
An OMG® Alert Management ServiceTM Publication

ALert MAnagement Service (ALMAS)

Version 1.4 beta

OMG Document Number: formal/24-01-03 [smsc/24-01-02]

Standard document URL: https://www.omg.org/spec/ALMAS

https://www.omg.org/spec/ALMAS

Copyright © 2005-2024, BAE Systems
Copyright © 2008-2024, Object Management Group, Inc.
Copyright © 2018-2024, SimVentions
Copyright © 2024, Sparx Systems Pty Ltd
Copyright © 2018-2019, Naval Surface Warfare Center
Copyright © 2020-2022, Real-Time Innovations
Copyright © 2005-2008, Raytheon Company
Copyright © 2005-2008, THALES Group

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

ii ALert Management Service (ALMAS), v1.3

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE,
DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ALert Management Service (ALMAS), v1.3 iii

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Specifications, Report a Bug/Issue.

iv ALert Management Service (ALMAS), v1.3

ALert Management Service (ALMAS), v1.3 v

Table of Contents

Preface..vii

1 Scope..1

2 Conformance...1

3 Normative References...2

4 Terms and definitions...3
4.1 General Definitions...3
4.2 Definitions Specific to this Document...4

5 Acronyms and Abbreviations..4

6 Platform Independent Model (PIM)...5
6.1 ALMAS Client Callbacks...5
6.1.1ALMASNotificationListener..5
6.1.2ALMASReceiver...6
6.2 ALMAS Data Model...6
6.2.1Alert..7
6.2.2AlertData...8
6.2.3AlertDataExtraAttributes..8
6.2.4AlertReport..9
6.2.5AlertTemplate...9
6.2.6AvailableAlertReceiver..10
6.2.7CallStatus...10
6.2.8DynamicMessageData..10
6.2.9ReceiverKind...11
6.2.10 StaticMessage..11
6.2.11 ValidAlertResponse..12
6.2.12 Category..12
6.2.13 State...13
6.2.14 Status...13
6.2.15 Scope..13
6.2.16 TimeoutAction..14
6.2.17 AckModel..14
6.3 ALMAS Management...14
6.3.1ALMASConfiguration..15
6.3.2ALMASLogger..16
6.3.3ALMASManager..16
6.3.4ALMASManagerExtensions..18
6.3.5ALMAS Producer...18
6.3.6ALMASResponder..21
6.3.7ALMASResponderExtensions...22
6.4 Alert Categorisation...22
6.4.1AbsoluteEvent...23
6.4.2AlertCategorisationRule..23
6.4.3CategorisationAction..23
6.4.4CategorisationCondition..23
6.4.5CategorisationRuleSet..23
6.4.6CategorisationTrigger..23
6.4.7ChangeEvent...24
6.4.8Event..24
6.4.9OperatorEvent..24
6.4.10 PeriodicEvent..24
6.4.11 RaiseAction...24
6.4.12 RelativeEvent..24
6.4.13 Time Event..25
6.5 Dynamic behaviour...25
6.5.1Action Situation Alert State Model...25
6.5.2Information Warning Alert State Model..26
6.5.3Alert Registration and Creation..27

vi ALert Management Service (ALMAS), v1.3

7 XML Platform Specific Model...29
7.1 The Template Alert Data specification file...29
7.2 The ALMAS configuration file..33
7.3 The Receiver Hierarchy configuration file...34
7.4 The ALMAS categorisation rule file...34

8 OMG CORBA/IDL Platform Specific Model..37
8.1 Rationale..37
8.2 ALMAS Data Model IDL...37
8.3 ALMAS Client IDL..39
8.4 ALMAS Management IDL..40

9 DDS/DCPS Platform Specific Model..43
9.1 Rationale..43
9.1.1DCPS level mapping...43
9.2 ALMAS Data Model – shared...43
9.3 DCPS..46
9.3.1ALMAS Client...46
9.3.2ALMAS Management...46
9.3.3DCPS topics QoS...49
9.4 DLRL...50
9.4.1ALMAS Client...50
9.4.2ALMAS Management IDL..50

10 COM IDL Platform Specific Model..55
10.1 Rationale..55
10.2 ALMAS Data Model IDL...55
10.3 ALMAS Client IDL..57
10.4 ALMAS Management IDL..58

11 GraphQL Platform Specific Model...63
11.1 Rationale..63
11.2 GraphQL Schema...63

ALert Management Service (ALMAS), v1.3 vii

 Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

viii ALert Management Service (ALMAS), v1.3

https://www.omg.org/report_issue.htm
http://www.iso.org/
mailto:pubs@omg.org
https://www.omg.org/

1 Scope

The domain of naval Combat Management Systems is characterized by a huge variety of underlying computing
platforms, with different and often incompatible means of managing and reporting alerts. Standards-based alert
management services are essential for interoperable and open systems. This specification is a standard for ALert
MAnagement Service (ALMAS) in CMS systems, consisting of a standard alerts data model and a model for an alert
delivery and lifecycle management service.

2 Conformance

This specification provides a level of conformance for a minimalist, basic ALMAS system; a fully functional ALMAS
system; plus, additional levels for specialized extensions. In addition, conformant ALMAS implementation must conform
to one or more of the middleware platform specific models presented in Chapters 8, 9, 10 and 11 of this document in
addition to conforming to the XML Alert template data model and the XML initialization PSMs as presented in sections
7.1to 7.3 of this document.

There are three distinct roles in the ALMAS abstracted by the interface classes defined in the ALMAS Management
package: Producer, Manager and Receiver. Conformance recognises that a conforming application will be performing
only one of these roles and therefore only a subset of the interface will be applicable. Accordingly, conformance is
defined in terms of the PIM interface methods that are applicable to each of these roles.

Level Producer Manager Receiver

1 Invokes:

RaiseAlertFromData

CancelAlert

Implements:

RaiseAlertFromData

CancelAlert

Invokes:

AlertDataNotification

Implements:

AlertDataNotification

2 Implements:

ALMASNotificationListener
interface

Invokes:

ALMASConfiguration
interface and any of the
ALMASProducer and
ALMASManager interface
methods

Implements:

ALMASConfiguration,
ALMASManager,
ALMASResponder and
ALMASProducer interfaces

Invokes:

ALMASNotificationListener
and ALMASReceiver
interfaces

Implements:

ALMASReceiver interface

Invokes:

Any of the
ALMASResponder and
ALMASManager interface
methods

3A N/A Level 2 plus

Implements:

ALMASResponderExtension
s interface

Level 2 plus

Invokes:

ALMASResponderExtensions
interface

3B Level 2 plus Level 2 plus N/A

ALert Management Service (ALMAS), v1.3 1

Invokes:

RemoveAlertsWithDynamic
MessageData

Implements:

RemoveAlertsWithDynamic
MessageData

3C Level 2 plus

Invokes:

AttachCategorizationRule &

DetachCategorizationRule

Level 2 plus

Implements:

AttachCategorizationRule &

DetachCategorizationRule

N/A

Level 3A groups together extensions for mulit-language support; 3B is an extension for a more complex alert lifecycle
from a producer’s perspective; and 3C is an extension for raising alerts indirectly through categorization rules.

Alternatively, configuration may be performed centrally by a system function, in which case applications with the
Producer role do not invoke the ALMASConfiguration interface.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

Table 3-1: Normative References

Title (Acronym) Version /
Date

Organization Reference / URL

Data Distribution Service
(DDS)

1.4 / March
2015

OMG formal/2015-04-10
https://www.omg.org/spec/DDS/1.4/PDF

Interface Definition
Language (IDL)

4.2 / January
2018

OMG formal/2018-01-05
https://www.omg.org/spec/IDL/4.2/PDF

Graph Query Language
(GraphQL)

June 2018 Facebook https://spec.graphql.org/June2018/

OASIS Common Alerting
Protocol (OASIS)

1.0 / 2004 OASIS https://www.oasis-open.org/committees/
download.php/6334/oasis-200402-cap-
core-1.0.pdf

Microsoft Component
Object Model (COM)

2009 Microsoft https:// www.docs.microsoft.com/en-us/
windows/win32/com/component-object-
model--com--portal

Common Object Request
Broker Architecture
(CORBA)

3.0.3 / March
2004

OMG https:// www.omg.org/spec/CORBA

Extensible Markup
Language (XML)

1.0 / 2008 W3C https://www.w3.org/TR/xml/

2 ALert Management Service (ALMAS), v1.3

https://www.w3.org/TR/xml/
https://www.omg.org/spec/CORBA/3.0.3
http://www.docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
http://www.docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
http://www.docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://www.oasis-open.org/committees/download.php/6334/oasis-200402-cap-core-1.0.pdf
https://www.oasis-open.org/committees/download.php/6334/oasis-200402-cap-core-1.0.pdf
https://www.oasis-open.org/committees/download.php/6334/oasis-200402-cap-core-1.0.pdf
https://spec.graphql.org/June2018/
https://www.omg.org/spec/IDL/4.2/PDF
https://www.omg.org/spec/DDS/1.4/PDF%20

 Open Telemetry (OTEL) 1.38.0 CNCF https://opentelemetry.io/docs/specs/otel/

4 Terms and definitions

4.1 General Definitions

Architecture Board (AB) - The OMG plenary that is responsible for ensuring the technical merit and MDA-
compliance of RFPs and their submissions.

