
January 2024

Automated Source Code Resource Sustainability
Measure (ASCRSM),

Version 1.0

OMG Document Number: formal/24-01-09

Document URL: https://www.omg.org/spec/ASCRSM/

https://www.omg.org/spec/ASCRSM/

ii Automated Source Code Resource Sustainability Measure, v1.0

Copyright © 2024, OMG

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

Automated Source Code Resource Sustainability Measure, v1.0 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv Automated Source Code Resource Sustainability Measure, v1.0

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Specifications, Report a Bug/Issue.

Automated Source Code Resource Sustainability Measure, v1.0 v

vi Automated Source Code Resource Sustainability Measure, v1.0

Table of Contents

Preface ... viii

1 Scope .. 1
1.1 Purpose .. 1
1.2 Overview of Structural Quality Measurement in Software .. 1

2 Conformance ... 2

3 References .. 2

4 Terms and definitions ... 2

5 Symbols .. 4

6 Additional Information (Informative) ... 4
6.1 Software Product Inputs .. 4
6.2 Automated Source Code Quality Measure Elements .. 4
6.3 Automated Source Code Resource Sustainability Measure Element Descriptions .. 4
6.4 Introduction to the Specification of Quality Measure Elements .. 9
6.5 Knowledge Discovery Metamodel (KDM) .. 9
6.6 Software Patterns Metamodel Standard (SPMS) .. 11
6.7 Specification of Detection Patterns .. 12
6.8 Reading guide .. 12

7 ASCRSM Weakness Specifications (Normative) .. 15
7.1 CWE-248 Uncaught Exception .. 15
7.2 CWE-252 Unchecked Return Value ... 15
7.3 CWE-390 Detection of Error Condition Without Action ... 15
7.4 CWE-391 Unchecked Error Condition ... 15
7.5 CWE-392 Missing Report of Error Condition ... 16
7.6 CWE-394 Unexpected Status Code or Return Value .. 16
7.7 CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak') 16
7.8 CWE-404 Improper Resource Shutdown or Release .. 17
7.9 CWE-424 Improper Protection of Alternate Path ... 17
7.10 CWE-459 Incomplete Cleanup .. 17
7.11 CWE-703 Improper Check or Handling of Exceptional Conditions ... 17
7.12 CWE-762 Mismatched Memory Management Routines .. 18
7.13 CWE-772 Missing Release of Resource after Effective Lifetime.. 18
7.14 CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime .. 18
7.15 CWE-833 Deadlock ... 19
7.16 CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop') .. 19
7.17 CWE-1043 Storable and Member Data Element Excessive Number of Aggregated Storable and

Member Data Elements.. 19
7.18 CWE-1046 Creation of Immutable Text Using String Concatenation ... 19
7.19 CWE-1049 Excessive Data Query Operations in a Large Data Table .. 20
7.20 CWE-1050 Excessive Platform Resource Consumption within a Loop ... 20
7.21 CWE-1051 Initialization with Hard-Coded Network Resource Configuration Data ... 20
7.22 CWE-1057 Data Access Operations Outside of Designated Data Manager Component 21
7.23 CWE-1060 Excessive Number of Inefficient Server-Side Data Accesses ... 21
7.24 CWE-1067 Excessive Execution of Sequential Searches of Data Resource ... 21
7.25 CWE-1069 Empty Exception Block .. 21
7.26 CWE-1072 Data Resource Access without use of Connection Pooling .. 22
7.27 CWE-1073 Non-SQL Invokable Control Element with Excessive Number of Data Resource Access 22
7.28 CWE-1083 Data Access from Outside Designated Data Manager Component .. 22
7.29 CWE-1088 Synchronous Access of Remote Resource without Timeout .. 23
7.30 CWE-1089 Large Data Table with Excessive Number of Indices .. 23
7.31 CWE-1091 Use of Object without Invoking Destructor Method .. 23
7.32 CWE-1094 Excessive Index Range for a Data Resource ... 23
7.33 CWE-1235 Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations 24
7.34 ASCRSM Detection Patterns ... 24

8 ASCRSM Weakness Detection Patterns (Normative) ... 25
8.1 ASCQM Ban Incorrect Numeric Conversion of Return Value ... 25

Automated Source Code Resource Sustainability Measure, v1.0 vii

8.2 ASCQM Handle Return Value of Must Check Operations .. 25
8.3 ASCQM Handle Return Value of Resource Operations ... 26
8.4 ASCQM Check Return Value of Resource Operations Immediately .. 27
8.5 ASCQM Ban Useless Handling of Exceptions.. 28
8.6 ASCQM Ban Comma Operator from Delete Statement ... 29
8.7 ASCQM Release in Destructor Memory Allocated in Constructor ... 29
8.8 ASCQM Release Memory after Use with Correct Operation .. 30
8.9 ASCQM Implement Required Operations for Manual Resource Management ... 32
8.10 ASCQM Release Platform Resource after Use .. 32
8.11 ASCQM Release Memory After Use ... 33
8.12 ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor 34
8.13 ASCQM Implement Virtual Destructor for Parent Classes ... 35
8.14 ASCQM Release File Resource after Use in Operation .. 35
8.15 ASCQM Implement Virtual Destructor for Classes with Virtual Methods... 36
8.16 ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls .. 37
8.17 ASCQM Ban Hard-Coded Literals used to Connect to Resource ... 37
8.18 ASCQM Ban Unintended Paths .. 38
8.19 ASCQM Ban While TRUE Loop Without Path To Break ... 39
8.20 ASCQM Ban Unmodified Loop Variable Within Loop .. 40
8.21 ASCQM Release File Resource after Use in Class .. 40
8.22 ASCQM Catch Exceptions ... 41
8.23 ASCQM Ban Empty Exception Block .. 42
8.24 ASCQM Ban Incompatible Lock Acquisition Sequences ... 42
8.25 ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues .. 43
8.26 ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality ... 44
8.27 ASCQM Ban Excessive Size of Index on Columns of Large Tables .. 45
8.28 ASCQM Ban Excessive Number of Index on Columns of Large Tables .. 46
8.29 ASCQM Ban Excessive Complexity of Data Resource Access ... 46
8.30 ASCQM Ban Expensive Operations in Loops ... 47
8.31 ASCQM Limit Number of Aggregated Non-Primitive Data Types ... 49
8.32 ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure 49
8.33 ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code ... 50
8.34 ASCQM Ban Incremental Creation of Immutable Data .. 51
8.35 ASCQM Ban Unboxing in Loops .. 52
8.36 ASCQM Ban Autoboxing in Loops ... 53
8.37 ASCQM Implement Index Required by Query on Large Tables .. 55
8.38 ASCQM Release Memory after Use with Correct Reference ... 56

9 Calculation of ASCRSM and Functional Density Measures ... 59
9.1 Calculation of the Base Measures (Normative) .. 59
9.2 Functional Destiny of Weanessess (Informative) ... 59

10 Alternative Weighted Measures and Uses (Informative) ... 61

11 References (Informative) ... 63

Annex A Consortium for IT Software Quality (CISQ) (informative) .. 65

Annex B Common Weakness Enumeration (CWE) ... 67

viii Automated Source Code Resource Sustainability Measure, v1.0

 Preface
About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

Automated Source Code Resource Sustainability Measure, v1.0 ix

Automated Source Code Resource Sustainability Measure, v1.0 1

1 Scope
1.1 Purpose

This specification is derived from the Automated Source Code Performance Efficiency Measure and
Automated Source Code Reliability Measure both included in the Automated Source Code Quality Measures
(ASCQM) specification (https://www.omg.org/spec/ASCQM/1.0/ and ISO/IEC 5055:2021) to cover common
weaknesses (CWEs) that affect the use of energy and other resources. Specifying this measure is important as
a source of evidence for complying with emerging regulations and corporate policies regarding reductions in
resource usage. This measure is calculated from detecting and counting 40 violations of good architectural
and coding practices (weaknesses) in the source code that could result in excessive or unnecessary processing
or failures that cause hardware reboots.

1.2 Overview of Structural Quality Measurement in Software
Measurement of the structural quality characteristics of software has a long history in software engineering
(Curtis, 1980). These characteristics are also referred to as the structural, internal, technical, or engineering
characteristics of software source code. Software quality characteristics are increasingly incorporated into
development and outsourcing contracts as the equivalent of service level agreements. That is, target
thresholds based on structural quality measures are being written into contracts as acceptance criteria for
delivered software. They also provide evidence of compliance with regulations governing various aspects of
software system performance.

Currently there are no standards for most of the software structural quality measures. ISO/IEC 25023 purports
to address these measures, but only provides measures of external behavior and does not define measures that
can be developed from source code during development. This specification addresses one aspect of this
problem by providing a specification for measuring attributes of the software that affect the efficient use of
resources, often referred to as ‘Green IT’.

Recent advances in measuring the structural quality of software involve detecting violations of good
architectural and coding practice from statically analyzing source code. Violations of good architectural and
design practice can also be detected from statically analyzing design specifications written in a design
language with a formal syntax and semantics. Good architectural and coding practices can be stated as rules
for engineering software products. Violations of these rules will be called weaknesses in this specification to
be consistent with terms used in the Common Weakness Enumeration (Martin & Barnum, 2006) which lists
many of the weaknesses used in several of these measures.

The Automated Source Code Resource Sustainability Measure is a correlated measure rather than an absolute
measure of excessive resource usage. That is, since it does not measure all possible resource usage
weaknesses, it does not provide an absolute measure of resource inefficiency. However, since it includes
counts of what industry experts have determined to be the most severe weaknesses, it provides a strong
indicator of the resource inefficiency of a software system. In most instances it will be highly correlated with
the probability of inefficient resource usage.

Recent research in analyzing structural quality weaknesses has identified common patterns of code
structures that can be used to detect weaknesses. Many of these ‘Detection Patterns’ are shared across
different weaknesses. Detection Patterns will be used in this specification to organize and simplify
presentation of automated techniques for detecting each weakness. Each weakness will be described as a
quality measure element to remain consistent with ISO/IEC 25020. Each quality measure element will be
represented as detectable by one or more Detection Patterns. Many quality measure elements (weaknesses)
will share one or more Detection Patterns in common.
The normative portion of this specification represents each quality attribute (weakness) and quality measure
element (detection pattern) using the Structured Patterns Metamodel Standard (SPMS). The code-based elements
in these patterns are represented using the Knowledge Discovery Metamodel (KDM). The calculation of each of
the four Automated Source Code Quality Measures from their quality measure elements is then represented in the
Structured Metrics Metamodel (SMM). This calculation is developed by counting the number of detection
patterns triggered for each weakness, then summing these numbers for all weaknesses included in the Automated
Source Code Resource Sustainability Measure.

https://www.omg.org/spec/ASCQM/1.0/

2 Automated Source Code Resource Sustainability Measure, v1.0

Each instantiation of a weakness triggers only one of a weakness’s detection patterns if multiple detection
patterns are relevant to a weakness. Clauses 9 and 10 will present several methods for normalizing the results of
evaluating this measure.

2 Conformance
Implementations of this specification shall demonstrate the following attributes in order to claim
conformance—automated, objective, transparent, and verifiable.

• Automated  The analysis of the source code and counting of weaknesses shall be fully automated.
The initial inputs required to prepare the source code for analysis include the source code of the
application, the artifacts and information needed to configure the application for operation, and any
available description of the architectural layers in the application.

• Objective  After the source code has been prepared for analysis using the information provided as
inputs, the analysis, calculation, and presentation of results shall not require further human
intervention. The analysis and calculation shall be able to repeatedly produce the same results and
outputs on the same body of software.

• Transparent  Implementations that conform to this specification shall clearly list all source code
(including versions), non-source code artifacts, and other information used to prepare the source code
for submission to the analysis.

• Verifiable  Implementations of this specification shall state the assumptions and heuristics it uses
with sufficient detail so that the calculations may be independently verified by third parties. In
addition, all inputs used shall be clearly described and itemized so that they can be audited by a third
party.

3 References
The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. Dated references, subsequent amendments to, or revisions of any of these
publications do not apply.

• Structured Patterns Metamodel Standard, https://www.omg.org/spec/SPMS/1.2/
• Knowledge Discovery Metamodel, version 1.4 (KDM), https://www.omg.org/spec/KDM/1.4
• Structured Metrics Metamodel, version 1.2 (SMM), formal/2012-01-05
• MOF/XMI Mapping, version 2.5.1 (XMI), https://www.omg.org/spec/XMI/2.5.1/
• ISO/IEC 25010 Systems and software engineering – System and software product

Quality Requirements and Evaluation (SQuaRE) – System and software quality models
• ISO/IEC 25020:2007 Software engineering — Software product Quality Requirements

and Evaluation (SQuaRE) — Measurement reference model and guide
• ISO/IEC 5055:2021 OMG Automated Source Code Quality Measures
• ITU-T X.1524 – Series X: Data Networks, Open System Communications and Security

– Cybersecurity information exchange – Vulnerability/state exchange – Common
weakness enumeration

4 Terms and definitions
For the purposes of this specification, the following terms and definitions apply.

Common Weakness Enumeration  repository maintained by MITRE Corporation of known weaknesses in
software that can be exploited to gain unauthorized entry into a software system (cwe.mitre.org).

Contributing Weakness  weakness that is represented as a child of a parent weakness in the Common
Weakness Enumeration, that is, a variant instantiation of the parent weakness (cwe.mitre.org).

Detection Pattern  collection of parsed program elements and their relations that constitute a weakness
in the software.

http://www.omg.org/spec/SPMS/1.2/
https://www.omg.org/spec/KDM/1.4
http://www.omg.org/spec/XMI/2.5.1/

Automated Source Code Resource Sustainability Measure, v1.0 3

Parent Weakness  weakness in the Common Weakness Enumeration that has numerous possible
instantiations in software that are represented by its relation to child CWEs (cwe.mitre.org).

