
Date:  November 2008

Business Process Definition MetaModel 
Volume I: Common Infrastructure

Version 1.0

OMG Document Number:  formal/2008-11-03
Standard document URL:  http://www.omg.org/spec/BPDM/1.0
Associated File(s)*:  http://www.omg.org/spec/BPDM/20080501

http://www.omg.org/spec/BPDM/20080501/Abstractions.xsd

http://www.omg.org/spec/BPDM/20080501/Activity.xsd

http://www.omg.org/spec/BPDM/20080501/BehaviorModel.xsd

http://www.omg.org/spec/BPDM/20080501/bpdm.xsd

http://www.omg.org/spec/BPDM/20080501/bpmn.cmof

http://www.omg.org/spec/BPDM/20080501/BPMNLibrary

http://www.omg.org/spec/BPDM/20080501/CommonInfrastructure.cmof

http://www.omg.org/spec/BPDM/20080501/CommonInfrastructureLibrary

http://www.omg.org/spec/BPDM/20080501/CompositionModel.xsd

http://www.omg.org/spec/BPDM/20080501/ConditionModel.xsd

http://www.omg.org/spec/BPDM/20080501/CourseModel.xsd

http://www.omg.org/spec/BPDM/20080501/importfile_commoninfrastructure.xsd

http://www.omg.org/spec/BPDM/20080501/InteractionProtocol.xsd

http://www.omg.org/spec/BPDM/20080501/InteractiveBehaviorModel.xsd

http://www.omg.org/spec/BPDM/20080501/xmi_infra.xsd

http://www.omg.org/spec/BPDM/20080501/VotingSample

http://www.omg.org/spec/BPDM/20080501/BPMNSamples_schema.xsd
                                  http://www.omg.org/spec/BPDM/20080502
                                               http://www.omg.org/spec/BPDM/20080502/xmi.xsd

Source document:  BPDM Common Infrastructure Document without change bars (dtc/2008-05-07)
* Original file:  XML schema and library (dtc/2008-05-14)

http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/EXPRESS/20080202


Copyright © 2008, Adaptive 
Copyright © 2008, Axway Software 
Copyright © 2008, Borland Software, Inc. 
Copyright © 2008, EDS 
Copyright © 2008, Lombardi Software 
Copyright © 2008, MEGA International 
Copyright © 2008, Model Driven Solution 
Copyright © 2008, Object Management Group, Inc.
Copyright © 2008, Unisys 

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, 
conditions and notices set forth below. This document does not represent a commitment to implement any portion of 
this specification in any company's products. The information contained in this document is subject to change 
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute 
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed 
to have infringed the copyright in the included material of any such copyright holder by reason of having used the 
specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a 
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use 
this specification to create and distribute software and special purpose specifications that are based upon this 
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: 
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification; 
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network 
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) 
no modifications are made to this specification. This limited permission automatically terminates without notice if 
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the 
specifications in your possession or control. 

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which 
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or 
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. 
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications 
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. 
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, 
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.



DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY 
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES 
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO 
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, 
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR 
PURPOSE OR USE.  IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE 
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING 
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN 
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
The entire risk as to the quality and performance of software developed using this specification is borne by you. This 
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1) 
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified 
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of 
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as 
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are 
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified 
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA 
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , 
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names 
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer 
software to use certification marks, trademarks or other special designations to indicate compliance with these 
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if 
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the 
specification. Software developed only partially matching the applicable compliance points may claim only that the 
software was based on this specification, but may not claim compliance or conformance with this specification. In 
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed 
using this specification may claim compliance or conformance with the specification only if the software 
satisfactorily completes the testing suites.



OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage 
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting 
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/
technology/agreement.htm).



Table of Contents

1 Normative References.............................................................1
2 Terms and Definitions..............................................................1
3 Additional Information .............................................................4

3.1 Acknowledgements...........................................................................................4

4 Metamodel and Notation Specification....................................4
4.1 Overview............................................................................................................4
4.2 Abstractions.......................................................................................................6

4.2.1 Introduction................................................................................................................6
4.2.2 Metamodel.................................................................................................................7

4.2.2.1 PrimitiveTypes...................................................................................................7
4.2.2.2 Boolean..............................................................................................................7
4.2.2.3 Integer................................................................................................................7
4.2.2.4 String.................................................................................................................7
4.2.2.5 UnlimitedNatural................................................................................................8
4.2.2.6 Elements Package.............................................................................................8
4.2.2.7 Elements............................................................................................................8
4.2.2.8 Element..............................................................................................................8
4.2.2.9 Ownerships Package.........................................................................................9
4.2.2.10 Ownerships......................................................................................................9
4.2.2.11 Element............................................................................................................9
4.2.2.12 Comments Package......................................................................................10
4.2.2.13 Comments.....................................................................................................10
4.2.2.14 Comment.......................................................................................................10
4.2.2.15 Element..........................................................................................................11
4.2.2.16 Relationships Package..................................................................................11
4.2.2.17 Relationships.................................................................................................12
4.2.2.18 DirectedRelationship......................................................................................12
4.2.2.19 Relationship...................................................................................................13
4.2.2.20 Namespaces Package...................................................................................13
4.2.2.21 Namespaces..................................................................................................14
4.2.2.22 ElementImport...............................................................................................14
4.2.2.23 ImportableElement.........................................................................................15
4.2.2.24 NamedElement..............................................................................................15
4.2.2.25 Namespace....................................................................................................16
4.2.2.26 VisibilityKind...................................................................................................16
4.2.2.27 Packages Diagram........................................................................................17
4.2.2.28 Packages.......................................................................................................18
4.2.2.29 Package.........................................................................................................18
4.2.2.30 PackageableElement.....................................................................................18
4.2.2.31 PackageImport...............................................................................................19
4.2.2.32 TypedElements Package...............................................................................19
4.2.2.33 Typed Elements.............................................................................................20
4.2.2.34 Type...............................................................................................................20
4.2.2.35 TypedElement................................................................................................20
4.2.2.36 Multiplicities Package....................................................................................21
4.2.2.37 Multiplicities...................................................................................................21

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                             i



4.2.2.38 MultiplicityElement.........................................................................................21
4.2.2.39 MultiplicityExpressions Package....................................................................22
4.2.2.40 MultiplicityExpressions...................................................................................22
4.2.2.41 MultiplicityElement.........................................................................................23
4.2.2.42 Expressions Package....................................................................................23
4.2.2.43 Expressions...................................................................................................24
4.2.2.44 Expression.....................................................................................................24
4.2.2.45 OpaqueExpression........................................................................................24
4.2.2.46 ValueSpecification.........................................................................................25
4.2.2.47 Literals Package............................................................................................25
4.2.2.48 Literals...........................................................................................................26
4.2.2.49 LiteralBoolean................................................................................................26
4.2.2.50 LiteralInteger..................................................................................................26
4.2.2.51 LiteralNull.......................................................................................................27
4.2.2.52 LiteralSpecification.........................................................................................27
4.2.2.53 LiteralString....................................................................................................27
4.2.2.54 LiteralUnlimitedNatural..................................................................................28
4.2.2.55 Constraints Package......................................................................................28
4.2.2.56 Constraints.....................................................................................................29
4.2.2.57 Constraint......................................................................................................29
4.2.2.58 Namespace....................................................................................................30
4.2.2.59 Classifiers Package.......................................................................................30
4.2.2.60 Classifiers......................................................................................................30
4.2.2.61 Classifier........................................................................................................30
4.2.2.62 Feature..........................................................................................................31
4.2.2.63 Super Package..............................................................................................31
4.2.2.64 Super.............................................................................................................32
4.2.2.65 Classifier........................................................................................................32
4.2.2.66 Generalizations Package...............................................................................33
4.2.2.67 Generalizations..............................................................................................33
4.2.2.68 Generalization................................................................................................33
4.2.2.69 Classifier........................................................................................................34
4.2.2.70 Structural Features Package.........................................................................34
4.2.2.71 Structural Features........................................................................................35
4.2.2.72 StructuralFeature...........................................................................................35
4.2.2.73 Behavioral Features Package........................................................................36
4.2.2.74 Behavioral Features.......................................................................................36
4.2.2.75 BehavioralFeature.........................................................................................36
4.2.2.76 Parameter......................................................................................................37
4.2.2.77 Properties Package.......................................................................................37
4.2.2.78 Properties......................................................................................................38
4.2.2.79 Property.........................................................................................................38
4.2.2.80 Instances Package........................................................................................39
4.2.2.81 Instances.......................................................................................................39
4.2.2.82 InstanceSpecification.....................................................................................39
4.2.2.83 InstanceValue................................................................................................41
4.2.2.84 Slot.................................................................................................................41
4.2.2.85 Datatypes Package........................................................................................42
4.2.2.86 Datatypes.......................................................................................................42
4.2.2.87 DataType.......................................................................................................42
4.2.2.88 Enumeration..................................................................................................43
4.2.2.89 EnumerationLiteral.........................................................................................43
4.2.2.90 PrimitiveType.................................................................................................43
4.2.2.91 Redefinitions Package...................................................................................44
4.2.2.92 Redefinitions..................................................................................................44
4.2.2.93 RedefinableElement......................................................................................44

4.3 Condition Model..............................................................................................45
4.3.1 Introduction..............................................................................................................45
4.3.2 Metamodel...............................................................................................................45

4.3.2.1 Condition Model Diagram................................................................................46
4.3.2.2 Boolean ValueSpecification.............................................................................46

  ii                                                                           Business Process Definition MetaModel, Common Infrastructure, v1.0



4.3.2.3 Compound Condition.......................................................................................46
4.3.2.4 Compound Condition Type..............................................................................47
4.3.2.5 Condition..........................................................................................................47
4.3.2.6 Fact Condition..................................................................................................48
4.3.2.7 Opaque Condition............................................................................................48
4.3.2.8 Opaque Statement...........................................................................................48
4.3.2.9 Statement........................................................................................................48

4.4 Composition Model..........................................................................................49
4.4.1 Introduction..............................................................................................................49

4.4.1.1 Individuals, Models, and Modeling Languages................................................49
4.4.1.2 Classifiers........................................................................................................50
4.4.1.3 Composites......................................................................................................51
4.4.1.4 Parts................................................................................................................51
4.4.1.5 Part Connections.............................................................................................51
4.4.1.6 Part Paths........................................................................................................52
4.4.1.7 Derivation and Selection..................................................................................52

4.4.2 Metamodel Specification..........................................................................................53
4.4.2.1 Composition Model Diagram...........................................................................53
4.4.2.2 Directed Part Connection Diagram..................................................................54
4.4.2.3 Part Connection & Condition Diagram.............................................................55
4.4.2.4 Derivation Diagram..........................................................................................56
4.4.2.5 Selection Diagram...........................................................................................56
4.4.2.6 Composite........................................................................................................56
4.4.2.7 Connectable Element......................................................................................57
4.4.2.8 Derivation.........................................................................................................57
4.4.2.9 Directed Part Connection.................................................................................58
4.4.2.10 Individual........................................................................................................58
4.4.2.11 Individual From Set........................................................................................58
4.4.2.12 Irreflexive Condition.......................................................................................59
4.4.2.13 Part................................................................................................................59
4.4.2.14 Part Connection.............................................................................................59
4.4.2.15 Part Group.....................................................................................................60
4.4.2.16 Part Path........................................................................................................61
4.4.2.17 Part Replacement..........................................................................................61
4.4.2.18 Selector Specification....................................................................................62
4.4.2.19 Typed Part.....................................................................................................62
4.4.2.20 Instance: Irreflexive Condition.......................................................................62

4.5 Course Model..................................................................................................63
4.5.1 Introduction..............................................................................................................63
4.5.2 Metamodel Specification..........................................................................................65

4.5.2.1 Happening and Event Diagram........................................................................65
4.5.2.2 Time Event  Diagram.......................................................................................66
4.5.2.3 Event Condition  Diagram................................................................................66
4.5.2.4 Time Event Condition  Diagram.......................................................................67
4.5.2.5 Fact Change Condition  Diagram....................................................................68
4.5.2.6 Course Diagram...............................................................................................69
4.5.2.7 Gateway Diagram............................................................................................70
4.5.2.8 Event Course Diagram....................................................................................71
4.5.2.9 Common Infrastructure Library: Happenings, Events and Conditions.............72
4.5.2.10 Common Infrastructure Library: 'Happening Occurrences'............................73
4.5.2.11 Clock..............................................................................................................73
4.5.2.12 Course...........................................................................................................73
4.5.2.13 Course Event.................................................................................................74
4.5.2.14 Course Part....................................................................................................74
4.5.2.15 Cycle Event....................................................................................................75
4.5.2.16 Event..............................................................................................................75
4.5.2.17 Event Condition.............................................................................................75
4.5.2.18 Event Part......................................................................................................76
4.5.2.19 Exclusive Join................................................................................................76
4.5.2.20 Exclusive Split................................................................................................77

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                             iii



4.5.2.21 Fact Change..................................................................................................78
4.5.2.22 Fact Change Condition..................................................................................79
4.5.2.23 Gateway.........................................................................................................79
4.5.2.24 Happening.....................................................................................................80
4.5.2.25 Happening Over Time....................................................................................80
4.5.2.26 Happening Part..............................................................................................80
4.5.2.27 Immediate Succession...................................................................................81
4.5.2.28 Parallel Join...................................................................................................81
4.5.2.29 Parallel Split...................................................................................................82
4.5.2.30 Relative TimeDate Event...............................................................................82
4.5.2.31 Succession....................................................................................................83
4.5.2.32 Time Event.....................................................................................................84
4.5.2.33 Time Event Condition....................................................................................85
4.5.2.34 TimeDate Event.............................................................................................85
4.5.2.35 Instance: All Successions..............................................................................85
4.5.2.36 Instance: becomes false................................................................................86
4.5.2.37 Instance: becomes true.................................................................................86
4.5.2.38 Instance: Course Event Occurrence..............................................................86
4.5.2.39 Instance: Course Occurrence........................................................................86
4.5.2.40 Instance: End Event.......................................................................................87
4.5.2.41 Instance: End.................................................................................................88
4.5.2.42 Instance: Event Occurrence..........................................................................88
4.5.2.43 Instance: Happening Occurrence..................................................................89
4.5.2.44 Instance: Happening Over Time Occurrence................................................89
4.5.2.45 Instance: One Succession.............................................................................89
4.5.2.46 Instance: Start Event.....................................................................................90
4.5.2.47 Instance: start-end.........................................................................................90
4.5.2.48 Instance: Start................................................................................................90

  iv                                                                           Business Process Definition MetaModel, Common Infrastructure, v1.0



List of Figures

Figure 1 - Package Dependencies.................................................................................................................................5
Figure 2 - Primitive Types...............................................................................................................................................7
Figure 3 - Elements Package..........................................................................................................................................8
Figure 4 - Elements..........................................................................................................................................................8
Figure 5 - Ownerships Package.....................................................................................................................................9
Figure 6 - Ownerships.....................................................................................................................................................9
Figure 7 - Comments Package.....................................................................................................................................10
Figure 8 - Comments.....................................................................................................................................................10
Figure 9 - Relationships Package................................................................................................................................11
Figure 10 - Relationships..............................................................................................................................................12
Figure 11 - Namespaces Package................................................................................................................................13
Figure 12 - Namespaces...............................................................................................................................................14
Figure 13 - Packages Diagram.....................................................................................................................................17
Figure 14 - Packages.....................................................................................................................................................18
Figure 15 - TypedElements Package...........................................................................................................................19
Figure 16 - Typed Elements..........................................................................................................................................20
Figure 17 - Multiplicities Package................................................................................................................................21
Figure 18 - Multiplicities................................................................................................................................................21
Figure 19 - MultiplicityExpressions Package..............................................................................................................22
Figure 20 - MultiplicityExpressions.............................................................................................................................22
Figure 21 - Expressions Package................................................................................................................................23
Figure 22 - Expressions................................................................................................................................................24
Figure 23 - Literals Package.........................................................................................................................................25
Figure 24 - Literals.........................................................................................................................................................26
Figure 25 - Constraints Package..................................................................................................................................28
Figure 26 - Constraints..................................................................................................................................................29
Figure 27 - Classifiers Package....................................................................................................................................30
Figure 28 - Classifiers...................................................................................................................................................30
Figure 29 - Super Package............................................................................................................................................31
Figure 30 - Super...........................................................................................................................................................32
Figure 31 - Generalizations Package...........................................................................................................................33
Figure 32 - Generalizations...........................................................................................................................................33
Figure 33 - Structural Features Package.....................................................................................................................34
Figure 34 - Structural Features....................................................................................................................................35
Figure 35 - Behavioral Features Package...................................................................................................................36
Figure 36 - Behavioral Features...................................................................................................................................36
Figure 37 - Properties Package....................................................................................................................................37
Figure 38 - Properties....................................................................................................................................................38
Figure 39 - Instances Package.....................................................................................................................................39
Figure 40 - Instances.....................................................................................................................................................39
Figure 41 - Datatypes Package.....................................................................................................................................42
Figure 42 - Datatypes....................................................................................................................................................42
Figure 43 - Redefinitions Package...............................................................................................................................43
Figure 44 - Redefinitions...............................................................................................................................................44
Figure 45 - Condition Model Diagram..........................................................................................................................46
Figure 46 - Composition Model Diagram.....................................................................................................................53
Figure 47 - Directed Part Connection Diagram...........................................................................................................54
Figure 48 - Part Connection & Condition Diagram.....................................................................................................55
Figure 49 - Derivation Diagram.....................................................................................................................................56
Figure 50 - Selection Diagram......................................................................................................................................56
Figure 51 - Part Group Notation...................................................................................................................................60
Figure 52 - Happening and Event Diagram.................................................................................................................65
Figure 53 - Time Event  Diagram..................................................................................................................................66
Figure 54 - Event Condition  Diagram..........................................................................................................................66
Figure 55 - Time Event Condition  Diagram................................................................................................................67