Board of Directors (BoD) - The OMG body that is responsible for adopting technology.
Component Object Model (COM) – A platform-independent, distributed, object-oriented system for creating binary

software components that can interact.
Common Object Request Broker Architecture (CORBA) - An OMG distributed computing platform specification

that is independent of implementation languages.
Common Warehouse Metamodel (CWM) - An OMG specification for data repository integration.
CORBA Component Model (CCM) - An OMG specification for an implementation language independent

distributed component model.
Data-Centric Publish-Subscribe (DCPS) – The DDS specification describing the application interfaces and

communication semantics for distributed application communication and integration.
Data Distribution Service (DDS) – a middleware protocol and API standard for data-centric connectivity.
Data Local Reconstruction Layer (DLRL) – describes a high-level interface to DDS that allows a simple integration

of the DDS Service into the application layer.
Graph Query Language (GraphQL) – a query language for Application Programmable Interfaces and a runtime for

fulfilling those queries with your existing data.
Interface Definition Language (IDL) - An OMG and ISO standard language for specifying interfaces and

associated data structures.
Internet Assigned Numbers Authority (IANA) – a standards organization that oversees global Internet Protocol (IP)

address allocation and other internet Protocol-related symbols and numbers.
Letter of Intent (LOI) - A letter submitted to the OMG BoD’s Business Committee signed by an officer of an

organization signifying its intent to respond to the RFP and confirming the organization’s willingness to comply
with OMG’s terms and conditions, and commercial availability requirements.

Mapping - Specification of a mechanism for transforming the elements of a model conforming to a particular
metamodel into elements of another model that conforms to another (possibly the same) metamodel.

Metadata - Data that represents models. For example, a UML model; a CORBA object model expressed in IDL;
and a relational database schema expressed using CWM.

Metamodel - A model of models.
Meta Object Facility (MOF) - An OMG standard, closely related to UML, that enables metadata management and

language definition.
Model - A formal specification of the function, structure and/or behavior of an application or system.
Model Driven Architecture (MDA) - An approach to IT system specification that separates the specification of

functionality from the specification of the implementation of that functionality on a specific technology
platform.

Normative – Provisions that one must conform to in order to claim compliance with the standard. (as opposed to
non-normative or informative which is explanatory material that is included in order to assist in understanding
the standard and does not contain any provisions that must be conformed to in order to claim compliance).

Normative Reference – References that contain provisions that one must conform to in order to claim compliance
with the standard that contains said normative reference.

Platform - A set of subsystems/technologies that provide a coherent set of functionality through interfaces and
specified usage patterns that any subsystem that depends on the platform can use without concern for the details
of how the functionality provided by the platform is implemented.

Platform Independent Model (PIM) - A model of a subsystem that contains no information specific to the platform,
or the technology that is used to realize it.

Platform Specific Model (PSM) - A model of a subsystem that includes information about the specific technology
that is used in the realization of it on a specific platform, and hence possibly contains elements that are specific
to the platform.

Quality of Service (QOS) – in the context of DDS, a rich set of characteristics that define the behavior of the DDS
systems (such as reliability, liveliness, durability, etc.)

Request for Information (RFI) - A general request to industry, academia, and any other interested parties to submit
information about a particular technology area to one of the OMG's Technology Committee subgroups.

ALert Management Service (ALMAS), v1.3 3

https://opentelemetry.io/docs/specs/otel/

Request for Proposal (RFP) - A document requesting OMG members to submit proposals to the OMG's Technology
Committee. Such proposals must be received by a certain deadline and are evaluated by the issuing task force.

Task Force (TF) - The OMG Technology Committee subgroup responsible for issuing an RFP and evaluating
submission(s).

Technology Committee (TC) - The body responsible for recommending technologies for adoption to the BoD. There
are two TCs in OMG – Platform TC (PTC), that focuses on IT and modeling infrastructure related standards;
and Domain TC (DTC), that focus on domain specific standards.

Unified Modeling Language (UML) - An OMG standard language for specifying the structure and behavior of
systems. The standard defines an abstract syntax and a graphical concrete syntax.

UML Profile - A standardized set of extensions and constraints that tailors UML to particular use.
XML Metadata Interchange (XMI) - An OMG standard that facilitates interchange of models via XML documents.

4.2 Definitions Specific to this Document

The RFP prompting this response defined the following set of standard terminology which will henceforth be used within
this document:

 An event is an occurrence that has been detected by the system whose happening must be reported to
other members of the system, including human operators.

 An alert is an entity of observation regarding an event (or sequence of related events) to be reported
(directly or indirectly) to an appropriate set of actors.

 Alert clients are the entities within the system that raise, modify, receive, process, or handle alerts
generated by ALMAS.

 An alert template is a generic definition of a type of alert which can be raised, e.g., ‘collision warning’
– it requires instantiation to create an alert.

 An instance of an alert is a specifically raised alert e.g., ‘collision warning with track number 111,
bearing 020, range 2nm’

In addition to the general terms defined above, the RFP indicates that there is an expectation that the ALMAS standard
will include three main alert categories, as follows:

 Alerts which require no actor action or acknowledgement. This collection of alert templates are
generally informative or routine alerts, they are usually of lower priority / urgency and require some
action by ALMAS to be removed.

 Alerts which require acknowledgement by actor(s). This collection of acknowledgement alert
templates is usually more urgent alerts where at least one actor must indicate acknowledgement to
ALMAS that the alert has been received.

 Alerts which require both acknowledgement and action confirmation by actor(s). This collection of
action alert templates is frequently used for important or critical events where not only is
acknowledgement of the receipt required, but also confirmation that the required action has been
taken1.

5 Acronyms and Abbreviations

CMS (Naval) Combat Management System

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

HTTP HyperText Transfer Protocol

OMG Object Management Group

RFP Request For Proposal

UML Unified Modelling Language

XML eXtensible Mark-up Language

1 Definition of the required action is not within the scope of ALMAS.

4 ALert Management Service (ALMAS), v1.3

6 Platform Independent Model (PIM)

The PIM has been split into three packages as follows:

 ALMAS Client Callbacks: The interface to be implemented by system components that wish to be notified
of ALMAS events such as alerts created, deleted, etc.

 ALMAS Data Model: The structures and their relationships used in an ALMAS system.
 ALMAS Management: Components of the ALMAS system responsible for setting up ALMAS and alert

lifecycle oversight.

These are described below, note that ALMAS Categorization is an optional PIM for attaching event-based categorization
rules to alerts defined in the core parts of this specification.
Section 6.5 describes ALMAS dynamic behavior: alert state transition as well as the interactions between ALMAS
Receivers, Producers, and the ALMAS System itself.

6.1 ALMAS Client Callbacks

ALMAS Client Callbacks are the interfaces to be implemented by system components that wish to be notified of
ALMAS events such as alerts created, deleted, etc. There are two classes in this package. In order to be plugged into the
ALMAS system, a client must implement one of these interfaces, and register with the Alert Manager.

Figure 6-1: PIM class diagram for ALMAS Clients

6.1.1 ALMASNotificationListener

Class provided by registering notification listeners for receipt of alert distribution notifications.

6.1.1.1 Operation

Name Type Summary

AlertDistributionNotification
(int)

public void
[Parameters]
AlertID: int

This is called as soon as an alter requiring confirmation
has been received by the ALMAS system. This
callback is generated when the alert is in the Raised
state. (Note: StateChangeNotification callbacks are also
generated for this event.) The onward distribution is
notified through additional StateChangeNotification
callbacks.