Performance Efficiency — capability of a product to use an appropriate amount of resources under
stated conditions (ISO/IEC 25010).

Quality Measure Element  measure defined in terms of a software quality attribute and the
measurement method for quantifying it, including optionally the transformation by a mathematical
function (ISO/IEC 25010).

Reliability — capability a product to perform specified functions under specified conditions for a
specified period of time (ISO/IEC 25010).

Software Product  set of computer programs, procedures, and possibly associated documentation and data
(ISO/IEC 25010).

Software Product Quality Model — model that categorizes software product quality properties into eight
characteristics (functional suitability, reliability, performance efficiency, usability, security, compatibility,
maintainability, and portability) (ISO/IEC 25010).

Software Quality  degree to which a software product satisfies stated and implied needs when used under
specified conditions (ISO/IEC 25010).

Software Quality Attribute  inherent property or characteristic of software that can be distinguished
quantitatively or qualitatively by human or automated means (derived from ISO/IEC 25010).

Software Quality Characteristic  set of software quality attributes that affect a specific category
of software quality outcomes (derived from ISO/IEC 25010).

Software Quality Characteristic Measure  software quality measure derived from measuring the attributes
related to a specific software quality characteristic (ISO/IEC 25020).

Software Quality Measure  measure that is defined as a measurement function of two or more values of
software quality measure elements (ISO/IEC 25010).

Software Quality Measure Element  measure defined in terms of a software quality attribute and
the measurement method for quantifying it, including optionally the transformation by a
mathematical function (ISO/IEC 25010).

Software Quality Measurement  set of operations having the object of determining a value of a software
quality measure (ISO/IEC 25010).

Software Quality Model  defined set of software characteristics, and of relationships between them,
which provides a framework for specifying software quality requirements and evaluating the quality
of a software product (derived from ISO/IEC 25010).

Software Quality Rule  architectural or coding practice or convention that represents good
software engineering practice and avoids problems in software development, maintenance, or
operations.

Software Quality Sub-characteristic  sub-category of a software quality characteristic to which
software quality attributes and their software quality measure elements are conceptually related
(derived from ISO/IEC 25010).

Structural Element  component of software code that can be uniquely identified and counted such as
a token, decision, or variable.

Structural Quality  degree to which a set of static attributes of a software product satisfy stated and
implied needs for the software product to be used under specified conditions (derived from ISO/IEC
25010).

Weakness  pattern or structure in the code (Detection Pattern in ASCRSM) that is inconsistent with good
architectural or coding practice, violates a software quality rule, and can lead to operational or cost
problems (derived from cwe.mitre.com).

4 Automated Source Code Resource Sustainability Measure, v1.0

5 Symbols
ASCPEM  Automated Source Code Performance Efficiency Measure

ASCQM  Automated Source Code Quality Measure

ASCRM  Automated Source Code Reliability Measure

ASCRSM  Automated Source Code Resource Sustainability Measure

CWE  Common Weakness Enumeration

CISQ  Consortium for Information and Software Quality

KDM  Knowledge Discovery Metamodel

SPMS  Structured Pattern Metamodel Standard

SMM  Structured Metrics Metamodel

6 Additional Information (Informative)
6.1 Software Product Inputs

The following inputs are needed by static code analyzers in order to interpret violations of the software quality
rules that would be included in individual software quality measure elements:

• The entire source code for the application being analyzed.
• All materials and information required to prepare the application for production.

Static code analyzers will also need a list of the weaknesses that constitute each quality element in the
Automated Source Code Resource Sustainability Measure.

6.2 Automated Source Code Quality Measure Elements
The weaknesses violating software quality rules that compose the CISQ Automated Source Code Resource
Sustainability Measure are grouped by measure in the clauses 6 and 7. The Common Weakness Enumeration
repository (CWE, Appendix B) has recently been expanded to include weaknesses from quality characteristics
beyond security. All weaknesses included in this measure are identified by their CWE number from the
repository. In most cases the description of CWEs is taken from information in the online repository
(cwe.mitre.org). Most of the weaknesses included in this measure have been drawn from the four measures in
OMG’s Automated Source Code Quality Measures (ASCQM). The mapping of the weaknesses from the
ASCQM to this measure are presented in Appendix C.

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed as
‘contributing weaknesses’ (‘children’ in the CWE). Contributing weaknesses represent variants of how the
parent weakness can be instantiated in software. In the following tables the cells containing CWE IDs for
parents are presented in a darker blue than the cells containing contributing weaknesses. Based on their
severity, not all children were included. Compliance to the CISQ measures is assessed at the level of the
parent weakness. A technology must be able to detect at least one of the contributing weaknesses to be
assessed compliant on the parent weakness.

6.3 Automated Source Code Resource Sustainability Measure Element
Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Resource Sustainability Measure are presented in Table 1 with their CWE identifier from the Common
Weakness Enumeration Repository, their title, and a description of the weakness.

Automated Source Code Resource Sustainability Measure, v1.0 5

This measure contains 33 weaknesses. The final column lists measures from the Automated Source Code Quality
Measures standard (also ISO 5055:2021) that included the weakness in its calculation. Normative descriptions of
the weaknesses in Clause 7 will include partial information on the status of some weaknesses as being ‘Parents’ of
other weaknesses (high level descriptions of a tightly related class of weakness), or of being ‘Contributing’
weaknesses which represent different instantiations of their parent weakness.

 Table 1: Quality Measure Elements for Automated Source Code Resource Sustainability Measure

CWE
ID Weakness title Weakness description ASCQM

measure

248 Uncaught Exception An exception is thrown from a function, but it is
not caught.

Reliability

252 Unchecked Return Value The software does not check the return value
from a method or function, which can prevent it
from detecting unexpected states and conditions.

Reliability
Security

390 Detection of Error
Condition Without Action

The software detects a specific error but takes no
actions to handle the error. For instance, where
an exception handling block (such as Catch and
Finally blocks) do not contain any instruction,
making it impossible to accurately identify and
adequately respond to unusual and unexpected
conditions.

Reliability

391 Unchecked Error
Condition

Ignoring exceptions and other error conditions
may allow an attacker to induce unexpected
behavior unnoticed.

Reliability

392 Missing Report of Error
Condition

The software encounters an error but does not
provide a status code or return value to indicate
that an error has occurred.

Reliability

394 Unexpected Status Code or
Return Value

The software does not properly check when a
function or operation returns a value that is
legitimate for the function but is not expected
by the software.

Reliability

401 Improper Release of
Memory Before Removing
Last Reference ('Memory
Leak')

The software does not sufficiently track and
release allocated memory after it has been used,
which slowly consumes remaining memory.

Reliability
Security
Performance

404 Improper Resource
Shutdown or Release

The program does not release or incorrectly
releases a resource before it is made available for
re-use.

Reliability
Security
Performance

424 Improper Protection of
Alternate Path

The product does not sufficiently protect all
possible paths that a user can take to access
restricted functionality or resources. When data
storage relies on a DBMS, special care shall be
given to secure all data accesses and ensure data
integrity.

Reliability
Security
Performance

459 Incomplete Cleanup The software does not properly "clean up" and
remove temporary or supporting resources after
they have been used.

Reliability

703 Improper Check or
Handling of Exceptional
Conditions

The software does not properly anticipate or
handle exceptional conditions that rarely occur
during normal operation of the software.

Reliability

6 Automated Source Code Resource Sustainability Measure, v1.0

762 Mismatched Memory
Management Routines

The application attempts to return a memory
resource to the system, but it calls a release
function that is not compatible with the function
that was originally used to allocate that resource.

not in ASCQM

772 Missing Release of
Resource after Effective
Lifetime

The software does not release a resource after its
effective lifetime has ended, i.e., after the
resource is no longer needed.

Reliability
Security
Performance

775 Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or
handle after its effective lifetime has ended, i.e.,
after the file descriptor/handle is no longer
needed. When a file descriptor or handle is not
released after use (typically by explicitly closing
it), attackers can cause a denial of service by
consuming all available file descriptors/handles,
or otherwise preventing other system processes
from obtaining their own file
descriptors/handles.

Reliability
Security
Performance

833 Deadlock The software contains multiple threads or
executable segments that are waiting for each
other to release a necessary lock, resulting in
deadlock.

Reliability

835 Loop with Unreachable
Exit Condition ('Infinite
Loop')

The program contains an iteration or loop with
an exit condition that cannot be reached, i.e., an
infinite loop.

Reliability
Security

1043 Data Element Aggregating
an Excessively Large
Number of Non-Primitive
Elements

The software uses a data element that has an
excessively large number of sub-elements with
non-primitive data types such as structures or
aggregated objects. (default threshold for the
maximum number of aggregated non‐primitive
data types is 5, alternate threshold can be set
prior to analysis).

Performance

1046 Creation of Immutable
Text Using String
Concatenation

This programming pattern can be inefficient in
comparison with use of text buffer data
elements.
This issue can make the software perform more
slowly. If the relevant code is reachable by an
attacker, then this performance problem might
introduce a vulnerability.

Performance

1049 Excessive Data Query
Operations in a Large Data
Table

The software performs a data query with a large
number of joins and sub-queries on a large data
table. (default thresholds are 5 joins, 3 sub‐
queries, and 1,000,000 rows for a large table,
alternate thresholds for all three
parameters can be set prior to analysis).

Performance

1050 Excessive Platform
Resource Consumption
within a Loop

The software has a loop body or loop condition
that contains a control element that directly or
indirectly consumes platform resources, e.g.,
messaging, sessions, locks, or file descriptors.
(default threshold for resource consumption
should be set based on the system architecture

prior to analysis).

Performance

Automated Source Code Resource Sustainability Measure, v1.0 7

1051 Initialization with Hard-
Coded Network Resource
Configuration Data

The software initializes data using hard-coded
values that act as network resource identifiers.

Reliability
Maintenance

1057 Data Access Operations
Outside of Expected Data
Manager Component

The software uses a dedicated, central data
manager component as required by design, but
it contains code that performs data-access
operations that do not use this data manager.

Notes:
· The dedicated data access component can
be either client‐side or server‐side, which
means that data access components can be
developed using non‐SQL language.
· If there is no dedicated data access
component, every data access is a weakness.
· For some embedded software that requires
access to data from anywhere, the whole
software is defined as a data access
component. This condition must be identified
as input to the analysis.

Security
Performance

1060 Excessive Number of
Inefficient Server-Side
Data Accesses

The software performs too many data queries
without using efficient data processing
functionality such as stored procedures. (default
threshold for maximum number of data queries
is 5, alternate threshold can be set prior to
analysis).

Performance

1067 Excessive Execution of
Sequential Searches of
Data Resource

The software contains a data query against a
SQL table or view that is configured in a way
that does not utilize an index and may cause
sequential searches to be performed. (default
threshold for a weakness to be counted is a
query on a table of at least 500 rows, or an
alternate threshold recommended by the
database vendor. No weakness should be
counted under conditions where the vendor
recommends an index should not be used. An
alternate threshold can be set prior to analysis).

Performance

1069 Empty Exception Block An invokable code block contains an exception
handling block that does not contain any code,

i.e., is empty.

not in ASCQM

1072 Non-SQL Invokable
Control Element with
Excessive Number of Data
Resource Accesses

The software contains a client with a function or
method that contains a large number of data
accesses/queries that are sent through a data
manager, i.e., does not use efficient database
capabilities. (default threshold for the maximum
number of data queries is 2, alternate threshold
can be set prior to analysis).

Performance

8 Automated Source Code Resource Sustainability Measure, v1.0

1073 Non-SQL Invokable
Control Element with
Excessive Number of Data
Resource Accesses

The software contains a client with a function or
method that contains a large number of data
accesses/queries that are sent through a data
manager, i.e., does not use efficient database
capabilities.

Performance

1083 Data Access from Outside
Designated Data Manager
Component

The software is intended to manage data access
through a particular data manager component
such as a relational or non-SQL database, but it
contains code that performs data access
operations without using that component.
Notes:
· The dedicated data access component can
be either client‐side or server‐side, which
means that data access components can be
developed using non‐SQL language.
· If there is no dedicated data access
component, every data access is a violation.
· For some embedded software that requires
access to data from anywhere, the whole
software is defined as a data access
component. This condition must be identified
as input to the analysis.

Reliability

1088 Synchronous Access of
Remote Resource without
Timeout

The code has a synchronous call to a remote
resource, but there is no timeout for the call, or
the timeout is set to infinite.

Reliability

1089 Large Data Table with
Excessive Number of
Indices

The software uses a large data table (default is
1,000,000 rows; alternate threshold can be set
prior to analysis) that contains an excessively
large number of indices. (default threshold for
the maximum number of indices is 3, alternate
threshold can be set prior to analysis).

Performance

1091 Use of Object without
Invoking Destructor
Method

The software contains a method that accesses an
object but does not later invoke the element's
associated finalize/destructor method.

Performance

1094 Excessive Index Range
Scan for a Data Resource

The software contains an index range scan for a
large data table, (default threshold is 1,000,000
rows, alternate threshold can be set prior to
analysis) but the scan can cover a large number
of rows. (default threshold for the index range is
10, alternate threshold can be set prior to
analysis).

Performance

1235 Incorrect Use of
Autoboxing and Unboxing
for Performance Critical
Operations

The code uses boxed primitives, which may
introduce inefficiencies into performance-
critical operations.

not in ASCQM

Automated Source Code Resource Sustainability Measure, v1.0 9

6.4 Introduction to the Specification of Quality Measure Elements
Clauses 7, 8, and 9 display in human readable format the content of the machine readable XMI format
file attached to this specification. The content of the machine readable XMI format file represents the
Quality Measure Elements with the following conventions:

• Structural elements included in a weakness pattern are represented in the Knowledge
Discovery Metamodel (KDM).