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                             v



Figure 56 - Fact Change Condition  Diagram..............................................................................................................68
Figure 57 - Course Diagram..........................................................................................................................................69
Figure 58 - Gateway Diagram.......................................................................................................................................70
Figure 59 - Event Course Diagram...............................................................................................................................71
Figure 60 - Common Infrastructure Library: Happenings, Events and Conditions................................................72
Figure 61 - Common Infrastructure Library: 'Happening Occurrences'...................................................................73
Figure 62 - Exclusive Merge Notation..........................................................................................................................76
Figure 63 - Exclusive Split Notation............................................................................................................................78
Figure 64 - Fact Change Notation................................................................................................................................78
Figure 65 - Gateway Notation.......................................................................................................................................80
Figure 66 - Parallel Join Notation.................................................................................................................................81
Figure 67 - Parallel Split Notation................................................................................................................................82
Figure 68 - Succession Notation..................................................................................................................................84
Figure 69 - Succession with Fact Change Condition.................................................................................................84
Figure 70 - Succession with Time Event Condition...................................................................................................84
Figure 71 - Time Event Notation...................................................................................................................................85
Figure 72 - Course Occurrence Diagram.....................................................................................................................87
Figure 73 - Event Part : End Notation..........................................................................................................................88
Figure 74 - Event Part : Start Notation.........................................................................................................................91
Figure 75 - Event Part : Start with 'Fact Change Condition' Notation......................................................................91
Figure 76 - Event Part : Start with 'Time Event Condition' Notation.........................................................................91

  vi                                                                           Business Process Definition MetaModel, Common Infrastructure, v1.0



1 Normative References

[OMG formal/2007-11-04] http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

2 Terms and Definitions
Classifier

A classifier is a classification of instances - it describes a set of instances that have features in common. 

Description :  A classifier is a namespace whose members can include features. Classifier is an abstract metaclass. 

Element

An element can own comments.  The comments for an Element add no semantics but may represent information useful to 
the reader of the model. 

DataType

DataType is an abstract class that acts as a common superclass for different kinds of data types. DataType is the abstract 
class that represents the general notion of being a data type (i.e., a type whose instances are identified only by their 
value). 

Expression

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context. 
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and 
has a possibly empty sequence of operands that are value specifications. 

ValueSpecification

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description:  ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference 
an instance or it may be an expression denoting an instance or instances when evaluated.

Generalization

A generalization between two types means each instance of the specific type is also an instance of the general type.  Any 
specification applying to instances of the general type also apply to instances of the specific type.

Namespace

A namespace is a named element that can own other named elements. Each named element may be owned by at most one 
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified 
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by 
other means (e.g., importing or inheriting). Namespace is an abstract metaclass. 

Package

A package is a container for types and other packages. Packages provide a way of grouping types and packages together, 
which can be useful for understanding and managing a model. A package cannot contain itself. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              1

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/


Property

A property is a structural feature of a classifier that characterizes instances of the classifier.

Description:  Property represents a declared state of one or more instances in terms of a named relationship to a value or 
values. When a property is an attribute of a classifier, the value or values are related to the instance of the classifier by 
being held in slots of the instance.  Property is indirectly a subclass of TypedElement. The range of valid values 
represented by the property can be controlled by setting the property's type.

Type

A Type is a NamedElement that groups individuals according to some commonality among them, which might be 
characteristics they can have or constraints they obey. Types can cover any kind of entity, physical or computational, 
static or dynamic. For example, the type Person groups individual people, like Mary and John. The type declares 
commonalities among people, for example, they can have names and gender, or obey constraints, such as being 
genetically related to exactly two other people.

TypedElement

A typed element is a kind of named element that represents elements with types. Elements with types are instances of 
TypedElement. A typed element may optionally have no type. The type of a typed element constrains the set of values 
that the typed element may refer to.

Composite

A Composite is a Classifier which has an internal structure. It specifies the connections of individuals that are all related 
to the same other individual (M0). For example, a company type specifies the connections of departments within each 
individual company of that type (assuming it is modeled in a value chain manner, rather than just an organization chart). 
Likewise, an orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

Part

A Part is a Connectable Element that is an element of the structure of a Composite.

Part Connection

A  Part Connection is a Feature of a composite used to connect its Connectable Elements. A Part Connection can 
connect any number of parts. For example, a business interaction can involve multiple companies.

When a Part Connection is connecting Typed Part, its specifies links between M0 entities playing the typed parts. For 
example, the reporting connection between the president of a company and the CEO means the person playing the 
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal 
connection between one step and another in a process means that in each occurrence of that process, there is an 
occurrence of one step that happens after the occurrence of another. Conditions may be applied to Part Connections to 
limit when they apply. For example, one step in a process may happen after another only when certain conditions are true 
as the process is executing. 

Condition

A Condition is a Boolean ValueSpecification that constrains some element in the models.  Conditions are true if their 
descriptions hold in the current state of the world, possibly including executions, and false otherwise. 

Statement

Statement is a Boolean ValueSpecification that does not constrain anything. Statements are used to integrate with rule 
models.

Course

A Course is an ordered Succession of Happening Parts. A Course is a Composite that has connections representing 

  2                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



that one part of the course "follows" another in time, and possibly establishes constraints on such followings 
(Succession).

Course Part

A Course Part is a kind of Connectable Element that defines a stage in a Course. It can be connected to Succession as 
a predecessor or successor element.

Event

An Event is a Happening for dynamic entities occurring at a point in time.

Event Condition

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular Happening 
Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of Event) of a particular 
volcano (instance of Happening Over Time).

Event Part

An Event Part identifies Event (such as Start Event or End Event) for an individual Course.  An Event Part is also a 
Happening Part, enabling it to be connected by Successions. 

Gateway

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals 
playing Happening Parts are ordered in time.  The particular specifications are given in subtypes. At runtime, Gateways 
don't have any execution trace. 

Happening

A Happening is a Classifier for dynamic entities.

Succession

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A 
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such 
followings. It can order the Event Part of its Happening Parts such as their Start or End.
Succession allows any combination of Event Part to be connected.

End -> Start
Start  -> Start
Start -> Abort
etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as Gateway, 
but it must have something on each end.  For convenience, a Succession that does not specify source event part or 
target event part   will have the same effect as a Succession where these are respectively the End and Start.

Time Event

A Time Event specifies a point in time that is a source of interest. 

Time Event Condition

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time Event 
Condition  is specified by referring to a Clock.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              3



3 Additional Information 

3.1 Acknowledgements

The following companies submitted this specification:

• Adaptive 
• Axway Software 
• Borland Software 
• Model Driven Solutions 
• EDS 
• Lombardi Software 
• MEGA International 
• Unisys 

The following companies and organizations support this specification: 

• BPM Focus 
• U.S. National Institute of Standards and Technology (NIST)

4 Metamodel and Notation Specification

This section presents the normative specification for the common infrastructure metamodel. It begins with an overview of 
the metamodel structure followed by a description of each sub-package.

4.1 Overview
The Abstractions package is a result of the merge from the InfrastructureLibrary::Core:Abstractions package and the 
Infrastructure:Core:PrimitiveTypes package. 

  4                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Figure 1 - Package Dependencies

Package Comment

BehavioralFeatures The BehavioralFeatures subpackage of the Abstractions package specifies the 
basic classes for modeling dynamic features of model elements.

Classifiers The Classifiers package in the Abstractions package specifies an abstract 
generalization for the classification of instances according to their features. 

Comments The Comments package of the Abstractions package defines the general 
capability of attaching comments to any element. 

Constraints The Constraints subpackage of the Abstractions package specifies the basic 
building blocks that can be used to add additional semantic information to an 
element. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              5

Comments

Expressions

Ownerships

Elements

Multiplicities

Namespaces

TypedElements

DataTypes

Packages

Classifiers

StructuralFeatures

Constraints

Relationships

Properties

Literals

BehavioralFeatures

Instances

MultiplicityExpressions

Super

Generalizations Redefinitions



DataTypes The DataTypes subPackage specifies the DataType, Enumeration, 
EnumerationLiteral, and PrimitiveType constructs. These constructs are used 
for defining primitive data types (such as Integer and String) and user-defined 
enumeration data types. The data types are typically used for declaring the 
types of the class attributes. 

Elements The Elements subpackage of the Abstractions package specifies the most basic 
abstract construct, Element. 

Expressions The Expressions package in the Abstractions package specifies the general 
metaclass supporting the specification of values, along with specializations for 
supporting structured expression trees and opaque, or uninterpreted, 
expressions. Various UML constructs require or use expressions, which are 
linguistic formulas that yield values when evaluated in a context. 

Generalizations The Generalizations package of the Abstractions package provides mechanisms 
for specifying generalization relationships between classifiers. 

Instances The Instances package in the Abstractions package provides for modeling 
instances of classifiers. 

Literals The Literals package in the Abstractions package specifies metaclasses for 
specifying literal values. 

Multiplicities The Multiplicities subpackage of the Abstractions package defines the 
metamodel classes used to support the specification of multiplicities for typed 
elements (such as association ends and attributes), and for specifying whether 
multivalued elements are ordered or unique. 

MultiplicityExpressions The MultiplicityExpressions subpackage of the Abstractions package extends 
the multiplicity capabilities to support the use of value expressions for the 
bounds. 

Namespaces The Namespaces subpackage of the Abstractions package specifies the 
concepts used for defining model elements that have names, and the 
containment and identification of these named elements within namespaces. 

Ownerships The Ownerships subpackage of the Abstractions package extends the basic 
element to support ownership of other elements. 

Packages The Packages package of Abstractions specifies the Package and 
PackageImport constructs. 

Properties The Properties subpackage of the Abstractions package specifies the basic class 
for modeling structural features of model elements.

Redefinitions
Relationships The Relationships subpackage of the Abstractions package adds support for 

directed relationships. 
StructuralFeatures The StructuralFeatures package of the Abstractions package specifies an 

abstract generalization of structural features of classifiers. 
Super The Super package of the Abstractions package provides mechanisms for 

specifying generalization relationships between classifiers. 
TypedElements The TypedElements subpackage of the Abstractions package defines typed 

elements and their types. 

4.2 Abstractions

4.2.1 Introduction
The Abstractions package represents the core modeling concepts of the UML, including classifiers, properties, and 
packages. This part is mostly reused from the infrastructure library, since many of these concepts are the same as those 
that are used in, for example, MOF. 

  6                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.2.2 Metamodel

The PrimitiveTypes package of InfrastructureLibrary::Core contains a number of predefined types used when defining 
the abstract syntax of metamodels. 

4.2.2.1 PrimitiveTypes

4.2.2.2 Boolean

Package: PrimitiveTypes
isAbstract: No

Description

Boolean is an instance of PrimitiveType. In the metamodel, Boolean defines an enumeration that denotes a logical 
condition.  Its enumeration literals are:

• true - The Boolean condition is satisfied. 
• false - The Boolean condition is not satisfied.

4.2.2.3 Integer

Package: PrimitiveTypes
isAbstract: No

Description

An instance of Integer is an element in the (infinite) set of integers (..2, -1, 0, 1, 2..). It is used for integer attributes and 
integer expressions in the metamodel. 

4.2.2.4 String

Package: PrimitiveTypes
isAbstract: No

Description

A string is a sequence of characters in some suitable character set used to display information about the model. Character 
sets may include non-Roman alphabets and characters.

An instance of String defines a piece of text. The semantics of the string itself depends on its purpose, it can be a 
comment, computational language expression, OCL expression, etc. It is used for String attributes and String expressions 
in the metamodel.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              7

Figure 2 - Primitive Types

Integer
<<primitive>>

 

Boolean
<<primitive>>

 

String
<<primitive>>

 

UnlimitedNatural
<<primitive>>

 



4.2.2.5 UnlimitedNatural

Package: PrimitiveTypes
isAbstract: No

Description

An unlimited natural is a primitive type representing unlimited natural values. An instance of UnlimitedNatural is an 
element in the (infinite) set of naturals (0, 1, 2..). The value of infinity is shown using an asterisk ('*').
The Elements subpackage of the Abstractions package specifies the most basic abstract construct, Element. 

4.2.2.6 Elements Package

Figure 3 - Elements Package

4.2.2.7 Elements

Figure 4 - Elements

4.2.2.8 Element

Package: Elements
isAbstract: Yes

Description

An element is a constituent of a model.

Description
Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the 
infrastructure library.

The Ownerships subpackage of the Abstractions package extends the basic element to support ownership of other 
elements. 

  8                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Element
 

Elements



4.2.2.9 Ownerships Package

Figure 5 - Ownerships Package

4.2.2.10 Ownerships

Figure 6 - Ownerships

4.2.2.11 Element

Package: Ownerships
isAbstract: Yes
Generalization: “Element” 

Description

An element is a constituent of a model. As such, it has the capability of owning other elements. 

Description 
Element has a derived composition association to itself to support the general capability for elements to own other 
elements. 

The Comments package of the Abstractions package defines the general capability of attaching comments to any 
element. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              9

Ow nerships

Elements



4.2.2.12 Comments Package

Figure 7 - Comments Package

4.2.2.13 Comments

Figure 8 - Comments

4.2.2.14 Comment

Package: Comments
isAbstract: No
Generalization: “Element” 

Description

A comment is a textual annotation that can be attached to a set of elements. A comment gives the ability to attach various 
remarks to elements. A comment carries no semantic force, but may contain information that is useful to a modeler. A 
comment may be owned by any element. A Comment adds no semantics to the annotated elements, but may represent 
information useful to the reader of the model.

Attributes

body: String [0..1] Specifies a string that is the comment. 

  10                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Com ments

Ownerships



Associations

annotatedElement : Element [*] References the Element(s) being commented.

4.2.2.15 Element

Package: Comments
isAbstract: Yes
Generalization: “Element” 

Description

An element can own comments. The comments for an Element add no semantics but may represent information useful to 
the reader of the model. 

Associations

ownedComment : Comment [*] The Comments owned by this element.
Subsets ownedElement

The Relationships subpackage of the Abstractions package adds support for directed relationships. 

4.2.2.16 Relationships Package

Figure 9 - Relationships Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              11

Relationships

Comments



4.2.2.17 Relationships

Figure 10 - Relationships

4.2.2.18 DirectedRelationship

Package: Relationships
isAbstract: Yes
Generalization: “Relationship” 

Description

A directed relationship represents a relationship between a collection of source model elements and a collection of target 
model elements. 

Associations

source : Element [1] Specifies the sources of the DirectedRelationship. 
This is a derived union.
Subsets relatedElement

target : Element [1] Specifies the targets of the DirectedRelationship. 
This is a derived union.
Subsets relatedElement

  12                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.2.2.19 Relationship

Package: Relationships
isAbstract: Yes
Generalization: “Element” 

Description

Relationship is an abstract concept that specifies some kind of relationship between elements. 

Associations

relatedElement : Element [1..*] Specifies the elements related by the Relationship.
This is a derived union.

