
Date: January 2016

Automated Source Code Security MeasureTM

(ASCSMTM)

V1.0

__

OMG Document Number: formal/2016-01-04

Standard document URL: http://www.omg.org/spec/ASCSM/1.0

Normative Machine Consumable File(s):

http://www.omg.org/spec/ ASCSM /201 50815 /AutomatedSourceCodeSecurityMeasure SPMS.xmi

http://www.omg.org/spec/ ASCSM/20150815/AutomatedSourceCodeSecurityMeasure SMM.xmi

O B J E C T M A N A G E M E N T G R O U P

http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCPEM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCPEM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure

Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Table of Contents

1 Scope...11
1.1 Overview..11

1.2 Overview of Software Quality Characteristic Measurement..11

1.3 Development of the Automated Source Code Security Measure...12

1.4 Structure of the Automated Source Code Security Measure..13

1.5 CWE/SANS Top 25 Weaknesses..14

1.6 Using and Improving This Measure...15

2 Conformance...15

3 References...15
3.1 Normative References..15

4 Terms and Definitions...15

5 Symbols and Abbreviated Terms..18

6 Additional Information (Informative)...18
6.1 Software Product Inputs...18

6.2 Automated Source Code Security Measure Elements..18

7 SPMS Representation of the Security Quality Measure Elements (Normative)......25
7.1 Introduction..25

SPMS...25

KDM..26

Reading guide..26

7.2 Category definition of Security..28

7.3 Pattern definition of ASCSM-CWE-22: Path Traversal Improper Input Neutralization..28

Pattern Category...28

Pattern Sections..28

Objective..28

Consequence..30

Measure Element...28

Description...28

Descriptor...29

Variable input...29

Comment..29

Automated Source Code Security Measure, v1.0 1

List of Roles..29

7.4 Pattern definition of ASCSM-CWE-78: OS Command Injection Improper Input Neutralization...........................29

Pattern Category...29

Pattern Sections..29

Objective..29

Consequence..29

Measure Element...29

Description...30

Descriptor...30

Variable input...30

Comment..30

List of Roles..30

7.5 Pattern definition of ASCSM-CWE-79: Cross-site Scripting Improper Input Neutralization.................................30

Pattern Category...30

Pattern Sections..30

Objective..30

Consequence..31

Measure Element...31

Description...31

Descriptor...31

Variable input...31

Comment..31

List of Roles..31

7.6 Pattern definition of ASCSM-CWE-89: SQL Injection Improper Input Neutralization..32

Pattern Category...32

Pattern Sections..32

Objective..32

Consequence..32

Measure Element...32

Description...32

Descriptor...32

Variable input...32

Comment..32

List of Roles..33

7.7 Pattern definition of ASCSM-CWE-99: Name or Reference Resolution Improper Input Neutralization...............33

Pattern Category...33

Pattern Sections..33

2 Automated Source Code Security Measure, v1.0

Objective..33

Consequence..33

Measure Element...33

Description...33

Descriptor...33

Variable input...34

Comment..34

List of Roles..34

7.8 Pattern definition of ASCSM-CWE-120: Buffer Copy without Checking Size of Input...34

Pattern Category...34

Pattern Sections..34

Objective..34

Consequence..34

Measure Element...34

Description...34

Descriptor...35

Variable input...35

Comment..35

List of Roles..35

7.9 Pattern definition of ASCSM-CWE-129: Array Index Improper Input Neutralization...35

Pattern Category...35

Pattern Sections..35

Objective..35

Consequence..35

Measure Element...35

Description...36

Descriptor...36

Variable input...36

Comment..36

List of Roles..36

7.10 Pattern definition of ASCSM-CWE-134: Format String Improper Input Neutralization......................................36

Pattern Category...36

Pattern Sections..36

Objective..36

Consequence..37

Measure Element...37

Description...37

Automated Source Code Security Measure, v1.0 3

Descriptor...37

Variable input...37

Comment..37

List of Roles..37

7.11 Pattern definition of ASCSM-CWE-252-resource: Unchecked Return Parameter Value of named Callable
 and Method Control Element with Read, Write, and Manage Access to Platform Resource...............................38

Pattern Category...38

Pattern Sections..38

Objective..38

Consequence..38

Measure Element...38

Description...38

Descriptor...38

Variable input...38

Comment..38

List of Roles..38

7.12 Pattern definition of ASCSM-CWE-327: Broken or Risky Cryptographic Algorithm Usage...............................39

Pattern Category...39

Pattern Sections..39

Objective..39

Consequence..39

Measure Element...39

Description...39

Descriptor...39

Variable input...39

Comment..39

List of Roles..39

7.13 Pattern definition of ASCSM-CWE-396: Declaration of Catch for Generic Exception..40

Pattern Category...40

Pattern Sections..40

Objective..40

Consequence..40

Measure Element...40

Description...40

Descriptor...40

Variable input...40

Comment..40

List of Roles..40

4 Automated Source Code Security Measure, v1.0

7.14 Pattern definition of ASCSM-CWE-397: Declaration of Throws for Generic Exception.....................................41

Pattern Category...41

Pattern Sections..41

Objective..41

Consequence..41

Measure Element...41

Description...41

Descriptor...41

Variable input...41

Comment..41

List of Roles..42

7.15 Pattern definition of ASCSM-CWE-434: File Upload Improper Input Neutralization..42

Pattern Category...42

Pattern Sections..42

Objective..42

Consequence..42

Measure Element...42

Description...42

Descriptor...42

Variable input...43

Comment..43

List of Roles..43

7.16 Pattern definition of ASCSM-CWE-456: Storable and Member Data Element Missing Initialization.................43

Pattern Category...43

Pattern Sections..43

Objective..43

Consequence..43

Measure Element...43

Description...43

Descriptor...43

Variable input...44

Comment..44

List of Roles..44

7.17 Pattern definition of ASCSM-CWE-606: Unchecked Input for Loop Condition..44

Pattern Category...44

Pattern Sections..44

Objective..44

Automated Source Code Security Measure, v1.0 5

Consequence..44

Measure Element...44

Description...44

Descriptor...45

Variable input...45

Comment..45

List of Roles..45

7.18 Pattern definition of ASCSM-CWE-667: Shared Resource Improper Locking...45

Pattern Category...45

Pattern Sections..45

Objective..45

Consequence..45

Measure Element...45

Description...45

Descriptor...46

Variable input...46

Comment..46

List of Roles..46

7.19 Pattern definition of ASCSM-CWE-672: Expired or Released Resource Usage...46

Pattern Category...46

Pattern Sections..46

Objective..46

Consequence..46

Measure Element...46

Description...46

Descriptor...47

Variable input...47

Comment..47

List of Roles..47

7.20 Pattern definition of ASCSM-CWE-681: Numeric Types Incorrect Conversion...47

Pattern Category...47

Pattern Sections..47

Objective..47

Consequence..47

Measure Element...47

Description...48

Descriptor...48

6 Automated Source Code Security Measure, v1.0

Variable input...48

Comment..48

List of Roles..48

7.21 Pattern definition of ASCSM-CWE-772: Missing Release of Resource after Effective Lifetime.........................48

Pattern Category...48

Pattern Sections..48

Objective..48

Consequence..48

Measure Element...48

Description...49

Descriptor...49

Variable input...49

Comment..49

List of Roles..49

7.22 Pattern definition of ASCSM-CWE-789: Uncontrolled Memory Allocation..49

Pattern Category...49

Pattern Sections..49

Objective..49

Consequence..49

Measure Element...50

Description...50

Descriptor...50

Variable input...50

Comment..50

List of Roles..50

7.23 Pattern definition of ASCSM-CWE-798: Hard-Coded Credentials Usage for Remote Authentication................50

Pattern Category...50

Pattern Sections..50

Objective..50

Consequence..51

Measure Element...51

Description...51

Descriptor...51

Variable input...51

Comment..51

List of Roles..51

7.24 Pattern definition of ASCSM-CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop').....................51

Automated Source Code Security Measure, v1.0 7

Pattern Category...51

Pattern Sections..52

Objective..52

Consequence..52

Measure Element...52

Description...52

Descriptor...52

Variable input...52

Comment..52

List of Roles..52

8 Calculation of Security and Functional Density (Normative)..................................53
8.1 Calculation of the Base Measure..53

8.2 Functional Density of Security Violations..53

9 Alternative Weighted Measures and Uses (Informative)..55
9.1 Additional Derived Measures...55

10 References (Informative)..57

Annex A: CISQ...59

8 Automated Source Code Security Measure, v1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

Automated Source Code Security Measure, v1.0 9

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text, table text, bullets

Helvetica/Arial – 9 or 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier new/Courier – 10 pt. Bold: Programming Languages

Helvetica/Arial – 10 pt.: Exceptions

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm .

10 Automated Source Code Security Measure, v1.0

1 Scope

1.1 Overview
The purpose of this specification is to establish a standard measure of security based on detecting violations of good
architectural and coding practices that could result in unauthorized entry into systems, theft of confidential information,
and the malicious compromise of system integrity. Establishing a standard for this measure is important because such
measures are being used in outsourcing and system development contracts without having an approved international
standard to reference. They are also critical to other software-intensive OMG initiatives such as The Internet of Thing
Consortium.

1.2 Overview of Software Quality Characteristic Measurement

Measurement of the internal or structural quality aspects of software has a long history in software engineering (Curtis,
1980). Software quality characteristics are increasingly being incorporated into development and outsourcing contracts
as the equivalent of service level agreements. That is, target thresholds based on quality characteristic measures are being
set in contracts for delivered software. Currently there are no standards for most of the software quality characteristic
measures being used in contracts. ISO/IEC 25023 purports to address these measures, but only provides measures of
external behavior and does not define measures that can be developed from source code during development.
Consequently, providers are subject to different interpretations and calculations of common quality characteristics in
each contract. This specification addresses one aspect of this problem by providing a specification for measuring one
quality characteristic, Security, from the source code. This specification is one of four specifying source code level
measures of quality characteristics. The other three specify quality characteristic measures for Security, Performance
Efficiency, and Maintainability.

The most recent advance in measuring the structural quality of software is based on the analysis and measurement of
violations of good architectural and coding practice that can be detected by statically analyzing the source code. The
CWE/SANS 25 and OWASP Top Ten lists of security weaknesses are examples of this approach. These lists are drawn
from the Common Weakness Enumeration (CWE) repository maintained by MITRE Corporation. CWE contains
descriptions of over 800 weaknesses that represent violations of good architectural and coding practice in software that
can be exploited to gain unauthorized entry into a system. The Software Assurance community has been a leader in this
area of measurement by championing the detection of code weaknesses as a way of improving one aspect of software
quality—software security.

Unfortunately there are no equivalent repositories of weaknesses for Reliability, Performance Efficiency, or
Maintainability. Knowledge of these weaknesses is spread across software engineering textbooks, expert blogs, and
information sharing sites such as github. An OMG standard for Reliability can fill the void for a consensus body of
knowledge about the most egregious Security problems that should be detected and remediated in source code.

Using violations of good architectural and coding practices in software quality metrics presents several challenges for
establishing baselines. Growth in the number of unique violations to be detected could continually raise the bar for
measuring quality, reducing the validity of baseline comparisons. Further, different vendors will detect different sets of
violations, making comparisons difficult across commercial software quality measurement offerings. One solution to this
problem is to create a stable list of violations that are used for computing a baseline for each quality characteristic. The
Automated Source Code Security Measure was developed by a team of industry experts to form the basis for a stable
baseline measure.