• Relations among the structural elements constituting a weakness pattern are represented in
the Software Patterns Metamodel Standard (SPMS) to compute measures at the
weakness level.

• Calculation of measure is represented in the Structured Metrics Metamodel (SMM).

6.5 Knowledge Discovery Metamodel (KDM)
This specification uses the Knowledge Discovery Metamodel (KDM) to represent the parsed entities whose
relationships create a weakness pattern. The machine readable XMI format file attached to the current
specification uses KDM entities in the ‘KDM outline’ section of the pattern definitions to represent the
code elements whose presence or absence indicates an occurrence of the weakness. Descriptions of
detection patterns try to remain as generic, yet as accurate as possible, so that the detection pattern can be
applied to as many situations as possible such as different technologies and different programming
languages. This means:

1. The descriptions include information such as (MethodUnit), (Reads), (ManagesResource), …
to identify the KDM entities included in the pattern definition.

2. The descriptions only describe the salient aspects of the pattern since the specifics can be
technology or language dependent.

Detection Patterns presented in Clause 8 use micro-KDM to provide greater granularity to their specification
of weakness patterns. Additional semantic constraints are required to coordinate producers and consumers of
KDM models to use the KDM Program Element layer for control- and data-flow analysis applications, as well
as for providing more precision for the Resource Layer and the Abstraction Layer. Micro-KDM achieves this
by constraining the granularity of the leaf action elements and their meaning by providing the set of micro-
actions with predefined semantics. Micro-KDM treats the original macro-action as a container that owns
certain micro-actions with predefined semantics. Thus, precise semantics of the macro-action is defined.
Thus, micro-KDM constrains the patterns of how to map the statements of the existing system as determined
by the programming language into KDM.

KDM is helpful for reading this chapter. However, for readers not familiar with KDM, Table 5 presents a
primer which translates standard source code element terms into the KDM outline in this specification.

 Table 2: Software elements translated into KDM wording

Software
element KDM outline

function,
method,
procedure,
stored
procedure, sub-
routine etc.

CallableUnit|MethodUnit id="ce1" ...

variable, field,
member, etc.

StorableUnit|MemberUnit id="de1" ...

10 Automated Source Code Resource Sustainability Measure, v1.0

class, interface
definition and
use as a type,
use as base
class

ClassUnit|InterfaceUnit id="cu1" ... StorableUnit id="su1"
type="cu1" ... ClassUnit id="cu2" ...
Extends "cu1" ...

method ClassUnit id="cu2" ...
MethodUnit "mu1" ...

field, member ClassUnit id="cu2" ...
MemberUnit "mu1" ...

SQL stored
procedures

DataModel
RelationalSchema ...
CallableUnit id="cu1" kind="stored" ...

return code
value definition
and use

CallableUnit|MethodUnit id="ce1" type="ce1_signature"
...
Signature "ce1_signature"
ParameterUnit id="pu1" kind="return" ...
Value|StorableUnit|MemberUnit id="de1" ... ActionElement
id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall" ...
Calls "ce1" Reads "de1"

exception CallableUnit|MethodUnit id="ce1" type="ce1_signature"
...
Signature "ce1_signature"
ParameterUnit id="pu1" kind="exception" ...

user input data
flow

UIModel
UIField id="uf1"
UIAction id="ua1" implementation="ae1" kind="input" ReadsUI
"uf1"
...
CodeModel
...
StorableUnit id="su1" StorableUnit id="su2" ActionElement
id="ae1" kind="UI"
Writes "su1" Flow "ae2"
ActionElement id="ae2" Flow "ae3"
Reads "su1" Writes "su2"
ActionElement id="ae3" Flow "ae4"
...

execution path ActionElement id="ae1" kind="UI" Flow|Calls "ae2"
ActionElement id="ae2" Flow|Calls "ae3"
ActionElement id="ae3" Flow|Calls "ae4"

Automated Source Code Resource Sustainability Measure, v1.0 11

RDBMS DataModel
RelationalSchema ...

for loop ActionElement id="ae5" kind="Compound" StorableUnit
id="su3"
ActionElement id="ae6" kind="Assign" Reads ...
Writes "su3" Flows "ae7"
ActionElement id="ae7"
kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOr
Equal"
Reads "su3" Reads "su2" TrueFlow "ae8" FalseFlow "ff1"
ActionElement id="ae8" kind=...
...
ActionElement id="ae9" kind="Incr|Decr" Addresses
"loopVariable"
Flows "ae6"
ActionElement id="ff1" kind="Nop"

while loop ActionElement id="ae5" kind="Compound" BooleanType
id="booleanType" DataElement id="de1" type="booleanType"
EntryFlow "tf1"
ActionElement id="tf1" ...
...
ActionElement id ="ae6"
kind="GreaterThan|GreaterThanOrEqual|LessThan|LessThanOr
Equal"
Reads "su2"
...
Writes "de1"
ActionElement id="ae7" kind="Condition" Reads "de1"
TrueFlow "tf1" FalseFlow "ff1"
ActionElement id="ff1"

checked Value|StorableUnit|MemberUnit id="de1" ... ActionElement
id="ae1"
kind="Equals|NotEqualTo|GreaterThan|GreaterThanOrEqual|L
essThan|LessThanOrEqual" ...
Reads "de1"

6.6 Software Patterns Metamodel Standard (SPMS)
This specification uses the Software Patterns Metamodel Standard (SPMS) to represent weaknesses as
software patterns involving code elements and their relationships in source code. In the machine readable
XMI format file attached to the current specification each weakness pattern is represented in SPMS
Definitions Classes as follows:

• PatternDefinition (SPMS:PatternDefinition): the pattern specification describing a specific
weakness and a specific detection pattern. In the context of this document, each Quality
Measure Element is the count of occurrences of the SPMS detection patterns detected in
the source code for a specific weakness related to the Quality Characteristic being
measured.

• Role (SPMS:Role): “A pattern is informally defined as a set of relationships between a set
of entities. Roles describe the set of entities within a pattern, between which relationships
will be described. As such the Role is a required association in a
PatternDefinition…Semantically, a Role is a 'slot' that is required to be fulfilled for an
instance of its parent PatternDefinition to exist. Roles for weaknesses are abstractions,
while the roles for detection patterns can be linked back to the code elements.

12 Automated Source Code Resource Sustainability Measure, v1.0

• PatternSection (SPMS:PatternSection): “A PatternSection is a free-form prose textual
description of a portion of a PatternDefinition.” In the context of this document, there are 7
different PatternSections in use:

○ “Descriptor” (“descriptor” in the XMI document) to provide pattern
signature, a visible interface of the pattern.

○ “Description” (“description” in XMI document) to provide a human readable
explanation of the measure.

○ “KDM Outline” (“kdm outline” in XMI document) to provide an illustration of
the essential elements related to KDM, in a human readable outline.

○ “What to report” (“reporting” in XMI document) to provide the list of elements
to report to claim the finding of an occurrence of a detection pattern.

○ “Reference” (“reference” in XMI document) to provide pointers to the weakness
description in the CWE repository.

○ “Usage name” (“usage_name” in XMI document) to provide a more user-friendly
name to the weakness, generally the case when the weakness original name was
too strongly KDM- flavored for the general audience.

SPMS Relationships Classes:

• MemberOf (SPMS:MemberOf): “An InterpatternRelationship specialized to indicate
inclusion in a Category”.

• RelatedPattern (SPMS:RelatedPattern) with 4 different Natures (SPMS:Nature)
(“DetectedBy”, “Detecting”,” AggregatedBy”, and “Aggregating”):
InterpatternRelationships used to model the relations between weaknesses and
detection patterns, and between parent and child weaknesses.

• Category (SPMS:Category): “A Category is a simple grouping element for gathering
related PatternDefinitions into clusters.” In the context of this document, the SPMS
Categories are used to represent the 4 Quality Characteristics:

○ “Reliability”
○ “Security”
○ “Performance Efficiency”
○ “Maintainability”

6.7 Specification of Detection Patterns
Detection patterns provide guidance for automated detection of the weaknesses enumerated in Clause 7. Each
weakness may have several different instantiations in the source code. Thus, a weakness may be associated
with several different detection patterns. Each detection pattern may be associated with weaknesses in several
different quality measures. There are 78 detection patterns associated with the weaknesses in Automated
Source Code Resource Sustainability Measures. This number will grow as more detection patterns are
discovered and specified.
Detection Patterns use micro-KDM to provide greater granularity to their specification of weakness
patterns. Additional semantic constraints are required to coordinate producers and consumers of KDM
models to use the KDM Program Element layer for control- and data-flow analysis applications, as well as
for providing more precision for the Resource Layer and the Abstraction Layer. Micro-KDM achieves this
by constraining the granularity of the leaf action elements and their meaning by providing the set of micro-
actions with predefined semantics. Micro-KDM treats the original macro-action as a container that owns
certain micro- actions with predefined semantics. Thus, precise semantics of the macro-action is defined.
Micro-KDM constrains the patterns of how to map the statements of the existing system as determined by the
programming language into KDM.

6.8 Reading guide
For each numbered sub-clause in clause 7:

• Sub-clause 7.x represents the Software Quality characteristic addressed by the associated
weakness patterns.

• Sub-clause 7.x.y represents the SPMS and SMM modeling associated with a weakness
pattern for a specific weakness associated with the Software Quality characteristic.

• The last sub-clause 7.x.y represents the SMM modeling associated with the quality
characteristic computation.

Automated Source Code Resource Sustainability Measure, v1.0 13

Weakness pattern sub-clauses are summarizing the various aspects related to a weakness:

• (SPMS) usage name pattern section if any
• (SPMS) reference pattern section
• (SPMS) roles
• (SPMS) contributing weaknesses and parent weakness, if any,

○ useful for reporting of weakness pattern-level information, aggregated or detailed
• (SPMS and SMM) detection patterns,

○ useful for reporting of detection pattern-level findings at the weakness level
○ useful for counting the violations to the weakness, by summing the count of

violations to its detection patterns

Last sub-clauses are summarizing the computation of the quality measure scores:

• (SMM) detection patterns,
○ useful for reporting of detection pattern-level findings at the quality characteristic level
○ useful for computing the score of the quality measure, by summing the count of

violations to its detection patterns

For each numbered sub-clause in clause 8:

• Sub-clause 8.x represents the SPMS modeling associated with a detection
pattern

Detection pattern sub-clauses are summarizing the various aspects related to a detection pattern:
• (SPMS) descriptor, description, KDM outline, reporting pattern sections,

○ In description and reporting pattern sections, data between angle brackets (e.g.:
<ControlElement>) identify SPMS roles

14 Automated Source Code Resource Sustainability Measure, v1.0

This page intentionally left blank.

Automated Source Code Resource Sustainability Measure, v1.0 15

7 ASCRSM Weakness Specifications (Normative)
7.1 CWE-248 Uncaught Exception

Reference
https://cwe.mitre.org/data/definitions/248

Roles
- the <ExceptionThrowDeclaration>
- the <ExceptionCatchSequence>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Catch Exceptions

7.2 CWE-252 Unchecked Return Value

Reference
https://cwe.mitre.org/data/definitions/252

Roles
- the <OperationCall>

Detection Patterns
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Handle Return Value of Must Check Operations

7.3 CWE-390 Detection of Error Condition Without Action

Reference
https://cwe.mitre.org/data/definitions/390

Roles
- the <ErrorCondition>

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Handle Return Value of Resource Operations

7.4 CWE-391 Unchecked Error Condition

Reference
https://cwe.mitre.org/data/definitions/391

Roles
- the <ErrorConditionProcessing>

Parent weaknesses
Weakness CWE-703 Improper Check or Handling of Exceptional Conditions

https://cwe.mitre.org/data/definitions/248
https://cwe.mitre.org/data/definitions/252
https://cwe.mitre.org/data/definitions/390
https://cwe.mitre.org/data/definitions/391

16 Automated Source Code Resource Sustainability Measure, v1.0

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Ban Useless Handling of Exceptions

7.5 CWE-392 Missing Report of Error Condition

Reference
https://cwe.mitre.org/data/definitions/392

Roles
- the <ErrorConditionProcessing>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Useless Handling of Exceptions

7.6 CWE-394 Unexpected Status Code or Return Value

Reference
https://cwe.mitre.org/data/definitions/394

Roles
- the <ReturnValue>

Detection Patterns
ASCQM Ban Incorrect Numeric Conversion of Return Value
ASCQM Handle Return Value of Must Check Operations
ASCQM Handle Return Value of Resource Operations

7.7 CWE-401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

Reference
https://cwe.mitre.org/data/definitions/401

Roles
- the <MemoryAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Required Operations for Manual Resource
Management ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

https://cwe.mitre.org/data/definitions/392
https://cwe.mitre.org/data/definitions/394
https://cwe.mitre.org/data/definitions/401

Automated Source Code Resource Sustainability Measure, v1.0 17

7.8 CWE-404 Improper Resource Shutdown or Release

Reference
https://cwe.mitre.org/data/definitions/404

Roles
- the <ResourceAllocation>

Contributing weaknesses
CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
CWE-762 Mismatched Memory Management Routines
CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.9 CWE-424 Improper Protection of Alternate Path

Reference
https://cwe.mitre.org/data/definitions/424

Roles
- the <AlternatePath>

Detection Patterns
ASCQM Ban Unintended Paths

7.10 CWE-459 Incomplete Cleanup

Reference
https://cwe.mitre.org/data/definitions/459

Roles
- the <ResourceAllocation>
- the <ResourceRelease>

Detection Patterns
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference

7.11 CWE-703 Improper Check or Handling of Exceptional Conditions

Reference
https://cwe.mitre.org/data/definitions/703

https://cwe.mitre.org/data/definitions/404
https://cwe.mitre.org/data/definitions/424
https://cwe.mitre.org/data/definitions/459
https://cwe.mitre.org/data/definitions/703