The Namespaces subpackage of the Abstractions package specifies the concepts used for defining model elements that 
have names, and the containment and identification of these named elements within namespaces. 

4.2.2.20 Namespaces Package

Figure 11 - Namespaces Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              13

Nam espaces

Relationships



4.2.2.21 Namespaces

Figure 12 - Namespaces

4.2.2.22 ElementImport

Package: Namespaces
isAbstract: No
Generalization: “DirectedRelationship” 

Description

An element import identifies an element in another package, and allows the element to be referenced using its name 
without a qualifier.

Description
An element import is defined as a directed relationship between an importing namespace and a packageable element. The 
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also 
possible to control whether the imported element can be further imported.

Semantics
An element import adds the name of a packageable element from a package to the importing namespace. It works by 
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the 
referenced element in the namespace from which it was imported. An element import is used to selectively import 
individual elements without relying on a package import. In case of a nameclash with an outer name (an element that is 
defined in an enclosing namespace is available using its unqualified name in enclosed namespaces) in the importing 
namespace, the outer name is hidden by an element import, and the unqualified name refers to the imported element. The 
outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or 
package imports, the elements are not added to the importing namespace and the names of those elements must be 

  14                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element 
owned by the importing namespace, that element is not added to the importing namespace and the name of that element 
must be qualified in order to be used. If the name of an imported element is the same as the name of an element owned 
by the importing namespace, the name of the imported element must be qualified in order to be used and is not added to 
the importing namespace.

An imported element can be further imported by other namespaces using either element or package imports.
The visibility of the ElementImport may be either the same or more restricted than that of the imported element.

Attributes

visibility: VisibilityKind [1] Specifies the visibility of the imported ImportableElement within the importing 
Namespace. The default visibility is the same as that of the imported element. If 
the imported element does not have a visibility, it is possible to add visibility to the 
element import; default value is public. 

alias: String [0..1] Specifies the name that should be added to the namespace of the importing 
Package in lieu of the name of the imported PackagableElement. The aliased name 
must not clash with any other member name in the importing Package. By default, 
no alias is used. 

Associations

importedElement : ImportableElement [1] Specifies the PackageableElement whose name is to be added to a 
Namespace.
Subsets target

4.2.2.23 ImportableElement

Package: Namespaces
isAbstract: Yes
Generalization: “NamedElement” 

Description

A ImportableElement indicates a named element that is imported by a Namespace.

4.2.2.24 NamedElement

Package: Namespaces
isAbstract: Yes
Generalization: “Element” 

Description

A named element represents elements with names.  Elements with names are instances of NamedElement. The name for 
a named element is optional. If specified, then any valid string, including the empty string, may be used. 

Attributes

name: String [0..1] The name of the NamedElement. 

qualifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of 
nested Namespaces. It is constructed from the names of the containing 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              15



namespaces starting at the root of the hierarchy and ending with the name of the 
NamedElement itself.  This is a derived attribute. 

visibility: VisibilityKind [1] Determines where the NamedElement appears within different Namespaces 
within the overall model, and its accessibility.

4.2.2.25 Namespace

Package: Namespaces
isAbstract: Yes
Generalization: “NamedElement” 

Description 

A namespace is a named element that can own other named elements. Each named element may be owned by at most one 
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified 
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by 
other means (e.g., importing or inheriting). Namespace is an abstract metaclass. 

Associations

elementImport : ElementImport [*] References the ElementImports owned by the Namespace.
Subsets ownedElement
Subsets 

importedMember : ImportableElement [*] References the ImportableElements that are members of this 
Namespace as a result of either ElementImports. 
This is a derived association.
Subsets ownedMember

member : NamedElement [*] A collection of NamedElements identifiable within the 
Namespace, either by being owned or by being introduced by 
importing or inheritance. 
This is a derived union.

ownedMember : NamedElement [*] A collection of NamedElements owned by the Namespace. 
This is a derived union.
Subsets ownedElement

4.2.2.26 VisibilityKind

Package: Namespaces
isAbstract: No

Description

VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model. 

Semantics 

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports, 
Generalizations, Packages, and Classifiers packages. Detailed semantics are specified with those mechanisms. If the 
Visibility package is used without those packages, these literals will have different meanings, or no meanings. 

• A public element is visible to all elements that can access the contents of the namespace that owns it. 
• A private element is only visible inside the namespace that owns it. 

  16                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



• A protected element is visible to elements that have a generalization relationship to the namespace that
owns it. 

• A package element is owned by a namespace that is not a package, and is visible to elements that are in
the same package as its owning namespace. 

Only named elements that are not owned by packages can be marked as having package visibility. Any element marked 
as having package visibility is visible to all elements within the nearest enclosing package (given that other owning 
elements have proper visibility). Outside the nearest enclosing package, an element marked as having package visibility 
is not visible. 

In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple 
times, public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once 
using public import and once using private import, it will be public.

public:

private:

protected:

package:

The Packages package of Abstractions specifies the Package and PackageImport constructs. 

4.2.2.27 Packages Diagram

Figure 13 - Packages Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              17

Packages

Namespaces



4.2.2.28 Packages

Figure 14 - Packages

4.2.2.29 Package

Package: Packages
isAbstract: No
Generalization: “Namespace” “PackageableElement” 

Description

A package is a container for types and other packages. Packages provide a way of grouping types and packages together, 
which can be useful for understanding and managing a model. A package cannot contain itself. 

Associations

packagedElement : PackageableElement [*] Specifies the packageable elements that are owned by this 
Package.
Subsets ownedMember

packageImport : PackageImport [*] Subsets ownedElement
Subsets 

4.2.2.30 PackageableElement

Package: Packages
isAbstract: Yes
Generalization: “ImportableElement” 

Description

A packageable element indicates a named element that may be owned directly by a package. 

  18                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.2.2.31 PackageImport

Package: Packages
isAbstract: No
Generalization: “DirectedRelationship” 

Description

A package import is a relationship that allows the use of unqualified names to refer to package members from other 
namespaces. 

Description 
A package import is defined as a directed relationship that identifies a package whose members are to be imported by a 
namespace. 

Semantics 
A package import is a relationship between an importing namespace and a package, indicating that the importing 
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is 
equivalent to having an element import to each individual member of the imported namespace, unless there is already a 
separately-defined element import. 

Attributes

visibility: VisibilityKind [0..1] Specifies the visibility of the imported PackageableElement within the importing 
Package. The default visibility is the same as that of the imported element. If the 
imported element does not have a visibility, it is possible to add visibility to the 
element import; default value is public. 

Associations

importedPackage : Package [*] Subsets target

The TypedElements subpackage of the Abstractions package defines typed elements and their types. 

4.2.2.32 TypedElements Package

Figure 15 - TypedElements Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              19

TypedElements

Packages



4.2.2.33 Typed Elements

Figure 16 - Typed Elements

4.2.2.34 Type

Package: TypedElements
isAbstract: Yes
Generalization: “PackageableElement” 

Description

A Type is a NamedElement that groups individuals according to some commonality among them, which might be 
characteristics they can have or constraints they obey. Types can cover any kind of entity, physical or computational, 
static or dynamic. For example, the type Person groups individual people, like Mary and John. The type declares 
commonalities among people, for example, they can have names and gender, or obey constraints, such as being 
genetically related to exactly two other people.

4.2.2.35 TypedElement

Package: TypedElements
isAbstract: Yes
Generalization: “NamedElement” 

Description

A typed element is a kind of named element that represents elements with types. Elements with types are instances of 
TypedElement. A typed element may optionally have no type. The type of a typed element constrains the set of values 
that the typed element may refer to.

Associations

type : Type [0..1] The type of the TypedElement. 

The Multiplicities subpackage of the Abstractions package defines the metamodel classes used to support the 
specification of multiplicities for typed elements (such as association ends and attributes), and for specifying whether 
multivalued elements are ordered or unique. 

4.2.2.36 Multiplicities Package

  20                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Figure 17 - Multiplicities Package

4.2.2.37 Multiplicities

Figure 18 - Multiplicities

4.2.2.38 MultiplicityElement

Package: Multiplicities
isAbstract: Yes
Generalization: “Element” 

Description

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending 
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable 
cardinalities for an instantiation of this element. 

Description
A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity. 
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be 
unique or ordered. 

Semantics 
A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity 
M if M.includesCardinality(C). A multiplicity is specified as an interval of integers starting with the lower bound and 
ending with the (possibly infinite) upper bound. If a MultiplicityElement specifies a multivalued multiplicity, then an 
instantiation of this element has a set of values. The multiplicity is a constraint on the number of values that may validly 
occur in that set. If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the set of values in an 
instantiation of this element is ordered. This ordering implies that there is a mapping from positive integers to the 
elements of the set of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic 
effect. If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made 
about the order of the values in an instantiation of this element. If the MultiplicityElement is specified as unique (i.e., 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              21

Multiplicities

Elements

MultiplicityElement

+isOrdered[1]:Boolean=false
+isUnique[1]:Boolean=true
+lower[0..1]:Integer=1
+upper[0..1]:UnlimitedNatural=1

Element



isUnique is true), then the set of values in an instantiation of this element must be unique. If a MultiplicityElement is not 
multivalued, then the value for isUnique has no semantic effect. 

Attributes

isOrdered: Boolean [1] For a multivalued multiplicity, this attribute specifies whether the values in an 
instantiation of this element are sequentially ordered. Default is false. 

isUnique: Boolean [1] For a multivalued multiplicity, this attribute specifies whether the values in an 
instantiation of this element are unique. Default is true. 

lower: Integer [0..1] Specifies the lower bound of the multiplicity interval. Default is one. 

upper: UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval. Default is one. 

The MultiplicityExpressions subpackage of the Abstractions package extends the multiplicity capabilities to support the 
use of value expressions for the bounds. 

4.2.2.39 MultiplicityExpressions Package

Figure 19 - MultiplicityExpressions Package

4.2.2.40 MultiplicityExpressions

Figure 20 - MultiplicityExpressions

  22                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

MultiplicityExpressions

Multiplicities Expressions



4.2.2.41 MultiplicityElement

Package: MultiplicityExpressions
isAbstract: No
Generalization: “Element” “MultiplicityElement” 

Description

MultiplicityElement is specialized to support the use of value specifications to define each bound of the multiplicity. 

Attributes

lower: Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed 
as an integer. This is a redefinition of the corresponding property from 
Multiplicities. 

upper: UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval, if it is expressed 
as an unlimited natural. This is a redefinition of the corresponding 
property from Multiplicities. 

Associations

lowerValue : ValueSpecification [0..1] The specification of the lower bound for this multiplicity.
Subsets ownedElement

upperValue : ValueSpecification [0..1] The specification of the upper bound for this multiplicity. 
Subsets ownedElement

The Expressions package in the Abstractions package specifies the general metaclass supporting the specification of 
values, along with specializations for supporting structured expression trees and opaque, or uninterpreted, expressions. 
Various UML constructs require or use expressions, which are linguistic formulas that yield values when evaluated in a 
context. 

4.2.2.42 Expressions Package

Figure 21 - Expressions Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              23

Expressions

TypedElements



4.2.2.43 Expressions

Figure 22 - Expressions

4.2.2.44 Expression

Package: Expressions
isAbstract: No
Generalization: “ValueSpecification” 

Description

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context. 
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and 
has a possibly empty sequence of operands that are value specifications. 

Attributes

symbol: String [0..1] The symbol associated with the node in the expression tree. 

Associations

operand : ValueSpecification [*] Specifies a sequence of operands. 
Subsets ownedElement

4.2.2.45 OpaqueExpression

Package: Expressions
isAbstract: No
Generalization: “ValueSpecification” 

Description

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated 
in a context. 

  24                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Description 
An opaque expression contains language-specific text strings used to describe a value or values, and an optional 
specification of the languages. One predefined language for specifying expressions is OCL. Natural language or 
programming languages may also be used. 

Attributes

body: String [*] The text of the expression, possibly in multiple languages. 

language: String [*] Specifies the languages in which the expression is stated. The interpretation of the 
expression body depends on the language. If languages are unspecified, it might be implicit 
from the expression body or the context. Languages are matched to body strings by order. 

4.2.2.46 ValueSpecification

Package: Expressions
isAbstract: Yes
Generalization: “PackageableElement” “TypedElement” 

Description

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description
ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or 
it may be an expression denoting an instance or instances when evaluated.

The Literals package in the Abstractions package specifies metaclasses for specifying literal values. 

4.2.2.47 Literals Package

Figure 23 - Literals Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              25

Literals

Expressions



4.2.2.48 Literals

Figure 24 - Literals

4.2.2.49 LiteralBoolean

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification” 

Description

A literal Boolean is a specification of a Boolean value. 

Description
A literal Boolean contains a Boolean-valued attribute. 

Semantics
A LiteralBoolean specifies a constant Boolean value. 

Notation
A LiteralBoolean is shown as either the word "true" or the word "false," corresponding to its value. 

Attributes

value: Boolean [1]

4.2.2.50 LiteralInteger

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification” 

Description

A literal integer is a specification of an integer value. 

Description
A literal integer contains an Integer-valued attribute. 

  26                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Semantics
A LiteralInteger specifies a constant Integer value. 

Notation
A LiteralInteger is typically shown as a sequence of digits.

Attributes

value: Integer [1]

4.2.2.51 LiteralNull

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification” 

Description

A literal null specifies the lack of a value. 

Description
A literal null is used to represent null (i.e., the absence of a value). 

Semantics
LiteralNull is intended to be used to explicitly model the lack of a value. 

Notation
Notation for LiteralNull varies depending on where it is used. It often appears as the word "null." Other notations are 
described for specific uses. 

4.2.2.52 LiteralSpecification

Package: Literals
isAbstract: Yes
Generalization: “ValueSpecification” 

Description

A literal specification identifies a literal constant being modeled. 

Description
A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled. 

4.2.2.53 LiteralString

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification” 

Description

A literal string is a specification of a string value. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              27



Description
A literal string contains a String-valued attribute. 

Semantics
A LiteralString specifies a constant String value. 

Notation 
A LiteralString is shown as a sequence of characters within double quotes. The character set used is unspecified. 

Attributes

value: String [1]

4.2.2.54 LiteralUnlimitedNatural

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification” 

Description

A literal unlimited natural is a specification of an unlimited natural number. 

Description
A literal unlimited natural contains an UnlimitedNatural-valued attribute. 

Semantics
A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value. 

Notation
A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where the asterisk denotes 
unlimited (and not infinity).

Attributes

value: UnlimitedNatural [1]

The Constraints subpackage of the Abstractions package specifies the basic building blocks that can be used to add 
additional semantic information to an element. 

4.2.2.55 Constraints Package

Figure 25 - Constraints Package

  28                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Constraints

Expressions



4.2.2.56 Constraints

Figure 26 - Constraints

4.2.2.57 Constraint

Package: Constraints
isAbstract: No
Generalization: “PackageableElement” 

Description

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the 
purpose of declaring some of the semantics of an element. 

Description 
Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of 
constraints (such as an association "xor" constraint) are predefined in UML, others may be user-defined. A user-defined 
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One 
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be 
appropriate for expressing a constraint. In other situations natural language may be used. Constraint is a condition (a 
Boolean expression) that restricts the extension of the associated element beyond what is imposed by the other language 
constructs applied to the element. Constraint contains an optional name, although they are commonly unnamed. 

Semantics 
A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion 
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those 
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and 
may be used as the namespace for interpreting names used in the specification. For example, in OCL "self" is used to 
refer to the context element. Constraints are often expressed as a text string in some language. If a formal language such 
as OCL is used, then tools may be able to verify some aspects of the constraints. In general there are many possible kinds 
of owners for a Constraint. The only restriction is that the owning element must have access to the constrainedElements. 
The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an 
Operation to specify if a Constraint represents a precondition or a postcondition. 

Associations

constrainedElement : Element [*] The ordered set of Elements referenced by this Constraint. 
specification : ValueSpecification [1] A condition that must be true when evaluated in order for the 

constraint to be satisfied. 
Subsets ownedElement

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              29



4.2.2.58 Namespace

Package: Constraints
isAbstract: Yes
Generalization: “Namespace” 

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one 
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified 
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by 
other means (e.g., importing or inheriting). Namespace is an abstract metaclass. 

Associations

ownedRule : Constraint [*] Specifies a set of Constraints owned by this Namespace. 
Subsets ownedMember

The Classifiers package in the Abstractions package specifies an abstract generalization for the classification of instances 
according to their features. 