Automated Source Code Security Measure, v1.0 11

1.3 Development of the Automated Source Code Security Measure

The Consortium for IT Software Quality (CISQ) was formed as a special interest group of OMG to create specifications
for automating standard measures of software quality attributes and submit them to OMG for approval. The Objective of
the Consortium for IT Software Quality (CISQ) is to develop specifications for automated measures of software quality
characteristics taken on source code. These measures were designed to provide international standards for measuring
software structural quality that can be used by IT organizations, IT service providers, and software vendors contracting,
developing, testing, accepting, and deploying software applications. Executives from the member companies that joined
CISQ prioritized Reliability, Security, Performance Efficiency, and Maintainability to be developed as measurement
specification.

The original 24 CISQ member companies decided to base the security measure on an existing security community body
of knowledge concerning exploitable weaknesses. This specification defines a method for automating the measurement
of Security violations of secure architectural and coding practice in source code. These violations were drawn from the
Common Weakness Enumeration (CWE) maintained by Mitre Corporation, a cyber-security community repository of
over 800 known weaknesses in software that can be exploited for unauthorized intrusion into a system. This specification
was developed from the CWE/SANS Institute Top 25 most commonly exploited weaknesses, twenty-two of which can
be detected in source code. The CWE/SANS Top 25 Most Dangerous Software Errors provides a list of the 25 most
widespread and commonly exploited security anti-patterns and associated rules that can be found at
http://cwe.mitre.org/top25/#Listing.

1.4 Structure of the Automated Source Code Security Measure

ISO/IEC 25010 defines a quality characteristic as being composed from several quality sub-characteristics. This
framework for software product quality is presented in Figure 1.1 for the eight quality characteristics presented in 25010.
The quality characteristics and their sub-characteristics selected for source code measurement by CISQ are indicated in
blue.

Figure 1.1 - Software Quality Characteristics from ISO/IEC 25010 with CISQ focal areas highlighted

ISO/IEC 25023 establishes a framework of software quality characteristic measures wherein each quality sub-
characteristic consists of a collection of quality attributes that can be quantified as quality measure elements. A quality
measure element quantifies a unitary measurable attribute of software, such as the violation of a quality rule. Figure 1.2

12 Automated Source Code Security Measure, v1.0

http://cwe.mitre.org/top25/#Listing

presents an example of the ISO/IEC 25023 quality measurement framework using a partial decomposition for the
Automated Source Code Security Measure.

The non-normative portion of this specification begins by listing the security issues that can plague software developed
with poor architectural and coding practices. Quality rules written as architectural or coding practices are conventions
that avoided the problem described in the security issue. These quality rules were then transformed into software quality
measure elements by counting violations of these architectural and coding practices and conventions.

The normative portion of this specification represents each quality measure element developed from a security rule using
the Structured Patterns Metamodel Standard (SPMS). The code-based elements in these patterns are represented in the
Knowledge Discovery Metamodel (KDM). The calculation of the Automated Source Code Security Measure from its
quality measure elements is then represented using the Structured Metrics Metamodel (SMM). This calculation is
presented as the simple sum of quality measure elements without being adjusted by a weighting scheme.

Figure 1.2 – ISO/IEC 25010 Framework for Software Quality Characteristics Measurement

There are several weighting schemes that can be applied in aggregating violation counts into structural quality measures.
The most effective weighting often depends on the measure's use such as assessing operational risk or estimating
maintenance costs. The quality measure elements included in this specification were considered to be severe violations
of secure architectural and coding practices that would need to be remediated. Therefore, weightings based on severity
would add little useful information to the measure since the variance among weights would be small. In order to support
benchmarking among applications, this specification includes a measure of the violation density. This measure is created
by dividing the total number of violations detected by a count of automated Function Points (Object Management Group,
2014).

Automated Source Code Security Measure, v1.0 13

1.5 CWE/SANS Top 25 Weaknesses
The foundation for this specification is the CWE/SANS Institute Top 25 Most Dangerous Software Errors that provides a
list of the 25 most widespread and frequently exploited security weaknesses in software. The anti-patterns and associated
rules that constitute these weaknesses can be found in the Common Weakness Enumeration accessible at
http://cwe.mitre.org/top25/#Listing. This specification is developed from nineteen of the CWE/SANS Top 25 which can
be detected and counted in source code. The CWE is a widely used industry source
(http://cwe/mitre/org/community/citations.html) that provides a foundation for an ITU and ISO/IEC standard, in addition
to 2 ISO/IEC technical reports:

 SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY Cybersecurity
information exchange – Vulnerability/state exchange – Common weakness enumeration (CWE)

 ISO/IEC 29147:2014 Information Technology – Security Techniques – Vulnerability Disclosure

 ISO/IEC TR 24772:2013 Information technology – Programming languages – Guidance to avoiding
vulnerabilities in programming languages through language selection and use

 ISO/IEC Technical Report is ISO/IEC TR 20004:2012 Information technology – Security Techniques –
Refining Software Vulnerability Analysis under ISO/IEC and 15408 and ISO/IEC 18045

The Automated Source Code Security Measure is a correlated measure rather than an absolute measure. That is, since it
does not measure all possible security-related weaknesses it does not provide an absolute measure of security. However,
since it includes counts of what industry experts have determined to be the top 25 known weaknesses, it provides a
strong indicator of security that will be highly correlated with the absolute security of a software system and with the
probability that it can be breached.

Since the CWE is recognized as the primary industry repository of security weaknesses (Lewis, 2010), it is supported by
the majority of vendors providing tools and technology in the software security domain
(http://cw e .mitre.org/compatible/compatible.html), such as Coverity, HP Fortify, Klockwork, IBM, CAST, Veracode, and
others. These vendors already have capabilities for detecting many of the CWE/SANS Top 25 security weaknesses.
Consequently, CWE/SANS Top 25 provides the best source for developing a measure that can be common among the
majority of vendors in the software security domain. Industry experts who developed the CWE purposely worded the
CWEs to be language and application agnostic in order to allow vendors to develop detectors specific to a wide range of
languages and application types beyond the scope that could be covered in the CWE. Since some of the CWE/SANS Top
25 may not be relevant in some languages, the reduced opportunity for anti-patterns in those cases will be reflected in the
scores.

Since the impact and frequency of specific violations in the CWE/SANS Top 25 could change over time, this approach
allows specific violations to be included, excluded, amplified, or diminished over time in order to support the most
effective benchmarking, diagnostic, and predictive use. This specification will be adjusted through controlled OMG
processes to reflect changes in the threat environment while retaining the ability to compare baselines. Measurement
vendors can compute this standard baseline measure, as well as their own extended measures that include other security
anti-patterns.

1.6 Using and Improving This Measure

The Automated Source Code Security Measure is a correlated measure rather than an absolute measure. That is, since it
does not measure all possible security-related weaknesses it does not provide an absolute measure of security. However,
since it includes counts of what industry experts considered high severity security weaknesses, it provides a strong
indicator of security that will be highly correlated with the absolute security of a software system and with the
probability that it can experience unauthorized penetrations, data theft, malicious internal damage, and related problems.

Since the impact and frequency of specific violations in the Automated Source Code Security Measure could change
over time, this approach allows specific violations to be included, excluded, amplified, or diminished over time in order
to support the most effective benchmarking, diagnostic, and predictive use. This specification will be adjusted through
controlled OMG specification revision processes to reflect changes in security engineering while retaining the ability to
compare baselines. Vendors of static analysis and measurement technology can compute this standard baseline measure,

14 Automated Source Code Security Measure, v1.0

http://cew.mitre.org/compatible/compatible.html
http://cew.mitre.org/compatible/compatible.html
http://cew.mitre.org/compatible/compatible.html
http://cwe/mitre/org/community/citations.html
http://cwe.mitre.org/top25/#Listing

as well as their own extended measures that include other security weaknesses not included as measure elements in this
specification.

2 Conformance

Implementations of this specification should be able to demonstrate the following attributes in order to claim
conformance—automated, objective, transparent, and verifiable.

 Automated – The analysis of the source code and the actual counting must be fully automated. The initial inputs
required to prepare the source code for analysis include the source code of the application, the artifacts and
information needed to configure the application for operation, and any available description of the architectural
layers in the application.

 Objective – After the source code has been prepared for analysis using the information provided as inputs, the
analysis, calculation, and presentation of results must not require further human intervention. The analysis and
calculation must be able to repeatedly produce the same results and outputs on the same body of software.

 Transparent – Implementations that conform to this specification must clearly list all source code (including
versions), non-source code artifacts, and other information used to prepare the source code for submission to the
analysis.

 Verifiable – Compliance with this specification requires that an implementation state the assumptions/heuristics
it uses with sufficient detail so that the calculations may be independently verified by third parties. In addition,
all inputs used are required to be clearly described and itemized so that they can be audited by a third party.

3 References

3.1 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of any of these publications do not
apply.

 Structured Patterns Metamodel Standard (SPMS), formal/2015-10-01

 Knowledge Discovery Metamodel, version 1.3 (KDM), formal/2011-08-04

 Structured Metrics Metamodel, version 1.0 (SMM), formal/2012-01-05

 MOF/XMI Mapping, version 2.4.1 (XMI), formal/2011-08-09

 Automated Function Points (AFP), formal/2014-01-03

 ISO/IEC 25010 Systems and software engineering – System and software product Quality Requirements and
Evaluation (SquaRE) – System and software quality models

4 Terms and Definitions

For this purposes of this specification, the following terms and definitions apply.

Automated Source Code Security Measure, v1.0 15

Automated Function Points - a specification for automating the counting of Function Points that mirrors as closely
as possible the counting guidelines of the International Function Point User Group. (OMG, formal 2014-01-03)

Common Weakness Enumeration - a repository maintained by MITRE Corporation of known weaknesses in
software that can be exploited to gain unauthorized entry into a software system. (cwe.mitre.org)

Cyclomatic Complexity - A measure of control flow complexity developed by Thomas McCabe based on a graph-
theoretic analysis that reduces the control flow of a computer program to a set of edges, vertices, and their
attributes that can be quantified. (McCabe, 1976)

Internal Software Quality - the degree to which a set of static attributes of a software product satisfy stated and
implied needs for the software product to be used under specified conditions. This will be referred to as
software structural quality, or simply structural quality in this specification. (ISO/IEC 25010)

Quality Measure Element - a measure defined in terms of a software quality attribute and the measurement method
for quantifying it, including optionally the transformation by a mathematical function. (ISO/IEC 25010)

Software Quality Property - measurable component of software quality. (derived from ISO/IEC 25010)

Security – degree to which a product or system protects information and data so that persons or other products or
systems have the degree of data access appropriate to their types and levels of authorization. (ISO/IEC 25010)

Software Anti-pattern – also referred to as an anti-pattern, is a violation of good architectural or coding practice that
can, based on historical evidence, cause problems in software development, maintenance, or operations.

Software Product – a set of computer programs, procedures, and possible associated documentation and data.
(ISO/IEC 25010)

Software Product Quality Model – a model that categorizes product quality properties into eight characteristics
(functional suitability, reliability, performance efficiency, usability, security, compatibility, maintainability, and
portability). Each characteristic is composed of a set of related sub-characteristics. (ISO/IEC 25010)

Software Quality - degree to which a software product satisfies stated and implied needs when used under specified
conditions. (ISO/IEC 25010)

Software Quality Attribute - an inherent property or characteristic of software that can be distinguished
quantitatively or qualitatively by human or automated means. (derived from ISO/IEC 25010)

Software Quality Characteristic - a category of software quality attributes that bears on software quality. (ISO/IEC
25010)

Software Quality Characteristic Measure - a software quality measure derived from measuring the attributes
related to a specific software quality characteristic.