18 Automated Source Code Resource Sustainability Measure, v1.0

Roles
- the <ErrorHandling>

Contributing weaknesses
CWE-248 Uncaught Exception
CWE-391 Unchecked Error Condition
CWE-392 Missing Report of Error Condition

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Ban Useless Handling of Exceptions
ASCQM Catch Exceptions

7.12 CWE-762 Mismatched Memory Management Routines

Reference
https://cwe.mitre.org/data/definitions/762

Roles
- the <MemoryAllocation>
- the <MemoryRelease>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.13 CWE-772 Missing Release of Resource after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/772

Roles
- the <ResourceAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.14 CWE-775 Missing Release of File Descriptor or Handle after
Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/775

Roles
- the <FileDescriptorOrHandleAllocation>

Parent weaknesses
Weakness CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

https://cwe.mitre.org/data/definitions/762
https://cwe.mitre.org/data/definitions/772
https://cwe.mitre.org/data/definitions/775

Automated Source Code Resource Sustainability Measure, v1.0 19

Detection Patterns
 ASCQM Release File Resource after Use in Class
 ASCQM Release File Resource after Use in Operation

7.15 CWE-833 Deadlock

Reference
https://cwe.mitre.org/data/definitions/833

Roles
- the <Thread1>
- the <Thread2>
- the <ConflictingLock>

Detection Patterns
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues

7.16 CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

Reference
https://cwe.mitre.org/data/definitions/835

Roles
- the <InfiniteLoop>

Detection Patterns
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban While TRUE Loop Without Path To Break

7.17 CWE-1043 Storable and Member Data Element Excessive Number
of Aggregated Storable and Member Data Elements

Usage name
Excessively large data element

Reference
https://cwe.mitre.org/data/definitions/1043

Roles
- the <AggregationData>
- the <AggregatedData>

Detection Patterns
ASCQM Limit Number of Aggregated Non-Primitive Data Types

7.18 CWE-1046 Creation of Immutable Text Using String Concatenation

Usage name
Immutable text data

Reference
https://cwe.mitre.org/data/definitions/1046

https://cwe.mitre.org/data/definitions/833
https://cwe.mitre.org/data/definitions/835
https://cwe.mitre.org/data/definitions/1043
https://cwe.mitre.org/data/definitions/1046

20 Automated Source Code Resource Sustainability Measure, v1.0

Roles
- the <ImmutableDataCreation>

Detection Patterns
ASCQM Ban Incrementral Creation of Immutable Data

7.19 CWE-1049 Excessive Data Query Operations in a Large Data Table

Usage name
Complex read/write access

Reference
https://cwe.mitre.org/data/definitions/1049

Roles
- the <DataQuery>

Detection Patterns
ASCQM Ban Excessive Complexity of Data Resource Access

7.20 CWE-1050 Excessive Platform Resource Consumption within a Loop

Usage name
Resource consuming operation in loop

Reference
https://cwe.mitre.org/data/definitions/1050

Roles
- the <Loop>
- the <ExpensiveOperation>

Detection Patterns
ASCQM Ban Expensive Operations in Loops

7.21 CWE-1051 Initialization with Hard-Coded Network Resource
Configuration Data

Usage name
Hard-coded network resource information

Reference
https://cwe.mitre.org/data/definitions/1057

Roles
- the <DataManager>
- the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Path

https://cwe.mitre.org/data/definitions/1049
https://cwe.mitre.org/data/definitions/1050
https://cwe.mitre.org/data/definitions/1057

Automated Source Code Resource Sustainability Measure, v1.0 21

7.22 CWE-1057 Data Access Operations Outside of Designated Data
Manager Component

Usage name
Circumventing data access routines

Reference
https://cwe.mitre.org/data/definitions/1057

Roles
- the <DataManager>
- the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Path

7.23 CWE-1060 Excessive Number of Inefficient Server-Side Data
Accesses

Usage name
Excessive data queries in non‐stored procedure

Reference
https://cwe.mitre.org/data/definitions/1060

Roles
- the <NonStoredSQLOperation>
- the <DataAccesses>

Detection Patterns
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure

7.24 CWE-1067 Excessive Execution of Sequential Searches of Data
Resource

Usage name
Incorrect indicies

Reference
https://cwe.mitre.org/data/definitions/1067

Roles
- the <DataQuery>
- the <TableOrView>

Detection Patterns
ASCQM Implement Index Required by Query on Large Tables

7.25 CWE-1069 Empty Exception Block

Reference
https://cwe.mitre.org/data/definitions/1069

https://cwe.mitre.org/data/definitions/1057
https://cwe.mitre.org/data/definitions/1060
https://cwe.mitre.org/data/definitions/1067
https://cwe.mitre.org/data/definitions/1069

22 Automated Source Code Resource Sustainability Measure, v1.0

Roles
- the <ErrorConditionProcessing>

Detection Patterns
ASCQM Ban Empty Exception Block

7.26 CWE-1072 Data Resource Access without use of Connection
Pooling

Usage name
Data access not using connection pool

Reference
https://cwe.mitre.org/data/definitions/1072

Roles
- the <Connection>

Detection Patterns
ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality

7.27 CWE-1073 Non-SQL Invokable Control Element with Excessive
Number of Data Resource Access

Usage name
Excessive data queries in client‐side code

Reference
https://cwe.mitre.org/data/definitions/1073

Roles
- the <NonSQLOperation>
- the <DataAccesses>

Detection Patterns
ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code

7.28 CWE-1083 Data Access from Outside Designated Data Manager
Component

Usage name
Circumventing data access routines

Reference
https://cwe.mitre.org/data/definitions/1083

Roles
- the <DataManager>
- the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Paths

https://cwe.mitre.org/data/definitions/1072
https://cwe.mitre.org/data/definitions/1073
https://cwe.mitre.org/data/definitions/1083

Automated Source Code Resource Sustainability Measure, v1.0 23

7.29 CWE-1088 Synchronous Access of Remote Resource without
Timeout

Usage name
Synchronous call with missing timeout

Reference
https://cwe.mitre.org/data/definitions/1088

Roles
- the <SynchronousCall>
- the <TimeOutOption>

Detection Patterns
ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls

7.30 CWE-1089 Large Data Table with Excessive Number of Indices

Usage name

Excessive number of indices on large tables

Reference
https://cwe.mitre.org/data/definitions/1089

Roles
- the <Table>
- the <Indexes>

Detection Patterns
ASCQM Ban Excessive Number of Index on Columns of Large Tables

7.31 CWE-1091 Use of Object without Invoking Destructor Method

Reference
https://cwe.mitre.org/data/definitions/1091

Roles
- the <Object>

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.32 CWE-1094 Excessive Index Range for a Data Resource

Usage name
Excessively large indices on large tables

Reference
https://cwe.mitre.org/data/definitions/1094

Roles
- the <Table>
- the <Indexes>

https://cwe.mitre.org/data/definitions/1088
https://cwe.mitre.org/data/definitions/1089
https://cwe.mitre.org/data/definitions/1094
https://cwe.mitre.org/data/definitions/1094
https://cwe.mitre.org/data/definitions/1094

24 Automated Source Code Resource Sustainability Measure, v1.0

Detection Patterns
ASCQM Ban Excessive Size of Index on Columns of Large Tables

7.33 CWE-1235 Incorrect Use of Autoboxing and Unboxing for
Performance Critical Operations

Reference
https://cwe.mitre.org/data/definitions/1235

Roles
- the <Autoboxing/Unboxing>

Detection Patterns
ASCQM Ban Autoboxing in Loops
ASCQM Ban Unboxing in Loops

7.34 ASCRSM Detection Patterns
ASCQM Ban Autoboxing in Loops
ASCQM Ban Comma Operator from Delete Statement
 ASCQM Ban Empty Exception Block
ASCQM Ban Excessive Complexity of Data Resource Access
ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure
ASCQM Ban Excessive Number of Index on Columns of Large Tables
ASCQM Ban Excessive Size of Index on Columns of Large Tables
ASCQM Ban Expensive Operations in Loops
ASCQM Ban Hard-Coded Literals used to Connect to Resource
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Incorrect Numeric Conversion of Return Value
ASCQM Ban Incremental Creation of Immutable Data
ASCQM Ban Unboxing in Loops
ASCQM Ban Unintended Paths
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues
ASCQM Ban Useless Handling of Exceptions
ASCQM Ban While TRUE Loop Without Path To Break
ASCQM Catch Exceptions
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Handle Return Value of Must Check Operations
ASCQM Handle Return Value of Resource Operations
ASCQM Implement Index Required by Query on Large Tables
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Limit Number of Aggregated Non-Primitive Data Types
ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

https://cwe.mitre.org/data/definitions/1235

Automated Source Code Resource Sustainability Measure, v1.0 25

8 ASCRSM Weakness Detection Patterns (Normative)
8.1 ASCQM Ban Incorrect Numeric Conversion of Return Value

Descriptor

ASCQM Ban Incorrect Numeric Conversion of Return Value(FunctionMethodOrProcedure,
VariableDataType, CallStatement, TargetDataType)

Description

Identify occurrences in application model where:
- the <FunctionMethodOrProcedure> function, method, procedure, ...
- declared to return a value with the <VariableDataType> numerical data type
- is called in the <CallStatement> call statement
- with assignment of its return value to a variable of the <TargetDataType> second numerical data type
- which is incompatible with the first one
- without any explicit casting

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:
IntegerType|DecimalType|FloatType id="dt1"
IntegerType|DecimalType|FloatType id="dt2"
StorableUnit|ItemUnit|MemberUnit|Value id="de1" type="dt2"
...
CallableUnit|MethodUnit id="ce1" type="ce1_signature"
attribute="CheckReturnValue|..."

Signature id="ce1_signature"
ParameterUnit id="pu1" kind="return" type="dt1"

...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Writes "de1"
...

and the numeric datatypes are not compatible.

What to report
Roles to report are:
- the <FunctionMethodOrProcedure> function, method, procedure, ...
- the <VariableDataType> numerical data type
- the <CallStatement> call statement with assignment
- the <TargetDataType> second numerical data type

8.2 ASCQM Handle Return Value of Must Check Operations

Descriptor
ASCQM Handle Return Value of Must Check Operations(CallToTheOperation)

Description
Identify occurrences in application model where:
- the must-check function, method, procedure, ... is called in the <CallToTheOperation> call statement
- with no use in a conditional statement of the return value

The must-check nature of a function, method, procedure, ... is technology dependent. For example, in Java: the
@CheckReturnValue annotation.

26 Automated Source Code Resource Sustainability Measure, v1.0

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
CallableUnit|MethodUnit id="ce1" type="ce1_signature"
attribute="CheckReturnValue|..."
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2" kind="Switch"
 Reads "su1"
 GuardedFlow "gf1"
 GuardedFlow|FalseFlow "gf2"
...

or

StorableUnit id="su1"
StorableUnit id="su2"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
kind="Equal|NotEqual|LessThan|LessThanOrEqual|GreaterThan|GreatedThanOrEqual"
 Reads "su1"
 Writes "su2"
 Flows "ae3"
ActionElement id="ae3" kind="Condition"
 TrueFlow "tf1"
 FalseFlow "ff1"
...

What to report
Roles to report are:
- the <CallToTheOperation> call statement

8.3 ASCQM Handle Return Value of Resource Operations

Descriptor
ASCQM Handle Return Value of Resource Operations(CallToTheOperation)

Description
Identify occurrences in application model where:

- the platform resource management function, method, procedure, ... is called in the
<CallToTheOperation> call statement
- with no use in a conditional statement of the return value

Automated Source Code Resource Sustainability Measure, v1.0 27

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource|... id="pr1"
 ...
 PlatformResource id="pa1" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "pr1"
 ...
CodeModel
...
 CallableUnit|MethodUnit id="ce1" type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return"
 ...
 ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"

Flows "ae2"
ActionElement id="ae2" kind="Switch"
 Reads "su1"

GuardedFlow "gf1"
GuardedFlow|FalseFlow
"gf2"

...

or

StorableUnit id="su1"
StorableUnit id="su2"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
kind="Equal|NotEqual|LessThan|LessThanOrEqual|GreaterThan|GreatedThanOrEqual"
 Reads "su1"

Writes "su2"
Flows "ae3"

ActionElement id="ae3" kind="Condition"
 TrueFlow "tf1"

 FalseFlow "ff1"
...

What to report
Roles to report are:
- the <CallToTheOperation> call statement

8.4 ASCQM Check Return Value of Resource Operations Immediately

Descriptor
ASCQM Check Return Value of Resource Operations Immediately(CallToTheOperation)

28 Automated Source Code Resource Sustainability Measure, v1.0

Description
Identify occurrences in application model where:
- a platform resource management function, procedure, method, ... is called in the <CallToTheOperation> call
statement
- with no operation performed immediately after on the return value

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource|... id="pr1"
 ...
 PlatformResource id="pa1" implementation="ae1"

 ManagesResource|ReadsResource|WritesResource "pr1"
 ...
CodeModel
 CallableUnit|MethodUnit id="ce1" type="ce1_signature"

 Signature id="ce1_signature"
ParameterUnit id="pu1" kind="return"

 ...
 ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
 Reads "su1"

What to report
Roles to report are:
- the <CallToTheOperation> call statement8.22

8.5 ASCQM Ban Useless Handling of Exceptions

Descriptor
ASCQM Ban Useless Handling of Exceptions(CatchBlock)

Description
Identify occurrences in application model where:
- the <CatchBlock> catch block
- does not report on the error condition as a new throw or as a return value

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
CatchUnit id="cu1"
 ...
...

Automated Source Code Resource Sustainability Measure, v1.0 29

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ...
 ActionElement id="ae1" kind="Throw"
 Throws ...
...

or

...
CatchUnit id="cu1"
 ...
ActionElement id="ae1" kind="Return"
 Reads ...
...

