
Date: January 2016

Automated Source Code Maintainability MeasureTM

(ASCMMTM)

V1.0

__

OMG Document Number: formal/2016-01-01

Standard document URL: http://www.omg.org/spec/ASCMM/1.0

Normative Machine Consumable File(s):

http://www.omg.org/spec/ ASCMM /201 41211/AutomatedSourceCodeMaintainabilityMeasure
SPMS.xmi

http://www.omg.org/spec/ ASCPEM/20141211/AutomatedSourceCodeMaintainabilityMeasure
SMM.smm

O B J E C T M A N A G E M E N T G R O U P

http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCPEM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCPEM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure

Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Table of Contents

1 Scope..11
1.1 Overview...11

1.2 CISQ Background..11

1.3 Overview of Software Quality Characteristic Measurement...11

1.4 Development of the Automated Source Code Maintainability Measure...12

1.5 Structure of the Automated Source Code Maintainability Measure..12

1.6 Using and Improving This Measure..14

2 Conformance..15
2.1 Overview...15

3 References..15
3.1 Normative References...15

4 Terms and Definitions..16

5 Symbols and Abbreviated Terms...17

6 Additional Information (Informative)..17
6.1 Software Product Inputs..17

6.2 Input Values for Thresholds in Measure Elements..18

6.3 Automated Source Code Maintainability Measure Elements..19

7 SPMS Representation of the Quality Measure Elements (Normative).....................23
7.1 Introduction...23

SPMS...23

KDM..24

Reading guide..25

7.2 Category definition of CISQ Maintainability..26

7.3 Pattern definition of ASCMM-MNT-1: Control Flow Transfer Control Element outside Switch Block.................26

Pattern Category...26

Pattern Sections..26

Objective..26

Consequence..26

Measure Element...26

Description...26

Descriptor...26

Automated Source Code Maintainability Measure, v1.0 1

Variable input...27

Comment..27

List of Roles..27

7.4 Pattern definition of ASCMM-MNT-2: Class Element Excessive Inheritance of Class Elements with Concrete
 Implementation..27

Pattern Category...27

Pattern Sections..27

Objective..27

Consequence..27

Measure Element...27

Description...27

Descriptor...27

Variable input...28

Comment..28

List of Roles..28

7.5 Pattern definition of ASCMM-MNT-3: Storable and Member Data Element Initialization with
 Hard-Coded Literals..28

Pattern Category...28

Pattern Sections..28

Objective..28

Consequence..28

Measure Element...28

Description...28

Descriptor...28

Variable input...28

Comment..20

List of Roles..29

7.6 Pattern definition of ASCMM-MNT-4: Callable and Method Control Element Number of Outward Calls............29

Pattern Category...29

Pattern Sections..29

Objective..29

Consequence..29

Measure Element...29

Description...29

Descriptor...39

Variable input...30

Comment..30

List of Roles..30

2 Automated Source Code Maintainability Measure, v1.0

7.7 Pattern definition of ASCMM-MNT-5: Loop Value Update within the Loop..30

Pattern Category...30

Pattern Sections..30

Objective..30

Consequence..30

Measure Element...30

Description...30

Descriptor...30

Variable input...31

Comment..31

List of Roles..31

7.8 Pattern definition of ASCMM-MNT-6: Commented-out Code Element Excessive Volume....................................31

Pattern Category...31

Pattern Sections..31

Objective..31

Consequence..31

Measure Element...31

Description...31

Descriptor...31

Variable input...32

Comment..32

List of Roles..32

7.9 Pattern definition of ASCMM-MNT-7: Inter-Module Dependency Cycles..32

Pattern Category...32

Pattern Sections..32

Objective..32

Consequence..32

Measure Element...32

Description...32

Descriptor...33

Variable input...33

Comment..33

List of Roles..33

7.10 Pattern definition of ASCMM-MNT-8: Source Element Excessive Size..33

Pattern Category...33

Pattern Sections..33

Objective..33

Automated Source Code Maintainability Measure, v1.0 3

Consequence..33

Measure Element...33

Description...33

Descriptor...33

Variable input...34

Comment..34

List of Roles..34

7.11 Pattern definition of ASCMM-MNT-9: Horizontal Layer Excessive Number..34

Pattern Category...34

Pattern Sections..34

Objective..34

Consequence..34

Measure Element...34

Description...34

Descriptor...34

Variable input...35

Comment..35

List of Roles..35

7.12 Pattern definition of ASCMM-MNT-10: Named Callable and Method Control Element Multi-Layer Span.........35

Pattern Category...35

Pattern Sections..35

Objective..35

Consequence..35

Measure Element...35

Description...35

Descriptor...36

Variable input...36

Comment..36

List of Roles..36

7.13 Pattern definition of ASCMM-MNT-11: Callable and Method Control Element Excessive Cyclomatic
 Complexity Value..36

Pattern Category...36

Pattern Sections..36

Objective..36

Consequence..36

Measure Element...36

Description...36

Descriptor...37

4 Automated Source Code Maintainability Measure, v1.0

Variable input...37

Comment..37

List of Roles..37

7.14 Pattern definition of ASCMM-MNT-12: Named Callable and Method Control Element with
 Layer-skipping Call...37

Pattern Category...37

Pattern Sections..37

Objective..37

Consequence..37

Measure Element...37

Description...38

Descriptor...38

Variable input...38

Comment..38

List of Roles..38

7.15 Pattern definition of ASCMM-MNT-13: Callable and Method Control Element Excessive Number of
 Parameters..38

Pattern Category...38

Pattern Sections..38

Objective..38

Consequence..38

Measure Element...39

Description...39

Descriptor...39

Variable input...39

Comment..39

List of Roles..39

7.16 Pattern definition of ASCMM-MNT-14: Callable and Method Control Element Excessive Number of
 Control Elements involving Data Element from Data Manager or File Resource...39

Pattern Category...39

Pattern Sections..39

Objective..39

Consequence..40

Measure Element...40

Description...40

Descriptor...40

Variable input...40

Comment..40

Automated Source Code Maintainability Measure, v1.0 5

List of Roles..40

7.17 Pattern definition of ASCMM-MNT-15: Public Member Element..40

Pattern Category...40

Pattern Sections..40

Objective..40

Consequence..41

Measure Element...41

Description...41

Descriptor...41

Variable input...41

Comment..41

List of Roles..41

7.18 Pattern definition of ASCMM-MNT-16: Method Control Element Usage of Member Element from
 other Class Element..41

Pattern Category...41

Pattern Sections..41

Objective..41

Consequence..41

Measure Element...42

Description...42

Descriptor...42

Variable input...42

Comment..42

List of Roles..42

7.19 Pattern definition of ASCMM-MNT-17: Class Element Excessive Inheritance Level..42

Pattern Category...42

Pattern Sections..42

Objective..42

Consequence..42

Measure Element...43

Description...43

Descriptor...43

Variable input...43

Comment..43

List of Roles..43

7.20 Pattern definition of ASCMM-MNT-18: Class Element Excessive Number of Children.....................................43

Pattern Category...43

Pattern Sections..43

6 Automated Source Code Maintainability Measure, v1.0

Objective..43

Consequence..44

Measure Element...44

Description...44

Descriptor...44

Variable input...44

Comment..44

List of Roles..44

7.21 Pattern definition of ASCMM-MNT-19: Named Callable and Method Control Element Excessive Similarity. . .44

Pattern Category...44

Pattern Sections..44

Objective..44

Consequence..45

Measure Element...45

Description...45

Descriptor...45

Variable input...45

Comment..45

List of Roles..45

7.22 Pattern definition of ASCMM-MNT-20: Unreachable Named Callable or Method Control Element...................45

Pattern Category...45

Pattern Sections..45

Objective..45

Consequence..46

Measure Element...46

Description...46

Descriptor...46

Variable input...46

Comment..46

List of Roles..46

8 Calculation of the Automated Source Code Maintainability Measure and
 Functional Density (Normative)...47

8.1 Calculation of the Base Measure...47

8.2 Functional Density of Maintainability Violations...47

9 Alternative Weighted Measures and Uses (Informative)..49
9.1 Additional Derived Measures..49

10 References (Informative)..51

Automated Source Code Maintainability Measure, v1.0 7

Annex A: CISQ...53

8 Automated Source Code Maintainability Measure, v1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

Automated Source Code Maintainability Measure, v1.0 9

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text, table text, bullets

Helvetica/Arial – 9 or 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier new/Courier – 10 pt. Bold: Programming Languages

Helvetica/Arial – 10 pt.: Exceptions

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm

10 Automated Source Code Maintainability Measure, v1.0

1 Scope

1.1 Overview
The purpose of this specification is to establish a standard measure of Maintainability based on detecting violations of
good architectural and coding practices that could result in unreliable operation such as outages, data corruption, and
lengthy recovery from system failures. Establishing a standard for this measure is important because such measures are
being used in outsourcing and system development contracts without having an approved international standard to
reference. They are also critical to other software-intensive OMG initiatives such as The Internet of Things. The
Consortium for IT Software Quality (CISQ) was formed as a special interest group of OMG to create specifications for
automating standard measures of software quality attributes and submit them to OMG for approval.

1.2 CISQ Background
This specification defines a method for automating the measurement of Maintainability from violations of architectural
and coding practice that affect an application’s understandability and ease of change. The violations included in the
CISQ measure were selected from a large set of candidate violations related to Maintainability issues. The final set of
violations were chosen through a voting process among CISQ member organizations that resulted in a limited set of
violations that member organizations believed were sufficiently severe that they had to be remediated. This process will
be described more fully in a subsequent sub clause.

1.3 Overview of Software Quality Characteristic Measurement

Measurement of the internal or structural quality aspects of software has a long history in software engineering (Curtis,
1980). Software quality characteristics are increasingly being incorporated into development and outsourcing contracts
as the equivalent of service level agreements. That is, target thresholds based on quality characteristic measures are being
set in contracts for delivered software. Currently there are no standards for most of the software quality characteristic
measures being used in contracts. ISO/IEC 25023 purports to address these measures, but only provides measures of
external behavior and does not define measures that can be developed from source code during development.
Consequently, providers are subject to different interpretations and calculations of common quality characteristics in
each contract. This specification addresses one aspect of this problem by providing a specification for measuring one
quality characteristic, Maintainability, from the source code. This specification is one of four specifying source code
level measures of quality characteristics. The other three specify quality characteristic measures for Security,
Performance Efficiency, and Maintainability.