16 Automated Source Code Security Measure, v1.0

Software Quality Issue - architectural or coding practices that are known to cause problems in software development,
maintenance, or operations and for which software quality rules can be defined that help avoid problems created
by the issue.

Software Quality Measure - a measure that is defined as a measurement function of two or more values of software
quality measure elements. (ISO/IEC 25010)

Software Quality Measure Element - a measure defined in terms of a software quality attribute and the
measurement method for quantifying it, including optionally the transformation by a mathematical function.
(ISO/IEC 25010)

Software Quality Measurement - (verb) a set of operations having the object of determining a value of a software
quality measure. (ISO/IEC 25010)

Software Quality Model - a defined set of software characteristics, and of relationships between them, which provides
a framework for specifying software quality requirements and evaluating the quality of a software product. (derived
from ISO/IEC 25010)

Software Quality Property - measurable component of software quality. (derived from ISO/IEC 25010)

Software Quality Rule - an architectural or coding practice or convention that represents good software engineering
practice and avoids problems in software development, maintenance, or operations. Violations of these quality
rules produce software anti-patterns.

Software Quality Sub-characteristic - a sub-category of a software quality characteristic to which software quality
attributes and their software quality measure elements are conceptually related. (derived from ISO/IEC 25010)

Software Security- degree to which a product or system protects information and data so that persons or other
products or systems have the degree of data access appropriate to their types and levels of authorization. (ISO/IEC
25010)

Software Security Measure Element – a measure defined in terms of a quality attribute of software that affects it
security and the measurement method for quantifying it, including optionally the transformation by a mathematical
function. (derived from ISO/IEC 25023)

Structural Element – a component of software code that can be uniquely identified and counted such as a token,
decision, variable, etc.

Structural Quality - the degree to which a set of static attributes of a software product satisfy stated and implied needs
for the software product to be used under specified conditions—a component of software quality. This concept
is referred to as internal software quality in ISO/IEC 25010.

Violation - a pattern or structure in the code that is inconsistent with good architectural and coding practices and can
lead to problems in operation or maintenance.

Automated Source Code Security Measure, v1.0 17

5 Symbols and Abbreviated Terms

 CWE – Common Weakness Enumeration

 CISQ – Consortium for IT Software Quality

 KDM – Knowledge Discovery Metamodel

 SPMS – Structured Patterns Metamodel Standard

 SMM – Structured Metrics Metamodel

6 Additional Information (Informative)

6.1 Software Product Inputs
The following inputs are needed by static code analyzers in order to interpret violations of the software quality rules that
would be included in individual software quality measure elements.

 The entire source code for the application being analyzed.

 All materials and information required to prepare the application for production.

 A list of vetted libraries that are being used to “neutralize” input data.

 What routines/API calls are being used for remote authentication, to any custom initialization and cleanup
routines, to synchronize resources, or to neutralize accepted file types or the names of resources.

 The encryption algorithms that are being used.

Static code analyzers will also need a list of the violations that constitute each quality element in the CISQ Automated
Source Code Security Measure.

6.2 Automated Source Code Security Measure Elements

The violations of good architectural and coding practice incorporated into the Automated Source Code Security Measure
are listed and described in Table 6.1. Some of the CWEs from the Common Weakness Enumeration repository that are
included in the Security measure are also defects that can cause security problems. In order to retain consistency across
measurement specifications, the original CWE numbers and titles have been retained for these security measure
elements. In this sub clause and in Clause 7 each security measure element from Table 6.1 will be labeled as ASCSM-#,
where # can be replaced by its CWE number.

18 Automated Source Code Security Measure, v1.0

Table 6.1 - Security Patterns, Consequences, Objectives, and Measure Elements

Security Pattern Consequence Objective Measure Element

ASCSM-CWE-22:
Path Traversal
Improper Input
Neutralization

Software that is unaware of
file path control incurs the risk
of exposition of sensitive
data, the risk of corruption of
critical files, such as
programs, libraries, or
important data used in
protection mechanisms

Avoid failure to sanitize
user input in use in
path manipulation
operations

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the file path
creation statement; none of the
callable or method control element
of the transformation sequence
being a vetted sanitization control
element from the list of vetted
sanitization control elements.

ASCSM-CWE-78:
OS Command
Injection
Improper Input
Neutralization

Software unaware of OS
command control incurs the
risk of unauthorized
command execution, possibly
used to disable the software,
or possibly leading to
unauthorized read and modify
data access

Avoid failure to sanitize
user input in use as
operating system
commands

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the platform action
to be executed by the execution
environment; none of the callable or
method control element of the
transformation sequence being a
vetted sanitization control element
from the list of vetted sanitization
control elements.

ASCSM-CWE-79:
Cross-site
Scripting
Improper Input
Neutralization

Software featuring weak
output generation practices
incurs the risk of arbitrary
code execution, the risk of
sensitive data being
compromised, and many
other nefarious
consequences

Avoid failure to sanitize
user input in use in
output generation
operations

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the user interface
WritesUI action; none of the callable
or method control element of the
transformation sequence being a
vetted sanitization control element
from the list of vetted sanitization
control elements.

ASCSM-CWE-89:
SQL Injection
Improper Input
Neutralization

Software unaware of SQL
command control incurs the
risk of unauthorized read,
modify, and delete access to
sensitive data

Avoid failure to sanitize
user input in use in
SQL compilation
operations

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the

Automated Source Code Security Measure, v1.0 19

application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the SQL
compilation statement; none of the
callable or method control element
of the transformation sequence
being a vetted sanitization control
element from the list of vetted
sanitization control elements.

ASCSM-CWE-99:
Name or
Reference Resolution
Improper Input
Neutralization

Software unaware of
resource identification control
incurs the risk of
unauthorized access to or
modification of sensitive data
and system resources,
including configuration files
and files containing sensitive
information

Avoid failure to sanitize
user input in use as
resource names or
references

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the platform action
to access a resource by its name;
none of the callable or method
control element of the transformation
sequence being a vetted sanitization
control element from the list of
vetted sanitization control elements.

ASCSM-CWE-120:
Buffer Copy without
Checking Size of Input

Software that is unaware of
buffer bounds incurs the risk
of corruption of relevant
memory, and perhaps
instructions, possibly leading
to a crash, the risk of data
integrity loss, and the risk of
unauthorized access to
sensitive data

Avoid buffer operations
among buffers with
incompatible sizes

Number of instances in which the
content of the first buffer is moved
into the content of the second buffer
while the size of the first buffer is
greater than the size of the second
buffer.

ASCSM-CWE-129:
Array Index
Improper Input
Neutralization

Software that is unaware of
array index bounds incurs the
risk of corruption of relevant
memory, and perhaps
instructions, possibly leading
to a crash, the risk of data
integrity loss, and the risk of
unauthorized access to
sensitive data

Avoid failure to check
range of user input in
use as array index

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the read or write
action to access the array; none of
the callable or method control
element of the transformation
sequence being a range check
callable and method control element
with regards to the array index.

20 Automated Source Code Security Measure, v1.0

ASCSM-CWE-134:
Format String
Improper Input
Neutralization

Software that is unaware of
formatting control incurs the
risk of execution of arbitrary
code and the risk of
information disclosure which
can severely simplify
exploitation of the software

Avoid failure to sanitize
user input in use in
formatting operations

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the formatting
statement; none of the callable or
method control element of the
transformation sequence being a
vetted sanitization control element
from the list of vetted sanitization
control elements.

ASCSM-CWE-252:
resource:
Unchecked Return
Parameter Value of
named Callable and
Method Control
Element with Read,
Write, and Manage
Access to Platform
Resource

Software unaware of
execution status control
incurs the risk of bad data
being used in operations,
possibly leading to a crash or
other unintended behaviors

Avoid improper
processing of the
execution status of
resource handling
operations

Number of instances where the
named callable control element or
method control element executes a
'Read,' 'Write,' or 'ManageAccess'
action, yet the value of the return
parameter from the action is not
used by any check control element.

ASCSM-CWE-327:
Broken or Risky
Cryptographic
Algorithm Usage

Software using broken or
risky cryptographic algorithm
incurs the risk of sensitive
data being compromised

Avoid failure to use
vetted cryptographic
libraries

Number of instances where the
application uses the cryptographic
deployed component which is not
part of the list of vetted
cryptographic deployed
components.

ASCSM-CWE-396:
Declaration of Catch
for Generic Exception

Software unaware of
accurate execution status
control incurs the risk of bad
data being used in
operations, possibly leading
to a crash or other
unintended behaviors

Avoid failure to use
dedicated exception
types

Number of instances where the
named callable control element or
method control element contains a
catch unit which declares to catch
an exception parameter whose data
type is part of a list of overly broad
exception data types.

ASCSM-CWE-397:
Declaration of Throws
for Generic Exception

Software unaware of
accurate execution status
control incurs the risk of bad
data being used in
operations, possibly leading
to a crash or other
unintended behaviors

Avoid failure to use
dedicated exception
types

Number of instances where the
named callable control element or
method control element throws an
exception parameter whose data
type is part of a list of overly broad
exception data types.

ASCSM-CWE-434:
File Upload
Improper Input
Neutralization

Software unaware of the
upload control incurs the risk
of arbitrary code execution

Avoid failure to sanitize
user input in use in file
upload operations

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable

Automated Source Code Security Measure, v1.0 21

and method control elements, and
ultimately used in the file file upload
action; none of the callable or
method control element of the
transformation sequence being a
vetted sanitization control element
from the list of vetted sanitization
control elements.

ASCSM-CWE-456:
Storable and Member
Data Element Missing
Initialization

Software featuring weak
initialization practices incurs
the risk of logic errors within
the program, possibly leading
to a security problem

Avoid failure to
explicitly initialize
software data
elements in use

Number of instances where a
storable data element or member
data element is declared by the
'Create' action, then is evaluated in
a 'Read' action without ever being
initialized by a 'Write' action prior to
the evaluation.

ASCSM-CWE-606:
Unchecked input for
Loop Condition

Software unaware of iteration
control incurs the risk of
unexpected consumption of
resources, such as CPU
cycles or memory, possibly
leading to a crash or program
exit due to exhaustion of
resources

Avoid failure to check
range of user input in
use in iteration control

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the loop condition
statement; none of the callable or
method control element of the
transformation sequence being a
range check control element.

ASCSM-CWE-667:
Shared Resource
improper Locking

Software featuring
inconsistent locking discipline
incurs the risk of deadlock

Avoid data corruption
during concurrent
access

Number of instances where the
shared storable data element or
member data element, declared with
the Create action, is accessed
outside a critical section of the
application via the Read or Write
action.

ASCSM-CWE-672:
Expired or Released
Resource Usage

Software unaware of
resource lifecycle incurs the
risk of unauthorized access to
sensitive data that is
associated with a different
user or entity, and the risk of
erroneous later attempts to
access the resource, possibly
leading to a crash

Avoid access to a
released, revoked, or
expired resource

Number of instances where the
platform resource is deallocated in
the Manage action using its unique
resource handler value which is
transported throughout the
application via the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, then
used later within the application to
try and access the resource in the
Read or Write action.