6.1.2 ALMASReceiver

Class provided by registering alert receivers for provision of the notification callbacks. Only clients that implement this
interface and register as receivers can access active alert data. Clients can only register if they are built against the

ALert Management Service (ALMAS), v1.3 5

ALMAS interface; therefore, no runtime security control is required in this context. Note: The ALMASResponder
interface is used to notify ALMAS of “progress” in satisfying the received alert.

6.1.2.1 Operation

Name Type Summary

StateChangeNotification
(int, Enumeration)

public void
[Parameters]
AlertID: int,
NewState: Enumeration

Indicates a change of state of an alert to a receiver who
has registered for this alert's state change notifications.
These states are the same states as used in CurrentState
for an Alert. This callback is generated for an alert’s
initial state and all subsequent state transitions. it is not
generated when an alert instance is deleted. (Note:
instances can only be deleted by the ALMAS system
from a non-current state).

AlertDataNotification
(Alert, AlertReport)

public void
[Parameters]
AlertInfo: Alert,
Report: AlertReport

Provides notifications of new and modified alert data.

6.2 ALMAS Data Model

The classes described in this section provide the definition of the contents of Alerts, Alert Templates, and Receivers for
ALMAS. The two primary concepts in this data model are of an Alert Template and an Alert. The Alert Template
describes the static description of a pre-defined class of alerts, while an Alert contains the specific attributes of a “live”
Alert within the ALMAS system. Both utilize the AlertData class to describe many of their field attributes and values.

Note that the constraint called ‘alert_data’ in the figure below is defined as follows:

"context a: Alert inv: if ((a.alert_data.Category = Information) or (a.alert_data.Category = Warning))) then
(a.CurrentState <> Handled)"

6 ALert Management Service (ALMAS), v1.3

Figure 6-2: PIM class diagram for ALMAS Data Model

6.2.1 Alert

An active alert within ALMAS. The Alert class provides the main entity that ALMAS uses for tracking the state of an
alert. The specific data such as message and other attributes for an active alert is provided in the AlertData class which is
a member attribute of the Alert.

6.2.1.1 Attribute

Name Type Summary

AlertID public
int

The instance id for the specific instance of the alert.

RaisingTime public
Date

The time at which the alert was raised.

CurrentState public
State

Holds the current state of the alert, valid states are determined by the category of the alert,
{Raised, Routed, Received, Acknowledged, Handled, Cancelled, Timed_Out}. Note that
Handled is not a valid state for Information and Warning Alerts.

ProducerID public
String

The producer freetext ID - corresponds to CAP source

ALert Management Service (ALMAS), v1.3 7

6.2.2 AlertData

This represents the set of data shared between the alert template and alert classes. All fields have default values which
can be changed when alerts are raised/updated. This may be set up through the use of templates as specified through the
XML PSM, which initialises AlertTemplate and its associated classes.

6.2.2.1 Attribute

Name Type Summary

TemplateID public int A unique identifier for template which owns this alert data (or that was
used to create the alert if this is referenced from Alert). Valid range
from 1 upwards.

Category public
Enumeration

This enumeration can take the value Action / Warning / Information /
Situation

Priority public int Alert priority as an integer value in the range 1-99. The priority is open
for client use and not intended for interpretation by ALMAS.

Status public Status Corresponds to the OASIS CAP Status field.

Scope public Scope Corresponds to CAP scope.

Timeout public int Specifies the time, in seconds, required to elapse before the alert will
timeout and perform its default timeout action. 0 implies there is no
timeout.

ConfirmationRequired public boolean This is set if confirmation of receipt is required, that it has been
distributed. If this is set to true, the producer has registered for receipt of
the distribution notification.

SecondaryGrouping public String This is an additional field to support client specific filtering mechanisms.

Persistent public boolean Indicates whether the alert data is required to be persistent in the event of
a system restart

ReliablyDistributed public boolean A flag which, when true, indicates that the alert should have guaranteed
delivery.

TimeoutAction public
TimeoutAction

When the alert times-out, ALMAS acts according to this attribute.

AcknowledgementMode
l

public AckModel Sets the conditions upon which the alert state can transition to
'acknowledged'.This has the options of {none, anyone, all}

6.2.3 AlertDataExtraAttributes

This is a class representing items of alert data that are specific to particular clients, that require supporting in order to
fulfil possible requirements of an alert management system (such as images, screen locations or other binary data), but
are not general enough to be defined explicitly as data types in an ALMAS. Effectively ALMAS provides blind delivery
of the information provided by this class to the alert receiver without any knowledge as to its intended meaning and
behaviour. The extra attributes are configured via the ALMAS Alert definition xml PSM specified in section 7.1. If
defined in the Alert definition XML provided to ALMAS, then ALMAS shall support the definition, receipt, storage and
passing of this data to receivers as part of a standard implementation.

8 ALert Management Service (ALMAS), v1.3

6.2.3.1 Attribute

Name Type Summary

Name public String Name of the client specific attribute

Value public
ByteSequence

Contents as a byte sequence. (Note: strings are not null-terminated).

TypeOfByteDat
a

public int Valid values for this are: 0 = string (UTF-8) 1 = Integer8 2 = Integer16 3 =
Integer32 4 = Float32 5 = Float64 6 = bytes (private format) 7 = bytes
(defined by media type)

Description public String This field is used to provide an indication of the content e.g., ‘image (jpg), URL,
track object ID, …
When the TypeOfByteData is 7, this is set to the media type / subtype tree as
defined by IANA.

6.2.4 AlertReport

This provides the delivery message of an Alert to an ALMASReceiver. It contains the Alert and the current status
information. This will contain details of whether the instance has been acknowledged by this receiver etc. and will also
be completed with respect to any dynamic message data.

6.2.4.1 Attribute

Name Type Summary

Acknowledged public
boolean

Identified whether the alert has been acknowledged by this receiver.

Routed public
boolean

Identified whether the alert can be confirmed to have been routed as per the
'routed' alert substate.

Actioned public
boolean

Identified whether the alert has been actioned by this receiver.

ReceiverIsActione
e

public
boolean

Indicates that this receiver is the chosen actionee for this alert.

AlternativeAction public
StringSet

Provides means by which an alternative action outside of the scope of ALMAS
can be distributed with the alert via ALMAS.

6.2.5 AlertTemplate

An AlertTemplate specifys the generic characteristics of a specific alert type “at rest” (e.g., the general characteristics of
a collision warning alert). This includes the category of alert, such as Action etc. An AlertTemplate uses an associated
AlertData object to specify the contents of the template. An AlertTemplate can be used to specify the properties of
commonly used within a system. At the time of raising an Alert from a template, the user/system provides the relevant
instance data of that alert. It is an error to specify RaiseToAll and to define either ReceiverKind instances or a Secondary
Grouping in the AlertData instance.

ALert Management Service (ALMAS), v1.3 9

6.2.5.1 Attribute

Name Type Summary

Inhibited public
boolean

The inhibition status of that alert type. If this is 'true' then attempts to raise an alert of that
type will fail.

RaiseToAll public
boolean

Indicates that the alert should be raised to all available receivers rather than specified ones.

6.2.6 AvailableAlertReceiver

The class used to identify a receiver of alerts. A registered receiver of alerts. The AvailableAlertReceiver is registered
with ALMAS through the ALMASResponder API. The AvailableAlertReceiver is directly associated with an
ALMASReceiver through the ReceiverID attribute, which is provided at registration time to ALMAS using the
RegisterReceiver method.

6.2.6.1 Attribute

Name Type Summary

ReceiverID public String Unique identifier for the receiver.

ReceiverKind public ReceiverKind The kind of the receiver as an explicit attribute link to the Receiver Kind class.

6.2.7 CallStatus

This is the ALMAS a general-purpose success/failure descriptor class used throughout ALMAS. If Success, then the
other parameters are not applicable.

6.2.7.1 Attribute

Name Type Summary

Success public
boolean

Flag indicating pass/fail status

Reason public int Enumerated reason correlating to the
“Call Status”
0 = Success
1 = Not Accepted
2 = Malformed Alert
3 = Timeout/delivery
4 = Requested Service Unavailable
5+ = Other

Description public
String

Additional String data further describing status

10 ALert Management Service (ALMAS), v1.3

6.2.8 DynamicMessageData

Since Alerts often have variable data fields, the DynamicMessageData class provides the means for inserting variable
content into the Alert’s MessageText during runtime. Replacement values for the DataTag are treated as strict string
substitution within the MessageText of the StaticMessage associated with the Alert. This is used to capture the triplet of
data tag type, tag position in the alert message and the value that this tag in the template message text should be replaced
with. Note: if the text specified in the StaticMessage contains multiple replacement points then an equal number of
DynamicMessageData objects are required for full substitution. It is an error to specify StaticMessage and
DynamicDataMessage instance collections with different sets of substitution tags for the same alert template. To
substitute language locale specific dynamic data, define and supply distinct language locale specific tags when raising
alerts. (I.e., for each language and placeholder combination, supply a DynamicMessageData instance with a unique
DataTag to match a placeholder in exactly one StaticMessage instance).