Violations of Good Architectural and Coding Practice—The most recent advance in measuring the structural quality of
software is based on the analysis and measurement of violations of good architectural and coding practice that can be
detected by statically analyzing the source code. The CWE/SANS 25 and OWASP Top Ten lists of security weaknesses
are examples of this approach. These lists are drawn from the Common Weakness Enumeration (CWE) repository
maintained by MITRE Corporation. CWE contains descriptions of over 800 weaknesses that represent violations of good
architectural and coding practice in software that can be exploited to gain unauthorized entry into a system. The Software
Assurance community has been a leader in this area of measurement by championing the detection of code weaknesses
as a way of improving one aspect of software quality—software security.

Unfortunately there are no equivalent repositories of weaknesses for Reliability, Performance Efficiency, or
Maintainability. Knowledge of these weaknesses is spread across software engineering textbooks, expert blogs, and
information sharing sites such as github. The CISQ measure for Maintainability can fill the void for a consensus body of
knowledge about the most egregious Maintainability problems that should be detected and remediated in source code.
Currently, no standards or guidelines have been developed for calculating component or application-level Maintainability
measures that aggregate weaknesses detected through static code analysis into application-level Maintainability
measures. CISQ will be providing recommendations for these aggregation and scaling techniques. However, these
techniques are not part of this standard since different measurement objectives are best served by different scoring
techniques.

Automated Source Code Maintainability Measure, v1.0 11

Using violations of good architectural and coding practices in software quality metrics presents several challenges for
establishing baselines. Growth in the number of unique violations to be detected could continually raise the bar for
measuring quality, reducing the validity of baseline comparisons. Further, different vendors will detect different sets of
violations, making comparisons difficult across commercial software quality measurement offerings. One solution to this
problem is to create a stable list of violations that are used for computing a baseline for each quality characteristic. The
Automated Source Code Maintainability Measure was developed by a team of industry experts to form the basis for a
stable baseline measure.

1.4 Development of the Automated Source Code Maintainability
 Measure

The original 24 CISQ member companies provided experts to working groups whose charter was to define CISQ
measures. Violations of good architectural and coding practice that a high probability of causing Maintainability
problems were selected by an international team of experts drawn from the 24 organizations that joined CISQ in 2010.
These organizations included IT departments in Fortune 200 companies, system integrators/outsourcers, and vendors that
provide quality-related products and services to the IT market. The experts met several times per year for two years in
the US, France, and India to develop a broad list of candidate Maintainability weaknesses and then pare it down to a set
they felt had to be remediated to avoid serious operational problems.

The work group began by defining Maintainability issues, quality rules for avoiding these issues, and measures based on
counting violations of these rules. They developed lists of issues and quality rules by drawing information from company
defect logs, their career experience in different environments, and industry sources such as books and blogs. In order to
reduce the work group’s initial list to a critical set of Maintainability violations, work group members individually
evaluated the severity of each violation. High severity violations were judged to be those that must be fixed in a future
release because of their operational risk or cost impact. The work group went through several rounds of eliminating
lower severity violations and re-rating the severity of remaining violations until a final list was established as the quality
measure elements to be incorporated into this specification.

1.5 Structure of the Automated Source Code Maintainability
 Measure

ISO/IEC 25010 defines a quality characteristic as being composed from several quality sub-characteristics. This
framework for software product quality is presented in Figure 1.1 for the eight quality characteristics presented in 25010.
The quality characteristics and their sub-characteristics selected for source code measurement by CISQ are indicated in
blue.

12 Automated Source Code Maintainability Measure, v1.0

Figure 1.1 - Software Quality Characteristics from ISO/IEC 25010 with CISQ focal areas highlighted

ISO/IEC 25023 establishes a framework of software quality characteristic measures wherein each quality sub-
characteristic consists of a collection of quality attributes that can be quantified as quality measure elements. A quality
measure element quantifies a unitary measurable attribute of software, such as the violation of a quality rule. Figure 1.2
presents an example of the ISO/IEC 25023 quality measurement framework using a partial decomposition for the
Automated Source Code Maintainability Measure.

The non-normative portion of this specification begins by listing the Maintainability issues that can plague software
developed with poor architectural and coding practices. Quality rules written as architectural or coding practices are
conventions that avoided the problem described in the Maintainability issue. These quality rules were then transformed
into software quality measure elements by counting violations of these architectural and coding practices and
conventions.

The normative portion of this specification represents each quality measure element developed from a Maintainability
rule using the Structured Patterns Metamodel Standard (SPMS). The code-based elements in these patterns are
represented in the Knowledge Discovery Metamodel (KDM). The calculation of the Automated Source Code
Maintainability Measure from its quality measure elements is then represented in the Structured Metrics Metamodel
(SMM). This calculation is presented as the simple sum of quality measure elements without being adjusted by a
weighting scheme.

Automated Source Code Maintainability Measure, v1.0 13

Figure 1.2 – ISO/IEC 25010 Framework for Software Quality Characteristics Measurement

There are several weighting schemes that can be applied in aggregating violation counts into structural quality measures.
The most effective weighting often depends on the measure’s use such as assessing operational risk or estimating
maintenance costs. The quality measure elements included in this specification were considered to be severe violations
of secure architectural and coding practices that would need to be remediated. Therefore, weightings based on severity
would add little useful information to the measure since the variance among weights would be small. In order to support
benchmarking among applications, this specification includes a measure of the violation density. This measure is created
by dividing the total number of violations detected by a count of Automated Function Points (Object Management
Group, 2014).

1.6 Using and Improving This Measure

The Automated Source Code Maintainability Measure is a correlated measure rather than an absolute measure. That is,
since it does not measure all possible Maintainability-related weaknesses it does not provide an absolute measure of
Maintainability. However, since it includes counts of what industry experts considered high severity Maintainability
weaknesses, it provides a strong indicator of Maintainability that will be highly correlated with the absolute
Maintainability of a software system and with the probability that it can experience outages, data corruption, and related
problems.

Since the impact and frequency of specific violations in the Automated Source Code Maintainability Measure could
change over time, this approach allows specific violations to be included, excluded, amplified, or diminished over time
in order to support the most effective benchmarking, diagnostic, and predictive use. This specification will be adjusted
through controlled OMG specification revision processes to reflect changes in Maintainability engineering while

14 Automated Source Code Maintainability Measure, v1.0

retaining the ability to compare baselines. Vendors of static analysis and measurement technology can compute this
standard baseline measure, as well as their own extended measures that include other Maintainability weaknesses not
included as measure elements in this specification.

2 Conformance

2.1 Overview
Implementations of this specification should be able to demonstrate the following attributes in order to claim
conformance—automated, objective, transparent, and verifiable.

 Automated – The analysis of the source code and the actual counting must be fully automated. The initial inputs
required to prepare the source code for analysis include the source code of the application, the artifacts, and
information needed to configure the application for operation, and any available description of the architectural
layers in the application.

 Objective – After the source code has been prepared for analysis using the information provided as inputs, the
analysis, calculation, and presentation of results must not require further human intervention. The analysis and
calculation must be able to repeatedly produce the same results and outputs on the same body of software.

 Transparent – Implementations that conform to this specification must clearly list all source code (including
versions), non-source code artifacts, and other information used to prepare the source code for submission to the
analysis.

 Verifiable – Compliance with this specification requires that an implementation state the assumptions/heuristics
it used with sufficient detail so that the calculations may be independently verified by third parties. In addition,
all inputs used are required to be clearly described and itemized so that they can be audited by a third party.

3 References

3.1 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of any of these publications do not
apply.

 Structured Patterns Metamodel Standard, formal/2015-10-01

 Knowledge Discovery Metamodel, version 1.3 (KDM), formal/2011-08-04

 Structured Metrics Metamodel, version 1.0 (SMM), formal/2012-01-05

 MOF/XMI Mapping, version 2.4.1 (XMI), formal/2011-08-09

 Automated Function Points (AFP), formal/2014-01-03

 ISO/IEC 25010 Systems and software engineering – System and software product Quality Requirements and
Evaluation (SquaRE) – System and software quality models

Automated Source Code Maintainability Measure, v1.0 15

4 Terms and Definitions

Automated Function Points - a specification for automating the counting of Function Points that mirrors as closely
as possible the counting guidelines of the International Function Point User Group. (OMG, formal 2014-01-03)

Cyclomatic Complexity - A measure of control flow complexity developed by Thomas McCabe based on a graph-
theoretic analysis that reduces the control flow of a computer program to a set of edges, vertices, and their
attributes that can be quantified. (McCabe, 1976)

Internal Software Quality - the degree to which a set of static attributes of a software product satisfy stated and
implied needs for the software product to be used under specified conditions. This will be referred to as
software structural quality, or simply structural quality in this specification. (ISO/IEC 25010)

Maintainability – degree of effectiveness or efficiency with which a product or system can be modified by the intended
maintainers. (ISO/IEC 25010)

Quality Measure Element - a measure defined in terms of a software quality attribute and the measurement method
for quantifying it, including optionally the transformation by a mathematical function. (ISO/IEC 25010)

Software Product - a set of computer programs, procedures, and possibly associated documentation and data.
 (ISO/IEC 25010)

Software Maintainability – degree of effectiveness or efficiency with which a software product or system can be
modified by the intended maintainers. (ISO/IEC 25010)

Software Maintainability Measure Element – a measure defined in terms of a quality attribute of software that
affects its maintainability and the measurement method for quantifying it, including optionally the transformation by
a mathematical function. (adapted from ISO/IEC 25023)

Software Product Quality Model – a model that categorizes product quality properties into eight characteristics
(functional suitability, reliability, performance efficiency, usability, security, compatibility, maintainability, and
portability. Each characteristic is composed of a set of related sub-characteristics. (ISO/IEC 25010)

Software Quality - degree to which a software product satisfies stated and implied needs when used under specified
conditions. (ISO/IEC 25010)

Software Quality Attribute - an inherent property or characteristic of software that can be distinguished
quantitatively or qualitatively by human or automated means. (derived from ISO/IEC 25010)

Software Quality Characteristic - a category of software quality attributes that bears on software quality. (ISO/IEC
25010)

Software Quality Characteristic Measure - a software quality measure derived from measuring the attributes
related to a specific software quality characteristic.