ASCSM-CWE-681:
Numeric Types
Incorrect Conversion

Software featuring weak
numerical conversion
practices incurs the risk of
using the wrong number and
generating incorrect results,
possibly introducing new
vulnerability when related to
resource allocation and
security decision

Avoid numerical data
corruption during
incompatible mutation

Number of instances where a
storable element or member
element is declared with a numerical
data type in the 'Create' action, and
then is updated with a value which is
cast via a type cast action into a
second numerical data type, which
is incompatible with the first data
type.

22 Automated Source Code Security Measure, v1.0

ASCSM-CWE-772:
Missing Release of
Resource after
Effective Lifetime

Software unaware of
resource lifecycle incurs the
risk of preventing all other
processes from accessing the
same type of resource

Avoid resource
hoarding and
consequently resource
depletion

Number of instances where a
platform resource is allocated and
assigned a unique resource handler
value via a manage resource action,
and its unique resource handler
value is used throughout the
application along a transformation
sequence composed of action
elements with data relations, some
of which are part of named callable
and method control elements, but
none of which is a resource release
statement.

ASCSM-CWE-789:
Uncontrolled Memory
Allocation

Software that is unaware of
buffer bounds incurs the risk
of corruption of relevant
memory, and perhaps
instructions, possibly leading
to a crash, the risk of data
integrity loss, and the risk of
unauthorized access to
sensitive data

Avoid failure to check
range of user input in
use as buffer index

Number of instances where an
external value is entered into the
application through the user
interface ReadsUI action,
transformed throughout the
application along the sequence
composed of ActionElements with
DataRelations relations, some of
which being part of named callable
and method control elements, and
ultimately used in the buffer Read or
Write access action; none of the
callable or method control element
of the transformation sequence
being a range check control
element.

ASCSM-CWE-798:
Hard-Coded
Credentials Usage for
Remote Authentication

Software featuring weak
authentication practices
incurs the risk of exposing
resources and functionality to
unintended actors, possibly
leading to compromised
sensitive information and
even the execution of
arbitrary code

Avoid the existence of
hard-coded credentials
elements

Number of instances where a
storable data element or member
data element is initialized by a
'Write' action, transported
throughout the application along the
transport sequence composed of
ActionElements with DataRelations
relations, some of which being part
of named callable and method
control elements, and ultimately
used in the remote resource
management action; the transport
sequence is composed of
assignment operations as updates
to the value would not be considered
as hard-coded (literal) any more.

ASCSM-CWE-835:
Loop with Unreachable
Exit Condition ('Infinite
Loop')

Software unaware of iteration
control incurs the risk of
unexpected consumption of
resources, such as CPU
cycles or memory, possibly
leading to a crash or program
exit due to exhaustion of
resources

Avoid infinite iterations Number of instances where the
named callable control element or
method control element features the
execution path whose entry element
is found again in the path, while it
has no path whatsoever to not return
to itself and exit the recursion.

Automated Source Code Security Measure, v1.0 23

This page intentionally left blank.

24 Automated Source Code Security Measure, v1.0

7 SPMS Representation of the Security Quality
Measure Elements (Normative)

7.1 Introduction

This clause displays in a human readable format the content of the machine readable XMI format file attached to the
current specification. The content of the machine readable XMI format file is the representations of the CISQ Quality
Measure Elements:

 according to the Structured Patterns Metamodel Standard (SPMS), and

 relating to the Knowledge Discovery Metamodel (KDM) within their description as frequently as possible, so as
to be as generic as possible yet as accurate as possible.

SPMS

More specifically, the machine readable XMI format file attached to the current specification uses the SPMS Definitions
Classes:

 PatternDefinition (SPMS:PatternDefinition): the pattern specification. In the context of this document, each
Quality Measure Element is basically the count of occurrences of the described patterns.

 Role (SPMS:Role): “A pattern is informally defined as a set of relationships between a set of entities. Roles
describe the set of entities within a pattern, between which those relationships will be described. As such the
Role is a required association in a PatternDefinition. […]. Semantically, a Role is a 'slot' that is required to be
fulfilled for an instance of its parent PatternDefinition to exist.”

 PatternSection (SPMS:PatternSection): “A PatternSection is a free-form prose textual description of a portion of
a PatternDefinition.” In the context of this document, there are several different PatternSections in use:

o “Descriptor” to provide pattern signature, a visible interface of the pattern.

o “Measure Element” to provide a human readable explanation of the measure.

o “Description” to provide a human readable explanation of the pattern that is sought after, identifying
“Roles” and KDM modeling information.

o “Objective” to provide a human readable explanation of the intent to get rid of the occurrences of the
pattern that is sought after.

o “Consequence” to provide a human readable explanation of the issue the detection of the pattern is
designed to solve.

o “Input” to provide a human readable of the parameters that are needed to fine-tune the behavior of the
pattern detection (e.g., the target application architectural blueprint to comply with).

o “Comment” to provide some additional information (until now, used to inform about situations where
the same measure element is useful for another one of the categories).

Automated Source Code Security Measure, v1.0 25

As well as some of the SPMS Relationships Classes:

 MemberOf (SPMS:MemberOf): “An InterpatternRelationship specialized to indicate inclusion in a Category.”

 Category (SPMS:Category): “A Category is a simple grouping element for gathering related PatternDefinitions
into clusters.” In the context of this document, the SPMS Categories are used to represent the 4 Quality
Characteristics:

o “Reliability”

o “Security”

o “Performance Efficiency”

o “Maintainability”

KDM

More specifically, the machine readable XMI format file attached to the current specification uses KDM entities in the
“Description” section of the pattern definitions. Descriptions try to remain as generic yet accurate as possible so that the
pattern can be applicable and applied to as many situations as possible: different technologies, different programming
languages, etc.

This means:

1 The descriptions include information such as (code:MethodUnit), (action:Reads),
(platform:ManagesResource), ... to identify the KDM entities the pattern definition involves.

2 The descriptions only detail the salient aspects of the pattern as the specifics can be technology- or language-
dependent.

KDM is helpful for reading this clause. However, for readers not familiar with KDM, Table 7.1 presents a primer which
translates standard source code element terms into the KDM wording in this specification.

Reading guide

For each numbered sub clause in this clause:

 Sub clause 7.2 represents the SPMS Category covered by the current specification.
 Starting with sub clause 7.3, each sub clause represents a new SPMS PatternDefinition member of this

SPMS Category.

Table 7.1 – Software elements translated into KDM wording

Software element KDM wording

function, method, procedure, stored
procedure, sub-routine etc.

named callable control element (code:CallableUnit with code:CallableKind
'regular,' 'external,' or 'stored') or method control element (code:MethodUnit)

variable, field, member, etc. storable data element (code:StorableUnit) or member data element
(code:MemberUnit)

class class element (code:StorableUnit with code:DataType code:ClassUnit)

interface interface element (code:StorableUnit of code:DataType code:InterfaceUnit)

method method element (code:MethodUnit)

field, member member element (code:MemberUnit)

26 Automated Source Code Security Measure, v1.0

SQL stored procedures stored callable control elements (code:CallableUnit with code:CallableKind
'stored') in a data manager resource (platform:DataManager)

return code value value (code:Value) of the return parameter (code:ParameterUnit of
code:ParameterKind 'return')

exception exception parameter (code:ParameterUnit with code:ParameterKind 'exception')

user input data flow an external value is entered into the application through the 'ReadsUI' user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application
along the 'TransformationSequence' sequence (action:BlockUnit) composed of
ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method
control elements (code:MethodUnit or code:CallableUnit with code:CallableKind
'regular', 'external' or 'stored'), and ultimately used as

execution path execution path (action:BlockUnit composed of action:ActionElements with
action:CallableRelations to code:ControlElements)

Libraries, etc. deployed component (platform:DeployedComponent)

RDBMS data manager resource (platform:DataManager)

loop body loop body block (action:BlockUnit starting as the action:TrueFlow of the loop
action:GuardedFlow and ending with an action:Flow back to the loop
action:GuardedFlow)

loop condition loop condition (action:BlockUnit used in the action:GuardedFlow)

singleton class element (code:StorableUnit with code:DataType code:ClassUnit) that can
be used only once in the 'to' association of a Create action (action:Creates)

checked used by a check control element (code:ControlElement containing
action:ActionElement with a kind from micro KDM list of comparison actions)

SPMS PatternDefinition sub clauses are:

 Pattern category: the “SPMS:Category” category the pattern is related to through an “SPMS:MemberOf”
relationship.

 Pattern sections: the list of "SPMS:PatternSection" sections from the pattern:

o “Descriptor”

o “Description”

o “Objective”

o “Consequence”

 and when applicable,

• “Input”

• “Comment”

Automated Source Code Security Measure, v1.0 27

 Pattern roles: the list of “SPMS:Role” roles used in the “Descriptor” and “Description” sub clauses above.

In the following sub clauses

 Data between square brackets (e.g., [key Reliability]) identifies “xmi:id” that are unique and used to
reference entities. They are machine-generated to ensure unicity.

 Data between parentheses (e.g., (code:MethodUnit)) identifies KDM modeling information.

 Data between angle brackets (e.g., <ControlElement>) identifies SPMS Roles in Description and Input sub
clauses.

7.2 Category definition of Security

[key ASCSM_Security] Security

7.3 Pattern definition of ASCSM-CWE-22: Path Traversal Improper Input
Neutralization

Pattern Category

[key ASCSM-CWE-22-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-22-objective]

Avoid failure to sanitize user input in use in path manipulation operations.

Consequence

[key ASCSM-CWE-22-consequence]

Software that is unaware of file path control incurs the risk of exposition of sensitive data, the risk of corruption of
critical files, such as programs, libraries, or important data used in protection mechanisms.

Measure Element

[key ASCSM-CWE-22-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the file path creation
statement; none of the callable or method control element of the transformation sequence being a vetted sanitization
control element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-22-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<PathCreationStatement> file path creation statement (platform:ManagesResource with platform:FileResource); none of

28 Automated Source Code Security Measure, v1.0

the callable or method control element of the transformation sequence being a vetted sanitization callable and method
control element (code:ControlElement) from the <PathTraversalSanitizationControlElementList> list of vetted
sanitization control elements.

Descriptor

[key ASCSM-CWE-22-descriptor]

ASCSM-CWE-22(UserInput: userInput,PathCreationStatement: pathCreationStatement, TransformationSequence:
transformationSequence, PathTraversalSanitizationControlElementList: pathTraversalSanitizationControlElementList)

Variable input

[key ASCSM-CWE-22-input]

<PathTraversalSanitizationControlElementList> list of control elements vetted to handle path traversal vulnerabilities.

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-22-roles-userInput] UserInput

[key ASCSM-CWE-22-roles-pathCreationStatement] PathCreationStatement

[key ASCSM-CWE-22-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-22-roles-pathTraversalSanitizationControlElementList]
PathTraversalSanitizationControlElementList

7.4 Pattern definition of ASCSM-CWE-78: OS Command Injection
Improper Input Neutralization

Pattern Category

[key ASCSM-CWE-78-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-78-objective]

Avoid failure to sanitize user input in use as operating system commands.

Consequence

[key ASCSM-CWE-78-consequence]

Software unaware of OS command control incurs the risk of unauthorized command execution, possibly used to disable
the software, or possibly leading to unauthorized read and modify data access.

Measure Element

[key ASCSM-CWE-78-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the platform action to
be executed by the execution environment; none of the callable or method control element of the transformation
sequence being a vetted sanitization control element from the list of vetted sanitization control elements.