6.2.8.1 Attribute

Name Type Summary

DataType public
String

The type of related object e.g., freetext, track, vehicle, position, etc.

DataTag public
String

This identifies the insertion point for the related object in the MessageText associated with the
Alert. Tags are alphanumeric so to match StaticMessage text "xxxxx %number% yyyyyyy zzzz",
a DataTag with the value “number” is required. It is a case sensitive, alphanumeric string.

DataValu
e

public
String

The value of the object instantiation. Given a type of string to be general enough to support free
text and track/vehicle id's alike.

6.2.9 ReceiverKind

The descriptor of an alert receiver. This could for example be an operator role. ReceiverKind objects are used in many
places in ALMAS including the specification of what operators/clients will receive which Alerts.

 These are used to show all possible receivers of an Alert, when used in an AlertTemplate.
 These are used during runtime to identify the actual receivers for an active alert.

6.2.9.1 Attribute

Name Type Summary

RKType public
String

String identifier of the kind of receiver, for example the role of a receiving operator.

RKParentType public
String

The hierarchical parent receiver kind name that this one “belongs to”. This is used by
ALMAS to resolve cases where a specific RK is not available, but handing is required by an
appropriate receiver. Note that a lack of a Parent is indicated by an empty string.

6.2.10 StaticMessage

Provides the default message text for an alert as a tuplet of the actual static text and the language in which the text is
provided. An AlertData object has a StaticMessage instance for each language supported by a particular ALMAS. If the
StaticMessage requires runtime updating, then use data tags as specified in DynamicMessageData. To support the
runtime substitution of different text for different languages, data tags must have different values in each of the languages
to define the substitution uniquely.

ALert Management Service (ALMAS), v1.3 11

6.2.10.1 Attribute

Name Type Summary

MessageText Public
String

This is a text string, which in an Alert or AlertTemplate is only partially completed. With
the MessageText being "xxxxx %number% yyyyyyy zzzz" in an Alert or AlertTemplate,
and with a DynamicMessageData with DataTag having the value “number” and
DataValue having the value "123" then the resulting MessageText in response to
GetFilledMessageText will be "xxxxx 123 yyyyyyy zzzz". All substitution points are of
the form "(start | non-alphanumeric%(tag)%(end | non-alphanumeric)", where start and
end denote the start and end of the MessageText string respectively and tags are case
sensitive, alphanumeric strings ("number" in the above) which should correspond to a
DataTag in an associated DynamicMessageData.

MessageLanguag
e

public
String

The message ‘Locale’

6.2.11 ValidAlertResponse

The ValidAlertResponse is the association class that specifies the list of actions that a particular ReceiverKind (e.g.,
“role”) can take in response to an Alert of an AlertTemplate type. It also specifies the priority for being chosen as the
actionee of that ReceiverKind among all ReceiverKinds associated with that AlertTemplate.

The set of alternative action strings can be used by the system to provide a constraind set of “command-response” options
to the client. For example, ValidAlertResponses for an “Engagement Request Alert” might include “WILCO”,
“CANTCO”, etc.

6.2.11.1 Attribute

Name Type Summary

AlternativeActio
n

public
StringSet

The 'names' of alternative actions available to the relevant actor.

ActioneePriority public int The priority of the ReceiverKind as actionee for a specifc alert as described by its
template. The highest priority actionee for an action alert should be chosen as the
current actionee for the alert. This will then flow into the ReceiverIsActionee field of
the AlertReport.

6.2.12 Category

The categories of alerts in terms of the expectation placed on the operator receiving the alert; i.e., generically, why has
the alert been received and what type of implicit or explicit response is expected.

6.2.12.1Attribute

Name Summary

Action An explicit input to the system is expected as a result of receiving the alert. The alert persists until it is

12 ALert Management Service (ALMAS), v1.3

cancelled due to the condition to which it relates no longer being present (due either to explicit operator
action relating to the alert or action external to the ALMAS system).

Warning The receiver may decide to take an explicit action in mitigation to the condition to which the warning
relates. The alert does not persist according to the underlying condition that the alert warns about.

Information The receiver is expected to take account of this information in subsequent decisions. The alert does not
persist according to the underlying condition that the alert informs about.

Situation The receiver is expected to take account of the new state of the situation in subsequent decisions. The alert
persists until it is cancelled due to the condition to which it relates no longer being present (due either to
explicit operator action relating to the alert or action external to the ALMAS system).

6.2.13 State

The states between which an alert transitions in its lifetime.

6.2.13.1 Attribute

Name Summary

Raised The alert has been created by the alert producer.

Routed The alert has been routed to the receivers, but reception has not been confirmed by sufficient receivers
to enter the received state.

Received The alert has been received by sufficient receivers.

Acknowledged All necessary acknowledgements have been made.

Handled The alert ends its lifetime through being handled.

Cancelled The alert ends its lifetime through being cancelled by the producer.

TimedOut The alert ends its lifetime through being timed-out.

6.2.14 Status

The status of the entities with regards to the mode of use of ALMAS in comparison to the mode of use of receivers and
producers.

6.2.14.1 Attribute

Name Summary

Actual Actionable by all targeted recipients.

Exercise Actionable only by designated exercise participants.

System For entities that support alert network internal functions.

Test Technical testing only, all recipients disregard

ALert Management Service (ALMAS), v1.3 13

6.2.15 Scope

This class models the scope of the alert's dissemination.

6.2.15.1 Attribute

Name Summary

PublicScope unrestricted dissemination

RestrictedScop
e

dissemination restricted to known functions

PrivateScope dissemination restricted to specified addresses

6.2.16 TimeoutAction

This class models the possible behaviors when an alert is timed-out.

6.2.16.1 Attribute

Name Summary

CancelOnly The alert is just cancelled (the alert instance's lifetime ends).

NotifyOnly The alert manager is notified.

CancelWithNotif
y

The alert is cancelled (the alert instance's lifetime ends) and the alert manager is notified.

6.2.17 AckModel

This class models the conditions upon which an alert state can transition to 'acknowledged'.

6.2.17.1 Attribute

Name Summary

AckByNone No acknowledgement is required.

AckByAnyone Any single acknowledgement is sufficient.

AckByAll The alert must be acknowledged by all recipients.

6.3 ALMAS Management

This section describes the classes responsible for raising, routing, maintaining the state of, and destroying alerts through
their lifecycle. ALMAS uses a collection of specialized component interfaces for maintaining state, data, and lifecycle of
Alerts. In general, systems that utilize ALMAS will interact during runtime primarily through the ALMAS Producer,
Responder, and Notification Listener classes. The ALMAS Manager interface is utilized more at system startup.

14 ALert Management Service (ALMAS), v1.3

Deleting alert instances is under the control of ALMAS itself as part of its lifecycle management, and not at the request
of its users. In more detail:

 Any alert is removed when cancelled. Note that Situation alerts are only removed when cancelled.
 Information and Warning alerts are removed when the required number of acknowledgements (as identified

in the AlertData AcknowledgementModel attribute) are given or (if a timeout is defined) when the timeout
is expired.

 Action alerts are removed when HandleAlert is called by the Receiver identified as the Actionee in its
AlertReport.

Figure 6-3: PIM class diagram for ALMAS Management

This package provides the main API to the ALMAS service.

6.3.1 ALMASConfiguration

Provides an API by which systems can configure ALMAS to behave in a more tailored manner in order to satisfy very
specific requirements. There are three categories of configuration file that can be used by ALMAS: the receiver
hierarchy, templates, and configuration information. The string filename is expected to resolve to either a local file
accessible to ALMAS, or a URL accessible to ALMAS. The returned CallStatus object from each of the methods
provides an indication of success/failure and any additional relevant rationale describing that status. The effect of
invoking the ALMASConfiguration interface does not persist beyond the lifetime of the application. Clients must invoke
the operations on the interface for each execution lifetime of the Manage application.