What to report
Roles to report are:
- the <CatchBlock> catch block

8.6 ASCQM Ban Comma Operator from Delete Statement

Descriptor
ASCQM Ban Comma Operator from Delete Statement(DeleteStatement, CommaStatement)

Description
Identify occurrences in application model where:
- the <DeleteStatement> delete statement
- compounded with the <CommaStatement> comma statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:
...
CallableUnit id="cu1" name="delete" callableKind="operator"
CallableUnit id="cu2" name="comma" callableKind="operator"
...
ActionElement id="ae1" kind="Compound" ext="delete x, y"

ActionElement id="ae2" kind="Call"
Calls "cu1"

...
ActionElement id="ae3"

kind="Call" Calls "cu2"
...

...

What to report
Roles to report are:
- the <DeleteStatement> delete this statement
- the <CommaStatement> comma statement

8.7 ASCQM Release in Destructor Memory Allocated in Constructor

Descriptor
ASCQM Release in Destructor Memory Allocated in Constructor(MemoryAllocationStatement)

Description
Identify occurrences in application model where:
- the <MemoryAllocationStatement> memory allocation statement in the class constructor
- lacking a corresponding memory release statement in the class destructor

30 Automated Source Code Resource Sustainability Measure, v1.0

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|...
id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="New|NewArray"
 Creates "dt1"

Writes "su1"
...

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|...
id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" name="delete|delete[]|free|..."
...
ClassUnit id="cu1"

...
MethodUnit id="mu2" MethodKind="destructor"

...
ActionElement id="ae2" kind="Call"

Addresses "su1"
Calls "ce2"

What to report
Roles to report:
- the <MemoryAllocationStatement> memory allocation statement

8.8 ASCQM Release Memory after Use with Correct Operation

Descriptor
ASCQM Release Memory after Use with Correct Operation(MemoryAllocationStatement, MemoryReleaseStatement)

Automated Source Code Resource Sustainability Measure, v1.0 31

Description
Identify occurrences in the application model where:
- the memory is allocated via the <MemoryAllocationStatement> allocation statement
- then released via the mismatched <MemoryReleaseStatement> release statement

The pairs of matching allocation/deallocation primitives and operations are technology, framework, language
dependant. For example: malloc/free, calloc/free, realloc/free in C/C+, new/delete, new[]/delete[] in C+,
new/Release() with COM IUnknown interface.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New"
 Creates "dt1"
 Writes "su1"
...
ControlElement id="ce2" name="delete[]|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="NewArray"
 Creates "dt1"

Writes "su1"
...
ControlElement id="ce2" name="delete|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or
ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...
ControlElement id="ce2" name="delete|delete[]|..."
...
ActionElement id="ae2" kind="Call"

32 Automated Source Code Resource Sustainability Measure, v1.0

 Addresses "su1"
 Calls "ce2"

What to report
Roles to report are:
- the <MemoryAllocationStatement> allocation statement
- the <MemoryReleaseStatement> release statement

8.9 ASCQM Implement Required Operations for Manual Resource
Management

Descriptor
ASCQM Implement Required Operations for Manual Resource Management(ObjectDeclaration)

Description
Identify occurrences in application model where:
- the <ObjectDeclaration> object declaration
- declares an object with manual resource management capabilities
- which lacks the required operation.

The manual resource management capability is technology, framework, and language dependent. For
example: class inheritance from IDisposable in C#, and AutoClosable in Java, class with enter in
python.

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

InterfaceUnit id="iu1" name="IDisposable|AutoClosable|..."
...
ClassUnit id="cu1"
 Extends "iu1"
 ...
of

...
ClassUnit id="cu1"
 MethodUnit "mu1" name=" enter "
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"

...
MethodUnit "mu1" name="dispose|close| exit |..."

What to report
Roles to report:
- the <ObjectDeclaration> object declaration

8.10 ASCQM Release Platform Resource after Use

Descriptor
ASCQM Release Platform Resource after Use(FunctionProcedureOrMethod,
ResourceAllocationStatement, PathToExitWithoutResourceRelease)

Automated Source Code Resource Sustainability Measure, v1.0 33

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <ResourceAllocationStatement> resource allocation statement
- excluding memory and file resources
- while there exist the <PathToExitWithoutResourceRelease> path to exit the
<FunctionProcedureOrMethod> function, procedure, method, ... without releasing the resource

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"
...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"

 Flows "ae4"
 ActionElement id="ae4" kind="Return"
 ...

 ActionElement id="ae2" kind="PlatformAction"
 ...
...

What to report
Roles to report
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <ResourceAllocationStatement> file resource open statement
- the <PathToExitWithoutResourceRelease> path to exit

8.11 ASCQM Release Memory After Use

Descriptor
ASCQM Release Memory After Use(MemoryAllocationStatement)

Description
Identify occurrences in application model where:
- the <MemoryAllocationStatement> memory allocation statement
- lacking a corresponding memory release statement

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New|NewArray"

34 Automated Source Code Resource Sustainability Measure, v1.0

 Creates "dt1"
 Writes "su1"
...

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...

 KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" name="delete|delete[]|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"

Calls "ce2"

What to report
Roles to report :
- the <MemoryAllocationStatement> memory allocation statement

8.12 ASCQM Implement Virtual Destructor for Classes Derived from
Class with Virtual Destructor

Descriptor
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor(Class, ParentClass,
ParentVirtualDestructor)

Description
Identify occurrences in application model where :
- the <Class> class
- inherits from the <ParentClass> parent class
- with the <ParentVirtualDestructor> virtual destructor
- but lacks a virtual destructor
KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

 MethodUnit is="m1" methodKind="method" isVirtual="true"
 ...
ClassUnit id="c2" InheritsFrom="c1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

Automated Source Code Resource Sustainability Measure, v1.0 35

ClassUnit id="c2"

 MethodUnit is="m2" methodKind="destructor" isVirtual="true"

...

What to report
Roles to report are :
- the <Class> class
- the <ParentClass> parent class
- the <ParentVirtualDestructor> virtual destructor

8.13 ASCQM Implement Virtual Destructor for Parent Classes

Descriptor
ASCQM Implement Virtual Destructor for Parent Classes(Class, ParentClass)

Description
Identify occurrences in application model where:
- the <Class> class
- inherits from the <ParentClass> parent class
- which lacks a virtual destructor

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

ClassUnit id="c2" InheritsFrom="c1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

....
MethodUnit is="m1" methodKind="method" isVirtual="true"

...

What to report
Roles to report are:
- the <Class> class
- the <ParentClass> parent class

8.14 ASCQM Release File Resource after Use in Operation

Descriptor
ASCQM Release File Resource after Use in Operation(FunctionProcedureOrMethod, FileResourceOpenStatement,
PathToExitWithoutFileResourceClose)

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <FileResourceOpenStatement> file resource open statement
- while there exist the <PathToExitWithoutFileResourceClose> path to exit the
<FunctionProcedureOrMethod> function, procedure, method, ... without releasing the file resource

The path to exit the function, procedure, method, includes calls to other functions, procedures, methods, ...

36 Automated Source Code Resource Sustainability Measure, v1.0

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 FileResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"
...
CodeModel
 ...
CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"

ActionElement id="ae4" kind="Return"
...
ActionElement id="ae2" kind="PlatformAction"
...

...

What to report
Roles to report:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <FileResourceOpenStatement> file resource open statement
- the <PathToExitWithoutFileResourceClose> path to exit

8.15 ASCQM Implement Virtual Destructor for Classes with Virtual
Methods

Descriptor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods(Class, VirtualMethod)

Description
Identify occurrences in application model where:
- the <Class> class
- owns the <VirtualMethod> virtual method
- but lacks a virtual destructor

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

MethodUnit is="m1" methodKind="method" isVirtual="true"

...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

 MethodUnit is="m2" methodKind="destructor" isVirtual="true"
 ...

Automated Source Code Resource Sustainability Measure, v1.0 37

What to report
Roles to report are:
- the <Class> class
- the <VirtualMethod> virtual method

8.16 ASCQM Manage Time-Out Mechanisms in Blocking Synchronous
Calls

Descriptor
ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls(BlockingSynchronousCall, TimeOutOption)

Description
Identify occurrences in application model where:
- the <BlockingSynchronousCall> synchronous call
- doesn't use its <TimeOutOption> time-out option

The list of blocking synchronous primitives is technology, framework, language dependent. For example,
in Java: connect(), receive().

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="connect|receive|..." type="ce1_signature"
 Signature id="ce1_signature"

 ...
 ParameterUnit id="pu1" name="timeout|..."
 ...
Value id="v1" attribute="infinite_wait"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"
 Reads "v1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
Value id="v2" attribute="finite_wait"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"
 Reads "v2"

What to report
Roles to report:
- the <BlockingSynchronousCall> synchronous call
- the <TimeOutOption> time-out option

8.17 ASCQM Ban Hard-Coded Literals used to Connect to Resource

Descriptor
ASCQM Ban Hard-Coded Literals used to Connect to Resource(InitializationStatement, ResourceAccessStatement)

38 Automated Source Code Resource Sustainability Measure, v1.0

Description
Identify occurrences in application model where:
- the <InitializationStatement> initialization statement
- initialize a variable used in the <ResourceAccessStatement> resource access statement as parameter to call
a resource access primitive

It covers credentials, passwords, encryption keys, tokens, remember-me keys...

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

Value id="hcv" name="hcv"
...
StorableUnit|ItemUnit|MemberUnit id="su1"
...
ActionElement id="ae1" kind="Assign
 Reads "hcv"
 Writes "su1"
...
MarshalledResource|MessagingResource|DataManager|ExecutionResource id="nwr"
...
ControlElement id="ce1"
 ...
 ActionELement id="ae2" kind="Platform"
 ManagesResource|ReadsResource|WritesResource "nwr"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su1"
 ...
 Calls "ce1"

What to report
Roles to report are:
- the <InitializationStatement> initialization statement
- the <ResourceAccessStatement> resource access statement

8.18 ASCQM Ban Unintended Paths

Descriptor
ASCQM Ban Unintended Paths(ArchitectureModel, Relation, Caller, Callee, OriginModule, TargetModule)

Description
Identify occurrences in the application model where:
- the <Relation> call-type, data, use relations
- between the <Caller> caller
- grouped in the <OriginModule> origin layer, component, or subsystem
- and the <Callee> callee
- grouped into the <TargetModule> target layer, component, or subsystem
- as defined in the <ArchitectureModel> architectural blueprint defining layers, components, or subsystems
- where relations from the <OriginModule> layer, component, or subsystem to the <TargetModule> layer,
component, or subsystem are not intended

The architectural blueprint defining layers, components, or subsystems is application dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
Layer|Component|Subsystem id="m1"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
name="..."
 ...

Automated Source Code Resource Sustainability Measure, v1.0 39

 ActionElement id="ae1"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce2"
...
Layer|Component|Subsystem id="m2"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce2"
name="..."
...

With "m1" not intended to reference "m2"

What to report
Roles to report are:
- the <ArchitectureModel> architectural blueprint
- the <Relation> relation
- the <Caller> caller
- the <Callee> callee
- the <OriginModule> origin layer, component, or subsystem
- the <TargetModule> target layer, component, or subsystem

8.19 ASCQM Ban While TRUE Loop Without Path To Break

Descriptor
ASCQM Ban While TRUE Loop Without Path To Break(WhileTrueLoop)

Description
Identify occurrences in the application model where:
- the <WhileTrueLoop> "while true" loop
- lacks a control flow to a break statement out of the loop

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

BooleanType id="booleanType"
Value id="true" name="true" type="booleanType"
ActionElement id="ae1" kind="Compound"
 ActionElement id="ae2" kind="Condition"
 Reads "true"
 TrueFlow "tf1"
 FalseFlow "ff1"
 ActionElement id="tf1" ...
 ...
 Flows "ae2"
ActionElement id="ff1" ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae1" kind="Compound"
 ActionElement id="ae2" kind="Condition"
 ...
 TrueFlow "tf1"
 ...

ActionElement id="tf1" ...
 Flows "ae3"
 ActionElement id="ae3"
 Flows "e1"
 ActionElement id="e1" kind="Goto"

Flows "ff1"
...

ActionElement id="ff1" ...

40 Automated Source Code Resource Sustainability Measure, v1.0

What to report
Roles to report:
- the <WhileTrueLoop> "while true" loop

8.20 ASCQM Ban Unmodified Loop Variable Within Loop

Descriptor
ASCQM Ban Unmodified Loop Variable Within Loop(WhileLoop)

Description
Identify occurrences in the application model where:
- the <WhileLoop> while loop
- lacks an update of the condition value within the loop

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

BooleanType id="booleanType"
StorableUnit id="su1" type="booleanType"
ActionElement id="ae1" kind="Compound"
 ...
 ActionElement id="ae2" kind="Condition"
 Reads "su1"
 ...

...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae1" kind="Compound"
 ...
 ActionElement id="ae3" kind="Assign|Incr|Decr"
 Writes "su1"
 ...
 ...

What to report
Roles to report:
- the <WhileLoop> while loop

8.21 ASCQM Release File Resource after Use in Class

Descriptor
ASCQM Release File Resource after Use in Class(Class, FileResourceOpenStatement)

Description
Identify occurrences in application model where:
- the <Class> class, ...
- uses the <FileResourceOpenStatement> file resource open statement
- without releasing the file resource in any of its methods

The path to exit the function, procedure, method, includes calls to other functions, procedures, methods, ...

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

Automated Source Code Resource Sustainability Measure, v1.0 41

PlatformModel
 ...
 FileResource id="pr1"
 ...
PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"

...
CodeModel
 ...
 ClassUnit id="cu1"
 ...
 ActionElement id="ae1" kind="PlatformAction"

...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 ActionElement id="ae2" kind="PlatformAction"
...