Automated Source Code Security Measure, v1.0 29

Description

[key ASCSM-CWE-78-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<ExecuteRunTimeCommandStatement> platform action (platform:PlatformActions) to be executed by the execution
environment (platform:ExecutionResource); none of the callable or method control element of the transformation
sequence being a vetted sanitization callable and method control element from the
<OSCommandSanitizationControlElementList> list of vetted sanitization callable and method control elements.

Descriptor

[key ASCSM-CWE-78-descriptor]

ASCSM-CWE-78(UserInput: userInput,ExecuteRunTimeCommandStatement: executeRunTimeCommandStatement,
TransformationSequence: transformationSequence, OSCommandSanitizationControlElementList:
oSCommandSanitizationControlElementList)

Variable input

[key ASCSM-CWE-78-input]

<OSCommandSanitizationControlElementList> list of control elements vetted to handle Command Injection
vulnerabilities.

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-78-roles-userInput] UserInput

[key ASCSM-CWE-78-roles-executeRunTimeCommandStatement] ExecuteRunTimeCommandStatement

[key ASCSM-CWE-78-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-78-roles-oSCommandSanitizationControlElementList]
OSCommandSanitizationControlElementList

7.5 Pattern definition of ASCSM-CWE-79: Cross-site Scripting Improper
Input Neutralization

Pattern Category

[key ASCSM-CWE-79-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-79-objective]

Avoid failure to sanitize user input in use in output generation operations.

30 Automated Source Code Security Measure, v1.0

Consequence

[key ASCSM-CWE-79-consequence]

Software featuring weak output generation practices incurs the risk of arbitrary code execution, the risk of sensitive data
being compromised, and many other nefarious consequences.

Measure Element

[key ASCSM-CWE-79-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the user interface
WritesUI action; none of the callable or method control element of the transformation sequence being a vetted
sanitization control element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-79-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the <UserDisplay> user
interface WritesUI action (ui:WritesUI); none of the callable or method control element of the transformation sequence
being a vetted sanitization control element from the <CrossSiteScriptingSanitizationControlElementList> list of vetted
sanitization control elements.

Descriptor

[key ASCSM-CWE-79-descriptor]

ASCSM-CWE-79(UserInput: userInput,CrossSiteScriptingSanitizationControlElementList:
crossSiteScriptingSanitizationControlElementList, UserDisplay: userDisplay, TransformationSequence:
transformationSequence)

Variable input

[key ASCSM-CWE-79-input]

<CrossSiteScriptingSanitizationControlElementList> list of control elements vetted to deal with cross-site scripting
vulnerability

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-79-roles-userInput] UserInput

[key ASCSM-CWE-79-roles-crossSiteScriptingSanitizationControlElementList]
CrossSiteScriptingSanitizationControlElementList

[key ASCSM-CWE-79-roles-userDisplay] UserDisplay

[key ASCSM-CWE-79-roles-transformationSequence] TransformationSequence

Automated Source Code Security Measure, v1.0 31

7.6 Pattern definition of ASCSM-CWE-89: SQL Injection Improper Input
Neutralization

Pattern Category

[key ASCSM-CWE-89-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-89-objective]

Avoid failure to sanitize user input in use in SQL compilation operations.

Consequence

[key ASCSM-CWE-89-consequence]

Software unaware of SQL command control incurs the risk of unauthorized read, modify, and delete access to sensitive
data.

Measure Element

[key ASCSM-CWE-89-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the SQL compilation
statement; none of the callable or method control element of the transformation sequence being a vetted sanitization
control element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-89-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<SQLCompilationStatement> SQL compilation statement (data:ReadsColumnSet or data:WritesColumnSet or
data:ManagesData or action:Calls to a code:CallableUnit stored in the data:DataResource); none of the callable or
method control element of the transformation sequence being a vetted sanitization callable and method control elements
from the <SQLInjectionSanitizationControlElementList> list of vetted sanitization control elements.

Descriptor

[key ASCSM-CWE-89-descriptor]

ASCSM-CWE-89(UserInput: userInput,SQLCompilationStatement: sQLCompilationStatement,
TransformationSequence: transformationSequence, SQLInjectionSanitizationControlElementList:
sQLInjectionSanitizationControlElementList)

Variable input

[key ASCSM-CWE-89-input]

<SQLInjectionSanitizationControlElementList> list of control elements vetted to handle SQL injection vulnerabilities.

Comment

(none applicable)

32 Automated Source Code Security Measure, v1.0

List of Roles

[key ASCSM-CWE-89-roles-userInput] UserInput

[key ASCSM-CWE-89-roles-sQLCompilationStatement] SQLCompilationStatement

[key ASCSM-CWE-89-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-89-roles-sQLInjectionSanitizationControlElementList]
SQLInjectionSanitizationControlElementList

7.7 Pattern definition of ASCSM-CWE-99: Name or Reference
Resolution Improper Input Neutralization

Pattern Category

[key ASCSM-CWE-99-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-99-objective]

Avoid failure to sanitize user input in use as resource names or references.

Consequence

[key ASCSM-CWE-99-consequence]

Software unaware of resource identification control incurs the risk of unauthorized access to or modification of sensitive
data and system resources, including configuration files and files containing sensitive information.

Measure Element

[key ASCSM-CWE-799measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the platform action to
access a resource by its name; none of the callable or method control element of the transformation sequence being a
vetted sanitization control element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-99-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<AccessByNameStatement> platform action (platform:PlatformActions) to access a resource (platform:ResourceType)
by its name; none of the callable or method control element of the transformation sequence being a vetted sanitization
callable and method control elements from the <NameOrReferenceResolutionSanitizationControlElementList> list of
vetted sanitization callable and method control elements.

Descriptor

[key ASCSM-CWE-99-descriptor]

Automated Source Code Security Measure, v1.0 33

ASCSM-CWE-99(UserInput: userInput,AccessByNameStatement: accessByNameStatement, TransformationSequence:
transformationSequence, NameOrReferenceResolutionSanitizationControlElementList:
nameOrReferenceResolutionSanitizationControlElementList)

Variable input

[key ASCSM-CWE-99-input]

<NameOrReferenceResolutionSanitizationControlElementList> list of control elements vetted to handle Name or
Reference Resolution vulnerabilities.

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-99-roles-userInput] UserInput

[key ASCSM-CWE-99-roles-accessByNameStatement] AccessByNameStatement

[key ASCSM-CWE-99-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-99-roles-nameOrReferenceResolutionSanitizationControlElementList]
NameOrReferenceResolutionSanitizationControlElementList

7.8 Pattern definition of ASCSM-CWE-120: Buffer Copy without
Checking Size of Input

Pattern Category

[key ASCSM-CWE-120-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-120-objective]

Avoid buffer operations among buffers with incompatible sizes.

Consequence

[key ASCSM-CWE-120-consequence]

Software that is unaware of buffer bounds incurs the risk of corruption of relevant memory, and perhaps instructions,
possibly leading to a crash, the risk of data integrity loss, and the risk of unauthorized access to sensitive data.

Measure Element

[key ASCSM-CWE-120-measure-element]

Number of instances in which the content of the first buffer is moved into the content of the second buffer while the size
of the first buffer is greater than the size of the second buffer.

Description

[key ASCSM-CWE-120-description]

This pattern identifies situations where two buffer storable elements (code:StorableUnit) or member elements
(code:MemberUnit) are allocated with specific sizes in <SourceBufferAllocationStatement> and
<TargetBufferAllocationStatement> Create actions (action:Creates), transformed within the application via the

34 Automated Source Code Security Measure, v1.0

<SourceTransformationSequence> and <TargetTransformationSequence> sequences (action:BlockUnit) composed of
ActionElements with DataRelations relations (action:Reads, action:Writes, action:Addresses), some of which being part
of named callable and method control elements (code:MethodUnit or code:CallableUnit with code:CallableKind
'regular,' 'external,' or 'stored'), then ultimately used by the application to move the content of the first buffer
(action:Reads) onto the content of the second buffer (action:Writes) through the <MoveBufferStatement> statement,
while the size of the first buffer is greater than the size of the second buffer.

Descriptor

[key ASCSM-CWE-120-descriptor]

ASCSM-CWE-120(SourceBufferAllocationStatement:
sourceBufferAllocationStatement,TargetBufferAllocationStatement: targetBufferAllocationStatement,
SourceTransformationSequence: sourceTransformationSequence, TargetTransformationSequence:
targetTransformationSequence, MoveBufferStatement: moveBufferStatement)

Variable input

(none applicable)

Comment

[key ASCSM-CWE-120-comment] Measure element contributes to Security and Reliability

List of Roles

[key ASCSM-CWE-120-roles-sourceBufferAllocationStatement] SourceBufferAllocationStatement

[key ASCSM-CWE-120-roles-targetBufferAllocationStatement] TargetBufferAllocationStatement

[key ASCSM-CWE-120-roles-sourceTransformationSequence] SourceTransformationSequence

[key ASCSM-CWE-120-roles-targetTransformationSequence] TargetTransformationSequence

[key ASCSM-CWE-120-roles-moveBufferStatement] MoveBufferStatement

7.9 Pattern definition of ASCSM-CWE-129: Array Index Improper Input
Neutralization

Pattern Category

[key ASCSM-CWE-129-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-129-objective]

Avoid failure to check range of user input in use as array index.

Consequence

[key ASCSM-CWE-129-consequence]

Software that is unaware of array index bounds incurs the risk of corruption of relevant memory, and perhaps
instructions, possibly leading to a crash, the risk of data integrity loss, and the risk of unauthorized access to sensitive
data.

Measure Element

[key ASCSM-CWE-129-measure-element]

Automated Source Code Security Measure, v1.0 35

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the read or write action
to access the array; none of the callable or method control element of the transformation sequence being a range check
callable and method control element with regards to the array index.

Description

[key ASCSM-CWE-129-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<ArrayAccessStatement> read or write action (action:Reads or action:Writes) to access the <Array> array
(code:StorableUnit or code:MemberUnit with code:DataType code:ArrayType); none of the callable or method control
element of the transformation sequence being a range check callable and method control element with regards to the
array index (code:IndexUnit).

Descriptor

[key ASCSM-CWE-129-descriptor]

ASCSM-CWE-129(UserInput: userInput,ArrayAccessStatement: arrayAccessStatement, Array: array,
TransformationSequence: transformationSequence)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-129-roles-userInput] UserInput

[key ASCSM-CWE-129-roles-arrayAccessStatement] ArrayAccessStatement

[key ASCSM-CWE-129-roles-array] Array

[key ASCSM-CWE-129-roles-transformationSequence] TransformationSequence

7.10 Pattern definition of ASCSM-CWE-134: Format String Improper
Input Neutralization

Pattern Category

[key ASCSM-CWE-134-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-134-objective]

Avoid failure to sanitize user input in use in formatting operations.

36 Automated Source Code Security Measure, v1.0

Consequence

[key ASCSM-CWE-134-consequence]

Software that is unaware of formatting control incurs the risk of execution of arbitrary code and the risk of information
disclosure which can severely simplify exploitation of the software.

Measure Element

[key ASCSM-CWE-134-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the formatting
statement; none of the callable or method control element of the transformation sequence being a vetted sanitization
control element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-134-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the <FormatStatement>
formatting statement; none of the callable or method control element of the transformation sequence being a vetted
sanitization control element from the <StringFormatSanitizationControlElementList> list of vetted sanitization control
elements.