ALert Management Service (ALMAS), v1.3 15

6.3.1.1 Operation

Name Type Summary

LoadReceiverHierarchy
(String)

public CallStatus
[Parameters]
Filename: String

Loads the receiver hierarchy as provided by the
client via xml conforming to the relevant xml
schema document. The specification of the
ReceiverHierarchy file format can be found in
section 7.3. If invoked multiple times for an
application lifetime, the semantics are additive but
disjoint; it is an error to define a receiver in a
hierarchy file that has already been defined.

LoadTemplateSet
(String)

public CallStatus
[Parameters]
Filename: String

Loads a template set into the ALMAS database.
Multiple calls to this method result in the union of
the new templates with the existing templates in
ALMAS. It is an error to refer to ReceiverKind
instances in the template file that have not been
previously defined in a loaded hierarchy file. It is
also an error to duplicate an existing template id
or to mismatch tags between static messages and
dynamic data. These are permitted
implementation-specific error conditions: to use
an unsupported data type for dynamic message
data, to use an out of range value for type of byte
data, to omit a static message for a particular
language or to exceed capacity limits. The
specification of the template file format can be
found in section 7.1.

LoadConfiguration
(String)

public CallStatus
[Parameters]
Filename: String

Loads the ALMAS configuration file as provided
by the client.

The specification of the configuration file format
can be found in section 7.2.

6.3.2 ALMASLogger

The ALMASLogger interface provides a logging mechanism to record Alert information created by the system. All
API methods are logged by conformant implementations; the mechanism to do so is defined by each of the PSM sections
later in this document

6.3.3 ALMASManager

The ALMASManager interface provides the minimal set of APIs necessary to track ALMAS activity. Additionally, the
ALMASManager provides the interface in ALMAS for retrieving Alerts and AlertTemplates and registering for the
notification of delivery of Alerts. Note that the registration of receivers is done via the ALMAS Responder class.

Note: The methods found in the ALMASProducer interface allow the system to update the status or attributes of an alert
during runtime. The ALMAS Manager resolves dynamic message data and each recipient’s language selection that each
Alert instance contains exactly one static message and no dynamic message data. A component implementing the
ALMASManager, ALMASProducer and ALMASResponder interfaces is able to flexibly coordinate the distribution of
alerts and responses between producers and responders.

6.3.3.1 Attribute

Name Type Summary

16 ALert Management Service (ALMAS), v1.3

SystemID private String Provides a field for specifying the current instance of ALMAS. Corresponds to CAP
sender

6.3.3.2 Operation

Name Type Summary

GetAlert
(int, Alert)

public CallStatus
[Parameters]
AlertID: int,
out Alert: Alert

Retrieves data for a specific raised alert
from ALMAS given the passed
AlertID.

 Assumes the requestor knows the
AlertID to retrieve. This operation
retrieves the current data for an alert
that is already known to the client.

GetAlerts
(String, SortedAlertSet)

public CallStatus
[Parameters]
Filter: String,
out AlertSet: SortedAlertSet

Retrieves a set of all alert instances
within ALMAS that satisfy the filter.
The filter string provided will be
compared with the value in the
AlertData SecondaryGrouping field.
All matches will be returned in the Set.

SetAlertInhibited
(int, boolean)

public CallStatus
[Parameters]
TemplateID: int,
Inhibition: boolean

Sets the inhibition status of a specific
alert template to suppress or allow the
raising of all alerts of that template.
Whilst set to inhibited, the ALMAS
Manager fails attempts to raise an alert
using that template.

UpdateDynamicMessageData
(int, String, DynamicMessageData)

public CallStatus
[Parameters]
AlertID: int,
ObjectValue: String,
OldData: DynamicMessageData

Indicates a change to the value of a
related object for the provided alert ID.
OldData is necessary in order to clearly
indicate which dynamic message data
should be changed.

GetTemplate
(int, AlertTemplate)

public CallStatus
[Parameters]
TemplateID: int,
out Template: AlertTemplate

Retrieves an existing alert template
from ALMAS by providing the
template ID.

GetAllTemplateIDs
(String, TemplateIDSet)

public CallStatus
[Parameters]
Filter: String,
out TemplateIDs: TemplateIDSet

Retrieves all Alert Template IDs, or if
the Filter string is non-null, it returns
those which satisfy the Filter. The
filter string provided will be compared
with the value in the AlertData
SecondaryGrouping field. All matches
will be returned in the Set.

RegisterNotificationListener
(ALMASNotificationListener)

public CallStatus
[Parameters]
Handle: ALMASNotificationListener

Registers a new Notification Listener
for receipt of the alert distribution
notifications.

ALert Management Service (ALMAS), v1.3 17

6.3.4 ALMASManagerExtensions

This class contains optional extensions to the alert manager functionality. These extensions may or may not be
implemented in simple ALMAS implementations.

6.3.4.1 Operation

Name Type Summary

RemoveAlertsWithDynamicMessageData
(String, String)

public CallStatus
[Parameters]
CancellerID: String,DataType:
String,DataValue: String

Indicates to ALMAS that a specific
object has been removed from the
system, and therefore all associated
alerts are no longer valid. These will
then be deleted from ALMAS.

AttachCategorisationRule
(int, int)

public CallStatus
[Parameters]
TemplateID: int,
RuleID: int

Associates an event categorisation rule
with an AlertTemplate

DetachCategorisationRule
(int, int)

public CallStatus
[Parameters]
TemplateID: int,
RuleID: int

Disassociates an event categorisation
rule from an AlertTemplate

6.3.5 ALMAS Producer

Provides the API by which system components producing alerts can create and update alerts that are generated. A
CallStatus object will be returned to indicate whether the request has been accepted by ALMAS. If a system wished to
track the lifecycle of the alert, they must implement the NotificationListener functionality to receive updates.

Four mechanisms by which alerts can be raised are provided by the ALMASProducer interface class. Three variants
RaiseAlertFromTemplate, RaiseAlertWithDynamicData and RaiseAlertFromOverrides allow the system to raise an alert
by simply specifying the alert ID, template ID and their own ProducerID; with dynamic data allows the specification of
the intentionally variable data to supplement the template alert definition; from overrides also allows the over-ride of any
placeholders that may be present in the ‘Message’ attribute of the alert data class associated with that template.

The raiser may also optionally override any of the following parameters: Message, MessageLanguage, Category, Status,
Scope, Timeout, ConfirmationRequired, AlertReceiverSet, Priority, TimeoutAction and AcknowledgementModel.

The RaiseAlertFromData method allows the raiser to specify a completely new alert with no basis on any existing
templates. Systems using ALMAS may not wish to support alert templates depending on their size, complexity, and level
of alert usage, in which case that system can always use RaiseAlertFromData without need to instantiate any templates at
any point during operation.

The status or attributes of an alert can be updated during runtime by calling the UpdateAlert method found in the
ALMASProducer interface. The ALMASProducer then works with the ALMAS system to ensure state and data is
properly maintained in the system.

18 ALert Management Service (ALMAS), v1.3

6.3.5.1 Operation

Name Type Summary

RaiseAlertFromOverrides
(String, int, int, Category, int,
Status, Scope, double, boolean,
String, boolean, boolean,
TimeoutAction, AckModel,
StaticMessageTypeSet,
DynamicMessageDataTypeSet,
ReceiverKindTypeSet,
AlertDataExtraAttributesTypeSet)

public CallStatus
[Parameters]
ProducerID: String,
TemplateID: int,
out AlertID: int,
Category: Category,
Priority: int,
Status: Status,
Scope: Scope,
Timeout: double,
ConfirmationRequired: boolean,
SecondaryGrouping: String,
Persistent: boolean,
ReliablyDistributed: boolean,
TimeoutAction: TimeoutAction,
AcknowledgementModel: AckModel,
StaticMessages: StaticMessageTypeSet,
DynamicMessages:
DynamicMessageDataTypeSet,
AlertReceivers: ReceiverKindTypeSet,
ExtraAttributes:
AlertDataExtraAttributesTypeSet

This will cause an alert based on a
known alert template to be created and
raised.
ProducerID, TemplateID and the out
parameter AlertID are mandatory, all
other parameters are optional.
Return parameter indicates success or
failure reason.
The operation fails if the template is
inhibited, or the hierarchy does not
define the receiver kinds or static and
dynamic tags are mismatched. The
following are permitted
implementation-specific failure cases:
unsupported data type for dynamic
message data, omitted language in static
messages, capacity exceeded.

