?, input*, output*, extension?)>

<!ATTLIST analysis
type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description ANY>
<!ELEMENT extension ANY>

<!ELEMENT input (default?, allowed*, extension?)>

<!ATTLIST input
type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT default (#PCDATA)>
<!ELEMENT allowed (#PCDATA)>

<!ELEMENT output (extension?)>

<!ATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>
Biomolecular Sequence Analysis V1.0 December 1999 D-1

D

D.2 DsLSRBioAnalysis.xml

<?xml version = "1.0"?>
<!DOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd">

<DsLSRAnalysis>

<analysis type = "search.list">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.collection">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.database">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
D-2 Biomolecular Sequence Analysis V1.0 December 1999

D

</output>
</analysis>

<analysis type = "search/annotation">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "sequence_annotation"
type = "IDL:omg.org/DsLSRBioObjects/SeqAnnotationList:1.0">

</output>
</analysis>

<analysis type = "search/region">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegionList:1.0">

</output>
</analysis>

<analysis type = "search.list/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.collection/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
Biomolecular Sequence Analysis V1.0 December 1999 D-3

D

<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.database/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "alignment.list">
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "alignment.collection">
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "alignment.list/assembly">
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "assembly"
D-4 Biomolecular Sequence Analysis V1.0 December 1999

D

type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">
</output>

</analysis>

<analysis type = "alignment.collection/assembly">
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">

</output>
</analysis>

<analysis type = "alignment/phylogeny">
<input

name = "alignment_list"
type = "IDL:omg.org/DsLSRBioObjects/AlignmenList:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "utility/molecular_weight">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "molecular_weight"
type = "unsigned long">

</output>
</analysis>

<analysis type = "utility/residue_composition">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "residue"
type = "IDL:omg.org/DsLSRBioObjects/Residue:1.0"
mandatory = "true">

</input>
<output

name = "residue_composition"
type = "double">

</output>
Biomolecular Sequence Analysis V1.0 December 1999 D-5

D

</analysis>

<analysis type = "utility/ambiguous_residues">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "ambiguous_residues"
type = "boolean">

</output>
</analysis>

<analysis type = "utility/gc_content">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<output

name = "gc_content"
type = "double">

</output>
</analysis>

<analysis type = "utility/isoelectric_point">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/AminoAcidSequence:1.0"
mandatory = "true">

</input>
<output

name = "isoelectric_point"
type = "double">

</output>
</analysis>

<analysis type = "utility/translate_seq">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<input

name = "reading_frame"
type = "short">

<default>-3</default>
<allowed>-2</allowed>
<allowed>-1</allowed>
D-6 Biomolecular Sequence Analysis V1.0 December 1999

D

<allowed>1</allowed>
<allowed>2</allowed>
<allowed>3</allowed>

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "translated_seq"
type = "string">

</output>
</analysis>

<analysis type = "utility/translate_seq.seq_region">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegion:1.0"
mandatory = "true">

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "translated_seq"
type = "string">

</output>
</analysis>

</DsLSRAnalysis>
Biomolecular Sequence Analysis V1.0 December 1999 D-7

D

D-8 Biomolecular Sequence Analysis V1.0 December 1999

Future Direction of Metamodel E

s
This specification uses metadata to describe analyses and inputs and outputs to
analyses. Included in the specification is a DTD and example XML that shows the
future direction of metadata within BSA. When more complex, more descriptive
metadata is needed, the BSA metadata could be described using the mechanism
specified in the XMI. The sample better illustrates this idea.

E.1 File: DsLSRAnalysis - future.dtd

<!-- LSR BSA DTD -->

<!ENTITY % UmlMetaData SYSTEM "ad98-10-16.dtd">
%UmlMetaData;

<!ENTITY % DsLSRAnalysisXMI SYSTEM "DsLSRAnalysisXMI.dtd">
%DsLSRAnalysisXMI;

E.2 File: DsLSRAnalysisXMI - future.dtd

<!-- LSR BSA Analysis Machinery DTD -->

<!ELEMENT DsLSRAnalysisXMI (analysis)+>
<!ATTLIST DsLSRAnalysisXMI

%XMI.element.att;
%XMI.link.att;

>

<!ELEMENT analysis (description?, input*, output*, XMI.extension*)>

<!ATTLIST analysis
analysisType CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
Biomolecular Sequence Analysis V1.0 December 1999 E-1

E

supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description (XMI.extension*)>

<!ELEMENT input (parameter*, XMI.extension*)>
<!ATTLIST input

name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT output (parameter*, XMI.extension*)>
<!ATTLIST output

name CDATA #REQUIRED>

<!ELEMENT parameter ((Foundation.Core.Parameter | logicalType), constraint*)>

<!ELEMENT logicalType (Foundation.Core.DataType | XMI.CorbaTypeCode | XMI.extension+)>

<!ELEMENT constraint (default?, allowed*, Foundation.Core.Constraint*, XMI.extension*)>

<!ELEMENT default (#PCDATA)>

<!ELEMENT allowed (#PCDATA)>

E.3 File: DsLSRBioAnalysis - future (sample).xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE XMI SYSTEM 'DsLSRAnalysis-future.dtd'>