Descriptor

[key ASCSM-CWE-134-descriptor]

ASCSM-CWE-134(UserInput: userInput,FormatStatement: formatStatement, TransformationSequence:
transformationSequence, StringFormatSanitizationControlElementList: stringFormatSanitizationControlElementList)

Variable input

[key ASCSM-CWE-134-input]

<StringFormatSanitizationControlElementList> list of control elements vetted to handle format string vulnerabilities.

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-134-roles-userInput] UserInput

[key ASCSM-CWE-134-roles-formatStatement] FormatStatement

[key ASCSM-CWE-134-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-134-roles-stringFormatSanitizationControlElementList]
StringFormatSanitizationControlElementList

Automated Source Code Security Measure, v1.0 37

7.11 Pattern definition of ASCSM-CWE-252-resource: Unchecked Return
Parameter Value of named Callable and Method Control Element
with Read, Write, and Manage Access to Platform Resource

Pattern Category

[key ASCSM-CWE-252-resource-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-252-resource-objective]

Avoid improper processing of the execution status of resource handling operations.

Consequence

[key ASCSM-CWE-252-resource-consequence]

Software unaware of execution status control incurs the risk of bad data being used in operations, possibly leading to a
crash or other unintended behaviors.

Measure Element

[key ASCSM-CWE-252-resource-measure-element]

Number of instances where the named callable control element or method control element executes a ‘Read,’ ‘Write,’ or
‘Manage Access’ action, yet the value of the return parameter from the action is not used by any check control element.

Description

[key ASCSM-CWE-252-resource-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) executes the
<ResourceAccessStatement> Read, Write, and Manage Access action (platform:ReadsResource,
platform:WritesResource, and platform:ManagesResource) yet the value (code:Value) of the return parameter
(code:ParameterUnit of code:ParameterKind 'return') from the action is not used by any check control element
(code:ControlElement containing action:ActionElement with a kind from micro KDM list of comparison actions).

Descriptor

[key ASCSM-CWE-252-resource-descriptor]

ASCSM-CWE-252-resource(ControlElement: controlElement,ResourceAccessStatement: resourceAccessStatement)

Variable input

(none applicable)

Comment

[key ASCSM-CWE-252-resource-comment] Measure element contributes to Security and Reliability

List of Roles

[key ASCSM-CWE-252-resource-roles-controlElement] ControlElement

[key ASCSM-CWE-252-resource-roles-resourceAccessStatement] ResourceAccessStatement

38 Automated Source Code Security Measure, v1.0

7.12 Pattern definition of ASCSM-CWE-327: Broken or Risky
Cryptographic Algorithm Usage

Pattern Category

[key ASCSM-CWE-327-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-327-objective]

Avoid failure to use vetted cryptographic libraries.

Consequence

[key ASCSM-CWE-327-consequence]

Software using broken or risky cryptographic algorithm incurs the risk of sensitive data being compromised.

Measure Element

[key ASCSM-CWE-327-measure-element]

Number of instances where the application uses the cryptographic deployed component which is not part of the list of
vetted cryptographic deployed components.

Description

[key ASCSM-CWE-327-description]

This pattern identifies situations where the <Application> application uses the
<CryptographicDeployedComponentInUse> cryptographic deployed component (platform:DeployedComponent) while
it is not part of the <VettedCryptographicDeployedComponentList> list of vetted cryptographic deployed components.

As an example, FIPS 140-2 features a list of validated implementations.

Descriptor

[key ASCSM-CWE-327-descriptor]

ASCSM-CWE-327(CryptographicDeployedComponentInUse:
cryptographicDeployedComponentInUse,VettedCryptographicDeployedComponentList:
vettedCryptographicDeployedComponentList, Application: application)

Variable input

[key ASCSM-CWE-327-input]

<VettedCryptographicDeployedComponentList> list of vetted cryptographic deployed components

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-327-roles-cryptographicDeployedComponentInUse] CryptographicDeployedComponentInUse

[key ASCSM-CWE-327-roles-vettedCryptographicDeployedComponentList]
VettedCryptographicDeployedComponentList

[key ASCSM-CWE-327-roles-application] Application

Automated Source Code Security Measure, v1.0 39

7.13 Pattern definition of ASCSM-CWE-396: Declaration of Catch for
Generic Exception

Pattern Category

[key ASCSM-CWE-396-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-396-objective]

Avoid failure to use dedicated exception types.

Consequence

[key ASCSM-CWE-396-consequence]

Software unaware of accurate execution status control incurs the risk of bad data being used in operations, possibly
leading to a crash or other unintended behaviors.

Measure Element

[key ASCSM-CWE-396-measure-element]

Number of instances where the named callable control element or method control element contains a catch unit which
declares to catch an exception parameter whose data type is part of a list of overly broad exception data types.

Description

[key ASCSM-CWE-396-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular', 'external,' or 'stored') or method control element (code:MethodUnit) contains the
<CatchElement> catch unit (action:CatchUnit) which declares to catch the <CaughtExceptionParameter> exception
parameter (code:ParameterUnit with code:ParameterKind 'exception') whose datatype (code:DataType) is part of the
<OverlyBroadExceptionTypeList> list of overly broad exception datatypes.

As an example, with JAVA, <OverlyBroadExceptionTypeList> is {'java.lang.Exception'}.

Descriptor

[key ASCSM-CWE-396-descriptor]

ASCSM-CWE-396(ControlElement: controlElement,CatchElement: catchElement, CaughtExceptionParameter:
caughtExceptionParameter, OverlyBroadExceptionTypeList: overlyBroadExceptionTypeList)

Variable input

[key ASCSM-CWE-396-input]

<OverlyBroadExceptionTypeList> list of overly broad exception datatypes.

Comment

[key ASCSM-CWE-396-comment] Measure element contributes to Security and Reliability

List of Roles

[key ASCSM-CWE-396-roles-controlElement] ControlElement

[key ASCSM-CWE-396-roles-catchElement] CatchElement

40 Automated Source Code Security Measure, v1.0

[key ASCSM-CWE-396-roles-caughtExceptionParameter] CaughtExceptionParameter

[key ASCSM-CWE-396-roles-overlyBroadExceptionTypeList] OverlyBroadExceptionTypeList

7.14 Pattern definition of ASCSM-CWE-397: Declaration of Throws for
Generic Exception

Pattern Category

[key ASCSM-CWE-397-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-397-objective]

Avoid failure to use dedicated exception types.

Consequence

[key ASCSM-CWE-397-consequence]

Software unaware of accurate execution status control incurs the risk of bad data being used in operations, possibly
leading to a crash or other unintended behaviors.

Measure Element

[key ASCSM-CWE-397-measure-element]

Number of instances where the named callable control element or method control element throws an exception parameter
whose data type is part of a list of overly broad exception data types.

Description

[key ASCSM-CWE-397-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) throws with the
<ThrowsAction> Throws action (action:Throws) the <ThrownExceptionParameter> exception parameter
(code:ParameterUnit with code:ParameterKind 'exception') whose datatype (code:Datatype) is part of the
<OverlyBroadExceptionTypeList> list of overly broad exception datatypes.

As an example, with JAVA, <OverlyBroadExceptionTypeList> is {'java.lang.Exception'}.

Descriptor

[key ASCSM-CWE-397-descriptor]

ASCSM-CWE-397(ControlElement: controlElement,ThrowsAction: throwsAction, ThrownExceptionParameter:
thrownExceptionParameter, OverlyBroadExceptionTypeList: overlyBroadExceptionTypeList)

Variable input

[key ASCSM-CWE-397-input]

<OverlyBroadExceptionTypeList> list of overly broad exception datatypes

Comment

[key ASCSM-CWE-397-comment] Measure element contributes to Security and Reliability

Automated Source Code Security Measure, v1.0 41

List of Roles

[key ASCSM-CWE-397-roles-controlElement] ControlElement

[key ASCSM-CWE-397-roles-throwsAction] ThrowsAction

[key ASCSM-CWE-397-roles-thrownExceptionParameter] ThrownExceptionParameter

[key ASCSM-CWE-397-roles-overlyBroadExceptionTypeList] OverlyBroadExceptionTypeList

7.15 Pattern definition of ASCSM-CWE-434: File Upload Improper Input
Neutralization

Pattern Category

[key ASCSM-CWE-434-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-434-objective]

Avoid failure to sanitize user input in use in file upload operations.

Consequence

[key ASCSM-CWE-434-consequence]

Software unaware of file upload control incurs the risk of arbitrary code execution.

Measure Element

[key ASCSM-CWE-434-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the file file upload
action; none of the callable or method control element of the transformation sequence being a vetted sanitization control
element from the list of vetted sanitization control elements.

Description

[key ASCSM-CWE-434-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<FileUploadStatement> file upload action (platform:ManagesResources with platform:FileResource); none of the
callable or method control element of the transformation sequence being a vetted sanitization callable and method
control element from the <FileUploadSanitizationControlElementList> list of vetted sanitization callable and method
control elements.

Descriptor

[key ASCSM-CWE-434-descriptor]

ASCSM-CWE-434(UserInput: userInput,TransformationSequence: transformationSequence, FileUploadStatement:
fileUploadStatement, FileUploadSanitizationControlElementList: fileUploadSanitizationControlElementList)

42 Automated Source Code Security Measure, v1.0

Variable input

[key ASCSM-CWE-434-input]

<FileUploadSanitizationControlElementList> list of control elements vetted to handle File Upload vulnerabilities.

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-434-roles-userInput] UserInput

[key ASCSM-CWE-434-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-434-roles-fileUploadStatement] FileUploadStatement

[key ASCSM-CWE-434-roles-fileUploadSanitizationControlElementList] FileUploadSanitizationControlElementList

7.16 Pattern definition of ASCSM-CWE-456: Storable and Member Data
Element Missing Initialization

Pattern Category

[key ASCSM-CWE-456-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-456-objective]

Avoid failure to explicitly initialize software data elements in use.

Consequence

[key ASCSM-CWE-456-consequence]

Software featuring weak initialization practices incurs the risk of logic errors within the program, possibly leading to a
security problem.

Measure Element

[key ASCSM-CWE-456-measure-element]

Number of instances where a storable data element or member data element is declared by the ‘Create’ action, then is
evaluated in a ‘Read’ action without ever being initialized by a ‘Write’ action prior to the evaluation.

Description

[key ASCSM-CWE-456-description]

This pattern identifies situations where the <DataElement> storable data element (code:StorableUnit) or member data
element (code:MemberUnit) is declared by the <DeclarationStatement> Create action (action:Creates), then evaluated in
the <EvaluationStatement> Read action (action:Reads) without ever being initialized by a Write action (action:Writes)
prior to the evaluation.

Descriptor

[key ASCSM-CWE-456-descriptor]

ASCSM-CWE-456(DataElement: dataElement,DeclarationStatement: declarationStatement, EvaluationStatement:
evaluationStatement)

Automated Source Code Security Measure, v1.0 43

Variable input

(none applicable)

Comment

[key ASCSM-CWE-456-comment] Measure element contributes to Security and Reliability

List of Roles

[key ASCSM-CWE-456-roles-dataElement] DataElement

[key ASCSM-CWE-456-roles-declarationStatement] DeclarationStatement

[key ASCSM-CWE-456-roles-evaluationStatement] EvaluationStatement

7.17 Pattern definition of ASCSM-CWE-606: Unchecked Input for Loop
Condition

Pattern Category

[key ASCSM-CWE-606-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-606-objective]

Avoid failure to check range of user input in use in iteration control.

Consequence

[key ASCSM-CWE-606-consequence]

Software unaware of iteration control incurs the risk of unexpected consumption of resources, such as CPU cycles or
memory, possibly leading to a crash or program exit due to exhaustion of resources.