RaiseAlertWithDynamicData
(String, int, int,
DynamicMessageDataTypeSet,
AlertDataExtraAttributesTypeSet)

public CallStatus
[Parameters]
ProducerID: String,
TemplateID: int,
out AlertID: int,
DynamicMessages:
DynamicMessageDataTypeSet,
ExtraAttributes:
AlertDataExtraAttributesTypeSet

This will cause an alert based on a
known alert templateto be created and
raised, whilst only specifying the
dynamic data content that differs from
the template definition.

All parameters are mandatory. Return
parameter indicates success or failure
reason. The operation fails if the
template is inhibited.

RaiseAlertFromData
(String, AlertTemplate, int)

public CallStatus
[Parameters]
ProducerID: String,
AlertInfo: AlertTemplate,
out AlertID: int

Raise an alert not present in the
ALMAS template database.
A temporary AlertTemaplate is created
(whose TemplateID is ignored), to
facilitate the creation.
Return parameter indicates success or
failure reason. The operation fails if the
hierarchy does not define the receiver
kinds or static and dynamic tags are
mismatched. The following are
permitted implementation-specific
failure cases: unsupported data type for
dynamic message data, value for type of
byte data out of range, omitted language
in static messages, capacity exceeded.

RaiseAlertFromTemplate
(String, int, int)

public CallStatus
[Parameters]
ProducerID: String,
TemplateID: int,
out AlertID: int

Raise an alert without any of the
optional parameters for optimal use in
the normal case. The operation fails if
the template is inhibited.

ALert Management Service (ALMAS), v1.3 19

Name Type Summary

UpdateAlertPriority
(int, String, int)

public CallStatus
[Parameters]
AlertID: int,
ProducerID: String,
Priority: int

Updated the priority of existing alert
instances that have previously been
raised.

CancelAlert
(int, String, String)

public CallStatus
[Parameters]
AlertID: int,
CancellerID: String,
CancellationReason: String

Cancel a specific alert within ALMAS
Return parameter indicates success or
failure reason.

6.3.6 ALMASResponder

Provides the API for systems to respond to and provide feedback to ALMAS about alerts received. Embedded in this
class are the methods to register and un-register your system-specific receiver.

The system notifies ALMAS through this interface of significant events that have occurred to change the state of an alert.

6.3.6.1 Operation

Name Type Summary

AcknowledgeAlert
(int, String)

public CallStatus
[Parameters]
AlertID: int,
ReceiverID: String

Indication from an alert receiver that they have
acknowledged receipt of the alert and no longer
require distribution of its information.

ConfirmReceipt
(int, String)

public CallStatus
[Parameters]
AlertID: int,
ReceiverID: String

Confirmation by an alert receiver that they have
successfully received the alert to ensure reliable
distribution. The ReceiverID field enables action &
situation alerts to transition when sufficient
confirmations have been received. 'Sufficient' is the
'actionee' for action alerts, and anyone for situation
alerts. It can also be used for logging purposes.

HandleAlert
(int, String, String)

public CallStatus
[Parameters]
AlertID: int,
ReceiverID: String,
AlternativeAction: String

Indication from an Alert Receiver that they have
performed the appropriate action required by an
Action alert and that the alert can therefore be
removed from ALMAS as no longer applicable. An
Alternative Action has been performed if that
parameter is non-null.

RegisterReceiver
(ALMASReceiver,
String, String)

public CallStatus
[Parameters]
ReceiverHandler: ALMASReceiver,
ReceiverID: String,
RKType: String

This registers a receiver with ALMAS, the
parameters are ReceiverHandle (for callback);
ReceiverID (for use in all other methods, including
UnregisterReceiver) and RKType to provide link to
RK hierarchy. It is an error to refer to an RKType that
has not been previously defined in a loaded hierarchy
file.

UnregisterReceiver
(String)

public CallStatus
[Parameters]
ReceiverID: String

Removes a registered receiver from ALMAS,
indicating that they are no longer available for receipt
of alert data.

20 ALert Management Service (ALMAS), v1.3

6.3.7 ALMASResponderExtensions

Optional extensions to the alert responder functionality.

6.3.7.1 Operation

Name Type Summary

SetLanguage
(String, String)

public CallStatus
[Parameters]
ReceiverID: String,
Language: String

Sets the language that this specific receiver should see
their message text displayed in where appropriate. This
method fails (Requested Service Unavailable) if there is
no support for the language.

GetFilledMessageText
(int, String)

public CallStatus
[Parameters]
AlertID: int,
out MessageText: String

Returns the message text post related info substitutions.
This is an optional helper function as the client could
derive this itself.

6.4 Alert Categorisation

The Alert Categorisation PIM allows the expression of Event-Condition-Action rules which can guide automatic
triggering of alerts. This represents an optional part of the specification, as it is also possible to trigger alerts through the
ALMAS API. The Categorisation PIM allows for the implementation of monitoring components (agents) which can
trigger alerts based on different events taking place in the system, such as time events or changes in the internal state of
the system.

ALert Management Service (ALMAS), v1.3 21

Figure 6-4: Alert Categorisation Platform Independent Model

6.4.1 AbsoluteEvent

Represents an event taking place once at a specific time moment.

6.4.1.1 Attribute

Name Type Summary

TimeMoment public Date The time of the trigger event

6.4.2 AlertCategorisationRule

Alert Categorisation Rule represents an Event-Condition-Action rule guiding the categorisation. On Event being
triggered, a Condition is evaluated. If it evaluates to true, the corresponding Categorisation Action is executed.

6.4.2.1 Attribute

Name Type Summary

RuleID public int The rule identifier

22 ALert Management Service (ALMAS), v1.3

6.4.3 CategorisationAction

Categorisation Action represents the action to be executed when an event has occurred, and the conditions required have
been fulfilled.

6.4.4 CategorisationCondition

The Categorisation Condition represents the condition part of the Event, Condition Action rule.

6.4.4.1 Attribute

Name Type Summary

ConditionFormula public String The condition formula

6.4.5 CategorisationRuleSet

This is the set of Event, Condition Action rules which apply to this ALMAS system.

6.4.6 CategorisationTrigger

The Categorisation Trigger represents the Event which is able to be observed by ALMAS that can trigger categorisation.

6.4.7 ChangeEvent

One type of event such as enter/leave area, change of generic data value, etc.

6.4.7.1 Attribute

Name Type Summary

Chang
e

public String The change which is
required

6.4.8 Event

General class of Event, used within the Categorisation Trigger.

6.4.9 OperatorEvent

Operator initiated events, for example operator changing a role.

6.4.9.1 Attribute

Name Type Summary

Actio
n

public String The operator action required

ALert Management Service (ALMAS), v1.3 23

6.4.10 PeriodicEvent

Represents a relative event, i.e., an event taking place at a specific (time) interval after another event.

6.4.10.1 Attribute

Name Type Summary

Interva
l

public double The condition formula

6.4.11 RaiseAction

A kind of Categorisation Action which raises an alert. Other categorisation actions could be added.

6.4.12 RelativeEvent

Represents a periodic event taking place between start_event and end_event at a specific periodicity (interval).

6.4.12.1 Attribute

Name Type Summary

Interva
l

public
double

Time interval after the reference_interval event at which the RelativeEvent is to
take place.

6.4.13 Time Event

A timeout event, which can be absolute, relative, or periodic.

24 ALert Management Service (ALMAS), v1.3

6.5 Dynamic behaviour

6.5.1 Action Situation Alert State Model

Figure 6-5: Action/Situation Alert Lifecycle

ALert Management Service (ALMAS), v1.3 25

6.5.2 Information Warning Alert State Model

Figure 6-6: Information/Warning Alert Instance Lifecycle

26 ALert Management Service (ALMAS), v1.3

6.5.3 Alert Registration and Creation

Figure 6-7: Alert Registration and Creation Sequence Diagram

The above sequence diagram shows the interaction with the ALMAS service from several user perspectives.

First it indicates the receiver registration interactions (shown as threads 1 and 2 in the figure).

Second it shows the alert raising interactions from an alert producer, with an illustration of the additional callback made
if the alert requires routing confirmation (thread 3 up to 3.1.1).

Interactions 3.1.2 through 3.1.6 are indications of the internal activities but are not requirements upon the internals (hence
shown under the fictional class ALMAS System Internals).