4.2.2.59 Classifiers Package

Figure 27 - Classifiers Package

4.2.2.60 Classifiers

Figure 28 - Classifiers

4.2.2.61 Classifier

Package: Classifiers
isAbstract: Yes
Generalization: “Namespace” 

  30                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Classifiers

Constraints



Description

A classifier is a classification of instances - it describes a set of instances that have features in common. 

Description 
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass. 

Associations

feature : Feature [*] Specifies each feature defined in the classifier. 
This is a derived union.
Subsets member

4.2.2.62 Feature

Package: Classifiers
isAbstract: Yes
Generalization: “NamedElement” 

Description

Description 
A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass. 

Semantics
A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers. 

Associations

featuringClassifier : Classifier [*] The Classifiers that have this Feature as a feature. 
This is a derived union.
Subsets 

The Super package of the Abstractions package provides mechanisms for specifying generalization relationships between 
classifiers. 

4.2.2.63 Super Package

Figure 29 - Super Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              31

Super

Classifiers



4.2.2.64 Super

Figure 30 - Super

4.2.2.65 Classifier

Package: Super
isAbstract: Yes
Generalization: “Classifier” 

Description

A classifier can specify a generalization hierarchy by referencing its general classifiers. 

Attributes

isAbstract: Boolean [1] If true, the Classifier does not provide a complete declaration and can 
typically not be instantiated. An abstract classifier is intended to be 
used by other classifiers (e.g., as the target of general metarelationships 
or generalization relationships). Default value is false. 

Associations

inheritedMember : NamedElement [*] Specifies all elements inherited by this classifier from the general 
classifiers.
This is a derived association.
Subsets member

The Generalizations package of the Abstractions package provides mechanisms for specifying generalization 
relationships between classifiers. 

  32                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.2.2.66 Generalizations Package

Figure 31 - Generalizations Package

4.2.2.67 Generalizations

Figure 32 - Generalizations

4.2.2.68 Generalization

Package: Generalizations
isAbstract: No

Generalization: “DirectedRelationship” 

Description

A generalization between two types means each instance of the specific type is also an instance of the general type.  Any 
specification applying to instances of the general type also apply to instances of the specific type.

Associations

general : Classifier [1] References the general classifier in the Generalization relationship. 
Subsets target

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              33

Generalizations

Super



4.2.2.69 Classifier

Package: Generalizations
isAbstract: Yes
Generalization: “Classifier” “Type” 

Description

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. 

Semantics 
A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is 
also an (indirect) instance of the general Classifier. The specific semantics of how generalization affects each concrete 
subtype of Classifier varies. A Classifier defines a type. Type conformance between generalizable Classifiers is defined 
so that a Classifier conforms to itself and to all of its ancestors in the generalization hierarchy. 

Associations

generalization : Generalization [*] generalization specifies the more general super-type of the type
Subsets ownedElement
Subsets 

The StructuralFeatures package of the Abstractions package specifies an abstract generalization of structural features of 
classifiers. 

4.2.2.70 Structural Features Package

Figure 33 - Structural Features Package

  34                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

StructuralFeatures

Classifiers



4.2.2.71 Structural Features

Figure 34 - Structural Features

4.2.2.72 StructuralFeature

Package: StructuralFeatures
isAbstract: Yes
Generalization: “Feature” “TypedElement” 

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. 

Description 
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural 
feature is an abstract metaclass. 

Semantics
A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified 
type. 

Attributes

isReadOnly: Boolean [0..1] States whether the feature’s value may be modified by a client. Default is false. 

The BehavioralFeatures subpackage of the Abstractions package specifies the basic classes for modeling dynamic 
features of model elements.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              35



4.2.2.73 Behavioral Features Package

Figure 35 - Behavioral Features Package

4.2.2.74 Behavioral Features

Figure 36 - Behavioral Features

4.2.2.75 BehavioralFeature

Package: BehavioralFeatures
isAbstract: No
Generalization: “Feature” “Namespace” 

Description

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances. 

Description 
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances. BehavioralFeature 
is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by subclasses of 
BehavioralFeature. 

Semantics 
The list of parameters describes the order and type of arguments that can be given when the BehavioralFeature is 
invoked. 

  36                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

BehavioralFeatures

Classifiers



Associations

parameter : Parameter [*] Specifies the parameters of the BehavioralFeature. 
This is a derived union.
Subsets member

4.2.2.76 Parameter

Package: BehavioralFeatures
isAbstract: No
Generalization: “TypedElement” 

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral 
feature. 

Semantics
A parameter specifies arguments that are passed into or out of an invocation of a behavioral element like an operation. A 
parameter's type restricts what values can be passed. A parameter may be given a name, which then identifies the 
parameter uniquely within the parameters of the same behavioral feature. If it is unnamed, it is distinguished only by its 
position in the ordered list of parameters. 

The Properties subpackage of the Abstractions package specifies the basic class for modeling structural features of model 
elements.

4.2.2.77 Properties Package

Figure 37 - Properties Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              37

Properties

MultiplicitiesStructuralFeaturesGeneralizations



4.2.2.78 Properties

Figure 38 - Properties

4.2.2.79 Property

Package: Properties
isAbstract: No
Generalization: “MultiplicityElement” “StructuralFeature” 

Description

A property is a structural feature of a classifier that characterizes instances of the classifier.

Description
Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When 
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in 
slots of the instance.  Property is indirectly a subclass of TypedElement. The range of valid values represented by the 
property can be controlled by setting the property's type.

Attributes

default: String [0..1] A String that is evaluated to give a default value for the Property when an 
object of the owning Classifier is instantiated. 

isComposite: Boolean [1] This is a derived value, indicating whether the aggregation of the Property is 
composite or not. 

isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values 
can be computed from other information. The default value is false. 

isDerivedUnion: Boolean [0..1] Specifies whether the property is derived as the union of all of the properties 
that are constrained to subset it. The default value is false. 

  38                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Associations

defaultValue : ValueSpecification [0..1] A ValueSpecification that is evaluated to give a default value for 
the Property when an object of the owning Classifier is 
instantiated. 
Subsets ownedElement

The Instances package in the Abstractions package provides for modeling instances of classifiers. 

4.2.2.80 Instances Package

Figure 39 - Instances Package

4.2.2.81 Instances

Figure 40 - Instances

4.2.2.82 InstanceSpecification

Package: Instances
isAbstract: No
Generalization: “NamedElement” 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              39

Instances

StructuralFeatures



Description

An instance specification is a model element that represents an instance in a modeled system. 

Description 
An instance specification specifies existence of an entity in a modeled system and completely or partially describes the 
entity. The description includes: 

• Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier 
specified is abstract, then the instance specification only partially describes the entity. 

• The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier 
is a class describes an object of that class, while an instance specification whose classifier is an association 
describes a link of that association. 

• Specification of values of structural features of the entity. Not all structural features of all classifiers of the 
instance specification need be represented by slots, in which case the instance specification is a partial 
description. 

• Specification of how to compute, derive or construct the instance (optional).

Semantics 
An instance specification may specify the existence of an entity in a modeled system. An instance specification may 
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity. 
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in 
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has 
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for 
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of 
interest in the model. An instance specification can represent an entity at a point in time (a snapshot). Changes to the 
entity can be modeled using multiple instance specifications, one for each snapshot.

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the 
dynamic element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification 
model elements in a model repository to conform to the semantics of the dynamic elements that they represent. When 
used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does not depict 
a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn about 
the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an 
instance specification represents part of that system. Instance specifications can be modeled incompletely, required 
structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity 
would have a concrete classification. 

Associations

classifier : Classifier [*] The classifier or classifiers of the represented instance. If multiple 
classifiers are specified, the instance is classified by all of them. 

slot : Slot [*] A slot giving the value or values of a structural feature of the 
instance. An instance specification can have one slot per structural 
feature of its classifiers, including inherited features. It is not 
necessary to model a slot for each structural feature, in which case 
the instance specification is a partial description. 
Subsets ownedElement

specification : ValueSpecification [0..1] A specification of how to compute, derive, or construct the 
instance. 
Subsets ownedElement

  40                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.2.2.83 InstanceValue

Package: Instances
isAbstract: No
Generalization: “ValueSpecification” 

Description

An instance value is a value specification that identifies an instance. 

Associations

instance : InstanceSpecification [*] The instance that is the specified value. 

4.2.2.84 Slot

Package: Instances
isAbstract: No
Generalization: “Element” 

Description

A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description
A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a 
structural feature of a classifier of the instance specification owning the slot.

Semantics
A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by 
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to 
the defining feature of the slot (in type, multiplicity, etc.). 

Associations

definingFeature : StructuralFeature [1] The structural feature that specifies the values that may be held by 
the slot. 

value : ValueSpecification [*] The value or values corresponding to the defining feature for the 
owning instance specification. This is an ordered association. 
Subsets ownedElement

The DataTypes subPackage specifies the DataType, Enumeration, EnumerationLiteral, and PrimitiveType constructs. 
These constructs are used for defining primitive data types (such as Integer and String) and user-defined enumeration 
data types. The data types are typically used for declaring the types of the class attributes. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              41



4.2.2.85 Datatypes Package

Figure 41 - Datatypes Package

4.2.2.86 Datatypes

Figure 42 - Datatypes

4.2.2.87 DataType

Package: DataTypes
isAbstract: No
Generalization: “Classifier” 

Description

DataType is an abstract class that acts as a common superclass for different kinds of data types. DataType is the abstract 
class that represents the general notion of being a data type (i.e., a type whose instances are identified only by their 
value). 

  42                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

DataTypes

Properties



Associations

ownedAttribute : Property [*] The Attributes owned by the DataType. This is an ordered 
collection. 
Subsets feature
Subsets ownedMember

4.2.2.88 Enumeration

Package: DataTypes
isAbstract: No
Generalization: “DataType” 

Description

An enumeration defines a set of literals that can be used as its values.
An enumeration defines a finite ordered set of values, such as {red, green, blue}. The values denoted by typed elements 
whose type is an enumeration must be taken from this set.

Associations

ownedLiteral : EnumerationLiteral [*] The ordered set of literals for this Enumeration.
Subsets ownedMember

4.2.2.89 EnumerationLiteral

Package: DataTypes
isAbstract: No
Generalization: “NamedElement” 

Description

An enumeration literal is a value of an enumeration.

4.2.2.90 PrimitiveType

Package: DataTypes
isAbstract: No
Generalization: “DataType” 

Description

A primitive type is a data type implemented by the underlying infrastructure and made available for modeling. 

4.2.2.91 Redefinitions Package

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              43



Figure 43 - Redefinitions Package

4.2.2.92 Redefinitions

Figure 44 - Redefinitions

4.2.2.93 RedefinableElement

Package: Redefinitions
isAbstract: Yes
Generalization: “NamedElement” 

Description

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically 
or differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description 
A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is 
an abstract metaclass.

Semantics 

  44                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Redefinitions

Super



A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The 
detailed semantics of redefinition varies for each specialization of RedefinableElement. A redefinable element is a 
specification concerning instances of a classifier that is one of the element’s redefinition contexts. For a classifier that 
specializes that more general classifier (directly or indirectly), another element can redefine the element from the general 
classifier in order to augment, constrain, or override the specification as it applies more specifically to instances of the 
specializing classifier. A redefining element must be consistent with the element it redefines, but it can add specific 
constraints or other details that are particular to instances of the specializing redefinition context that do not contradict 
invariant constraints in the general context. A redefinable element may be redefined multiple times. Furthermore, one 
redefining element may redefine multiple inherited redefinable elements.

Semantic Variation Points
There are various degrees of compatibility between the redefined element and the redefining element, such as name 
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client 
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the 
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on 
redefinitions. The particular constraint chosen is a semantic variation point. 

Associations

redefinitionContext : Classifier [*] References the contexts that this element may be redefined from. 
This is a derived union.

4.3 Condition Model

4.3.1 Introduction
The Condition Model is for specifying boolean expressions that constrain model elements or capture statements. It 
defines specialized conditions that are represented as free text, as expressions with particular results, and as boolean 
combinations of other conditions.

Conditions are boolean ValueSpecifications that constrain some element in the models. They are true if their descriptions 
hold in the current state of the world, possibly including executions, and false otherwise. Opaque Conditions are 
Conditions that are expressed in free text. Fact Conditions are Conditions that are true when the two value specifications 
to which they refer yield equal values, and false otherwise. Compound Conditions are Conditions that provide for 
combining other conditions with Boolean operators, such as “and” and “or.” Statements are boolean ValueSpecifications 
that do not constrain anything. They are used to integrate with rule models.

4.3.2 Metamodel

The Condition Model is for specifying boolean expressions that constrain model elements or capture statements. It 
defines specialized conditions that are represented as free text, as expressions with particular results, and as boolean 
combinations of other conditions.

4.3.2.1 Condition Model Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              45



Figure 45 - Condition Model Diagram

4.3.2.2 Boolean ValueSpecification

Package: Condition Model
isAbstract: No
Generalization: “ValueSpecification” 

Description

Boolean ValueSpecification is a kind of ValueSpecification that specifies a boolean value.

Constraint

[1] The type of a Boolean ValueSpecification must be a boolean.
self.type  = Boolean

4.3.2.3 Compound Condition

Package: Condition Model
isAbstract: No
Generalization: “Condition” 

Description

A Compound Condition is a kind of Condition that is the combination of other Conditions. There are three kinds of 
Compound Condition:

  46                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Condition

 

Opaque Condition

 
Compound Condition

+combinaisonType[1]:Compound Condition Type

1 ..*

{subsets ownedElement[*]}
combined condition

0..1

{subsets owner[0..1 ]}

owner c ompound condition

Compound Condition Type
<<Enumeration>>

and=and
not=not
or=or

ValueSpecification

Fact Condition

 

1evaluated expression

*spec ified condition

1

{subsets ownedElement[*]}

evaluation result

0..1

{subsets owner[0..1 ]}

evalutating condition

ValueSpecification

ValueSpecification
from (Expressions)

OpaqueExpression
from (Expressions)

Element
from (Comments)

1 ..*

{readonly, union}

/conditioned element *

{readonly, union}

/constraining condition

Statement

 

Boolean ValueSpecification

 

Opaque Statement

 

OpaqueExpression
from (Expressions)



• or : the Compound Condition is the result of one the combined condition 
• and: the Compound Condition is the result of all the combined condition 
• not: the Compound Condition is result of the negation of all the combined condition.

Attributes

combinaisonType: Compound Condition Type [1] Boolean operator used to combine conditions.

Associations

combined condition : Condition [1..*] Condition making up the Compound Condition
Subsets ownedElement

4.3.2.4 Compound Condition Type

Package: Condition Model
isAbstract: No

Description

Enumeration specifying the different types of Compound Condition

and:

not:

or:

4.3.2.5 Condition

Package: Condition Model
isAbstract: Yes
Generalization: “Boolean ValueSpecification” 

Description

A Condition is a Boolean ValueSpecification that constrains some element in the models.  Conditions are true if their 
descriptions hold in the current state of the world, possibly including executions, and false otherwise. 

Associations

conditioned element : Element [1..*] Element being constrained by the Condition.
This is a derived union.

4.3.2.6 Fact Condition

Package: Condition Model
isAbstract: No
Generalization: “Condition” 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              47



Description

A Fact Condition is a Condition that is true when the two ValueSpecifications to which they refer yield equal values, 
and false otherwise. 

Associations

evaluated expression : ValueSpecification [1] ValueSpecification evaluated by the Fact Condition.
evaluation result : ValueSpecification [1] ValueSpecification that represents the result that must be 

yielded by the evaluation of the evaluated expression for the 
Fact Condition to be true.
Subsets ownedElement

4.3.2.7 Opaque Condition

Package: Condition Model
isAbstract: No
Generalization: “Condition” “OpaqueExpression” 

Description

An Opaque Condition is a Condition that can be expressed in free text.

4.3.2.8 Opaque Statement

Package: Condition Model
isAbstract: No
Generalization: “OpaqueExpression” “Statement” 

Description

Opaque Statement is a concrete Statement that uses OpaqueExpression attributes (language and body) to store its 
expression as a string.

4.3.2.9 Statement

Package: Condition Model
isAbstract: Yes
Generalization: “Boolean ValueSpecification” 

Description

Statement is a Boolean ValueSpecification that does not constrain anything. Statements are used to integrate with rule 
models.