<XMI>

 <XMI.header>
<XMI.model xmi.name='sample' xmi.version='1.0'/>
<XMI.metamodel xmi.name='uml' xmi.version='1.1'/>
 </XMI.header>

 <XMI.content/>

 <XMI.extensions xmi.extender='omg.org/DsLSRAnalysis'>

<DsLSRAnalysisXMI>

<analysis analysisType="similarity_analysis/database">

<input name="query_sequence" mandatory="true">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
E-2 Biomolecular Sequence Analysis V1.0 December 1999

E

</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='in'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>BioSequence</Foundation.Core.Model

Element.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>
</Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

 </parameter>

</input>

<input name="database_id" mandatory="true">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='in'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>DbId</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/></

Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

<constraint>
<allowed> database1 </allowed>
<allowed> database2 </allowed>
<allowed> database3 </allowed>
<allowed> database4 </allowed>

</constraint>

 </parameter>

</input>
Biomolecular Sequence Analysis V1.0 December 1999 E-3

E

<output name="hits">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='out'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>Hits</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>
</Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

 </parameter>

</output>

</analysis>

</DsLSRAnalysisXMI>

 </XMI.extensions>
</XMI>
E-4 Biomolecular Sequence Analysis V1.0 December 1999

Glossary

s

.
Glossary entries are organized alphabetically.

Glossary Terms

Alignment See Sequence Alignment

Ambiguity Code Single character representation of an ambiguous
nucleotide or residue.

Amino Acid Any of a class of 20 small molecule building blocks
that are combined to form proteins in living things (21
amino acids if selenocysteine is included). The
sequence of amino acids in a protein and hence
protein function are determined by the nucleotide
sequence of its gene and the genetic code. The term
residue and amino acid are often used
interchangeably.

Assembly See Sequence Assembly

Base See Nucleotide

Complementary Base The nucleotide that chemically pairs up (hybridizes)
with another nucleotide (called its complement) on
the other strand, within a double-stranded sequence
G pairs with C in both DNA and RNA. A pairs with T
in DNA. A pairs with U in RNA.

Complement The sequence consisting of Complementary Bases.

Cladogram See Phylogenetic Tree
Biomolecular Sequence Analysis V1.0 December 1999 Glossary - 1

n

e

a

p

n
Coding Sequence A DNA sequence that contains appropriate start and
stop codons, indicating the amino acid sequence
translated from it could form a functional protein.

Codon A set of three nucleotide bases in a DNA or RNA
sequence, which together code for a unique amino
acid. For example, the set AUG (adenine, uracil,
guanine) codes for the amino acid methionine.

Contig or Contig Map As used here, a graphical or data representation
depicting the relative order of a linked library of small
overlapping clones representing a complete
chromosomal segment. See Sequence Assembly.

DNA (deoxyribonucleic
acid)

The molecule that encodes genetic information. DNA
is a double-stranded polymer of nucleotides. The two
strands are held together by hydrogen bonds betwee
base pairs of nucleotides. The four nucleotides in
DNA contain the bases: adenine (A), guanine (G),
cytosine (C), and thymine (T). In nature, base pairs
form only between A and T and between G and C;
thus the base sequence of each single strand can b
deduced from that of its partner.

Expression The conversion of the genetic instructions present in
DNA sequence into a unit of biological function in a
living cell. Typically involves the process of
transcription of a DNA sequence into an RNA
sequence followed by translation of the RNA into
protein. The RNA may be spliced before translation to
remove introns.

Exon Segment of a (genomic) sequence that is translated
into a segment of a protein. See also Intron.

Gap The opening and addition of one or more spaces to
individual sequences in an alignment, in order to
increase the consensus of the overall mapping. A ga
represents a failure to establish equivalence between
nucleotides in a particular region of a sequence whe
aligning it with one or more other sequences.

Gene A length of DNA which codes for a particular protein,
or in certain cases a functional or structural RNA
molecule. Genes may be inferred from the DNA
sequence by way of a coding sequence.
Glossary - 2 Biomolecular Sequence Analysis V1.0 December 1999

y
a

o
f

e

es.
Genetic Code The full set of codons in DNA or mRNA. Each codon
is made up of three nucleotides which call for a
unique amino acid. For example, the set AUG
(adenine, uracil, guanine) calls for the amino acid
methionine in the standard genetic code. The
sequence of codons along an mRNA molecule
specifies the sequence of amino acids in a particular
protein.

Genome The complete set of genetic information for a
particular organism.

Genomic Pertaining to or contained within a genome; also:
chromosomal.

Hidden Markov Model
(HMM)

A stochastic generative model for a series defined b
a finite set of states, a discrete alphabet of symbols,
probability transition matrix, and a probability
emission matrix.

Intron Segment of the (genomic) sequence that is removed
(spliced) from the RNA molecule prior to translation.
Introns are therefore not translated to protein in a
living cell.

Non-Coding A class of genomic sequence that is not translated int
a protein sequence. Non-coding sequence consists o
introns and intergenic regions that may contain "junk"
DNA such as repeat sequences.