16 Automated Source Code Maintainability Measure, v1.0

Software Quality Issue - architectural or coding practices that are known to cause problems in software development,
maintenance, or operations and for which software quality rules can be defined that help avoid problems created
by the issue.

Software Quality Measure - a measure that is defined as a measurement function of two or more values of software
quality measure elements. (ISO/IEC 25010)

Software Quality Measurement - (verb) a set of operations having the object of determining a value of a software
quality measure. (ISO/IEC 25010)

Software Quality Model - a defined set of software characteristics, and of relationships between them, which provides
a framework for specifying software quality requirements and evaluating the quality of a software product. (derived
from ISO/IEC 25010)

Software Quality Property - measurable component of software quality. (derived from ISO/IEC 25010)

Software Quality Rule - an architectural or coding practice or convention that represents good software engineering
practice and avoids problems in software development, maintenance, or operations. Violations of these quality
rules produces software anti-patterns.

Software Quality Sub-characteristic - a sub-category of a software quality characteristic to which software quality
attributes and their software quality measure elements are conceptually related. (derived from ISO/IEC 25010)

Structural Quality - the degree to which a set of static attributes of a software product satisfy stated and implied needs
for the software product to be used under specified conditions—a component of software quality. This concept
is referred to as internal software quality in ISO/IEC 25010.

Violation - a pattern or structure in the code that is inconsistent with good architectural and coding practices and can
lead to problems in operation or maintenance.

5 Symbols and Abbreviated Terms

 CISQ – Consortium for IT Software Quality

 KDM – Knowledge Discovery Metamodel

 SPMS – Structured Patterns Metamodel Standard

 SMM – Structured Metrics Metamodel

6 Additional Information (Informative)

6.1 Software Product Inputs
The following inputs are needed by static code analyzers in order to interpret violations of the software quality rules that
would be included in individual software quality measure elements.

Automated Source Code Maintainability Measure, v1.0 17

 The entire source code for the application being analyzed

 All materials and information required to prepare the application for production

 A description of the architecture and layer boundaries of the application, including an assignment of modules to
layers

Static code analyzers will also need a list of the violations that constitute each quality element in the CISQ Automated
Source Code Maintainability Measure.

6.2 Input Values for Thresholds in Measure Elements

Several of the weaknesses in the Automated Source Code Maintainability measure detect violations of good architectural
or coding practice based on threshold values for a construct being exceeded. Table 6.1 lists the default threshold value
used in specifying this measure. In using this measure, threshold values can be adjusted to different levels. However,
when the threshold values are adjusted the results cannot be compared or benchmarked to data from other analyses that
used the default values. In such cases it may be good to compute values for both the default and adjusted values.

Table 6.1 – Input Values for Thresholds in Measure Elements

KDM Element in a Measure Element Threshold Value for a Measure Element

<ArchitectureModel> defining the application's
architectural blueprint

<NumberOfHorizontalLayerThresholdMinimal
Value> minimal value

<NumberOfHorizontalLayerThresholdMaximal
Value> maximal value

The default value for
<NumberOfHorizontalLayerThresholdMinimalValue> is 4.

The default value for
<NumberOfHorizontalLayerThresholdMaximalValue> is 8.

<NumberOfInheritanceLevelsThresholdValue>
maximum value of number of parent class units

The default value for
<NumberOfInheritanceLevelsThresholdValue> is 7.

<NumberOfChildrenThresholdValue> maximum
value of number of child classes

The default value for <NumberOfChildrenThresholdValue> is
10.

<NumberOfConcreteClassInheritancesThreshold
Value> maximum value of number of inheritance of
concrete classes

Default value for <NumberOfConcreteClassInheritances
ThresholdValue> is 1.

<NumberOfOutwardReferencesThresholdValue>
maximum value of number of references to other
objects

Default value for
<NumberOfOutwardReferencesThresholdValue> threshold
value is 5.

<PercentageOfCommentedOutInstructions
ThresholdValue> maximum value of percentage of
instructions that are in comments

Default value for
<PercentageOfCommentedOutInstructionsThresholdValue>
threshold value is 2%.

<NumberOfLinesOfCodeThresholdValue> maximum
value of number of lines of code

The default value for
<NumberOfLinesOfCodeThresholdValue> is 1000.

<CyclomaticComplexityThresholdValue> maximum
value of distinct path through the control element

Default value for <CyclomaticComplexityThreshold> is 20.

18 Automated Source Code Maintainability Measure, v1.0

<NumberOfDataOperationsThresholdValue>
maximum value of data operation in control element

Default value for
<NumberOfDataOperationsThresholdValue> is 7.

<ParameterNumberThreshold> maximum value of
parameters in signature

Default value for the <ParameterNumberThreshold> is 7.

6.3 Automated Source Code Maintainability Measure Elements

The violations of good architectural and coding practice incorporated into the Automated Source Code Maintainability
Measure are listed and describe in Table 6.2. The pattern label appears in the first column. The consequences that can be
caused by the pattern are listed in column 2. A coding or architectural rule that helps avoid the pattern are listed as
objectives in column 3. Finally, a textual description of the pattern that constitutes the attribute underlying the measure
element is provided in column 4.

Table 6.2 - Maintainability Patterns, Consequences, Objectives, and Maintainability Measure Elements

Maintainability Pattern Consequence Objective Measure Element

ASCMM-MNT-1:
Control Flow Transfer
Control Element outside
Switch Block

Software that does not
follow the principles of
structured
programming
degrades
comprehensibility

Avoid the
unconditional transfer
of control flow outside
of switch structures

Number of instances where an
unconditional transfer of control is
located outside the branching
based on the value of a storable
element

ASCMM-MNT-2:
Class Element Excessive
Inheritance of Class
Elements with Concrete
Implementation

Software that does not
follow the principles of
reuse requires more
maintenance effort in
order to propagate
changes to all
instances of duplicated
code

Avoid the multiple
inheritance of classes
with concrete
implementations

Number of instances where the
number of inheritances of concrete
classes of a class element is
considered too large, based on
exceeding a threshold value.
Default value for the number of
concrete class inheritances is 1.

ASCMM-MNT-3:
Storable and Member Data
Element Initialization with
Hard-Coded Literals

Software featuring
hard-coded pieces of
information within its
own code reduces
adaptability

Avoid hard-coded non-
trivial values in the
code

Number of instances where a literal
value element is used to initialize a
storable data element or member
data element via a 'Write' action;
exceptions are simple integers and
static constant storable or member
data elements.

ASCMM-MNT-4:
Callable and Method Control
Element Number of Outward
Calls

Software that does not
follow the principles of
modularity causes
excessive propagation
of modification impacts

Avoid overly complex
outward dependencies

Number of instances where a
named callable control element or
method control element has a Fan-
Out value that is too large, that is,
its number of references to other
objects within the application
exceeds a threshold value (the
application determines the scope of
the search for the referenced
objects). Default threshold value for
the number of references to other
objects within the application is 5.

ASCMM-MNT-5: Software that does not Avoid overly complex Number of instances where a value

Automated Source Code Maintainability Measure, v1.0 19

Loop Value Update within
the Loop

follow the principles of
modularity causes
excessive propagation
of modification impacts

behaviors of loop
indices

of a local storable data element
used in the condition of the loop
control flow is updated within the
'Write' action located in the loop
body block.

ASCMM-MNT-6:
Commented-out Code
Element Excessive Volume

Software that does
contain commented-
out code that can
mistakenly be
considered as active
code and that can hide
a lack of comments
causes excessive
modification effort

Avoid code blocks
found in comments

Number of instances where a
named callable control element or
method control element contains
too many commented-out code
items compared to a threshold that
is based on the percentage of
instructions in the callable control
element or method control element
that are in comments. Default
threshold value for the percentage
of commented out instructions is
2%.

ASCMM-MNT-7:
Inter-Module Dependency
Cycles

Software that does not
follow the principles of
modularity causes
excessive propagation
of modification impacts

Avoid circular
dependencies between
modules

Number of instances where a
module has references that cycle
back to itself via the module
callable or data relations cycle (for
example, with JAVA this pattern
means cycles between packages).

ASCMM-MNT-8:
Source Element
Excessive Size

Software that does not
follow the principles of
modularity causes
excessive propagation
of modification impacts

Avoid over-sizing of
software elements

Number of instances where a file
has too many lines of code based
on a threshold value. The default
threshold value for number of lines
of code is 1000.

ASCMM-MNT-9:
Horizontal Layer
Excessive Number

Software that does not
follow the principles of
layered architectures
(such as strict
partitioning and strict
call hierarchy)
decreases
comprehensibility as
well as simplicity to
evolve the code

Avoid the existence of
too many or too few
horizontal layers

Number of instances where a
model of the architectural layers of
an application contains too many or
too few horizontal layers (excluding
the vertical utility layers) based on
comparison to a threshold value.
The default value for the minimal
number of horizontal layers is 4,
and the default value for maximal
number of horizontal layers is 8.

ASCMM-MNT-10:
Named Callable and Method
Control Element Multi- Layer
Span

Software that does not
follow the principles of
layered architectures
(such as strict
partitioning and strict
call hierarchy)
decreases
comprehensibility as
well as simplicity to
evolve the code

Avoid unclear
allocation of software
elements to a single
architectural layer

Number of instances where a
callable or method control element
is part of two architectural layers.

ASCMM-MNT-11:
Callable and Method Control
Element Excessive
Cyclomatic Complexity
Value

Software that does not
follow the principles of
structured
programming
degrades
comprehensibility

Avoid overly complex
control flow

Number of instances where a
named callable control element or
method control element has a
control flow with a Cyclomatic
Complexity number that exceeds a
threshold value. Default threshold
value for Cyclomatic Complexity is
20.

ASCMM-MNT-12:
Names Callable and Method

Software that does not
follow the principles of

Avoid breaches of
layered architecture

Number of instances where a
named callable or method control

20 Automated Source Code Maintainability Measure, v1.0

Control Element with Layer-
skipping Call

layered architectures
(such as strict
partitioning and strict
call hierarchy)
decreases
comprehensibility as
well as simplicity to
evolve the code

principles due to layer-
skipping references

element from a higher horizontal
layer directly calls a named callable
or method control element in a
lower horizontal layer that is not
adjacent to the upper layer making
the call, as defined in a model of
the application's architectural
layers (this excludes the vertical
utility layers that can be referenced
from any horizontal layer).