What to report
Roles to report:
- the <Class> class
- the <FileResourceOpenStatement> file resource open statement

8.22 ASCQM Catch Exceptions

Descriptor
ASCQM Catch Exceptions(Method, Exception, MethodCall)

Description
Identify occurrences in application model where:
- the <Method> method
- declared as throwwing the <Exception> exception
- is called in the <MethodCall> method call
- which doesn't catch exceptions of type <Exception>

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ClassUnit id="cu1"
...
MethodUnit id="mu1" type="mu1_signature"
 Signature id="mu1_signature"
 ParameterUnit id="pu1" type="cu1" kind="throws"
 ...
...
ActionElement id="ae1" kind="MethodCall"
 Calls "mu1"
...

42 Automated Source Code Resource Sustainability Measure, v1.0

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
TryUnit id="t1"
 ...
 ActionElement id="ae1" kind="MethodCall"
 Calls "mu1"
 ...
 ExceptionFlow "c1"
...

What to report
Roles to report are:
- the <Method> method
- the <Exception> exception
- the <MethodCall> method call

8.23 ASCQM Ban Empty Exception Block

Descriptor
ASCQM Ban Empty Exception Block(CatchBlock)

Description
Identify occurrences in application model where:
- the <CatchBlock> catch block
- is empty

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ActionElement id="ae1" kind="Nop"
...

What to report
Roles to report are:
- the <CatchBlock> catch block

8.24 ASCQM Ban Incompatible Lock Acquisition Sequences

Descriptor
ASCQM Ban Incompatible Lock Acquisition Sequences(LockAcquisitionSequence,
ReverseLockAcquisitionSequence)

Description
Identify occurrences in application model where:
- the <LockAcquisitionSequence> sequence of lock acquisition
- is the reverse of the <ReverseLockAcquisitionSequence> sequence of lock acquisition

The locking mechanism is technology, framework, and language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 LockResource id="lr2"
 ...

Automated Source Code Resource Sustainability Measure, v1.0 43

 PlatformAction id="pa1" kind="lock" implementation="ae1 ae12"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa2" kind="lock" implementation="ae3 ae10"
 ManagesResource|ReadsResource|WritesResource "lr2"
...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2" ...
 Flows "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElement id="ae4" ...
 ...
 ActionElement id="ae10" kind="PlatformAction"
 Flows "ae11"
 ActionElement id="ae11" ...
 Flows "ae12"
 ActionElement id="ae12" kind="PlatformAction"
 Flows "ae13"
 ActionElement id="ae13" ...

What to report
Roles to report are:
- the <LockAcquisitionSequence> sequence of lock acquisition
- the <ReverseLockAcquisitionSequence> sequence of lock acquisition

8.25 ASCQM Ban Use of Thread Control Primitives with Known
Deadlock Issues

Descriptor
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues(ThreadControlPrimitiveCall)

Description
Identify occurrences in application model where:
- the <ThreadControlPrimitiveCall> call to a thread control function, procedure, method, ... with known deadlock
issues.

The list of primitives is technology, framework, language dependant. For example, in Java:
java.lang.Thread.suspend(), java.lang.Thread.resume(), java.lang.ThreadGroup.suspend(),
java.lang.ThreadGroup.resume() and dependent methods java.lang.ThreadGroup.allowThreadSuspension().

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1"
name="java.lang.Thread.suspend|java.lang.Thread.resume|..."
 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

What to report
Roles to report:
- the <ThreadControlPrimitiveCall> call to a thread control function, procedure, method, ... with known deadlock
issues.

44 Automated Source Code Resource Sustainability Measure, v1.0

8.26 ASCQM Ban Use of Prohibited Low-Level Resource Management
Functionality

Descriptor
ASCQM Ban Use of Prohibited Low-Level Resource Management
Functionality(ResourceManagementPrimitiveCall, TechnologyStack)

Description
Identify occurrences in application model where:
- the <ResourceManagementPrimitiveCall> low-level resource management primitive call
- which is bypassing the resource management primitives provided by the <TechnologyStack> technology stack

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

CodeModel
 Package id="p1"
name="javax.ejb|javax.servlet|javax.jms|javax.faces|javax.xml.bind|javax.activati
on|javax.mail|..."
 ...
 Package id="p2" name="java.sql"
 ClassUnit id="cu2" name="DriverManager"
 MethodUnit id="mu2"
 ...
 CompilationUnit id="cu2"
 Imports "p1"
 Imports "p2"
 ...
 ActionElement id="ae1" kind="MethodCall"
 Calls "mu2"

or

CodeModel

Package id="p1" name="javax.servlet"
 ...
 Package id="p2" name="java.net"
 ClassUnit id="cu2" name="Socket|ServerSocket"
 MethodUnit id="mu2"
 ...
 CompilationUnit id="cu2"
 Imports "p1"

Imports "p2"
...

 ActionElement id="ae1" kind="MethodCall"
 Calls "mu2"

or
CodeModel
 Package id="p1" name="javax.ejb"
 ...
 Package id="p2" name="java.net"
 ClassUnit id="cu2" name="Socket|ServerSocket"
 MethodUnit id="mu2"
 ...
 Package id="p3" name="java.lang"
 ClassUnit id="cu3"name= ClassLoader"
 MethodUnit id="mu3"
 ...
 Package id="p4" name="java.io"

 ClassUnit id="cu4" name="File"

Automated Source Code Resource Sustainability Measure, v1.0 45

 MethodUnit id="mu4"
...
Package id="p5" name="java.awt"

 ClassUnit id="cu5"
 MethodUnit id="mu5"
 ...
 CompilationUnit id="cu2"
 Imports "p1"

Imports "p2"
 ...
 ActionElement id="ae1" kind="MethodCall"
 Calls "mu2|mu3|mu4|mu5"

or
CodeModel

Package id="p1" name="javax.ejb"
...
...
CompilationUnit id="cu2"

 Imports "p1"
 Imports "p2"

...
ActionElement id="ae1" kind="MethodCall" attribute="synchronized"

...

What to report
Roles to report:
- the <ResourceManagementPrimitiveCall> low-level resource management primitive call
- the <TechnologyStack> technology stack

8.27 ASCQM Ban Excessive Size of Index on Columns of Large Tables

Descriptor
ASCQM Ban Excessive Size of Index on Columns of Large Tables(Table, TotalSizeOfIndexes,
MaxTotalSizeOfIndexes, MinNumberOfRows)

Description
Identify occurrences in application model where:
- the <Table> table
- with <TotalSizeOfIndexes> number of indexes
- which is greater than <MaxTotalSizeOfIndexes>
- and with more than <MinNumberOfRows>

The <MaxTotalSizeOfIndexes> value is a measurement parameter. Its default value
is: 30 The <MinNumberOfRows> value is a measurement parameter. Its default value
is: 1000000

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationalSchema
 RelationalTable id="rt1"
 Index id="i1" implementation="iu1"
 Index id="i2" implementation="iu1 iu2"
 ...
 itemUnit id="iu1" type="dt1"
 itemUnit id="iu2" type="dt2"
...
CodeModel
 DataType id="dt1"

46 Automated Source Code Resource Sustainability Measure, v1.0

 DataType id="dt2"
 ...

The size of an Index is the size in bytes of the data types of the columns it relies on.

What to report
Roles to report:
- the <Table> table
- the <TotalSizeOfIndexes> value
- the <MaxTotalSizeOfIndexes> value
- the <MinNumberOfRows> value

8.28 ASCQM Ban Excessive Number of Index on Columns of Large
Tables

Descriptor
ASCQM Ban Excessive Number of Index on Columns of Large Tables(Table, NumberOfIndexes,
MaxNumberOfIndexes, MinNumberOfRows)

Description
Identify occurrences in application model where:
- the <Table> table
- with <NumberOfIndexes> number of indexes
- which is greater than <MaxNumberOfIndexes>
- and with more than <MinNumberOfRows>

The <MaxNumberOfIndexes> value is a measurement parameter. Its default value is: 3
The <MinNumberOfRows> value is a measurement parameter. Its default value is: 1000000

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationalSchema
 RelationalTable id="rt1"
 Index id="i1"
 Index id="i2"
 Index id="i3"
 Index id="i4"
 Index id="i5"
 Index id="i6"
...

What to report
Roles to report:
- the <Table> table
- the <NumberOfIndexes> value
- the <MaxNumberOfIndexes> value
- the <MinNumberOfRows> value

8.29 ASCQM Ban Excessive Complexity of Data Resource Access

Descriptor
ASCQM Ban Excessive Complexity of Data Resource Access(Query, NumberOfTables,
MaxNumberOfTables, NumberOfSubqueries, MaxNumberOfSubqueries, MinNumberOfRows)

Automated Source Code Resource Sustainability Measure, v1.0 47

Description
Identify occurrences in application model where:
- the <Query> query
- with <NumberOfTables> number of tables or views
- which is greater than <MaxNumberOfTables>
- and with <NumberOfSubqueries> number of subqueries
- which is greater than <MaxNumberOfSubqueries>
- with at least one table or view with more than <MinNumberOfRows>

The <MaxNumberOfTables> value is a measurement parameter. Its default value is: 5
The <MaxNumberOfSubqueries> value is a measurement parameter. Its default value is:3
The <MinNumberOfRows> value is a measurement parameter. Its default value is: 1000000

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationalSchema
 RelationalTable|RelationalView id="cs1"
 RelationalTable|RelationalView id="cs2"
 RelationalTable|RelationalView id="cs3"
 RelationalTable|RelationalView id="cs4"
 RelationalTable|RelationalView id="cs5"
 RelationalTable|RelationalView id="cs6"
 ...
 DataAction id="da1" kind="Select|Insert|Update|Delete"
 ...
 ReadsColumnSet|WritesColumnSet "cs1"
 ReadsColumnSet|WritesColumnSet "cs2"
 ReadsColumnSet|WritesColumnSet "cs3"
 ReadsColumnSet|WritesColumnSet "cs4"
 ReadsColumnSet|WritesColumnSet "cs5"
 ReadsColumnSet|WritesColumnSet "cs6"

...
DataAction id="da2" kind="Select"

...
DataAction id="da3" kind="Select"

...
DataAction id="da4" kind="Select"

...
DataAction id="da5" kind="Select"

...
 ...
 ...
 ...
...

What to report
Roles to report:
- the <Query> query
- the <NumberOfTables> value
- the <MaxNumberOfTables> value
- the <NumberOfSubqueries> value
- the <MaxNumberOfSubqueries> value
- the <MinNumberOfRows> value

8.30 ASCQM Ban Expensive Operations in Loops

Descriptor
ASCQM Ban Expensive Operations in Loops(ResourceConsummingStatement, Loop)

Description
Identify occurrences in application model where:

48 Automated Source Code Resource Sustainability Measure, v1.0

- the <ResourceConsummingStatement> resource consuming statement
- is used within the <Loop> loop.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae1" kind="New|NewArray"

or

ActionElement id="ae1" kind="SizeOf|InstanceOf|DynCast|TypeCast"

or

ActionElement id="ae1" kind="New|NewArray"

or

PlatformModel
 ...
 MarshalledResource|NamingResource|DataManager id="pr1"

...
 PlatformAction id="pa1" implementation="ae1"

 ManagesResource|WritesResource|ReadsResource "pr1"
...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
....

with (while loops)

BooleanType id="booleanType"
Value id="true" name="true" type="booleanType"
ActionElement id="ae2" kind="Compound"
 ActionElement id="ae3" kind="Condition"
 Reads "true"
 TrueFlow "tf1"
 FalseFlow "ff1"
 ActionElement id="tf1" ...
 ...
 Flows "ae1"
 ...
 Flows "ae3"
ActionElement id="ff1" ...

or (for loops)

ActionElement id="ae2" kind="compound"
 ActionElement id="ae3" kind="Assign"
 Reads ...
 Writes "LoopVariable"
 Flows "ae4"
 ActionElement id="ae4"
kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"
 Reads "LoopVariable"
 Reads ...
 TrueFlow "ae5"
 FalseFlow "ae7"
 ActionElement id="ae5" kind=...
 ...
 Flows "ae1"
 ...
 ActionElement id="ae6" kind="Incr|Decr"

Automated Source Code Resource Sustainability Measure, v1.0 49

 Addresses "LoopVariable"
 Flows "ae4"

 ActionElement id="ae7" kind="Nop"
...

What to report
Roles to report are:
- the <ResourceConsummingStatement> resource consuming statement
- the <Loop> loop.

8.31 ASCQM Limit Number of Aggregated Non-Primitive Data Types

Descriptor
ASCQM Limit Number of Aggregated Non-Primitive Data Types(Class,
NumberOfNonPrimitiveMembers, MaxNumberOfNonPrimitiveMembers)

Description
Identify occurrences in application model where :
- the <Class> class
- with <NumberOfNonPrimitiveMembers> number of non-primitive members
- which is greater than <MaxNumberOfNonPrimitiveMembers>

The <MaxNumberOfNonPrimitiveMembers> value is a measurement parameter. Its default value is: 5

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
ClassUnit id="cu2"
ClassUnit id="cu3"
ClassUnit id="cu4"
ClassUnit id="cu5"
ClassUnit id="cu6"
...
ClassUnit id="cu0"
 MemberUnit id="mu1" type="cu1"
 MemberUnit id="mu2" type="cu2"
 MemberUnit id="mu3" type="cu3"
 MemberUnit id="mu4" type="cu4"
 MemberUnit id="mu5" type="cu5"
 MemberUnit id="mu6" type="cu6"
 ...