Measure Element

[key ASCSM-CWE-606-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the loop condition
statement; none of the callable or method control element of the transformation sequence being a range check control
element.

Description

[key ASCSM-CWE-606-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used in the
<LoopConditionStatement> loop condition statement (action:GuardedFlow with an action:TrueFlow returning to the
same action:GuardedFlow); none of the callable or method control element of the transformation sequence being a range
check control element (code:ControlElement containing action:ActionElement with a kind from micro KDM list of
comparison actions).

44 Automated Source Code Security Measure, v1.0

Descriptor

[key ASCSM-CWE-606-descriptor]

ASCSM-CWE-606(UserInput: userInput,LoopConditionStatement: loopConditionStatement, TransformationSequence:
transformationSequence)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-606-roles-userInput] UserInput

[key ASCSM-CWE-606-roles-loopConditionStatement] LoopConditionStatement

[key ASCSM-CWE-606-roles-transformationSequence] TransformationSequence

7.18 Pattern definition of ASCSM-CWE-667: Shared Resource Improper
Locking

Pattern Category

[key ASCSM-CWE-667-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-667-objective]

Avoid data corruption during concurrent access.

Consequence

[key ASCSM-CWE-667-consequence]

Software featuring inconsistent locking discipline incurs the risk of deadlock.

Measure Element

[key ASCSM-CWE-667-measure-element]

Number of instances where the shared storable data element or member data element, declared with the Create action, is
accessed outside a critical section of the application via the Read or Write action.

Description

[key ASCSM-CWE-667-description]

This pattern identifies situations where the <PublicDataElement> shared (code:ExportKind 'public') storable data
element (code:StorableUnit) or member data element (code:MemberUnit), declared with the
<DataElementDeclarationStatement> Create action (action:Creates), is accessed outside a critical section
(action:BlockUnit) of the application via the <DataElementAccessStatement> Read or Write action (action:Reads or
action:Writes).

The critical nature of the section is technology and platform dependent. As examples, in C/C++, critical nature comes
from the use of 'mtx_lock' and 'mtx_unlock' from the 'threads.h' standard C language API (code:LanguageUnit), or from
the use of 'pthread_mutex_lock' and 'pthread_mutex_unlock' from the 'pthreads.h' C/C++ POSIX API, or from the use of

Automated Source Code Security Measure, v1.0 45

'EnterCriticalSection' and 'LeaveCriticalSection' from the 'windows.h' C/C++ Win32 API. As other examples, in JAVA,
critical nature comes from the use of the 'synchronized' keyword, and in C#, critical nature comes from the use of the
'lock' keyword.

Descriptor

[key ASCSM-CWE-667-descriptor]

ASCSM-CWE-667(PublicDataElement: publicDataElement,DataElementDeclarationStatement:
dataElementDeclarationStatement, DataElementAccessStatement: dataElementAccessStatement)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-667-roles-publicDataElement] PublicDataElement

[key ASCSM-CWE-667-roles-dataElementDeclarationStatement] DataElementDeclarationStatement

[key ASCSM-CWE-667-roles-dataElementAccessStatement] DataElementAccessStatement

7.19 Pattern definition of ASCSM-CWE-672: Expired or Released
Resource Usage

Pattern Category

[key ASCSM-CWE-672-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-672-objective]

Avoid access to a released, revoked, or expired resource.

Consequence

[key ASCSM-CWE-672-consequence]

Software unaware of resource lifecycle incurs the risk of unauthorized access to sensitive data that is associated with a
different user or entity, and the risk of erroneous later attempts to access the resource, possibly leading to a crash.

Measure Element

[key ASCSM-CWE-672-measure-element]

Number of instances where the platform resource is deallocated in the Manage action using its unique resource handler
value which is transported throughout the application via the sequence composed of ActionElements with DataRelations
relations, some of which being part of named callable and method control elements, then used later within the application
to try and access the resource in the Read or Write action.

Description

[key ASCSM-CWE-672-description]

46 Automated Source Code Security Measure, v1.0

This pattern identifies situations where the <PlatformResource> platform resource (platform:ResourceType) is
deallocated in the <ResourceReleaseStatement> manages action (platform:ManagesResource) using its unique resource
handler value which is transported throughout the application via the <TransportSequence> sequence (action:BlockUnit)
composed of ActionElements with DataRelations relations (action:Reads, action:Writes, action:Addresses), some of
which being part of named callable and method control elements (code:MethodUnit or code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored'), then used later within the application to try and access the resource in
the <ResourceAccessStatement> read or write action (platform:ReadsResource or platform:WritesResource).

Descriptor

[key ASCSM-CWE-672-descriptor]

ASCSM-CWE-672(PlatformResource: platformResource,ResourceReleaseStatement: resourceReleaseStatement,
TransportSequence: transportSequence, ResourceAccessStatement: resourceAccessStatement)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-672-roles-platformResource] PlatformResource

[key ASCSM-CWE-672-roles-resourceReleaseStatement] ResourceReleaseStatement

[key ASCSM-CWE-672-roles-transportSequence] TransportSequence

[key ASCSM-CWE-672-roles-resourceAccessStatement] ResourceAccessStatement

7.20 Pattern definition of ASCSM-CWE-681: Numeric Types Incorrect
Conversion

Pattern Category

[key ASCSM-CWE-681-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-681-objective]

Avoid numerical data corruption during incompatible mutation.

Consequence

[key ASCSM-CWE-681-consequence]

Software featuring weak numerical conversion practices incurs the risk of using the wrong number and generating
incorrect results, possibly introducing new vulnerability when related to resource allocation and security decision.

Measure Element

[key ASCSM-CWE-681-measure-element]

Number of instances where a storable element or member element is declared with a numerical data type in the ‘Create’
action, and then is updated with a value which is cast via a type cast action into a second numerical data type, which is
incompatible with the first data type.

Automated Source Code Security Measure, v1.0 47

Description

[key ASCSM-CWE-681-description]

This pattern identifies situations where the <DataElement> storable element (code:StorableElement) or member element
(code:MemberUnit) is declared with the <NumericalDataType> numerical datatype (code:IntegerType,
code:DecimalType, or code:FloatType) in the <DataElementDeclarationStatement> Create action (action:Creates), then
updated with a value which is cast via the <TypeCastExpression> type cast action (action:ActionElement with micro
KDM kind 'TypeCast' or 'DynCast') into the <TargetDataType> second numerical datatype, which is incompatible with
the first one.

Descriptor

[key ASCSM-CWE-681-descriptor]

ASCSM-CWE-681(DataElement: dataElement,DataElementDeclarationStatement: dataElementDeclarationStatement,
NumericalDataType: numericalDataType, TypeCastExpression: typeCastExpression, TargetDataType: targetDataType)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-681-roles-dataElement] DataElement

[key ASCSM-CWE-681-roles-dataElementDeclarationStatement] DataElementDeclarationStatement

[key ASCSM-CWE-681-roles-numericalDataType] NumericalDataType

[key ASCSM-CWE-681-roles-typeCastExpression] TypeCastExpression

[key ASCSM-CWE-681-roles-targetDataType] TargetDataType

7.21 Pattern definition of ASCSM-CWE-772: Missing Release of
Resource after Effective Lifetime

Pattern Category

[key ASCSM-CWE-772-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-772-objective]

Avoid resource hoarding and consequently resource depletion.

Consequence

[key ASCSM-CWE-772-consequence]

Software unaware of resource lifecycle incurs the risk of preventing all other processes from accessing the same type of
resource.

Measure Element

[key ASCSM-CWE-772-measure-element]

48 Automated Source Code Security Measure, v1.0

Number of instances where a platform resource is allocated and assigned a unique resource handler value via a manage
resource action, and its unique resource handler value is used throughout the application along a transformation sequence
composed of action elements with data relations, some of which are part of named callable and method control elements,
but none of which is a resource release statement.

Description

[key ASCSM-CWE-772-description]

This pattern identifies situations where the <PlatformResource> platform resource (platform:ResourceType) is allocated
and assigned a unique resource handler value via the <ResourceAllocationStatement> ManagesResource action
(platform:ManagesResources), its unique resource handler value is used throughout the application, along the
<TransformationSequence> sequence (action:BlockUnit) composed of ActionElements with DataRelations relations
(action:Reads, action:Writes, action:Addresses), some of which being part of named callable and method control
elements (code:MethodUnit or code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), none of which
being a resource release statement (platform:ManagesResource).

Descriptor

[key ASCSM-CWE-772-descriptor]

ASCSM-CWE-772(PlatformResource: platformResource,ResourceAllocationStatement: resourceAllocationStatement,
TransformationSequence: transformationSequence)

Variable input

(none applicable)

Comment

[key ASCSM-CWE-772-comment] Measure element contributes to Security and Reliability

List of Roles

[key ASCSM-CWE-772-roles-platformResource] PlatformResource

[key ASCSM-CWE-772-roles-resourceAllocationStatement] ResourceAllocationStatement

[key ASCSM-CWE-772-roles-transformationSequence] TransformationSequence

7.22 Pattern definition of ASCSM-CWE-789: Uncontrolled Memory
Allocation

Pattern Category

[key ASCSM-CWE-789-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-789-objective]

Avoid failure to check range of user input in use as buffer index.

Consequence

[key ASCSM-CWE-789-consequence]

Software that is unaware of buffer bounds incurs the risk of corruption of relevant memory, and perhaps instructions,
possibly leading to a crash, the risk of data integrity loss, and the risk of unauthorized access to sensitive data.

Automated Source Code Security Measure, v1.0 49

Measure Element

[key ASCSM-CWE-789-measure-element]

Number of instances where an external value is entered into the application through the user interface ReadsUI action,
transformed throughout the application along the sequence composed of ActionElements with DataRelations relations,
some of which being part of named callable and method control elements, and ultimately used in the buffer Read or
Write access action; none of the callable or method control element of the transformation sequence being a range check
control element.

Description

[key ASCSM-CWE-789-description]

This pattern identifies situations where an external value is entered into the application through the <UserInput> user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application along the <TransformationSequence>
sequence (action:BlockUnit) composed of ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method control elements (code:MethodUnit or
code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately used as an index element
(code:IndexUnit) to access a storable or member data element (code:StorableUnit or code:MemberUnit) in the
<BufferAccessStatement> buffer Read or Write access action (action:Reads, action:Writes, action:Addresses); none of
the callable or method control element of the transformation sequence being a range check with regards to the 'Buffer'
buffer that whose maximum size was defined in the <BufferAllocationStatement> buffer creation action
(action:Creates).

Descriptor

[key ASCSM-CWE-789-descriptor]

ASCSM-CWE-789(UserInput: userInput,BufferAccessStatement: bufferAccessStatement, TransformationSequence:
transformationSequence, BufferAllocationStatement: bufferAllocationStatement)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-789-roles-userInput] UserInput

[key ASCSM-CWE-789-roles-bufferAccessStatement] BufferAccessStatement

[key ASCSM-CWE-789-roles-transformationSequence] TransformationSequence

[key ASCSM-CWE-789-roles-bufferAllocationStatement] BufferAllocationStatement

7.23 Pattern definition of ASCSM-CWE-798: Hard-Coded Credentials
Usage for Remote Authentication

Pattern Category

[key ASCSM-CWE-798-relatedPatts-security] ASCSM_Security

Pattern Sections

Objective

[key ASCSM-CWE-798-objective]

50 Automated Source Code Security Measure, v1.0

Avoid the existence of hard-coded credentials elements.