Finally, interactions 3.1.6.1-4 and 3.1.6.5-7 are two possible interaction from ALMAS back to the alert receiver,
depending upon the ReliablyDistributed attribute of the alert. In the case of this attribute being TRUE then 3.1.6.1-4 are
executed, otherwise 3.1.6.5-7 are executed.

ALert Management Service (ALMAS), v1.3 27

This page intentionally left blank.

7 XML Platform Specific Model

7.1 The Template Alert Data specification file

The Template Alert Data specification file is an xml schema document which specifies the ontology of the alert template
data to be loaded into an ALMAS by the LoadTemplateSet method. Use of this is therefore effectively optional but any

28 ALert Management Service (ALMAS), v1.3

client that wishes to make use of templates may do so by supplying corresponding valid xml for loading into the system.
There are no API methods in this PSM and therefore there is no logging mechanism associated with this PSM.

7.2 The ALMAS configuration file

The ALMAS configuration file is an xml schema document specifying some client specific attributes to allow an
ALMAS to be more flexible to a client’s specific needs from their ALMAS implementation. This should allow for
greater interoperability and usability. It is loaded by use of the LoadConfiguration method.

7.3 The Receiver Hierarchy configuration file

The receiver hierarchy configuration file specifies the structure of the relationships between alert receivers to allow for
resilience processing in the event of receiver non-availability. If an alert requires routing to a specific receiver who is not
available, then the receiver Hierarchy file specifies a parent receiver in place of the higher-priority receiver originally
specified.
Search progresses iteratively up the hierarchy until an available receiver is found in place of the original one.

The receiver hierarchy is loaded via the LoadReceiverHierarchy method.

7.4 The ALMAS categorisation rule file

The categorization rule file is an xml schema document which specifies the categorization rules which can be attached to
(or detached from) alerts by means of AttachCategorisationRule method in ALMAS Manager. The configuration file is
read by an ALMAS implementation at startup but attaching/detaching of rules to alerts can be done dynamically at
runtime using those methods.

8 OMG CORBA/IDL Platform Specific Model

8.1 Rationale

The objective of this PSM is to normalize the CORBA/IDL structures and interfaces. This PSM aims to support the
entire PIM interface.

In order for this interface to be reasonably compatible with the DDS PSM, also provided, the data model part is separated
from the functional interface model.

All attributes, methods and associations are mapped to IDL elements. As a general rule, therefore, classes with methods
are mapped to CORBA/IDL interfaces, classes without methods are mapped to structs, attributes are mapped to
CORBA/IDL attributes, associations, and compositions to read only attributes and methods to methods which deal with

ALert Management Service (ALMAS), v1.3 29

errors through CORBA exceptions. Typedef declarations are introduced for UML int attributes mapped to an IDL long,
sequences for UML zero-to-many attributes or compositions and to map a PIM date to a CORBA TimeT.

Subscribe methods and indication classes are also mapped within a client IDL file which has to be implemented by
clients in order to receive indications (i.e., callbacks) from ALMAS.

The invocation of API methods is logged using the Open Telemetry (OTEL) standard by the implementation of the API
method.

9 DDS/DCPS Platform Specific Model

9.1 Rationale

The approach in this PSM is to compare it to the CORBA PSM and highlight differences as necessary. In the DDS PSM
two (not exclusive) ways are provided for modeling the management module:

 DCPS-only mapping, in which interfaces are modeled as topics (singletons) and methods as pairs of
(request- and reply) topics.

 DLRL mapping, which models classes and methods more directly. The mapping is based on information
provided by PrismTech on DLRL data modeling. This entails following when compared to the CORBA
PSM:

o use of valuetypes instead of interfaces – note that a valuetype which is to be distributed by DLRL
must inherit from DDS::ObjectRoot

o there must be an XML-based mapping from DLRL to DCPS. This mapping is not provided in the
submission as it is expected that the default DLRL-DCPS mapping is used.

A DCPS-only implementation will use only DCPS-only mapping, while a DLRL implementation will use a combination
of DCPS and DLRL mappings.

If DDS_XTYPES is defined topic keys are defined using the @key annotation defined by the DDS_XTYPES
specification. Otherwise an alternate #pragma keylist mechanism is used for compatibility with earlier versions of this
specification.

The invocation of API methods is logged using the Open Telemetry (OTEL) standard by the implementation of the API
method or by a DDS Logging tool using the DDS RTPS protocol.

9.1.1 DCPS level mapping

A generic response topic is used for responses to all method calls; note that this does not provide return values, but just
the error code.

Return values are implemented in DCPS by publication of an appropriate topic.

In terms of mapping the PIM-level methods on DCPS, following rules are applied:

 Wherever possible, PIM-level methods are mapped to subscriptions or publications of respective DDS
topics. This means that even though these methods cannot be found in the DDS PSM IDL, they can be
executed on the PSM level by simply calling the required function from the DDS API. For example, the
method GetAlert in ALMAS Manager can therefore be implemented by a DDS read of the Alert topic, with
attached condition to receive only the Alert with the ID we are interested in.

 In all other cases, so-called “control topics” are used (such as also applied in the AMSM specification). The
names of the topics identify the method which they realize. The control topics also include an identifier of
the request (assumed to be uniquely generated by the calling application). The responses to methods are
modelled as instances of topic ALMAS_Response, which includes the error code (return_type on the PIM
level) and the request identifier (which then can be used to relate the response to the request). In case a
method has output parameters other than return_type, these are obtained by reading the relevant topic.

30 ALert Management Service (ALMAS), v1.3

Also, ALMAS_RegisterReceiver and ALMAS_UnregisterReceiver are mapped to DCPS built-in API methods and so are
omitted from the IDL for this PSM. It is assumed that request IDs are generated by the producer and that they are unique
to an individual ALMAS producer. Topic instances are post-fixed with the Producer ID so that they are unique to a
producer. The caller is responsible for finding the instance of topic ALMAS_Response that corresponds to their request.
This is in alignment with the approach taken in AMSM.

9.2 DCPS

9.2.1 ALMAS Client

The ALMAS client module is not required in the DDS PSM since this is all available through the use of the standard
DDS mechanisms and the topics already defined for ALMAS_StateType and ALMAS_Alert.

9.2.2 ALMAS Management

Parameters of the operation RaiseAlertFromOverrides are implicitly defined as being optional in the PIM; in this PSM
they are explicitly marked as optional using an IDL annotation.

The AlertID out parameter in PIM methods RaiseAlertFromOverrides, RaiseAlertWithDynamicData,
RaiseAlertFromData and RaiseAlertFromTemplate is mapped to the ALMAS_CreatedAlert topic type so that producers
are aware of the alert id for alerts they have raised in order to cancel them as appropriate.

The following table provides explanation of the mapping of methods in the ALMAS Management module. Only those
methods which are mapped directly to DDS level constructs are listed in the table, all methods which are mapped on
“control topics” are listed in the subsequent IDL file.

Class (PIM level) Method DDS mapping

ALMAS
Manager

GetAlert(int, Alert) DDS read with query condition

ALMAS
Manager

GetAlerts(String, SortedAlertSet) DDS read with query condition

ALMAS
Manager

GetTemplate(int) DDS read with query condition.

ALMAS
Manager

GetAllTemplateIDs(String, TempalteIDSet) DDS read with query condition.

ALMAS
Manager

RegisterNotificationListener(ALMAS Notification Listener) Creation of a new DDS Listener.

9.2.3 DCPS topics QoS

ALMAS topics share the same values for most of the DDS QoS (cf. [DDS]):

QoS Value

USER_DATA <unspecified>

TOPIC_DATA <unspecified>

ALert Management Service (ALMAS), v1.3 31

GROUP_DATA <unspecified>

PRESENTATION <unspecified>

DEADLINE Period = infinite

LATENCY_BUDGET duration = <unspecified>

OWNERSHIP EXCLUSIVE

OWNERSHIP_STRENGTH <unspecified>

LIVELINESS kind = AUTOMATIC / lease_duration = <unspecified>

TIME_BASED_FILTER <unspecified>

PARTITION <unspecified>

TRANSPORT_PRIORITY value=0

DESTINATION_ORDER BY_SOURCE_TIMESTAMP

HISTORY kind = KEEP_LAST / depth = 1

RESOURCE_LIMITS All unlimited.