What to report
Roles to report :
- the <Class> class
- the <NumberOfNonPrimitiveMembers> value
- the <MaxNumberOfNonPrimitiveMembers> value

8.32 ASCQM Ban Excessive Number of Data Resource Access from non-
stored SQL Procedure

Descriptor
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure(Function,
NumberOfDataAccess, MaxNumberOfDataAccess)

50 Automated Source Code Resource Sustainability Measure, v1.0

Description
Identify occurrences in application model where:
- the <Function> SQL function is not a stored procedure
- with <NumberOfDataAccess> accesses to data resources
- which is greater than <MaxNumberOfDataAccess>

The <MaxNumberOfDataAccess> value is a measurement parameter. Its default value is: 5

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationSchema id="rs1"
 ...
 CallableUnit id="cu1"

...
ActionElement id="da1" kind="Select|Insert|Update|Delete"
...
ActionElement id="da2" kind="Select|Insert|Update|Delete"
...
ActionElement id="da3" kind="Select|Insert|Update|Delete"
...
ActionElement id="da4" kind="Select|Insert|Update|Delete"
...
ActionElement id="da5" kind="Select|Insert|Update|Delete"
...
ActionElement id="da6" kind="Select|Insert|Update|Delete"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationSchema id="rs1"
 ...

 CallableUnit id="cu1" kind="stored"

...

What to report
Roles to report:
- the <Function> function
- the <NumberOfDataAccess> value
- the <MaxNumberOfDataAccess> value

8.33 ASCQM Ban Excessive Number of Data Resource Access from non-
SQL Code

Descriptor
ASCQM Ban Excessive Number of Data Resource Access from non-SQL
Code(FunctionProcedureOrMethod, NumberOfDataAccess, MaxNumberOfDataAccess)

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- with <NumberOfDataAccess> accesses to data resources
- which is greater than <MaxNumberOfDataAccess>

The <MaxNumberOfDataAccess> value is a measurement parameter. Its default value is: 2

Automated Source Code Resource Sustainability Measure, v1.0 51

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationSchema id="rs1"
 ...
 ActionElement id="da1" kind="Select|Insert|Update|Delete"
implementation="i1"
 ActionElement id="da2" kind="Select|Insert|Update|Delete"
implementation="i2"
 ActionElement id="da3" kind="Select|Insert|Update|Delete"
implementation="i3"
...
CodeModel
 ...
 CallableUnit id="cu1" | MethodUnit id="mu1"
 ...
 ActionElement id="i1"
 ...
 ActionElement id="i2"
 ...
 ActionElement id="i3"
 ...
...

What to report
Roles to report:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <NumberOfDataAccess> value
- the <MaxNumberOfDataAccess> value

8.34 ASCQM Ban Incremental Creation of Immutable Data

Descriptor
ASCQM Ban Incrementral Creation of Immutable Data(StringConcatenationStatement)

Description
Identify occurrences in the application model where:
- a text variable is incrementaly updated in the <StringConcatenationStatement> string concatenation statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
StringType id="st1"
StorableUnit id="su1" type="st1"
...
ActionElement id="ae1" kind="Append"
 Reads "su1"
 Writes "su1"
 ...
...

What to report
Roles to report are:
- the <StringConcatenationStatement> string concatenation statement

52 Automated Source Code Resource Sustainability Measure, v1.0

8.35 ASCQM Ban Unboxing in Loops

Descriptor
Ban Unboxing in Loops(Unboxing, Loop)
Description
Identify occurrences in application model where
- the <Unboxing> unboxing statement
- is used within the <Loop> loop.
KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

IntegerType|DecimalType|BooleanType|BitType|CharType|

...
id="dt1"
...
StorableUnit|ItemUnit|MemberUnit|Value
 id="de1"
 type="dt1"
 ...
ClassUnit| ...
 id="dt2"
MemberUnit
 id="fu1"
 type="dt1" ...
BooleanType id="booleanType"
 Value id="true"
 name="true"
 type="booleanType"
ActionElement
 id="ae2"
 kind="Compound"
ActionElement
 id="ae3"
 kind="Condition"
Reads "true"
 TrueFlow "tf1"
 FalseFlow "ff1"
ActionElement
 id="tf1" ...
 ...
StorableUnit|ItemUnit|MemberUnit
 id="de2"
 type="dt2"
 ...
ActionElement
 id="ae1"
 kind="Assign"
Writes "de1"
Reads "de2"
 ...
Flows "ae3"
ActionElement
 id="ff1" ...

or

IntegerType|DecimalType|BooleanType|BitType|CharType| ...
 id="dt1"
...
StorableUnit|ItemUnit|MemberUnit|Value
 id="de1"
 type="dt1"

Automated Source Code Resource Sustainability Measure, v1.0 53

...
ClassUnit|...
 id="dt2"
MemberUnit
 id="fu1"
 type="dt1"
 ...
ActionElement
 id="ae2"
 kind="compound"
ActionElement
 id="ae3"
 kind="Assign"
Reads ...
Writes "LoopVariable"
Flows "ae4"
ActionElement
 id="ae4"
 kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"
Reads "LoopVariable"
Reads ...
 TrueFlow "ae5"
 FalseFlow "ae7"
ActionElement
 id="ae5"
 kind=...
...
StorableUnit|ItemUnit|MemberUnit
 id="de2"
 type="dt2"
...
ActionElement
 id="ae1"
 kind="Assign"
Writes "de1"
Reads "de2"
...
ActionElement
 id="ae7"
 kind="Nop"
...

What to report
Roles to report are
- the <Unboxing> unboxing statement
- the <Loop> loop.

8.36 ASCQM Ban Autoboxing in Loops

Descriptor
ASCQM Ban Autoboxing in Loops(Autoboxing, Loop)

Description
Identify occurrences in application model where - the <Autoboxing> autoboxing statement - is used
within the <Loop> loop.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

IntegerType|DecimalType|BooleanType|BitType|CharType| ...
 id="dt1"
...

54 Automated Source Code Resource Sustainability Measure, v1.0

ClassUnit|...
 id="dt2"
MemberUnit
 id="fu1"
 type="dt1"
...
StorableUnit|ItemUnit|MemberUnit
 id="de2"
 type="dt2"
...
BooleanType
 id="booleanType"
Value
 id="true"
 name="true"
 type="booleanType"
ActionElement
 id="ae2"
 kind="Compound"
ActionElement
 id="ae3"
 kind="Condition"
Reads "true"
 TrueFlow "tf1"
 FalseFlow "ff1"
ActionElement
 id="tf1" ...
...
StorableUnit|ItemUnit|MemberUnit|Value
 id="de1"
 type="dt1"
...
ActionElement
 id="ae1"
 kind="Assign"
Writes "de2"
Reads "de1" ...
Flows "ae3"
ActionElement
 id="ff1"
...

or

IntegerType|DecimalType|BooleanType|BitType|CharType|...

...
ClassUnit|...
 id="dt2"
MemberUnit
 id="fu1"
 type="dt1"

...
ActionElement
 id="ae2"
 kind="compound"

ActionElement
 id="ae3"
 kind="Assign"
Reads ...
Writes "LoopVariable"
Flows "ae4"
ActionElement

Automated Source Code Resource Sustainability Measure, v1.0 55

 id="ae4"
 kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"
Reads "LoopVariable"
Reads ...
TrueFlow "ae5"
FalseFlow "ae7"
ActionElement
 id="ae5"
 kind=...
...
StorableUnit|ItemUnit|MemberUnit|Value
 id="de1"

 type="dt1"
 ...
ActionElement
 id="ae1"
 kind="Assign"
Writes "de2"
Reads "de1"
...
ActionElement
 id="ae7"
 kind="Nop"
 ...

What to report
Roles to report are
- the <Autoboxing> autoboxing statement
- the <Loop> loop.

8.37 ASCQM Implement Index Required by Query on Large Tables

Descriptor
ASCQM Implement Index Required by Query on Large Tables(Query, Table, Column, MinNumberOfRows)

Description
Identify occurrences in application model where:
- the <Query> query
- queries the <Table> table
- using the <Column> column(s)
- where the <Table> table has more than <MinNumberOfRows>
- but lacks a proper index

The <MinNumberOfRows> value is a measurement parameter. Its default value is: 1000000

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationalSchema
 RelationalTable id="rt1"
 itemUnit id="iu1"

...
 DataAction id="da1" kind="Select|Insert|Update|Delete"
 ...

Reads "iu1"
...

 ...
 ...
...

56 Automated Source Code Resource Sustainability Measure, v1.0

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

DataModel
 RelationalSchema
 RelationalTable id="rt1"
 Index id="i1" implementation="iu1"
 itemUnit id="iu1"
...

What to report
Roles to report:
- the <Query> query
- the <Table> table
- the <Column> column (list)
- the <MinNumberOfRows> value

8.38 ASCQM Release Memory after Use with Correct Reference

Descriptor
ASCQM Release Memory after Use with Correct Reference(MemoryAllocationStatement,
AllocationReference, MemoryReleaseStatement, ReleaseReference)

Description
Identify occurrences in the application model where
- the memory is allocated via the <MemoryAllocationStatement> allocation statement
- using the <AllocationReference> reference
- then released via <MemoryReleaseStatement> release statement
- using the mismatched <ReleaseReference> reference

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType ...
 id="dt1"
PointerType
 id="pt1"
ItemUnit
 id="iu1"
 type="dt1"
 ...
StorableUnit
 id="su1"
 type="pt1"
 ...
ActionElement
 id="ae1"
 kind="New"
Creates "dt1"
Writes "su1"
 ...

ControlElement
 id="ce2"
 name="delete[]|free|..."
 ...
ActionElement
 id="ae2"
 kind="Call"
Addresses "su1"
Calls "ce2"

Automated Source Code Resource Sustainability Measure, v1.0 57

or

ControlElement
 id="ce1"
 name="malloc|calloc|
 ...
|New|NewArray|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|...
 id="dt1"
PointerType
 id="pt1"
ItemUnit
 Id=”iu1"
 type="dt1"
 ...
StorableUnit
 id="su1"
 type="pt1"
 ...
ActionElement
 id="ae1"
 kind="Call"
Calls "ce1"
Writes "su1" ...
StorableUnit
 id="su2"
 type="pt1"
 ...
ActionElement
 id="ae2"
 type="add"
Reads "su1"
...
Writes "su2" ...
ControlElement
 id="ce2"
name="free|...
|delete|delete[]|..."
...
ActionElement
 id="ae3"
 kind="Call"
Addresses "su2"
Calls "ce2"

What to report
Roles to report are
- the <MemoryAllocationStatement> allocation statement
- the <AllocationReference> reference - the <MemoryReleaseStatement> release statement
- the <ReleaseReference> reference

58 Automated Source Code Resource Sustainability Measure, v1.0

This page intentionally left blank.

Automated Source Code Resource Sustainability Measure, v1.0 59

9 Calculation of ASCRSM and Functional Density
Measures

9.1 Calculation of the Base Measures (Normative)
After reviewing several alternatives, a count of total violations of quality rules was selected as the best option
for a base measure for Automated Source Code Quality Measure (ASCRSM). Software quality characteristic
measures have frequently been scored at the software component level and then aggregated to develop an
overall score for an application. However, scoring at the software component level was rejected because
many violations of quality rules cannot be isolated to a single component, but rather involve interactions
among several components. Therefore, the ASCRSM score is computed as the sum of its quality measure
elements counted across an entire application.

The calculation of an ASCRSM score progresses as follows:

• One or more Detection Pattern Scores are calculated for each weakness as the total occurrences of
each Detection Pattern associated with the weakness.

• Weakness Scores are calculated for each weakness as the total sum of Detection Pattern Scores
associated with the Weakness.

• ASCRSM is calculated as the sum of its Weakness Scores.

That is,

9.2 Functional Destiny of Weanessess (Informative)
In order to compare quality results among different applications, the Automated Source Code Resource
Sustainability Measures can be normalized by size to create a density measure. There are several size
measures with which the density of quality violations can be normalized, such as lines of code and Function
Points. These size measures, if properly standardized, can be used for creating a density measure for use in
benchmarking the resource sustainability of applications. OMG’s Automated Function Points (AFP)
measure (ISO, 2019) offers an automatable size measure that, as an OMG Supported Specification, is
standardized.

AFP was adapted from the International Function Point User Group’s (IFPUG) counting guidelines and is
commercially supported.

60 Automated Source Code Resource Sustainability Measure, v1.0

Although other size measures can be used to evaluate the density of security violations, the following
density measure for quality violations is derived from OMG supported specifications for Automated
Function Points and the Automated Source Code Resource Sustainability Measure. Thus, the functional
density of Resource Sustainability weaknesses is a simple division expressed as follows.

ASCRSM-density = ASCRSM / AFP

Automated Source Code Resource Sustainability Measure, v1.0 61

10 Alternative Weighted Measures and Uses
(Informative)

There are many additional weighting schemes that can be applied to the Automated Source Code Resource
Sustainability Measure or to the quality measure elements that composing it. Table 6 presents several weighted
measure candidates and their potential uses. However, these weighting schemes are not derived from any existing
standards and are therefore not normative.

 Table 3: Informative Weighting Schemes for Security Measurement

Weighting scheme Potential uses

Weight each Total Detection Pattern score by the
risk it presents

Identifying training needs for avoiding patterns
underlying risky weaknesses

Weight each weakness by its effort to fix Measuring cost of ownership, estimating future
corrective maintenance effort and costs

Weight each module or application component
by its density of resource sustainability
weaknesses

Prioritizing modules or application components for
corrective maintenance or replacement

62 Automated Source Code Resource Sustainability Measure, v1.0

This page intentionally left blank.

Automated Source Code Resource Sustainability Measure, v1.0 63

11 References (Informative)

Common Weakness Enumeration. http://cwe.mitre.org . Bedford, MA: MITRE Corporation.

Consortium for IT Software Quality (2010). http://www.it-cisq.org . Milford, MA: Object Management
Group, Consortium for IT Software Quality (CISQ).

Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the IEEE, 68
(9), 1103-1119.

International Organization for Standards (2007). ISO/IEC 25020 Systems and software engineering: Systems
and software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and software
product quality – Measurement reference model and guide. Geneva, Switzerland.