Consequence

[key ASCSM-CWE-798-consequence]

Software featuring weak authentication practices incurs the risk of exposing resources and functionality to unintended
actors, possibly leading to compromised sensitive information and even the execution of arbitrary code.

Measure Element

[key ASCSM-CWE-798-measure-element]

Number of instances where a storable data element or member data element is initialized by a ‘Write’ action, transported
throughout the application along the transport sequence composed of ActionElements with DataRelations relations, some
of which being part of named callable and method control elements, and ultimately used in the remote resource
management action; the transport sequence is composed of assignment operations as updates to the value would not be
considered as hard-coded (literal) any more.

Description

[key ASCSM-CWE-798-description]

This pattern identifies situations where a literal value (code:Value) is hard-coded in the application via the
<InitializationStatement> Write action (action:Writes), transported throughout the application along the
<TransportSequence> sequence (action:BlockUnit) composed of ActionElements with DataRelations relations
(action:Reads, action:Writes, action:Addresses), some of which being part of named callable and method control
elements (code:MethodUnit or code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored'), and ultimately
used in the <AuthenticationStatement> remote resource management action (platform:ManagesResource with
platform:ResourceType); the transport sequence is composed of assignment operations as updates to the value would not
be considered as hard-coded (literal) any more.

Descriptor

[key ASCSM-CWE-798-descriptor]

ASCSM-CWE-798(InitializationStatement: initializationStatement,AuthenticationStatement: authenticationStatement,
TransportSequence: transportSequence)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-798-roles-initializationStatement] InitializationStatement

[key ASCSM-CWE-798-roles-authenticationStatement] AuthenticationStatement

[key ASCSM-CWE-798-roles-transportSequence] TransportSequence

7.24 Pattern definition of ASCSM-CWE-835: Loop with Unreachable Exit
Condition ('Infinite Loop')

Pattern Category

[key ASCSM-CWE-835-relatedPatts-security] ASCSM_Security

Automated Source Code Security Measure, v1.0 51

Pattern Sections

Objective

[key ASCSM-CWE-835-objective]

Avoid infinite iterations

Consequence

[key ASCSM-CWE-835-consequence]

Software unaware of iteration control incurs the risk of unexpected consumption of resources, such as CPU cycles or
memory, possibly leading to a crash or program exit due to exhaustion of resources.

Measure Element

[key ASCSM-CWE-835-measure-element]

Number of instances where the named callable control element or method control element features the execution path
whose entry element is found again in the path, while it has no path whatsoever to not return to itself and exit the
recursion.

Description

[key ASCSM-CWE-835-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) features the
<RecursiveExecutionPath> execution path (action:BlockUnit composed of action:ActionElements with
action:CallableRelations to code:ControlElements) whose entry element (action:EntryFlow) is found again in the path,
while it has no path whatsoever to not return to itself and exit the recursion.

Descriptor

[key ASCSM-CWE-835-descriptor]

ASCSM-CWE-835(ControlElement: controlElement,RecursiveExecutionPath: recursiveExecutionPath)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCSM-CWE-835-roles-controlElement] ControlElement

[key ASCSM-CWE-835-roles-recursiveExecutionPath] RecursiveExecutionPath

52 Automated Source Code Security Measure, v1.0

8 Calculation of Security and Functional Density
(Normative)

8.1 Calculation of the Base Measure

A count of total violations of quality rules was selected as the best alternative for measurement. Software quality
measures have frequently been scored at the component level and then aggregated to develop an overall score for the
application. However, scoring at the component level was rejected because many critical violations of security quality
rules cannot be isolated to a single component, but rather involve interactions among several components. Therefore, the
Automated Source Code Security Measure is computed as the sum of its 22 quality measure elements computed across
the entire application.

The calculation of the Automated Source Code Security Measure begins with determining the value of each of the 22
security measure elements. Each security measure element is measured as the total number of violations of its associated
quality rule that are detected through automated analysis. Thus the value of each of the 22 security measure elements is
represented as CISQ-SecMEi where the range for i runs from 1 to 22.

The value of the un-weighted and un-normalized Automated Source Code Security Measure (CISQ-Sec) is the sum of
the values of the 22 security measure elements.

Higher values of CISQ-Sec indicate a larger number of security-related defects in the application.

8.2 Functional Density of Security Violations

In order to better compare security results among different applications, the Automated Source Code Security Measure
can be normalized by size to create a density measure. There are several size measures with which the density of security
violations can be normalized, such as lines of code and function points. These size measures, if properly standardized,
can be used for creating a density measure for use in benchmarking applications. However, the OMG Automated
Function Points measure offers an automatable size measure that, as an OMG Supported Specification, is standardized,
adapted from the International Function Point User Group’s (IFPUG) counting guidelines, and commercially supported.
Although other size measures can be legitimately used to evaluate the density of security violations, the following
density measure for security violations is derived from OMG supported specifications for Automated Function Points
and the Automated Source Code Security Measure. Thus, the functional density of security violations is a simple division
expressed as follows.

Automated Source Code Security Measure, v1.0 53

This page intentionally left blank.

54 Automated Source Code Security Measure, v1.0

9 Alternative Weighted Measures and Uses
(Informative)

9.1 Additional Derived Measures
There are many additional weighting schemes that can be applied to the Automated Source Code Security Measure or to
the security measure elements that compose it. Table 9.1 presents several candidate weighted measures and their
potential uses. However, these weighting schemes are not derived from any existing standards and are therefore not
normative.

Table 9.1 - Informative Weighting Schemes for Security Measurement

Weighting scheme Potential uses

Weight each security measure by its severity Measuring risk of security problems such as data theft and
malicious internal damage.

Weight each Security measure element by its effort
to fix

Measuring cost of ownership, estimating future corrective
maintenance effort and costs.

Weight each module or application component by
its density of Security violations

Prioritizing modules or application components for
corrective maintenance or replacement.

Automated Source Code Security Measure, v1.0 55

This page intentionally left blank.

56 Automated Source Code Security Measure, v1.0

10 References (Informative)

Common Weakness Enumeration. http://cwe.mitre.org

Consortium for IT Software Quality (2010). http://www.it-cisq.org

Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the IEEE, 68 (9), 1103-
1119.

International Organization for Standards (2012). ISO/IEC 25010 Systems and software engineering – System and
software product Quality Requirements and Evaluation (SQuaRE) – System and software quality models

International Organization for Standards (2012). ISO/IEC 25023 (in development) Systems and software engineering:
Systems and software Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software product
quality.

International Organization for Standards (2012). ISO/IEC TR 9126-3:2003, Software engineering — Product quality —
Part 3: Internal metrics.

Object Management Group (2014). Automated Function Points. formal 2014-01-03
http://www.omg.org/spec/AFP/ .

Automated Source Code Security Measure, v1.0 57

http://www.omg.org/spec/AFP/
http://www.it-cisq.org/
http://cwe.mitre.org/

This page intentionally left blank.

58 Automated Source Code Security Measure, v1.0

Annex A: CISQ

(informative)

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for automated measures of
software quality characteristics taken on source code. These measures were designed to provide international standards
for measuring software structural quality that can be used by IT organizations, IT service providers, and software
vendors in contracting, developing, testing, accepting, and deploying IT software applications. Executives from the
member companies that joined CISQ prioritized the quality characteristics of Reliability, Security, Performance
Efficiency, and Maintainability to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with the ISO/IEC
25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems. In order to maintain
consistency with the quality model presented in ISO/IEC 25010, software quality characteristics are defined for the
purpose of this specification as attributes that can be measured from the static properties of software, and can be related
to the dynamic properties of a computer system as affected by its software. However, the 25000 series, and in particular
ISO/IEC 25023 which elaborates quality characteristic measures, does not define these measures at the source code level.
Thus, this and other CISQ quality characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of
software measurement, one that is rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and Bangalore,
India to set strategy and direction for the consortium. In these forums four quality characteristics were selected as the
most important targets for automation—reliability, security, performance efficiency, and maintainability. These attributes
cover four of the eight quality characteristics described in ISO/IEC 25010. Figure 1.1 displays the ISO/IEC 25010
software product quality model with the four software quality characteristics selected for automation by CISQ
highlighted in blue. Each software quality characteristic is shown with the sub-characteristics that compose it.

Automated Source Code Security Measure, v1.0 59

This page intentionally left blank.

60 Automated Source Code Security Measure, v1.0

	1 Scope
	1.1 Overview
	1.2 Overview of Software Quality Characteristic Measurement
	1.3 Development of the Automated Source Code Security Measure
	1.4 Structure of the Automated Source Code Security Measure
	1.5 CWE/SANS Top 25 Weaknesses
	1.6 Using and Improving This Measure

	2 Conformance
	3 References
	3.1 Normative References

	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Additional Information (Informative)
	6.1 Software Product Inputs
	6.2 Automated Source Code Security Measure Elements

	7 SPMS Representation of the Security Quality Measure Elements (Normative)
	7.1 Introduction This clause displays in a human readable format the content of the machine readable XMI format file attached to the current specification. The content of the machine readable XMI format file is the representations of the CISQ Quality Measure Elements:
	SPMS
	KDM
	Reading guide

	7.2 Category definition of Security
	7.3 Pattern definition of ASCSM-CWE-22: Path Traversal Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.4 Pattern definition of ASCSM-CWE-78: OS Command Injection Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.5 Pattern definition of ASCSM-CWE-79: Cross-site Scripting Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.6 Pattern definition of ASCSM-CWE-89: SQL Injection Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.7 Pattern definition of ASCSM-CWE-99: Name or Reference Resolution Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.8 Pattern definition of ASCSM-CWE-120: Buffer Copy without Checking Size of Input
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.9 Pattern definition of ASCSM-CWE-129: Array Index Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.10 Pattern definition of ASCSM-CWE-134: Format String Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.11 Pattern definition of ASCSM-CWE-252-resource: Unchecked Return Parameter Value of named Callable and Method Control Element with Read, Write, and Manage Access to Platform Resource
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.12 Pattern definition of ASCSM-CWE-327: Broken or Risky Cryptographic Algorithm Usage
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.13 Pattern definition of ASCSM-CWE-396: Declaration of Catch for Generic Exception
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.14 Pattern definition of ASCSM-CWE-397: Declaration of Throws for Generic Exception
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.15 Pattern definition of ASCSM-CWE-434: File Upload Improper Input Neutralization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.16 Pattern definition of ASCSM-CWE-456: Storable and Member Data Element Missing Initialization
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.17 Pattern definition of ASCSM-CWE-606: Unchecked Input for Loop Condition
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.18 Pattern definition of ASCSM-CWE-667: Shared Resource Improper Locking
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.19 Pattern definition of ASCSM-CWE-672: Expired or Released Resource Usage
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.20 Pattern definition of ASCSM-CWE-681: Numeric Types Incorrect Conversion
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.21 Pattern definition of ASCSM-CWE-772: Missing Release of Resource after Effective Lifetime
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.22 Pattern definition of ASCSM-CWE-789: Uncontrolled Memory Allocation
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.23 Pattern definition of ASCSM-CWE-798: Hard-Coded Credentials Usage for Remote Authentication
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.24 Pattern definition of ASCSM-CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	8 Calculation of Security and Functional Density (Normative)
	8.1 Calculation of the Base Measure
	8.2 Functional Density of Security Violations

	9 Alternative Weighted Measures and Uses (Informative)
	9.1 Additional Derived Measures

	10 References (Informative)
	Annex A: CISQ