4.4 Composition Model

4.4.1 Introduction
The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent, in 
particular those with interconnected elements in the same organized whole. This facilitates integration with business 
process runtimes and rule engines, as well as uniform performance, enactment, and execution across business process 
management suites. The Composition Model enables users and vendors to build libraries of orchestrations and 

  48                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



choreographies, including specialization of some orchestrations or choreographies from others.  It also enables users and 
vendors to define their own frameworks for recording data about ongoing orchestrations and choreographies, for 
example, how long they have been going, who is involved in them, and what resources they are using. The Composition 
Model provides general capabilities for representing:

1. The interconnection of elements due to their relation to the same other element. For example, the steps in a process 
are interconnected because they are all parts of the same process. Interconnections can differ depending on this 
common element. For example, two processes might have the same steps, but in a different order.

2. Interconnections that are composed of other interconnections. For example, the many fine-grained communications 
between businesses to set up a partnership may be aggregated into a single joint choreography when viewed at a high 
level.

3. Interconnections between interconnections. For example, when one communication happens before another during a 
choreography, it is a connection in time between two other connections.

4. User and vendor-defined characteristics of elements, such as cost, person responsible for them, and resources being 
consumed.

The Composition Model can be applied in many domains, including structural ones, but in BPDM it is applied to 
modeling of dynamics, specifically to orchestration and choreography.  In this domain the elements are steps in 
orchestrations, or interactions in choreographies, and the interconnections are relationships in time or transfers of 
information or physical objects between elements.  The elements of the Composition Model are specialized in the other 
BPDM packages for application to these areas.

The first subsection below is the basis for applying BPDM to business process execution and rules, and to understanding 
the specification in general.  The remaining subsections cover the major elements of the Composition Model.

4.4.1.1 Individuals, Models, and Modeling Languages

An individual is any uniquely identifiable thing.  For example, it can be an organization, a piece of hardware, or software 
component, or something more ephemeral like an information object, process, interaction, or event.  The only 
requirement is that it is distinguished from other individuals.  Individual processes and interactions occur at particular 
times, and are variously called performances, enactments, or executions.

A model describes what we would like from individuals (the model semantics).  For example, a model of a business 
specifies what is desired from an actual real world business.  Some businesses will satisfy these desires, some will not. 
Individuals that satisfy the model are said to conform to the model.  The rules for conformance are the semantics of the 
model.1

A modeling language consists of shorthands for expressing the semantics of a model.  Shorthands used in a model can be 
“expanded” to give the semantics.  For example, a common semantic pattern is to say that all individuals of one kind are

also of another kind.  A shorthand for this is sometimes called “generalization.”  Generalization might be used in a model 
to say that businesses are a generalization of small businesses. This is a shorthand for saying any individual that is a 
small business is also a business.2

Individuals exist at the M0 level in OMG's Model Driven Architecture, while models exist at the M1 level, and modeling 
languages at the M2 level.  The term “individual” in this specification refers only to elements that are not in models or 

1 The phrase “instance of” is sometimes used to mean the conformance of an individual to a particular model element (which is 
often called a “class”), but this terminology usually refers to classes as factories for creating instances, rather than classes as 
categories.  For example, if an individual Fido is a Dog, then Fido is also a Mammal, so conforms to both Dog and Mammal, even 
though normally Fido would not be called an instance of Mammal, because it was not “created” from Mammal.

2 The difference between shorthands and templates is that the expansion of templates are captured in a machine-understandable way, 
as part of the modeling language.  The expansion of shorthands are specified less formally.  Shorthands are more susceptible to 
misinterpretation than templates, leading to communication failures between users and lack of interoperability between tools.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              49



modeling languages, even though the contents of models and modeling languages are uniquely identifiable like any 
individual.  Similarly, the term “model” in this specification refers only to elements that are not individuals or modeling 
languages, even though a model language may be expressed as a model (metamodel, see below).  More examples and 
explanation are available in Sections 7.9 through 7.12 of the UML Infrastructure, http://doc.omg.org/formal/07-02-06.

A modeling language has two parts:

• The language syntax gives the names of the modeling shorthands and how they can be combined.  For example, 
generalization applies between exactly two kinds of things.  Syntax alone cannot determine model semantics, 
because it refers only to model elements, not individuals.3

• The language semantics specifies how shorthands are expanded into model semantics.  For example, 
generalization in a model expands to individuals of one kind of thing in the model also being individuals of the 
other.  Language semantics builds on syntax, but must refer to individuals to give a syntax its M0 meaning when 
the syntax is used in a model.

Some syntaxes are better for specifying language semantics than others. In particular, a syntax that identifies model 
elements categorizing individuals provides a better basis for specifying model semantics. This enables the language 
semantics to refer to individuals via the model elements that categorize them.  BPDM reuses the syntactical element 
“Classifier” from UML Infrastructure for this purpose.

4.4.1.2 Classifiers

Classifiers group individuals (uniquely identifiable M0 entities, see Individuals, Models and Modeling Languages) 
according to some commonality among them, which might be characteristics they can have or constraints they obey. 
Classifiers can cover any kind of entity, physical or computational, static or dynamic.  For example, the classifier Person 
groups individual people, like Mary and John.  The classifier declares commonalities among people, for example, they 
can have names and gender, or obey constraints, such as being genetically related to exactly two other people.  The terms 
“type” is also used to refer to classifiers, as in “John’s type is Person.”4  

Classifiers can group individual occurrences of dynamic entities (M0), such as processes and interactions.  For example, 
the classifier Order Process groups individual performances, enactments, or executions of the ordering, where each 
occurrence happens between particular start and end times. The classifier declares commonalities among the occurrences, 
for example, that they involve a product or service, or obey constraints, such as having certain steps taken in a certain 
order.

Generalization is a relationship between Classifiers indicating that M0 individuals of one classifier are also individuals of 
another classifier.  For example, business is a generalization of small business because individual small businesses are 
also individual businesses. Specialization is the opposite of generalization, for example, small business is a specialization 
of business.  Parts and constraints specified on the general type apply to all individuals conforming to specializations of 
that type, because those individuals also conform to the more general type.  For example, businesses in general attempt to 
make a profit, so small businesses do also.

4.4.1.3 Composites

Composites are Classifiers specifying the interconnections of individuals that are all related to the same other individual 
(M0).  For example, a company composite specifies the interconnections of departments within each individual company 
of that type (assuming it is modeled in a value chain manner, rather than just an organization chart).  Likewise, an 

3 A metamodel specifies syntax by omitting some aspects of the graphical or textual appearance of the language, such as geometric 
shapes or punctuation.  For example, a metamodel might have an element for kinds of things and another for generalization, but no 
mention of how generalization appears in a graphical or textual language. This is sometimes called “abstract syntax,” as 
distinguished from “concrete syntax,” which includes the detailed graphical or textual appearances.

4 This commonly used terminology is different from the UML Infrastructure, where Types are elements that specify the range of 
relations (TypedElements), and Classifiers specify the domain of relations (can own typed elements).  Classifiers are Types in the 
Infrastructure, enabling them to specify both the domain and range of typed elements.

  50                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

http://doc.omg.org/formal/07-02-06


orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

The things interconnected by a composite can have any kind of relation to the composite. They are not necessarily 
“contained,” “owned,” or “part of” the composite.  For example, choreographies are composites with the communicating 
businesses entities as “parts,” but the businesses entities are not contained by the choreography in any sense.

4.4.1.4 Parts

To clarify the meaning of “Part” in BPDM, it is important to distinguish two senses in ordinary English:

• Part as an individual, for example the Acme Furniture Company with a unique tax identification number.
• Part as a role, as in “part in a play.”

These are mutually defining.  Parts in the first sense (individuals) play parts in the second sense (“roles”).  For example, a 
person Mary (individual) may play the president (role) in the Acme Furniture Company.  Roles map an individual whole 
into another individual playing that role in the whole.  For example, the president role maps Acme Furniture Company to 
Mary.  (The term “role” is used informally in this section. It has a more specialized meaning in other packages of 
BPDM.)

Typed Parts in BPDM have the second meaning above.  Individuals playing a typed part must be of a certain kind 
(Classifier5), and play the part in the context of another type of thing (whole).  For example, an individual playing the 
president part must be a person, and must play the president within an individual company.6 Individuals playing parts can 
have any relation to the whole. They are not necessarily “contained,” “owned,” or “part of” the whole.  For example, a 
person might be modeled as a composite of anatomically contained parts, but still have other typed parts for relations to 
other people, such as spouses.  The typed part spouseOf will have individuals playing that role for other individuals, but 
the people are not contained within each other. Typed Parts are MultiplicityElements for restricting the number of 
individuals that play the part.  For example, a company might allow no more than five vice-presidents, but require a 
president, and a choreography might have an interaction that is optional.

Parts in BPDM are a generalization of Typed Parts to include elements in a composite that do not correspond to 
individuals (M0).  For example, process models often have an indicator that some steps happen at the same time.  This 
part of a process model does not correspond to anything identifiable in the M0 occurrences of the process. It just models 
the constraint that there are suboccurrences happening at the same time. Because of this, these parts do not have a type 
restriction like Typed Parts do.

Part Groups are Parts that collect together other Parts.  Part groups can share parts.  The meaning of part groups is given 
in the specializations of the Composition Model, for example, in the Behavior Model.

4.4.1.5 Part Connections

Connections between typed parts in the composition model specify links between M0 entities playing the typed parts in 
the same individual (M0).  For example, the reporting connection between the president of a company and the CEO 
means the person playing the president in a particular company will report to the person playing the CEO in the same

company.  Likewise, the temporal connection between one step and another in a process means that in each occurrence of 
that process, there is an occurrence of one step that happens after the occurrence of another.

Connections involving untyped parts do not have a predefined meaning in the Composition Model. They are given 
specialized interpretations in other packages of BPDM, depending on the parts being connected.  For example, parts of a 
process model indicating that some steps happen at the same time are untyped.  Connections to and from these parts 
require special interpretation to reflect this intention.

5 See footnote 50.

6 Typed parts are equivalent to what are sometimes called “properties” or “attributes.” In this terminology, an individual playing a 
part is called the “value” of the property or attribute. BPDM Typed Parts are a kind of UML Property.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              51



Part Connections can be treated as first-class parts in themselves, by defining classes that are subtypes of both Part 
Connection and Typed Part, as done in other BPDM packages. This provides connections that have parts, and 
connections to connections.  For example, choreographies are connections between business entities that are composed of 
many communications between the businesses. These communications are connections also, and occur in a certain order, 
which are temporal connections between the communications. Choreographies are the type of their M0 performances, 
enactments, or executions, which are also M0 links between the businesses. Typed connections require the modeler to 
specify which parts of the type correspond to which parts on the ends of the connection, see the Part Binding subsection 
below.

Directed Part Connections are Part Connections between two parts that facilitate traversal from one to the other in user 
(M1) models. Their source and target associations specify the top-level parts (not part paths) that are connected, as 
typically shown by the arrows in process diagrams.  For example, when one step is after another in a process, the arrow 
between them is modeled as a directed connection, with the earlier step at the source end, and the later step at the target 
end.  Connections in general can connect any number of parts.  For example, a business interaction can involve multiple 
companies.

Conditions may be applied to connections to limit when they apply.  For example, one step in a process may happen after 
another only when certain conditions are true as the process is executing. Irreflexive Conditions are for restricting 
connections to apply at M0 only between distinct M0 individuals playing the part (or playing the last part in the path). It 
applies only to connections between typed parts, or paths with at least one typed part.

4.4.1.6 Part Paths

Some connections are between parts of parts.  For example, the temporal connections between steps in a process typically 
indicate that the start of one step is after the end of another, but they might also indicate that the start of one step is after 
the start of another, or the end of one step is after the end of another, and so on.  To distinguish these cases, the parts on 
each end of the connection must specify which event (start, end) it is referring to “inside” the step on that end.7  In 
BPDM individual events at M0 can be identified by parts, and the combination of the step and the event part is a Part 
Path.

Part Paths enable connections to refer to parts of parts, for example to connect the end and start events in two steps of a 
process.  For generality, it enables connections to refer to parts of parts to any depth.  For example, a part path might 
refer to the time at which the start event in a step occurs, where the time of an event is modeled as a part of the event. 
This defines a path through three parts.8  Part Paths can have a short cut to the last element in the path (final target), for 
convenience. Part Paths and Parts are generalized to Connectable Elements, which are the ends of connections.  This 
enables connections not requiring part paths to refer directly to parts, rather than to part paths with only one element.

4.4.1.7 Derivation and Selection

Derivation is a relationship between Composites that replaces some parts with others.  There is no restriction on the 
number or kinds of parts that can be replaced by a derived composite.  Derivation is useful for exploring alternative 
configurations for a composite. There are no parts or constraints specified on a composite type that are guaranteed to 
apply to individuals of derived types. A selector specifies the individuals playing a Typed Part. This might be determined 
by a rule for each M0 whole that contains the part.  A special kind of rule is that the individual must be drawn from a set 
of predetermined individuals.  

4.4.2 Metamodel Specification

The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent.  It 
facilitates integration with business process runtimes and rule engines, as well as uniform performance, enactment, and 
7 The step must be specified as a part, rather than just the type of thing done at the step, because a process might have more than one 

step that does the same thing.

8 A path can contain at most one untyped part, which must be at the end of the path, otherwise it would not be possible to navigate 
through to the end of the path.

  52                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



execution across business process management suites. The Composition Model enables users and vendors to build 
libraries of orchestrations and choreographies, including specialization of some orchestrations or choreographies from 
others.  It also enables users and vendors to define their own frameworks for recording data about ongoing orchestrations 
and choreographies, for example, how long they have been going, who is involved in them, and what resources they are 
using.

4.4.2.1 Composition Model Diagram

Figure 46 - Composition Model Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              53



4.4.2.2 Directed Part Connection Diagram

Figure 47 - Directed Part Connection Diagram

  54                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.4.2.3 Part Connection & Condition Diagram

Figure 48 - Part Connection & Condition Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              55



4.4.2.4 Derivation Diagram

Figure 49 - Derivation Diagram

4.4.2.5 Selection Diagram

Figure 50 - Selection Diagram

4.4.2.6 Composite

Package: Composition Model
isAbstract: Yes
Generalization: “Classifier” 

Description

A Composite is a Classifier which has an internal structure. It specifies the connections of individuals that are all related 
to the same other individual (M0). For example, a company type specifies the connections of departments within each 
individual company of that type (assuming it is modeled in a value chain manner, rather than just an organization chart). 
Likewise, an orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

  56                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Associations

derivation : Derivation [*] Derivation that the Composite is a source of
This is a derived union.
Subsets ownedElement 

owned connectable element : Connectable Element [*] Connectable Element owned by the Composite 
This is a derived union.
Subsets feature 

owned connection : Part Connection [*] Part Connection owned by the Composite
This is a derived union.
Subsets feature 

4.4.2.7 Connectable Element

Package: Composition Model
isAbstract: Yes
Generalization: “Feature” 

Description

Connectable Element is the subject of relations between parts through Part Connection. Connectable Element is a 
capability shared by Part and Part Path.  Individuals playing parts can have any relation to the whole, they are not 
necessarily "contained," "owned," or "part of" the whole. 

Associations

part connection : Part Connection [*] Connection connecting the Connectable Element to one or more 
other Connectable Elements.
This is a derived union. 

4.4.2.8 Derivation

Package: Composition Model
isAbstract: Yes
Generalization: “Element” 

Description

The Parts of the derived to Composite are the same as the on derived from Composite, except for replaced or removed 
Parts, as specified by derivation trace , or added parts.

Associations

derivation trace : Part Replacement [*] Part Replacement owned by the Derivation
This is a derived union.
Subsets ownedElement 

derived to : Composite [1] Derived Composite
This is a derived union. 

4.4.2.9 Directed Part Connection

Package: Composition Model
isAbstract: Yes

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              57



Generalization: “Part Connection” 

Description

A Directed Part Connection is a kind of Part Connection for only two parts, when it is convenient to have standard 
names referring to the parts on each end (source and target). 

Directed Part Connections are designed to facilitate traversal of Part Connections. Their source and target associations 
specify the top-level parts (not Part Paths) that are connected, as typically shown by the arrows in process diagrams. For 
example, when one step is after another in a process, the arrow between them is modeled as a directed connection, with 
the earlier step at the source part, and the later step at the target part.