International Organization for Standards (2011). ISO/IEC 25010:2011 Systems and software engineering –
System and software product Quality Requirements and Evaluation (SQuaRE) – System and software
quality models. Geneva, Switzerland.

International Organization for Standards (2012). ISO/IEC 25023 Systems and software engineering: Systems
and software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and software
product quality. Geneva, Switzerland.

International Organization for Standards (2012). ISO/IEC TR 9126-3:2003, Software engineering — Product
quality — Part 3: Internal metrics. Geneva, Switzerland.

International Organization for Standards (2019). ISO/IEC 19515:2019, Automated Function Points.
Information technology -- Object Management Group Automated Function Points (AFP), 1.0. Geneva,
Switzerland. Also, Object Management Group (2014). Automated Function Points. formal 2014-01-03
http://www.omg.org/spec/AFP/ . Needham, MA: Object Management Group.

International Telecommunications Union (2012). ITU-T X.1524 – Series X: Data Networks, Open
System Communications and Security – Cybersecurity information exchange – Vulnerability/state
exchange – Common weakness enumeration. Geneva:, Switzerland.

Martin, R.A. & Barnum, S. (2006). Status update: The Common Weakness Enumeration. NIST Static
Analysis Summit, Gaithersburg, MD, June 29, 2006.

http://cwe.mitre.org/
http://www.it-cisq.org/
http://www.omg.org/spec/AFP/

64 Automated Source Code Resource Sustainability Measure, v1.0

This page intentionally left blank.

Automated Source Code Resource Sustainability Measure, v1.0 65

Annex A
Consortium for IT Software Quality (CISQ)

(informative)

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for automated
measures of software quality characteristics taken on source code. These measures were designed to provide
international standards for measuring software structural quality that can be used by IT organizations, IT
service providers, and software vendors in contracting, developing, testing, accepting, and deploying IT
software applications. Executives from the member companies that joined CISQ prioritized the quality
characteristics of Reliability, Security, Performance Efficiency, and Maintainability to be developed as
measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with the
ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems. In
order to maintain consistency with the quality model presented in ISO/IEC 25010, software quality
characteristics are defined for the purpose of this specification as attributes that can be measured from the
static properties of software and can be related to the dynamic properties of a computer system as affected by
its software. However, the 25000 series, and in particular ISO/IEC 25023 which elaborates quality
characteristic measures, does not define these measures at the source code level. Thus, this and other CISQ
quality characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of software
measurement, one that is rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and
Bangalore, India to set strategy and direction for the consortium. In these forums four quality
characteristics were selected as the most important targets for automation—reliability, security,
performance efficiency, and maintainability. These attributes cover four of the eight quality characteristics
described in ISO/IEC 25010.

The Consortium for IT Software Quality (CISQ), a consortium managed by OMG, was formed in 2010 to
create international standards for automating measures of size and structural quality characteristics from
source code. These measures are intended for use by IT organizations, IT service providers, and software
vendors in contracting, developing, testing, accepting, and deploying software systems. Executives from the
member companies that joined CISQ prioritized Reliability, Security, Performance Efficiency, and
Maintainability as the initial structural quality measures to be specified.

An international team of experts drawn from CISQ’s 24 original companies formed into working groups to
define CISQ measures. Weaknesses that had a high probability of causing reliability, security, performance
efficiency, or maintainability problems were selected for inclusion in the four measures. The original CISQ
members included IT departments in Fortune 200 companies, system integrators/ outsourcers, and vendors
that provide quality-related products and services to the IT market. The experts met several times per year
for two years in the US, France, and India to develop a broad list of candidate weaknesses. This list was
pared down to a set of weaknesses they believed had to be remediated to avoid serious operational or cost
problems. These 86 weaknesses became the foundation of the original specifications of the automated
source code measures for Reliability, Security, Performance Efficiency, and Maintainability.

66 Automated Source Code Resource Sustainability Measure, v1.0

This page intentionally left blank.

Automated Source Code Resource Sustainability Measure, v1.0 67

Annex B
Common Weakness Enumeration (CWE)

(informative)

The Common Weakness Enumeration (CWE) repository (http://cwe.mitre.org/) maintained by MITRE
Corporation is a collection of over 800 weaknesses in software architecture and source code that malicious
actors have used to gain unauthorized entry into systems or to cause malicious actions. The CWE is a widely
used industry source (http://cwe.mitre.org/community/citations.html) that provides a foundation for the ITU-T
X.1524 and ISO/IEC standard, in addition to 2 ISO/IEC technical reports:

• SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY
Cybersecurity information exchange – Vulnerability/state exchange - Common weakness enumeration
(CWE)

• ISO/IEC 29147:2014 Information Technology -- Security Techniques -- Vulnerability Disclosure"

• ISO/IEC TR 24772:2013 Information technology -- Programming languages -- Guidance to
avoiding vulnerabilities in programming languages through language selection and use

• ISO/IEC Technical Report is ISO/IEC TR 20004:2012 Information Technology -- Security
Techniques -- Refining Software Vulnerability Analysis under ISO/IEC 15408 and ISO/IEC
18045

The CWE/SANS Institute Top 25 Most Dangerous Software Errors is a list of the 25 most widespread and
frequently exploited security weaknesses in the CWE repository. The previous version of the CISQ
Automated Source Code Security Measure (ASCSM) was based on 22 of the CWE/SANS Top 25 that could
be detected and counted in source code. In this revision, the number of security weaknesses is being expanded
beyond the CWE/SANS Top 25 since there are other weaknesses severe enough to be incorporated in the
CISQ measure. In addition, many CWEs also cause reliability problems and are therefore included in the
CISQ reliability measure. Wherever a CWE is included in any of the 4 CISQ structural quality measures, its
CWE identifier will be noted.

Since the CWE is recognized as the primary industry repository of security weaknesses, it is supported by the
majority of vendors providing tools and technology in the software security domain (http://cwe.mitre.or
 g/compatible/compatible.html), such as Coverity, HP Fortify, Klockwork, IBM, CAST, Veracode, and
others. These vendors already have capabilities for detecting many of the CWEs. Industry experts who
developed the CWE purposely worded the CWEs to be language and application agnostic in order to allow
vendors to develop detectors specific to a wide range of languages and application types beyond the scope
that could be covered in the CWE. Since some of the CWEs may not be relevant in some languages, the
reduced opportunity for anti-patterns in those cases will be reflected in the scores.

http://cwe.mitre.org/)
http://cwe.mitre.org/community/citations.html)

	1 Scope
	1.1 Purpose
	1.2 Overview of Structural Quality Measurement in Software

	2 Conformance
	3 References
	4 Terms and definitions
	5 Symbols
	6 Additional Information (Informative)
	6.1 Software Product Inputs
	6.2 Automated Source Code Quality Measure Elements
	6.3 Automated Source Code Resource Sustainability Measure Element Descriptions
	6.4 Introduction to the Specification of Quality Measure Elements
	6.5 Knowledge Discovery Metamodel (KDM)
	6.6 Software Patterns Metamodel Standard (SPMS)
	6.7 Specification of Detection Patterns
	6.8 Reading guide

	7 ASCRSM Weakness Specifications (Normative)
	7.1 CWE-248 Uncaught Exception
	Parent weaknesses
	Detection Patterns

	7.2 CWE-252 Unchecked Return Value
	Detection Patterns
	ASCQM Check Return Value of Resource Operations Immediately
	ASCQM Handle Return Value of Must Check Operations

	7.3 CWE-390 Detection of Error Condition Without Action
	Reference
	Roles
	Detection Patterns

	7.4 CWE-391 Unchecked Error Condition
	Reference
	Roles
	Parent weaknesses
	Detection Patterns

	7.5 CWE-392 Missing Report of Error Condition
	Parent weaknesses
	Detection Patterns

	7.6 CWE-394 Unexpected Status Code or Return Value
	Detection Patterns

	7.7 CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
	Parent weaknesses
	Detection Patterns

	7.8 CWE-404 Improper Resource Shutdown or Release
	Contributing weaknesses
	Detection Patterns

	7.9 CWE-424 Improper Protection of Alternate Path
	7.10 CWE-459 Incomplete Cleanup
	Reference
	Roles
	Detection Patterns

	7.11 CWE-703 Improper Check or Handling of Exceptional Conditions
	Contributing weaknesses
	Detection Patterns

	7.12 CWE-762 Mismatched Memory Management Routines
	Roles
	Parent weaknesses
	Detection Patterns
	7.13 CWE-772 Missing Release of Resource after Effective Lifetime
	Reference
	Roles
	Parent weaknesses
	Detection Patterns

	7.14 CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime
	Parent weaknesses
	Detection Patterns

	7.15 CWE-833 Deadlock
	Detection Patterns

	7.16 CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')
	Detection Patterns

	7.17 CWE-1043 Storable and Member Data Element Excessive Number of Aggregated Storable and Member Data Elements
	Usage name
	Excessively large data element
	Detection Patterns

	7.18 CWE-1046 Creation of Immutable Text Using String Concatenation
	Roles
	Detection Patterns

	7.19 CWE-1049 Excessive Data Query Operations in a Large Data Table
	Usage name
	Detection Patterns

	7.20 CWE-1050 Excessive Platform Resource Consumption within a Loop
	Usage name
	Detection Patterns

	7.21 CWE-1051 Initialization with Hard-Coded Network Resource Configuration Data
	Usage name
	Detection Patterns

	7.22 CWE-1057 Data Access Operations Outside of Designated Data Manager Component
	Usage name
	Detection Patterns

	7.23 CWE-1060 Excessive Number of Inefficient Server-Side Data Accesses
	Usage name
	Detection Patterns

	7.24 CWE-1067 Excessive Execution of Sequential Searches of Data Resource
	Roles
	Detection Patterns

	7.25 CWE-1069 Empty Exception Block
	Detection Patterns

	7.26 CWE-1072 Data Resource Access without use of Connection Pooling
	Usage name
	Detection Patterns

	7.27 CWE-1073 Non-SQL Invokable Control Element with Excessive Number of Data Resource Access
	Usage name
	Detection Patterns

	7.28 CWE-1083 Data Access from Outside Designated Data Manager Component
	Usage name
	Detection Patterns

	7.29 CWE-1088 Synchronous Access of Remote Resource without Timeout
	Usage name
	Detection Patterns

	7.30 CWE-1089 Large Data Table with Excessive Number of Indices
	Usage name
	Detection Patterns

	7.31 CWE-1091 Use of Object without Invoking Destructor Method
	Detection Patterns

	7.32 CWE-1094 Excessive Index Range for a Data Resource
	Detection Patterns

	7.33 CWE-1235 Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations
	Detection Patterns

	7.34 ASCRSM Detection Patterns

	8 ASCRSM Weakness Detection Patterns (Normative)
	8.1 ASCQM Ban Incorrect Numeric Conversion of Return Value
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.2 ASCQM Handle Return Value of Must Check Operations
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.3 ASCQM Handle Return Value of Resource Operations
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.4 ASCQM Check Return Value of Resource Operations Immediately
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.5 ASCQM Ban Useless Handling of Exceptions
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.6 ASCQM Ban Comma Operator from Delete Statement
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.7 ASCQM Release in Destructor Memory Allocated in Constructor
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.8 ASCQM Release Memory after Use with Correct Operation
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.9 ASCQM Implement Required Operations for Manual Resource Management
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.10 ASCQM Release Platform Resource after Use
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.11 ASCQM Release Memory After Use
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.12 ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.13 ASCQM Implement Virtual Destructor for Parent Classes
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.14 ASCQM Release File Resource after Use in Operation
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.15 ASCQM Implement Virtual Destructor for Classes with Virtual Methods
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.16 ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.17 ASCQM Ban Hard-Coded Literals used to Connect to Resource
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.18 ASCQM Ban Unintended Paths
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.19 ASCQM Ban While TRUE Loop Without Path To Break
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.20 ASCQM Ban Unmodified Loop Variable Within Loop
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.21 ASCQM Release File Resource after Use in Class
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.22 ASCQM Catch Exceptions
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.23 ASCQM Ban Empty Exception Block
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.24 ASCQM Ban Incompatible Lock Acquisition Sequences
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.25 ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.26 ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.27 ASCQM Ban Excessive Size of Index on Columns of Large Tables
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.28 ASCQM Ban Excessive Number of Index on Columns of Large Tables
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.29 ASCQM Ban Excessive Complexity of Data Resource Access
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.30 ASCQM Ban Expensive Operations in Loops
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.31 ASCQM Limit Number of Aggregated Non-Primitive Data Types
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.32 ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.33 ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code
	Descriptor
	Description
	KDM outline illustration
	What to report

	8.34 ASCQM Ban Incremental Creation of Immutable Data
	Descriptor
	Description
	KDM outline illustration
	What to report
	Roles to report are:

	8.35 ASCQM Ban Unboxing in Loops
	Descriptor
	Ban Unboxing in Loops(Unboxing, Loop)
	Description
	KDM outline illustration
	What to report

	8.36 ASCQM Ban Autoboxing in Loops
	Descriptor
	ASCQM Ban Autoboxing in Loops(Autoboxing, Loop)
	Description
	KDM outline illustration
	What to report

	8.37 ASCQM Implement Index Required by Query on Large Tables
	Descriptor
	Description
	KDM outline illustration
	itemUnit id="iu1"
	...
	What to report

	8.38 ASCQM Release Memory after Use with Correct Reference
	Descriptor
	Description
	KDM outline illustration
	What to report

	9 Calculation of ASCRSM and Functional Density Measures
	9.1 Calculation of the Base Measures (Normative)
	9.2 Functional Destiny of Weanessess (Informative)

	10 Alternative Weighted Measures and Uses (Informative)
	11 References (Informative)
	Annex A Consortium for IT Software Quality (CISQ) (informative)
	Annex B Common Weakness Enumeration (CWE)