ASCMM-MNT-13:
Callable and Method Control
Element Excessive Number
of Parameters

Software that does not
cap the number of
parameters degrades
comprehensibility

Avoid over-
parameterization

Number of instances where a
named callable control element or
method control element has a
number of parameters in its
signature that exceeds a threshold
value. Default threshold value for
the number of parameters is 7.

ASCMM-MNT-14:
Callable and Method Control
Element Excessive Number
of Control Elements
Involving Data Element from
Data Manager or File
Resource

Software that does not
cap the number of
data operations
degrades
comprehensibility by
requiring the
understanding of too
many external data
structures

Avoid the existence of
control elements with
too many data
operations

Number of instances where a
named callable control element or
method control element has a
number of operations involving a
data manager or a file resource
that exceeds a threshold value.
Default threshold value for the
number of data operations is 7.

ASCMM-MNT-15:
Public Member Element

Software that does not
follow the principles of
data encapsulation
incurs the risk of data
corruption

Avoid openly
accessible data
elements

Number of instances where a
storable data element or member
data element is declared as public
through a Create action.

ASCMM-MNT-16:
Method Control Element
Usage of Member Element
from other Class Element

Software that does not
follow the principles of
data encapsulation
incurs the risk of data
corruption

Avoid direct access to
data elements of
another entity

Number of instances where a
method control element from a
class element accesses a member
element from another class
element.

ASCMM-MNT-17:
Class Element Excessive
Inheritance Level

Software that does not
follow the principles of
reuse requires more
maintenance effort in
order to propagate
changes to all
instances of duplicated
code

Avoid overly complex
object-oriented
inheritance capabilities
when dealing with the
number of levels of
inheritance of classes

Number of instances where the
inheritance level of a class element
(that is, the number of parent class
units) exceeds a threshold value.
The default threshold value for
number of inheritance levels is 7.

ASCMM-MNT-18:
Class Element Excessive
Number of Children

Software that does not
follow the principles of
reuse requires more
maintenance effort in
order to propagate
changes to all
instances of duplicated
code

Avoid overly complex
object-oriented
inheritance capabilities
when dealing with the
number of direct
children of classes

Number of instances where the
number of children of a class
element (that is, its number of child
classes) exceeds a threshold
value. The default threshold value
for number of children of a class
element is 10.

ASCMM-MNT-19:
Named Callable and Method
Control Element Excessive
Similarity

Software that does not
follow the principles of
data reuse requires
more maintenance
effort in order to
propagate changes to

Avoid software
element redundancy

Number of instances where a
named callable control element or
method control element contains
multiple computational objects that
are identical to computational
objects in another named callable

Automated Source Code Maintainability Measure, v1.0 21

all instances of
duplicated code

or method control element in the
application (the application
determines the scope of the search
for the second code item).

ASCMM-MNT-20:
Unreachable Named
Callable or Method Control
Element

Software that does not
follow the principles of
reuse requires more
maintenance effort in
order to propagate
changes to all
instances of duplicated
code

Avoid inactive code
blocks that can
mistakenly be
considered as active
and that can hide the
active code in noise

Number of instances where a
named callable control element or
method control element is
unreferenced by any other code
item in the application (the
application determines the scope of
the search for code items that
could call a callable or method
control element).

22 Automated Source Code Maintainability Measure, v1.0

7 SPMS Representation of the Quality Measure
Elements (Normative)

7.1 Introduction

This clause displays in a human readable format the content of the machine readable XMI format file for the current
specification. The content of the machine readable XMI format file is the representations of the CISQ Quality Measure
Elements:

 according to the Structured Patterns Metamodel Standard (SPMS), and

 relating to the Knowledge Discovery Metamodel (KDM) within their description as frequently as possible, so as
to be as generic as possible yet as accurate as possible.

SPMS

More specifically, the machine readable XMI format file attached to the current specification uses the SPMS Definitions
Classes:

 PatternDefinition (spms:PatternDefinition): the pattern specification. In the context of this document, each
CISQ Quality Measure Element is basically the count of occurrences of the described patterns.

 Role (spms:Role): “A pattern is informally defined as a set of relationships between a set of entities. Roles
describe the set of entities within a pattern, between which those relationships will be described. As such the
Role is a required association in a PatternDefinition. […]. Semantically, a Role is a 'slot' that is required to be
fulfilled for an instance of its parent PatternDefinition to exist.”

 PatternSection (spms:PatternSection): “A PatternSection is a free-form prose textual description of a portion of
a PatternDefinition.” In the context of this document, there are several different PatternSections in use:

o “Descriptor” to provide pattern signature, a visible interface of the pattern.

o “Measure Element” to provide a human readable explanation of the measure.

o “Description” to provide a human readable explanation of the pattern that is sought after, identifying
“Roles” and KDM modeling information.

o “Objective” to provide a human readable explanation of the intent to get rid of the occurrences of the
pattern that is sought after.

o “Consequence” to provide a human readable explanation of the issue the detection of the pattern is
designed to solve.

o “Input” to provide a human readable of the parameters that are needed to fine-tune the behavior of the
pattern detection (e.g., the target application architectural blueprint to comply with).

o “Comment” to provide some additional information (until now, used to inform about situations where
the same measure element is useful for another one of the categories).

As well as some of the SPMS Relationships Classes:

 MemberOf (spms:MemberOf): “An InterpatternRelationship specialized to indicate inclusion in a Category.”

Automated Source Code Maintainability Measure, v1.0 23

 Category (spms:Category): “A Category is a simple grouping element for gathering related PatternDefinitions
into clusters.” In the context of this document, the SPMS Categories are used to represent the 4 CISQ Quality
Characteristics:

o “CISQ Reliability”

o “CISQ Security”

o “CISQ Performance Efficiency”

o “CISQ Maintainability”

KDM

More specifically, the machine readable XMI format file accompanying this specification uses KDM entities in the
“Description” section of the pattern definitions. Descriptions try to remain as generic yet accurate as possible so that the
pattern can be applicable and applied to as many situations as possible: different technologies, different programming
languages.

This means:

1 The descriptions include information such as (code:MethodUnit), (action:Reads),
(platform:ManagesResource), to identify the KDM entities the pattern definition involves.

2 The descriptions only detail the salient aspects of the pattern as the specifics can be technology- or language-
dependent.

Although a fair knowledge of the KDM is highly recommended to read this clause, here follows a “KDM primer” to help
getting started via a translation table between layman wording (simple although not fully accurate) and KDM wording
used in the current specification.

Layman wording KDM wording

function, method, procedure, stored
procedure, sub-routine, etc.

named callable control element (code:CallableUnit with code:CallableKind
'regular,' 'external,' or 'stored') or method control element (code:MethodUnit)

variable, field, member, etc. storable data element (code:StorableUnit) or member data element
(code:MemberUnit)

class class element (code:StorableUnit with code:DataType code:ClassUnit)

interface interface element (code:StorableUnit of code:DataType code:InterfaceUnit)

method method element (code:MethodUnit)

field, member member element (code:MemberUnit)

SQL stored procedures stored callable control elements (code:CallableUnit with code:CallableKind
'stored') in a data manager resource (platform:DataManager)

return code value value (code:Value) of the return parameter (code:ParameterUnit of
code:ParameterKind 'return')

exception exception parameter (code:ParameterUnit with code:ParameterKind 'exception')

user input data flow an external value is entered into the application through the 'ReadsUI' user
interface ReadsUI action (ui:ReadsUI), transformed throughout the application

24 Automated Source Code Maintainability Measure, v1.0

along the 'TransformationSequence' sequence (action:BlockUnit) composed of
ActionElements with DataRelations relations (action:Reads, action:Writes,
action:Addresses), some of which being part of named callable and method
control elements (code:MethodUnit or code:CallableUnit with code:CallableKind
'regular,' 'external,' or 'stored') and ultimately used as

execution path execution path (action:BlockUnit composed of action:ActionElements with
action:CallableRelations to code:ControlElements)

libraries, etc. deployed component (platform:DeployedComponent)

RDBMS data manager resource (platform:DataManager)

loop body loop body block (action:BlockUnit starting as the action:TrueFlow of the loop
action:GuardedFlow and ending with an action:Flow back to the loop
action:GuardedFlow)

loop condition loop condition (action:BlockUnit used in the action:GuardedFlow)

singleton class element (code:StorableUnit with code:DataType code:ClassUnit) that can
be used only once in the 'to' association of a Create action (action:Creates)

checked used by a check control element (code:ControlElement containing
action:ActionElement with a kind from micro KDM list of comparison actions)

Reading guide

Each numbered sub clause of this clause

 Sub clause 7.2 represents the SPMS Category covered by the current specification.
 Starting with number 7.3, each sub clause represents a new SPMS PatternDefinition member of this SPMS

Category
 Pattern category: the “spms:Category” category the pattern is related to through an “spms:MemberOf”

relationship.
 Pattern sections: the list of "spms:PatternSection" sections from the pattern:

• “Descriptor”

• “Description”

• “Objective”

• “Consequence”

 and when applicable,

• “Input”

• “Comment”

 Pattern roles: the list of “spms:Role” roles used in the “Descriptor” and “Description” sub clauses above.

Automated Source Code Maintainability Measure, v1.0 25

In the following sub clauses

 Data between square brackets (e.g., [key CISQ Maintainability]) identifies “xmi:id” that are unique and
used to reference entities. They are machine-generated to ensure unicity.

 Data between parentheses (e.g., (code:MethodUnit)) identifies KDM modeling information.

 Data between angle brackets (e.g., <ControlElement>) identifies SPMS Roles in Description and Input sub
clauses.

7.2 Category definition of CISQ Maintainability
[key ASCMM-Maintainability] CISQMaintainability

7.3 Pattern definition of ASCMM-MNT-1: Control Flow Transfer Control
Element outside Switch Block

Pattern Category

[key ASCMM-MNT-1-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-1-objective]

Avoid the unconditional transfer of control flow outside of switch structures.

Consequence

[key ASCMM-MNT-1-consequence]

Software that does not follow the principles of structured programming degrades comprehensibility.

Measure Element

[key ASCMM-MNT-1-measure-element]

Number of instances where an unconditional transfer of control is located outside the branching based on the value of a
storable element.