Nucleic Acid A polymer of nucleotides. DNA and RNA are
different classes of nucleic acids. May be double- or
single-stranded.

Nucleotide A subunit of DNA or RNA consisting of a
nitrogenous base (adenine, guanine, thymine, or
cytosine in DNA; adenine, guanine, uracil, or cytosine
in RNA), a phosphate molecule, and a sugar molecul
(deoxyribose in DNA and ribose in RNA).

Phylogenetic Tree A map, dendrogram, cladogram, or other data or
graphical representation of a Phylogeny.

Phylogeny (phylogenesis,
phylogenetic, phylogenic)

The evolutionary history of a particular taxonomic
group, usually a species.

Profile A table that lists the frequencies of finding each of the
20 amino acids at each position in conserved
sequence pattern; used in sensitive sequence search
Biomolecular Sequence Analysis V1.0 December 1999 Glossary - 3

y

l

a

s

n

Protein A biological molecule which consists of many amino
acids chained together by peptide bonds. The
sequence of amino acids in a protein is determined b
the sequence of nucleotides in a DNA molecule.
Proteins perform most of the enzymatic and structura
roles within living cells.

RNA (ribonucleic acid) A class of nucleic acids that consist of nucleotides
containing the bases: adenine (A), guanine (G),
cytosine (C), and uracil (U). An RNA molecule is
typically single-stranded and can pair with DNA
(where U pairs with A) or with another RNA
molecule. RNA nucleotides are chemically distinct
from DNA nucleotides and enable RNA molecules to
have more complex structural and functional roles
within a living cell.

Reading Frame The 'phase' of the starting point of a translation. As
each codon consists of three bases, a translation of
nucleotide sequence will yield entirely different
protein sequences depending on this. Negative value
are often used to denote translation of the reverse
strand.

Residue Amino acid; sometimes: nucleotide.

Reverse Complement The sequence obtained by reading the opposite
(complementary) strand of a nucleic acid sequence i
the reverse direction.

Sequence The order of nucleotides in a DNA or RNA molecule,
or the order of amino acids in a protein.

Sequence Alignment The explicit mapping between the residues of two or
more sequences. A sequence alignment may have
gaps. Alignments are used to establish similarities
between sequences and/or sequence families.

Sequence Assembly A series of linked sequence alignment analysis steps
that is used for constructing a contig.

Splicing The removal of introns from an RNA sequence
leaving only the exons which are then translated into
a protein.

Translation The conversion of a nucleic acid sequence into an
amino acid sequence according to the rules of a
genetic code.
Glossary - 4 Biomolecular Sequence Analysis V1.0 December 1999

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Biomolecular Sequence Analysis Overview
	1.1 Module DsLSRBioObjects
	1.2 Module DsLSRAnalysis
	1.3 Domain Model
	1.4 General Remarks
	1.4.1 Objects-by-value
	1.4.2 Returning multiple results
	1.4.3 Identifier
	1.4.4 Composite pattern
	1.4.5 BioObject immutability
	1.4.6 Rationale for metadata approach

	2. BSA Modules and Interfaces
	2.1 Module DsLSRBioObjects
	2.1.1 General
	2.1.2 StrandType
	2.1.3 Basis
	2.1.4 Interval
	2.1.5 SeqRegion
	2.1.6 Annotation
	2.1.7 SeqAnnotation
	2.1.8 Identifier
	2.1.9 BioSequence
	2.1.10 Sub-types of BioSequence
	2.1.11 CodeRule
	2.1.12 GeneticCode
	2.1.13 AlignmentElement
	2.1.14 AlignmentElementIterator
	2.1.15 Alignment
	2.1.16 Alignment Examples
	2.1.17 Assembly
	2.1.18 SearchHit
	2.1.19 SimilaritySearchHit
	2.1.20 BioSequenceIdentifierResolver
	2.1.21 SearchResult
	2.1.22 AnnotationFactory (Optional)
	2.1.23 BioSequence factories (Optional)
	2.1.24 BioSequence iterators (Optional)
	2.1.25 GeneticCodeFactory (Optional)
	2.1.26 CharacterAlignmentEncoder (Optional)
	2.1.27 SingleCharacterAlignmentEncoder (Optional)
	2.1.28 AlignmentEncoder factories (Optional)

	2.2 Module DsLSRAnalysis
	2.2.1 General
	2.2.2 AnalysisType
	2.2.3 InputPropertySpec
	2.2.4 OutputPropertySpec
	2.2.5 AnalysisState
	2.2.6 AnalysisEvent
	2.2.7 sub-types of AnalysisEvent
	2.2.8 AnalysisService
	2.2.9 JobControl
	2.2.10 AnalysisInstance
	2.2.11 Sequence Diagrams

	3. Domain Model
	3.1 XML Metadata
	3.1.1 Role of XML
	3.1.2 Role of DTD
	3.1.3 Domain Metadata

	3.2 Classification of Analyses
	3.2.1 Searching
	3.2.2 Alignment
	3.2.3 Utilities

	A - References
	B - Genetic Codes
	C - Complete IDL
	D - Domain Model DTD and XML
	E - Future Direction of Metamodel
	Glossary