Associations

source sub origin : Part [0..1] This is a derived union.
Subsets target part 

source : Part [1] Part that is the source of the Directed Part Connection
This is a derived union.
Subsets connected element 

target sub destination : Part [0..1] This is a derived union.
Subsets target part 

target : Part [1] Part that is the target of the Directed Part Connection
This is a derived union.
Subsets connected element 

Constraint

[1] A Directed Part Connection must have exactly two Connectable Elements (target and source); no more.

4.4.2.10 Individual

Package: Composition Model
isAbstract: No
Generalization: “Element” 

Description

Individual instance

4.4.2.11 Individual From Set

Package: Composition Model
isAbstract: No
Generalization: “Selector Specification” 

Description

An Individual From Set is a kind of Selector Specification that provides a list of Individual as the potential Type of a 
Typed Part.

Associations

member : Individual [*] Individual member of a  Individual From Set selector specification 

  58                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.4.2.12 Irreflexive Condition

Package: Composition Model
isAbstract: No
Generalization: “Opaque Condition” 

Description

An Irreflexive Condition is a kind of Opaque Condition that restricts the connection to apply at M0 only to distinct M0 
individuals playing the part (or playing the last part in the path). It applies only to connections between Typed Parts, or 
Part Paths with at least one Typed Part. 

4.4.2.13 Part

Package: Composition Model
isAbstract: Yes
Generalization: “Connectable Element” 

Description

A Part is a Connectable Element that is an element of the structure of a Composite.

Associations

source connection : Directed Part Connection [*] Directed Part Connection that the Part is the target of. 
This is a derived union.
Subsets part connection 

target connection : Directed Part Connection [*] Directed Part Connection that the part is the source of. 
This is a derived union.
Subsets part connection
 

4.4.2.14 Part Connection

Package: Composition Model
isAbstract: Yes
Generalization: “Feature” 

Description

A  Part Connection is a Feature of a composite used to connect its Connectable Elements. A Part Connection can 
connect any number of parts. For example, a business interaction can involve multiple companies.

When a Part Connection is connecting Typed Part, its specifies links between M0 entities playing the typed parts. For 
example, the reporting connection between the president of a company and the CEO means the person playing the 
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal 
connection between one step and another in a process means that in each occurrence of that process, there is an 
occurrence of one step that happens after the occurrence of another.

Conditions may be applied to Part Connections to limit when they apply. For example, one step in a process may 
happen after another only when certain conditions are true as the process is executing. 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              59



Associations

connected element : Connectable Element [2..*] Connectable Element connected by a Part Connection
This is a derived union. 

guard : Condition [0..1] Condition evaluated at runtime to determine if the Part 
Connection is enabled.
Subsets constraining condition
Subsets ownedElement 

4.4.2.15 Part Group

Package: Composition Model
isAbstract: Yes
Generalization: “Part” 

Description

A Part Group is a kind of Connectable Element that collects other Connectable Elements together. A Part Groups 
can share Connectable Elements. The meaning of part groups is given in the specializations of the Composition Model, 
for example, in Behavior Model.

Associations

enclosed part : Part [*] Part that is enclosed in a Part Group. A Part can be enclosed in 
multiple Part Groups
This is a derived union. 

BPMN Notation

Figure 51 - Part Group Notation

4.4.2.16 Part Path

Package: Composition Model
isAbstract: Yes
Generalization: “Connectable Element” 

  60                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Part Group



Description

A Part Path connects to a Part of a nested Composite.
An instance of Part Path is introduced for each traversed part to a target part.

The purpose of Part Path is to provide access to parts in a nested composite structure. All models based on the 
composition model needs to have access to parts within parts, for example:

• Data elements within data elements
• Roles within roles
• Protocols within protocols
• Activities within activities

Part Path and Part are generalized to Connectable Element, which are the is of Part Connection. This enables 
connections not requiring part paths to refer directly to parts, rather than to part paths with only one element.

Associations

final target : Part [0..1] leaf Part to which a part path chain is pointing at
This is a derived association. 

target part : Connectable Element [0..1] Connectable Element to which the part path is pointing at.
This is a derived union. 

traversed part : Typed Part [1] Typed Part being the source of the part path. This part is traversed 
by the part path in order to reach the target part.
This is a derived union. 

Constraint

[1] The target part must be a Part of the Composite that owns the target part 

[1] The traversed part must be a Typed Part which type is a Composite.

4.4.2.17 Part Replacement

Package: Composition Model
isAbstract: Yes
Generalization: “Element” 

Description

A Part Replacement is used to specify the replacement or removal of Parts in derived to Composite of a Derivation.

Associations

derived from : Part [*] This is a derived union. 

derived to : Part [*] This is a derived union. 

4.4.2.18 Selector Specification

Package: Composition Model
isAbstract: Yes

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              61



Generalization: “ValueSpecification” 

Description

A Selector Specification is a query mechanism used to specify the individuals playing a Typed Part.

4.4.2.19 Typed Part

Package: Composition Model
isAbstract: Yes
Generalization: “Part” “Property” 

Description

A Typed Part is a kind of Part  that specifies that  individuals playing the Part in the Composite must be of a  certain 
kind (Type). For example, an individual playing the president part must be a person, and must play the president within 
an individual company.

Typed Part is a Property for restricting the number of individuals that play the part.  For example, a company might 
allow no more than five vice-presidents, but require a president, and a choreography might have an interaction that is 
optional.

Associations

partType : Type [1] Type of the Typed Part
This is a derived union.
Subsets type 

selection rule : Selector Specification [*] Selector Specification used to specify the individual that plays the 
Typed Part
Subsets ownedElement 

traversing  path : Part Path [*] Part Path that traverses the Typed Part in order to reach a part of its 
composite type.
This is a derived union. 

Constraint

[1] The default values for lower and upper (from Abstraction:MultiplicityElement) are 0 and * respectively.
context           Typed        Part::lower: Integer
init: 0
context           Typed        Part::upper: UnlimitedInteger
init: *

4.4.2.20 Instance: Irreflexive Condition

Class: Irreflexive Condition

Description

Links

Played End Opposite End
Irreflexive Condition:guard   end/abort

  62                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.5 Course Model

4.5.1 Introduction
The Course Model extends the Composition Model for dynamics.  It introduces connections for time ordering of parts 
(Succession), including time ordering of process lifecycle events, such as starting and ending a process. For example, a 
succession connects one step in a process to another to indicate that the second step happens sometime after before the 
first. The same applies to messages in choreography, and to process lifecycle events, for example ,a process always ends 
sometime after it starts. This facilitates the integration of rule and monitoring systems with models of dynamics, such as 
orchestration and choreography. The model enables users and vendors to define their own libraries of processes, with 
their own categorizations and attributes, such as how long a process has been running, and the resources it is using. They 
can also define their own life cycle events, for example, to define finish statuses and taxonomy of errors.

The Course Model extends the Composition Model with:

• General categories for dynamic entities that extend over time (Happenings Over Time) producing entities that 
occur at a point in time (Events).

• Dynamic entities that produce lifecycle events, such as starting and ending, enabling the events to be ordered in 
time (Cousers and Behavioral Events).

• A user (M1) library defining a behavior that produces common behavior lifecycle events, such starting and 
ending (Behavior Occurrence).

• Conditions for time events and changes in facts.

Happenings are Classifiers for the most general notion of dynamic entities, including processes and events.  Happenings 
at M1 are classifiers for individual M0 happening occurrences, such as individual performances, enactments,or 
executions of processes, and occurrences of events.  Happenings Over Time and Events are Happenings that extend over 
time, or as occur at a point in time, respectively. Happenings over time produce events, for example, the revenue of a 
company changes during a business process. A dynamic entity could be either a happening over time or an event, 
depending on the viewpoint of the application.  For example, a package arriving at a business might be treated as a 
process of signing for it, inspecting it, and routing it to the addressee or it might be treated as simply occurring on a 
particular day with no additional detail.

Courses are Composites that are also Happenings Over Time.  As composites, courses have Happening Parts, which are 
parts played by happenings. These enable individual M0 courses to be linked to individual M0 happenings, such as 
individual performances, enactments, or executions of subprocesses and individual M0 lifecycle events.  As composites, 
courses also have Succession connections representing that one part of the course "follows" another in time, and possibly 
establishes constraints on such followings (Course Parts are introduced just to categorize those Parts that can be related 
by Successions).  Immediate Successions are Successions for specifying that one part of the course immediately follows 
another, as opposed to following sometime afterwards.  Successions have different meanings for typed and un-typed 
parts:

• For typed course parts, such as Happening Parts, Succession means that an individual dynamic entity playing one 
typed part will happen at the same time or after another dynamic entity playing another typed part as the course 
proceeds. These dynamic entities might be steps in a process, interactions in choreography, or events due to 
these. Immediate Successions are Successions where the dynamic entities being connected happen at the same 
time.  For example, two steps in a process might be required to start at the same time.  Typed course parts specify 
conditions incoming successions must satisfy for dynamic entities playing a part to start, and conditions outgoing 
successions must satisfy when dynamic entities playing a part come to an end.  Predefined conditions requiring 
all successions to be satisfied (AllSuccession) or only one succession (OneSuccession) are provided in an M1 
model library.

• For un-typed course parts, such as Gateways, Successions represent more complex specifications of how 
dynamic individuals playing typed parts are ordered in time. Parallel Splits are Gateways indicating that the 
dynamic individuals playing parts following them happen after the dynamic individuals playing the part 
preceding them. Parallel Joins indicate that the parts (in the sense of individuals) following them happen after the 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              63



parts preceding them. Exclusive Splits indicate that exactly one of the parts following them will occur after the 
part preceding them. Exclusive Joins indicate that the part following them will occur after each part that occurs 
preceding them. Successions with un-typed parts at one or both ends may not have part paths at those ends, 
including qualification, because there will be no individual playing that part (see Composition Model).

As happenings over time, courses produce Course Events, which are process lifecycle events, such as starting and ending. 
Event Parts are Happening Parts identifying events for individual M0 courses. For example, an event part for shipping a 
product can identify the starting event for each individual shipment, such as 8am on a particular day. Event Parts are also 
Course Parts, enabling them to be connected by Successions.  For example, an event part identifying the end of a course 
succeeds the event part identifying the start. This means the ending of each individual M0 course occurrence, such as an 
individual shipment, is after the start of that same individual course.

A user (M1) library in the Course Model captures commonly needed aspects of courses as instances of classes in the 
Course Model. The library defines:

• Course Events representing process lifecycle events, specifically starting and ending of individual courses.
• A taxonomy of M0 happening occurrences rooted at Happening Occurrence, which is a generalization of all M1 

dynamic models, including all orchestration and choreography models.  All individual (M0) happening 
occurrences conform to Happening Occurrence, which is the most abstract M1 model of happenings.  It 
generalizes Happening Over Time Occurrences and Event Occurrences, which generalize Course Occurrences 
and Course Event Occurrences, respectively.

• Event Parts of Course Occurrence for the various Course Events, such as start and end parts. These are typed by 
the M1 events Start Event and End Event. They can be the source or target for successions, see below.

• Successions between the Event Parts above for M0 time ordering, such as the end of every course being after the 
start.

Successions can order the event parts of happening parts, such as the start and end parts of packing or shipping in a 
delivery process.  For example, a succession might have the packing part as source and the end part as source event part, 
while the shipping part is the target, and the start part is the target event part. This means packing must end before 
shipping starts, specifically, the ending of each individual M0 packing occurrence within a delivery occurrence is before 
the start of that same individual course.  Other combinations of event parts in succession might be one happening part 
starts after another starts, ends after another ends, or ends after another starts. For convenience, successions that do not 
specify source or target event parts will have the same effect as successions where these are the end parts and start parts, 
respectively. Successions do not need to have happening parts as source and target, they can have untyped course parts 
also, such as gateways. 
 
The library enables users and extenders of BPDM to define their own:

• Parts of courses, for example, a business monitoring model or business runtime model can specialize Course 
Occurrence to introduce typed parts for the time an individual process starts, how long it has been running, and 
the resources it is using.

• Taxonomies of courses, for example, a general business process can be specialized for small and large 
businesses, or business in specific sectors, such as health care or retail. This can be the framework for libraries of 
reusable business processes.

• Taxonomies of events, for example, to define kinds of errors and introduce error codes.
• Taxonomies of event parts, for example, to take different steps depending on which error ends a course.

The Course Events in the user library are for the starting and ending of courses (Start Event and End Event). Individual 
(M0) course events play event parts as they occur. The user library (M1) defines event parts for the event types in the 
library, in particular, individual start events at M0 play start parts, and individual end events at M0 play end parts.  Each 
individual (M0) course occurrence will have exactly one start event and one end event. Inversely, each individual course 
event must play an event part in exactly one individual course occurrence.  For example, an M0 start event plays the start 
part for exactly one individual course occurrence.

  64                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Successions in Course Occurrences inherit to all user-defined course definitions (M1) and all individual (M0) course 
occurrences (all performances, enactments, and executions). These establish the time order of process lifecycle events, 
for example, that ending happens after starting. Successions that target parts typed by the Start Event specify a new 
individual (M0) course. For example, a process definition may indicate that an incoming message creates a new 
execution of a process by a succession from the message receipt to the start part in the user library.  Event parts can be 
the source or target of Successions, for example, to specify different steps that follow normal and abnormal ends.

Event Conditions are Conditions for specifying that an Event must occur in the context of a particular Happening Over 
Time for the condition to hold. It generalizes Time events and changes in Facts (also see the Behavior Model). Event 
Conditions specify that an individual (M0) happening over time must produce a particular kind of event (defined at M1) 
for the condition to hold. Time Event Condition is specified by referring to a Clock, which is a Happening Over Time 
that produces Time Events. Time Events have a property for specifying the time in a detailed expression. Fact Change 
Conditions refer to general propositions becoming true or false due to changes in M0 facts. It is used to integrate with 
models of rules.

4.5.2 Metamodel Specification

The Course Model extends the Composition Model to connect parts in time (Succession). For example, a succession 
connects one step in a process to another to indicate that the second step happens after the first. The same applies to 
messages in choreography.

4.5.2.1 Happening and Event Diagram

Figure 52 - Happening and Event Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              65



4.5.2.2 Time Event  Diagram

Figure 53 - Time Event  Diagram

4.5.2.3 Event Condition  Diagram

Figure 54 - Event Condition  Diagram

  66                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Happening Over
 Time

Time Event

+timeExpression[0..1]:String

TimeDate Event

+timedate[1]:UnlimitedNatural

Relative TimeDate Event

+duration[1]:UnlimitedNatural

Cycle Event

+timedatePeriod[1]:UnlimitedNatural

Clock

 
*

{subsets induced event[*]}

produced time event

0..1

{subsets event context[*]}
time event producer

1

starting event

Event*
event context

*

induced event

Event

 



4.5.2.4 Time Event Condition  Diagram

Figure 55 - Time Event Condition  Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              67



4.5.2.5 Fact Change Condition  Diagram

Figure 56 - Fact Change Condition  Diagram

  68                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.5.2.6 Course Diagram

Figure 57 - Course Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              69



4.5.2.7 Gateway Diagram

Figure 58 - Gateway Diagram

  70                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.5.2.8 Event Course Diagram

Figure 59 - Event Course Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              71



4.5.2.9 Common Infrastructure Library: Happenings, Events and Conditions

Figure 60 - Common Infrastructure Library: Happenings, Events and Conditions

  72                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.5.2.10 Common Infrastructure Library: 'Happening Occurrences'

Figure 61 - Common Infrastructure Library: 'Happening Occurrences'

4.5.2.11 Clock

Package: Course Model
isAbstract: No
Generalization: “Happening Over Time” 

Description

A Clock is a kind of Happening Over Time that produces Time Events.

Associations

produced time event : Time Event [*] Time Event that occurs in the context of a Clock
Subsets induced event 

4.5.2.12 Course

Package: Course Model
isAbstract: No
Generalization: “Composite” “Happening Over Time” 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              73



Description

A Course is an ordered Succession of Happening Parts
A Course is a Composite that has connections representing that one part of the course "follows" another in time, and 
possibly establishes constraints on such followings (Succession).

Associations

induced course event : Course Event [*] Events that can occur in the context of this Course.
The set of these Events is derived from the Event Part owned by 
the Course. 
This is a derived association.
Subsets induced event 

owned course part : Course Part [*] Course Part owned by the Course
This is a derived union.
Subsets owned connectable element 

owned event part : Event Part [*] Event Part owned by the Course
Subsets owned course part 

owned gateway : Gateway [*] Gateway owned by the Course.
Subsets owned course part 

owned succession : Succession [*] Succession owned by the Course
Subsets owned connection 

4.5.2.13 Course Event

Package: Course Model
isAbstract: 
Generalization: “Event” 

Description

A Course Event is a kind of Event that occurs as part of the lifecycle of a  Course, such as Start Event, End Event. 
The Common Infrastructure provides a predefined library of Course Events.