Description

[key ASCMM-MNT-1-description]

This pattern identifies situations where <ControlFlowJumpStatement> control flow (action:ActionElement with micro
KDM kind such as 'Goto') unconditional transfer of control is located outside the <SwitchBranching> branching based
on the value of a storable element (action:ActionElement with micro KDM kind 'Switch').

Descriptor

[key ASCMM-MNT-1-descriptor]

ASCMM-MNT-1(ControlFlowJumpStatement: controlFlowJumpStatement,SwitchBranching: switchBranching)

26 Automated Source Code Maintainability Measure, v1.0

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-1-roles-controlFlowJumpStatement] ControlFlowJumpStatement

[key ASCMM-MNT-1-roles-switchBranching] SwitchBranching

7.4 Pattern definition of ASCMM-MNT-2: Class Element Excessive
Inheritance of Class Elements with Concrete Implementation

Pattern Category

[key ASCMM-MNT-2-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-2-objective]

Avoid the multiple inheritance of classes with concrete implementations.

Consequence

[key ASCMM-MNT-2-consequence]

Software that does not follow the principles of reuse requires more maintenance effort in order to propagate changes to
all instances of duplicated code.

Measure Element

[key ASCMM-MNT-2-measure-element]

Number of instances where the number of inheritances of concrete classes of a class element is considered too large,
based on exceeding a threshold value. Default value for the number of concrete class Inheritances is 1.

Description

[key ASCMM-MNT-2-description]

This pattern identifies situations where the number of inheritance (code:Extends relation) of concrete classes
(code:StorableUnit of code:DataType code:ClassUnit having code:MethodUnit with code:MethodKind different from
'abstract') of the <Class> class element (code:StorableUnit of code:DataType code:ClassUnit) is considered as too large,
based on its <NumberOfConcreteClasseInheritances> number of inheritance of concrete classes which exceeds the
<NumberOfConcreteClasseInheritancesThresholdValue> threshold value.

Default value for <NumberOfConcreteClasseInheritancesThresholdValue> is 1.

Descriptor

[key ASCMM-MNT-2-descriptor]

ASCMM-MNT-2(Class: class,NumberOfConcreteClasseInheritances: numberOfConcreteClasseInheritances,
NumberOfConcreteClasseInheritancesThresholdValue: numberOfConcreteClasseInheritancesThresholdValue)

Automated Source Code Maintainability Measure, v1.0 27

Variable input

[key ASCMM-MNT-2-input]

<NumberOfConcreteClasseInheritancesThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-2-roles-class] Class

[key ASCMM-MNT-2-roles-numberOfConcreteClasseInheritances] NumberOfConcreteClasseInheritances

[key ASCMM-MNT-2-roles-numberOfConcreteClasseInheritancesThresholdValue]
NumberOfConcreteClasseInheritancesThresholdValue

7.5 Pattern definition of ASCMM-MNT-3: Storable and Member Data
Element Initialization with Hard-Coded Literals

Pattern Category

[key ASCMM-MNT-3-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-3-objective]

Avoid hard-coded non-trivial values in the code.

Consequence

[key ASCMM-MNT-3-consequence]

Software featuring hard-coded pieces of information within its own code reduces adaptability.

Measure Element

[key ASCMM-MNT-3-measure-element]

Number of instances where a literal value element is used to initialize a storable data element or member data element
via a ‘Write’ action; exceptions are simple integers and static constant storable or member data elements.

Description

[key ASCMM-MNT-3-description]

This pattern identifies situations where the <ValueElement> literal value element (code:Value) is used to initialize the
storable data element (code:StorableUnit) or member data element (code:MemberUnit) via the <InitializationStatement>
Write action (action:Writes); exceptions are simple integers and static of constant storable or member data elements.

Descriptor

[key ASCMM-MNT-3-descriptor]

ASCMM-MNT-3(ValueElement: valueElement,InitializationStatement: initializationStatement)

Variable input

(none applicable)

28 Automated Source Code Maintainability Measure, v1.0

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-3-roles-valueElement] ValueElement

[key ASCMM-MNT-3-roles-initializationStatement] InitializationStatement

7.6 Pattern definition of ASCMM-MNT-4: Callable and Method Control
Element Number of Outward Calls

Pattern Category

[key ASCMM-MNT-4-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-4-objective]

Avoid overly complex outward dependencies.

Consequence

[key ASCMM-MNT-4-consequence]

Software that does not follow the principles of modularity causes excessive propagation of modification impacts.

Measure Element

[key ASCMM-MNT-4-measure-element]

Number of instances where a named callable control element or method control element has a Fan-Out value that is too
large, that is, its number of references to other objects within the application exceeds a threshold value (the application
determines the scope of the search for the referenced objects).

Default threshold value for the number of references to other objects within the application is 5.

Description

[key ASCMM-MNT-4-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) has a Fan-Out value
(number of code:Calls relations where it is used in the 'from' association) that is too large, based on its
<NumberOfOutwardReferences> number of references to other objects within the <Application> application which
exceeds the <NumberOfOutwardReferencesThresholdValue> threshold value; the <Application> application determines
the scope of the search for the referenced objects.

Default value for <NumberOfOutwardReferencesThresholdValue> threshold value is 5.

Descriptor

[key ASCMM-MNT-4-descriptor]

ASCMM-MNT-4(ControlElement: controlElement,NumberOfOutwardReferences: numberOfOutwardReferences,
NumberOfOutwardReferencesThresholdValue: numberOfOutwardReferencesThresholdValue, Application: application)

Automated Source Code Maintainability Measure, v1.0 29

Variable input

[key ASCMM-MNT-4-input]

<NumberOfOutwardReferencesThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-4-roles-controlElement] ControlElement

[key ASCMM-MNT-4-roles-numberOfOutwardReferences] NumberOfOutwardReferences

[key ASCMM-MNT-4-roles-numberOfOutwardReferencesThresholdValue]
NumberOfOutwardReferencesThresholdValue

[key ASCMM-MNT-4-roles-application] Application

7.7 Pattern definition of ASCMM-MNT-5: Loop Value Update within the
Loop

Pattern Category

[key ASCMM-MNT-5-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-5-objective]

Avoid overly complex behaviors of loop indices.

Consequence

[key ASCMM-MNT-5-consequence]

Software that does not follow the principles of modularity causes excessive propagation of modification impacts.

Measure Element

[key ASCMM-MNT-5-measure-element]

Number of instances where a value of a local storable data element used in the condition of the loop control flow is
updated within the ‘Write’ action located in the loop body block.

Description

[key ASCMM-MNT-5-description]

This pattern identifies situations where the value (code:Value) of the <LoopElement> local storable data element
(code:StorableUnit with code:StorableKind 'local') used in the condition of the loop control flow of code is updated
within the <UpdateStatement> Write action (action:Writes) located in the loop body block (action:BlockUnit starting as
the action:TrueFlow of the loop action:GuardedFlow and ending with an action:Flow back to the loop
action:GuardedFlow).

Descriptor

[key ASCMM-MNT-5-descriptor]

ASCMM-MNT-5(LoopElement: loopElement,UpdateStatement: updateStatement)

30 Automated Source Code Maintainability Measure, v1.0

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-5-roles-loopElement] LoopElement

[key ASCMM-MNT-5-roles-updateStatement] UpdateStatement

7.8 Pattern definition of ASCMM-MNT-6: Commented-out Code Element
Excessive Volume

Pattern Category

[key ASCMM-MNT-6-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-6-objective]

Avoid code blocks found in comments.

Consequence

[key ASCMM-MNT-6-consequence]

Software that does contain commented-out code that can mistakenly be considered as active code and that can hide a
lack of comments causes excessive modification effort.

Measure Element

[key ASCMM-MNT-6-measure-element]

Number of instances where a named callable control element or method control element contains too many commented-
out code items compared to a threshold that is based on the percentage of instructions in the callable control element or
method control element that are in comments. Default threshold value for the percentage of commented-out out
instructions is 2%.

Description

[key ASCMM-MNT-6-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) contains too much
commented-out code items (code:CodeItem), based on the <PercentageOfCommentedOutInstructions> percentage of
instructions in the <ControlElement> callable or method control element that are in comments (code:CommentUnit)
which exceeds the <PercentageOfCommentedOutInstructionsThresholdValue> threshold value.

Default value for <PercentageOfCommentedOutInstructionsThresholdValue> threshold value is 2%.

Descriptor

[key ASCMM-MNT-6-descriptor]

Automated Source Code Maintainability Measure, v1.0 31

ASCMM-MNT-6(ControlElement: controlElement,PercentageOfCommentedOutInstructions:
percentageOfCommentedOutInstructions, PercentageOfCommentedOutInstructionsThresholdValue:
percentageOfCommentedOutInstructionsThresholdValue)

Variable input

[key ASCMM-MNT-6-input]

<PercentageOfCommentedOutInstructionsThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-6-roles-controlElement] ControlElement

[key ASCMM-MNT-6-roles-percentageOfCommentedOutInstructions] PercentageOfCommentedOutInstructions

[key ASCMM-MNT-6-roles-percentageOfCommentedOutInstructionsThresholdValue]
PercentageOfCommentedOutInstructionsThresholdValue

7.9 Pattern definition of ASCMM-MNT-7: Inter-Module Dependency
Cycles

Pattern Category

[key ASCMM-MNT-7-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-7-objective]

Avoid circular dependencies between modules.

Consequence

[key ASCMM-MNT-7-consequence]

Software that does not follow the principles of modularity causes excessive propagation of modification impacts.

Measure Element

[key ASCMM-MNT-7-measure-element]

Number of instances where a module has references that cycle back to itself via the module callable or data relations
cycle (for example, with JAVA this pattern means cycles between packages).

Description

[key ASCMM-MNT-7-description]

This pattern identifies situations where the <Module> module (code:Module) has references that cycle back to itself via
the <ModuleDependencyCycle> module callable or data relations cycle (action:BlockUnit composed of
action:CallableActions or action:DataActions).

As an example, with JAVA, this pattern means cycles between packages (code:Package).