ENTITY_FACTORY <unspecified>

WRITER_DATA_LIFECYCLE <unspecified>

READER_DATA_LIFECYCLE <unspecified>

The other QoS (DURABILITY, RELIABILITY and LIFESPAN) will be allocated with the following principle:

· As for the "Control topics" (both requests and responses), they have DURABILITY equals to VOLATILE,
RELIABILITY set to RELIABLE and LIFESPAN.duration defined by the implementation:

DURABILITY VOLATILE

RELIABILITY kind = RELIABLE

LIFESPAN Implementation dependant

· Others topics have DURABILITY to TRANSIENT, RELIABILITY set to RELIABLE and LIFESPAN.duration
to infinite:

DURABILITY TRANSIENT

RELIABILITY kind = RELIABLE

LIFESPAN duration = infinite

9.3 DLRL

9.3.1 ALMAS Client

The ALMAS client module is not required in the DDS PSM since this is all available through the use of the standard
DDS mechanisms and the topics already defined for ALMAS_StateType and ALMAS_Alert (i.e., through the DCPS
mapping).

32 ALert Management Service (ALMAS), v1.3

This page intentionally left blank.

ALert Management Service (ALMAS), v1.3 33

10 COM IDL Platform Specific Model

10.1 Rationale

The objective of this PSM is to normalize the structures and interfaces required for a COM implementation of the
standard. This PSM aims to support the entire PIM interface.

In order for this interface to be reasonably compatible with the other PSMs provided in this document, the data model
part is separated from the functional interface part.

All attributes, methods and associations are mapped to COM IDL elements. As a general rule, therefore, classes with
methods are mapped to COM interfaces, classes without methods are mapped to structs, attributes are mapped to
interface read/write methods. All return parameters and exceptions are mapped to method out parameters with the COM
HRESULT returned from all interface methods.

Subscribe methods and indication classes are also mapped within a client IDL file which has to be implemented by
clients in order to receive indications (i.e., callbacks) from ALMAS.

The invocation of API methods is logged using the Open Telemetry (OTEL) standard by the implementation of the API
method.

34 ALert Management Service (ALMAS), v1.3

This page intentionally left blank.

11 GraphQL Platform Specific Model

11.1 Rationale

The GraphQL PSM defines a single schema definition file for the ALMAS Data Model, ALMAS Management and
ALMAS Client Callbacks packages defined by the PIM. Classes from the ALMAS Dtaa Model of the PIM are mapped to
GraphQL types within the schema.

The detailed rules for the MDA code generation from the ALMAS Data Model PIM to the GraphQL PSM schema are as
follows:

ALert Management Service (ALMAS), v1.3 35

 The PIM attributes are mapped to GraphQL attributes;
 PIM attributes with multiplicity 1 are mapped to non-nullable GraphQL attributes
 Collections in the PIM are mapped to GraphQL arrays;
 Aggregation and compositions are mapped to GraphQL attributes;
 Association classes follow the equivalent mapping as the CORBA and DDS PSMs

The schema supports GraphQL clients for interfaces defined in the ALMAS Management and ALMAS Client Callbacks
PIM packages. Mutations are used to invoke PIM interface methods; queries and subscriptions are used to process those
invocations.

The PSM method for connecting to other components is through the underlying HTTPS web service connection. Web-
sockets are used for subscription callbacks.

Specific rules for the MDA code generation from the Service Model PIM to the GraphQL PSM IDL are as follows:

 Interface method (in) parameters and return values (including out parameters) in the Service Model
are each mapped to a (query) type, an input type and update type; these are for queries, mutations,
and subscriptions respectively.

 To invoke a method an ALMAS client makes a mutation (with method parameter type) and
subscribes or queries for the response (with the return value type).

 To process a method an ALMAS client queries or subscribes for the method parameter type and
makes a mutation with the response (with the return value type).

 As per the DDS PSM, each of the parameter and return value types contain a request id; the
instigator is responsible for allocating unique request ids in the scope of the ALMAS system; the
processing component is responsible for labelling responses with the received request id so that the
instigator can locate the corresponding response.

 The GraphQL schema Query type supports queries for any combination of interface methods in the
Service Model.

 The GraphQL schema Mutation type supports invocation of single or multiple instances of any
combination of interface methods in the Service Model.

 The GraphQL schema Subscription type supports subscription for any combination of interface
methods in the Service Model.

 The following methods are mapped to the return (out parameter) type with a GraphQL filter
condition in the query: GetAlert, GetAlerts, GetTemplate and GetAllTemplateIDs

 RegisterNotificationListener is mapped to a GraphQL subscription.
 Parameters of the operation RaiseAlertFromOverrides are implicitly defined as being optional in

the PIM; in this PSM they are explicitly marked as optional using an IDL annotation.
The invocation of API methods is logged using the Open Telemetry (OTEL) standard by the implementation of the API
method.

36 ALert Management Service (ALMAS), v1.3

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and definitions
	4.1 General Definitions
	4.2 Definitions Specific to this Document

	5 Acronyms and Abbreviations
	6 Platform Independent Model (PIM)
	6.1 ALMAS Client Callbacks
	6.1.1 ALMASNotificationListener
	6.1.1.1 Operation

	6.1.2 ALMASReceiver
	6.1.2.1 Operation

	6.2 ALMAS Data Model
	6.2.1 Alert
	6.2.1.1 Attribute

	6.2.2 AlertData
	6.2.2.1 Attribute

	6.2.3 AlertDataExtraAttributes
	6.2.3.1 Attribute

	6.2.4 AlertReport
	6.2.4.1 Attribute

	6.2.5 AlertTemplate
	6.2.5.1 Attribute

	6.2.6 AvailableAlertReceiver
	6.2.6.1 Attribute

	6.2.7 CallStatus
	6.2.7.1 Attribute

	6.2.8 DynamicMessageData
	6.2.8.1 Attribute

	6.2.9 ReceiverKind
	6.2.9.1 Attribute

	6.2.10 StaticMessage
	6.2.10.1 Attribute

	6.2.11 ValidAlertResponse
	6.2.11.1 Attribute

	6.2.12 Category
	6.2.12.1 Attribute
	6.2.13 State
	6.2.13.1 Attribute

	6.2.14 Status
	6.2.14.1 Attribute

	6.2.15 Scope
	6.2.15.1 Attribute

	6.2.16 TimeoutAction
	6.2.16.1 Attribute

	6.2.17 AckModel
	6.2.17.1 Attribute

	6.3 ALMAS Management
	6.3.1 ALMASConfiguration
	6.3.1.1 Operation

	6.3.2 ALMASLogger
	6.3.3 ALMASManager
	6.3.3.1 Attribute
	6.3.3.2 Operation

	6.3.4 ALMASManagerExtensions
	6.3.4.1 Operation

	6.3.5 ALMAS Producer
	6.3.5.1 Operation

	6.3.6 ALMASResponder
	6.3.6.1 Operation

	6.3.7 ALMASResponderExtensions
	6.3.7.1 Operation

	6.4 Alert Categorisation
	6.4.1 AbsoluteEvent
	6.4.1.1 Attribute

	6.4.2 AlertCategorisationRule
	6.4.2.1 Attribute

	6.4.3 CategorisationAction
	6.4.4 CategorisationCondition
	6.4.4.1 Attribute

	6.4.5 CategorisationRuleSet
	6.4.6 CategorisationTrigger
	6.4.7 ChangeEvent
	6.4.7.1 Attribute

	6.4.8 Event
	6.4.9 OperatorEvent
	6.4.9.1 Attribute

	6.4.10 PeriodicEvent
	6.4.10.1 Attribute

	6.4.11 RaiseAction
	6.4.12 RelativeEvent
	6.4.12.1 Attribute

	6.4.13 Time Event

	6.5 Dynamic behaviour
	6.5.1 Action Situation Alert State Model
	6.5.2 Information Warning Alert State Model
	6.5.3 Alert Registration and Creation

	7 XML Platform Specific Model
	7.1 The Template Alert Data specification file
	7.2 The ALMAS configuration file
	7.3 The Receiver Hierarchy configuration file
	7.4 The ALMAS categorisation rule file

	8 OMG CORBA/IDL Platform Specific Model
	8.1 Rationale

	9 DDS/DCPS Platform Specific Model
	9.1 Rationale
	9.1.1 DCPS level mapping

	9.2 DCPS
	9.2.1 ALMAS Client
	9.2.2 ALMAS Management
	9.2.3 DCPS topics QoS

	9.3 DLRL
	9.3.1 ALMAS Client

	10 COM IDL Platform Specific Model
	10.1 Rationale

	11 GraphQL Platform Specific Model
	11.1 Rationale