Associations

course event context : Course [1] Event that can occur in the context of the Course
This is a derived association.
Subsets event context 

4.5.2.14 Course Part

Package: Course Model
isAbstract: Yes
Generalization: “Part” 

Description

A Course Part is a kind of Connectable Element that defines a stage in a Course. It can be connected to Succession as 
a predecessor or successor element.

  74                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Associations

next succession : Succession [*] Succession that enables the Course Part as its predecessor .
Subsets target connection 

previous succession : Succession [*] Succession that enables the Course Part as its successor .
Subsets source connection 

4.5.2.15 Cycle Event

Package: Course Model
isAbstract: No
Generalization: “Time Event” 

Description

A Cycle Event is a kind of Time Event that define the occurrence of a cycle in time.

Attributes

timedatePeriod: UnlimitedNatural [1]

4.5.2.16 Event

Package: Course Model
isAbstract: No
Generalization: “Happening” 

Description

An Event is a Happening for dynamic entities occurring at a point in time.

Associations

event context : Happening Over Time [*] Happening Over Time where the Event can occur 

4.5.2.17 Event Condition

Package: Course Model
isAbstract: Yes
Generalization: “Condition” 

Description

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular Happening 
Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of Event) of a particular 
volcano (instance of Happening Over Time).

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              75



Associations

conditioning event : Event [1] Event that is the source of the Event Condition.
This is a derived union. 

conditioning happening over time : Happening 
Over Time [0..1]

Happening Over Time where the conditioning event should occur. 
This is a derived union. 

4.5.2.18 Event Part

Package: Course Model
isAbstract: 
Generalization: “Happening Part” 

Description

An Event Part identifies Event (such as Start Event or End Event) for an individual Course.  An Event Part is also a 
Happening Part, enabling it to be connected by Successions. 

Associations

event part type : Event [1] Event that is the type of the Event Part.
Subsets happening part type 

4.5.2.19 Exclusive Join

Package: Course Model
isAbstract: No
Generalization: “Gateway” 

Description

An Exclusive Join is a Gateway indicating that the part following it will occur after each part that occurs preceding it. 

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Gateway. 

Figure 62 - Exclusive Merge Notation

  76                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



4.5.2.20 Exclusive Split

Package: Course Model
isAbstract: No
Generalization: “Gateway” 

Description

Exclusive Split is a Gateway indicating that exactly one of the parts following it will occur after the part preceding it.

Associations

default : Succession [0..1] Succession enabled by default if no other next succession 
connected to the Exclusive Split has been enabled. 

owned expression : ValueSpecification [0..1] splitting expression owned by the Exclusive Split.
Subsets ownedElement
Subsets splitting expression 

splitting expression : ValueSpecification [0..1] ValueSpecification that specifies the expression shared by 
the guards on the outgoing successions of the Exclusive 
Split .These guards must be Fact Conditions that reference 
this shared ValueSpecification as their evaluated expression. 

Constraint

The guard s of the next succession s of the Exclusive Split must be Fact Conditions that have their evaluated 
expression  be the same as the splitting expression  of the Exclusive Split.

self.next succession ->guard ->evaluated expression  in self. splitting expression 

[1] The default Succession must be one of the Successions connected to the Exclusive Split as a next succession.

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway,  of the generic Gateway. The Exclusive Split MAY 
use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other Gateways. 
This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a 
Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without an indicator. 

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line 
representing the Succession.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              77



Figure 63 - Exclusive Split Notation

4.5.2.21 Fact Change

Package: Course Model
isAbstract: No
Generalization: “Event” 

Description

A Fact Change is a kind of Event that manifests a change in the evaluation of a Statement.

BPMN Notation

Figure 64 - Fact Change Notation

  78                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Alternative 1

Alternative 2

Default Alternative

Alternative 1

Alternative 2

Default Alternative

X

Fact Change



4.5.2.22 Fact Change Condition

Package: Course Model
isAbstract: No
Generalization: “Event Condition” 

Description

A Fact Change Condition refers to general propositions becoming true or false due to changes in M0 facts. It is used to 
integrate with models of rules.

Associations

conditioning fact change : Fact Change [1] Fact Change that, when it occurs, make the Fact Change Condition 
evaluate to true
Subsets conditioning event 

conditioning statement : Statement [1] Statement that the Fact Change Condition is evaluating the change 
of. 

4.5.2.23 Gateway

Package: Course Model
isAbstract: Yes
Generalization: “Course Part” 

Description

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals 
playing Happening Parts are ordered in time. The particular specifications are given in subtypes. At runtime, Gateways 
don't have any execution trace. 

Associations

next gateway succession : Succession [*] Succession that enables the Gateway as its predecessor 
gateway.
Subsets next succession 

previous gateway succession : Succession [*] Succession that enables the Gateway as its successor gateway.
Subsets previous succession 

BPMN Notation

A Gateway is represented by a diamond that has been used in many flow chart notations for exclusive branching and is 
familiar to most modelers. The diamond MUST be drawn with a single thin black line. It is not a requirement that 
predecessor and successor Successions must connect to the corners of the diamond. Successions can connect to any 
position on the boundary of the Gateway.

The shape of the different sub-types of Gateway are differentiated by an internal marker. This marker MUST be placed 
inside the shape, in any size or location, depending on the preference of the modeler or modeling tool vendor.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              79



Figure 65 - Gateway Notation

4.5.2.24 Happening

Package: Course Model
isAbstract: No
Generalization: “Classifier” 

Description

A Happening is a Classifier for dynamic entities.

4.5.2.25 Happening Over Time

Package: Course Model
isAbstract: No
Generalization: “Happening” 

Description

A Happening Over Time is a Happening for dynamic entities that are treated as extending over time and that are 
contexts for Events.

Associations

induced event : Event [*] Event that occurs in the context of the Happening Over Time 

4.5.2.26 Happening Part

Package: Course Model
isAbstract: Yes
Generalization: “Course Part” “Typed Part” 

Description

A Happening Part is a kind of  Course Part that is also a Typed Part where the type is a Happening. It is a stage or 
interval in a development or Course.

Happening Parts are different from other Course Parts as they are the only one that have occurrence trace at runtime.

Associations

happening part type : Happening [1] Happening that is the type of the Happening Part.
This is a derived union.
Subsets partType 

  80                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

Gateway



next succession condition : Condition [1] conditions next succession  (outgoing) must satisfy when 
dynamic entities playing a part come to an end.
Subsets constraining condition 
Default: All Successions

previous succession condition : Condition [1] condition previous succession  (incoming) must satisfy for 
dynamic entities playing a part to start, 
Subsets constraining condition 
Default: One Succession

4.5.2.27 Immediate Succession

Package: Course Model
isAbstract: Yes
Generalization: “Succession” 

Description

A Immediate Succession is a kind of Succession that has the following execution semantic: successor immediately 
follows its predecessor.

4.5.2.28 Parallel Join

Package: Course Model
isAbstract: No
Generalization: “Gateway” 

Description

Parallel Join is a Gateway indicating that the parts (in the sense of individuals) following it happen after the parts 
preceding them.

BPMN Notation

The Parallel Join uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus sign 
and is placed within the Gateway diamond to distinguish it from other Gateways.

Figure 66 - Parallel Join Notation

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              81

+



4.5.2.29 Parallel Split

Package: Course Model
isAbstract: No
Generalization: “Gateway” 

Description

Parallel Split is a Gateway that indicates that the dynamic individuals playing parts following them happen after the 
dynamic individuals playing the part preceding them.

BPMN Notation

The Parallel Split uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus sign 
and is placed within the Gateway diamond to distinguish it from other Gateways.

Figure 67 - Parallel Split Notation

4.5.2.30 Relative TimeDate Event

Package: Course Model
isAbstract: No
Generalization: “Time Event” 

Description

A Relative TimeDate Event is a kind of TimeDate Event that defines a change in time for a relative start point in time.

Attributes

duration: UnlimitedNatural [1]

Associations

starting event : Event [1] Event which occurrence is the beginning of the Relative TimeDate 
Event 

  82                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

+



4.5.2.31 Succession

Package: Course Model
isAbstract: No
Generalization: “Directed Part Connection” 

Description

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A 
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such 
followings. It can order the Event Part of its Happening Parts such as their Start or End.

Succession allows any combination of Event Part to be connected.

End -> Start
Start  -> Start
Start -> Abort
etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as Gateway, 
but it must have something on each end.  

For convenience, a Succession that does not specify source event part or target event part will have the same effect as 
a Succession where these are respectively the End and Start.

Associations

predecessor gateway : Gateway [0..1] Gateway that comes before another Course Part in a Succession.
Subsets predecessor 

predecessor : Course Part [1] Course Part that comes before another Course Part in a Succession.
Subsets source 

source event part : Event Part [0..1] Event Part of the predecessor Happening Part that is connected 
through the Succession.
Subsets source sub origin 

successor gateway : Gateway [0..1] Gateway that comes after another Course Part in a Succession.
Subsets successor 

successor : Course Part [1] Course Part that comes after another Course Part in a Succession.
Subsets target 

target event part : Event Part [0..1] Event Part of the successor Happening Part that is connected 
through the Succession.
Subsets target sub destination 

Constraint

[1] The source event part must be one of the Events of the Course that is the type of the predecessor.

      processing step self.source event part  in self.predecessor behavioral step->step type ->owned event
      part 

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              83



[1] The target event part must be one of the Events of the Course that is the type of the successor processing.

      step self.target event part in self.successor behavioral step->step type ->owned event part 

BPMN Notation

A Succession is line with a solid arrowhead that MUST be drawn with a solid single line 

Figure 68 - Succession Notation

Non Normative Notation

A Succession with a Condition of type Fact Change Condition is drawn as a line covered by the shape the conditioning 
Fact Change. The line has a solid arrowhead and MUST be drawn with as solid single line.

Figure 69 - Succession with Fact Change Condition

A  Succession with a Condition of type Time Event Condition is drawn as one line covered by the shape the 
conditioning Time Event.  The line has a solid arrowhead and MUST be drawn with a solid single line. 

Figure 70 - Succession with Time Event Condition

4.5.2.32 Time Event

Package: Course Model
isAbstract: No
Generalization: “Event” 

Description

A Time Event specifies a point in time that is a source of interest. 

Attributes

timeExpression: String [0..1] A timeExpression represents a time value. 

Associations

time event producer : Clock [0..1] Clock that generates the Time Event
Subsets event context 

  84                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

A succession

A succession with Fact Change Condition

A succession with Time Change Condition



BPMN Notation

A Time Event is represented by a clock

Figure 71 - Time Event Notation

4.5.2.33 Time Event Condition

Package: Course Model
isAbstract: No
Generalization: “Event Condition” 

Description

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time Event 
Condition  is specified by referring to a Clock.

Associations

conditioning clock : Clock [0..1] Clock that is the Happening Over Time context producing the 
conditioning time event that is the source of the Time Event 
Condition.
Subsets conditioning happening over time 

conditioning time event : Time Event [1] Time Event that is the source of the Time Event Condition.
Subsets conditioning event 

4.5.2.34 TimeDate Event

Package: Course Model
isAbstract: No
Generalization: “Time Event” 

Description

A TimeDate Event is a kind of Time Event that manifest a date or time change.

Attributes

timedate: UnlimitedNatural [1]

4.5.2.35 Instance: All Successions
Class: Opaque Condition

Description

Condition requiring all successions to be satisfied before the execution of a Happening Part.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              85

Time Event



Links

Played End Opposite End
All Successions:owningPackage owningPackage  Common Infrastructure Library

4.5.2.36 Instance: becomes false

Class: Fact Change

Description

Links

Played End Opposite End
becomes false:packagedElement owningPackage  Common Infrastructure Library

4.5.2.37 Instance: becomes true

Class: Fact Change

Description

Links

Played End Opposite End
becomes true:packagedElement owningPackage  Common Infrastructure Library

4.5.2.38 Instance: Course Event Occurrence

Class: Course Event

Description

Links

Played End Opposite End
Course Event Occurrence: general  Event Occurrence
Course Event Occurrence:general   Start Event
Course Event Occurrence:general   End Event
Course Event 
Occurrence:packagedElement

owningPackage  Common Infrastructure Library

Course Event Occurrence:induced 
course event

course event context  Course Occurrence

4.5.2.39 Instance: Course Occurrence

Class: Course

Description

Course Occurrence is a Course that is the generalization of all M1 Courses, including all orchestrations and 
choreographies.

  86                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Course Occurrence introduces M1 events for starting and ending and a succession between them that is inherited to all 
M1 courses.  All individual (M0) courses conform to Course Occurrence, which is the most abstract M1 model of 
Courses.

Links

Played End Opposite End
Course Occurrence: general  Happening Over Time Occurrence
Course Occurrence:course event context induced course event  Course Event Occurrence
Course Occurrence:event part owner owned event part  End
Course Occurrence:event part owner owned event part  Start
Course Occurrence:general Behavior Occurrence
Course Occurrence:owner course owned succession  start-end
Course Occurrence:packagedElement owningPackage  Common Infrastructure Library

Constraint

[1] Start and End event parts cannot have the same values
not self.Start = self.End

Non Normative Notation

Figure 72 - Course Occurrence Diagram

4.5.2.40 Instance: End Event

Class: Course Event

Description

End Event is a Event that manifests the end of a Course.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              87

Course Occurrence

Start End

Happening Occurence

Happening Over Tim e Occurrence Event Occurrence



Links

Played End Opposite End
End Event: general  Course Event Occurrence
End Event:event part type event usage  End
End Event:general Normal End Event
End Event:general Abnormal End Event
End Event:packagedElement owningPackage  Common Infrastructure Library

4.5.2.41 Instance: End

Class: Event Part

Description

Links

Played End Opposite End
End:event usage event part type  End Event
End:owned event part event part owner  Course Occurrence
End:subsettedProperty Abnormal End
End:subsettedProperty Normal End
End:successor previous succession  interationend-end
End:successor previous succession  startseq-end
End:successor previous succession  compensate-end
End:successor previous succession  cancel-end
End:successor previous succession  start-end

BPMN Notation

The shape of the End instance of Event Part is drawn as a circle that MUST be drawn with a single thick black line. 

Figure 73 - Event Part : End Notation

4.5.2.42 Instance: Event Occurrence

Class: Event

Description

Event Occurrence is an Event that is the generalization of all M1 events, including all events induced by orchestrations 
and choreographies.  All individual (M0) occurrences of events conform to Event Occurrence, which is the most abstract 
M1 model of events.

  88                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 

End Event Part



Links

Played End Opposite End
Event Occurrence: general  Happening Occurrence
Event Occurrence:general Course Event Occurrence
Event Occurrence:induced event event context  Happening Over Time Occurrence
Event Occurrence:packagedElement owningPackage  Common Infrastructure Library

4.5.2.43 Instance: Happening Occurrence

Class: Happening

Description

Happening Occurrence is a Happening that is the generalization of all M1 happenings over time and events, including 
all orchestrations and choreographies and events induced by them. All individual (M0)
occurrences of happenings over time and events conform to Happening Occurrence, which is the most abstract M1 model 
of occurrence.

Links

Played End Opposite End
Happening Occurrence:general Event Occurrence
Happening Occurrence:general Happening Over Time Occurrence

4.5.2.44 Instance: Happening Over Time Occurrence

Class: Happening Over Time

Description

Happening Over Time Occurrence is a Happening Over Time that is the   generalization of all M1 happenings over time, 
including all orchestrations and choreographies.  All individual (M0) happening of time occurrences conform to 
Happening Over Time Occurrence, which is the most abstract M1 model of happening over time.

Links

Played End Opposite End
Happening Over Time Occurrence: general  Happening Occurrence
Happening Over Time Occurrence:event 
context

induced event  Event Occurrence

Happening Over Time 
Occurrence:general

Course Occurrence

Happening Over Time 
Occurrence:packagedElement

owningPackage  Common Infrastructure Library

4.5.2.45 Instance: One Succession

Class: Opaque Condition

Description

Condition requiring only one succession to be satisfied before the execution of a Happening Part.