32 Automated Source Code Maintainability Measure, v1.0

Descriptor

[key ASCMM-MNT-7-descriptor]

ASCMM-MNT-7(Module: module,ModuleDependencyCycle: moduleDependencyCycle)

Variable input

(none applicable)

Comment

[key ASCMM-MNT-7-comment] Measure element contributes to Maintainability and Reliability

List of Roles

[key ASCMM-MNT-7-roles-module] Module

[key ASCMM-MNT-7-roles-moduleDependencyCycle] ModuleDependencyCycle

7.10 Pattern definition of ASCMM-MNT-8: Source Element Excessive
Size

Pattern Category

[key ASCMM-MNT-8-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-8-objective]

Avoid over-sizing of software elements.

Consequence

[key ASCMM-MNT-8-consequence]

Software that does not follow the principles of modularity causes excessive propagation of modification impacts.

Measure Element

[key ASCMM-MNT-8-measure-element]

Number of instances where a file has too many lines of code based on a threshold value. The default threshold value for
number of lines of code is 1000.

Description

[key ASCMM-MNT-8-description]

This pattern identifies situations where the <File> file (source:SourceFile) has too many lines of code, based on its
<NumberOfLinesOfCode> number of lines of code which exceeds the <NumberOfLinesOfCodeThresholdValue>
threshold value.

The default value for <NumberOfLinesOfCodeThresholdValue> is 1000.

Descriptor

[key ASCMM-MNT-8-descriptor]

ASCMM-MNT-8(File: file,NumberOfLinesOfCode: numberOfLinesOfCode, NumberOfLinesOfCodeThresholdValue:
numberOfLinesOfCodeThresholdValue)

Automated Source Code Maintainability Measure, v1.0 33

Variable input

[key ASCMM-MNT-8-input]

<NumberOfLinesOfCodeThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-8-roles-file] File

[key ASCMM-MNT-8-roles-numberOfLinesOfCode] NumberOfLinesOfCode

[key ASCMM-MNT-8-roles-numberOfLinesOfCodeThresholdValue] NumberOfLinesOfCodeThresholdValue

7.11 Pattern definition of ASCMM-MNT-9: Horizontal Layer Excessive
Number

Pattern Category

[key ASCMM-MNT-9-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-9-objective]

Avoid the existence of too many or too few horizontal layers.

Consequence

[key ASCMM-MNT-9-consequence]

Software that does not follow the principles of layered architectures (such as strict partitioning and strict call hierarchy)
decreases comprehensibility as well as simplicity to evolve the code.

Measure Element

[key ASCMM-MNT-9-measure-element]

Number of instances where a model of the architectural layers of an application contains too many or too few horizontal
layers (excluding the vertical utility layers) based on comparison to a threshold value. The default value for the minimal
number of horizontal layers is 4, and the default value for maximal number of horizontal layers is 8.

Description

[key ASCMM-MNT-9-description]

This pattern identifies situations where the <ArchitectureModel> model of the architectural layers contains too many or
too few horizontal layers (structure:Layer), based on its <NumberOfHorizontalLayers> number of horizontal layers (that
is, excluding the vertical utility layers) that is smaller than the <NumberOfHorizontalLayerThresholdMinimalValue>
threshold value or greater than the <NumberOfHorizontalLayerThresholdMaximalValue> threshold value.

The default value for <NumberOfHorizontalLayerThresholdMinimalValue> is 4.

The default value for <NumberOfHorizontalLayerThresholdMaximalValue> is 8.

Descriptor

[key ASCMM-MNT-9-descriptor]

34 Automated Source Code Maintainability Measure, v1.0

ASCMM-MNT-9(NumberOfHorizontalLayers:
numberOfHorizontalLayers,NumberOfHorizontalLayerThresholdMinimalValue:
numberOfHorizontalLayerThresholdMinimalValue, NumberOfHorizontalLayerThresholdMaximalValue:
numberOfHorizontalLayerThresholdMaximalValue, ArchitectureModel: architectureModel)

Variable input

[key ASCMM-MNT-9-input]

<ArchitectureModel> defining the application's architectural blueprint.

<NumberOfHorizontalLayerThresholdMinimalValue> minimal value

<NumberOfHorizontalLayerThresholdMaximalValue> maximal value.

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-9-roles-numberOfHorizontalLayers] NumberOfHorizontalLayers

[key ASCMM-MNT-9-roles-numberOfHorizontalLayerThresholdMinimalValue]
NumberOfHorizontalLayerThresholdMinimalValue

[key ASCMM-MNT-9-roles-numberOfHorizontalLayerThresholdMaximalValue]
NumberOfHorizontalLayerThresholdMaximalValue

[key ASCMM-MNT-9-roles-architectureModel] ArchitectureModel

7.12 Pattern definition of ASCMM-MNT-10: Named Callable and Method
Control Element Multi-Layer Span

Pattern Category

[key ASCMM-MNT-10-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-10-objective]

Avoid unclear allocation of software elements to a single architectural layer.

Consequence

[key ASCMM-MNT-10-consequence]

Software that does not follow the principles of layered architectures (such as strict partitioning and strict call hierarchy)
decreases comprehensibility as well as simplicity to evolve the code.

Measure Element

[key ASCMM-MNT-10-measure-element]

Number of instances where a callable or method control element is part of two architectural layers.

Description

[key ASCMM-MNT-10-description]

Automated Source Code Maintainability Measure, v1.0 35

This pattern identifies situations where the <ControlElement> callable or method control element (code:ControlElement)
is part of both <Layer1> and <Layer2> architectural layers (structure:Layer).

Descriptor

[key ASCMM-MNT-10-descriptor]

ASCMM-MNT-10(ControlElement: controlElement,Layer1: layer1, Layer2: layer2)

Variable input

[key ASCMM-MNT-10-input]

<ArchitectureModel> defining the application's architectural blueprint.

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-10-roles-controlElement] ControlElement

[key ASCMM-MNT-10-roles-layer1] Layer1

[key ASCMM-MNT-10-roles-layer2] Layer2

7.13 Pattern definition of ASCMM-MNT-11: Callable and Method Control
Element Excessive Cyclomatic Complexity Value

Pattern Category

[key ASCMM-MNT-11-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-11-objective]

Avoid overly complex control flow.

Consequence

[key ASCMM-MNT-11-consequence]

Software that does not follow the principles of structured programming degrades comprehensibility.

Measure Element

[key ASCMM-MNT-11-measure-element]

Number of instances where a named callable control element or method control element has a control flow with a
Cyclomatic Complexity number that exceeds a threshold value. Default threshold value for Cyclomatic Complexity is
20.

Description

[key ASCMM-MNT-11-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) has a control flow

36 Automated Source Code Maintainability Measure, v1.0

(action:ControlFlow) with a <CyclomaticComplexityValue> Cyclomatic Complexity which is greater than the
<CyclomaticComplexityThresholdValue> threshold value.

Default value for <CyclomaticComplexityThreshold> is 20.

Descriptor

[key ASCMM-MNT-11-descriptor]

ASCMM-MNT-11(ControlElement: controlElement,CyclomaticComplexity: cyclomaticComplexity,
CyclomaticComplexityThresholdValue: cyclomaticComplexityThresholdValue)

Variable input

[key ASCMM-MNT-11-input]

<CyclomaticComplexityThresholdValue> maximum value of distinct path through the control element

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-11-roles-controlElement] ControlElement

[key ASCMM-MNT-11-roles-cyclomaticComplexity] CyclomaticComplexity

[key ASCMM-MNT-11-roles-cyclomaticComplexityThresholdValue] CyclomaticComplexityThresholdValue

7.14 Pattern definition of ASCMM-MNT-12: Named Callable and Method
Control Element with Layer-skipping Call

Pattern Category

[key ASCMM-MNT-12-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-12-objective]

Avoid breaches of layered architecture principles due to layer-skipping references.

Consequence

[key ASCMM-MNT-12-consequence]

Software that does not follow the principles of layered architectures (such as strict partitioning and strict call hierarchy)
decreases comprehensibility as well as simplicity to evolve the code.

Measure Element

[key ASCMM-MNT-12-measure-element]

Number of instances where a named callable or method control element from a higher horizontal layer directly calls a
named callable or method control element in a lower horizontal layer that is not adjacent to the upper layer making the
call, as defined in a model of the application’s architectural layers (this excludes the vertical utility layers that can be
referenced from any horizontal layer).

Automated Source Code Maintainability Measure, v1.0 37

Description

[key ASCMM-MNT-12-description]

This pattern identifies situations where the <CallerObject> named callable and method control elements
(code:MethodUnit or code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored') from the <HigherLayer>
higher horizontal layer (structure:Layer) directly calls (action:CallableRelations) the <CalleeObject> named callable or
method control element from the <LowerLayer> lower horizontal layer (structure:Layer), while the <LowerLayer> layer
is not the next lower layer to the <UpperLayer> layer, as defined in the <ArchitectureModel> model of the architectural
layers; this excludes the vertical utility layers that can be referenced from any horizontal layers.

Descriptor

[key ASCMM-MNT-12-descriptor]

ASCMM-MNT-12(CallerObject: callerObject,HigherLayer: higherLayer, CalleeObject: calleeObject, LowerLayer:
lowerLayer, ArchitectureModel: architectureModel)

Variable input

[key ASCMM-MNT-12-input]

<ArchitectureModel> defining the application's architectural blueprint.

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-12-roles-callerObject] CallerObject

[key ASCMM-MNT-12-roles-higherLayer] HigherLayer

[key ASCMM-MNT-12-roles-calleeObject] CalleeObject

[key ASCMM-MNT-12-roles-lowerLayer] LowerLayer

[key ASCMM-MNT-12-roles-architectureModel] ArchitectureModel

7.15 Pattern definition of ASCMM-MNT-13: Callable and Method Control
Element Excessive Number of Parameters

Pattern Category

[key ASCMM-MNT-13-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-13-objective]

Avoid over-parameterization.

Consequence

[key ASCMM-MNT-13-consequence]

Software that does not cap the number of parameters degrades comprehensibility.

38 Automated Source Code Maintainability Measure, v1.0

Measure Element

[key ASCMM-MNT-13-measure-element]

Number of instances where a named callable control element or method control element has a number of parameters in
its signature that exceeds a threshold value. Default threshold value for the number of parameters is 7.

Description

[key ASCMM-MNT-13-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) has
<ParameterNumber> parameters (code:ParameterUnit with ParameterKind 'byValue,' 'byName,' 'byReference,' or
'variadic') in its signature (code:Signature) which is greater than the <ParameterNumberThreshold> threshold value.

Default value for the <ParameterNumberThreshold> is 7.

Descriptor

[key ASCMM-MNT-13-descriptor]

ASCMM-MNT-13(ControlElement: controlElement,ParameterNumber: parameterNumber, ParameterNumberThreshold:
parameterNumberThreshold)

Variable input

[key ASCMM-MNT-13-input]

<ParameterNumberThreshold> maximum value of parameters in signature

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-13-roles-controlElement] ControlElement

[key ASCMM-MNT-13-roles-parameterNumber] ParameterNumber

[key ASCMM-MNT-13-roles-parameterNumberThreshold] ParameterNumberThreshold

7.16 Pattern definition of ASCMM-MNT-14: Callable and Method Control
Element Excessive Number of Control Elements involving Data
Element from Data Manager or File Resource

Pattern Category

[key ASCMM-MNT-14-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-14-objective]

Avoid the existence of control elements with too many data operations.

Automated Source Code Maintainability Measure, v1.0 39

Consequence

[key ASCMM-MNT-14-consequence]

Software that does not cap the number of data operations degrades comprehensibility by requiring the understanding of
too many external data structures.

Measure Element

[key ASCMM-MNT-14-measure-element]

Number of instances where a named callable control element or method control element has a number of operations
involving a data manager or a file resource that exceeds a threshold value. Default threshold value for the number of data
operations is 7.

Description

[key ASCMM-MNT-14-description]

This pattern identifies situations where the <ControlElement> named callable and method control elements
(code:MethodUnit or code:CallableUnit with code:CallableKind 'regular,' 'external,' or 'stored') has too many control
elements involving a data manager (platform:DataManager) or a file resource (platform:FileResource), based on its
<NumberOfDataOperations> number of such control elements, which exceeds the
<NumberOfDataOperationsThresholdValue> threshold value.

Default value for <NumberOfDataOperationsThresholdValue> is 7.

Descriptor

[key ASCMM-MNT-14-descriptor]

ASCMM-MNT-14(ControlElement: controlElement,NumberOfDataOperations: numberOfDataOperations,
NumberOfDataOperationsThresholdValue: numberOfDataOperationsThresholdValue)

Variable input

[key ASCMM-MNT-14-input]

<NumberOfDataOperationsThresholdValue> maximum value of data operation in control element

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-14-roles-controlElement] ControlElement

[key ASCMM-MNT-14-roles-numberOfDataOperations] NumberOfDataOperations

[key ASCMM-MNT-14-roles-numberOfDataOperationsThresholdValue] NumberOfDataOperationsThresholdValue

7.17 Pattern definition of ASCMM-MNT-15: Public Member Element

Pattern Category

[key ASCMM-MNT-15-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-15-objective]

Avoid openly accessible data elements.

40 Automated Source Code Maintainability Measure, v1.0

Consequence

[key ASCMM-MNT-15-consequence]

Software that does not follow the principles of data encapsulation incurs the risk of data corruption.

Measure Element

[key ASCMM-MNT-15-measure-element]

Number of instances where a storable data element or member data element is declared as public through a Create action.

Description

[key ASCMM-MNT-15-description]

This pattern identifies situations where the <PublicDataElement> storable data element (code:StorableUnit) or member
data element (code:MemberUnit) is declared as public (code:ExportKind 'public') through the
<DataElementDeclarationStatement> Create action (action:Creates).

Descriptor

[key ASCMM-MNT-15-descriptor]

ASCMM-MNT-15(PublicDataElement: publicDataElement,DataElementDeclarationStatement:
dataElementDeclarationStatement)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-15-roles-publicDataElement] PublicDataElement

[key ASCMM-MNT-15-roles-dataElementDeclarationStatement] DataElementDeclarationStatement

7.18 Pattern definition of ASCMM-MNT-16: Method Control Element
Usage of Member Element from other Class Element

Pattern Category

[key ASCMM-MNT-16-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-16-objective]

Avoid direct access to data elements of another entity.

Consequence

[key ASCMM-MNT-16-consequence]

Software that does not follow the principles of data encapsulation incurs the risk of data corruption.

Automated Source Code Maintainability Measure, v1.0 41

Measure Element

[key ASCMM-MNT-16-measure-element]

Number of instances where a method control element from a class element accesses a member element from another
class element.

Description

[key ASCMM-MNT-16-description]

This pattern identifies situations where the <Method> method control element (code:MethodUnit) from <Class1> class
element (code:StorableUnit of code:DataType code:ClassUnit) accesses (action:DataRelations) the <Field> member
element (code:MemberUnit) from <Class2> class element.

Descriptor

[key ASCMM-MNT-16-descriptor]

ASCMM-MNT-16(Class1: class1,Class2: class2, Field: field)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-16-roles-class1] Class1

[key ASCMM-MNT-16-roles-class2] Class2

[key ASCMM-MNT-16-roles-field] Field

7.19 Pattern definition of ASCMM-MNT-17: Class Element Excessive
Inheritance Level

Pattern Category

[key ASCMM-MNT-17-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-17-objective]

Avoid overly complex object-oriented inheritance capabilities when dealing with the number of levels of inheritance of
classes.

Consequence

[key ASCMM-MNT-17-consequence]

Software that does not follow the principles of reuse requires more maintenance effort in order to propagate changes to
all instances of duplicated code.

42 Automated Source Code Maintainability Measure, v1.0

Measure Element

[key ASCMM-MNT-17-measure-element]

Number of instances where the inheritance level of a class element (that is, the number of parent class units) exceeds a
threshold value. The default threshold value for number of inheritance levels is 7.

Description

[key ASCMM-MNT-17-description]

This pattern identifies situations where the inheritance level (number of level of code:Extends relations) of the <Class>
class element (code:StorableUnit with code:DataType code:ClassUnit) is considered as too large, based on its
<NumberOfInheritanceLevels> number of parent class units which exceeds the
<NumberOfInheritanceLevelsThresholdValue> threshold value.

The default value for <NumberOfInheritanceLevelsThresholdValue> is 7.

Descriptor

[key ASCMM-MNT-17-descriptor]

ASCMM-MNT-17(Class: class,NumberOfInheritanceLevels: numberOfInheritanceLevels,
NumberOfInheritanceLevelsThresholdValue: numberOfInheritanceLevelsThresholdValue)

Variable input

[key ASCMM-MNT-17-input]

<NumberOfInheritanceLevelsThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-17-roles-class] Class

[key ASCMM-MNT-17-roles-numberOfInheritanceLevels] NumberOfInheritanceLevels

[key ASCMM-MNT-17-roles-numberOfInheritanceLevelsThresholdValue] NumberOfInheritanceLevelsThresholdValue

7.20 Pattern definition of ASCMM-MNT-18: Class Element Excessive
Number of Children

Pattern Category

[key ASCMM-MNT-18-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-18-objective]

Avoid overly complex object-oriented inheritance capabilities when dealing with the number of direct children of
classes.

Automated Source Code Maintainability Measure, v1.0 43

Consequence

[key ASCMM-MNT-18-consequence]

Software that does not follow the principles of reuse requires more maintenance effort in order to propagate changes to
all instances of duplicated code.

Measure Element

[key ASCMM-MNT-18-measure-element]

Number of instances where the number of children of a class element (that is, its number of child classes) exceeds a
threshold value. The default threshold value for number of children of a class element is 10.

Description

[key ASCMM-MNT-18-description]

This pattern identifies situations where the number of children (code:StorableUnit of code:DataType code:ClassUnit
with direct code:Extends relation) of the <Class> class element (code:StorableUnit of code:DataType code:ClassUnit) is
considered as too large, based on its <NumberOfChildren> number of child classes which exceeds the
<NumberOfChildrenThresholdValue> threshold value.

The default value for <NumberOfChildrenThresholdValue> is 10.

Descriptor

[key ASCMM-MNT-18-descriptor]

ASCMM-MNT-18(Class: class,NumberOfChildren: numberOfChildren, NumberOfChildrenThresholdValue:
numberOfChildrenThresholdValue)

Variable input

[key ASCMM-MNT-18-input]

<NumberOfChildrenThresholdValue> maximum value

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-18-roles-class] Class

[key ASCMM-MNT-18-roles-numberOfChildren] NumberOfChildren

[key ASCMM-MNT-18-roles-numberOfChildrenThresholdValue] NumberOfChildrenThresholdValue

7.21 Pattern definition of ASCMM-MNT-19: Named Callable and Method
Control Element Excessive Similarity

Pattern Category

[key ASCMM-MNT-19-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-19-objective]

Avoid software element redundancy.

44 Automated Source Code Maintainability Measure, v1.0

Consequence

[key ASCMM-MNT-19-consequence]

Software that does not follow the principles of reuse requires more maintenance effort in order to propagate changes to
all instances of duplicated code.

Measure Element

[key ASCMM-MNT-19-measure-element]

Number of instances where a named callable control element or method control element contains multiple computational
objects that are identical to computational objects in another named callable or method control element in the application
(the application determines the scope of the search for the second code item).

Description

[key ASCMM-MNT-19-description]

This pattern identifies situations where the <ControlElement1> named callable control element (code:CallableUnit with
code:CallableKind 'regular,' 'external,' or 'stored') or method control element (code:MethodUnit) contains too many
identical computational objects (code:ComputationalObject), based on the <NumberOfIdenticalTokens> number of
identical computational objects with the <ControlElement2> named callable or method control element within the
<Application> application; the <Application> application determines the scope of the search for the <ControlElement2>
code item.

Descriptor

[key ASCMM-MNT-19-descriptor]

ASCMM-MNT-19(ControlElement1: controlElement1,ControlElement2: controlElement2, NumberOfIdenticalTokens:
numberOfIdenticalTokens, Application: application)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-19-roles-controlElement1] ControlElement1

[key ASCMM-MNT-19-roles-controlElement2] ControlElement2

[key ASCMM-MNT-19-roles-numberOfIdenticalTokens] NumberOfIdenticalTokens

[key ASCMM-MNT-19-roles-application] Application

7.22 Pattern definition of ASCMM-MNT-20: Unreachable Named Callable
or Method Control Element

Pattern Category

[key ASCMM-MNT-20-relatedPatts-maintainability] ASCMM_Maintainability

Pattern Sections

Objective

[key ASCMM-MNT-20-objective]

Automated Source Code Maintainability Measure, v1.0 45

Avoid inactive code blocks that can mistakenly be considered as active and that can hide the active code in noise.