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              89



Links

Played End Opposite End
One Succession:owningPackage owningPackage  Common Infrastructure Library

4.5.2.46 Instance: Start Event

Class: Course Event

Description

Start Event is a Event that manifests the start of a Course

Links

Played End Opposite End
Start Event: general  Course Event Occurrence
Start Event:event part type event usage  Start
Start Event:packagedElement owningPackage  Common Infrastructure Library

4.5.2.47 Instance: start-end

Class: Succession

Description

Links

Played End Opposite End
start-end:next succession predecessor  Start
start-end:owned succession owner course  Course Occurrence
start-end:previous succession successor  End

4.5.2.48 Instance: Start

Class: Event Part

Description

Links

Played End Opposite End
Start:event usage event part type  Start Event
Start:owned event part event part owner  Course Occurrence
Start:predecessor next succession  start-iterationend
Start:predecessor next succession  start-cancel
Start:predecessor next succession  start-end
Start:predecessor next succession  start-compensate
Start:target event part start/start

  90                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



BPMN Notation

An Event Part typed by the Start Event instance of Event is drawn as a circle that MUST be drawn with a single thin 
line. 

Figure 74 - Event Part : Start Notation

When a Start Event Event Part is conditioned by a Fact Change Condition, a Fact Change marker is added to the 
Start Event Event Part shape.

Figure 75 - Event Part : Start with 'Fact Change Condition' Notation

Shape of Start when it has an Event Monitor with a Time Event Condition, as its predecessor.

Figure 76 - Event Part : Start with 'Time Event Condition' Notation

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              91

Start Event Part

Start  with Fact Change Condition

Start  with Time condition



Index
Abstractions package..............................................................................................................................................................6
Abstractions package .............................................................................................................................................................4
Behavioral Features..............................................................................................................................................................36
Behavioral Features Package................................................................................................................................................36
BehavioralFeature.................................................................................................................................................................36
Boolean...................................................................................................................................................................................7
Boolean ValueSpecification..................................................................................................................................................46
Classifier...............................................................................................................................................................1, 30, 32, 34
Classifiers..............................................................................................................................................................................30
Classifiers Package...............................................................................................................................................................30
Clock.....................................................................................................................................................................................73
Comment...............................................................................................................................................................................10
Comments.............................................................................................................................................................................10
Comments Package...............................................................................................................................................................10
Composite.........................................................................................................................................................................2, 56
Composites............................................................................................................................................................................51
Composition Model..............................................................................................................................................................49
Compound Condition Type..................................................................................................................................................47
Condition..........................................................................................................................................................................2, 47
Condition Model...................................................................................................................................................................45
Connectable Element............................................................................................................................................................57
Constraint..............................................................................................................................................................................29
Constraints............................................................................................................................................................................29
Constraints Package..............................................................................................................................................................28
Course...............................................................................................................................................................................2, 73
Course Event.........................................................................................................................................................................74
Course Model........................................................................................................................................................................63
Course Part........................................................................................................................................................................3, 74
Cycle Event...........................................................................................................................................................................75
DataType...........................................................................................................................................................................1, 42
Datatypes..............................................................................................................................................................................42
Datatypes Package................................................................................................................................................................42
Derivation.......................................................................................................................................................................52, 57
Derivation Diagram..............................................................................................................................................................56
Directed Part Connection......................................................................................................................................................57
Directed Part Connection Diagram.......................................................................................................................................54
DirectedRelationship............................................................................................................................................................12
Element......................................................................................................................................................................1, 8p., 11
ElementImport......................................................................................................................................................................14
Enumeration..........................................................................................................................................................................43
EnumerationLiteral...............................................................................................................................................................43
Event.................................................................................................................................................................................3, 75
Event Condition................................................................................................................................................................3, 75
Event Part..........................................................................................................................................................................3, 76
Exclusive Join.......................................................................................................................................................................76
Exclusive Split......................................................................................................................................................................77
Expression.........................................................................................................................................................................1, 24
Expressions...........................................................................................................................................................................24
Expressions Package.............................................................................................................................................................23
Fact Change..........................................................................................................................................................................78
Fact Change Condition.........................................................................................................................................................79
Fact Condition.......................................................................................................................................................................48

  92                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 



Feature..................................................................................................................................................................................31
Gateway............................................................................................................................................................................3, 79
Generalization...................................................................................................................................................................1, 33
Generalizations ....................................................................................................................................................................33
Generalizations Package.......................................................................................................................................................33
Happening.........................................................................................................................................................................3, 80
Happening Over Time..........................................................................................................................................................80
Happening Part.....................................................................................................................................................................80
Immediate Succession...........................................................................................................................................................81
ImportableElement................................................................................................................................................................15
Individual..............................................................................................................................................................................58
Individual From Set..............................................................................................................................................................58
Individuals............................................................................................................................................................................49
Instance: All Successions......................................................................................................................................................85
Instance: becomes false........................................................................................................................................................86
Instance: becomes true..........................................................................................................................................................86
Instance: Course Event Occurrence......................................................................................................................................86
Instance: Course Occurrence................................................................................................................................................86
Instance: End.........................................................................................................................................................................88
Instance: End Event..............................................................................................................................................................87
Instance: Event Occurrence..................................................................................................................................................88
Instance: Happening Occurrence..........................................................................................................................................89
Instance: Happening Over Time Occurrence........................................................................................................................89
Instance: Irreflexive Condition.............................................................................................................................................62
Instance: One Succession......................................................................................................................................................89
Instance: Start Event.............................................................................................................................................................90
Instance: start-end.................................................................................................................................................................90
Instances................................................................................................................................................................................39
Instances Package.................................................................................................................................................................39
InstanceSpecification............................................................................................................................................................39
InstanceValue........................................................................................................................................................................41
Irreflexive Condition.............................................................................................................................................................59
LiteralBoolean......................................................................................................................................................................26
LiteralInteger........................................................................................................................................................................26
LiteralNull.............................................................................................................................................................................27
Literals..................................................................................................................................................................................26
Literals Package....................................................................................................................................................................25
LiteralSpecification...............................................................................................................................................................27
LiteralString..........................................................................................................................................................................27
LiteralUnlimitedNatural........................................................................................................................................................28
Metamodel Specification......................................................................................................................................................53
Modeling Languages.............................................................................................................................................................49
Models..................................................................................................................................................................................49
Multiplicities.........................................................................................................................................................................21
Multiplicities Package...........................................................................................................................................................21
MultiplicityElement........................................................................................................................................................21, 23
MultiplicityExpressions........................................................................................................................................................22
MultiplicityExpressions Package..........................................................................................................................................22
NamedElement......................................................................................................................................................................15
Namespace..................................................................................................................................................................1, 16, 30
Namespaces..........................................................................................................................................................................14
Namespaces Package............................................................................................................................................................13
Opaque Condition.................................................................................................................................................................48
Opaque Statement.................................................................................................................................................................48
OpaqueExpression................................................................................................................................................................24
Ownerships.............................................................................................................................................................................9

Business Process Definition MetaModel, Common Infrastructure, v1.0                                                                              93



Ownerships Package...............................................................................................................................................................9
Package.............................................................................................................................................................................1, 18
PackageableElement.............................................................................................................................................................18
PackageImport......................................................................................................................................................................19
Packages................................................................................................................................................................................18
Packages Diagram.................................................................................................................................................................17
Parallel Join...........................................................................................................................................................................81
Parallel Split..........................................................................................................................................................................82
Parameter..............................................................................................................................................................................37
Part....................................................................................................................................................................................2, 59
Part Connection.................................................................................................................................................................2, 59
Part Connection & Condition Diagram.................................................................................................................................55
Part Connections...................................................................................................................................................................51
Part Paths..............................................................................................................................................................................52
Part Replacement..................................................................................................................................................................61
Parts......................................................................................................................................................................................51
PrimitiveType.......................................................................................................................................................................43
PrimitiveTypes package..........................................................................................................................................................7
Properties..............................................................................................................................................................................38
Properties Package................................................................................................................................................................37
Property.............................................................................................................................................................................2, 38
RedefinableElement..............................................................................................................................................................44
Redefinitions.........................................................................................................................................................................44
Redefinitions Package...........................................................................................................................................................44
Relationship..........................................................................................................................................................................13
Relationships.........................................................................................................................................................................12
Relationships Package..........................................................................................................................................................11
Relative TimeDate Event......................................................................................................................................................82
Selector Specification...........................................................................................................................................................61
Slot........................................................................................................................................................................................41
Statement..........................................................................................................................................................................2, 48
String.......................................................................................................................................................................................7
Structural Features................................................................................................................................................................35
Structural Features Package..................................................................................................................................................34
Succession.........................................................................................................................................................................3, 83
Super.....................................................................................................................................................................................32
Super Package.......................................................................................................................................................................31
Time Event........................................................................................................................................................................3, 84
Time Event Condition.......................................................................................................................................................3, 85
TimeDate Event....................................................................................................................................................................85
Type..................................................................................................................................................................................2, 20
Typed Elements....................................................................................................................................................................20
Typed Part.............................................................................................................................................................................62
TypedElement...................................................................................................................................................................2, 20
TypedElements Package.......................................................................................................................................................19
UnlimitedNatural....................................................................................................................................................................8
ValueSpecification............................................................................................................................................................1, 25
VisibilityKind.......................................................................................................................................................................16

  94                                                                          Business Process Definition MetaModel, Common Infrastructure, v1.0 


	1Normative References
	2Terms and Definitions
	3Additional Information 
	3.1Acknowledgements

	4Metamodel and Notation Specification
	4.1Overview
	4.2Abstractions
	4.2.1Introduction
	4.2.2Metamodel
	4.2.2.1PrimitiveTypes
	4.2.2.2Boolean
	4.2.2.3Integer
	4.2.2.4String
	4.2.2.5UnlimitedNatural
	4.2.2.6Elements Package
	4.2.2.7Elements
	4.2.2.8Element
	4.2.2.9Ownerships Package
	4.2.2.10Ownerships
	4.2.2.11Element
	4.2.2.12Comments Package
	4.2.2.13Comments
	4.2.2.14Comment
	4.2.2.15Element
	4.2.2.16Relationships Package
	4.2.2.17Relationships
	4.2.2.18DirectedRelationship
	4.2.2.19Relationship
	4.2.2.20Namespaces Package
	4.2.2.21Namespaces
	4.2.2.22ElementImport
	4.2.2.23ImportableElement
	4.2.2.24NamedElement
	4.2.2.25Namespace
	4.2.2.26VisibilityKind
	4.2.2.27Packages Diagram
	4.2.2.28Packages
	4.2.2.29Package
	4.2.2.30PackageableElement
	4.2.2.31PackageImport
	4.2.2.32TypedElements Package
	4.2.2.33Typed Elements
	4.2.2.34Type
	4.2.2.35TypedElement
	4.2.2.36Multiplicities Package
	4.2.2.37Multiplicities
	4.2.2.38MultiplicityElement
	4.2.2.39MultiplicityExpressions Package
	4.2.2.40MultiplicityExpressions
	4.2.2.41MultiplicityElement
	4.2.2.42Expressions Package
	4.2.2.43Expressions
	4.2.2.44Expression
	4.2.2.45OpaqueExpression
	4.2.2.46ValueSpecification
	4.2.2.47Literals Package
	4.2.2.48Literals
	4.2.2.49LiteralBoolean
	4.2.2.50LiteralInteger
	4.2.2.51LiteralNull
	4.2.2.52LiteralSpecification
	4.2.2.53LiteralString
	4.2.2.54LiteralUnlimitedNatural
	4.2.2.55Constraints Package
	4.2.2.56Constraints
	4.2.2.57Constraint
	4.2.2.58Namespace
	4.2.2.59Classifiers Package
	4.2.2.60Classifiers
	4.2.2.61Classifier
	4.2.2.62Feature
	4.2.2.63Super Package
	4.2.2.64Super
	4.2.2.65Classifier
	4.2.2.66Generalizations Package
	4.2.2.67Generalizations
	4.2.2.68Generalization
	4.2.2.69Classifier
	4.2.2.70Structural Features Package
	4.2.2.71Structural Features
	4.2.2.72StructuralFeature
	4.2.2.73Behavioral Features Package
	4.2.2.74Behavioral Features
	4.2.2.75BehavioralFeature
	4.2.2.76Parameter
	4.2.2.77Properties Package
	4.2.2.78Properties
	4.2.2.79Property
	4.2.2.80Instances Package
	4.2.2.81Instances
	4.2.2.82InstanceSpecification
	4.2.2.83InstanceValue
	4.2.2.84Slot
	4.2.2.85Datatypes Package
	4.2.2.86Datatypes
	4.2.2.87DataType
	4.2.2.88Enumeration
	4.2.2.89EnumerationLiteral
	4.2.2.90PrimitiveType
	4.2.2.91Redefinitions Package
	4.2.2.92Redefinitions
	4.2.2.93RedefinableElement


	4.3Condition Model
	4.3.1Introduction
	4.3.2Metamodel
	4.3.2.1Condition Model Diagram
	4.3.2.2Boolean ValueSpecification
	4.3.2.3Compound Condition
	4.3.2.4Compound Condition Type
	4.3.2.5Condition
	4.3.2.6Fact Condition
	4.3.2.7Opaque Condition
	4.3.2.8Opaque Statement
	4.3.2.9Statement


	4.4Composition Model
	4.4.1Introduction
	4.4.1.1Individuals, Models, and Modeling Languages
	4.4.1.2Classifiers
	4.4.1.3Composites
	4.4.1.4Parts
	4.4.1.5Part Connections
	4.4.1.6Part Paths
	4.4.1.7Derivation and Selection

	4.4.2Metamodel Specification
	4.4.2.1Composition Model Diagram
	4.4.2.2Directed Part Connection Diagram
	4.4.2.3Part Connection & Condition Diagram
	4.4.2.4Derivation Diagram
	4.4.2.5Selection Diagram
	4.4.2.6Composite
	4.4.2.7Connectable Element
	4.4.2.8Derivation
	4.4.2.9Directed Part Connection
	4.4.2.10Individual
	4.4.2.11Individual From Set
	4.4.2.12Irreflexive Condition
	4.4.2.13Part
	4.4.2.14Part Connection
	4.4.2.15Part Group
	4.4.2.16Part Path
	4.4.2.17Part Replacement
	4.4.2.18Selector Specification
	4.4.2.19Typed Part
	4.4.2.20Instance: Irreflexive Condition


	4.5Course Model
	4.5.1Introduction
	4.5.2Metamodel Specification
	4.5.2.1Happening and Event Diagram
	4.5.2.2Time Event  Diagram
	4.5.2.3Event Condition  Diagram
	4.5.2.4Time Event Condition  Diagram
	4.5.2.5Fact Change Condition  Diagram
	4.5.2.6Course Diagram
	4.5.2.7Gateway Diagram
	4.5.2.8Event Course Diagram
	4.5.2.9Common Infrastructure Library: Happenings, Events and Conditions
	4.5.2.10Common Infrastructure Library: 'Happening Occurrences'
	4.5.2.11Clock
	4.5.2.12Course
	4.5.2.13Course Event
	4.5.2.14Course Part
	4.5.2.15Cycle Event
	4.5.2.16Event
	4.5.2.17Event Condition
	4.5.2.18Event Part
	4.5.2.19Exclusive Join
	4.5.2.20Exclusive Split
	4.5.2.21Fact Change
	4.5.2.22Fact Change Condition
	4.5.2.23Gateway
	4.5.2.24Happening
	4.5.2.25Happening Over Time
	4.5.2.26Happening Part
	4.5.2.27Immediate Succession
	4.5.2.28Parallel Join
	4.5.2.29Parallel Split
	4.5.2.30Relative TimeDate Event
	4.5.2.31Succession
	4.5.2.32Time Event
	4.5.2.33Time Event Condition
	4.5.2.34TimeDate Event
	4.5.2.35Instance: All Successions
	4.5.2.36Instance: becomes false
	4.5.2.37Instance: becomes true
	4.5.2.38Instance: Course Event Occurrence
	4.5.2.39Instance: Course Occurrence
	4.5.2.40Instance: End Event
	4.5.2.41Instance: End
	4.5.2.42Instance: Event Occurrence
	4.5.2.43Instance: Happening Occurrence
	4.5.2.44Instance: Happening Over Time Occurrence
	4.5.2.45Instance: One Succession
	4.5.2.46Instance: Start Event
	4.5.2.47Instance: start-end
	4.5.2.48Instance: Start