Consequence

[key ASCMM-MNT-20-consequence]

Software that does not follow the principles of reuse requires more maintenance effort in order to propagate changes to
all instances of duplicated code.

Measure Element

[key ASCMM-MNT-20-measure-element]

Number of instances where a named callable control element or method control element is unreferenced by any other
code item in the application (the application determines the scope of the search for code items that could call a callable
or method control element).

Description

[key ASCMM-MNT-20-description]

This pattern identifies situations where the <ControlElement> named callable control element (code:CallableUnit with
code:CallableKind 'regular', 'external,' or 'stored') or method control element (code:MethodUnit) is unreferenced
(action:CallableRelations) by any other code item (code:CodeItem) in the <Application> application; the <Application>
application determines the scope of the search for code items that could call the <ControlElement> callable or method
control element.

Descriptor

[key ASCMM-MNT-20-descriptor]

ASCMM-MNT-20(ControlElement: controlElement,Application: application)

Variable input

(none applicable)

Comment

(none applicable)

List of Roles

[key ASCMM-MNT-20-roles-controlElement] ControlElement

[key ASCMM-MNT-20-roles-application] Application

46 Automated Source Code Maintainability Measure, v1.0

8 Calculation of the Automated Source Code
Maintainability Measure and Functional
Density (Normative)

8.1 Calculation of the Base Measure

A count of total violations of quality rules was selected as the best alternative for measurement. Software quality
measures have frequently been scored at the component level and then aggregated to develop an overall score for the
application. However, scoring at the component level was rejected because many critical violations of Maintainability
quality rules cannot be isolated to a single component, but rather involve interactions among several components.
Therefore, the Automated Source Code Maintainability Measure is computed as the sum of its 20 quality measure
elements computed across the entire application.

The calculation of the Automated Source Code Maintainability Measure begins with determining the value of each of the
20 Maintainability measure elements. Each Maintainability measure element is measured as the total number of
violations of its associated quality rule that are detected through automated analysis. Thus the value of each of the 20
Maintainability measure elements is represented as CISQ-MntMEi where the range for i runs from 1 to 20.

The value of the un-weighted and un-normalized Automated Source Code Maintainability Measure (CISQ-Mnt) is the
sum of the values of the 20 Maintainability measure elements.

Higher values of CISQ-Mnt indicate a larger number of Maintainability-related defects in the application.

8.2 Functional Density of Maintainability Violations

In order to better compare Maintainability results among different applications, the Automated Source Code
Maintainability Measure can be normalized by size to create a density measure. There are several size measures with
which the density of Maintainability violations can be normalized, such as lines of code and function points. These size
measures, if properly standardized, can be used for creating a density measure for use in benchmarking applications.
However, the OMG Automated Function Points measure offers an automatable size measure that, as an OMG Supported
Specification, is standardized, adapted from the International Function Point User Group’s (IFPUG) counting guidelines,
and commercially supported. Although other size measures can be legitimately used to evaluate the density of
Maintainability violations, the following density measure for Maintainability violations is derived from OMG supported
specifications for Automated Function Points and the Automated Source Code Maintainability Measure. Thus, the
functional density of Maintainability violations is a simple division expressed as follows.

Automated Source Code Maintainability Measure, v1.0 47

This page intentionally left blank.

48 Automated Source Code Maintainability Measure, v1.0

9 Alternative Weighted Measures and Uses
(Informative)

9.1 Additional Derived Measures
There are many additional weighting schemes that can be applied to the Automated Source Code Maintainability
Measure or to the Maintainability measure elements that compose it. Table 9.1 presents several candidate weighted
measures and their potential uses. However, these weighting schemes are not derived from any existing standards and are
therefore not normative.

Table 9.1 - Informative Weighting Schemes for Maintainability Measurement

Weighting scheme Potential uses

Weight each maintainability measure by its severity Measuring risk of maintenance problems such as software
that is difficult to understand or change

Weight each Maintainability measure element by its
effort to fix

Measuring cost of ownership, estimative future corrective
maintenance effort and costs.

Weight each module or application component by
its density of Maintainability violations

Prioritizing modules or application components for
corrective maintenance or replacement.

Automated Source Code Maintainability Measure, v1.0 49

This page intentionally left blank.

50 Automated Source Code Maintainability Measure, v1.0

10 References (Informative)

Consortium for IT Software Quality (2010). http://www.it-cisq.org

Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the IEEE, 68 (9), 1103-
1119.

International Organization for Standards (2012). ISO/IEC 25010 Systems and software engineering – System and
software product Quality Requirements and Evaluation (SQuaRE) – System and software quality models

International Organization for Standards (2012). ISO/IEC 25023 (in development) Systems and software engineering:
Systems and software Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software product
quality.

International Organization for Standards (2012). ISO/IEC TR 9126-3:2003, Software engineering — Product quality —
Part 3: Internal metrics.

McCabe, T.J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2 (4), 308-320.

Object Management Group (2014). Automated Function Points. formal 2014-01-03 http://www.omg.org/spec/AFP/.

Automated Source Code Maintainability Measure, v1.0 51

http://www.it-cisq.org/

This page intentionally left blank.

52 Automated Source Code Maintainability Measure, v1.0

Annex A: CISQ

(informative)

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for automated measures of
software quality characteristics taken on source code. These measures were designed to provide international standards
for measuring software structural quality that can be used by IT organizations, IT service providers, and software
vendors in contracting, developing, testing, accepting, and deploying IT software applications. Executives from the
member companies that joined CISQ prioritized the quality characteristics of Reliability, Security, Performance
Efficiency, and Maintainability to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with the ISO/IEC
25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems. In order to maintain
consistency with the quality model presented in ISO/IEC 25010, software quality characteristics are defined for the
purpose of this specification as attributes that can be measured from the static properties of software, and can be related
to the dynamic properties of a computer system as affected by its software. However, the 25000 series, and in particular
ISO/IEC 25023 which elaborates quality characteristic measures, does not define these measures at the source code level.
Thus, this and other CISQ quality characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of
software measurement, one that is rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and Bangalore,
India to set strategy and direction for the consortium. In these forums four quality characteristics were selected as the
most important targets for automation—reliability, security, performance efficiency, and maintainability. These attributes
cover four of the eight quality characteristics described in ISO/IEC 25010. Figure 1.1 displays the ISO/IEC 25010
software product quality model with the four software quality characteristics selected for automation by CISQ
highlighted in blue. Each software quality characteristic is shown with the sub-characteristics that compose it.

Automated Source Code Maintainability Measure, v1.0 53

This page intentionally left blank.

54 Automated Source Code Maintainability Measure, v1.0

	1 Scope
	1.1 Overview
	1.2 CISQ Background
	1.3 Overview of Software Quality Characteristic Measurement
	1.4 Development of the Automated Source Code Maintainability Measure
	1.5 Structure of the Automated Source Code Maintainability Measure
	1.6 Using and Improving This Measure

	2 Conformance
	2.1 Overview

	3 References
	3.1 Normative References

	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Additional Information (Informative)
	6.1 Software Product Inputs
	6.2 Input Values for Thresholds in Measure Elements
	6.3 Automated Source Code Maintainability Measure Elements

	7 SPMS Representation of the Quality Measure Elements (Normative)
	7.1 Introduction
	This clause displays in a human readable format the content of the machine readable XMI format file for the current specification. The content of the machine readable XMI format file is the representations of the CISQ Quality Measure Elements:
	SPMS
	KDM
	Reading guide

	7.2 Category definition of CISQ Maintainability
	7.3 Pattern definition of ASCMM-MNT-1: Control Flow Transfer Control Element outside Switch Block
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.4 Pattern definition of ASCMM-MNT-2: Class Element Excessive Inheritance of Class Elements with Concrete Implementation
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.5 Pattern definition of ASCMM-MNT-3: Storable and Member Data Element Initialization with Hard-Coded Literals
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.6 Pattern definition of ASCMM-MNT-4: Callable and Method Control Element Number of Outward Calls
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.7 Pattern definition of ASCMM-MNT-5: Loop Value Update within the Loop
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.8 Pattern definition of ASCMM-MNT-6: Commented-out Code Element Excessive Volume
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.9 Pattern definition of ASCMM-MNT-7: Inter-Module Dependency Cycles
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.10 Pattern definition of ASCMM-MNT-8: Source Element Excessive Size
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.11 Pattern definition of ASCMM-MNT-9: Horizontal Layer Excessive Number
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.12 Pattern definition of ASCMM-MNT-10: Named Callable and Method Control Element Multi-Layer Span
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.13 Pattern definition of ASCMM-MNT-11: Callable and Method Control Element Excessive Cyclomatic Complexity Value
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.14 Pattern definition of ASCMM-MNT-12: Named Callable and Method Control Element with Layer-skipping Call
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.15 Pattern definition of ASCMM-MNT-13: Callable and Method Control Element Excessive Number of Parameters
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.16 Pattern definition of ASCMM-MNT-14: Callable and Method Control Element Excessive Number of Control Elements involving Data Element from Data Manager or File Resource
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.17 Pattern definition of ASCMM-MNT-15: Public Member Element
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.18 Pattern definition of ASCMM-MNT-16: Method Control Element Usage of Member Element from other Class Element
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.19 Pattern definition of ASCMM-MNT-17: Class Element Excessive Inheritance Level
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.20 Pattern definition of ASCMM-MNT-18: Class Element Excessive Number of Children
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.21 Pattern definition of ASCMM-MNT-19: Named Callable and Method Control Element Excessive Similarity
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	7.22 Pattern definition of ASCMM-MNT-20: Unreachable Named Callable or Method Control Element
	Pattern Category
	Pattern Sections
	Objective
	Consequence
	Measure Element
	Description
	Descriptor
	Variable input
	Comment

	List of Roles

	8 Calculation of the Automated Source Code Maintainability Measure and Functional Density (Normative)
	8.1 Calculation of the Base Measure
	8.2 Functional Density of Maintainability Violations

	9 Alternative Weighted Measures and Uses (Informative)
	9.1 Additional Derived Measures

	10 References (Informative)
	Annex A: CISQ

